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Highlights 

 We constructed CHS-overexpression Arabidopsis thaliana lines, and selected 

them as well as the anthocyanin-deficient mutant (tt4), and Arabidopsis ecotype 

Columbia (Col) for experiments. 

 CHS-overexpression Arabidopsis thaliana lines enhances HL resistance by 

synthesizing more anthocyanins. 

 Anthocyanin enhance the adaptability of plants to high light and maintain 

photosynthetic capacity via both antioxidation and attenuation of light. 

 

ABSTRACT 

Previous studies have suggested that high light (HL) stress causes photoinhibition in plants, while 

anthocyanins could protect the photosynthetic apparatus against photoinhibition. However, the 

photoprotection mechanism of anthocyanins is still ambiguous. We studied physiological 
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responses and molecular changes for CHS-overexpression lines (CHS1, CHS2, CHS3), 

Arabidopsis thaliana ecotype Columbia (Col), and T-DNA insertion lines of CHS (tt4) under HL 

(200 μmol m2 s1) to explore the photoprotection mechanism of anthocyanins. The results showed 

that HL induced anthocyanin synthesis and accumulation. The leaves of CHS-overexpression lines 

turned reddest and the genes, including CHS, DFR, ANS, were expressed at highest levels. Thus, 

the CHS-overexpression lines maintained the highest photosynthetic capacity and suffered the 

least damage from HL of the three phenotypes. However, the CHS enzyme and anthocyanins were 

undetectable in tt4 during the experiment. Correspondingly, chlorophyll fluorescence parameters 

of tt4 declined greatly. The photosynthetic apparatus and cell membranes were also impaired 

dramatically. The physiological characteristics of Col were compared between 

CHS-overexpression lines and tt4. Together, the results suggest that over-expression of CHS gene 

enhances HL resistance by synthesizing more anthocyanins, that anthocyanins enhance the 

adaptability of plants to HL and that they maintain photosynthetic capacity via both antioxidation 

and attenuation of light. 

 

Key words: CHS; high light; anthocyanins; photoprotection; antioxidation 

 

1. Introduction 

Anthocyanins are a group of polyphenol flavonoids that provide plant organs with a wide 

range of colors ranging from orange/red to violet/blue. Over 600 anthocyanins have been isolated 

from various plants species (Andersen and Jordheim 2005). Anthocyanins are the products from a 

branch path of flavonoid metabolism (Grotewold 2006). At the beginning of anthocyanin synthesis, 

chalcone synthase (CHS) catalyzes the synthesis of naringenin chalcone from three molecules of 

4-malonyl-CoA, and one molecule of p-coumaroyl CoA. CHS is the first key enzyme in the 

biosynthesis of flavonoids (Tanaka at al., 2008). 

The process of anthocyanin synthesis in plants is regulated by many environmental and growth 

factors, such as illumination (Oren-Shamir 2009), fungi (Gläßgen et al., 1998), sucrose level (Teng 

et al., 2005), salt concentration (Oh et al., 2011), temperature (Catalá et al., 2011) and nutrition 

level (Rubin et al., 2009). Illumination includes illumination intensity and light quality. 
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Photoperiod is one of the most important environmental factors (Howe et al., 1995). Previous 

studies have shown that the absorption spectra of anthocyanins overlap with those of 

photosynthetic pigments, roughly ranging from 400 nm to 600 nm (Karageorgou and Manetas 

2006). For the optical masking of green light, anthocyanins have very sharp peaks in absorbance 

centered around 520-530 nm and low absorption at the blue and red wavelengths (Neill and Gould, 

2003). Red light and blue light are the main lights used in photosynthesis (Gould at al., 2002). 

Anthocyanins and photosynthetic pigments are all affected by illumination intensity, suggesting a 

potential relationship between light absorption by anthocyanins and photosynthetic pigments. In 

addition, anthocyanins affect the photosynthetic capacity of plants (Olaizola and Duerr 1990; 

Oren-Shamir 2009). In the natural environment, high light (HL, ≈2000 μmol m−2 s−1), high 

temperature and other environmental stresses often occur simultaneously. Then plant growth can 

be limited due to photoinhibition, which is the decline in the quantum yield of photosynthesis 

caused by excess light. Photoinhibition can be quantitatively analyzed by PAM chlorophyll 

fluorometry (Genty et al., 1989; Krause and Weis, 1998).  

Many plants have red leaves in nature. The ability to absorb green and blue light is greater in 

leaves that are rich in anthocyanins than those without anthocyanins (Neill and Gould, 2003; 

Merzlyak et al., 2008). Anthocyanins can attenuate the light reaching the chloroplast, thereby 

alleviating photoinhibition to protect the photosynthetic apparatus (Steyn et al., 2002; Gould at al., 

2002). It has been pointed out that photoprotection facilitated by anthocyanins is vital to plants 

which are under various stresses. Previous studies suggested that Arabidopsis thaliana wild type 

(WT) was more resistant than deficient mutants tt3 and tt4 to different stresses, implying that 

flavonoids, especially anthocyanins, further protect the photosynthetic apparatus under severe 

stresses (Shao et al., 2007; Zhang et al., 2012). Similarly, seedlings of  Ocimum gratissimum 

suffered severe chilling injury in HL (1000 μmol m−2 s−1) intensity under the pretreatment of 

low-temperature, whereas seedlings of O. basilicum ‘purple ruffles’ rich in anthocyanins showed 

normal or near normal function (Tian et al., 2013). HL induces the accumulation of anthocyanins 

in young leaves of Schima superba (Zhang et al., 2017). Zeng et al. (2010) found that when 

supplemental anthocyanins were infiltrated into leaves of the anthocyanin-deficient double mutant 

(tt3tt4), exogenous anthocyanins alleviated direct or indirect oxidative damage of the 
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photosynthetic apparatus and DNA in plants under HL stress.  

Reactive oxygen species (ROS) are important signaling molecules, but excess ROS damage 

the cell membranes, phospholipids, proteins and nucleic acids. They increase the permeability of 

cell membrane and the peroxidation of membrane lipids, thereby damaging the structure and 

function of plant cells (Donahue et al., 1997; Xu et al., 2017). Antioxidative systems have evolved 

to scavenge ROS and improve the resistance of plants through a long evolutionary progress. 

Antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate 

peroxidase (APX) and glutathione reductase (GR), are major players that detoxify ROS (Mittler 

2002). Furthermore, many low molecular weight antioxidants (LMWA), like ascorbic acid 

(vitamin C), tocopherol (Vitamin E), glutathione (GSH), β-carotene, phenolic compounds and 

flavonoids, also play an important role in antioxidation. It has been demonstrated that the 

antioxidative capacity of flavonoids is about four-fold greater than vitamin C and vitamin E 

(Rice-Evans et al., 1997; Lee and Gould, 2002). As a sub-group of flavonoids, anthocyanins play 

an important role in photoprotection. For one thing, anthocyanins can decrease the degree of ROS 

accumulation by absorbing and blocking out part of excess blue-violet light to protect mesophyll 

cells underneath the epidermis. For another, anthocyanins can eliminate ROS to ease the damage 

due to photooxidation. Previous studies have confirmed that Galax urceolata, a tufted evergreen 

perennial herb, could accumulate more anthocyanins in leaves under HL during winter. The colour 

of leaves changed from green to red in winter, presenting strong evidence for light attenuation and 

antioxidative activity of anthocyanins (Hughes and Smith, 2007). Zea mays could accumulate 

anthocyanins in leaves to protect chloroplasts and prevent photoinhibition at low temperature, 

thereby improving photosynthetic efficiency (Pietrini et al., 2002). Those researchers all suggested 

that anthocyanins ameliorated photodamage under stress, especially under HL stress.  

At present, much of the research on abiotic stress focuses on the HL response mechanisms of 

different plants, such as Arabidopsis thaliana (Barczak-Brzyżek et al. 2017; Schumann et al. 2017; 

Zeng et al. 2017); Begonia semperflorens (Wang et al. 2017); Solanum lycopersicum L. (Lu et al. 

2017); Cucumis sativus (Chen et al. 2017; Yu et al., 2016); Oryza sativa L. (Faseela and Puthur 

2016); and Acer saccharum Marsh. (Singh et al. 2016). What can be considered HL intensity 

varies from plant to plant, depending on the biotope and light saturation point (LSP) of species 
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(Demmig-Adams and Adams Iii, 1992; Schumann et al. 2017). However, the mechanism by which 

anthocyanins protect the chloroplast and prevent HL stress is still not very clear, necessitating 

further research to obtain more evidence to support it. 

In this study, we investigated the effects of anthocyanins on Arabidopsis thaliana ecotype 

Columbia (Col), CHS-overexpression lines (CHS1, CHS2, CHS3) and T-DNA insertion lines of 

CHS (tt4) under HL (200 μmol m−2 s−1, which is twice as high as the normal growth light 

intensity). We analyzed expression levels of anthocyanin biosynthesis related genes, and 

physiological responses of Arabidopsis thaliana. We hypothesized that (1) CHS-overexpression 

lines have greater resistance to HL treatment and over-expression of the CHS gene enhances HL 

resistance by synthesizing more anthocyanins, and (2) anthocyanins enhance the ability of a plant 

to acclimate to HL via both antioxidation and attenuation of light. 

2. Materials and methods 

2.1 Plant materials and growth conditions 

Seeds of Arabidopsis thaliana ecotype Columbia (Col) and T-DNA insertion mutant at CHS, 

tt4 (SALK_020583) were obtained from the Arabidopsis Biological Resource Center (ABRC), the 

Ohio State University, Columbus, OH, USA. The seed coat of the Col is brown, while the coat of 

the mutant is yellow. Seeds were imbibed at 4C in the dark for 3 days to synchronize germination, 

and then sown on sterilized MS medium for approximately 10 d. Plant seedlings were transferred 

to soil (peat soil:vermiculite = 3:1) in a growth cabinet, the conditions of which were 20-22C 

with a 16-h photoperiod (photosynthetic photon flux density, PPFD = 100 μmol m−2 s−1) and a 

relative humidity of 80%. 

2.2 Construction of the CHS-overexpression transgenic lines 

Arabidopsis thaliana ecotype Columbia (Col) was used for constructing CHS-overexpression 

transgenic lines in this experiment. A full-length CHS (TAIR ID: AT5G13930) cDNA was cloned 

by RT-PCR using the following primer pair: 5’-TAGGTACCCATGGTGATGGCTGGTGCTTC-3’ 

and 5’-TAGGATCCTTAGAGAGGAACGCTGTGCAAG-3’ (Table 1). The cDNA was introduced 

into a pMD18-T vector (Takara Co., Japan) and verified by sequencing. The plasmid DNA 
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harboring the full-length fragment of CHS was digested with KpnI and BamHI, and then 

subcloned into the corresponding sites of the binary vector pCanGmyc under the control of CaMV 

35S promoter. The constructed plasmid was transferred into Arabidopsis thaliana ecotype 

Columbia via the Agrobacterium-mediated floral dipping transformation method (Clough and 

Bent1998). Homozygous transgenic progeny lines were obtained through the 

kanamycin-resistance test and quantitative RT-PCR analysis. 

 

2.3 RNA extraction and cDNA synthesis 

Total RNA was extracted with TRIzol regent (Invitrogen) from mature rosette leaves 

according to a standard TRIzol (Invitrogen) protocol. The RAN was treated with DNase I (Takara) 

prior to synthesis the first strand of cDNA with oligo (dT) 18 primer and the M-MLV reverse 

transcriptase kit (Takara). 

2.4 qRT-PCR of CHS, DFR and ANS genes 

Gene specific qRT-PCR primers were designed using Premier 5.0 software (Premier Biosoft 

International, Palo Alto, CA). The specific primer pairs are shown in Table 2. qRT-PCR for gene 

expression involved in the anthocyanin pathway (CHS, DFR, ANS), was performed using an 

Applied Biosystem platform. Each 10 μL of reaction solution contained: 5.2μL SYBR® Premix 

EX Tap™ II (Takara), 0.4 μL of each primer, 0.5 μL cDNA, 3.5 μL DEPC water. The reaction 

cycle was 95C for 30s, followed by 40 cycles (95C for 5s, 60C for 34s), and 1 cycle for 

recording a melt curve at 95C for 15 s and 60C for 1 min. The relative expression levels of CHS, 

DFR and ANS in the leaves were quantified relative to the TUB gene and calculated using the 

2-ΔΔCt method (Livak and Schmittren, 2001). 

 

2.5 High light treatments. 

Seedlings were grown on soil (peat soil: vermiculite = 3:1) in a growth chamber under 

normal conditions at a light intensity of 100 μmol photons m−2 s−1 for 25 days. The plants were 
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then subjected high light treatment at 200 μmol photons m−2 s−1.  

2.6 Quantification of pigments 

Anthocyanins were measured using the methods described by Wade et al. (2003) with some 

modification. Fresh leaf material (0.05 g) was extracted in 3 ml of 1% HCl in methanol (v/v), and 

the extracts were kept in dark at 4C overnight. Subsequently, chloroform and deionized water 

were added to the extract for removal of chlorophylls. After blending and settling, anthocyanins 

were dissolved in the upper water phase. The supernatant absorption spectra were recorded from 

400 to 700 nm. Spectrophotometric analysis of the methanol extracts was conducted with a 

Visible-UV spectrophotometer (Lambda25, Perkin-Elmer, Waltham, MA, USA). 

2.7 Chlorophyll fluorescence measurements 

Chlorophyll fluorescence was measured using a portable pulse-modulated fluorometer (PAM 

2100, Walz, Effeltrich, Germany). The leaves were dark-adapted for 20 min prior to PAM 

fluorescence determination. The initial fluorescence (Fo) was determined with a weak modulated 

light (0.04 μmol m−2 s−1). The maximal fluorescence (Fm) was induced by a saturating pulse of 

light (6000 μmol m−2 s−1) applied over 0.8 s. Fm’ was monitored with a saturating pulse following 

15 min of continuous actinic light (200 μmol m−2 s−1). The primary photochemical efficiency of 

photosystem II (PSII) (Fv/Fm), the ETR through PSII, the photochemical quenching coefficient 

(qP), and yield were calculated according to Gray et al. (2003) and Schreiber et al. (1986). 

2.8 Determination of Rubisco protein 

Rubisco protein determination was carried out by following the procedures described by 

Zhang et al. (2016) and Rubisco large subunit (RL) was further identified using immunoblotting 

analysis. 

2.9 H2O2 and·O2
 localization in situ 

ROS localization was conducted according to Romero-Puertas et al. (2004) and Zeng et al. 

(2010). H2O2 was visualized by diaminobenzidine (DAB) staining. Leaves were immersed and 
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vacuum-infiltrated with a solution of DAB in 50 mM phosphate buffer (pH 7.0) for 10 min and 

subsequently incubated at room temperature for 8 h in the dark. When brown spots appeared, the 

stained leaves were bleached by immersion in boiling ethanol (75%, v/v) to remove the pigments, 

and leaves were photographed by a digital camera. For localization of O2
 in situ, leaves were 

vacuum-infiltrated with a solution containing 50 mM K-phosphate buffer (pH 6.4), 10 mM 

Na-azide, and 0.1% nitroblue tetrazolium (NBT) for 10 min and then left under white light (80 

μmol m−2 s−1) until the appearance of dark spots, characteristic of blue formazan precipitates. The 

subsequent steps were the same as for localization of H2O2. 

2.10 Analysis of electrolyte leakage 

Cell-membrane leakage rate was determined according to Lutts et al. (1996). Fresh leaves 

were immersed in double-distilled water for 1.5 h at room temperature, followed by a 30-min 

boiling treatment. The conductivity of a solution of leakage electrolytes before (EC1) and after 

boiling (EC2) was determined with a DDS-11C conductometer (Shanghai Dapu Instruments, 

Shanghai, China). The electrolyte leakage expressed in percentage (%) of total electrolytes, was 

calculated by using the formula: EL = (EC1/EC2) × 100 %. 

2.11 Lipid peroxidation 

Lipid peroxidation was estimated by determining the concentration of malondialdehyde 

(MDA) using the thiobarbituric acid (TBA) test (Draper and Hardly, 1990) with some 

modification. In brief, 0.1 g of fresh leaves was homogenized in 2 mL of 10% (w/v) TCA solution. 

The homogenate was centrifuged at 10,000  g for 5 min, the supernatant was collected, and 1 ml 

of the supernatant was mixed with 1 ml of 0.67% (w/v) TBA prepared in 10% (w/v) TCA. The 

mixture was incubated in boiling water for 15 min, and the reaction was stopped in an ice bath. 

Samples were centrifuged again at 10,000  g for 5 min, and the absorbance of the supernatant 

was read at 532, 600 and 450 nm for calculation of MDA content. 

2.12 Statistical analysis 

All data were average of four randomly selected replicates, and the results were expressed as 
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the mean ± standard error (SE). Statistical analysis was conducted by one-way ANOVA followed 

by a Duncan post-hoc test using Microsoft 2010 and SPSS Statistics 19 (IBM SPSS, Chicago, 

USA). Graphing was performed using SigmaPlot 12.5 software（Systat Software, San Jose, CA, 

USA）. 

3. Results 

3.1 Screening and identification of homozygous CHS-overexpression Arabidopsis thaliana 

The CHS over-expression vector (pCanGmyc-CHS + EHA105) was constructed and 

identified (see Supplemental Material, Fig S1). The positive plasmid was transferred into 

Arabidopsis thaliana ecotype Columbia via the Agrobacterium-mediated floral dipping 

transformation method (Clough and Bent 1998). T0 seeds were obtained from dipping flowers. T0 

seeds without successful transformation couldn’t grow in kanamycin culture medium (Fig. 1A). T0 

lines were grown to produce T1 seeds. T1 seeds showed 3:1 separation characters in MS medium 

with kanamycin (Fig. 1B). T1 lines were grown to produce T2 seeds. Homozygous lines without 

character segregation were finally obtained with the kanamycin-resistance test (Fig. 1C). Three 

CHS-overexpression lines were generated for this study. The relative levels of expression of the 

CHS gene in the three overexpression lines were significantly increased compared with Col, 

ranging from 30-fold to 40-fold. But the relative expression level of the CHS-deletion line tt4 was 

only 25% of Col (Fig. 1D). Immunoblotting analysis was consistent with the result of fluorescence 

quantitation PCR, showing that CHS-overexpression lines synthesized more CHS enzyme than 

WT (Fig. 1E). 

3.2 Changes in anthocyanin accumulation in Arabidopsis thaliana under high-light treatment 

Under normal growth conditions, the CHS-deletion line tt4 showed weaker growth with 

fewer rosette leaves and earlier ageing than Col and CHS-overexpression lines. There was no 

obvious difference in the color of leaves between the five lines, and rosette leaves didn’t turn red 

noticeably in a later growth period (Fig. 2A, B). Seedlings growing in compost under normal 

natural conditions for 25 days were transferred to HL. In the initial phase of HL treatment (up to 

three days of HL treatment), the five lines displayed normal green rosette leaves without turning 
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red. However, tt4 showed leaf chlorosis and senility afterwards in HL treatment. Leaves of the 

four lines, with the exception of tt4, were deep red, and rosette leaves of CHS-overexpression lines 

were redder than Col (Fig. 2B). After 3 d of HL treatment, leaves of CHS-overexpression lines 

appeared red. On the sixth day of treatment, tt4 began to become yellow first, while the others 

showed red leaves. HL resulted in ageing and mortality of tt4 leaves after 15 days of treatment. 

After a 20-day HL treatment, leaves of Col died but CHS lines survived until he twenty-fifth day 

(Fig. S2). Here, the absorption spectra (400 – 700 nm) of methanol-HCl extracts from leaves of 

the five lines were recorded. There were no obvious spectral absorption peaks of the anthocyanin 

extracts under normal illumination condition (Fig. 2C). However, there was an obvious difference 

in absorption spectrum in the three phenotypes after 12d under HL treatment. The contents of 

anthocyanins in CHS-overexpression lines were about 2-fold higher than that in the WT, but tt4 

still didn’t show the typical absorption peak at 530 nm (Fig. 2D). Immunoblotting analysis on 

CHS enzyme also showed that the synthesis of CHS increased significantly after HL treatment of 

Col and the three overexpression lines (Fig. 1E).  

3.3 Changes in relative expression of anthocyanin synthetic genes in Arabidopsis thaliana under 

HL treatment 

There were obvious changes in anthocyanin accumulation in the five lines of Arabidopsis 

thaliana under HL treatment. We then explored the changes in relative expression level of 

anthocyanin synthetic genes, CHS, DFR and ANS, after HL treatment. Before HL treatment, the 

relative transcript levels of the CHS gene in two CHS-overexpression lines, CHS2 and CHS3, were 

nearly 40-fold higher than in the WT, and in CHS1 was 30-fold (Fig. 1D, 3A). But relative 

transcription levels of DFR and ANS in three CHS-overexpression lines were close to that of the 

WT (Fig. 3B, C). These results imply that the CHS lines were CHS-overexpression lines. On the 

contrary, the CHS-deletion line tt4 showed a significantly lower transcription level of CHS, but 

much more expression of DFR, ANS genes than in CHS-overexpression lines and Col before HL 

treatment (Fig. 3); indeed, the expression of DFR was about 40-fold higher than in 

CHS-overexpression lines and Col (Fig. 3B). After 15 d under HL treatment, relative expression of 

DFR and ANS genes in all lines was significantly up-regulated, but not in the CHS gene. The 

relative expression levels of anthocyanin synthetic genes in CHS-overexpression lines were still 
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significantly higher than that of WT, while the CHS gene was down regulated compared with 

before treatment. The expression level of CHS and DFR genes in tt4 were lower than in Col, but 

the expression level of ANS in tt4 was higher than in Col (Fig. 3). The data are basically consistent 

with phenotype observation and anthocyanin contents (Fig. 2A, B). 

3.4 Changes of chlorophyll fluorescence parameters in leaves of Arabidopsis thaliana under 

high-light treatment 

We measured chlorophyll fluorescence parameters (including Fv/Fm, qP, Yield, ETR) of the 

five lines during HL treatment. There was no obvious difference in the four chlorophyll 

fluorescence parameters between the five lines before HL treatment. But with the extension of 

treatment time, chlorophyll fluorescence parameters of the five lines decreased at different rates 

(Fig. 4). Fv/Fm of Arabidopsis leaves of the five lines was about 0.81 to begin with. Fv/Fm of Col 

and tt4 respectively dipped to 0.34 and 0.10, declining by 58.0% and 86.5% after a 12-day 

treatment, respectively. But CHS still remained at a relatively higher level, roughly declining by 

30% (Fig. 4A). The decreasing trends of other chlorophyll fluorescence parameters (qP, Yield, 

ETR) were consistent with Fv/Fm: all those parameters decreased fastest in tt4, while those in the 

CHS-overexpression lines decreased more slowly (Fig. 4B, C, D). Chlorophyll fluorescence 

parameters of CHS lines were all higher than those of Col and tt4. 

3.5 Changes in Rubisco protein content in leaves of Arabidopsis thaliana under high-light 

treatment 

SDS-PAGE analysis showed that Rubisco contents in the five lines were higher before HL 

treatment than after. There were no significant differences between the five lines in Rubisco 

content without HL treatment (Fig. 5A). The Rubisco content of tt4 decreased more drastically 

than in WT and CHS-overexpression lines (Fig. 5C). CHS-overexpression lines maintained the 

highest content among the five lines after HL treatment (Fig. 5A). To quantify these changes, TIFF 

files of the gel images were transferred for analysis by TotalLab TL120 (Nonlinear Dynamics Ltd., 

Newcastle, UK). Analysis data show that Rubisco contents in CHS1, CHS2, CHS3, Col and tt4 

declined by 48.7%, 52.9%, 50.1%, 65.6% and 97.7 %, respectively, after 12 d under HL treatment. 

The small subunit decreased more than the large subunit (Fig. 5D, E). Immunoblotting analysis on 
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the Rubisco large subunit (RL) was consistent with SDS-PAGE analysis (Fig. 5A, B). 

3.6 Localization of the DAB-H2O2 and NBT-O2
− compounds in tissues 

Using diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) histochemical staining, we 

detected the accumulation of H2O2 and 
O2

− in leaves of the five lines. Some brown deposits, the 

product of reaction of H2O2 with DAB, could be observed in leaves after 12 d under HL treatment. 

The results suggest that the tt4 mutant accumulated the most H2O2 followed by WT and then the 

CHS-overexpression lines according to color gradation and size of brown deposits (Fig. 6). The 

accumulation proportion of H2O2 were 60.1%, 9.0%, 7.3%, 43.0%, 87.0 % in Col, CHS1, CHS2, 

CHS3 and tt4, respectively, determined by pixel counts in Adobe Photoshop 7.0 (Adobe Systems). 

In superoxide radical detection where the blue formazan precipitates are characteristic of a 

reaction of NBT with O2
−, we detected the corresponding accumulation of greater amounts of 

O2
− with the H2O2 detection (Fig. 6). The percent staining relative to the total leaf area in Col, 

CHS1, CHS2, CHS3, and tt4 were 80.0%, 19.1%, 19.6%, 19.2%, 95.6%, respectively. 

3.7 Changes in relative membrane leakage and MDA in leaves of Arabidopsis thaliana under HL 

treatment 

Membrane permeability is a relevant index that reflects the degree of impaired membrane 

function. The higher the plasma membrane permeability, the more severe the cell membrane 

damage is (Shao et al., 2007). Before HL treatment, the cell membrane permeability was low in all 

the five lines. During the 15-d HL treatment, the cell membrane permeability of tt4 mutant 

increased the fastest, while that of the CHS-overexpression lines remained at the lowest levels; cell 

membrane permeabilities of tt4, Col, CHS3, CHS2, CHS1 were up to 80%, 58%, 39%, 38% and 

35%, respectively (Fig. 7A). Membrane lipid peroxidation generates MDA (malondialdehyde) 

(Ding et al., 2010). Here, we detected MDA content in Arabidopsis thaliana rosette leaves during 

HL treatment. MDA contents of the five lines remained moderately low before HL treatment. As 

the HL treatment time increased, a rising trend of MDA content could be detected in the five lines, 

which showed a pattern very similar to that of cell membrane permeability (Fig. 7B). 

4. Discussion 
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Overexpression transgenic lines constructed by the gene overexpression vector to transfect 

Arabidopsis thaliana is a common approach to studying gene functions. Here, we constructed a 

CHS-overexpression vector and transferred it into Arabidopsis ecotype Columbia (Col) (Fig S1). 

Finally, we generated three CHS-overexpression lines and named them CHS1, CHS2, CHS3, 

respectively. RT-PCR analysis showed that the relative expression of the CHS gene of these three 

overexpression lines was nearly 30-40 times higher than in Col (Fig. 1D). In order to further 

explore the role of anthocyanins in photoprotection, 25-day-old seedlings of Arabidopsis ecotype 

Columbia (Col), T-DNA insertion lines of CHS (tt4) and CHS-overexpression lines (CHS1, CHS2, 

CHS3) were treated under HL (200 μmol m−2 s−1) to observe their physiological and biochemical 

responses to HL stress. 

4.1 Anthocyanin accumulation enhances plant acclimation to HL 

Under normal light conditions, tt4 showed weaker growth and shorter survival time than the 

other two phenotypes, while there was no significant difference between the other four phenotypes 

(Fig. 2A). After 25-day-old seedlings were subjected to HL treatment for 12 d, CHS1, CHS2 and 

CHS3 appeared redder than Col, whereas rosette leaves of tt4 did not turn red but rather appeared 

chlorotic. Almost all seedlings of tt4 died after a 15-day treatment. Phenotype observations 

showed that upregulation of the CHS gene benefited Arabidopsis in its acclimation to HL stress 

(Fig. 2A, B). Spectrophotometric results suggest that the anthocyanins made the leaves appear red 

(Fig. 2C, D). In addition, immunoblotting analysis indicated that HL-induced synthesis of 

chalcone synthase was consistent with the observed phenotype (Fig. 1E). Therefore, we conclude 

that the CHS-overexpression lines, CHS1, CHS2 and CHS3, synthesized more anthocyanins to 

resist HL stress by up-regulating CHS expression. By contrast, tt4 showed the weakest resistance 

to HL stress, which resulted from down-regulation of CHS gene expression. 

CHS, DFR, ANS are three important key enzymes in the early, middle and late stages of 

anthocyanin synthesis pathway, respectively. The expression level of CHS gene was very low in 

tt4, being only 25.6% of Col, whereas the expression levels of the DFR and ANS genes were 

nearly 40 times and 10 times more than Col, respectively (Fig. 3). tt4 might have up-regulated 

midstream and downstream genes to counteract the negative impact of the lack of CHS expression. 
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We tend to call it a feedback-compensatory effect. After HL treatment, expression levels of CHS, 

DFR, ANS gene in Col were significantly up-regulated, especially the DFR and ANS genes. This 

implies that HL treatment would induce accumulation of anthocyanins by up-regulating middle- 

and late-biosynthetic genes, results which are similar to those of Xu et al. (2017). In addition, the 

CHS, DFR and ANS gene expression levels of CHS-overexpression lines were significantly higher 

than in Col, which illustrates that overexpression of the CHS gene enabled the up-expression of 

CHS, DFR, ANS and a substantial accumulation of anthocyanins under HL. By contrast, the 

expression of CHS and DFR genes in tt4 was significantly lower than in Col, though there was no 

statistical significance in the case of the ANS gene; this indicates that interfering with CHS gene 

expression not only affected the CHS gene but also others involved in anthocyanin biosynthesis. 

4.2 Anthocyanins partly protect the photosynthetic apparatus from HL stress 

If plants are grown in an HL environment with another stress, the efficiency of CO2 fixation in 

chloroplasts and the utilization of light energy would be reduced, resulting in excess light energy 

that leads to photodamge of the photosynthetic apparatus (Yang et al., 2002). Chlorophyll 

fluorescence quenching analysis is a rapid and non-invasive approach to measure photosynthetic 

function of leaves (Genty et al., 1989; Schreiber et al., 1995). It has been widely used in many 

fields of studies, such as photosynthetic mechanisms, plant stress physiology, prediction of 

potential crop yield by estimating activity of Photosystem II (PSII) and the partitioning of light 

energy between heat dissipation and photosynthetic electron transport (Demmig-Adams and 

Adams, 1996; Krall and Edwards, 1992). We analyzed the activity of PS II in the five lines by 

chlorophyll fluorescence analysis and the results show significant diversities among the three 

phenotypes after HL stress. Fv/Fm of all lines decreased to different degrees after HL treatment. 

CHS1, CHS2 and CHS3 maintained higher Fv/Fm than the other two lines, of which tt4 showed 

the greatest decrease in Fv/Fm. The results indicate that tt4 suffered the most severe 

photoinhibition, while the large accumulation of anthocyanins partly relieved photoinhibition in 

CHS-overexpression lines (Fig. 4A). 

The parameter qP indicates the redox state of primary quinone electron acceptor of PSII (QA) 

and, therefore, the number of open PSII reaction center traps. qP decreased sharply in the 
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anthocyanin-deficient mutant after HL stress, indicating that number of open PSII reaction centers 

badly decreased and, therefore, the ability of tt4 to fix CO2 badly declined. But CHS1, CHS2 and 

CHS3 still maintained high electron transport activity of PSII (Fig. 4D). Yield and ETR presented 

a similar pattern as Fv/Fm and qP did. The results suggest that the photochemical conversion 

efficiency of tt4 was severely affected by HL stress, but that anthocyanins in the other lines partly 

ameliorated the photodamage to the photosynthetic apparatus (Fig. 4B, C). 

Ribulose-1, 5-bisphosphate carboxylase / oxygenase (Rubisco; EC 4.1.1.39) is not only the 

first key enzyme in net photosynthetic CO2 assimilation and photorespiratory carbon oxidation, 

but also a storage protein in plants (Andersson and Backlund, 2008; Hartman and Harpel, 1994). 

Land plants allocate as much as 50% of their leaf nitrogen to Rubisco, making this single enzyme 

the most abundant protein in the world (Spreitzer and Salvucci 2002). The activity and content of 

Rubisco are affected by various environmental factors, such as illumination, CO2 concentration 

and temperature. The decrease in Rubisco content is a strategy by which plants acclimate to the 

environment with high light intensity, high CO2 level, low temperature and other stresses (Makino 

et al., 1997). In this study, SDS-PAGE image analysis and protein immunoblotting revealed that 

there was no significant difference in the content of total Rubisco, nor in the separate large and 

small subunits of Rubisco, among the three phenotypes before HL treatment. After 12 days in HL, 

however, their Rubisco contents all greatly declined, especially in tt4 (Fig. 5). The results indicate 

that anthocyanins could maintain activity and integrity of enzymes related to photosynthesis. Thus, 

this is another way in which anthocyanins decreased the degree of damage to photosynthetic 

apparatus under HL. 

4.3 Anthocyanins ameliorate the damage of the membranes system by ROS 

Reactive oxygen species (ROS) are unavoidable by-products of cellular metabolism in plants 

under environmental stress. ROS mainly cause peroxidation of membrane lipids, so membranes 

including photosynthetic membranes are subject to oxidative damage (Chia et al., 1981; Babbs and 

Griffin, 1989). Thus, the content of malondialdehyde (MDA) which is the end product of 

membrane lipid peroxidation, and cell membrane permeability can both reflect the degree of 

damage to the cell membrane. The higher content of MDA and greater cell membrane 

ACCEPTED M
ANUSCRIP

T



16 
 

permeability indicate the more serious damage of the cell membrane and the accumulation of 

more free radicals. In the present study, the content of MDA and cell membrane permeability of 

three phenotypes rapidly increased after HL treatment. These two parameters in the tt4 line 

increased most quickly, followed by Col and then the CHS-overexpression lines (Fig. 7). Our 

results show that CHS-overexpression lines maintained great stability of the membrane system due 

to abundant anthocyanins. By contrast, cell membranes of the anthocyanin-deficient mutant (tt4) 

suffered the most serious damage, resulting in exacerbation of electrolyte leakage. 

4.4 Anthocyanins enhance acclimation of plant to HL via both antioxidation and light attenuation 

If light intensity is higher than the light saturation point (LSP), light that cannot be used or 

dissipated safely would induce photoinhibition in plants and decrease the photosynthetic rate 

(Shulaev and Oliver 2006). Photoinhibition is generally accompanied by the generation and 

accumulation of ROS. Oxidative stress induced by ROS seriously damages the photosynthetic 

reaction center (PSI and PSII), photosynthetic pigments and cell membrane systems. The above 

results demonstrate that anthocyanins could partly protect the photosynthetic apparatus from 

damage by HL and lighten the damage of ROS to the membrane systems. We have localized ROS 

in the tissue of rosette leaves, and the results show that the five lines displayed various degrees of 

accumulation of H2O2 and O2
−. Generally, chloroplasts, peroxisome and mitochondria are the 

principal sites of ROS production (Hossain and Fujita, 2012). O2
− cannot readily permeate the 

tonoplast, and it is rapidly protonated to form hydroperoxyl radical, or dismutated by SOD to 

H2O2. (Takahashi and Asada, 1997; Yamasaki 1997; Neill and Gould, 2003). H2O2 is a 

longer-lived ROS, which tends to be transported and detoxified in the vacuole (Yamasaki 1997). 

Many of the enzymes in the Arabidopsis anthocyanin biosynthetic pathway participate in the 

formation of multienzyme complexes which are anchored in the cytoplasmic face of the 

endoplasmic reticulum (ER) (Grotewold 2006). Anthocyanins synthetized in the cytoplasm then 

are mostly transported and kept in the vacuole (Klein et al., 1996). Thus, anthocyanins lighten the 

damage of ROS by scavenging and removing the most ROS. Anthocyanins can scavenge ROS 

possibly because of their special chemical structure: anthocyanins are rich in aromatic rings and 

conjugated double bonds, which make it easy to exchange a hydrogen atom or electron with a free 

radical, thereby stabilizing free radicals for delocalization (Zhang et al., 2015). Peng et al. (2006) 
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demonstrated that purple rice leaves rich in anthocyanins could partly resist exogenous 

photooxidative damage. Lee and Gould (2002) concluded that anthocyanins scavenge ROS such 

as H2O2 and O2
−, and that the antioxidative capacity of anthocyanins is about 4-fold higher than 

that of α-tocopherol. 

As we can see from Figure 2, anthocyanins could absorb light of specific wavelengths from 

400 nm to 600 nm. Light reaching mesophyll cells is intercepted by anthocyanins, especially green 

light. The characteristic light-absorbing property of anthocyanins restricts the absorption of green 

light to the mesophyll, though it has little effect on the absorption of red and blue light used in 

photosynthesis (Gould at al., 2002). This may be why plants adopted this pigment as a light screen, 

under HL treatment or other stresses. Anthocyanins attenuate part of luminous energy to reduce 

excess photons so that plants can partly maintain their normal metabolism. Noticeably, 

anthocyanins provide an efficient mechanism to limit the generation of O2
− without impacting 

substantially on the action spectrum for photosynthesis (Neill and Gould, 2003). It is also the 

reason why CHS-overexpression lines accumulated less ROS (Fig. 6). Previous studies have also 

demonstrated that anthocyanins reduce excessive light reaching chloroplasts, so the damage to the 

photosynthetic apparatus by HL is reduced and the photosynthetic enzymes are maintained at high 

integrity and activity (Gould et al., 2002; Albert 2009). Anthocyanins in leaves of eggplant absorb 

and intercept light in the wavelength range 500-600 nm (yellow-green light). In this way, they 

protect PSI and PSII, moderate the reduction state of electron transporters, alleviate the pressure 

on the thermal dissipation mechanism and maintain the balance of light reactions and carbon 

fixation reactions (Xue et al., 2009). Thus, photoprotection by anthocyanins is derived not only 

from their antioxidative function, but also their absorption of light. 

In general, the accumulation of anthocyanins is positively correlated with the light intensity. 

The higher light intensity is, the more anthocyanins are synthesized. In addition, CHS1, CHS2 and 

CHS3 accumulated more anthocyanins through CHS gene overexpression. Adaptability to HL of 

CHS-overexpression line showed superiority compared with Col, while tt4 exhibited high 

sensitivity to HL. Anthocyanins play an important part in photoprotection. On the one hand, 

anthocyanins could modulate the ROS level, and lighten the damage of peroxidation caused by HL 

stress. On the other hand, anthocyanins could absorb part of the light energy; thus, excess light is 
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lessened. Anthocyanins could relieve photoinhibition, protect photosynthetic enzymes, and 

mitigate the degree of damage under HL to plant photosynthetic apparatus. However, there is still 

growing debate over which of the two anthocyanin functions is more important. To resolve the 

dispute, future experiments will have to address the relative contributions of the two anthocyanin 

functions to photoprotection. 
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Fig. 1 

 

Fig. 1 Screening and identification of homozygous CHS-overexpression Arabidopsis thaliana. 

(A-C) Transgenic Arabidopsis thaliana plants (pCanGmyc-CHS) on 1×MS + 50 mg/L Kan culture 

medium plate. (A) T0 seeds in culture medium plate with 50 mg/L Kan. Red arrows indicate green 

T0 seedings of successful transformation. (B) T1 seeds in culture medium plate with 50 mg/L Kan. 

T1 seedings showed 3:1 characters separation in MS medium with kanamycin. Red arrows indicate 

recessive homozygous T1 seedings. (C) Homozygous T2 seeds without characters separation in 

culture medium plate with Kan. (D) Indentification of CHS-overexpression lines by qRT-PCR of 

CHS gene. Data are mean ± SE (n = 4). Different letters above bars indicate statistical significance 

(P < 0.05). (E) Identification of CHS-overexpression lines by immunoblotting analysis of CHS 

enzyme. The first row show the immunoblotting of CHS enzyme in leaves of Arabidopsis thaliana 

(Col, CHS1, CHS2, CHS3, tt4) before HL treatment (CK), and the second row show that of 

Arabidopsis thaliana under HL treatment for 12d. 
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Fig. 2 

 

Fig.2 Different accumulation levels of anthocyanins in Arabidopsis. (A) Changes of leaf 

phenotype in normal light (PPFD 100 μmol m−2 s−1). (B) Changes of leaves phenotype in HL 

(PPFD 200μmol m−2 s−1). 25-day-old seedlings (the 1st day of HL treatment) are in the first two 

rows. 37-day-old seedings (the 12th day of HL treatment) are in the 3rd and 4th row. The different 

absorbance spectra of anthocyanin in the five lines on the 1st (C) and 12th (D) day of HL 

treatment (n = 4). 
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Fig. 3 

 

Fig.3 Expression analysis of anthocyanins-related genes [CHS (A), DFR (B), ANS (C)] in mutants 

and Col before HL treatment or after 12 days of HL (200 μmol m−2 s−1). Data are mean ± SE (n = 

4). Different letters above bars indicate statistical significance (P < 0.05). 
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Fig. 4 

 

Fig. 4 Changes of chlorophyll fluorescence parameters -- Fv/Fm (A), Yield (B), ETR (C) and qP 

(D) in rosette leaves of Arabidopsis thaliana (Col, CHS1, CHS2, CHS3, tt4) under HL treatment 

(200 μmol m−2 s−1). The measurement photon flux density was 200 μmol m−2 s−1. Data are mean ± 

SE (n = 4). 
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Fig. 5 

Fig. 5 Decrease in Rubisco protein content in leaves of Arabidopsis thaliana (Col, CHS1, CHS2, 

CHS3, tt4). (A) Rubisco large subunit (RbcL, 55 kDa) and small subunit (RbcS, 15 kDa) were 

separated by 12.5% SDS-PAGE. The polypeptides were visualized by Coomassie Brilliant Blue 

R-250 staining. The loading protein sample of first SDS-PAGE gel are soluble proteins in leaves 

of Arabidopsis thaliana (Col, CHS1, CHS2, CHS3, tt4) before HL treatment (CK), and the second 

gel are soluble proteins in leaves of Arabidopsis thaliana under HL treatment for 12d. (B) 

Immunoblotting of RbcL. (C-E) Contents of total Rubisco (RbcL + RbcS) (C), Rubisco large 

subunit (RbcL) (D), and Rubisco small subunit (RbcS) (E) was estimated by using bovine serum 

albumin (BSA, 67 kDa) as the standard. Data are mean ± SE (n = 4). Different letters above bars 

indicate statistical significance (P < 0.05). 
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Fig. 6 

 

 

Fig. 6 Diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining showed the 

accumulation of H2O2 and O2
− in leaves of Arabidopsis thaliana (Col, CHS1, CHS2, CHS3, tt4) 

after 12 days exposure to HL (200 μmol m−2 s−1). 
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Fig. 7 
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Fig. 7 Changes in relative membrane leakage (A) and malondialdehyde (MDA) (B) in leaves of 

Arabidopsis thaliana (Col, CHS1, CHS2, CHS3, tt4) exposed to 200 μmol m−2 s−1. Data are mean 

± SE (n = 4). 
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Table1 Primers used in RT-PCR assays 

Gene ID Primer name Primer sequence (5’-3’) 

AT5G13930 
CHS-F TAGGTACCCATGGTGATGGCTGGTGCTTC 

CHS-R TAGGATCCTTAGAGAGGAACGCTGTGCAAG 
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Table2 Summary of primers used in real-time qRT-PCR assays 

Gene ID Gene name Primer sequence 

AT5G62690 TUB 
Forward: 5′- CCAGCTTTGGTGATTTGAAC -3′ 

Reverse: 5′- AAGCTTTCGGAGGTCAGAG -3′ 

AT5G13930 CHS 
Forward: 5′- ACATCGTGGTGGTCGAAGTC -3′ 

Reverse: 5′- CCGGAGGTAGTGCAGAAGAC -3′ 

AT5G42800 DFR 
Forward: 5′- ATGCCGCCTAGCCTTATCAC -3′ 

Reverse: 5′- AGCGTTGCATAAGTCGTCCA -3′ 

AT4G22880 ANS 
Forward: 5′- AAGGCTCTCTCTGTCGGTCT -3′ 

Reverse: 5′- AACCCGGAACCATGTTGTGT -3′ 
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