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ABSTRACT 

Sulfide melt inclusions entrapped in primitive olivine phenocrysts can be used to understand 

the compositions of early sulfide melts that may ultimately contribute to magmatic sulfide ore 

deposits. Sulfide globules hosted in olivine (86-92 mol% Fo) from the Tolbachik basalt (the 1941 

eruption) are characterized in terms of their major and trace element abundances using electron 

microscopy and LA-ICP-MS analysis. Distribution of major elements within individual sulfide 

globules varies from homogeneous to heterogeneous. Phases include monosulfide solid solution 

(MSS) and intermediate solid solution (ISS) intergrowths and exsolved low-temperature minerals 

such as pyrrhotite, pentlandite, chalcopyrite and cubanite. Trace elements (platinum-group elements 

- PGE, Ag, Te, Au, Pb and Bi) are also present in solid solution in sulfide phases and as micron-

sized particles (“nuggets”). Such nuggets of dominantly Au, Pt, Au-Pd and Pd-Te are contained 

randomly within sulfide matrices or, more commonly, at phase boundaries. Nuggets are also 

attached to outer surfaces of sulfide globules. Concentrations of PGE in sulfides follow a log 

normal distribution over four orders of magnitude. The highest measured noble metal 
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concentrations in the analyzed globules (436 ppm Au + PGE) are 133 ppm Au, 115 ppm Pt and 299 

ppm Pd, whereas 40% of globules have < 15 ppm of noble metals. Gold and PGE concentrations 

correlate, suggesting these elements were concentrated by the same process(es). We propose that a 

number of anomalous concentrations of one or several noble metals in the analyzed globules can be 

best explained by entrapment of Au-PGE-rich particles (solid or liquid) from the silicate melt. 

Although the individual Tolbachik sulfide globules have variable PGE abundances, their mean 

composition resembles those of major PGE-sulfide ore deposits (e.g., Norilsk, Sudbury, Platreef 

and Merensky Reef). 

 

1. Introduction 

A remarkable feature of magmatic sulfide ores is their high concentrations of platinum-group 

elements (PGE) and gold, which may exceed corresponding concentrations of these elements in 

parental silicate liquids by 3-5 orders of magnitude (Barnes and Ripley, 2016; Campbell and 

Barnes, 1984; Naldrett, 2004). Accumulation of PGE-Au in sulfide melts derived by liquid 

immiscibility relies on efficient diffusive transport of metals from cogenetic silicate melts (Barnes 

and Ripley, 2016; Mungall, 2002; Zhang, 2015), and is the end result of complex interactions of a 

number of processes. As diffusion of metals in silicate melt is relatively slow, even at magmatic 

temperatures (Zhang et al., 2010 and references therein), and with PGE-Au abundances at sub-ppb 

to ppb levels (e.g., Bezos et al., 2005; Meisel and Moser, 2004; Naldrett, 2004), noble metal 

enrichment of magmatic sulfide liquids requires sufficiently long interaction of the latter with large 

volumes of silicate melt, even with extremely high sulfide/silicate partition coefficients. 

Nevertheless, the modern theories of sulfide ore deposit formation consider diffusion as the main 

process responsible for concentration of trace elements (Au-PGE) in sulfide liquid (e.g., Campbell 

and Barnes, 1984; Naldrett, 2004). Concentrations of PGE in sulfide melt can be further upgraded 

by direct entrapment of micron- and submicron-sized PGE-containing particles (which include pure 

metals, PGE alloys, sulfides, bismuthinides, etc.) that may be present in primitive magmas prior to 
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and during sulfide segregation. Although the existence of such nano- and micro-particles of PGE 

minerals (PGM) in silicate melts has been directly confirmed (Kamenetsky et al., 2015; Park et al., 

2012) and suggested in a number of works (e.g., Andrews and Brenan, 2002; Anenburg and 

Mavrogenes, 2016; Tredoux et al., 1995), collection of such particles by growing sulfide droplets is 

yet to be recognized.  

Massive or disseminated magmatic sulfide ores cannot provide reliable evidence for physical 

incorporation of early particles of PGE from the silicate melt into magmatic sulfides due to their 

high solubility in sulfide liquids (e.g., Fonseca et al., 2009; Pruseth and Palme, 2004). Also, 

magmatic and post-magmatic processes erase original compositions of incipient sulfide droplets. 

Such processes include coalescence of sulfide droplets at the base of magma chambers (averaging 

compositions), recrystallization of deposited sulfides, entrainment of sulfide melts by new batches 

of magma and alteration caused by syn- and post-magmatic fluids. On the other hand, sulfide 

droplets entrapped and quenched in early magmatic minerals (e.g., olivine and Cr-spinel) represent 

the least modified compositions of immiscible sulfide melts. Importantly, these globules contain 

numerous noble-metal nuggets, which crystallized from the sulfide melt upon cooling, but also 

could have been trapped from magma by sulfide droplets (e.g., Holwell et al., 2015; Holwell et al., 

2011; Kamenetsky et al., 2013; Kamenetsky et al., 2015). 

In this study, droplets of sulfide melt (sulfide globules) sealed in primitive olivine phenocrysts 

from island arc magma (high-Mg basalts produced by the 1941 eruption of Tolbachik volcano) 

reveal high concentrations of noble metals. We report the occurrence and overall abundances of 

noble metals and their alloys and minerals in immiscible sulfide melt. We also show that the high 

PGE content of sulfides could be acquired, at least partially, by direct capture of PGE-rich phases 

by growing sulfide droplets from the silicate magma. 

2. Tolbachik volcano 

The Tolbachik Volcanic Complex in the central part of the Central Kamchatka Depression is 

the southernmost of the Klyuchevskoy Group of volcanoes, which are located at the north 
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termination of the Kuril-Kamchatka arc in in the northwest Pacific. Two major volcanoes, Ostry 

Tolbachik and Plosky Tolbachik, form a single massif with a highest point at 3680 meters a.s.l. 

(55.8319 °N, 160.3272 °E). Two linear chains (“rift” zones) of more than 170 monogenetic cones 

extend NE and SSW from Plosky Tolbachik (Fig. 1). All recent activity was confined to the 

terminal caldera of Plosky Tolbachik and SSW “rift” zone, where three historic eruptions occurred 

with a total volume of ~2.2 km3 of basalt (dense rock equivalent; Zelenski et al., 2016). The 

magmatic system of the Tolbachik volcano was reviewed by Belousov et al. (2015). Chemical 

compositions and petrographic features of Tolbachik rocks can be found in several publications 

(e.g., Churikova et al., 2015a; Churikova et al., 2015b; Flerov et al., 1984; Portnyagin et al., 2007; 

Portnyagin et al., 2015). 

The rocks of Tolbachik belong either to medium- or high-K series, both with a relatively 

narrow interval of SiO2 contents from basalts to basaltic trachyandesites (Fig. 2a). Both series have 

bimodal MgO distributions that range from 3 to 5.5 wt.% MgO and from 8 to 11.5 wt.% MgO (Fig. 

2b). The bimodal MgO content of Tolbachik rocks was attributed to extreme fractional 

crystallization (Flerov et al., 1984) or the product of two different mantle sources (Churikova et al., 

2015b; Dosseto et al., 2003; Nikulin et al., 2012). The existence of the high-K series was attributed 

to mantle upwelling due to intra-arc rifting (Churikova et al., 2015b). Alternatively, the 

compositions of the Tolbachik volcanic series with an anomalously broad range (5–8-fold) of 

concentrations of incompatible elements (K, Rb, Nb, Ba) at a given MgO content fits a Recharge-

Evacuation-Fractional Crystallization model (Portnyagin et al., 2015). The low values of 87Sr/86Sr 

(0.70334 – 0.70339; Churikova et al., 2015b; Dosseto et al., 2003; Portnyagin et al., 2015) indicate 

negligible assimilation of silicic crustal material. 

3. Samples and Methods 

Samples for this study were collected from the 1941 eruptive cone (summit at 55.7949° N, 

160.3321° E, 2104 meters a.s.l.), 3.5 km SW of the edge of the summit caldera of Plosky Tolbachik 

(Supplementary Fig. 1, 2; Supplementary Table S1). Three samples of scoria ~ 10 kg each, and four 
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bulk samples of volcanic bombs and lava, ~ 15 kg each were crushed for bulk analysis and mineral 

separation. Major and trace element contents in rock samples were analyzed by XRF and ICP-MS 

in the Geoscience Laboratories, Sudbury, Ontario. Gold and PGE contents in rock samples were 

analyzed using NiS fire assay pre-concentration and the tellurium co-precipitation technique 

followed by ICP-MS (Geoscience Laboratories, Sudbury, Ontario). 

Samples of lava and scoria were crushed, sieved and the olivine fraction was separated by 

heavy liquid with a specific gravity of 3.0 (bromoform + methylene iodide). Olivine crystals with 

sulfide globules were picked from a Petri dish under immersion liquid and examined under 

binocular microscope. In order to determine unbiased compositions of sulfide melts and exclude 

random variability caused by later crystallization of distinct phases, ~ 60 olivines containing sulfide 

globules were reheated to 1200 °C and quenched in water. Crystals containing globules (typically ≥ 

50 μm) were mounted in epoxy resin and polished to expose included sulfide. Each crystal was 

placed in a separate 6 mm epoxy mount and ground to expose sulfide globules at a middle-plane 

level. Individual mounts were then placed into 1-inch standard mounts. Such technique allows 

studying representative globules at their mid-plane exposed areas.  

Several dozen sulfide globules were extracted intact by complete dissolution of host olivine 

crystals in 48% hydrofluoric acid at ~60 °C. After extraction, whole sulfide globules were mounted 

on carbon film and studied by electron microscope similar to polished globules.  

 

3.1. In-situ Energy-Dispersive Spectroscopy 

Exposed surfaces of sulfides globules were photographed in reflected light and studied under 

electron microscope with Energy-Dispersive Spectrometer (Vega Tescan II XMU, Institute of 

Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Russia; Hitachi SU-70, 

Central Science Laboratory, University of Tasmania, Hobart). Analyses were performed using 

either a rastered beam over the whole exposed surface to obtain the bulk composition of each 

globule (Table 2, Supplementary Tables S4a-c), or with a focused beam to analyze individual 
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phases. Volume concentrations of major elements were also measured in19 globules by LA-ICP-

MS analysis. Considering the fine-grained texture of the majority of globules, the rastered beam 

provided values close to the bulk (volume) composition even for visually heterogeneous, 

multiphase globules, where surface (EDS) and volume (LA-ICP-MS) estimates of the composition 

returned similar results (Supplementary Fig. S3). The following analytical conditions were applied 

during EDS analysis: accelerating voltage 15 or 20 kV, probe current 300-400 pA, spot size 100–

200 nm. Standards used for EDS measurements in Chernogolovka are listed in Supplementary 

Table S2. Standardless EDS analysis was done in Hobart. To increase accuracy and precision of 

EDS measurements and to decrease detection limits, long counting times, up to 600 s excluding 

dead time were used for some critical measurements, which provided detection limits for most of 

elements and precision of measurements of around 0.05 wt.% (2σ or confidence level 95%). 

3.2. LA-ICP-MS analysis 

LA-ICP-MS analyses were performed at CODES Analytical Laboratories, University of 

Tasmania. The instrumentation involved an ASI RESOLution-LR-S155 laser microprobe equipped 

with a Coherent Compex-Pro 193 nm Ar-F excimer laser, coupled to an Agilent 7700s quadrupole 

ICP-MS. A laser beam size of 50 micron was used with a pulse rate of 5 Hz and a fluence of 2.7 

J/cm2. Ablation was performed in a He atmosphere flowing at 0.35 L/min. The ablated aerosol was 

mixed with Ar (1.05 L/min) as a transport gas, before exiting the cell. Tuning was performed to 

minimize oxides (<0.15 % ThO/Th) and maximize sensitivity for the mid and high mass isotopes.  

The following isotopes measured were: 34S, 57Fe, 59Co, 60Ni, 65Cu, 66Zn, 99Ru, 101Ru, 103Rh, 

105Pd, 106Pd, 107Ag, 111Cd, 125Te, 185Re, 189Os, 193Ir, 195Pt, 197Au, 206Pb and 209Bi. Arsenic was not 

among analyzed elements because a preliminary study of the sulfide globules by EDS showed no 

presence of this element. Dwell time was 5 ms for S, Fe, Pb and Bi, 10 ms for Ag and 20 ms for all 

other elements, resulting in a total sweep time of 0.346 sec. Total acquisition time for each analysis 

was 90 seconds, consisting of 30 seconds gas background and 60 seconds ablated signal.  
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Quantification was performed following the standard methods (Košler, 2001; Longerich et al., 

1996). Calibration involved STDGL2b2 (Danyushevsky et al., 2011), NIS3 (Gilbert et al., 2013) 

and Po724-T (Sylvester et al., 2005) reference materials, and Fe as the internal standard element. 

Instrumental drift was corrected by hourly analyses of references materials across the analytical 

session. Due to the unknown bulk composition of the sulfide inclusions, quantification involved 

normalization to 100 wt.% total. 

Corrections for base metal-argide interferences are required for the quantification of Ru, Rh 

and Pd by LA-ICP-MS techniques (Guillong et al., 2011; Sylvester, 2001). The analysis of 

magmatic sulfides has the potential to form 61Ni40Ar interferences on 101Ru, 59Co40Ar on 99Ru, 

63Cu40Ar on 103Rh, 65Cu40Ar on 105Pd, and 66Zn40Ar on 106Pd. For the quantification of Ru, Rh and 

Pd, the extent of base metal-argide production was determined by ablating pure Ni, Cu, Zn and Co 

metals and a correction factor applied to the results. All 106Pd results were corrected for isobaric 

interference from 106Cd, which was monitored by recording the signal on 111Cd. 

4. Results 

4.1. Rocks of the 1941 Tolbachik eruption 

The 1941 lavas and scoria are high-K magnesian basalts with 50.5-51.0 wt.% SiO2, 8.9 wt.% 

MgO, 1.35 wt.% K2O and Mg# 62–64 (Table 1, Supplementary Table S3). According to Portnyagin 

et al. (2015), the 1941 Tolbachik basalt has hybrid compositions resulting from mixing between 

high-Mg/mid-K and low-Mg/high-K magmas. The rocks contain ~ 4 wt.% phenocrysts, the 

majority of which are euhedral olivine crystals 1-5 mm in size, with normal zoning from cores of 

Fo88-92 to rims of Fo80-85. Plagioclase, pyroxene and Cr-spinel phenocrysts are rare. The groundmass 

comprises olivine, clinopyroxene, plagioclase, Ti-magnetite and interstitial glass. In terms of trace 

elements (Supplementary Table S3), samples from the 1941 eruption belong to one of two trends, 

both of which are systematically enriched (by a factor of two) in LILE, HFSE and REE relative to 

N-MORB (Churikova et al., 2015b). 
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All studied olivines collected from the 1941 Tolbachik eruption are from: (1) tephra with 

basaltic glass attached to surfaces, containing glassy inclusions, (2) volcanic bombs and (3) thick 

basalt flows. Olivine grains underwent cooling at different rates, from rapid (in tephra) through 

intermediate (in bombs) to slow (in lava). 

Olivine crystals contain numerous melt inclusions (MI), 20–100 μm in size, rarely up to 300 

μm. Many MI from loose olivines and scoria are naturally quenched and contain glass and a 

shrinkage bubble, with or without daughter phases. Compositions of MI, corrected for in-situ 

olivine crystallization, are more primitive, but still overlap with the whole rock MgO contents (8-13 

and 8.9 wt.%, respectively; MI study in progress). However, the compositions of MI and host 

basalts cannot be linked by simple fractional crystallization of common phenocrysts, as the 

abundances of K2O (0.50-0.85 and 1.35 wt.%, respectively), P2O5 and trace element ratios (e.g., 

Sr/Nd, Ba/Rb, Zr/Hf, Zr/Sm etc.) are principally different. MIs contain variable amounts of 

volatiles, up to 5.1 wt.% H2O, 1200 ppm CO2, 0.35 wt.% S and 0.28 wt.% Cl (H2O and CO2 

contents measured by SIMS in CRPG, Nancy, Kamenetsky et al., 2017). Some glasses, associated 

with sulfides, have exceedingly high sulfur contents (up to ~ 1.0 wt.% S), at the upper limit 

measured in arc magmas (see review in Wallace and Edmonds, 2011). 

4.2. Tolbachik sulfides 

Approximately 0.6 % of the olivine grains from the 1941 Tolbachik basalts contain entrapped 

sulfide melt globules (Fig. 3). Many globules are nearly spherical, which establishes them as 

captured liquids. Some globules are flattened or elongated along crystallographic axes of the host 

crystal, or have irregular shape. Globules are typically 10-100 μm in size, rarely reaching 250 μm. 

No sulfides have been observed within the rock groundmass. 

The rate of cooling of the olivine phenocrysts varies greatly from very rapid (in lapilli) to 

relatively slow (in lava). Depending on the quench rate, the texture of sulfide globules can be 

visually homogeneous (Fig. 3a), or fine- to coarse-grained intergrowths of various Ni-rich and Cu-

rich phases (Fig. 3b, c, 5a), or consist of crisscrossing lamellae of individual sulfides (Fig. 3d). The 
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other factor influencing the composition of sulfides is the size of the globule. Small globules lack 

nucleation sites and tend to be undercooled, which leads to fine-grained textures (e.g., Patten et al., 

2012).  

Most globules contain crisscrossing intergrowths of chalcopyrite (CuFeS2), cubanite (CuFe2S3) 

and rarely bornite (Cu5FeS4), associated with “patches” of Ni-rich phase (Fe,Ni)9S8 (pentlandite or 

mackinawite) and non- stoichiometric Ni-rich and Cu-rich phases (Fig. 3b – d) that possibly 

correspond to MSS (Fe-Ni-S monosulfide solid solution) and ISS (Fe-Cu-S intermediate solid 

solution). Heated and quenched globules demonstrate homogeneous textures for Fe-rich, Ni-rich 

and Cu-rich sulfides (Supplementary Fig. S4a – c) and fine-grained textures in sulfides containing 

approximately equal amounts of Ni and Cu (Supplementary Fig. S4d).  

The compositions of individual sulfide globules plot in the Fe–Ni–Cu–S–O quinary system. 

The amount of oxygen is not more than a few percent and is concentrated in low-Ti magnetite. 

Assuming a metal to sulfur ratio close to unity (Me:S = 0.938 ± 0.075 (2σ) and 0.998 ± 0.076 (2σ) 

for unheated and heated samples, respectively), all compositions of the Tolbachik sulfides plot in a 

FeS–NiS–CuS ternary, where each point represents the average composition of the exposed surface 

area of individual globules (Fig. 4). 

The majority of the compositional data plots within the FeS–0.5NiS–0.5CuS ternary. The 

maximum measured contents of NiS and CuS are 38.1 and 37.6 mol%, respectively. High Cu 

contents in sulfides may reflect elevated Cu in the 1941 Tolbachik magma (160-280 ppm Cu, Table 

1, Supplementary Table 3). Highly variable Ni/Cu ratios (0.1-35 and 0.08–120 for unheated and 

heated globules, respectively) were most likely caused by variability of Ni and Cu contents in the 

parent magma, reflected in variable Ni and Cu contents in olivine (study in progress), whereby 

sulfide-free olivine crystals contain more Ni than sulfide-bearing crystals. Compositional variability 

of heated and unheated sulfide globules is similar, although the field for unheated globules is 

marginally wider. 
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4.3. Noble metal phases in sulfides 

Some sulfide globules contain minute phases composed of high atomic number elements (Pd, 

Ag, Te, Pt, Au, Pb and Bi) and thus are easily recognized by back-scattered scanning electron 

microscopy (Fig. 5, 6). These grains (hereafter referred to as “nuggets” due to their size, typically < 

0.5 μm) are found alone or in clusters on exposed surfaces (both natural and exposed by polishing) 

of sulfide globules. The majority of such nuggets apparently formed in-situ as a result of fractional 

crystallization of the sulfide melt during cooling. However, in some cases, as advocated below, the 

presence of nuggets can be attributed to direct entrapment from the ambient silicate melt and/or 

saturation in noble metals caused by selective dissolution of sulfide droplets (see Sections 5.3 – 

5.4). 

4.3.1. Appearance and spatial distribution of nuggets 

Nuggets vary in size from < 100 nm to 3 μm, with the majority falling in the range of 200-500 

nm. The smallest nuggets are round or elliptical in shape, which most likely reflects random 

Gaussian distribution of back-scattered electrons rather than real shapes. Larger nuggets often 

demonstrate tabular, needle-like or complex shapes, especially those located in caverns in the 

sulfide matrix (Fig. 5b). The largest nugget ~3 μm across was found on the outer surface of a 

sulfide globule (Fig. 6a). 

The number of nuggets on exposed surfaces of globules varies from one to several dozen, 

depending on the scale of observation (Fig. 6d). With one exception, nuggets are observed in 

globules ≥ 20 μm in diameter. Nuggets may be randomly scattered over a globule in cross-section, 

but some are confined to pits in the polished surfaces (Fig. 5b) and boundaries between Ni- and Cu-

rich phases (Fig. 5e, f), or attached to outer surfaces of globules (Fig. 6a-c). 

4.3.2. Composition of nuggets 

The small size of nuggets hinders accurate determination of compositions by energy-dispersive 

spectrometry (EDS), because the analytical volume (at an accelerating voltage of 15 keV, specimen 
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density ~ 4.5 g/cc) is around 1–1.2 μm across, which greatly exceeds the size of most nuggets. The 

smallest nuggets could not be analyzed. Semi-quantitative compositions of nuggets ≥ 200 nm can 

be estimated by subtracting matrix elements (Fe, Ni, Cu, S and O) from the analyses. As a result, 

200+ analyzed nuggets listed in Table 3 yielded 45 combinations of Pd, Ag, Te, Pt, Au, Pb and Bi 

(Supplementary Tables S5a, S5b). The number of observed nuggets is much greater than the 

number analyzed. At higher magnifications, nuggets smaller than 0.1-0.3 m become detectable, 

but their size renders quantification impossible. 

The list of inferred phases (Table 3) includes four pure metals (Ag, Pt, Au and Pb), 16 binary, 

17 ternary, and 8 more complex combinations of metals. Although Ru, Os and Ir are present in 

sulfides in measurable amounts (see Section 4.4), they were not confidently detected in nuggets. 

Accurate deciphering of nuggets is challenging because their analyses include matrix elements. For 

example, a nugget denoted as “Ag” could be native silver, acanthite Ag2S, argentopyrite AgFe2S3, 

frieseite Ag2Fe5S8, lenaite AgFeS2, argentopentlandite Ag(Fe,Ni)8S8, stromeyerite AgCuS, 

mckinstryite Ag5-xCu3+xS4, or an unknown mineral, or aggregates of several phases. Gold nuggets 

are likely native gold, but could be auricupride Cu3Au or tetra-auricupride CuAu. In most cases the 

neighboring nuggets show diverse compositions and morphology (Fig. 5, 6). We found no 

correlation between the compositions of the sulfide matrix (i.e. Fe-Ni or Fe-Cu) and included 

nuggets. 

Platinum (23 occurrences), gold (18) and Au-Pd alloys (16) are the most abundant native 

metals among studied nuggets. Pd-Te is the most common binary compound with a Pd/Te ratios 

similar to those in keithconnite Pd20Te7 and kotulskite Pd(Te,Bi). The latter was reliably analyzed in 

the largest observed nugget (Fig. 6). Palladium is by far the most abundant element in nuggets, and 

190 of 207 measured compositions include Pd, Pt, or Au. Fourteen nuggets are solely composed of 

Ag or Pb, however, considering the high affinity of these elements to sulfur, the Ag- and Pb-bearing 

nuggets are likely Ag2S, PbS, or more complex sulfide minerals also containing Fe, Ni or Cu. 
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An extraordinary case of abundant large Pd-Pt particles is recorded in a sulfide globule only 

7.5 μm in diameter. Eighteen nuggets of dominantly PdPt and Pd4Pt and a distinct sulfide phase 

containing 38 wt.% Pt, 7 wt.% Rh and 4 wt.% Pd together with 13 wt.% Cu are present in this 

globule (Fig. 7). Rhodium, Pd and Pt account for ~25 wt.% of the globule. The analyzed values 

provide only a rough estimate of the real composition of these tiny phases, because interferences 

from neighboring minerals cannot be excluded. 

4.4. Trace element compositions of sulfide globules 

Nineteen sulfide globules in olivine (Supplementary Fig. S8) were analyzed using the LA-ICP-

MS technique to determine concentrations and distribution of highly siderophile elements (Au, Re 

and PGE), semi-metals (Te) and chalcophile trace metals (Zn, Ag, Cd, Re, Pb, and Bi). Major 

elements of the sulfide matrix (Fe, Ni, Co, Cu and S) were also measured in the LA-ICP-MS 

analyses. The sulfide globules were exposed at around the mid-plane level by careful polishing, 

examined by optical and electron microscope, and analyzed for major elements by EDS. The 

globules containing nuggets on their polished surfaces were targeted first; another selection 

criterion for the laser ablation analysis was a broader range of major element compositions in terms 

of Fe:Ni:Cu ratios (Fig. 4). More than 50 % of the volume of globules was analyzed by laser 

ablation. Fourteen globules accommodated a single analytical spot, whereas five globules were 

large enough for two (3) and three (2) analyses. 

The concentrations measured in sulfide (rounded to 3 significant digits) together with basic 

statistics are given in Table 4; raw analytical data is provided in Supplementary Table S6. With few 

exceptions, all 19 analyzed elements were detected in each analytical spot. The behavior of the 

elements during analysis was monitored using time-resolved laser ablation spectra (hereafter, 

TRLAS; Fig. 8). These were used to determine if sulfides are homogeneous “down hole” (i.e. 

constant element ratios in the ablated volume), and if they contain nuggets large enough to be 

recorded.  
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The majority of single point analyses demonstrate homogeneous major element compositions, 

however, in some cases variable Ni/Cu can be seen in TRLAS (e.g., #2-6, #8-9 and #12-5; Fig. 8d, 

f, g). The variations in major elements can be accompanied by corresponding changes of some 

chalcophile elements; for example Zn and Ag in relation to Cu and Ni, respectively (#8-9 and #2-6; 

Fig. 8d, f). 

Comparison of the major and trace element compositions of duplicate analyses show a range of 

homogeneity; two globules are homogeneous (#2-3 and #1-4), with max/min ratios <1.5 for all 

elements; two globules are moderately homogeneous (#3-3 and #13-7) with respect to all elements 

except Rh and Au; and one globule (#13-8) is heterogeneous. The major element compositions 

measured by LA-ICPMS mimic those analyzed by EDS on exposed surfaces and represent the 

whole compositional spectrum (Fig. 4, Table 2; Supplementary Fig. S3). Approximately half of the 

TRLAS reveal homogeneous distributions of trace elements (e.g., #2-3, #8-9 and 10-2; Fig. 8e, f, 

h), suggesting that either nuggets are too small to contribute signal or are not present. The other half 

of the TRLAS shows abrupt changes in intensities of certain elements (#13-7a, 12-2, 2-6 and 12-5; 

Fig. 8a, c, d, g) that are interpreted as nuggets. Nuggets recorded by TRLAS most commonly 

contain Au, Ag, Pt and Pd (#13-7a, 12-2 and 2-6; Fig. 8a, c, d). This is consistent with compositions 

of nuggets observed on polished surfaces (Fig. 5, Table 3). Globule #13-7 contains a Pd-Pt-Au-Bi 

phase(s) (Fig. 8a), a composition not previously observed by electron microscopy. Some analyzed 

globules with no visible nuggets contain nuggets at depth (e.g., #12-2 and #2-6; Fig. 8c, d). 

Although the contribution from nuggets is included in the calculation of bulk sulfide compositions, 

the highest abundances of Pd, Pt, Pb and Bi and appreciable amounts of other PGE, Au and Ag are 

recorded in the completely homogeneous globule #2-3 (Fig. 8e), which has a smooth TRLAS (i.e. 

no nuggets). Similarly, PGM nuggets were not detected in globule #8-9 (Fig. 8f), which contains 

10-1000 times higher concentrations of Rh, Os and Ir than any other globules. Nuggets are also not 

recorded in globule #10-2, which is characterized by the highest Re content, but is the most 
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depleted in all other trace elements (Fig. 8h). The smooth TRLAS seen in globule #1-4 reveals the 

highest Ag and modest abundances of Pd, Pt, Au and Te (Table 4). 

5. Discussion 

5.1. Noble metal nuggets in sulfide matrix 

Some nuggets are scattered randomly within sulfide matrix (Fig 5b, 6d); others are confined to 

phase boundaries (Fig. 5e, f and Fig. 6e, f) or attached to outer surfaces of sulfide globules (Fig. 6a -

c). Spatial position and nugget size are related. The smallest nuggets (< 100 nm, Fig. 6d) are 

randomly distributed within sulfide matrix, while larger nuggets (0.2–3 μm) occur along boundaries 

between Ni-rich and Cu-rich phases (Fig. 5f, 6e, f), and at the surface of globules (Fig. 6a). The 

average contribution of nuggets to the total content of noble metals in sulfide can be calculated, 

given their number, size and composition. It is known that the total volume of objects per unit 

volume is equal to their total cross-sectional area per unit area on a typical plane section VV = AA 

(“Delesse principle”, e.g., Royet, 1991). For sulfide globules with abundant nuggets (such as shown 

in Fig. 5a-c), their total cross-sectional area was estimated at 0.02%. Therefore, the nugget volume 

density makes up to ~ 0.02 volume% or ~ 0.07 wt.% of the sulfide. This provides the total 

contribution of 320 ppm Pd, 120 ppm Pt and 240 ppm Au. The inferred contributions of Pt and Pd 

matches the highest concentrations of these elements measured by LA-ICP-MS in the homogeneous 

sulfide globules (299 ppm Pd and 115 ppm Pt). The estimated gold content (240 ppm Au) exceeds 

the maximum measured (37 ppm Au) by a factor of six. These calculations show that submicron 

nuggets in sulfide globules can make a significant contribution to noble metal contents. 

5.2. Statistics of element concentrations in sulfide globules 

Measured abundances of chalcophile and highly siderophile elements in sulfide globules vary 

by two to four orders of magnitude, with the exception of S, Fe, Co (max/min = 1.2 to 2.4), Zn (3.5) 

and Ni (11). In contrast, Ir and Bi concentrations have max/min ratios ~ 10000. The highest 

measured total PGE and Au is 436 ppm (# 2-3, Fig. 8e, Table 4), which includes 299 ppm Pd, 115 
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ppm Pt and 13 ppm Au, while several sulfide globules contain only a few ppm of noble metals. No 

significant statistical difference in measured concentrations of metals was observed between 

homogeneous and heterogeneous sulfide globules or between sulfide globules with or without 

nuggets, either visible under SEM or detected by LA-ICP-MS. This suggests that most nuggets 

(except the extraordinary case shown in Fig. 7) were exsolved from the sulfide melt upon cooling 

and solidification. 

Basic statistics of elemental concentrations (max, min, range, mean, median and mean to 

median ratio) are provided in Table 4. The mean to median (M/M) ratio is a simple indicator of the 

degree of inequality in distribution, i.e., how far from normal a population is. The mean is affected 

by a few or even a single anomalous measurement, whereas the median is insensitive to “outliers”. 

In normal distributions the mean and median values are equal. M/M ratios for all elements except 

Re and PGE are in the range of 0.882 – 1.57. Not surprisingly, the two most abundant elements 

(sulfur and iron) have M/M ratios close to unity (0.996 and 1.02, respectively). M/M ratios for 

chalcophile trace metals (Zn, Cd, Pb, Bi) are all less than unity (0.932 to 0.961) indicating that some 

measurements of these elements were low. On the other hand, M/M ratios for Re (3.52) and PGE 

(3.13 – 12.5) are well above unity, indicative of high concentrations in one to three globules. 

Concentrations of PGE in the Tolbachik sulfides follow a lognormal distribution, i.e. the 

logarithms of the concentrations show a normal distribution (Fig. 9a–c). Because of a limited 

number of analyses, a characteristic bell-shaped distribution of Pd and Os is not obvious (Fig. 9a, 

b). However, if we put all PGE together and normalize the total amount of each element to 100%, 

the resulting distribution of log of the concentration is near normal (Fig. 9c). Lognormal 

distributions of element concentrations indicate that a major fraction of a given noble metal is 

present in only a few sulfide globules. For example, a single globule #8-9 (Fig. 8f, Table 4) contains 

more Os and Ir than all other 18 analyzed globules taken together, considering element 

concentrations and globule volumes. The lognormal distribution also means that abundances of 
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noble metals in sulfides are much greater than their modal (most frequent) concentrations. 

Concentrations of chalcophile elements, except Zn, show bimodal distributions (Fig. 9d).  

The lognormal distribution, which is “a fundamental law of the distribution of the 

concentration of an element...” (Ahrens, 1954), is generated by many random effects that are 

multiplicative. In our case, such random factors contributing to concentrations of PGE in the sulfide 

liquid include: (1) the concentration of an element in the silicate melt; (2) the duration of interaction 

between silicate and sulfide melts; (3) the degree of supersaturation of the silicate melt in respect to 

sulfide СFeS
0, when growth of sulfide droplets is imposed by low diffusion flux of S2–, and the 

apparent R factor (Campbell and Naldrett, 1979) is proportional to the reciprocal of СFeS
0 (kinetic 

control of sulfide composition, Mungall, 2002). The concentration of an element in the silicate melt 

is probably the most stable variable. The duration of sulfide-silicate interaction is unknown, but 

may vary significantly (minutes to years, e.g., Zhang, 2015). The reciprocal of СFeS
0 (and therefore 

the apparent R factor) can vary the most, because it changes from a relatively small value to infinity 

when the level of sulfide supersaturation approaches zero. 

5.3. Evidence for the presence of Au-PGE-rich phases in silicate melt  

Clearly, the complex interplay of factors responsible for the lognormal distributions of element 

concentrations equally affects all metals. In fact, the concentrations of measured PGE and gold 

correlate well if anomalous concentrations of one or several noble metals (outliers) are excluded. 

This is graphically illustrated in Fig. 10, where binary variation diagrams of Au, Rh, Pd, Os and Ir 

vs. Pt are presented. After eliminating outliers, correlations between these elements vary from 0.87 

to 0.995 (R2 = 0.76 - 0.99). 

Another way to represent metal intercorrelations in analyzed sulfides is a bubble diagram (Fig. 

11). Bubble areas here are proportional to concentrations of metals in individual sulfide globules; 

all globules are arranged in order of increasing gold concentration. The latter was selected as a 

reference element because of its high solubility in silicate melts, which ensures predominantly 

diffusive acquisition of gold by sulfide liquid. The concentrations of the chalcophile elements Zn 
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and Cd are approximately the same in most globules (see also Fig. 10f), supporting their 

equilibrium partitioning by diffusion from the magma. Zinc and Cd have such low partition 

coefficients D = Csul/Csil that they reach a limiting concentration at almost any R factor. In contrast, 

the abundances of PGE are far from equilibrium, since at D = Csul/Csil of around 105 – 106 or higher 

(e.g., Barnes and Ripley, 2016; Fonseca et al., 2009; Mungall and Brenan, 2014) and Csil ~ 0.3 – 8 

ppb, the equilibrium concentrations of PGE in a sulfide liquid should reach 1000’s of ppm. 

Excessive concentrations of IPGE (globules #8-2, 8-9 and 9-7) and gold (globule #2-6), 

compared to common trends (Fig. 10) contrast with the systematics of these elements in the 

majority of analyzed sulfide globules. In particular, in #8-9 the Ru content is ~103 times and Os and 

Ir contents are ~102 times higher than expected. Such excess cannot be easily explained within the 

framework of the diffusion-controlled accumulation of noble metals. As an alternative, we propose 

the incorporation of pre-existing noble metal phases from the silicate melt in the sulfide globules. 

For example, for the 100-μm globule #8-9 the excessive concentrations of Ru (22.2 ppm), Rh (3.15 

ppm), Os (7.7 ppm) and Ir (10.4 ppm) can be explained by fortuitous entrapment of a 3-μm crystal 

of laurite (Ru,Rh,Os,Ir)S2 or aggregate of laurite with Os-Ir alloy. After incorporation, PGE-rich 

phases dissolved into the sulfide melt because of the extremely high solubilities of these elements in 

such melts (e.g., Fonseca et al., 2009; Fonseca et al., 2011; Pruseth and Palme, 2004). Globules #8-

2 and 9-7 also contain appreciable amounts of excessive Rh and Ir (Table 4, Fig. 10 and 11) that can 

be accounted for by entrapment of Rh-Ir ± Os-rich phases directly from the silicate melt. Laurite 

was shown to be thermodynamically stable at magmatic temperatures ~1250 C (Talkington and 

Lipin, 1986), whereas Ru solubility in basaltic melts at fO2 ≤QFM can be lower than solubilities of 

other PGE (Borisov and Palme, 2000 and references therein). Crystallization of laurite directly from 

silicate melt has been confirmed by inclusions of laurite in early magmatic Cr-spinel (e.g., 

Kamenetsky et al., 2015). 

It seems fortuitous for one trace phase in silicate melt (a microscopic noble-metal crystal) to 

encounter the other trace phase (sulfide globule). However, if we consider a different scenario 
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where PGE minerals (particles) in the silicate melt serve as nucleation sites for sulfide droplets 

(e.g., Mungall and Su, 2005; Patten et al., 2012) followed by coalescence of such droplets, it would 

be plausible that most PGE particles are ultimately incorporated in the sulfide melt. Alternatively, 

the PGE enrichment in conjugate sulfide – silicate melts may occur as “the metallic PGE micro-

alloys all fractionate into the sulfide liquid, where interfacial energies are lower” (Ballhaus and 

Sylvester, 2000). Similarly, our data on PGE-rich phases associated with Tolbachik sulfide globules 

lend further support to the proposed ability of PGE to form “polyatomic metallic clusters” that, once 

formed, continuously coalesce into PGE-bearing phases (Anenburg and Mavrogenes, 2016; 

Ballhaus and Sylvester, 2000; Helmy et al., 2013; Tredoux et al., 1995). Experimentally 

demonstrated coalescence and growth of such phases on crystallizing phases such as magnetite and 

Cr-spinel (Anenburg and Mavrogenes, 2016; Finnigan et al., 2008) can be indicative of the same 

process occurring in silicate magmas undergoing sulfide immiscibility. This is strongly supported in 

recent studies of the Bushveld base metal sulfides in which “a continuum …from discrete 

micrometer- to nanometer-sized” PGM inclusions “…precipitated from the silicate melt and 

afterwards were collected by the sulfide melt” (Junge et al., 2015; Wirth et al., 2013). 

5.4. Selective dissolution of PGE-bearing sulfide melt 

Apart from direct crystallization of PGE minerals from silicate melt (e.g., Kamenetsky et al., 

2015), other alternatives for the origin of PGE-rich particles can be: (1) PGE enrichment through 

selective dissolution of sulfide droplets, and (2) entrainment and dissolution of PGE-bearing mantle 

and crustal xenoliths. 

Selective dissolution of sulfide droplets may take place in the course of their settling (or 

magma mixing), if a droplet drifts out of a reduced, sulfide-saturated (СFeS
0 > 0) magma into 

another magma with less sulfur or/and more oxidized (СFeS
0 < 0). This scenario seems plausible in 

the case of the 1941 Tolbachik magmas contaminated by external sulfur (Kamenetsky et al., 2017). 

If СFeS
0 < 0, sulfide droplets experience selective extraction of FeS, whereas highly siderophile 

elements are being upgraded (Kerr and Leitch, 2005). This process can probably explain 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
anomalously high concentrations of Pd, Pt and Rh in the ~7-μm sulfide droplet shown in Fig. 7. At 

the exposed surface this droplet contains 18 individual grains of Pt-Pd alloys accounting for ~ 15 

wt.% Pt or ~ 25 wt.% PGE in total. This droplet could form via selective dissolution of a large 

sulfide droplet with consequential enrichment of residual sulfide liquid in PGE, followed by 

exsolution of observed PGE phases. Therefore, such selective dissolution of a 150-μm sulfide 

droplet containing 16 ppm Pt (an average value for 19 measured Tolbachik sulfides, Table 4) may 

increase Pt content to ~15 wt.% after the droplet is reduced to 7 μm in diameter. 

A similar process could have produced the PGE-nugget found in a melt embayment in olivine 

Fo83 (Fig. 12, Table 5, Supplementary Fig. S5-S7). The composition of this nugget (Table 5) 

corresponds to a mixture of Cu-Fe oxide (35-40 wt.%) and PGE-alloy containing all six platinum 

group elements (60-65 wt.%). The nugget probably originated from a sulfide droplet that contained 

appreciable amounts of PGE, but was subsequently oxidized and partially dissolved.  

Another possible enrichment process can occur through dissolution of entrained mantle or 

crustal xenoliths, which are abundant in the 1941 Tolbachik basalt (study in progress). For example, 

residual sulfides in harzburgite mantle xenoliths from the Avachinsky volcano (Kamchatka) are 

highly enriched in Ir and Os (~30 ppm each, Bénard and Ionov, 2010); therefore, assimilation of 

similar rock lithologies in the Tolbachik magma may introduce IPGE nuggets and/or IPGE-rich 

sulfide droplets into the silicate melt. Similarly, entrapment of a miniscule particle of gold inherited 

from assimilated country rocks, (e.g., Zelenski et al., 2016) may explain anomalously high Au 

content in the globule #2-6 (Table 4, Fig. 11). 

5.5. Can the Tolbachik sulfides be linked to magmatic sulfide ore deposits? 

The origin of Au and PGE enrichment in large magmatic sulfide deposits is still controversial; 

both magmatic and hydrothermal-metasomatic processes have been invoked (Boudreau and 

McCallum, 1992; Campbell et al., 1983; Naldrett, 1997). Irrespective of their exact mode of 

deposition, the ultimate source of such extreme PGE enrichments must be PGE-bearing parental 

silicate melts capable of reaching sulfide saturation and efficient PGE capture in immiscible sulfide 
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liquids (Naldrett, 2010). Our study of high temperature immiscible sulfide melts and their PGE + 

Au budget provides an opportunity to shed light on the origin of and the concentration mechanisms 

of noble metals in the nascent stages of magmatic sulfide deposit formation.  

Abundances of Au and PGE and metal ratios in the Tolbachik sulfides are comparable to those 

of some major sulfide ore deposits (Fig. 13b). Although the individual sulfide globules from the 

1941 Tolbachik eruption are vastly different in terms of PGE abundances and PGE ratios, the mean 

sulfide composition diluted by a factor of ~3000 (3.5 orders of magnitude) defines the Au and PGE 

inventory of the 1941 Tolbachik basalt (Fig. 13a). Almost the same proportion was deduced for the 

Platreef (Holwell et al., 2011) and Merensky Reef (Ballhaus and Sylvester, 2000) in the Bushveld 

Complex. Additionally, similar phase relations and textures of base metal sulfides and compositions 

of noble metal phases in the Tolbachik case and Cu-Ni-PGE sulfide deposits are indistinguishable. 

Another outcome of our study is that liquids and alloys of noble metals in primitive magmas may 

impact modelling of the element partitioning between conjugate silicate and sulfide melts. 

However, we must also be aware that early crystallizing Cr-spinel (Arguin et al., 2016; Kamenetsky 

et al., 2015; Pagé and Barnes, 2016; Pagé et al., 2012; Park et al., 2012) can be responsible for 

depleting PGE concentrations prior to and during sulfide immiscibility. 

6. Conclusions 

1. Primitive island-arc magmas (Tolbachik volcano, Kamchatka) may undergo silicate-sulfide 

liquid immiscibility in the early stages of their evolution simultaneously with crystallization of 

high-magnesium olivine (Fo85-92) and chrome spinel. Such sulfides may contain significant amounts 

of gold and PGE that are comparable to some prominent magmatic sulfide-PGE ore deposits, such 

as Norilsk, the Platreef and Merensky Reef. Sulfide droplets enclosed in olivine crystals are 

protected from external modifications, such as magma evolution, mixing, degassing and oxidation; 

thus they remain pristine magmatic. 

2. Efficient diffusive transport of metals from cogenetic silicate melts is by far the main 

process responsible for the accumulation of PGE-Au in sulfide melts. However, observed 
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systematics of noble metal contents in the Tolbachik sulfides, namely, correlations between PGE 

contents and anomalous values (outliers), combined with high inequality of noble metal 

distributions, can be indicative of pre-existing PGM phases in the silicate melt. In particular, such 

particles may serve as nucleation sites for incipient sulfide droplets. Upon entrapment, PGM 

particles dissolve in the sulfide melt to provide high PGE tenors. Possible origins of such particles 

include their direct crystallization from the silicate melt and/or release from assimilated mantle and 

crustal xenoliths.  

3. Upon cooling and crystallization, sulfide melts exsolve submicron-sized particles (nuggets) 

enriched in Au and PGE, dominated by native gold, native platinum, Au-Pd alloy and palladium 

tellurides. Although volume density of such nuggets does not exceed 0.02 %, high PGE tenors in 

some Tolbachik sulfides can be accounted for by their presence. 
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Figure captions 

Fig. 1. Map of the Tolbachik volcano and the 1941 eruptive cone with an adjacent lava flow and 

scoria field. 

Fig. 2. Compositions of the 1941 rocks compared to other Tolbachik rocks and Kamchatka volcanic 

rocks. (a) Total alkali vs. SiO2 diagram. (b) K2O vs. MgO diagram. Numbers in (b) denote 

two distinct trends for Tolbachik rocks: 1- middle-K rocks; 2 – high-K rocks. Lavas from the 

2012-2013 eruption form a short separate trend (3). Data are from Churikova et al., 2015b; 

Portnyagin et al., 2007; Volynets et al., 2015. 

Fig. 3. Reflected light photomicrographs demonstrating textures of sulfide globules entrapped in 

Tolbachik olivine phenocrysts: (a) homogeneous texture; (b) fine-grained texture inherited 

from high-temperature exsolution of Ni-rich sulfide phase (‘MSS’, white patches) 

interspersed with Cu-rich phase (‘ISS’, yellow); (c) coarse-grained globule composed of 

approximately equal amounts of ‘MSS’ and ‘ISS’. The sulfide solid solutions are represented 
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by low-temperature minerals (pyrrhotite, pentlandite, chalcopyrite and cubanite); (d) Criss-

crossing lamellae of chalcopyrite and cubanite exsolved from ‘ISS’ with relics of ‘MSS’ and 

small patches of pentlandite. Small grains of magnetite are present inside sulfide and on the 

outer surface of the globule. ‘MSS’ – monosulfide solid solution, ‘ISS’ – intermediate solid 

solution, cb – cubanite, ccp – chalcopyrite, mgt – magnetite, pn – pentlandite, po – pyrrhotite, 

chr - chrome spinel.  

Fig. 4. Compositions of sulfide globules in Tolbachik olivine phenocrysts. (a) Multiphase globules 

with textures shown in Fig. 3a-d, analyzed by EDS (grey circles) and LA-ICP-MS (green 

diamonds); (b) Reheated and quenched sulfide globules (red) and naturally quenched globules 

from sulfide swarms (blue) analyzed by EDS. Sulfide swarms of hundreds to thousands of 

small (< 10 μm) globules in single olivine crystals. All analyses mostly plot within the FeS-

0.5NiS-0.5CuS ternary. Compositional field of quenched globules is shown in (a) for 

comparison. 

Fig. 5. Noble metal nuggets in olivine-hosted sulfide globules. (a) BSE image of a typical sulfide 

globule composed of fine quenched intergrowth of ‘MSS’ and ‘ISS’ with abundant nuggets of 

dominantly Au, Pt, Pd-Pt and Pd3Te (Pd20Te7) compositions scattered over the exposed 

surface as shown on panels (b, c); (d, e) Reflected light and BSE images of the sulfide globule 

composed of ‘ISS’ and pentlandite, with numerous nuggets containing Pd, Te, Pt, Au, Pb and 

Bi. Nuggets are mainly confined to the phase boundary between ‘ISS’ and pentlandite, as 

shown in the close-up BSE image (f). Abbreviations as in Fig. 3. 

Fig. 6. Noble metal nuggets on sulfide globule surfaces. Nuggets comprised of Pt, Pd, Au, Pb, Te 

and Bi. Note that neighboring nuggets can be compositionally diverse. 

Fig. 7. Back-scattered electron image (a), phase map (b) and X-ray element maps of sulfide 

globules with nuggets of three different PGE minerals (c-e). The globule contains 18 grains of 

Pd-Pt alloys with different Pd:Pt ratios, Cu-Pt-Rh sulfide, Ni-rich phase ‘MSS’ and Cu-rich 

phase ‘ISS’. Scanning electron microscopy was performed using Versa 3D Dual Beam SEM / 
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FIB (FEI) instrument equipped with a field emission gun (FEG) at an accelerating voltage of 

10 kV, 10 mm working distance and 12 hours of mapping time. Chemical analysis was carried 

out using APOLLO X Silicon Drift Detector (SDD) and TEAM software. 

Fig. 8. Representative time-resolved laser ablation signals (y axis, counts per second) recorded for 

selected elements (masses) in sulfide globules from 1941 Tolbachik olivine crystals. Some 

globules are characterized by distinct metal-rich phases (“nuggets”), containing, for example, 

Au, Au-Pt and Pt (a, c, d), Ag, Ag-Au, Au-Pt-Bi (g) and Pd-Pt-Au-Bi (a). Note analytical data 

for the globules with highest abundances of Pt-Pd (e) and Rh-Os-Ir (f), and most depleted in 

PGE and Au, but most enriched in Re (h). See text for details. 

Fig. 9. Frequency distribution histograms for logarithms of element concentrations (Pd, Os, total 

PGE and total chalcophile elements; concentrations of each element are normalized to 100%) 

measured in Tolbachik sulfide globules.  

Fig. 10. Binary variation diagrams for elements in sulfide globules. (a-e) Noble metals have 

significant inter-correlations after excluding outliers, suggesting similar concentration 

mechanisms. The outliers probably represent nuggets (particles of IPGE and Au) entrapped 

from the silicate melt. (f) Zero correlation of moderately abundant chalcophile element (Zn) 

and low abundant Pt; the plot demonstrates saturation of sulfide liquid in zinc at a nearly 

constant level (150 ± 50 ppm) whereas the concentration of Pt varies over 3.5 orders of 

magnitude. Globules with fine-grained, intermediate and coarse textures are shown by 

different symbols. Note that globule textures have no effect on measured concentrations of 

noble metals. The outliers were not used for calculating coefficients of determination (R2). 

Fig. 11. Graphical representation of all measured concentrations of Au, PGE and selected 

chalcophile elements in Tolbachik sulfides. Samples are arranged in order of increasing gold 

concentrations. Areas of bubbles are proportional to concentrations of metals. Chalcophile 

elements Zn and Cd demonstrate roughly constant concentrations in the majority of the 

samples. Ranges of Au and PGE concentrations are 3-4 orders of magnitude. The highest 
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concentrations of Ru, Rh, Os and Ir in sample #8-9 and Au in sample #2-6 do not correlate 

with other elements (compare with Fig. 10). Despite anomalous concentrations of the IPGE in 

the sample # 8-9, no nuggets were observed under electron microscope or in time-resolved 

lased ablation spectrum (Fig. 6f). 

Fig. 12. Nugget in silicate melt embayment containing all six platinum-group elements. (a) Melt 

embayment in an olivine (Fo83), unpolished crystal. (b) A small 1.5x3 μm bubble on the 

boundary of the embayment, bright particles inside the bubble are mainly composed of Ru, 

Rh, Pd, Os, Ir and Pt; Cu and Fe oxides are also present. (c) EDS spectrum of the nugget 

shown in (b) with labeled peaks. emb – melt embayment, ol – olivine. a, b – SEM BSE 

images. See main text and Supplementary materials for details. 

Fig. 13. Chondrite (McDonough and Sun, 1995) – normalized concentrations of noble metals in 

Tolbachik sulfides. (a) individual sulfide globules (gray lines), the selected globule #8-9 with 

anomalously high IPGE content (blue), mean sulfide composition (red) and bulk rock 

composition (black). (b) Comparison of mean Tolbachik sulfide composition (red) and 

average sulfide composition from some world-class magmatic sulfide deposits (Naldrett, 

1997). 

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

 
  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
Table 1. Major oxides and chalcophile element abundances in 1941 Tolbachik basalt. 

Element 
(oxide) Tol-1 Tol-2 Tol-4 Portnyagin 

et al., 2015 
Churikova 
et al., 2015 

Average for the 1941 
basalt (published data 

and references) 

 wt% 

SiO2 50.83 51.0 50.56 50.4 50.53 50.66 
TiO2 1.24 1.23 1.2 1.25 1.27 1.24 
Al2O3 14.9 15.0 14.7 14.6 14.6 14.8 
FeO 9.8 9.7 9.6 9.19 9.87 9.63 
MnO 0.18 0.18 0.18 0.17 0.18 0.18 
MgO 8.8 8.8 9.0 8.51 8.89 8.80 
CaO 9.8 9.8 9.8 9.75 10.05 9.84 
Na2O 2.8 2.8 2.8 2.85 2.8 2.81 
K2O 1.4 1.3 1.3 1.34 1.39 1.35 
P2O5 0.38 0.38 0.36 0.38 0.38 0.38 
 ppm 

Co 42.5 43.1 42.0 41  42 
Ni 165 132 143 128 231 160 
Cu 170 166 159 165 281 188 
Zn 87 87 81 56.6 72 77 
Ag      0.021 ref. 1 
Cd 0.087 0.108 0.083  0.10 0.095 
Te      0.004 refs. 2, 3 
Pb 3.5 3.7 3.4 2.7 3.5 3.4 
Bi      0.037 ref. 2 
 ppb 

Ru 0.54 0.48 0.34   0.45 
Rh 0.32 0.33 0.29   0.31 
Pd 7.55 7.8 8.09   7.8 
Re      0.47 refs. 4, 5 
Os      0.0010 refs. 4, 5 
Ir 0.76 0.72 0.52   0.67 
Pt 6.37 6.0 5.81   6.1 
Au 2.93 2.85 2.67   2.8 

Concentrations of Ag, Te, Re, Os and Bi were taken from literature; numbers of references are given in 

parentheses: 1 – Flerov et al. (1984); 2 – Wedepohl (1995); 3 – Yi et al. (1995); 4 – Alves et al. (2002); 5 – 

Dosseto et al. (2003). See Supplementary Table 3 for full list of trace elements in the 1941 Tolbachik basalt. 
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Table 3. Nugget compositions and statistics. 

System Number 
of cases 

Phase composition* 
(number of cases) 

Single metals 

Ag 3 Ag2S 
Pt 23 Pt 
Au 18 Au 
Pb 11 PbS 

Binary systems 

Pd-Au 16 

Au6Pd            (5) 
Au3Pd            (4) 
Au2Pd            (5) 
Variable         (2) 

Pd-Te 23 Pd20Te7           (5)** 
PdTe             (18) 

Pd-Pt 8 Variable from 2:1 to 1:10 
PdPb 2 PdPb 
Ag-Au 11 Variable from 1:0.4 to 1:4.5 
Te-Pt 2 PtTe3 

Pt-Au 7 
PtAu               (4) 
Pt2Au11            (3) 

Pt-Pb 7 Pt3Pb2 
Pt-Bi 3 Variable from 1:1.5 to 1:4.6 
AuPb 1 AuPb 
PbBi 3 Pb2Bi 

Ternary systems 

Pd-Ag-Au 2 Variable  
Ag-Au-Pb 1  
Pd-Au-Pb 1  
Pt-Au-Pb 1  
Ag-Pt-Au 2 (AgPt)Au2 

Pd-Te-Pt 8 (Pt,Pd)3Te8     (2) 
Variable           (6) 

Pd-Te-Au 1 Pd9Au9Te2 
Pd-Te-Bi 2 Variable  
Pt-Te-Bi 4 Variable 
Pd-Pt-Au 11 Variable  

Pd-Pt-Pb 13 PdPt4Pb (2) 
(PdPt)2Pb (11) 

Pd-Pt-Bi 4 (Pt,Pd)2Bi3 
Pd-Au-Bi 1  
Ag-Au-Bi 1 Ag9Au9Bi2 
Pt-Pb-Bi 2 Pt3Pb2Bi 

Complex systems 

Pd-Te-Pt-Bi 3  
Pd-Te-Pb-Bi 1  
Pd-Pt-Au-Pb 6  
Pd-Ag-Pt-Au 1  
Pd-Ag-Pt-Au-Bi 1  
Ag-Pd-Pt-Pb 1  
Ag-Pd-Pt-Au-Pb 1  
Pt-Au-Bi-Te 1  
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Table 4. Concentrations of major and trace elements in Tolbachik sulfides 

(ppm) and basic statistics. 

Slf #  D, μm Texture S Fe Co Ni Cu Zn Ru Rh Pd 

1-4 250 Fine  343000 427000 957 34100 195000 172 0.137 0.834 86.9 
2-3 160 Fine  343000 345000 1080 28500 283000 154 0.405 4.71 299 
2-6 120 Intermediate 343000 333000 1030 22600 301000 180 0.135 0.244 1.88 
3-3 200 Intermediate 365000 380000 1200 28000 225000 203 0.104 0.155 2.17 
3-6 75 Fine 385000 446000 2150 154000 12800 132 0.191 0.0594 0.354 
8-2 50 Coarse 347000 319000 2080 141000 191000 161 0.632 3.22 9 
8-6 60 Coarse 375000 294000 1150 79600 251000 125 0.119 0.954 48.7 
8-9 90 Intermediate 387000 400000 2020 166000 45300 118 22.3 3.4 4.38 
9-1 80 Intermediate 377000 394000 1500 14600 213000 192 0.161 0.147 4 
9-6 90 Intermediate 366000 392000 1510 28100 212000 190 0.175 0.184 0.537 
9-7 100 Fine 342000 334000 1220 39000 283000 148 0.162 3 35.7 

10-2 250 Fine 364000 574000 2060 57700 1650 92.3 0.126 0.0172 0.0894 
10-3 80 Coarse 369000 322000 1560 126000 180000 91.4 0.381 0.239 29.6 
10-5 140 Coarse 345000 371000 1210 54300 228000 170 0.135 0.0539 9.97 
12-2 80 Coarse 367000 359000 1070 43700 230000 176 0.133 1.68 173 
12-5 120 Intermediate 358000 309000 909 35200 297000 175 0.119 0.0521 2.26 
12-6 110 Fine 388000 487000 2040 98900 24000 64.9 0.316 0.806 34.4 
13-7 130 Fine 358000 355000 1090 33200 253000 184 0.126 < dl 5.88 
13-8 130 Coarse 395000 378000 1610 91100 135000 131 0.115 0.0915 4.21 

     Min  342000 294000 909 14600 1650 64.9 0.104 0.0172 0.0894 
     Max  395000 574000 2150 166000 301000 203 22.3 4.71 299 
     Max/min  1.15 1.96 2.37 11.4 182 3.13 214 273 3350 

     Median  365000 371000 1220 43700 213000 161 0.137 0.242 5.88 
     Mean 364000 380000 1440 67100 187000 151 1.36 1.1 39.6 
     Mean/median 0.996 1.02 1.19 1.54 0.882 0.932 9. 93 4.56 6.74 

 
 
Table 4 (continued) 

Sample Ag Cd Te Re Os Ir Pt Au Pb Bi Total 
Au+PGE 

1.4 211 16.9 174 0.0355 0.0532 0.362 21.1 18.8 95.1 25.4 128 
2.3 157 21.4 132 0.0401 0.466 2.95 115 13.4 288 34.5 436 
2.6 126 21.2 102 < dl 0.00963 0.0112 1.92 37.5 93.2 17.6 41.7 
3.3 125 27.8 80.4 0.0324 0.0183 0.0165 2.26 6.57 110 19.3 11.3 
3.6 0.349 8.91 3.38 0.12 0.0148 < dl 0.317 0.0349 0.497 0.0811 0.97 
8.2 94.4 12.3 60.5 0.0283 0.983 3.15 15 5.76 101 28 37.7 
8.6 110 12 76.8 0.0983 0.128 0.598 21.7 9.58 92.2 24.3 81.7 
8.9 3.02 7.56 2.85 0.511 7.73 10.5 6.3 0.0653 1.61 0.101 54.7 
9.1 51 17.3 42.1 0.0126 < dl 0.0157 2.39 1.21 44.2 6.49 7.9 
9.6 106 16.6 41.6 0.039 < dl 0.0336 1.47 0.334 81.7 10.7 2.7 
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9.7 136 17.4 104 0.0513 0.088 0.884 32.2 25 94 17.1 97 
10.2 0.355 0.164 0.133 0.963 < dl 0.00115 < dl 0.0527 0.141 0.00342 0. 29 
10.3 90.3 9.77 23.5 0.502 0.134 0.0845 7.49 7.01 63.5 8.29 45 
10.5 102 14.5 66.7 0.0333 0.0704 0.0226 3.22 5.67 136 16.7 19.1 
12.2 177 14.6 332 0.0767 0.135 0.797 34.5 28.6 46.8 20.1 239 
12.5 101 16.8 56.4 0.0204 0.0134 0.034 2.04 0.941 175 11.6 5.5 
12.6 20.3 3.45 1.02 0.154 0.325 0.548 15.5 0.0855 0.249 < dl 52 
13.7 136 14.6 79.4 0.044 0.0763 0.0177 3.93 4.94 157 15 15 
13.8 65.9 13.1 44.8 0.256 0.0246 0.0949 2.82 6.03 72.4 11.7 13.4 

 Min  0.349 0.164 0.133 0.0126 0.00963 0.00115 0.317 0.0349 0.141 0.00342 0.29 
 Max  211 27.8 332 0.963 7.73 10.5 115 37.5 288 34.5 436 
 Max/min  604 169 2500 76.7 803 9110 362 1080 2050 10100 1520 

 Median  102 14.6 60.5 0.0476 0.0822 0.0897 5.12 5.76 92.2 15.8 38 
 Mean. 95.4 14 74.9 0.168 0.642 1.12 16 9.03 86.9 14.8 68 
Mean/median 0.931 0.961 1.24 3.52 7. 81 12. 5 3.13 1.57 0.943 0.936 1.8 

 
 

Table 5. Semiquantitative EDS analyses of PGE-containing “micro-nugget”. 

Element Analytic 
line 

Spectrum #3 Spectrum #7 

Only PGE, wt% (average) 
wt% 2 σ at% wt% 2 σ at% 

O K_series 10.7 2.36 38.8 10.49 1.08 38.71  
Mg K_series 0.67 0.13 1.59 0.51 0.06 1.25  
Al K_series 1.26 0.13 2.7 1.33 0.06 2.92  
Si K_series 2.26 0.13 4.67 2.32 0.06 4.88  
S K_series 0.51 0.12 0.92 0.5 0.06 0.93  
K K_series 0.2 0.12 0.3 0.25 0.06 0.38  
Ca K_series 0.29 0.12 0.42 0.39 0.06 0.58  
Fe K_series 4.35 0.23 4.52 3.98 0.11 4.2  
Cu K_series 21.62 0.53 19.75 22.76 0.26 21.15  
Ru L_series 0.51 0.43 0.29 0.77 0.2 0.45 1.0 
Rh L_series 15.52 0.61 8.76 13.1 0.28 7.52 23.0 
Pd L_series 11.49 0.59 6.27 11.37 0.28 6.31 18.4 
Os L_series 2.99 1.22 0.91 2.83 0.59 0.88 4.7 
Ir M_series 20.9 0.72 6.31 20.97 0.34 6.44 33.6 
Pt M_series 12.73 0.79 3.79 11.26 0.37 3.41 19.3 
Totals  105.98  100 102.84  100  
PGE  64.14   60.3   100.00 
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Highlights 

 Primitive arc basalt magma represents 1941 eruption of Tolbachik volcano, Kamchatka 
 Silicate-sulfide melt immiscibility is recorded as melt inclusions in olivine Fo86-92 
 Sulfide melt inclusions are highly variable in Ni/Cu and PGE, Ag, Te, Au, Pb and Bi 
 Micron-sized particles of Au, Pt, Au-Pd and Pd-Te are abundant in sulfide globules 
 Tolbachik sulfide melts are compositionally similar to sulfides in magmatic deposits 


