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Abstract

We develop a theoretical framework to study endrigged technical change considering capital, laat
energy as inputs. The framework involves a firgteorcondition estimation of elasticity and techhidaange
parameters for a three factor-nested Constant iGitgsbf Substitution (CES) function. Technical cloge
parameters, elasticities and time derivatives aigimal products are combined to compute technisahge bias.
Conceptually, we introduce total bias in order $tireate the direction without requiring a directrggarison
with another factor. For Chinese industries fror@@ % 2012, the optimal structure is capital andrgy to be
combined at the composite level and then with laleoform total output. Technical change is foundbt®
unambiguously energy biased, it increases in eyeay, and the bias is predominately away from labbe
results show that Chinese industrialization wasllddeby fossil fuels and energy-intensive technaeg
Nonetheless, the growth rate of energy-biased teahchange decreased during the 2000s that mait fesm
more energy efficient development.
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1. Introduction

Hicks [1] ideologically introduced technical chanbms considering only two factors, capital, andola It
means technical change is biased towards a fddtanéreases the marginal product of that factmre than the
other factor. Since then, predominately two factwrproduction models have been adopted, mainlgapital
relative to labor. The Hicks program of labor-savitias has been the focus of controversies suriogrte

direction of technical change [2]. For instancesaeding to Abramovitz [3], technology favored ploaicapital
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in the 19th century. While Sato [4] indicated tteathnological progress was labor-saving over thig@e 909-
1960. In a widely cited contribution, Acemoglu [&llggested that when technical progress is asyroaligti
labor-augmenting, it may become capital-biasedandition to induce factor-saving innovations. Aogia [6]
pointed out that in the late % aand early 19 century technology favored low-skilled workers wdas more
recently evidence seems to suggest a bias in fafvdiigh-skilled workers. Similarly, Verschelde dt g]
pointed towards low-skilled labor-saving technichlange using firm level data from 1995-2011. Frdm t
previous research it has been found that Hicksrakytis not supported by the data in any giveat@e We
should consider the technical change bias in thdyation function.

In order to estimate the technical change of timpats, we would employ a nested CES function ratihan a
two-factor CES. Within the three factor-nested GtSction, we could obtain technical change pararmeded
elasticity of substitution of inputs. We then comibthe technical change parameters with time daresof the
marginal products to derive relative bias. It iediso compare bias between any two inputs. Howeettive
technical change bias does not provide a singke foiaa given factor. Consequently, we introduce ¢bncept
of total bias for any one of the factors of produet We put forward this definition to determineethiased
technical change for various factors rather tham factors. This is to detect the bias of a spedditor in a
muti-input production process.

The theoretical framework is used to understandehknical change bias in China. China has beerobiiee
fastest growing economies over the last 30 yeagela supported by energy consumption. Economievtito
exceeded 10% annually from 2000 to 2011 [8] andbeitame the world's largest energy consumer [9].
Furthermore, China is the world’s leading enerdgtesl CQ emitter [10]. As a result of the significant engrg
consumption, the economic growth and the, €@issions, studying China’s energy-biased techmicahge has
clear global implications. There is a case for ac&d policy intervention to limit the detriment the
environment. However, there is no study devotedestimating China’s energy bias technical changee Th
empirical contribution of this paper is to estimé#ie relative bias, total bias, the change in biger time. We
provide a test for factor biases in manufacturimgtars with distinct characteristics without impugia
parametric specification of the production function

The paper is structured as follows. The followirggtion is literature review. The third section depe the
nested CES production function, the derivation ha first order estimation of the technology andsitéy
parameters. After which technical change relatias bnd total bias are introduced. The fourthisegiresents

the data and results. The final section discussdisefr research and concludes.



2. Literature Review

As a result of the pressing problems of energyritfgcand climate change, energy seems to be aspedsable
production factor under separability aspects inrggn@nd climate modeling [11]. For example, in FH2]'s
study for the relationship between environmentaldpction functions and environmental directionataice
functions, the inputs consist of the capital stdblke, number of employees, and the heat contert(ijp of the
coal, oil, and natural gas consumed at the plantetent studies, Lin and Astagli [13] took constiomp of
petroleum and electricity coal consumption as aslicapital formation and labor as inputs when tygylies
the translog production function to investigatehtgcal change and energy substitution possibilities China,
Xie and Hawkes [14] investigated the potential faier-fuel substitution between coal, oil, natugas and
electricity in China's transport industry. Longat[15] used the input matrix to include labor, italp coal,
electricity, and clinker to study the convergennalgsis of eco-efficiency of China’s cement mantiegrs. To
choose the optimal bundle among energy and norggneputs, Zha and Zhou [16] proposed to combire th
translog cost function and CES function.

For the topic of bias of technical change, thetthinumber of empirical studies indicates thatnei change
can be either energy-using or energy-saving [1},K&anfil and Yeddir-Tamsamani [19] estimatedanslog
cost-share system investigating technical biasiénRrench economy. They pointed out that biasnsitee to
energy prices and their verdict is mixed. Vogeaket[20] also used a translog cost-share systedyisty EU
countries. They found a small energy bias. In fadten technical change increases the productiviiymuts
that are gross complements to energy, the demarehaigy will increase, with negative effects onrgge
reduction and environment [21-23]. Therefore, whettechnical change is energy biased depends on the
elasticity of substitution between energy and noergy inputs. Excluding biased technical change luas
estimates of substitution toward unity [24]. Theeplénterconnections between factor substitution tectnical
change are also emphasized in [25]. For energyifspéactor, technical change bias can be usedrtonpte
energy efficiency and to design climate policy [26]

Despite the importance of elasticities and techniteange bias in economics, and efforts devotethéir
identification, there seems little empirical corsgon their value and nature [27]. Empirical regeaas been
hampered by the difficulties in identifying at th&asticity of substitution as well as technical rfp@ for more
than two-factor case [28]. However, the bias depesrd the elasticity between energy and non-enengyts,
which cannot be easily considered together, like thentioned translog cost function. These regressio

therefore conflate the impact of the factor biathwhe impact of factor substitution. The seconawdrack is
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that output elasticities, the basis of factor béstimation, can be negative, which violates theravded
monotonicity property (i.e. strong or free dispakgh. This implies that more inputs cannot leadléss output
and producing less output cannot lead to more inpet[7]. Theoretically, CES is considered as tbstnaiable
estimation technique [29]. A major reason is th&é more structured and has a smaller number rainpaters to
estimate than the translog function [30]. The twandard approaches to estimating the parametefSESS
functions are the linear Taylor-series approximatideveloped by [31] and the non-linear least square
estimation. However, the applicability of the sdled Kmenta approximation is limited as it cannetused to
linearise CES functions with more than two inp@gecifically, the model would suffer from severtirig

errors [32]. Conversely, the estimation of the tinaar CES function frequently performs poorly [33]
3. Methodology

3.1 CES nested production function

The nested CES function is adopted to allow forefasticity of substitution to differ between ingairs [34]. It
allows identification of elasticities of substitoni at the lower and the upper levels of the CESingeand test
the nature of technological change of all inputdex In order to determine the best fit for Chs@sdustry,
three nested CES functions are considered. The tiested functions for capital (K), labor (L) anteryy (E)
are (KL)E, (KE)L and (EL)K which are specified belwespectively. For example, (KL)E signifies K and L to

be combined at the composite level Z and then &ith form total output.

a 1 1
Y =(Aa( AK)# +L-a)(BL) 1% +1-A(GE) 7} * @)
Yo={Aa(AK) ™ +L-a)(GE) 1" +A-A(BLH 7} © 2)
Y ={Aa(GE) " +L-a)(BL) 1%+ - A AK) 7} © (3)

Y is the total outputk, L andE are the inputs of capital, labor, and energy retgely. A, B andC stand for
capital, labor and energy augmenting technologitabress, respectively.is a time trend. The distribution

parametera 0 (0,1) represents the contribution ratio of capital tdpott B 0(0,1) determines the importance
of the factor in the production functiop.J(-1,.0) and p, 0 (-1,.0) are the elasticities of substitution. When

p=0,the CES production function reduces to the Cobbglamiproduction function. When--1, it becomes the
linear production function with perfect substitutioVhenp—o, it becomes the Leontief function with zero

elasticity of substitution.

® Due to data unavailability for materials in indysit is not considered in the present paper. Adity to Frondel and Schmidt
[29], the estimates are quite irrelevant whethearnaira static translog study incorporates materials
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3.2 The estimation of the elasticity of substitutiath biased technological change

Our estimation of the 2-level 3-input CES productfanction refers to [18]. We both use ratios o$tfiorder

conditions to estimate the parameters of threeedestructures. However, he focused on the nestatliption

structure. When we applied the method, we norm@lZES production function, which has been emphdsire

the parameters of aggregated CES production fun{3]. Because due to the normalization of CESfions,

all the parameters of the derived aggregate pramudinction can be provided with sound interprietaf28,

36]. This normalization has been successfully agdplh a series of theoretical papers investigatingide

variety of topics [37].

The technology change is usually simulated thrdagtor-augmenting multipliers, here we suppose:
A=A€"" B =Be&"", C=Ce"" (4)

In this form, technical change is represented as@dependent multiplier on the production funetig, [, v

are the technological change parameters for cafatazor, and energy respectively. As we normalizéhe base

year, we determine a different estimatignu, v for each of the three nested CES functiolg.By, Cp are

technical change parameters at the base year. ¥enastechnology is progressing and consequentiethe

parametersare always positive. When they are normalized,rte&pressions would differ with the nested

structures. For instance for (KL)Bg, By, Co are defined below:

Ay = (@)Y () (5)
B, =(-f)"* (6)
C, = (1-a,) (ﬂorﬂpiEz )

There are two steps to estimating the CES functiothe first step, we estimate the optimal demiand andL
per unit ofZ. The first order condition estimation starts wihile production functions as follows:

Z, =[a(AK) ™ +(@L-a)(B L) "]

8
In the second step, the value addeahdP; are used to estimate the optimal demandefandZ per unit ofY.

The demand dK, L andE under the optimal condition is then obtained.

Y. ={BZ " +Q-P(GE) "}
(9)

Applying Shephard’s lemma on the cost functiogr, , P.,Y) dedve following equations:



1R

|n($) = 1+1p Infy+ p |n(FZ (10)
|n($) :ﬁln(l—ﬁo)—%c(t—tohﬁm(g—l) (11)
By first order differencen |, -in1,, =i inP'-InPR,=p I=KLE InU,-InU_ =u @=puv ,
U =AB,CQC), andJ:i , 0, :i, then:
1+p 1+p
e-y=(c-v+o(p - p) (12)
z-y=o(p - p) (13)
Consequently, the following two equations can biévdd from Eqg. (8):
k-z=(o,-)y+o,(p, - &) (14)
l-z=(0,-Yu+0,(p, = P) (15)

As pz andz are intermediate variables and unable to be obdethiey should be replaced. Thus we add p,

to Eq. (13) andpc - P, to Eq. (14) respectively, thenget

_ — pz+z_(pv+ ”
p, - P, o\ (16)
P tk=(p +3=(0,-Dy+ (@, -D(R - R-(R~ R) 17

Substituting Eq. (16) into Eq. (17) gives:

22(R*Y_ (b —py) (18)

+
e +k=(p, + 3=(0, =Dy + (0, - D=

Supposep, +i—=(p, +]) =é‘j J=2ZY éh is the change in the sharkeiofthe production). Eq.(18) can be

shown:

~ g, -1~

GKZ _(01_1)y+ 1_JGZY+(1_01)(pK_ p() (19)
Similarly, we can give the expression@f, as:

~ g, -1~

G, _(01_1)/1+1_UGZY+(1_01)(pL_ p‘() (20)

The first-order conditional estimation substituties change of the combination of the factors fer ¢hange of
price and quantity of intermediate variablgs, ¢+ z= din(R K+ R 1) )u,, and G,, can be estimated.

We are now to derive a system of three equatioregjorations (12), (13) and (20):



e-y=(c-lv+o(p - R)

o, -1~ _ _
1= Gyt (-0 py) (21)

g -1

GKZ = (01 _1)}/"‘

G, =(0,—Du+ G,y +1-0)(p .~ B)

The linear expression of Eq. (21) is:

Yi=a,+ B%
Yo =0, + 3%+ BoX,, (22)
Y3 =05+ BoXo + BXs,

Wherea,=(c-1)v , a,=(0,-1y, a,=(0,-Du. B =0, G =clr1_—l:A1_ With the estimated linear

equations, we could obtai, & ,B i =1,2,3%. Thus our estimates of elasticity are as follows:

0=4, 0,=1-4, (23)
Herec ando; are supposed to be positive, which mean the inpatsubstitutes. The estimated technical change

of the three factors are:

— 62 _aB a,
y=-=, U= -

B A B-1

(24)

For the (KE)L nested structures, technical change dfaitters inputs can be estimated by a similar teclenap

above.

y==——=, U=="-,v=== (25)

a

A-1

y= [=- (26)

3.3 Relative bias and total bias of technical change

For the relative bias derivation, we first calculatertrarginal products d, E, L and determine the percentage
change in marginal products over time. We then comthiagoercentage change in marginal products over time
with the technical change parameters. This deterntireebiased technical change between two inputs ifrelat

bias).

® Hat means estimated values.
® The detailed calculation is given upon required.



To understand the derivation and the reasoning, ther land capital case is now discussed. The ratioef th

marginal products of capital and labor is provided below

MP, -1
=7 (Ao (B 27
MR~ 1- a(B) ( ) (&7)

As pointed out by Acemoglu [38], whether technicalrd®is capital or labor biased in the above equation
depends on elasticity of substitution. When cagital labor are gross substitutes, capital-augmentatmieal
change is capital-biased. Conversely, when they @amplements the converse applies. To estimate bias from

the data, the percentage changes of A and B overdimestimated. Then the following equation to esemat

bias is applied.
. _s o~ _OR /ot OF /ot __ 0A/ot 0B /dt
Bias, = K-k = FK 3 =-p A ( g )
(28)
=-pA -(-pB) =T = (A B)

KL
WhereF is marginal product of the factor. Eq. (28) applie the two-factor case. As will be illustratedtfire
results section, the (KE)L nested function is thsthit for the data. Consequently, the equatioiisoe derived
from this nested structure. To introduce threediagtwe first calculate the marginal products friivea CES

with nested (KE)L production structure:

A+ P
Fa =§—: =ap }Z,,l A2[a(AK) ™ +1-a)(B D]~ (29)
) -(1 NB—r ;f:c Ala(AK) " +(A-a)(G BT (30)
aY 1+p o -p
o= oo =AD" E (31)

The change of marginal products are:

N GY VN )
Fo=—2"%=-pA+(0-p)Ar (82)
0(F)
Fo=—"%=-pC+(p-p)C-1) (33)
o(F.)
S T (34

F



a(AK)™
a(AK) " +(1-a)(GE)”

Where 77 = can be treated as the contribution from capitah@aggregated value.

Alternatively, (1) is the contribution from energy. In this modéle trelative bias is able to vary over time. As

can be seen in Egs. (32)-(34), marginal produgieiés on the elasticity as well as the technicahghk derived

from the estimated parameters in the nested steictn the case of (KE)L nested functiof=

O -1’
_ 1 1 . .
=", 0, = . A, BandC can be valued by, p andv. As a result, the following equations are to
Oey ~1 1+p
measure the relative bias between two inputs:
e _E _r _0e-1 Ty ~1
Biag,, = R~ R =——W-my)+————(1y-H) (35)
Oxe (KE) L
Oc-1 Oy~ 1 O -1 OngL—1
=(—E - Ot Ty - (ZEe - 0B Dy
Oe 0'( KE) L Oxe U( KE) L
. a ~  Oe-1 (o} -1
Bias, = Ry~ R, = €= (v-(1- W)+ SO (-7 W - p) (36)
Oxe (KE)L
=Gty e, Gl T py,
Oe U( KE) L Oxe 0'( KE) L
(37)

- g -1 -
=2y —vy+ (U0 Ty - )

KE O kgL Oye
1 Owe~

BiaSth = AFK( -

_ - 1
=Te L, ) (e Wy - (-]

KE KE (KE) L

The first term on the right of the above three ¢igna is constant over time and the variation & Hiased
technical change depends on the second term. Tdieveebias can be positive or negative. For examphen
Bias¢_ is positive, this implies technical change is tapbiased. In contrast, when it is negative theveose
applies. Although the above equations provide éuliseeasure of technical change bias between anygiven
factors, it has limitations for policy-makers. Aglipy makers need to know bias towards any givetofarather
than just a relative measure. Thus, we providéhallpossible conditions to determine the total lnas factor,
see Table 1 for (KE)L nested structure. The totak bis to measure the bias of each input factoriteen
provide an indication on whether the bias is wealgeor strengthening over the years. For examplpital can
be biased under three possibilities. See thedordition in Table (1), when the relative biasdwards capital
both for (KL) and (KE), technical change is biasedard two direction. Thus the total bias towardgpital is
the summation oBiasce andBiasc.. The second condition shows that when technicahghas biased towards

labor for (KL) but towards capital for (KE), it sggsts that the absolute value Rilise is both larger than

9



Biasq. and Bias¢.. Consequently, the total bias of capital is equaBiase. When technical change is biased
towards capital for (KL), while towards energy {&E) and towards labor for (EL), the absolute vadiiBias
is larger thamias £ andBiasce. The rules are similar to labor biased and energydal, see detailed in Table 1.

INSERT TABLE 1 ABOUT HERE
4. Data and results
4.1 Data set
Our investigation focuses on the aggregated Chimekestrial sector spanning the period from 199@@42.
We exploit three datasets to determine the elastirid technical change bias: (i) China StatistiGedrbook as
published by China’s National Bureau of Statis{8F (i) China Energy Yearbook as published by s
National Bureau of Statistics [39]; (iii) China LabStatistic Yearbook as published by China’s NaldBureau
of Statistics [40].
The perpetual inventory method is used to estircapital i.e. K=K 1(1-0)+1[40]. I;is the investment for year t.
d is depreciation which is the price of capital. §i8 determined by the 6-12 months official intemases of
loans to financial institutions. Capital in the bagear (with t=1) is calculated byoKly/(g+d). lpis Total
Investment in Fixed Assets by region in 1985. thesaverage growth rate of added value duringithe series,
d is the depreciation rate which is 9.6 percentofeihg [41]. To determine labor, we use the Chinddra
Statistic Yearbook. The wage of the base year itiptiad by the real wage index to determine wagedach
year. As for energy use data, they are aggregayedabious fossil fuels and measured in tonnes @l co
equivalent. For the base year, coal price from Giéna Energy Databook v. 7.0 is adopted. Coal piice
subsequent years is determined through the CodUEtion Price Index (PPI) from the [8].
4.2 Simulating of KLE production function and eilesg of substitution
We use the first-order condition estimation to defee the parameters of three CES nested functidfise
parameters are estimated (see Table 2) for edtie dfiree nested CES functions.

INSERT TABLE 2 ABOUT HERE

KE(L) is preferred over (EL)K as it is statistigalinore significant. Furthermore, the (KL)E functios
disregarded as the elasticity of substitution igatiwe and the technical change parameter for alafst
insignificant. Thus, we conclude (KE)L is a betfiefor the Chinese industrial sector than the otiwe nested

functions. Given our choice of KE(L), this impligsat capital and energy are best suited to be auwedbat a

¥ We check the transformed data about the unit exsit The results show all the input and outpubfacare stable at the first order
difference at least at 10% critical value.
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composite level then with labor to form total outpQur nesting structure is aligned with Kemfer2][4tudy of
the German aggregated industrial sector as an gafgrend Lv et al. [43] research of Chinese ingustor
macroeconomics models application, (KE)L nesteglcstire is also used in [44] (the GTAP-E model) pt&]
(the GREEN model).

The positive value of implies that substitution between capital and gynés possible. Consequently, adopting
more energy efficient or clean technologies willph€hinese industry to reduce energy intensity eise the
production efficiency of energy. High elasticitie aggregated KE and Lo{) indicate that it is likely that
substitution will reduce labor employment in thdustry of China.

4.3 Relative bias and total bias of technical chang

Relative bias is calculated based on Egs. (35)-(B@al bias is obtained from the conditions in [Eab. The
results illustrate that technical change is unaontigly energy biased relative to both labor andtaa his can
be seen in Table 3. From the values in the tabdefownd TC is biased towards capital between dagoit@ labor,
while towards energy between energy and labortalagoid energy. Figure 1 shows the time path af &nergy

bias. The values of relative bias given in Tablesdisfy Biasg<0, Bias 0. Thus the total bias is

Bias, = abg Biag,)+ al{s Biag) , see Figure. 1. It shows the time path of totatrgy bias, which has
increased every year from 10.97 in 1990 to 11.720@0. Its highest point is 12.33 in 2012, the lestr of our
analysis.

INSERT TABLE 3 ABOUT HERE

INSERT FIGURE 1 ABOUT HERE
The results make intuitive sense given the seactowily patterns in China. Over this period, Chinatowed its
industrialization. Industry as a proportion of GBfew from 61.2% in 1992 to 72.8% in 2005. Althougthen
decreased, it still represents 47% of GDP in 2@]2This industrialization was fueled vastly by taacounting
for two-thirds of China’s primary energy consumptiover the last 20 years [39]. Non fossil fuel ise&ery
limited. For instance, in 2014 only 11.2% was reael@ and hydroelectric. In contrast, 66% was cbal1%
was oil and 5.7% was natural gas ([8], 2015). Cqusstly, this means that our results are aligneiti tie
energy consumption profile as outlined by reseaktitoshi [46] found for the Japanese industrieshiécal
change was energy and labor-saving but not elégtsaving and it tends to be capital-using. ForE2Bopean
countries, Vogel, et al. [20] determined the techhichange bias was labor-saving and energy-usinght

manufacturing industries. However, they found agimaily significant small energy bias at the cowrlgvel.
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Chen and Yu [47] determined that for OCED and n@ED countries progress is capital biased relatve t
energy. Nonetheless, the authors point to theofisiee oil price of 2000-2003 as a potential reason

There are several reasons for this tendency ofygri@as. The first explanation may be due to tive fwice of
energy resulting from subsidies. Historically thieirtse government has regulated energy prices dxydimg
fossil fuel subsidies [48]. For example, the fo$sél subsidy was 20.7 billion USD (Real 2013 USDhis
represents 11 percent of the reference price [@8hsequently, the real energy price in China has bewer
than the global market price. After three decadeseforms, the government still influences the cpete
through administrative persuasion to state-owned eones and allocation of transport capacity (Hand Tu,
2007) [50]. In addition, electricity tariffs arercantly regulated by the government [51]. Henteés difficult to
determine whether allowing the market to be sulfjeqirice fluctuations in China would lead to enesaving
technology progress. Nonetheless, research in atieas of the world found that technical change twavards
energy has been sensitive to energy prices. Tleofaénergy-saving technical progress is higheinduthe
periods of higher energy prices and lower duringeioenergy prices [19]. The second reason for tieegy bias
of technological change is the heavy physical itmest with limited innovation. Jin and Zhang [58phd that
during China’s initial growth, small capital stoldads to incentives for capital accumulation rathan R & D
innovation to improve energy use. The social plarordy has an incentive to augment physical cagitatk
rather than undertake R&D investment for technaalginnovation, thus creating a non-innovation-ggdwth
path. This non-innovation-led path gives rise tan@ls energy-intensive growth pattern. Specificathere is
little knowledge accumulation with no real energyisg effect of technological progress. This ledds
monotonic increases in fossil energy use by 3.@sfoluring the sample period. We also feel thataaae may
come from the rebound effect of energy efficieng. highlighted by Sorrell [53], easier substitutibatween
energy and other inputs leads to larger reboundCHima, in the past two decades, there has beeificnt
improvement in energy efficiency in the industryortheless, energy consumption continues to ineredsch
implies that the potential energy savings by tecdinchange are offset by the substitution effect siwome
effect. The rebound effect has been estimated .2868luring 1981-2009 for whole China [54] and 46438t
the aggregated industry [55].

Although the growth rate of the energy bias fluttdain the 1990’s, there was no downward trendciipally,
in 1990 the growth rate was 0.65%, and by 199%i Wwack to that point. However, since then it hreasehsed
significantly to a low of 0.35% growth in 2011. Shdecline coincided with the investment into renges. It is

important to recognize that investment in renewadd®urces such as wind and solar started in Z20@0relieve
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shortages of energy. Policies like the Cleaner frton Law introduced in 2002 and the Medium (2@03-0)

and Long-term Plan of Energy Conservation (2010020&e also outlined energy conservation aims and
implementation plans for subsequent years. Thus,rémewable investment and environmental concerns i
China reduced the growth rate of energy biasechieahchange.

In Fig. 1, the percentage contribution of the biawards energy from labor is presented. The peagent
contribution from labor increased consistently frd8.5% in 1990 to 65.3% in 2012. Conversely, the
contribution from capital decreased from 40.5% BOQA to 34.7% in 2012. These results align with the
intricacies of the Chinese economy. Labor costeased since 1990, whereas capital cost decredsed [8

5. Conclusion

Resulting from the need to consider energy as putjme contribute by enhancing our framework talgtthe
technical change of any number of factors at thetosdevel. Relative technical bias is to estimtte bias
between two inputs whereas aggregated total bitw ihree inputs. The multi-factor generalisatisrderived
from the elasticity of substitution and technichange of the factors. Empirically we applied therapch to a
data set for Chinese industry over the 1990-201@ge

For the entire Chinese industrial sector, capital @nergy has a high elasticity of substitutionu§;icapital and
energy is best suited to be nested at the compesié and then combined with labor to form totatput. The
results match the results of engineering studieislhwbuggest a large potential for improving enegfficiency
by substituting capital for energy. To reduce epargnsumption, the alternative policy reforms skoidster
energy-saving technologies acquisition. It may lmerexpensive to innovate in clean technologiesliee of
path-dependence in the direction of technical cegdb§]. In this case, the government should givesily or
invest energy-saving technology.

With our estimation framework, we found technicadnge is strongly biased towards energy comparé&bty
and capital (relative bias). That means energy-aungimg technical change is smaller than that dfegitapital
or labor. In addition, technical change is totdllgsed towards energy which increases over tirhe Bias is
predominately away from labor. This indicates teatrgy has been used more intensively in production
Substitution towards energy may increase the eneafiye share brought by energy biased technicatggha
Although the bias increased, the growth rate hasedsed in recent years. These insights shouldKam tinto
account by policy makers in order to devise legimato reduce energy consumption. For instancergn

taxation or deregulation of electricity tariffs amotentially efficient economic instruments for sgpe
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conservationAnd the relevant costs-benefit analysis are tably required, which are beyond the scope of
our research.

Given these results, we would like to suggest sameas of further research. The purpose of the suadyto
estimate technological change bias for the emtideistrial sector, without focusing on the elastieihd the bias
for individual sectors. We found that for the emtiindustrial sector, technical change is energydua
Nonetheless, technical change could be more arld beuess energy biased in specific sectors andnuoes. It

is also possible that in some provinces and sediioese may not even be an energy bias. In ordenable
policy makers to devise sector-specific policiegitifer research at a sector level would be appateri
Furthermore, in this empirical investigation, wenaanly access to high-quality data of the Chinesergy
economy during the period of the research. Toratheiter statistic characteristics, we shall inelundore high-
quality data from a extended period. The seconénsidn would be to try to measure the effects ef th
government’s recent environmental policies on tfes howards energy. Since 2000, China formulated ne
environmental laws and more recently voluntary egrents and emission trading. As we found that tbevidp
rate of total energy biased technical change dsetkat is of interest to determine whether thia direct result
of China’s environmental policies. A simple but ionfant lesson that can be gathered from China’ermpce

is the impact of policies. Policies such as subsidare also applied in other countries, particylarl the
developing world like India and Russia [57]. Thisymalso be contributing to energy bias in thespaetive
countries. Similarly, our method is applicable &ietmine bias in these countries if their own goments want
to influence the direction of technical change.
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Appendix

Table 1 Full name of abbreviations

Abbreviation full name

CES Constant Elasticity of Substitution
MP Marginal Product

(KE)L (Capital-Energy) Labor

(EL)K (Energy-Labor) Capital

Bias Biased Technological Change
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Tablel

Total bias under (KE)L nested structure

Factor Conditions Total bias

biased

Captal - gjag,, >0, Bias, >0 Bias,, = abs(Bias,,) + abs(Bias,,)
Bias,, >0, Bias,, <0, Bias, >0 Bias,, = abs(Bias,)
abs(Bias,,) > abs(Bias,, ) andabs Bias,, )
Bia%Et <0 Bia'SELt <0, BiaSKLt >0 Bias« :abS(BiasKLt)
abs(Bias,y,) > abs(Bias ¢, ) andabs Bias,e, )

Labor . . . . .
Bias,, <0, Bias,, <0 Bias, = abs(Bias,,) + abs(Bias,,,)
Bias,, >0, Biasg, <0, Bias, >0 Bias, = abs(Bias,,,)
abs(Bias,y,) > abs(Bias ¢, ) andabs Bias,e, )
Bias, <0 , Bias,, <0 , Bias,, >0 Bias, =abs(Bias,)
abs(Bias,,,) > abs(Bias,) andabs Bias,, )

Energy

Bias, <0, Bias,, >0

Bias,, >0, Bias,, >0, Bias,, <0

abs(Bias,) > abs(Bias,, ) andabs Bias, )

Bias,, <O , Bias,, <0 , Biasg, >0

abs(Bias,,) > abs(Bias,,) andabs Bias,,, )

Bias,, = abs(Bias,, ) + abs(Bias,, )

Bias, = abs(Bias)

Bias., = abs(Bias,)




Table?2

The elasticity and the change rates of technicahgh

Determinant

Nested )
function c o1 y M v res@ual
covariance
(KDE -0.2769* 0.7750%** 0.0641 0.1107** 0.0838*** 1.70E-18
(-1.6364) (5.3965) (-1.4412) (-2.1494) (-4.0382)
(KE)L 0.0300***  0.7847**  0.1431**  0.1403*** -0.1288** 2.43E-08
(-5.3152) (4.4360) (-3.1877) (-4.7735) (2.2718)
(ELK 0.0352***  (0.8179*** 0.0455** -0.1170%*  0.2477*** 7.98E-18
(-4.4178) (4.2745) (-2.1163) (1.7656) (-3.7253)

* xx xxx gignificant at the 10%-level, 5%-level, 1%evel respectively. Figures in parentheses are-thatistics.



Table3
Bias of technical change between two inputs: netdbias

Year Biask Biase Biaskgt Year Biasq Biasg Biaskgt

1990 2.0850 6.5298 -4.4448 2002 3.1544 7.4924 80.33
1991 2.1738 6.6097 -4.4360 2003 3.2088 7.5413 25.33
1992 2.2556 6.6834 -4.4278 2004 3.2493 7.5778 85.32
1993 2.3275 6.7481 -4.4206 2005 3.3096 7.6320 25.32
1994 2.4044 6.8173 -4.4129 2006 3.3759 7.6918 58.31
1995 2.4748 6.8807 -4.4059 2007 3.4448 7.7538 90.30
1996 2.5857 6.9805 -4.3948 2008 3.5186 7.8202 14.30
1997 2.7005 7.0838 -4.3833 2009 3.5884 7.8830 44.29
1998 2.8105 7.1828 -4.3723 2010 3.6603 7.9477 74.28
1999 2.9047 7.2676 -4.3629 2011 3.7137 7.9957 24.28
2000 2.9972 7.3508 -4.3537 2012 3.7844 8.0595 50.27

2001 3.0790 7.4245 -4.3455
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Fig. 1. Total energy bias and its decomposition (1990-2012)



We outline a framework to estimate technical change, elasticity of substitution, and
relative bias.

A concept of total bias for three factors of production isintroduced.

Empirically we applied the approach to a data set for Chinese industry over the 1990-
2012 period.



