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Abstract: The cochliomycins (7-12) are a group of six resorcylic acid lactones that 
have recently been isolated from culture broths of marine fungi found in the South 
China Sea. These natural products have attracted attention as synthetic targets because 
of (in certain instances) their novel structural features and their capacities to supress 
biofouling. This short review summarizes the synthesis of these and certain related 
compounds that have been reported to date, including those developed in the authors’ 
laboratories.   
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Introduction 

 

The value of small molecule natural products (SMNPs) as therapeutic agents, as 

precursors to such agents or as the inspirations for them is well known.1 Indeed, there 

are now indications that SMNPs, perhaps especially ones derived from marine 

environments,2 are enjoying something of a renaissance not least because of their 

enormous structural diversity and their occupation of unique parts of chemical space.3 

Among the plethora of different natural product classes, the resorcylic acid lactones 

(RALs) are notable for the frequency with which they are isolated from fungal 



  

sources, their distinctive structural features and their breadth of biological activities.4 

In the following section an overview of the structural variations within the RAL class 

is provided along with a brief commentary on the source organisms and certain of 

their biological properties. As a recently discovered and interesting subset of RALs 

that has not been the subject of any previous reviews, the cochliomycins are then 

described and a summary of the synthetic work carried out on them follows.    

 

Resorcylic Acids Lactones (RALs) as a Natural Product Class 

 

The RALs are mycotoxins and the products of a distinctive polyketide biosynthesis 

that exploits an acetyl CoA starter unit together with malonyl-CoA extenders and 

involves two fungal polyketide synthases (PKS) that work co-operatively.4e 

Specifically, a non-reducing PKS is coupled with highly reducing one that enables the 

assembly of the relevant resorcylic acid core annulated to a 14-membered 

macrolactone (and wherein most of the structural variation resides). Unsurprisingly 

perhaps, the final step in the biosynthesis is the macrolactonisation event that releases 

the substrate from the enzyme complex. Post-PKS-mediated processes such as 

epoxidation, halogenation and alkylation may then follow so as to provide the fully 

“decorated” (isolated) metabolite.4e  

 

Radiciol (1) was the first RAL to be isolated (from Monosporium nordinii) and 

characterised in the 1950s4 and it has since been obtained from various other fungal 

strains. In the intervening period numerous other RALs have been identified and these 

vary in the nature of the substitution pattern on the aromatic ring as well as the 

location and degree of unsaturation and/or oxygenation within the macrolactone ring. 

The structures of the RALs hypothemycin (2), zearalenone (3), pochonin C (4), L-

783,277 (5) and aigialomycin D (6) shown in Figure 1 serve to highlight such degrees 

of variation.    
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Figure 1: Examples of the Structural Variations Possible Within the RAL Class 
 
 

Initial biological evaluation of radiciol (1) showed it to possess anti-bacterial 

properties and to act as a mild sedative. However, the later revelation that it acts as a 

powerful inhibitor of heat shock protein 90 (HSP90) - and thus representing an 

important lead in the development of oncolytic agents - caused much greater attention 

to be given to the RALs. In contrast to radiciol (1), the cis-enone-containing 

hypothemycin (2) has been shown to strongly inhibit the kinase MEK1 while 

zearalenone (3) acts as an estrogen agonist and its hormone-like properties have been 

shown to promote growth in cattle and sheep. A closely related RAL is now 

commercially available and employed to alleviate post-menopausal stress in women 

and as an anabolic cattle-growth stimulant. Pochonin C (4), on the other hand, inhibits 

herpes simplex virus (HSV) replication in a potentially therapeutically useful way 

while the cis-enone L-783,277 (5), like congener 2, inhibits MEK1. Aigialomycin D 

(6), despite the absence of a cis-enone moiety, also acts as a kinase inhibitor as well 

as an anti-malarial agent (the latter property seemingly being unrelated to the former).  

 

The Discovery of Cochliomycins A-F 

 

In papers published in 20115 and 2014,6 Wang and co-workers from the Ocean 

University of China in Qingdao reported the isolation of cochliomycins A-F (7-12) 

(Figure 2) from the culture broths of Cochliobolus lunatus (M351) or C. lunatus 

(TA26-46), fungi associated with the gorgonian Dichotella gemmacea or the sea 

anemone Palythoa haddoni, respectively. Both host organisms were collected in the 



  

South China Sea. The structures of these RALs were established through the 

application of the usual battery of spectroscopic methods and the absolute 

stereochemistries of the last three determined using the CD exciton chirality method 

in conjunction with TDDFT ECD calculations.6  

 

The most striking features of this subset of RALs are the presence of acetonide units 

within the structures of congeners A and B (7 and 8, respectively). Since acetone was 

not used in the isolation, purification or spectroscopic characterisation of these 

compounds they must be considered as natural products rather than artefacts. Wang 

and co-workers also noted5 that on standing in CDCl3 at ambient temperatures 

cochliomycin B (8) slowly isomerised to congener 7 and so suggesting the latter is the 

thermodynamically more stable compound. Cochliomycin C (9) is the only member 

of the series lacking a second double bond within the macrocylic ring. Cochliomycins 

D (10) and E (11) are isomeric while congener F (12) is not simply a chlorinated 

derivative of one or other of the first two because of the differing configuration at one 

or other of the hydroxyl-bearing methine carbons. Nor, for the same reasons, can 

colchliomycin F (12) simply be the product of the two-fold oxidation of congener 9.  

   

O

OH

MeO

O

O

O

OH

7

(cochliomycin A)

O

OH

MeO

O

8

(cochliomycin B)

O

OH

MeO

O

OH

9

(cochliomycin C)

OH

OH
Cl

O

O

OH

O

OH

MeO

O

HO

10

(cochliomycin D)
11

(cochliomycin E)

O

OH

MeO

O

OH

12

(cochliomycin F)

OH

Cl
O

HO

O

OH

MeO

O

HO

O

HO

O

 

 

Figure 2: The Structures of Cochliomycins A-F (7-12, respectively). 
 

 

 



  

Related, Co-occurring Natural Products 

 

In the course of structurally characterizing the cochliomycins, it was noted5 that 

congener C (9) is the chlorinated derivative of co-isolated paecilomycin F (13) 

(Figure 3), a previously reported RAL that displays anti-malarial properties. Other 

RALs also isolated alongside compounds 7-9 were zeaenol (14), LL-Z1640-1 (15) 

and LL-Z1640-2 (16). During the course of isolating cochliomycins D, E and F (10, 

11 and 12, respectively), cochliomycin A (7), zeaenol (14), LL-Z1640-1 (15), LL-

Z1640-2 (16), its E-isomer 17 [(7′E)-6′-oxozeaenol], deoxyaigialomycin C (18) and 

aigialomycin B (19) were also observed in the mixture of isolates. Clearly certain of 

these co-isolates are isomeric with the cochliomycins or otherwise closely related. For 

example, zeaenol (14) is the acetonide “deprotected” analogue of cochliomycins A (7) 

and B (8). 
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Figure 3: The Structures of RALs Found to Co-occur with Cochliomycins A-C 
and/or Cochliomycins D-E 
 



  

Biological Properties of the Cochliomycins 

 

The most notable biological properties of at least certain of the colchiomycins are 

their anti-fouling properties. So, for example, on evaluating the effects of 

cochliomycins A-C (7-9) on the larval settlement of the barnacle Balanus amphitrite, 

the first of these completely inhibited this process at concentrations of 20.0 µg/mL 

and still displayed significant effects at 5.0 µg/mL. Zeaenol (14) and compound 7 as 

well as two acetate derivatives of the latter displayed potent anti-fouling activities at 

non-toxic concentrations with EC50 values of 5.0, 1.2, 15.4 and 12.5 µg/mL, 

respectively. These values are well below the threshold requirement (EC50 25 µg/mL) 

set by the US Navy program as an efficacy level for the development of natural anti-

fouling agents. Given the structural relationship between compounds 7 and 14, the 

presence of the acetonide moiety in the former compound clearly has a beneficial 

effect on anti-fouling properties. Furthermore, since these same compounds display 

high therapeutic ratios they might well be useful as environmentally benign anti-

fouling agents. Cochliomycin A’s anti-fouling effects are now thought to arise 

through stimulation of the NO/cGMP pathway in the cyprid lavael phase of the 

barnacle’s lifecycle.7 The subsequent evaluation of cochliomycins D, E and F 

revealed that the first and third of these also displayed potent anti-fouling effects at 

non-toxic concentrations (EC50 values of 17.3 and 6.67 µg/mL, respectively).6 

Significantly, the most active compound among the isolates from the culture broth of 

C. lunatus (TA26-46) was the cis-enone-containing LL-Z1640-2 (16). The EC50 value 

of this compound  (1.82 µg/mL) is close to that of the commercially employed anti-

fouling agent SeaNine 211™ (1.23 µg/mL)8 but has a significantly more favourable 

therapeutic ratio [LC50/EC50 >50 (for 16) vs 20.3]. The differing anti-fouling 

behaviours of cochliomycins D, E and F suggest that variations in stereochemistry can 

have a notable impact on activity. 

 

Interestingly, cochliomycin A (7) displayed moderate anti-bacterial activity against 

Staphylococcus aureus
5 while, unlike cochliomycins D, E and F, LL-Z1640-2 (16) 

displayed potent inhibitory effects against various pathogenic fungi.6  

 

 



  

Synthetic Studies on the Cochliomycins 

 

As with other RALs, the cochliomycins have been the subject of various synthetic 

studies, both for the purposes of confirming their structures and as a means of 

providing more material (as well as analogues). Almost invariably, a major 

consideration in such work is the manner in which the 14-membered lactone ring is 

closed. A range of methods has been successfully employed for this purpose and these 

are presented within the individual descriptions given below of the various syntheses 

reported to date.     

 

(a) The Du Group Syntheses 

The Du group’s synthesis of cochliomycin A (7) was reported9 in 2014 and employed 

L-arabinose as the chiron for assembling the three contiguous stereogenic centres 

within the macrolide along with a base-promoted lactonisation reaction to close the 

ring itself. The detailed reaction sequence is shown in Scheme 1 and started with the 

conversion of L-arabinose (20) into the corresponding bis-acetonide (21) under 

standard conditions and the latter compound subjected a Wittig olefination (to give 

22) and then selective acetonide hydrolysis using aqueous acetic acid. Diol 23 so-

formed (77% from 21) was selectively tosylated and ester 24 then treated with base so 

as to form epoxide 25 (78% from 23). Olefin cross-metathesis of compound 25 with 

the commercially available and S-configured alcohol 26 gave the E-alkene 27 (85%) 

and the associated epoxide ring then opened using the anion derived from 

trimethylsilylacetylene and thus producing the homopropargylic alcohol 28 (78%).  
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Scheme 1: The Du Group Synthesis of Cochliomycin A (7) 

 

Over three steps, including a Pd-catalysed hydrostannylation reaction, the acetylenic 

unit associated with compound 28 was converted into the alkenylstannane 29 (71%) 

that was itself engaged in a Stille cross-coupling with the well known aryl triflate 30 

and thus producing compound 31 (81%), the immediate precursor to target 7. Indeed, 

on treatment with sodium hydride in DMF the conversion 31 → 7 was effected in 

46% yield. 

 



  

The Du Group’s synthesis of cochliomycin B (8) (Scheme 2)10 also started with L-

arabinose but a ring-closing metathesis reaction was now used to construct the 

associated macrolide ring. 
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Scheme 2: The Du Group Synthesis of Cochliomycin B (8) 

 

Thus, compound 20 was converted, under conventional conditions, into the 

corresponding 3,4-mono-acetonide and this itself subject to a Wittig olefination 

reaction and so affording compound 32 (72%). Over three steps this diol was 

manipulated so as to generate aldehyde 33 (46%) and a Wittig-based homologation of 

this last compound afforded, via enol ether 34 (77%), congener 35 (75%). Takai-type 

olefination of this last compound then gave the E-configured iodoalkene 36 (53%) 



  

that was engaged in a Suzuki-Miyaura cross-coupling with the readily obtained 

arylboronate 37 and so affording the trans-styrene 38 (68%). Reaction of this last 

compound with the anion derived from homochiral alcohol 26 then gave ester 39 

(75%) that upon reaction with Grubbs’ second generation catalyst afforded, via ring-

closing metathesis (RCM), the required macrocycle (67%) and treatment of this with 

tetra-n-butylammonium fluoride (TBAF) then gave cochliomycin B (8) in 85% yield. 

Interestingly, in the penultimate step there was no competing RCM involving the 

styrenyl double bond and the proximate terminal olefin (a process that would lead to 

side-chain fragmentation and formation of a cyclohexene).  

 

(b) The Nanda Group Syntheses 

Jana and Nanda reported a synthesis of cochliomycin A in 201211 and this started with 

the conversion, by well established methods, of L-(+)-tartaric acid (40) into 2,3-di-O-

isopropylidene-L-threitol (41) and mono-protection of the latter to give ether 42 

(85%). Oxidation of compound 42 under Swern conditions gave the corresponding 

aldehyde 43 (90%) that was subjected to a highly diastereoselective Keck asymmetric 

allylation reaction and so affording, after protection of the resulting homoallylic 

alcohol, cleavage of the TBS ether and oxidation of the resulting alcohol, aldehyde 44 

(59%). A Julia-Kocienski olefination reaction was then carried out on compound 44 

using the readily prepared sulfone 45, KHMDS and 18-crown-6 and so affording, in a 

highly selective manner and after silyl ether cleavage, the target E-alkene 46 in 75% 

yield. Mitsunobu coupling of this last compound with acid 47 then gave, after 

cleavage of the PMB ether residue, ester 48 (73%). Upon exposure to Grubbs’ 

second-generation catalyst compound 48 was converted into cochliomycin A (7) 

(72%).  
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Scheme 3: The Nanda Group Synthesis of Cochliomycin A (7) 

 

The Nanda Group synthesis of cochliomycin C12 (Scheme 4) also started with L-

tartaric acid (40) and exploited a Mitsunobu-mediated lactonisation reaction  to form 

the macrolide ring. Specifically, then, di-acid 40 was, once again, converted into the 

diol-acetonide 41 and the latter mono-protected as the corresponding p-

methoxybenzyl (PMB) ether 49 (85%). Upon Swern oxidation this last compound 

gave the aldehyde 50 (90%), Wittig olefination of which afforded the terminal olefin 

51 (70-75%) that was subjected to an olefin cross-metathesis (OCM) reaction with the 

unsaturated and homochiral ether 52 using the Grubbs’ second-generation catalyst.  
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Scheme 4: The Nanda Group Synthesis of Cochliomycin C (9) 

 

The primary product of this process was then hydrogenated under conventional 

conditions so as to give compound 53 (79%). Oxidative cleavage of the PMB-ether 



  

residue associated with bis-ether 53 then gave the corresponding alcohol that was 

oxidised to aldehyde 54 (80%) using the Dess-Martin periodinane. Reaction of 

compound 54 with the propargyl anion proceeded stereoselectively and Lindlar 

hydrogenation of the product alkyne gave the corresponding homoallylic alcohol that 

was protected as the MOM-ether 55 (78%). Heck coupling of the last compound with 

the iodinated benzaldehye 56 afforded styrene 57 (84-90%) and oxidation of the 

associated aldehyde residue gave the corresponding benzoic acid. Cleavage of the 

TBDPS-ether within product 57 then afforded the substrate 58 (61-79%) used in the 

macrolactonisation reaction. So, compound 58 was subjected an intramolecular 

Mitsunobu reaction that provided macrolide 59 (P = MOM) (78%), the MOM-group 

of which was cleaved and the product RAL, viz. paecilomycin F (13), was then 

chlorinated using sulfuryl chloride and thus affording cochliomycin C (9) in 71% 

yield. 

 

Nanda and his colleagues have also reported13,14 related syntheses of the C5′- and C6′-

epimers of cochliomycin C. 

 

(c) The Srihari Group Approach 

The Srihari Group synthesis of cochliomycin C (9)15 (Scheme 5) is a formal one [in 

that it delivers paecilomycin F (13)], relies on D-lyxose (60) as starting material and 

uses a RCM reaction to construct the macrolide ring. The synthesis starts with the 

conversion of compound 60 into the previously reported mono-acetonide 61 (95%) 

and this was subjected to an Ohira-Bestmann alkyne forming reaction that delivered, 

with accompanying epimerisation, compound 62 (49%) as a mixture of 

diastereoisomers. Conversion of this last pair of compounds into the corresponding 

bis-acetonides and chromatographic separation of the major product 63 (45%) was 

followed by the regioselective reaction of the derived anion with the commercially 

available and homochiral epoxide 64 and so affording the 2°-alcohol 65 (82%). 

Exhaustive reduction of the alkyne moiety associated with this last compound and 

reaction of the oxyanion derived from product 66 (86%) with the readily prepared 

arene 67 then gave, after acid treatment, the vinylated salicylate 68 (65%). This was 

subject to oxidative cleavage and the ensuing aldehyde allylated in a 

diastereoselective manner to give diene 69 (63%). Compound 69 was then engaged in 



  

a RCM reaction using the Hoveyda-Grubbs second generation catalyst and by such 

means, and after cleavage of the associated acetonide residue, paecilomycin F (13) 

was obtained in 68% yield. Since Nanda12 has previously converted compound 13 

into cochliomycin C (9) through electrophilic aromatic chlorination using sulfuryl 

chloride a formal total synthesis of the latter natural product was realised in this 

instance. 
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Scheme 5: The Srihari Group Synthesis of Paecilomycin F (13) 

 



  

By related means C6′-epi-cochliomycin C was obtained.15 

 

(d) Background to the Banwell Group Studies on the Synthesis of RALs 

Our group’s original efforts in the area arose through an interest in exploiting 

enzymatically-derived and homochiral cis-1,2-dihydrocatechols16 such as 70 (Figure 

4) in the assembly of various RALs. The pivotal building block employed for this 

purpose was Weinreb amide 71
17 obtained through, inter alia, reduction of the non-

halogenated double bond associated with the acetonide derivative of diol 70 and 

ozonolytic cleavage of the remaining (halogenated) one. Compound 71 served as a 

precursor to L-783,290 (72) and its cis-isomer 5, the latter being, as noted above, a 

potent inhibitor of MEK1. While the macrolide ring and the E-configured C=C bond 

associated with target 72 was constructed using a RCM reaction, a more novel means 

of assembling the analogous (Z-configured) motif within congener 5 was developed.18 

Details are provided immediately below. 

 

 

 

Figure 4: The starting material 70 and intermediate 71 used by the Banwell Group in 
establishing total syntheses of RAL L-783,290 (72) and its cis-isomer 5. 
 

Our synthesis of the cis-enone-containing L-783,277 (5) is shown in Scheme 6 and, 

like the pathway leading to congener 72, involved, on the early stages, the Heck 

coupling of aryl iodide 56 with the unsaturated Weinreb amide 71. The immediate 

product of this process was oxidised to the corresponding acid (under Pinnick 

conditions) and this then hydrogenated to give compound 73 (41%) that was, in turn, 

treated with the oxyanion derived from the homochiral propargylic alcohol 74 (itself 



  

available through enzymatic resolution of the corresponding racemate). The ester 75 

(70%) so formed was treated with potassium hexamethyldisilazide so as to generate 

the corresponding acetylide anion that itself engaged in an intramolecular acylation 

reaction and so producing the cyclic alkyne 76 (45%) and for which a single-crystal 

X-ray analysis was undertaken. This analysis revealed an essentially linear geometry 

about the internal triplet bond and thus highlighting the capacity of the 14-membered 

macrolide ring of RALs to accommodate a range of structural motifs. The completion 

of the synthesis of target 5 involved Lindlar-type hydrogenation of cyclisation product 

76 and two-fold deprotection of the ensuing cis-enone gave L-783,277 (5) (40%) 

without compromising the integrity of the Z-configured double bond. 

 

 
 

Scheme 6: The Banwell Group Synthesis of L-783,277 (5) 
 
 
 



  

 

(e) The Banwell Group Syntheses 

Our syntheses of RALs 5 and 72 were completed just prior to the report5 of the 

isolation and structural characterisation of cochliomycins A-C (7-9, respectively). 

Given this, the presence of the (unusual) acetonide residues within congeners A and B 

and the novel biological properties they display we were attracted to developing 

syntheses of them. Our route19 to the first two of these (viz. the acetonide-containing 

ones) exploited a late-stage and highly stereoselective Nozaki−Hiyama−Kishi 

(NHK)20 reaction to effect the necessary macrocyclization process, a relatively 

unusual one in terms of its application in the synthesis of RALs. 

 

The pivotal elements of the synthetic sequence used are shown in Scheme 7 and 

involved an OCM of the readily available olefin 67 with the D-2-deoxyribose-derived 

and previously reported chiron 77 to give compound 78 (86%). The β-substituted 

styrene 78 was then reacted with the readily prepared homoallylic alcohol 79 in the 

presence of base and so affording, after protection of the phenolic OH group, the ester 

80 (80%). Treatment of ester 80 with TBAF resulted in selective cleavage of the TBS-

ether moiety and oxidation of the resulting and rather sensitive 1°-alcohol with the 

Dess-Martin periodinane then gave the corresponding aldehyde. This was 

immediately engaged in an intramolecular NHK reaction to afford, with high levels of 

diastereocontrol, the SEM ether of cochliomycin B (8) (77%). When this ether was 

treated with TBAF in refluxing THF then cochliomycin B (8) itself was obtained in 

73% yield. In contrast, on treating the SEM ether with HCl in methanol at 22 °C for 1 

h then congener A (7) (91%) was obtained while extended exposure of the same 

substrate to the same conditions resulted in acetonide group cleavage and formation 

of the previously reported RAL zeaenol (14) which was obtained in 84% yield.  
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Scheme 7: The Banwell Group Syntheses of Cochliomycins A and B 

 

The end game associated with our approach21 to cochliomycin C (9) was rather 

different and resulted in the identification of a new means for forming the macrolide 

ring of RALs. The reaction sequence started (Scheme 8) with an OCM reaction 

between the readily available alkenes 81 and 82 (the former compound being obtained 

from L-tartaric acid) and conventional hydrogenation of the product olefin 83 (88%) 

to give alkane 84 (98%). The anion derived from the last compound was reacted with 

arene 30 and thus affording ester 85 (91%), the phenolic group of which was 

protected as the corresponding SEM-ether 86 (94%). A Stille cross-coupling reaction 

between aryl triflate 86 and the alkenylstannane 87 then gave the cinnamyl alcohol 88 

(76%) that was converted over three standard steps into the rather unstable aldehyde 

89 (66%). Given our previous positive experiences with the NHK reaction we sought 

to apply this in the macrocyclisation of compound 89. However, on exposing this a 

mixture of chromous chloride and nickel(II) chloride in DMF only the vinylated 12-



  

membered lactone 90 was obtained (as a single diastereoisomer in 33% yield). In 

stark contrast, when the same substrate was treated with indium in a mixture of water 

and dichloromethane then a Loh-type α-allylation reaction took place and so 

affording, in a highly diastereoselective manner, the 14-membered macrocycle 91 

(61%).  
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Scheme 8: The Banwell Group Synthesis of Cochliomycin C 



  

 

Removal of the acetonide and SEM protecting groups associated with this last 

compound using aqueous acid then gave paecilomycin F (13) that was chlorinated 

with sulfuryl chloride and so affording cochliomycin C (9) in 82% yield. 

 

During the course of our work detailed above Cutler and colleagues reported22 the 

isolation of three new RALs from a fungus Neocosmospora sp. (UM-031509). They 

were named neocosmosins A-C and structures 92-94 (Figure 5) respectively, assigned 

to them. These RALs were found to co-occur with three previously reported ones, 

namely radiciol (1), monocillin II (95) and monocillin IV (96). Unlike any of the 

RALs we had previously targeted for synthesis, all of the Neocosmospora-derived 

compounds embody a C10-keto residue and three of them (1, 94 and 95) show good 

binding affinity for the human opioid receptors. Accordingly, we sought to develop a 

synthesis of the first of these, namely compound 92 and embodying the structure 

assigned to neocosmosin A.  
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Figure 5: The Structures 92-94 Assigned to Neocosmosins A-C (respectively) and the 
Co-occurring RALs Radiciol (1), Monocillin II (95) and Monocillin IV (96). 
 

Our synthesis of RAL 9223 is shown in Scheme 9 and began with the OCM of styrene 

67 and the unsaturated acetal 97. The product E-alkene 98 (72%) was treated with 

dimethyl dioxirane and the resulting epoxide 99 (quant.) engaged in a Meinwald-type 

rearrangement on exposure to Pd(OAc)2 and n-Bu3P and thus affording ketone 100 



  

(88%) embodying the pivotal C10 carbonyl unit (RAL numbering) associated with the 

target 92. Acid-catalysed hydrolysis of the acetal moiety within compound 100 

afforded the corresponding keto-aldehyde 101 (89%) that could be selectively 

methylenated using the Wittig reagent and so giving the terminal alkene 102 (74%).  
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Scheme 9: The Banwell Group Synthesis of RAL 94 

 



  

Compound 102 was particularly prone to cyclisation on treatment with either acid or 

base. So, for example, when it was heated with p-TsOH in toluene in the presence of 

ethylene glycol (in an effort to prepare the corresponding ketal) then the unsaturated 

lactone 103 (82%) was formed but this could be cleaved with potassium hydroxide in 

aqueous THF and thus gave, after careful acidic work up, keto-acid 104 (96%). 

Compound 104 then served as the nucleophile in a Mitsunobu reaction with the 

homochiral 2°-alcohol 26 and thus affording the ester 105 (78%) that was itself 

engaged in a RCM reaction using Grubb’s second generation catalyst and thus 

producing the target RAL 92 (83%). All of the NMR, IR and MS spectral data 

acquired on this product matched those reported for neocosmosin A. However, while 

the specific rotation of compound 92 was of a similar magnitude to that reported for 

the natural product it was of the opposite sign. As such we concluded that the absolute 

configuration of neocosmosin A had been incorrectly assigned and is, in fact, 

represented by structure ent-92. 

 

The synthesis of compound ent-92 (Scheme 10) involved a trivial adaptation of the 

process shown above.  
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Scheme 10: The Banwell Group Synthesis of the True Structure of  
Neocosmosin A (ent-92). 
 



  

Thus, Mitsunobu coupling of keto-acid 104 with the homochiral 2°-alcohol ent-26 

gave ester ent-105 (92%) and this underwent an RCM reaction to give neocosmosin A 

(ent-92) (67%), the structure of which was confirmed by single-crystal X-ray analysis. 

 

During the course of these studies Das and co-workers reported24 a distinctly different 

synthesis of compound ent-94. 

 

Future Prospects/Conclusion 

 

New RALs, including ones isolated from marine sources, that display intriguing 

biological properties continue to be reported.25 Studies on the synthesis of such 

compounds have resulted, over the decades, in the identification of a raft of new 

methods for their construction and these have now provided chemists with the 

capacity to prepare new RALs in a predictable manner. As such, completions of total 

syntheses of RALs no longer elicit the excitement they once did.26 Indeed, now 

synthetic studies usually just provide the means by which the assigned structures can 

be checked and additional material can be produced for the purposes of biological 

profiling/evaluation. Of course, the production of analogues is another important 

activity in this area, perhaps the most promising aspect of which would be the 

production of potentially more metabolically stable and bio-available macrolactam 

equivalents.27  
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