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Hihglights

• We propose a novel self-adaptive data shifting based method for one-class

SVM (OCSVM) hyperparameter selection, which has a significant influ-

ence on OCSVM performance.

• The proposed method is able to generates a controllable number of high-

quality pseudo outlier data around target data by efficient edge pattern

detection and a “negative shifting” mechanism, which can effectively reg-

ulate the OCSVM decision boundary for an accurate target data descrip-

tion. Meanwhile, negative shifting soundly addresses two major difficul-

ties of previous pseudo outlier generation based hyperparameter selection

methods.

• The proposed method also generates pseudo target data for OCSVM

model validation on target class by a “positive shifting” mechanism, which

provides an efficient alternative to the time-consuming cross-validation or

leave-one-out (LOO) process. More importantly, positive shifting can en-

courage robustness to noise in the given target data during hyperparam-

eter selection, by generating non-noise pseudo target data for validation

from original noise.

• The proposed method is able to yield superior performance when com-

pared with other state-of-the-art OCSVM hyperparameter selection meth-

ods, on both synthetic 2-D datasets and various benchmark datasets.

• Unlike many previous methods that introduce additional hyperparameters

into OCSVM hyperparameter selection, the proposed method is fully au-

tomatic and self-adaptive, leaving no additional hyperparameter for users

to tune. Besides, the application of the proposed method is not restricted

to certain kernel functions like Gaussian kernel.
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Abstract

With flexible data description ability, one-class Support Vector Machine (OCSVM)

is one of the most popular and widely-used methods for one-class classification

(OCC). Nevertheless, the performance of OCSVM strongly relies on its hyper-

parameter selection, which is still a challenging open problem due to the absence

of outlier data. This paper proposes a fully automatic OCSVM hyperparam-

eter selection method, which requires no tuning of additional hyperparameter,

based on a novel self-adaptive ”data shifting” mechanism: Firstly, by efficient

edge pattern detection (EPD) and ”negatively” shifting edge patterns along

the negative direction of estimated data density gradient, a constrained number

of high-quality pseudo outliers are self-adaptively generated at more desirable

locations, which readily avoids two major difficulties in previous outlier genera-

tion methods. Secondly, to avoid time-consuming cross-validation and enhance

robustness to noise in the given training data, a pseudo target set is generated

for model validation by ”positively” shifting each given target datum along

the positive direction of data density gradient. Experiments on synthetic and

benchmark datasets demonstrate the effectiveness of the proposed method.
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1. Introduction

One-class classification (OCC) [1] describes training data from a single class

(called ”target class”) as a normalcy model and aims to detect data from any

other class (called ”outlier class”) as outliers. OCC has numerous applications,

especially when training data from outlier class are hard or even impossible to

obtain. To deal with OCC, existing methods basically fall into three categories:

(i) Density based methods. Density based methods, like one-class Gaussian Mix-

ture Model (OCGMM) [2] and Parzen density estimation [3], estimate the den-

sity of the target class and detect data in low-density area as outliers. (ii)

Reconstruction based methods. Reconstruction methods, such as auto-encoder

network [4], assume that target data can be reconstructed by a network with

low reconstruction error, while outliers cannot. (iii) Boundary based methods.

Boundary based methods, such as One-class Support Vector Machine (OCSVM)

[5] and Support Vector Data Description (SVDD) [6], are able to learn a tight

and smooth boundary that encloses target data by introducing non-linear ker-

nel tricks, which makes boundary based methods particularly popular in OCC.

As a prevalent boundary based OCC method, OCSVM has been studied and

applied actively in numerous realms of academic research and industrial appli-

cations, such as fault detection [7], video abnormal event detection [8], media

classification [9], network intrusion detection [10], video summarization [11], etc.

Besides, another representative OCC method SVDD is shown to be equivalent

to OCSVM when stationary kernel is used [5] (e.g. standard Gaussian kernel).

However, a pivotal issue to apply OCSVM is the hyperparameter selection,

which has a significant influence on its performance. To be more specific, with

the standard Gaussian kernel, two hyperparameters of OCSVM need to be prop-

erly tuned: the regularization coefficient ν and the Gaussian kernel width σ

(details will be reviewed in Sec. 2.1). ν controls the upper bound of rejected

target data [5], which is often tuned to reject noise in the target data during

training OCSVM, while σ controls the smoothness of decision boundary. To

illustrate this, we show the decision boundary of OCSVM with different hy-
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(c) ν = 0.1, σ = 1
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Figure 1: The influence of hyperparameters on OCSVM decision boundary for ”banana”

dataset.

perparameter settings on a noisy 2-D ”banana” dataset (see Fig. 1): what we

expect OCSVM to obtain is the decision boundary in Fig. 1b, which is both

tight enough to detect outliers effectively and smooth enough to generalize on

unseen target data. An overly large σ or small σ will cause underfitting (see Fig.

1a) and overfitting (see Fig. 1c) respectively. Meanwhile, choosing a proper ν

enables OCSVM to properly exclude noisy training data in the target set (see

Fig. 1b), while improper ν will make the decision boundary distorted by noisy

target data (see Fig. 1d) or reject excessive target data. Hence, hyperparameter

selection plays a fundamental role in the application of OCSVM [12]. While the

tuning of OCSVM hyperparameters is not straightforward, a more thorny issue

is that standard hyperparameter selection schemes like leave-one-out (LOO) or
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cross-validation will be problematic for OCC due to the absence of data from

outlier class, and the model error on outlier class can longer be obtained directly

[12, 13]. As a result, hyperparameter selection of OCSVM remains a challeng-

ing open problems and many attempts have been made to tackle this problem,

which will be reviewed in Sec. 2.2.

In this paper, we enable fully automatic OCSVM hyperparameter selection

by a novel self-adaptive data shifting (SDS) based method, which consists of

two contributions: Firstly, based on an efficient edge pattern detection (EPD)

method, pseudo outliers are generated by ”negatively” shifting the detected edge

patterns for model error estimation on outlier class. The proposed method can

generate a controllable number of high-quality deterministic pseudo outliers at

more desirable locations in the data space, which can effectively regulate the

decision boundary of OCSVM for a more accurate target data description. More

importantly, negative shifting avoids two major difficulties in previous outlier

generation methods (discussed in Sec. 2.2). Secondly, a pseudo target data set is

generated by an efficient ”positive shifting” mechanism for model validation on

target class, which can avoid time-consuming cross-validation. The generated

pseudo target data can perfectly preserve the original target data distribution,

so as to soundly evaluate the generalization performance on target class and

prevent overfitting. Meanwhile, it can enhance the robustness to noise in the

given target data by generating normal pseudo target data from noise for model

validation. Unlike many previous methods, both negative and positive shifting

are self-adaptive and leave no additional hyperparameter for users to tune dur-

ing OCSVM hyperparameter selection. Experimental results demonstrate that

the proposed method enables OCSVM to accurately describe target data with

complex data distributions and achieve satisfactory OCC performance.

The rest of paper is organized as follows: Sec. 2 revisits the basics of OCSVM

(Sec. 2.1) and then briefly reviews existing hyperparameter selection methods

for OCSVM (Sec. 2.2). Sec. 3 presents the proposed data shifting based

OCSVM hyperparameter selection method in detail. Sec. 4 reports the exper-

imental results of the proposed method on both synthetic datasets and bench-
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mark datasets in comparison with existing OCSVM hyperparameter selection

methods. Sec. 5 concludes this paper.

2. Related Work

2.1. One-class Support Vector Machine (OCSVM)

Before we discuss the hyperparameter selection of OCSVM, it is neces-

sary to review the basics of OCSVM first. As an extension of the standard

binary SVM, Schölkopf et al. [5] proposed OCSVM to handle OCC prob-

lems. Formally, suppose that the target data to be described by OCSVM is

Xtarget = {x1,x2, · · · ,xN}, and an implicit mapping φ(·) that can map target

data from their original feature space to a new feature spaceH. OCSVM intends

to seek such a hyper-plane Π in H: the hyper-plane Π : wT ·φ(x)− ρ = 0 (w is

a normal vector of Π) has the largest distance to the origin, while all mapped

target data φ(xi) lie at the opposite side of hyper-plane to the origin. This goal

can be formulated as the following primal optimization problem:

min
w,ξ,ρ

1

2
||w||2 +

1

νN

N∑

i=1

ξi − ρ

s.t. wT · φ(xi)− ρ+ ξi ≥ 0, ξi ≥ 0, ∀i
(1)

where ν is the regularization coefficient mentioned in Sec. 1, which trades

off model complexity and training error, and ξi is the slack variable that enables

OCSVM to have soft matgin so as to exclude some noisy training data. It is

proved that, hyperparameter ν controls the upper bound of the training data

that are excluded by the decision boundary of OCSVM [5]. Since the mapping

φ(·) is usually implicit, the above optimization problem is usually solved by its

dual form:

max
α

−1

2

N∑

i,j=1

αiαjK(xi,xj)

s.t.
N∑

i=1

αi = 1, 0 ≤ αi ≤
1

νN
,∀i

(2)
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where K(xi,xj) = φ(xi)
T ·φ(xj) is the inner product of mapped data, while

αi is the dual variable. In practice, one usually directly specifies kernel function

K(xi,xj) instead of the mapping φ(x), which may be indefinite, and Gaussian

kernel K(xi,xj) = exp(− ||xi−xj ||2
σ2 ) is usually the standard choice (σ is the

Gaussian kernel width). With selected kernel function and its hyperparameter,

the above dual optimization problem can be solved as a quadratic programming

problem. Having solved αi by the dual optimization problem, ρ can be obtained

by choosing any xi that its corresponding αi satisfies 0 < αi <
1
νN and calculate

ρ =
∑N
j=1 αjK(xi,xj). In the meantime, any xi that has a corresponding αi > 0

is called a support vector, which supports the decision boundary of OCSVM.

An incoming new datum xt is determined as an outlier if it satisfies:

f(xt) =
∑

αi>0

αiK(xt,xi)− ρ < 0 (3)

In this paper, we will focus on the hyperparameter selection of standard

Gaussian kernel based OCSVM, but the applicability of the proposed method is

not limited to Gaussian kernel. Existing methods on OCSVM hyperparameter

selection are reviewed in next section below.

2.2. Existing OCSVM Hyperparameter Selection Methods

Since the very beginning, researchers have noticed the dramatic influence

of hyperparameters on the performance of OCSVM/SVDD. Schölkopf et al.

[5] analyzed the influence of hyperparameter ν and σ from a theoretical view,

but did not provide specific guidelines to their selection. Afterwards, a host of

methods are proposed and we roughly classify them into two categories:

(1) Pseudo outlier generation based methods. The motivation of this type of

methods is straightforward as they intend to tackle the essence of OCC problem:

the absence of outlier data. An early attempt is Fan et al. [14], who replaced

the feature value that appears most frequently with a randomly chosen value to

generate artificial anomalies. However, this method can only deal with feature

with discrete values. Tax et al. [1] studied an intuitive solution: generating uni-

formly distributed random outliers in the hyper-cube that encloses the target
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data to guide hyperparameter selection, and they further improved the hyper-

cube into a hyper-sphere to better fit the target data [12]. Unfortunately, as

[12] pointed out by themselves, such simple random outlier generation faces two

major difficulties: Firstly, outliers are not guaranteed to be generated at desir-

able locations due to randomness. [6] discovered that pseudo outliers inside or

overly far from the target data are not contributing, and they may even lead

to selecting poor hyperparameters. Secondly, as a small number of randomly

located outliers cannot deliver an accurate error estimation on outlier class,

such methods require generating massive random outliers to fill in the entire

data space, so as to yield a relatively good estimation of the model error on

outlier class. [12] pointed out that the number of pseudo outliers required for

filling can grow exponentially as the feature dimension increases, which makes

it particularly difficult to know the exact number of outliers sufficient for a good

outlier error estimation. In other words, such methods actually introduce an-

other non-intuitive hyperparameter to specify: the amount of generated outliers

No. Some other improved outlier generation methods are proposed: Deng et al.

[15] proposed a ”skewness” based outlier generation method, which generates

outliers by randomly ”skewing” each target datum from its original location.

However, the degree of skewness α is another sensitive hyperparameter for users

to specify. Banhalmi et al. [16] detect boundary points and generate outliers

by a transformation between each given datum and its nearest boundary point,

but it requires training one SVM for each datum for boundary detection, which

is extremely expensive. Besides, it introduces two additional hyperparameters

dist and curv. Desir et al. [17] improved pseudo outlier distribution by using a

complementary histogram to indicate the probability of outlier generation. In

addition, Tax et al. [13] proposed a ”consistency” based method to avoid the

difficulties of explicit outlier generation. It starts with the most underfitting

OCSVM model, and gradually tightens the model boundary until the model no

longer satisfies the defined ”consistency” criteria, which is set under an implicit

uniform outlier distribution assumption. Nevertheless, the performance of this

method is actually very sensitive to the ”consistency” criteria, which depends

8
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on the threshold of variance, a tunable hyperparameter.

(2) Heuristics based methods. Due to the difficulties of pseudo outlier gen-

eration, heuristics based OCSVM hyperparameter tuning has gained increasing

popularity over the years. Generally speaking, heuristics based methods assume

that good hyperparameters of OCSVM typically satisfy some intuitive observa-

tions or empirical prior knowledge, and some corresponding heuristic rules are

adopted to provide guidance on OCSVM hyperparameter selection. Specifically,

Evangelista et al. [18] proposed to select good σ by maximizing the ratio be-

tween the variance and average value of kernel matrix’s off-diagonal elements.

Khazai et al. [19] proposed to determine σ by the maximal distance between

target data and target data number. Xiao et al. [7] proposed two heuristics

to tune σ based on maximal-minimal distance between target data and the

statistics of distance to nearest neighbor, respectively. However, all methods

above need to pre-specify ν, which can sometimes be difficult. Wang et al. [20]

proposed a method named Min#SV+MaxL to tune both ν and σ based on a

trade-off between minimizing support vector number and maximizing objective

value. Xiao et al. [21] put forward an interesting method named MIES: by

calculating normalized distance (ND) from target data to OCSVM’s decision

boundary, MIES is based on the following observation: good OCSVM hyper-

parameters can maximize the difference between ND of data inside the target

set (called ”interior patterns”) and the ND of data on the boundary area of

the target set (called ”edge patterns”). A more recent work by Ghafoori et al.

[22] proposed to estimate ν and σ efficiently and unsupervisedly by seeking the

”knee-point” with the largest curvature in the sorted density measure of target

data and a revised Duplex Max-margin Model Selection (RDMMS) method.

Heuristics based methods can avoid the difficulties of pseudo outlier generation,

but they sometimes perform poorly since the underlying observations do not

hold. In addition, the application of heuristics based methods are often limited

to certain kernel functions like Gaussian kernel.
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3. Methodology

As we discussed in Sec. 2.2, existing outlier generation based hyperparame-

ter selection methods are faced with two major unsolved difficulties, and usually

introduce additional hyperparameters that need to be specified by users. This

paper proposes a self-adaptive OCSVM hyperparameter selection method based

on a novel ”data shifting” mechanism, which can readily avoid the aforemen-

tioned difficulties in previous outlier generation methods and leave no tuning of

additional hyperparameter to users.

3.1. Self-adaptive Data Shifting

Our hyperparameter selection method for OCSVM based on self-adaptive

data shifting is composed of three components: (1) Pseudo outlier data gen-

eration by negative shifting. By employing edge pattern detection (EPD) [23]

method and calculating the negative data density gradient [24], we develop a

new ”negative shifting” mechanism to obtain pseudo outlier data by shifting

the detected edge patterns of the target data along the direction of negative

data gradient. (2) Pseudo target data generation by positive shifting. With the

calculated data density gradient of each given target datum, we develop a novel

”positive shifting” mechanism to generate pseudo target data by shifting each

target datum slightly along the direction of positive data density gradient. (3)

Grid search. With the generated pseudo outlier and target data as validation

data, we use grid search to select good hyperparameters for OCSVM. The pro-

posed positive shifting and negative shifting mechanism will be introduced in

detail by Sec. 3.2 and Sec. 3.3 respectively, and the whole algorithm will be

shown by Sec. 3.4.

3.2. Pseudo Outlier Data Generation by Negative Shifting

3.2.1. Edge Pattern Detection (EPD)

The proposed method is inspired by the working mechanism of SVM [25]: the

decision boundary of SVM can be supported only using the exterior patterns in

each data class, which are called support vectors. Motivated by this, we discover

10
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that it is actually unnecessary to generate massive random outliers to fill in the

entire data space like [12]. To regulate the OCSVM decision boundary for an

accurate target data description, we can simply generate a small number of high-

quality pseudo outliers that tightly surround the domain of target data, serving

as pseudo ”supports” from the outlier class. Thus, a novel solution is proposed

to generate such high-quality outliers: we shift the data at the exterior surface

of target class (denoted as ”edge patterns”) outwards into pseudo outliers (see

Fig. 3a), which is called ”negative shifting” and will be discussed in the next

section. Before we generate outliers by negative shifting, we will show how to

locate the edge patterns at the exterior of target class efficiently in the first

place, which is called edge pattern detection (EPD).

ni

vij

Tangent plane

Data exterior surface

k-nn data

Other data

Edge pattern

(a)
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Figure 2: EPD (left) and detected edge patterns on banana dataset (right).

Instead of previous time-consuming and complicated boundary detection

methods, Li et al. [23] proposed a simple and efficient EPD method by exploiting

local geometrical and statistical information within data. The idea of EPD is

intuitive: For an edge pattern xi, suppose vij =
(xi−xij)
||xi−xij || , j = 1, 2, · · · k, denotes

the unit direction vector from its jth k-nearest neighbor (k-nn) xij to itself. EPD

approximates the normal vector ni of the data exterior surface’s tangent plane

at xi by the sum of vij , and detects edge pattern xi based on the following fact:

for an edge pattern xi, all or most of vij should satisfy vTij · ni ≥ 0 (see Fig.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2a). A detailed EPD algorithm is shown in Algorithm 1, in which the indicator

function I(·) = 1 if the statement in the bracket is true, otherwise I(·) = 0.

It should be noted that two parameters of the EPD algorithm, the number of

nearest neighbors k and the decision threshold T , have been thoroughly studied

by Li et al., and we simply fix them as the recommended values from [23] in

Algorithm 1. Therefore, the EPD process does not require user to specify any

parameter. As an illustration, EPD is performed on the banana dataset and

the results are displayed in Fig. 2b, which shows EPD can effectively detect the

edge patterns of a given target data set.

Algorithm 1: EPD Algorithm.

Input: Taregt dataset Xtarget = {x1,x2, · · · ,xN}
Output: Edge pattern set Xedge

1 calculate k = d5 log10Ne;
2 set threshold T = 0.1;

3 set Xedge = ∅;
4 for i = 1 to N do

5 calculate k-nn direction vector vij =
(xi−xij)
||xi−xij || , j = 1, 2, · · · k;

6 approximate normal vector ni =
∑k
j=1 vij ;

7 calculate θij = vTij · ni, j = 1, 2, · · · k;

8 calculate li = 1
k

∑k
j=1 I(θij ≥ 0);

9 if li ≥ 1− T then

10 Xedge = Xedge ∪ xi;

11 return Xedge;

3.2.2. Negative Shifting

With detected edge patterns, we will introduce how to shift them into pseudo

outliers to regulate the OCSVM decision boundary and provide guidance on

selecting good hyperparameters. Since the edge patterns are shifted ”away”

from the target data, this process is called ”negative shifting” (see Fig. 3a).
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Figure 3: Negative shifting (left) and pseudo outliers on banana dataset (right).

To generate high-quality outliers, two key elements need to be determined for

negative shifting: the shifting direction and shifting magnitude. We will discuss

the shifting direction first. Theoretically, we should shift edge patterns along

the direction of target data density’s negative gradient, in which the target data

density drops at the fastest rate. In other words, it is the easiest direction for

edge patterns to be shifted to the nearby region that has no existence of target

data and become valid high-quality pseudo outliers. Formally speaking, with the

density of target data at a point x denoted as p(x), the ideal shifting direction

is −∇p(x). We follow the method in [24] (p. 534) to derive the approximation

of −∇p(x): for any given x, we define a sufficiently small local region centered

at x with radius r: L(x) = {y|‖x−y‖2 ≤ r2}. As the data density at y is p(y),

the total amount of data covered by L(x) is:

a =

∫

L(x)

p(y)dy (4)

The direction vector from the center x to a point y in L(x) is (y− x). The

expectation of such direction vectors in L(x) is:

E{(y − x)|L(x)} ∼=
∫

L(x)

(y − x)
p(y)

a
dy (5)

13
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As L(x) is a small enough local region centered at x, we can approximate a

by the equation below:

a =

∫

L(x)

p(y)dy ∼= p(x)u (6)

where u is the volume of L(x). By Taylor expansion, we have p(y) ∼= p(x) +

(y−x)T∇p(x). Therefore, with Taylor expansion of p(y) and Eq. 6, Eq. 5 can

be transformed into:

E{(y − x)|L(x)} ∼=
∫

L(x)

(y − x)
1

u
dy +

∫

L(x)

(y − x)(y − x)T
1

u
dy
∇p(x)

p(x)
(7)

Since L(x) is a symmetric region, we have
∫
L(x)

(y − x) 1
udy = 0. By the

conclusion from [24] (Appendix B.6), Eq. 7 can be converted to:

E{(y − x)|L(x)} ∼=
∫

L(x)

(y − x)(y − x)T
1

u
dy
∇p(x)

p(x)
=

r2

D + 2

∇p(x)

p(x)
(8)

where D is the dimension of x. Finally, with the scalar value D+2
r2 p(x) , s,

the desired shifting direction −∇p(x) can be approximated by:

−∇p(x) ∼= sE{(x− y)|L(x)} ∼= s

k

k∑

j=1

(x− xj) (9)

where xj is the jth k-nn of x. Eq. 9 suggests that the negative data density

gradient direction can be approximated by the direction vectors from the k-

nn data of x to itself. However, the approximation in Eq. 9 has a practical

problem: since the given real-world target data near the data exterior surface

are usually non-uniform and noisy, the estimated −∇p(x) is often dominated by

some noisy k-nn with very large magnitude ‖x−xi‖. To enhance the robustness

to k-nn noise, we adopt the same solution in [16, 23] to normalize the k-nn

direction vector by its magnitude. This makes the estimated −∇p(x) exactly

coincide with the normal vector n calculated during EPD, which facilitates us

14
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to determine both edge patterns and their shifting directions by EPD:

−∇p(x) ∼= n =
k∑

j=1

x− xj
‖x− xj‖

(10)

where the scalar s
k in Eq. 9 is dropped since we are only interested in the di-

rection of −∇p(x). The second consideration is the negative shifting magnitude

lns. A proper shifting magnitude is vital: overly large lns will generate outliers

that cannot regulate the OCSVM decision boundary, while overly small lns will

make outliers too close to target data, which may lead to overfitting decision

boundary. However, it is not easy to manually set a good shifting magnitude

for different target data. To automatically determine a proper lns, it is assumed

that a functioning pseudo outlier has a lns that is equal to the average distance

of k-nn data to this edge pattern. The assumption is intuitive: it ensures the

generated outlier to be no further than the furthest k-nn data of an edge pattern,

which avoids an overly distant outlier, while it also ensures that the generated

outlier to be no closer than some k-nn data of an edge pattern, which avoids

an overly close outlier, i.e. minj ‖x− xj‖ ≤ lns ≤ maxj ‖x− xj‖ (see Fig. 3a).

As we mentioned above, the k-nn of a single edge pattern is often noisy, so we

average the mean k-nn distance of all edge patterns as a more robust l̄ns:

l̄ns =
1

|Xedge|
∑

xi∈Xedge

1

k

k∑

j=1

‖xi − xij‖ (11)

Finally, we can generate a pseudo outliers set by negative shifting as follows:

Xoutlier = {x(i)
o |x(i)

o = xi +
ni
‖ni‖

· l̄ns,∀xi ∈ Xedge} (12)

Since both k-nn distance and ni have been calculated during EPD, the out-

lier generation calls for minimal computation. We visualize the generated out-

liers for banana dataset in Fig. 3b as an example. Compared with previous

outlier generation methods, the pseudo outlier data generated above enjoy the

advantages below: (1) As Fig. 3b shows, the generated pseudo outliers can

compactly surround the target data domain while keeping a moderate distance
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to target data, which soundly addresses the first difficulty discussed in Sec. 2.2:

generating good outliers at desirable locations. (2) Since each pseudo outlier is

yielded by negatively shifting the detected edge patterns, the number of gen-

erated pseudo outlier is always smaller or equal to the number of target data,

i.e. |Xoutlier| = |Xedge| ≤ |Xtarget|, which avoids the second difficulty to gener-

ate exponentially-growing pseudo outliers in the high-dimensional space. (3) A

prominent merit of the proposed negative shifting process is self-adaptiveness:

it requires no tuning of additional hyperparameters by users. Both the shifting

direction and magnitude are automatically derived from the target data without

human effort, and the number of generated pseudo outliers needs not to be spec-

ified as well. In addition, it is worth noting the generated outliers are only for

model validation purpose, i.e. they are not used as training data. Using those

outliers as negative training data will make the decision boundary shift towards

the outliers to cover redundant marginal space and accepts more outliers.

3.3. Pseudo Target Data Generation by Positive Shifting

Having obtained pseudo outliers to estimate the error on outlier class, we

also need to estimate the error on target class, so as to preserve generalization

performance and avoid an overfitting model like Fig. 1c. To estimate error on

target class, leave-one-out (LOO) or cross-validation (CV) are usually adopted,

which often leads to intolerable long hyperparameter selection time [6, 22]. The

problem is further exacerbated when dealing with a relatively large number of

training data. For example, since the training complexity of OCSVM is usually

O(N3) [5], applying a standard 10-fold CV to validating a certain hyperparame-

ter combination requires roughly a complexity of O(10× ( 9
10N)3) ≈ O(7.29N3).

However, if we can generate a separated pseudo target data set as the valida-

tion set, it only requires training OCSVM once with all given target data, i.e.

a complexity of O(N3), which can be much faster than usual CV. To illustrate

this, we compare the implementation time of 10-fold CV and the proposed SDS

method with a separated pseudo target set for validation when the number of

training data varies in Fig. 4. Besides, there is another problem with real-
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world datasets: the given training data are usually noisy, and such noise will

degrade the performance of model validation on target class. Therefore, we are

supposed to reduce the influence of target data noise during model validation.

Motivated by reasons above, we propose to generate a pseudo target data set

using a novel positive shifting mechanism, in order to achieve a more efficient

and robust model validation on target class.
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Figure 4: Implememtation time comparison on CV and the proposed SDS with varying number

of training data generated by banana distribution.

The idea to generalize existing training data into new ones is not new. For

example, Li et al. [26] viewed the points on the line passing any two data

from the same class (called ”feature line”) as new data of this class, and then

use them for model generalization. Juszczak et al. [27] improved the feature

lines into the edges of a minimal spanning tree. However, existing methods

have obvious flaws: they either generate pseudo data that lie outside the target

domain and sabotage the original data distribution, or require relatively large

additional computation. To overcome those flaws, we propose a highly efficient

and self-adaptive alternative based on the following idea: pseudo target data

can be generated by slightly shifting each given target data along the positive

direction of target data density gradient, ∇p(x), which is the direction that

target data density grows most rapaidly. Specifically, for given target data xi
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and their k-nn neighbors xij , j = 1, 2, · · · , k, the pseudo target data set X
′
target

is generated by:

X
′
target = {x(i)

t |x(i)
t = xi+

〈 ∇p(xi)
‖∇p(xi)‖

,xmin +
ij − xi

〉
· ∇p(xi)‖∇p(xi)‖

,∀xi ∈ Xtarget}
(13)

where 〈·〉 denotes inner product and xmin +
ij is defined by:

xmin +
ij = argmin

xij∈Λ+
i

{
〈 ∇p(xi)
‖∇p(xi)‖

,xij − xi

〉
} (14)

where Λ+
i is the set of k-nn data of xi that satisfy

〈
∇p(xi)
‖∇p(xi)‖ ,xij − xi

〉
> 0

(Λ−i can be defined as the opposite), and ∇p(xi) can be estimated by Eq. 10

as we discussed in last section. For an intuitive interpretation, we show the

process of positive shifting by Fig. 5a: the term
〈
∇p(xi)
‖∇p(xi)‖ ,xij − xi

〉
represents

the projection length of (xij − xi) on the direction of ∇p(xi). Eq. 13 actually

indicates that a new pseudo target datum is generated by the k-nn datum that

has the smallest positive projection distance to the original target datum (the

red point in Fig. 5a), which explains the name ”positive shifting”.

𝜦𝒊
+

Candidate data

Target data

Pseudo target data∇𝑝(𝐱)

k-nn data

Nearest k-nn data
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(b)

Figure 5: Positive shifting (left) and pseudo target data of banana (right).

We will explain why the generated pseudo target data have very high confi-

dence to be data from the target class: since the pseudo target data are gener-
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ated by shifting each given target datum along the direction ∇p(xi) by a small

distance (we will explain why the distance is small later), we have two good rea-

sons to believe that the generated data belong to the target class: Firstly, it is

on the direction that target data density rises most rapidly (∇p(xi)); Secondly,

if a given target datum is not noise, the generated datum will be guaranteed

to stay very closely to the original target datum. To prove this, suppose the

nearest k-nn data to xi in the set Λ+
i is denoted by xn+

ij (denoted by the orange

point in Fig. 5a, and xn−ij is similarly defined), the generated datum (red point)

will be strictly confined to the small region centered at xi with radius ‖xn+
ij −xi‖

(denoted by the orange dashed cirlce in Fig. 5a), which can be proved easily by

the definition of xmin +
ij in Eq. 14:

‖x(i)
t −xi‖ =

〈
xmin +
ij − xi,

∇p(xi)
‖∇p(xi)‖

〉
≤
〈
xn+
ij − xi,

∇p(xi)
‖∇p(xi)‖

〉
≤ ‖xn+

ij −xi‖
(15)

By Eq. 15, for edge patterns on convex surface of the target data (li = 1

in EPD, e.g. the edge pattern shown in Fig. 2a), we have ‖xn+
ij − xi‖ =

minj ‖xij − xi‖ because Λ+
i contains all k-nn data, which yields:

‖x(i)
t − xi‖ ≤ min

j
‖xij − xi‖ (16)

For edge patterns on non-convex surface and target data that are not edge

patterns (li < 1), since the vector ∇p(xi) points to the region with denser data,

‖xn+
ij − xi‖ ≤ ‖xn−ij − xi‖ is usually satisfied (though not always), Eq. 16 can

often be satisfied as well. Therefore, if xi is not noise, x
(i)
t stays very closely

to xi, i.e. often closer than the nearest neighbor of xi. In the meantime, by

definition of Λ+
i , we have:

‖x(i)
t − xi‖ =

〈
xmin +
ij − xi,

∇p(xi)
‖∇p(xi)‖

〉
> 0 (17)

Consequently, each x
(i)
t is definitely different from the given xi by Eq. 17,

but it is guaranteed to stay closely to the original xi by Eq. 16 (the distance
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in most cases is less than the distance to xi’s nearest neighbor). Thus, the

proposed pseudo target data generation method enjoys the following merits:

(1) Each pseudo target datum, if not noise, is generated through shifting the

original target datum off its original location by a provable small distance, so

the generated pseudo target data can perfectly preserve the data distribution

of the given target data (e.g. see the generated pseudo target data on banana

dataset in Fig. 5b). Thus, the generated pseudo target data can provide a

favorable estimation on the model error of target class to prevent overfitting.

(2) Like negative shifting, the proposed positive shifting can generate pseudo

target data in an efficient and self-adaptive manner. As Eq. 13 suggests, the

k-nn and data density gradient ∇p(x) can both be obtained during the EPD

process in Sec. 3.2.1, and little additional computation is needed. Meanwhile,

the positive shifting process leaves no hyperparameter for users to tune, which

is self-adaptive as well. (3) More importantly, the designed positive shifting

scheme can encourage robustness to noise in the given target data by generating

noise-free pseudo target data for model validation. To encourage a smooth and

tight boundary, noise should be encouraged to be excluded by OCSVM decision

boundary. The proposed positive shifting enables training data noise to generate

a normal pseudo target datum that is not noise by attracting it back to data-

dense region (see Fig. 6). In this way, an error of noise is no longer regarded as

an error on target class during model validation, which enhances the robustness

to noise. As an example, in Fig. 5b, the training data noise of banana dataset

(in blue triangle) generates a normal pseudo target datum (in red triangle) for

validation. This encourages OCSVM decision boundary not to be spoiled by

the noise like Fig. 1d.

Finally, the generated pseudo target data are only used for model validation

as well: they prevent OCSVM from selecting an overfitting decision boundary.

3.4. The Whole Algorithm

As we have generated pseudo outlier and target data for OCSVM model

validation, the hyperparameter ν and σ can be simply selected by the grid
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Figure 6: Positively shifting the noise back to target data domain.

search, which is still the most widely-used hyperparameter search method. The

whole algorithm of OCSVM hyperparameter selection based on adaptive data

shifting is summarized in Algorithm 2. It is worth noting that in Algorithm

2, the implementation of line 1, 2, 3 can actually be finished by running one

EPD process, because the information needed by line 2, 3 (k-nn, edge patterns,

normal vectors) has been calculated as intermediate results during EPD.

In terms of time complexity, the major computation of the proposed method

is incurred by EPD. A naive implementation of EPD needs to calculate the

distance matrix of the given target data (O(N2)) and find the k-nn data of each

target datum (O(N2 · logN)). Since generating pseudo outlier and target data

utilize the results that are already calculated by EPD, they require negligible

computation. Therefore, considering no speed-up technique with advanced data

structure like kd-tree, the overall complexity for a naive implementation of the

proposed method is O(N2 ·logN), which is favorably acceptable when compared

with the standard cross-validation (see Fig. 4).

4. Experiments

In this section, we report experimental results of the proposed self-adaptive

data shifting (SDS) based OCSVM hyperparameter selection. The implementa-
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Algorithm 2: OCSVM hyperparameter selection.

Input: Taregt dataset Xtarget, hyperparameter range νrange, σrange

Output: Optimal hyperparameter combination (νopt, σopt)

1 implement EPD in Algorithm 1;

2 generate pseudo outlier set Xoutlier by Eq. 12;

3 generate pseudo target set X
′
target by Eq. 13;

4 set Errbest =∞;

5 for each hyperparameter combination (ν, σ) from νrange, σrange do

6 train an OVSVM model M(ν, σ) with hyperparameter (ν, σ);

7 estimate the error rate on the outlier class Erro by Xoutlier;

8 estimate the error rate on the target class Errt by X
′
target;

9 calculate current overall error rate Err = 0.5 · Erro + 0.5 · Errt ;

10 if Errbest > Err then

11 (νopt, σopt) = (ν, σ);

12 return (νopt, σopt);

tion of OCSVM is from LibSVM toolbox3 [28], and the OCC framework is bor-

rowed from PRTools4 [29] and dd tools toolbox5 [30]. For grid search, hyperpa-

rameters σ and ν are selected from [10−4, 10−3, · · · , 104] and [0.01, 0.05, 0.1], re-

spectively. For comparison, we compare the proposed method with seven state-

of-the-art OCSVM hyperparameter selection methods: Hyper-cube [1] (HC),

Hyper-sphere [12] (HS), Consistency [13] (CS), Skewness [15] (SK), Min#SV+MaxL

[20] (MSML), MIES [21] and QMS+RDMMS [22] (QR). For HC and HS method,

an important hyperparameter—the number of generated pseudo outlier data No

should be appointed, which depends on dimension of feature space and is still

hard to be determined exactly as discussed in [12]. Since the number of pseudo

outlier data |Xoutlier| generated by the proposed SDS method is constantly less

3http://www.csie.ntu.edu.tw/ cjlin/libsvm/index.html
4http://prtools.org/prtools/
5http://prlab.tudelft.nl/david-tax/dd tools.html
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or equal to the number of given target data, i.e. |Xoutlier| ≤ |Xtarget|, we sim-

ply set No = |Xtarget| for HC and HS (which suggests they always generate

more or equal number of pseudo outliers to the proposed method) as a refer-

ence. By contrast, SK and the proposed SDS method avoid the trouble to set

hyperparameter No. Besides, the degree of skewness α is set to be 2 as the

experiments in [15]. The variance threshold of Consistency is set to be 2 and

5-fold cross-validation is adopted, which are the default settings in [13]. The

trade-off hyperparameter λ of MIES is set to 1 as the authors suggest. All

experiments are conducted in the MATLAB 2016a environment of a PC with

Intel i7 6700HQ processor and 8 GB RAM.

4.1. Results on Synthetic Datasets

We first test the proposed method on 6 synthetic 2-D datasets generated

by different priorly known distributions: banana, sine, ring, spiral, four gauss,

twin banana, in order to provide a convenient demonstration of the proposed

method. The yielded OCSVM decision boundary, generated pseudo outlier and

target data on 6 synthetic datasets by the proposed method are all visualized

in Fig. 7.

As shown in Fig. 7, by virtue of the proposed hyperparameter selection

method, OCSVM can obtain both smooth and accurate decision boundary to

flexibly describe target data with various challenging distributions. Although

only a relatively small number of pseudo outliers (in green) are generated, we

can observe that by negative shifting they are scattered self-adaptively and

compactly around the target data domain to regulate the decision boundary

of OCSVM. In the meantime, the generated pseudo target data (in red) have

perfectly preserved the distributions of the original given target data (in blue) by

positive shifting (even though the origin data distributions can be complicated,

such as Fig. 7b and 7d), which effectively prevents OCSVM from selecting the

overfitting model with many ”holes” inside the decision boundary. In particular,

as we have discussed in Sec. 3.3, we can discover that obvious noises in the

given target data are ”positively” shifted back to the target data domain when
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Figure 7: Experiments on synthetic 2-D datasets.
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generating pseudo target data for validation, and the resulting OCSVM decision

boundary can soundly exclude such noise (see Fig. 7a, 7e and 7f). In the

meantime, our qualitative and quantitative comparison show that the proposed

SDS method is able to yield equivalent or fairly close results to the approximated

optimal solutions (yielded by a very fine-grained HC method) on all of the

synthetic 2-D datasets, which is reported in the supplementary material.

In addition, we also compare the proposed method with 7 state-of-the-art

OCSVM hyperparameter methods on 6 synthetic datasets both qualitatively

and quantitatively (more detailed results and discussion are presented in the

supplementary material due to the limit of article length). By the compari-

son, we draw several conclusions: (1) Heuristics based methods (MSML, MIES,

QR) typically perform worse than pseudo outlier generation based methods

(SDS, HC, HS, SK) on synthetic 2-D datasets with relatively complex distri-

butions, as the prior observations of heuristics based methods are often not

satisfied when dealing with complex data distributions. (2) On those synthetic

2-D datasets, classic pseudo outlier generation methods (HC and HS) can yield

equivalently good or marginally worse results to the proposed SDS, because

generating enough random pseudo outliers to fill in the entire data space is still

easy for the 2-D situation. (3) Although SK method does not need to specify

number of generated outlier data as HC and HS, its performance is unstable

(SK yields very poor results on banana and spiral dataset). (4) CS method

performs well with datasets with simple distributions, but it is sensitive to noise

and cannot deal with datasets with complex distributions like sine and spiral.

4.2. Results on Benchmark Datasets

To further compare the proposed method with other OCSVM hyperparame-

ter selection methods, we conduct experiments on 18 benchmark datasets down-

loaded from the popular UCI Machine Learning Repository1 and LIBSVM Data

1http://archive.ics.uci.edu/ml/datasets.html
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Table 1: Details of Benchmark datasets.

Dataset Feature dim. # of data Dataset Feature dim. # of data

Adult 122 6414 Abalone 8 4177

Australian 14 690 Balance 4 625

Diabetes 8 768 Glass 9 214

Heart 13 303 Landsat 36 2000

Letter 16 5000 Msplice 240 3175

Segment 18 2310 Sonar 60 208

SVMguide1 4 3089 Vehicle 18 846

Vote 16 435 Vowel 10 528

Waveform3 21 5000 Winequality 11 1599

webpage2 (the dataset details are summarized in Tab. 1). Since the benchmark

datasets are usually designed for classification, we follow the experimental setup

of [21, 17] to test the OCSVM performance with hyperparameters selected by

different methods: The values of features are normalized into the interval [−1, 1].

For each benchmark dataset, the data from the former half of classes are used

as data of target class first, while data from the latter half of classes are viewed

as data of outlier class. Data of the target class are randomly partitioned into

a training target set and a testing target set. OCSVM is trained using the

training target set only, and the testing target set is combined with the data

from outlier class as the final testing set for OCC performance evaluation. The

random partition is repeated for 10 times to yield the mean OCC performance.

Then, the target class and the outlier class are switched and repeat the above

procedure to obtain the OCC performance on data from the latter half of classes.

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Finally, we average the OCC performance on two halves of classes as the final

OCC performance of this benchmark dataset. As to the evaluation metrics, we

adopt the widely-used f1-score and Matthews Correlation Coefficient (MCC)

[17]. For a rigorous comparison, we perform paired Student’s t-test to compare

the results yielded by the proposed method and other methods. A p-value less

than 0.05 is considered statistically significant. Those results whose differences

from the highest value are not statistically significant are shown in bold for each

dataset. The average hyperparemeter values selected by different methods on

each dataset in Tab. 2, and the results on benchmark datasets are reported in

Tab. 3 (”NaN” in the table means ”Not a number”, which suggests that the

trained OCSVM trivially classifies all testing data as outliers).

Table 2: Average hyperparameter values selected on benchmark datasets.

Dataset SDS HC HS CS SK MSML MIES QR

Adult
ν

σ

0.088

.0001

0.010

.0001

0.010

.0001

0.063

.0001

0.100

91.00

0.010

0.235

0.010

0.235

0.797

0.010

Abalone
ν

σ

0.100

32.50

0.021

0.595

0.010

0.550

0.058

0.470

0.045

9.100

0.016

100.0

0.042

0.026

0.005

0.087

Australian
ν

σ

0.100

0.065

0.091

0.090

0.012

.0001

0.088

.0001

0.012

.0001

0.022

1.000

0.090

0.031

0.031

0.100

Balance
ν

σ

0.095

1.000

0.019

0.100

0.021

0.100

0.098

.0001

0.017

0.050

0.009

10.00

0.086

0.072

0.190

0.100

Diabetes
ν

σ

0.091

1.000

0.028

0.160

0.026

0.115

0.073

.0001

0.019

1.550

0.021

10.00

0.028

0.075

0.018

0.100

Glass
ν

σ

0.098

0.805

0.030

0.110

0.015

.0001

0.010

.0001

0.100

.0001

0.017

5.950

0.045

0.053

0.147

0.100

Heart
ν

σ

0.100

.0001

0.010

.0001

0.010

.0001

0.010

.0001

0.100

.0001

0.013

1.000

0.077

0.035

0.182

0.100

Continued on next page
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Table 2 – continued from previous page

Dataset SDS HC HS CS SK MSML MIES QR

Landsat
ν

σ

0.098

1.000

0.010

0.100

0.010

0.005

0.085

0.081

0.068

25.00

0.023

10.00

0.059

0.014

0.006

0.010

Letter
ν

σ

0.048

1.000

0.010

0.100

0.010

0.100

0.042

0.050

0.048

256.5

0.017

10.00

0.010

0.050

0.052

0.100

Msplice
ν

σ

0.059

.0006

0.032

0.910

0.010

.0001

0.100

.0001

0.071

230.0

0.014

0.006

0.039

0.002

0.984

0.001

Segment
ν

σ

0.034

1.000

0.010

0.100

0.010

0.050

0.055

0.005

0.010

10.00

0.012

10.00

0.051

0.017

0.006

0.100

Sonar
ν

σ

0.100

.0001

0.033

.0001

0.010

.0001

0.100

.0001

0.010

.0001

0.026

0.145

0.051

0.013

0.074

0.010

SVMguide1
ν

σ

0.072

10.00

0.053

0.750

0.025

0.650

0.060

0.150

0.027

7.000

0.016

100.0

0.096

0.011

0.003

0.100

Vehicle
ν

σ

0.095

1.000

0.012

0.100

0.010

0.016

0.055

.0006

0.046

1.505

0.017

9.100

0.024

0.024

0.016

0.051

Vote
ν

σ

0.088

0.070

0.082

0.080

0.010

.0001

0.098

.0001

0.014

1.500

0.017

1.000

0.035

0.025

0.111

0.100

Vowel
ν

σ

0.098

1.000

0.012

0.010

0.012

0.010

0.098

.0001

0.017

0.050

0.011

8.200

0.061

0.062

0.067

0.100

Waveform3
ν

σ

0.100

0.500

0.010

0.046

0.012

0.100

0.050

0.046

0.058

0.006

0.006

10.00

0.054

0.052

0.003

0.100

Winequality
ν

σ

0.058

1.000

0.051

0.095

0.026

0.085

0.058

0.010

0.019

572.0

0.018

10.00

0.014

0.061

0.009

0.100

As Tab. 3 shows, the proposed SDS based method is able to select proper

hyperparameters to yield superior or favorably comparable OCC performance to

other state-of-the-art hyperparameter selection methods on benchmark datasets.

Compared with existing pseudo outlier generation based methods (HC, HS and
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SK), the proposed SDS based method almost constantly outperforms them. In

the meantime, it can be seen that hyperparameter selection based on random

outliers generated by HC, HS and SK sometimes lead to a trivial solution that

simply classifies all testing data into outliers, and their performance is usually

poorer than the implicit outlier generation based CS method. As to heuristics

based methods, MIES and QR can perform relatively satisfactorily on most

datasets, but sometimes their performance can significantly deteriorate since

their underlying assumptions on the target data may not hold in such cases.

However, MSML yields relatively bad performance and often leads to trivial

solution when compared with other methods. To sum up, the proposed method

enables OCSVM to achieve fairly good OCC performance on various benchmark

datasets, which makes it a promising OCSVM hyperparameter selection method

in practical applications.

Table 3: Average f1-score and MCC on benchmark datasets (p-value in the bracket). Boldface

means no statistical difference from the best value (p ≥ 0.05).

Dataset SDS HC HS CS SK MSML MIES QR

Adult f1
0.537

(1.00)

0.515

(0.00)

0.515

(0.00)

0.529

(0.02)

0.061

(0.00)

0.389

(0.01)

0.523

(0.00)

0.066

(0.00)

MCC
0.179

(1.00)

0.092

(0.00)

0.092

(0.00)

0.162

(0.07)

0.034

(0.00)

0.177

(0.81)

0.121

(0.00)

0.057

(0.00)

Abalone f1
0.402

(0.00)

0.511

(0.22)

0.510

(0.00)

0.504

(0.00)

0.497

(0.01)

0.296

(0.00)

0.498

(0.00)

0.512

(1.00)

MCC
0.171

(1.00)

0.114

(0.00)

0.113

(0.00)

0.128

(0.00)

0.151

(0.00)

0.135

(0.00)

0.084

(0.00)

0.089

(0.00)

Australian f1
0.592

(1.00)

0.588

(0.54)

0.527

(0.00)

0.574

(0.03)

0.527

(0.01)

0.356

(0.00)

0.576

(0.01)

0.570

(0.01)

MCC
0.335

(1.00)

0.331

(0.70)

0.198

(0.01)

0.292

(0.06)

0.198

(0.01)

0.299

(0.04)

0.302

(0.02)

0.293

(0.03)

Continued on next page
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Table 3 – continued from previous page

Dataset SDS HC HS CS SK MSML MIES QR

Balance f1
0.808

(1.00)

0.471

(0.00)

0.471

(0.00)

0.592

(0.00)

0.456

(0.00)

NaN

(-)

0.614

(0.00)

0.513

(0.00)

MCC
0.739

(1.00)

0.329

(0.00)

0.329

(0.00)

0.332

(0.00)

0.293

(0.00)

NaN

(-)

0.378

(0.00)

0.322

(0.00)

Diabetes f1
0.508

(1.00)

0.422

(0.04)

0.421

(0.04)

0.499

(0.03)

0.348

(0.03)

NaN

(-)

0.499

(0.10)

0.501

(0.13)

MCC
0.168

(1.00)

0.096

(0.00)

0.082

(0.00)

0.062

(0.00)

0.094

(0.00)

NaN

(-)

0.054

(0.00)

0.061

(0.00)

Glass f1
0.577

(0.10)

NaN

(-)

NaN

(-)

0.520

(0.00)

NaN

(-)

0.346

(0.00)

0.598

(0.01)

0.634

(1.00)

MCC
0.495

(1.00)

NaN

(-)

NaN

(-)

0.300

(0.00)

NaN

(-)

0.351

(0.01)

0.410

(0.12)

0.477

(0.72)

Heart f1
0.567

(0.34)

0.376

(0.00)

0.376

(0.00)

0.568

(1.00)

0.376

(0.00)

0.138

(0.00)

0.565

(0.52)

0.559

(0.61)

MCC
0.282

(0.02)

0.305

(0.24)

0.305

(0.24)

0.286

(0.03)

0.305

(0.24)

0.206

(0.00)

0.278

(0.00)

0.336

(1.00)

Landsat f1
0.711

(0.74)

0.665

0.00

0.645

(0.00)

0.713

(1.00)

0.695

(0.04)

NaN

(-)

0.658

(0.00)

0.636

(0.00)

MCC
0.611

(1.00)

0.471

(0.00)

0.457

(0.00)

0.547

(0.00)

0.523

(0.00)

NaN

(-)

0.467

(0.00)

0.442

(0.00)

Letter f1
0.601

(1.00)

0.519

(0.00)

0.519

(0.00)

0.515

(0.00)

0.068

(0.00)

0.058

(0.00)

0.514

(0.00)

0.494

(0.00)

MCC
0.349

(1.00)

0.145

(0.00)

0.145

(0.00)

0.123

(0.00)

0.079

(0.00)

0.140

(0.00)

0.120

(0.00)

0.138

(0.00)

Msplice f1
0.609

(0.00)

0.072

(0.00)

0.693

(1.00)

0.580

(0.00)

0.287

(0.00)

0.266

(0.00)

0.524

(0.00)

0.027

(0.00)

Continued on next page
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Table 3 – continued from previous page

Dataset SDS HC HS CS SK MSML MIES QR

MCC
0.385

(1.00)

0.150

(0.00)

0.366

(0.11)

0.381

(0.85)

0.087

(0.00)

0.151

(0.00)

0.371

(0.01)

0.083

(0.00)

Segment f1
0.769

(1.00)

0.589

(0.00)

0.588

(0.00)

0.576

(0.00)

0.431

(0.00)

0.436

(0.00)

0.581

(0.00)

0.589

(0.00)

MCC
0.644

(1.00)

0.348

(0.00)

0.346

(0.00)

0.309

(0.00)

0.441

(0.00)

0.444

(0.00)

0.325

(0.00)

0.348

(0.00)

Sonar f1
0.506

(1.00)

0.422

(0.01)

0.407

(0.00)

0.506

(1.00)

0.407

(0.00)

0.394

(0.00)

0.505

(0.89)

0.498

(0.29)

MCC
0.141

(0.00)

0.095

(0.00)

0.067

(0.00)

0.141

(0.00)

0.067

(0.00)

0.232

(1.00)

0.151

(0.00)

0.142

(0.01)

SVMguide1 f1
0.838

(1.00)

0.720

(0.00)

0.662

(0.00)

0.727

(0.00)

0.741

(0.01)

0.217

(0.00)

0.755

(0.00)

0.610

(0.00)

MCC
0.764

(1.00)

0.568

(0.00)

0.460

(0.00)

0.590

(0.00)

0.634

(0.01)

0.277

(0.00)

0.622

(0.00)

0.345

(0.00)

Vehicle f1
0.651

(1.00)

0.564

(0.00)

0.501

(0.00)

0.497

(0.00)

0.442

(0.00)

NaN

(-)

0.505

(0.00)

0.523

(0.00)

MCC
0.542

(1.00)

0.276

(0.00)

0.055

(0.00)

0.032

(0.00)

0.033

(0.00)

NaN

(-)

0.078

(0.00)

0.129

(0.00)

Vote f1
0.733

(1.00)

0.696

(0.21)

0.512

(0.00)

0.690

(0.01)

0.430

(0.00)

0.362

(0.00)

0.678

(0.01)

0.676

(0.17)

MCC
0.540

(1.00)

0.523

(0.63)

0.323

(0.01)

0.476

(0.02)

0.281

(0.00)

0.398

(0.00)

0.463

(0.02)

0.536

(0.78)

Vowel f1
0.648

(0.24)

0.340

(0.00)

0.340

(0.00)

0.617

(0.00)

0.338

(0.00)

0.169

(0.00)

0.661

(1.00)

0.648

(0.70)

MCC
0.552

(1.00)

0.209

(0.00)

0.209

(0.00)

0.380

(0.00)

0.210

(0.00)

0.207

(0.00)

0.460

(0.00)

0.469

(0.04)

Continued on next page
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Table 3 – continued from previous page

Dataset SDS HC HS CS SK MSML MIES QR

Waveform3 f1
0.674

(1.00)

0.615

(0.00)

0.632

(0.00)

0.639

(0.00)

0.627

(0.00)

NaN

(-)

0.637

(0.00)

0.629

(0.00)

MCC
0.455

(1.00)

0.269

(0.00)

0.291

(0.00)

0.327

(0.00)

0.329

(0.00)

NaN

(-)

0.326

(0.00)

0.276

(0.00)

Winequality f1
0.519

(1.00)

0.500

(0.00)

0.500

(0.00)

0.497

(0.00)

0.226

(0.00)

0.241

(0.00)

0.501

(0.00)

0.501

(0.00)

MCC
0.154

(0.07)

0.053

(0.00)

0.046

(0.00)

0.044

(0.00)

0.182

(1.00)

0.181

(0.88)

0.037

(0.00)

0.039

(0.00)

4.3. Results on MNIST Handwritten Digit Dataset

In addition to the benchmark datasets, we also compare the proposed method

with its counterparts on another commonly-used dataset in OCC performance

evaluation: MNIST handwritten digit dataset. MNIST dataset provides a la-

belled training set with 60000 hand-written digit images (digit 0 − 9) with a

resolution of 28 × 28 pixels, as well as a separated labelled testing set with

10000 images. For feature extraction, we calculate a 512-D Gist feature [31] to

describe each image. For each time, images of one digit from 0− 9 in the train-

ing set are used as the target class to train one OCSVM. For OCC performance

evaluation, the trained OCSVM is used to discriminate this digit from other dig-

its (outliers) in the separated testing set. To further validate the effectiveness of

the proposed method, we also compare the proposed method with the standard

cross-validation (CV) and a ”cheating” method (OPT) by directly using the

data from the test set for model validation (the performance of which is there-

fore the optimal performance that OCSVM can obtain). In our experiments,

SK and MSML perform poorly on MNIST dataset and almost constantly yield

trivial solutions (f1 and MCC are both ”NaN”), so we omit the comparison

with them in this table. The results are summarized in Tab. 4 below:
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Table 4: f1-score and MCC on MNIST datasets. Boldface denotes the best results expect

OPT.

Digit SDS HC HS CS MIES QR CV OPT

Digit 0 f1 0.765 0.313 0.313 0.492 0.441 0.309 0.389 0.765

MCC 0.771 0.304 0.304 0.495 0.437 0.305 0.382 0.771

Digit 1 f1 0.938 0.580 0.580 0.836 0.627 0.273 0.720 0.938

MCC 0.933 0.565 0.565 0.820 0.611 0.230 0.694 0.933

Digit 2 f1 0.601 0.344 0.344 0.483 0.360 0.330 0.424 0.601

MCC 0.635 0.331 0.331 0.479 0.349 0.322 0.411 0.635

Digit 3 f1 0.723 0.385 0.385 0.547 0.524 0.403 0.482 0.723

MCC 0.735 0.381 0.381 0.545 0.512 0.408 0.471 0.735

Digit 4 f1 0.564 0.431 0.431 0.564 0.470 0.391 0.519 0.726

MCC 0.558 0.429 0.429 0.558 0.468 0.400 0.507 0.730

Digit 5 f1 0.465 0.341 0.341 0.465 0.375 0.324 0.437 0.677

MCC 0.474 0.348 0.348 0.474 0.385 0.336 0.440 0.699

Digit 6 f1 0.762 0.644 0.644 0.835 0.818 0.646 0.784 0.890

MCC 0.769 0.637 0.637 0.821 0.800 0.645 0.765 0.879

Digit 7 f1 0.757 0.482 0.482 0.573 0.507 0.440 0.552 0.757

MCC 0.747 0.474 0.474 0.562 0.498 0.444 0.532 0.747

Digit 8 f1 0.380 0.296 0.296 0.380 0.373 0.295 0.350 0.719

MCC 0.378 0.280 0.280 0.378 0.365 0.285 0.339 0.731

Digit 9 f1 0.829 0.458 0.458 0.576 0.474 0.236 0.546 0.829

MCC 0.825 0.456 0.456 0.571 0.471 0.191 0.534 0.825

As can be seen in Tab. 4, the proposed SDS based method yields the best

OCC performance for 9 out of 10 digits. Specifically, the proposed method

evidently outperforms CV method and obtains optimal results for 6 out of 10

digits (digit 0, 1, 2, 3, 7, 9). For other digits that the optimal results are not

reached, our method yields the best sub-optimal results among the compared
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hyperparameter selection methods for 3 digits (digit 4, 5, 8). The implicit outlier

generation based method CS obtains equally or slightly worse results than the

proposed method. Two classic explicit outlier generation methods HC and HS

yield evidently worse OCC performance than the proposed SDS method on each

digit. Interestingly, we notice that HC and HS obtain exactly the same results

on each digit, which suggest that in fact the random outliers generated by them

do not make a difference in a relatively high-dimensional feature space (512-D).

When it comes to heuristics based methods, MIES and QR yield comparable or

only marginally better OCC performance than random outlier based methods.

Consequently, the proposed SDS based method is again proved as an effective

method for OCSVM hyperparameter selection.

5. Conclusions

This paper proposes a data shifting based method to automatically select

proper hyperparameters of OCSVM, which are vital for OCSVM performance.

By self-adaptive negative shifting and positive shifting mechanism, the pro-

posed method can efficiently generate high-quality pseudo outlier and target

data to estimate the error on outlier class and target class respectively, with-

out introducing any new hyperparameters to be tuned by users. It also soundly

avoids two major difficulties, determining the number and locations of generated

pseudo outlier data, in previous outlier generation based hyperparameter selec-

tion methods. Experiments on various synthetic and benchmark datasets verify

the effectiveness of the proposed method in comparison with 7 state-of-the-art

OCSVM hyperparameter selection methods.

Our future research directions include: (1) Exploring better searching strat-

egy like Bayesian Optimization in the hyperparameter space. (2) Since the

proposed method can generate new data by self-adaptive data shifting, we will

explore its application to imbalanced classification by generating more data for

minority classes with insufficient training data.
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