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ABSTRACT 

The Lesser Antilles arc is one of the best global examples in which to examine the effects 

of the involvement of subducted sediment and crustal assimilation in the generation of arc 

crust. Most of the zircon recovered in our study of igneous and volcaniclastic rocks from 

Grenada and Carriacou (part of the Grenadines chain) is younger than 2 Ma. Within some late 

Paleogene to Neogene (~34–0.2 Ma) lavas and volcaniclastic sediments however, there are 

Paleozoic to Paleoarchean (~250–3469 Ma) xenocrysts, and late Jurassic to Precambrian 

zircon (~158–2667 Ma) is found in beach and river sands. The trace element characteristics of 
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zircon clearly differentiate between different types of magma generated in the southern Lesser 

Antilles through time. The zircon population from the younger arc (Miocene, ~22–19 Ma, to 

Present) has minor negative Eu anomalies, well-defined positive Ce anomalies, and a marked 

enrichment in heavy rare earth elements (HREE), consistent with crystallization from very 

oxidized magmas in which Eu
2+

 was in low abundance. In contrast, zircon from the older arc 

(Eocene to mid-Oligocene, ~30–28 Ma) has two different REE patterns: 1) slight enrichment 

in the light (L)REE, small to absent Ce anomalies, and negative Eu anomalies and 2) enriched 

High (H)REE, positive Ce anomalies and negative Eu anomalies (a similar pattern is observed 

in the xenocrystic zircon population). The combination of positive Ce and negative Eu 

anomalies in the zircon population of the older arc indicates crystallization from magmas that 

were variably, but considerably less oxidized than those of the younger arc. All the igneous 

zircon has positive εHf(t), reflecting derivation from a predominantly juvenile mantle source. 

However, the εHf(t) values vary significantly within samples, reflecting considerable Hf 

isotopic heterogeneity in the source. 

The presence of xenocrystic zircon in the southern Lesser Antilles is evidence for the 

assimilation of intra-arc crustal sediments and/or the recycling and incorporation of sediments 

into the magma sources in the mantle wedge. Most likely however, primitive magmas stalling 

and fractionating during their ascent through the Antilles crust entrained ancient zircon. This 

is evidence by the geochemistry of the study samples, which is inconsistent with any 

involvement of partially melted detrital Proterozoic and younger subducted sediment. 

Paleogeographic reconstructions show that the old zircon could derive from distant regions 

such as the Eastern Andean Cordillera of Colombia, the Merida Andes, and the northern 

Venezuela coastal ranges, transported for example by the Proto-Maracaibo River precursor of 

the Orinoco River. 

 

Keywords: Lesser Antilles, island arc, crustal assimilation, Grenada, Carriacou, Petite 

Martinique, zircon, xenocryst, U-Pb dating, 
230

Th disequilibrium, Hf isotopes, rare earth 

elements, Ce and Eu anomalies  

 

1. Introduction  

The main source of global volcanic arc magmas is the peridotitic “wedge” of mantle 

between a subducted slab and overriding lithosphere (Arculus, 1994). The wedge also 

contains fluid-soluble components from the subducted slab where rising magmas generated in 

this heterogeneous wedge may assimilate or partially melt and mingle with overriding 
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lithosphere.  The various components are potentially identifiable by means of their trace 

element and isotopic characteristics (Hofmann, 1988; Condie, 2005; Pearce, 2008; Mann and 

Schmidt, 2015), but the processes responsible for the mixing of sources and transfer of 

material are complex. They involve several mechanisms including: a) reactive bulk 

assimilation (e.g., Beard et al., 2005); b) physical transport of fractionated fluids and melts 

liberated from the deep mantle as well as subducted slab components that infiltrate the mantle 

along grain boundaries, fractures, and diapirs (Spandler and Pirard, 2013); and c), infiltrating 

diapirs of subduction mélanges that eventually melt at the slab-mantle interface or within the 

infiltrated mantle below the arc (Gerya and Yuen 2003; King et al., 2006; Castro and Gerya 

2008; Castro et al., 2010; Behn et al., 2011; Marschall and Schumacher, 2012).  

Subduction plays a major role in recycling oceanic and continental crust into the mantle, 

including sediments formed after erosion of continental material, and also accounts for the 

development of chemical heterogeneities in the upper mantle (Hofmann and White, 1982). 

The occurrence of old zircon in juvenile intra-oceanic arc rocks raises the questions of how 

much recycled crust contributed to these rocks and how old continent- and/or mantle-derived 

zircon grains became entrained in volcanic arc rocks (Rojas-Agramonte et al., 2016). Zircon 

from subducted continental and oceanic sources might become entrained in the mantle above 

a subduction zone and ultimately be transferred to a volcanic arc in supra-subduction mantle-

derived melts, providing physical evidence for the recycling process (Rojas-Agramonte et al., 

2016). On the other hand, crustal relamination (Hacker et al., 2011), assimilation of sediments 

embedded in oceanic arc-crust (Bezard et al., 2014) and subduction erosion of fore-arcs 

(Stern, 2011) or ancient basement of continental margins (Scholl and von Huene, 2009) might 

also potentially account for such occurrences.  

The Lesser Antilles arc (Fig.1a) is one of the best global examples where phenomena 

associated with the subduction of sediments and assimilation of overriding crust can be 

studied. The arc is recognized as having the most "continental crust-like" geochemical and 

isotopic characteristics of all modern island arcs (Chauvel et al., 2012), and features a wide 

range of magmatic compositions (Macdonald et al., 2000). Debate continues regarding the 

effects of intra-crustal assimilation-fractional crystallization (e.g., Bezard et al., 2015) versus 

inputs of subducted sediment (Carpentier et al., 2008). The southernmost islands (e.g. 

Grenada, Carriacou, and Petite Martinique; Figs. 1 and 2) are notable for their abnormally 

radiogenic Sr and Pb isotopic compositions, consistent with the involvement of recycled 

continental crust-derived and subducted sediment (Carpentier et al., 2008; Labanieh et al., 

2010, O’Neill, 2016) and/or high-level crustal assimilation through AFC processes (Thirlwall 
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et al., 1996). These islands provide an opportunity to compare and contrast the effects of 

sediment involvement in the generation of arc crust by means of subduction versus intra-

crustal recycling.  

The Orinoco River (Fig. 1b), which drains the northern part of the South American 

continent (i.e., Andes to the west, northern Venezuela coastal ranges, and the Precambrian 

Guyana Shield), is the main source of terrigenous sediment with highly radiogenic Pb that 

contributes to the trench and fore-arc basin fill of the southern Lesser Antillean arc 

(Westbrook et al., 1984). Our U-Pb dating of zircon from the arc magmas shows for the first 

time the presence of Late Jurassic to Precambrian zircon, which provides compelling evidence 

for assimilation of sedimentary intra-arc crust and/or recycling and incorporation of sediments 

into the magma sources in the mantle wedge. The results of this study also better constrain the 

age and composition of the different volcanic associations on Grenada, Carriacou, and Petite 

Martinique.  

 

1.1 The Lesser Antilles intra-oceanic arc 

The Lesser Antilles island arc (Fig. 1a) represents the eastern expression of a relatively 

long-lived arc-system (Bouysse et al., 1990; Macdonald et al., 2000) that began its evolution 

in the eastern Paleo-Pacific Ocean during the Early Cretaceous (Bouysse 1984; Pindell et al., 

2005). The current arc is Cenozoic (Eocene to present) in age and developed in response to 

westward subduction of Atlantic oceanic lithosphere beneath the leading edge of the 

Caribbean plate at ~ 18–20 mm a
-1

 (de Mets et al., 2000; Weber et al., 2001). This rate is slow 

compared to other island arcs worldwide where convergence rates can be up to 20 cm a
-1 

(Bird, 2003) and potentially could have led to higher than normal temperatures in the 

subducted slab (at a given depth), causing partial melting of the subducted sediments 

(Macdonald et al., 2000; Turner et al., 2016). 

Several studies have highlighted marked changes in elemental and isotopic compositions 

along-strike of the arc. These are probably the result in part of the changing age and 

composition of the subducting material in front of the arc system (Carpentier et al., 2008, 

2009). According to Bezard et al. (2015), two main processes have been proposed to explain 

this extreme compositional variation: (1) incorporation of subducted sediment into the mantle 

source; or (2), significant assimilation of sediment-rich arc crust. Both processes could of 

course be involved. A high sediment input to the source could be explained by the presence of 

abundant sediment in the southern Antilles Trench due to discharge mostly from the Orinoco 

and Amazon Rivers (e.g., Carpentier et al., 2008, 2009).  
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The nature of the basement of the Southern Lesser Antilles arc (from St. Vincent to 

Grenada) remains poorly known. Bouysse et al. (1990) suggested that the volcanic arc is 

underlain by a basement composed of Mesozoic volcanic arc rocks known as the proto-arc. 

Alternatively, according to Aitken et al. (2011), the central-southern Lesser Antilles arc 

developed above a deep fore-arc basin of the (now extinct) Aves Ridge arc, splitting it into the 

Grenada and Tobago basins (Fig. 1a). South of Martinique (Fig. 1a), rocks of the Cenozoic 

arc show the imbrication of older and younger arcs (Bouysse et al., 1984; Macdonald et al., 

2000; Germa et al., 2011). The older arc was active from the beginning of the early Eocene to 

the mid-Oligocene (30–28 Ma), whereas the younger arc has been active since the early 

Burdigalian (22–19 Ma) (Germa et al., 2011). 

The sediment-derived fluid contribution to the mantle source in the southern islands is 

most likely related to subduction of clastic sediments building up the large Barbados 

accretionary prism (Turner et al., 1996; Carpentier et al., 2008; 2009). The southern fore-arc 

region (Barbados Ridge; Fig. 1) constitutes a thick and extensive accretionary complex 

consisting of more than 10 km of sediments with a large proportion of terrigenous turbidites 

and U-rich black shales. The sediments have very radiogenic Pb isotope ratios and 

unradiogenic Nd and Hf isotopic compositions, implying a much larger component of old 

continental material than other oceanic sediments worldwide (Vervoort et al., 2011). Such 

features can be attributed to the overwhelming contribution of detrital material derived from 

an old (heterogeneous) continental source such as the Guyana Shield and Amazon Craton 

(Fig. 1b; Carpentier et al., 2008).  

 

2. Geological background 

Grenada, Carriacou and Petite Martinique comprise inter alia the nation of Grenada and 

are located at the southern end of the Lesser Antilles (Figs. 1 and 2). Grenada is the largest of 

these islands (Fig. 2). 

2.1. Grenada 

The main island of Grenada has an area of 312 km
2 

(Fig. 2), rising to a maximum height of 

840m. One characteristic geological feature of the island is the large surface area of secondary 

or reworked volcanic material, caused by erosion of primary volcanic deposits (Arculus, 

1976). The oldest rocks on the island belong to the Tufton Hall Formation that comprises 

tectonically disturbed and well-bedded sequences of calcareous shale, siltstone and sandstone 

containing foraminifera dated as upper Eocene to lower Oligocene (Saunders et al., 1985). 

Tuffaceous horizons and limestones are interbedded with these lithologies. The presence of 
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exotic volcanic lithic fragments of andesitic or basaltic composition and abundant plagioclase 

and pyroxene mineral grains, as well as tuffaceous horizons, indicates that igneous activity 

already occurred in the Eocene (Arculus, 1973). The pyroxene grains are very fresh 

suggesting penecontemporaneous volcanic activity (Saunders et al., 1985) which corresponds 

to the activity of the older Lesser Antilles arc (Arculus, 1973).  

Miocene to Recent volcanic rocks were erupted from several centers which overlie the 

Paleogene sedimentary basement of the Tufton Hall Formation. These volcanic rocks include 

basanitoids, alkalic (strongly silica-undersaturated) and subalkalic basalts, andesites and 

dacites (Arculus, 1976; 1978; Devine, 1987; 1995, Thirlwall et al., 1996; Stamper et al., 

2014). The mineralogy and petrology of the Grenada volcanic rocks represent an unusual 

combination of alkalic and calc-alkaline (cf. Arculus, 2004) features with abundant highly 

magnesian and silica-undersaturated basalts. Two distinct basaltic series have been identified: 

the M-series for microphyric basalts and the C-Series for ankaramitic basalts (Thirlwall and 

Graham 1984). The low Sr M-series (basalt-andesite-dacite suite) is characterized by MgO 

contents higher than 10 wt.% in the mafic parental magmas, and by its olivine–microphyric 

character. The M-series contains ultramafic xenoliths included in alkali basalt, and these are 

among the rare global occurrences of peridotite in island arcs (Parkinson et al., 2003). 

Associated with the M-series basalts is a chemically contiguous suite of high-SiO2 basalts and 

basaltic andesites whose compositions converge with the evolved products of the C-series 

(Thirlwall et al., 1996; Stamper et al., 2014). 

The C-series is characterized by parental high-Sr, ankaramitic basalt, with higher CaO 

abundances at any given MgO content than any other volcanic suite in the arc, and is strongly 

clinopyroxene–phyric (see Schiano et al., 2000 for review). These rocks have more radiogenic 

Nd and less radiogenic Sr and Pb than the M-series (Hawkesworth et al., 1979). 

Differentiation of C-series basalts also produced andesites and dacites (Thirlwall et al. 1996). 

The compositional variation within the C-series is dominated by fractional crystallization of 

augite and plagioclase (Thirlwall and Graham 1984). 

The absolute age of the rocks in Grenada is not well known and is based on only a limited 

number of K-Ar and 
39

Ar-
40

Ar analyses (Geotermica Italiana, 1981; Speed et al., 1993 and 

summarized in Robertson, 2005 with source data from Briden et al., 1979). The oldest 

reported age of 21.2±1.0 Ma comes from an andesite dome at Mt Craven north of the island 

(Fig. 2; Briden et al., 1979) whereas the youngest age (1.6±1.4 Ma) comes from a dacite north 

of Gouyave (Fig. 2).  
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2.2. Carriacou and Petite Martinique 

Carriacou, with a surface area of c. 32 km
2
 and elevations of up to 290 m, is located 30 km 

north of Grenada (Fig. 2). The island is composed of a succession of volcanic and 

sedimentary rocks that range in age from Eocene to Pleistocene (Jackson et al., 2008; 

Donovan et al., 2003; 2013). The oldest rocks on Carriacou (based on paleontological 

evidence) are late Eocene to early Oligocene in age and include the Belvedere (sample GR45) 

and Anse la Roche formations and the Cherry Hill and Bogles units (Speed et al., 1993; 

Donovan et al., 2003). The Belvedere and Anse la Roche formations are synchronous in part 

and have a similar range of lithologies: well-bedded interstratified pelagic and turbiditic 

volcanogenic rocks. The two units are juxtaposed by the Bogles thrust (Speed et al., 1993).  

Miocene volcanic and sedimentary rocks are more widespread on the island and are 

separated from the Paleogene succession by an angular unconformity (Jackson et al., 2008; 

Donovan et al., 2003). The predominantly subaerial volcanism during this period produced 

mainly pyroclastic deposits containing ejected plutonic blocks, with minor lava flows, dome 

lavas and dykes. Briden et al. (1979) reported whole-rock K-Ar ages ranging from 18.1 to 

2.87 Ma for these rocks.  

The volcanic rocks have been divided into six units based on differences in their 

phenocryst assemblages (Caldwell et al., 1984). Their composition ranges from basalt through 

basaltic andesite to andesite with island arc tholeiitic affinity and minor occurrences of calc-

alkaline rocks (Jackson et al., 2008; Caldwell et al., 1984). The chemical composition of the 

basaltic rocks is similar to that of M- and C-series basalts in Grenada (Arculus 1976; Jackson 

1980). Contemporaneous volcanic-derived sedimentary rocks are also present on the island, 

the Grand Bay Formation (sample GR42) being the youngest Miocene unit (Fig. 2). The 

Grand Bay Formation consists mainly of volcanic-derived conglomerate, sandstone and 

siltstone. Microphyric basalt dykes intruded the older sedimentary and volcanic sequences 

during the late Miocene. These dykes appear to have originated from centers located in Petite 

Martinique, ~ 4 km east of Carriacou (Fig. 2), and Saline, ~1.5 km to the south. The geology 

and stratigraphy of Carriacou has been described in detail by Caldwell et al. (1984), Jackson 

et al. (2008) and Donovan et al. (2003; 2013). 

Petite Martinique has a surface area of 2.37 km
2
. It is dominated by a 230 m summit in the 

center, formerly part of a volcanic cone. Apart from the geochemistry of one sample 

(WPM255) reported by Jackson (1980), little is known about the geology of the island. Photos 

of the collected rock types are included in the Supplementary Material A (Fig. SM 1). 
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3. Methodology 

3.1.Samples analyzed 

Grenada, Carriacou, and Petite Martinique were sampled systematically for lithologies 

ranging from basalt to dacite and volcanic-derived sedimentary rocks. In addition, sand 

samples were collected and panned locally for heavy minerals in riverbeds and on beaches 

(Tables S1 and S2 of the Supplementary Material). The use of sand samples derived from 

volcanic rocks avoids potential contamination from rock-crushing equipment. Eleven sand 

samples were obtained from Grenada and three from Carriacou. Of the zircon grains 

recovered from sands, more than 300 were analyzed (Table S3). We employed the panning 

technique in addition to whole-rock sampling to ensure that xenocristic zircon found in the 

rocks was also present in sand samples, excluding laboratory contamination as its source. 

Similar techniques have been applied successfully in Mauritius (Torsvik et al., 2013) and 

Indonesia (Sevastianova et al., 2011). 

Fifty-three samples were collected on the three islands. In the following list, the underlined 

and bold labels correspond to sediments and volcanic-derived sediments. Twelve samples 

from Grenada (GR1, GR5, GR6, GR7, GR12, GR13, GR14, GR15, GR16, GR23, GR24, 

GR30), two from Carriacou (GR42, GR45), and two from Petite Martinique (PM2a, 2b) 

contain zircon (see Table S1 and Fig. 2 for description and sample location). In the main text 

below we focus on, and describe, the rocks containing zircon, although information on the 

location and composition of the remaining samples is summarized in Supplementary Tables 

S4 and S5. 

 

3.2.Analytical methods 

Rock samples about 1 to 2 kg in weight were crushed to a grain size of ~ 250 µm using a 

jaw crusher and roller mill. A heavy mineral fraction was then produced by panning with 

water and using a Frantz magnetic separator. The final heavy mineral concentrate (mostly 

zircon and apatite) was obtained by panning with water and alcohol in the Beijing SHRIMP 

Center, China. About 100 g of the homogenized coarse material from each of the 12 zircon-

bearing igneous samples from Grenada and Petite Martinique (no igneous sample from 

Carriacou contained zircon) were powdered in a Siebtechnik tungsten carbide mill for 

chemical and whole-rock isotopic analysis. Whole-rock major and trace element 

concentrations were determined by X-ray fluorescence spectrometry (XRF) on fused glass 

beads and pressed powder pellets and by laser ablation-inductively coupled plasma-mass 

spectrometry (LA-ICP-MS) in the Institute for Geosciences, University of Mainz. Whole-rock 
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Rb-Sr and Sm-Nd isotopic analysis were carried out at the CIC (Centro de Instrumentación 

Científica) of the University of Granada, Spain.  

The analytical techniques are described in detail in the Supplementary Material B. In 

summary, the zircon grains were analyzed using secondary ion mass spectrometry (SIMS) and 

LA-ICP-MS. The SIMS measurements were conducted on SHRIMP II instruments at the 

Beijing SHRIMP Center and the Research School of Earth Sciences, Australian National 

University. All samples younger than 2 Ma (GR5, GR12, GR14, GR15, GR16, GR24) were 

dated using the SHRIMP II in both Beijing and Canberra. The dates measured on both 

instruments were very similar, but the Canberra data were more precise because a much 

higher primary beam intensity and larger spot size were used, yielding higher count rates.  

The zircon analytical data are summarized in Tables 1–4 and are plotted on concordia 

diagrams in Figs. 3-5. U-Pb dates were also measured by LA-ICP-MS at the Institute of 

Geosciences, University of Mainz, and the Natural History Museum, London. Hf-in-zircon 

isotope compositions and REE abundances were measured in situ, mostly on dated grains, at 

the LA-ICP-MS facility at Mainz University, and at the MC-LA-ICP-MS laboratory in the 

Department of Earth Sciences, The University of Hong Kong, China, respectively. U-Pb 

dating and trace element analyses of the detrital zircon grains recovered from beach and river 

sands were conducted simultaneously by LA-ICP-MS at the Institute of Geology and 

Geophysics, Chinese Academy of Sciences, Beijing, China. 

 

3.3. U-Pb dating of zircon grains younger than 2 Ma: corrections for U-series disequilibrium 

and initial 
230

Th. 

It takes more than 2 Ma for the 
238

U decay chain to reach isotopic equilibrium, so any dates 

based on the measured 
206

Pb/
238

U in zircon of that age or younger must be corrected for U-

series disequilibrium. Corrections are also required for initial 
230

Th, a parent isotope of 
206

Pb 

present in all Th-bearing minerals. A simple procedure for correcting measured Pb/U dates for 

initial 
230

Th was proposed by Schärer (1984). The relative amount of disequilibrium 
230

Th was 

defined by the degree of Th-U fractionation between mineral and magma as a factor f, where 

f = (Th/U)mineral / (Th/U)melt. The relationship between the measured 
206

Pb/
238

U and age (t) is 

thereby: 

206
Pb/

238
U = (e

238t
 - 1) + 238/230 * (f - 1) 

A more rigorous relationship that takes into account the ingrowth of 
230

Th was proposed by 

von Quadt et al. (2014), based on the work of Sakata et al. (2013). 
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206
Pb/

238
U = (e

238t
 - 1) + 238/230 * (f - 1) * (1 - e

-230t
) * e

238t
 

As good as these approximations are, neither takes into account disequilibrium in the other 

relatively long-lived intermediate daughter products in the 
238

U decay chain, namely 
234

U (t½ 

= 245.6 ka) and 
226

Ra (t½ = 1.6 ka). For very young samples, such as those included in the 

present study, both have a significant effect in slowing the ingrowth of radiogenic 
206

Pb, 

leading to a potential underestimation of ages calculated from 
206

Pb/
238

U. 

For the present work, the effects of U-series disequilibrium were calculated from first 

principles using the equations of Bateman (1910). In doing so it was assumed that the U 

incorporated into the zircon was in 
238

U-series equilibrium and that the Th/U of the melt from 

which the zircon crystallized was the same as the Th/U of the host rock, a reasonable 

assumption given the high melt fraction that would have been present in the erupted magmas. 

For detrital zircon, the melt Th/U was assumed to be the average Th/U of all analyzed rock 

samples from Grenada. The Th-U fractionation between mineral and magma (f) was 

calculated separately for each analyzed spot before the correction for initial 
230

Th and U-series 

disequilibrium was applied. The results were then compared with those given by the 

correction procedures recommended by Schärer (1984) and von Quadt et al. (2014). Broadly 

speaking, for a normal zircon Th/U of 0.5, the three methods were in close agreement for 

dates > 800 ka. For ages <800 ka, the Schärer (1984) result became increasingly divergent 

from the other two, and only below 300 ka did the von Quadt et al. (2014) result and ours 

deviate by more than 1%, a measure of the accuracy of the von Quadt et al. (2014) 

approximation.  

 

4. Results 

The petrology, mineralogy, as well as whole-rock and isotope geochemistry of Grenada 

lavas have been extensively described by Arculus (1973, 1976, 1978), Shimizu and Arculus 

(1975), Hawkesworth et al. (1979), Thirlwall and Graham (1984), Devine (1987, 1995), 

Stamper et al. (2014) and O’Neill (2016), whereas there are more limited data for Carriacou 

by Jackson (1980), Caldwell et al. (1984) and Caldwell (1983). There are no published 

petrological-geochemical data for rocks from Petite Martinique.  

 

4.1. Whole rock geochemistry 

4.1.1. Major and trace elements (Grenada and Petite Martinique) 
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Most of the dated lavas contain 54–60 wt.% SiO2, 0.39–0.90 wt.% TiO2, 16–18 wt.% 

Al2O3 and of 1.3–11 wt.% MgO (Grenada) and 13 wt.% MgO (Petit Martinique) (Table S6). 

The sample compositions partly overlap the IUGS alkaline-subalkaline discriminant boundary 

(Le Bas et al., 1986), but most can be classified as subalkaline/tholeiitic dacite (GR13, PM2a), 

andesite (GR1, GR5, GR6), tuffogenic basalt (GR6), trachy-andesite (PM2b), basaltic 

andesite (GR12, GR14, GR15, GR23, GR24), and basalt (GR16) (Fig. 6). The chondrite-

normalized (N) REE patterns are similar for all samples and are characterized by slight 

enrichment in the light rare earth elements (LREE). (La/Yb)N ranges from 2 to 17 with higher 

(La/Yb)N in samples from Petite Martinique (PM2a, PM2b, 30–46). The REE patterns are 

characterized by the absence of Eu anomalies (Eu/Eu* = 0.9–1.1; Figs. 7a, c, e; Table S6). 

The absence of a negative Eu anomaly, despite abundant evidence for fractionation of 

plagioclase in the genesis of evolved magmas from basaltic parents on Grenada, indicates 

crystallization under highly oxidizing conditions with an absence of Eu
2+

 (see also Stamper et 

al., 2014, and discussion below of chondrite-normalized REE abundance patterns for zircon). 

Primitive mantle-normalized multi-element plots show an enrichment in slab-derived 

elements such as Th, variably in Pb and Sr relative to the LREE, and negative concentration 

anomalies in the high-field strength elements (HFSE) Nb and Ti (Figs. 7b, d, f). Some 

samples have a small negative Ce anomaly. In general, these chemical characteristics are 

consistent with melting of subduction-modified mantle involving fluids and/or melts from a 

dehydrating slab (Münker et al., 2004). A melted sedimentary component (Johnson and Plank, 

1999) in these samples is suggested by the Th/Nb ratios ranging from 0.44 to 2.16 (Table S6) 

when compared to a ratio of ~ 0.05 in basalt derived from the depleted asthenospheric mantle 

(Hofmann, 1988). In addition, the Th/Yb vs Ba/La plot (not shown) indicates that, with one 

single exception, the magmas from where our samples are derived contain a larger sediment 

component than most of the rocks from the Soufrière Volcanic Complex (SVC; Saint Lucia; 

Fig. 1a) studied by Bezard et al. (2015). This would indicate an even larger continental 

component containing fluid mobile elements which is not a feature expected if subducted 

sediments, from which fluid mobile elements had escaped, were the contaminant. On the 

other hand, high Ce/Pb ratios (12–74), except for three samples (5–9), are unlike most arc 

magmas (Ce/Pb ~ 4; Hofmann et al., 1986), indicative of muted development of positive Pb 

spikes in samples containing zircon (Fig. 7). Some samples however, display a negative Pb 

anomaly and correspond to samples that do not contain zircons (Fig. 7b) 

4.1.2. Whole rock isotopic (Sm-Nd and Rb-Sr) systematics and model ages 
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Whole-rock Sm-Nd and Rb-Sr isotopic analyses were carried out at the University of 

Granada (Spain). The analytical procedures are described in Supplementary Material B. Sm-

Nd and Rb-Sr concentrations as well as Nd isotopic compositions for 9 samples are listed in 

Table S7 together with the initial εNd-values (εNd(t)). The samples exhibit a narrow spectrum of 

εNd(t)-values from +2.3 to +4.7 in rocks younger than ~ 5 Ma; sample GR6 from the Tufton 

Hall Formation (32 Ma) has an initial εNd-value of -0.3. The samples have low 
147

Sm/
l44

Nd 

(0.1093–0.1690), and initial 
87

Sr/
86

Sr ranges from 0.70555 to 0.70439 (Fig. 8). The Th/Nb 

ratios and LREE-patterns are consistent with variable proportions of recycled sediment in 

these samples, and the low initial εNd(t)-values are consistent with involvement of terrigenous 

material (Carpentier et al., 2009). Curiously, the samples that contain old zircon (GR15, 

GR16 and GR23) have slightly higher whole-rock initial εNd(t) (3.95, 4.54 and 4.73, 

respectively) than similar samples without old zircon. We suggest that the Nd whole-rock 

isotopic system is not affected by old/inherited zircon because zircon contains virtually no 

Nd. 

 

4.2.  U–Pb zircon geochronology and cathodoluminescence images 

Previous isotopic age measurements on rocks from Grenada, all by the K-Ar whole-rock 

method, have been summarized by Robertson (2005). The ages range from 0.98 ± 0.10 to 21.2 

± 1.0 Ma and are mainly from fresh olivine basalt, some andesites and two dacite samples. 

Multiple episodes of volcanism have been recognized in Grenada, Carriacou and Petit 

Martinique, so the presentation and discussion of zircon dates measured in the present study is 

divided by age range: ~ 0.2–1 Ma, ~4–6 Ma, ~12–16 Ma, ~30–34 Ma and zircon older than 

40 Ma and xenocrysts (with dates ranging between 45.7 ± 1.6 and 3442 ± 42 Ma). Following 

the recommendations of Black and Jagodzinski (2003) all dates < 1100 Ma were calculated 

from 
206

Pb/
238

U, whereas older dates were based on 
207

Pb/
206

Pb. 
207

Pb/
206

Pb dates calculated 

from discordant analyses are minimum age estimates. 

 

4.2.1. Very young magmatic zircon ages ~0.2–1 Ma (GR5, GR12, GR14, GR15, GR16, GR24, 

SAND1 to SAND14) 

Most of the very young zircon grains are pink in color, elongate prismatic, with sharp or 

slightly rounded pyramidal terminations, but stubby grains also occur. The CL images (Fig. 

9a and Supplementary Figures SM 2 to 15) are predominantly light to medium gray, 

suggesting relatively low-U contents. Zoning is ubiquitous and ranges from concentric, 

oscillatory, to striped or patchy. Some grains have an irregular distribution of dark and light 
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domains under CL, presumably due to recrystallization, and such domains were not analyzed. 

Some grains in basalt sample GR12 show broad sector zoning, possibly indicative of 

crystallization at high temperature (Fig. 9a). 

For comparison and quality control all these samples were analyzed using the SHRIMP II 

instruments in both Beijing and Canberra. In both laboratories the results are very similar 

within errors. The youngest sample from the island comes from an andesitic lava flow near 

Mount St. Catherine (GR5; Fig. 2). Forty-eight zircon grains were analyzed (Tables 2 and 3) 

and yielded a mean 
206

Pb/
238

U crystallization age of 230 ± 4 ka (Fig. 3a; Canberra) and 245 ± 

13 (Beijing). Samples GR14, GR15 and GR16 come from a nearby locality north of St. 

George’s (Fig. 2). Analysis of 10 grains from sample GR14, 6 grains from sample GR15, and 

16 grains from sample GR16 yielded similar mean ages in both laboratories of ~580, ~570 

and ~560 ka respectively (Fig. 3b; Tables 2 and 3). Ten grains analyzed from sample GR24, 

collected near Mount Qua Qua (Fig. 2) also yielded a mean age of ~580 ka (Fig. 3b; Tables 2 

and 3) which indicates that all these samples are part of the same episode of middle 

Pleistocene magmatism. The SHRIMP dates for 17 zircon grains from sample GR12, 

collected in the southeast of the island, yielded a mean age of ~1030 ka (Tables 2 and 3). In 

Carriacou only a few grains (11 out of 76) of those recovered from the three beach sands 

(SAND 8-10) are younger than 2 Ma (Table S3). In contrast, zircon with dates less than 2 Ma 

(217 out of 297; Table S3) predominates in Grenada. 

 

4.2.2. Ages of ~4–6 Ma (GR1, GR13)   

Dacite samples GR1 and GR13 from Grenada (Fig. 2) contain mostly short- to long-

prismatic zircons, commonly with slightly rounded pyramidal terminations. The CL images 

reveal poorly to well-developed igneous zonation, mainly represented by concentric 

oscillatory zoning (Fig. 9b). Many grains have dark cores under CL with very low 

luminescence (high-U), surrounded by highly luminescent zones (low-U). In some grains this 

alternation is repeated several times. Some grains with irregular and patchy interiors, probably 

due to metamictization, were not analyzed. The SHRIMP 
206

Pb/
238

U analyses (Beijing 

laboratory) for seven zircon crystals analyzed from GR1 are concordant and give dates 

ranging from 4.53 ± 0.20 to 5.16 ± 0.27 Ma (Table 1a) with a weighted mean age of 4.92 ± 

0.22 Ma (Fig. 3c). These are interpreted to record igneous crystallization at the time of lava 

formation.  

Four grains analyzed from sample GR13 yielded concordant 
206

Pb
238

U dates between 4.13 

± 0.17 and 4.46 ± 0.18 Ma (Table 1a) with a weighted mean age of 4.24 ± 0.28 Ma (Fig. 3d), 
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close to the age of GR1 and interpreted to record the same volcanic event. A small number of 

zircon grains from sand samples SAND 1, 7 and 10 from Grenada (Fig. 2) also record this 

event (Table S3). These ages may correspond to previously reported K-Ar whole-rock ages of 

3.56–3.77 Ma (Robertson, 2005).  

 

4.2.3. Ages of ~12–16 Ma (PM2a, PM2b, GR42)  

Ages in the range 12–16 Ma (Beijing and London laboratories) were only obtained for 

zircon from volcanic-derived sandstone sample GR42 (Carriacou, Fig. 2) and andesite 

samples PM2a and PM2b (Petite Martinique, Fig. 2). The zircon grains are euhedral and 

prismatic in shape with well-developed concentric oscillatory or banded zoning (Fig. 8c). 

Seven grains from sample PM2a produced well-grouped results with a weighted mean age of 

12.8 ± 0.1 Ma (Table 1a, Fig. 3e). Sample PM2b was measured by using both the SHRIMP 

and LA-ICP-MS techniques (Fig. 3f, 4a). Six grains were analyzed by SHRIMP and provided 

consistent and concordant analyses giving a mean 
206

Pb/
238

U age of 12.7 ± 0.1 Ma (Table 1b) 

whereas concordant analyses from seven additional grains analyzed by LA-ICP-MS gave a 

mean age of 14.1 ± 0.1 Ma (Table 4). These results are significantly different from each other 

and may reflect incorrect common Pb correction in the ICP_MS analyses. 

Four grains from Carriacou (GR42) yielded well grouped and concordant LA-ICP-MS 

dates of 15 ± 1 to 16 ± 1 Ma (Table 1b), provinding a weighted mean age of 15.57 ± 0.48 Ma 

(Fig. 4b). The presence of fossils in this sample (Paleonummulites dius (A), Nummulitidae, 

Amphistegina angulate, Amphistegina sp, Planogypsina sp (1 specimen), Globigerina spp and 

fragments of algae and sea urchins) indicate an early Miocene age for the unit, consistent with 

the zircon ages. 

In view of the zircon morphology, CL images and the consistent ages, we interpret these 

data to reflect a volcanic event on Carriacou and Martinique that apparently contributed little 

zircon-bearing lava to Grenada, where it is only recorded by a few dates measured on sand-

derived zircon in samples SAND 7 (10.8 ± 0.5 Ma), SAND 9 (12.4 ± 0.4 Ma), and SAND 10 

(12.0 ± 0.4, 12.2 ± 0.2, 12.9 ± 0.3, and 12.7 ± 0.2 Ma) (Table 4). There is also a K-Ar age of 

14.0 ± 0.4 Ma for an olivine basalt from Grenada (Richardson, 2005). It is most likely that 

these zircons reflect volcanism assigned to the Miocene Grand Bay Formation (Robinson and 

Jung, 1972). 

 

4.2.4. Ages of ~27–34 Ma (GR6, GR7, GR45)  
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Zircon ages in the range 27–34 Ma (Beijing, London and Mainz laboratories) were 

obtained from a tuff and a volcanic-derived sandstone on Grenada (GR6 and GR7) and from a 

foraminiferal sandstone on Carriacou (GR45). The samples from Grenada were collected 

from the flank of Mount St. Catherine and belong to the Tufton Hall Formation, whereas the 

Carriacou sample comes from the Belvedere Formation. The zircon grains are predominantly 

long-prismatic, but stubby crystals also occur, and many grains have slightly rounded 

terminations. The CL images are similar to those from samples GR1 and 13, the zircon having 

concentric oscillatory zoning predominating, but banded zoning is also found (Fig. 8c). Grains 

with irregular zoning are rare and were not analyzed.  

SHRIMP analysis of 5 grains from sample GR6 and 9 grains from sample GR7 yielded 

homogeneous groups of slightly different but concordant dates, ranging from 30.5 ± 1.1 to 

32.2 ± 1.1 Ma, with a weighted mean age of 32.0 ± 0.5 Ma, in sample GR6 (Table 1, Fig. 4c) 

and from 33.0 ± 1.3 to 35.7 ± 1.4 Ma, with a weighted mean age of 34.3 ± 0.4 Ma in sample 

GR7 (Table 1, Fig. 4d). Three detrital grains measured by LA-ICP-MS (London) from sample 

GR45 yielded a mean age of 34.0 ± 0.6 Ma (Fig. 4e) suggesting derivation from a 

homogeneous source. Furthermore, thirteen detrital grains from sample GR45 measured by 

LA-ICP-MS at Mainz University yield dates ranging from 26.9 ± 1.1 to 34.4 ± 1.7 (Table 4, 

Fig. 4f). These ages are similar to the upper Middle Eocene age determined by the fossil 

association in the sample (Subbotina corpulenta, S. aff jacksonensis, Globigerinatheka spp, 

Chiloguembelina sp, Turborotalia sp, Dentoglobigerina sp). These are the oldest results 

reflecting late Eocene-early/late Oligocene volcanism in Grenada, and there are no 

corresponding K-Ar data. The most abundant zircon populations recovered from beach and 

river sands in Grenada correspond to this age interval (~ 33 Ma; n: 26), whereas only one 

grain of this age was recovered on Carriacou. 

 

4.2.5. Zircon older than 40 Ma and xenocrysts  

Zircon xenocrysts (in magmatic rocks) and exotic detrital zircon (in sand samples) are 

most abundant in samples GR23 and GR30 from Grenada, and samples GR42, GR45, SAND 

9 and SAND 10 from Carriacou (Tables S3, 1, 4; Fig. 5), but occasional old grains also occur 

in other samples. The measured dates range from 45.7 ± 1.6 (SAND 9) to 3469 ± 41 Ma 

(GR30) and are now described from young to old. 

In terms of their morphology and CL images (e.g. Fig. 9d), much of the zircon aged 40–

160 Ma is indistinguishable from the magmatic zircon derived from crystallization during 

volcanic events in the southernmost Lesser Antilles. Zircon from sands is more difficult to 
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interpret because the morphologies and CL images of detrital grains are generally more 

variable than in samples of volcanic origin, and rounding through mechanical transport can 

obscure the original morphology. The youngest grains are just slightly older than zircon 

reflecting the 33–34 Ma volcanic event and only occur in Carriacou in sample SAND9 (41.8–

61.4 Ma, Fig. 2; Table S3). These may reflect early Paleocene-middle Eocene volcanism 

whose volcanic products are concealed by the younger flows, and the zircon may have been 

picked up during ascent of the younger lavas or, alternatively, it might have been transported 

in pumice by currents. Volcanic rocks with a K-Ar age of ~45 Ma, for example, are exposed 

on the Los Testigos islets west of Grenada (Santamaria and Schubert, 1974). Moreover, 

middle Eocene pillow basalt (Mayreau Basalt, Anse Bandeau Formation, Cherry Hill Basalt) 

occurs north of the island (Speed et al., 1993). 

One Late Jurassic detrital grain was found in sample SAND9 (159.1 ± 3.7 Ma). Its origin is 

difficult to establish because of a lack of comparable ages in this part of the Lesser Antilles. 

However, Late Jurassic volcanic rocks on La Désirade, ~200 km north of Grenada (Mattinson 

et al., 2008), point to the (partial) existence of Mesozoic proto-arc basement in (some of) the 

Lesser Antilles. Xie and Mann (2014) measured detrital zircon ages in Cenozoic clastic 

sedimentary rocks of Trinidad, 250 km south of Grenada, and also found relatively rare 

Jurassic grains with LA-ICP-MS
 206

Pb/
238

U ages of 150-194 Ma (see their Tables 3 and 4, 

samples S4 and S5). Goldstein et al. (1997) reported 49 SHRIMP-derived detrital zircon ages 

for a sand sample collected in the lower Orinoco River in Venezuela and also found rare 

Jurassic grains that presumably come from the Andes. 

Volcaniclastic sample GR45 from Carriacou contains 2 zircon grains with dates of ~220 

Ma (Fig. 4d), and a xenocrystic grain dated at 246 ± 8.5 Ma was recovered from dacite 

sample GR23 from central Grenada (Fig. 4e). This Triassic zircon is also difficult to interpret 

because rocks of this age are not known from the region. Xie and Mann (2014) found rare 

Triassic zircon in their survey of Trinidad sediments, but grains of such age were not found in 

the Orinoco sand investigated by Goldstein et al. (1997). One late Carboniferous zircon found 

in SAND9 from Carriacou (315.9 ± 8.2 Ma) may also be derived from sources similar to 

those suggested by Xie and Mann (2014) for rare zircon of similar age from Cenozoic clastic 

sediments in Trinidad. A few Carboniferous detrital zircon grains were also reported by 

Goldstein et al. (1997) from an Orinoco sand sample.  

Late Ordovician to early Silurian zircon dates are more common in our Grenada samples, 

occurring in samples GR23 (427–458 Ma, Fig. 5a) and GR15 (410 ± 14 Ma). Detrital zircon 

grains with such ages also occur in Cenozoic sediments of Trinidad (Xie and Mann, 2014) but 
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were not reported from the Orinoco River. Only 3 Neoproterozoic zircon grains were found in 

our xenocrystic and detrital populations—those are from Grenada andesite sample GR23 (778 

±2 6 Ma; Fig. 5a) and Carriacou SAND10 (561 ± 8 and 659 ± 11 Ma). Such grains are more 

abundant in the Trinidad sediments (Xie and Mann, 2014), and rare early Neoproterozoic 

zircon also occurs in the Orinoco sand sample of Goldstein et al. (1997).  

Considerably older zircon is more abundant in our samples, in line with the findings of Xie 

and Mann (2014) for Trinidad sediments and the Orinoco sands of Goldstein et al. (1997). A 

first group seems to characterize a Grenville-age or slightly older source and is represented by 

grains in the following samples from Carriacou: 4 grains from GR42 (1155 ± 41, 1358 ± 48, 

1387 ± 52, 1400 ± 49 Ma; Fig. 5d), one grain in SAND9 (1032 ± 21 Ma) and 3 grains in 

SAND10 (1131 ± 30, 1221 ± 34, 1353 ± 35 Ma). Similar ages, clustering at 0.9–1.4 Ga, were 

reported by Xie et al. (2010) from Trinidad sediments and the Orinoco sand sample of 

Goldstein et al. (1997). These grains are possibly derived from an Andean source (Xie and 

Mann, 2014). 

Two grains are slightly older and represent a late Mesoproterozoic early Paleoproterozoic 

period in which magmatic events are rare in the region. One xenocryst was found in andesite 

sample GR23 (1634 ± 8 Ma), and the other is a detrital grain in SAND10 from Carriacou 

(1544 ± 50 Ma). Such ages were also discovered in the Trinidad sediments (Xie et al., 2010; 

Xie and Mann, 2014) and in the Orinoco sand. Xie and Mann (2014) speculated that they may 

reflect magmatism in the northern part of the Guyana Shield.  Indeed, there are abundant 

Mesoproterozoic rapakivi-type granites in both the Guyana and Amazon cratons (for details 

see Dall’Agnol et al., 1999), and these could have been the source for zircon of the same age 

on Grenada. 

A few late Paleoproterozoic detrital dates almost certainly reflect derivation of zircon from 

the Guyana Shield (Théveniaut et al., 2006 and references therein; Vanderhaeghe et al., 

1998). These rare detrital grains occur in samples SAND9 (2036 ± 44 Ma) and SAND10 

(1964 ± 23, 2065 ± 22 Ma). Such dates are more abundant in the Trinidad sediments and also 

in the Orinoco sand sample of Goldstein et al. (1997). We found only one xenocrystic zircon 

of middle Paleoproterozoic age in andesite sample GR23 (2218 ± 8 Ma). Such ages are very 

rare in the Orinoco sand and in the Trinidad sediments referred to above. Derivation from the 

Guyana Shield is most likely. Finally, we found several Archaean xenocrystic and detrital 

zircon grains, and some of these are much older than in the Orinoco sand and in the Trinidad 

sediments. Sample GR42 from Carriacou contains a late Archaean xenocryst (2692 ± 38 Ma), 

whereas sample SAND10 contained two detrital grains at 2682 ± 18 and 2731 ± 28 Ma. Late 
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Archaean zircon ~ 2.8 Ga in age was also found in the Orinoco sand (Goldstein et al., 1997), 

and 3 grains were reported from the Trinidad sediments (Xie and Mann, 2014), most likely 

derived from the Guyana Shield. The two oldest detrital grains were found in sample GR30, a 

pyroclastic tuff from central Grenada (Fig. 2). It yielded concordant or near-concordant 

207
Pb/

206
Pb dates of 3442 ± 42 and 3469 ± 41 Ma respectively (Fig. 5c). The oldest zircon 

found in the Trinidad sediments was 3253 ± 16 Ma (Xie and Mann, 2014). Nadeau et al. 

(2013) reported several Paleoarchaean as well as one Hadean zircon xenocryst from 

Paleoproterozoic felsic volcanic rocks of the Kanuku Complex in the southern Guyana Shield 

and postulated the existence of a Hadean- to Archean crustal domain at depth. It is possible 

that our two oldest zircon grains also reflect this ancient basement. 

 

4.3. Zircon Lu-Hf isotopes 

Lu-Hf isotopic analysis of dated zircon can help to constrain the relative contributions of 

juvenile crust (derived from the mantle) and continental crust in the crystallization of this 

mineral (e.g., Belousova et al., 2006). Initial 
176

Hf/
177

Hf ratios significantly above those 

predicted by the chondritic mantle evolution model (i.e. positive Hf(t)-values) generally 

indicate a juvenile input from the depleted mantle, such as is generated during subduction-

induced island arc magmatism, or melting of relatively young mantle-derived mafic 

(underplated?) lower crust.  

Negative Hf(t) values generally provide evidence for magma and zircon derived through 

melting of old (or recycled) continental crust, whereas intermediate values around zero may 

be indicative of magma and zircon formation from mixing of old crust and depleted mantle-

derived material. Significant variations in the Hf isotopic composition of zircon from the 

same igneous rock usually indicate a heterogeneous source and/or magma mixing in the 

production of a pluton (Belousova et al., 2006; Kröner et al., 2014; Tang et al., 2014). 

The samples selected for Hf isotopic analysis were representative of the very young zircon 

generations (GR5, 240 ± 12; GR12, 1020 ± 28 ka), as well as of the ~ 5 Ma generation (GR1) 

and the ~ 32 Ma age group (GR6). Each of these can be related directly to zircon 

crystallization during Grenada arc volcanism. In addition, Hf isotopes were analyzed in 

xenocrystic zircon from andesite sample GR23. All these analyses (Table S8, Fig. 10) were 

performed by LA-ICP-MS in Hong Kong. The analytical procedures are described in the 

Supplementary Material B.  
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All zircon directly related to arc magmatism has similar isotopic features, i.e., its Hf(t) 

values are positive and thus seem to reflect derivation from a predominantly juvenile depleted 

mantle source, as would be expected in an intra-oceanic arc, and from the majority of the 

whole-rock Sm-Nd isotopic data (Dhuime et al., 2011). Individual Hf(t) values vary 

considerably however, indicating significant Hf isotopic heterogeneity in the juvenile zircon 

source. Zircon grains from sample GR5 exhibits relatively little variation in Hf(t) values, 

between just under 5 and 7.5 (Table S8, Fig. 10a), zircon from sample GR1 is more 

heterogeneous (Hf(t) between 2.5 and 8: Table S8, Fig. 10a), and zircon from the ~32 Ma 

generation in sample GR6 is the most heterogeneous of all (Hf(t) between 4.2 and 13.9: Table 

10, Fig. 10b). A similar range in whole-rock Sm-Nd Nd(t) values has been reported by 

Dhuime et al. (2011) for the Lesser Antilles arc.  

In contrast, the xenocrystic zircon grains, have a wide range of Hf(t) values between -16 for 

a ~ 200 Ma grain and 0 for a ~ 1.4 Ga grain (Table S8, Fig. 10c). These grains predominantly 

reflects a crustal history, although two of the old zircon from our study may also suggest 

involvement of a juvenile source (Fig. 10c). 

 

4.4. Zircon trace element composition 

The trace element composition of zircon is helpful for the reconstruction of magmatic 

histories and fingerprinting of magma sources (Grimes et al., 2007; Burnham and Berry, 

2012). For this study this has proved to be a useful tool in differentiating between different 

types of magma generated by Grenada volcanism through time. The trace element data were 

collected by LA-ICP-MS (Mainz laboratory) from the same (or adjacent) CL-domains used 

for SHRIMP analysis. For the sand samples (SAND1 to 14), U-Pb dating and trace element 

analyses were conducted simultaneously by LA-ICP-MS (Beijing laboratory; Table S9). 

Chondrite-normalized REE values are plotted by age range in Fig. 11.  

 

4.4.1. <2.0 Ma and 5–20 Ma (Recent arc) 

The younger Lesser Antilles arc has been active since the early Burdigalian (22–19 Ma) 

(Bouysse et al., 1990 and references therein). Zircon in the < 2.0 Ma age range is the most 

abundant in Grenada, less so in Carriacou, and absent, most probably due to sampling bias, on 

Petite Martinique. More than 250 trace element analyses were obtained for zircon of this age 

group, and 40 for the 5–20 Ma age group (Figs. 11a, b). Both age groups mostly display 

similar REE patterns. The analyses show slight negative Eu anomalies (Eu/Eu* = 0.66–0.63; 
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Table S9), well-defined positive Ce anomalies, and a marked enrichment in HREE. These 

compositions are consistent with crystallization from very oxidized (~ 2 to 3 log10 orders fO2 

> synthetic nickel-nickel oxygen buffer) magmas in which Eu
2+

 was extremely limited in 

abundance (Trail et al., 2012; Burnham and Berry, 2012). 

 

4.4.2. ~27–56 Ma (Older arc) 

The older arc was active from the beginning of the early Eocene to the mid-Oligocene (30–

28 Ma) (Bouysse et al., 1990 and references therein). The REE signatures from zircon within 

this age range are markedly different from those of the younger arc and display two different 

patterns (Figs. 11c, d). The first pattern exhibits enriched HREE, moderately developed 

positive Ce anomalies and negative Eu anomalies (Eu/Eu* = 0.27; Table S9). The second 

pattern shows enrichment in a portion of the LREE, smaller to no Ce anomalies, and negative 

Eu anomalies (Eu/Eu* = 0.20; Table S9). Two older grains (~ 61 and 68 Ma) show the same 

signature as the second pattern. The combination of positive Ce and negative Eu anomalies in 

this zircon population indicates crystallization from magmas that were variably but 

considerably less oxidized than those of the younger southern arc.  

 

4.4.3. >150 Ma (up to ~2600 Ma) 

This group corresponds to xenocrystic grains not related to the arc of the Lesser Antilles. 

However, the REE signature is similar to the first pattern of the ~27–68 Ma group (Fig. 10c) 

with moderately developed positive Ce anomalies, negative Eu anomalies (Eu/Eu* = 0.27), 

and enrichment in HREE (Fig. 11e; Table S9). 

 

5. Discussion 

5.1.Paleogeographic constraints  

The Orinoco River drains the northern South American continent and is the main source of 

terrigenous sediment in the Lesser Antilles (Westbrook et al., 1984; Aslan et al., 2003). 

Sediments are derived from different source regions within its watershed, including the Andes 

to the west, the northern Venezuela coastal ranges, and the Guyana Shield. The geologic 

history of the Orinoco River is intrinsically related to the evolution of the southern Lesser 

Antilles since clastic sedimentary material entered the forearc basin from the south and the 

Antilles trench/Barbados accretionary prism from the east. Therefore in order to locate the 

provenance of the old/xenocristic zircon found in Grenada and Carricou the evolution of this 

river system must be assessed.  
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Previous studies suggested that a large north-northwest paleofluvial system drained 

through the present Maracaibo Basin (Venezuela) during pre-Oligocene times (Kasper and 

Larue, 1986; Hoorn et al., 1995; Escalona and Mann, 2006; Xie et al., 2010; Noguera et al., 

2011). Uplift of the Colombian Andes and the Merida Andes of Venezuela (western and 

central Cordillera, Fig. 12, including the northern Venezuela coastal ranges) deflected the 

paleofluvial system eastwards. The changing paleogeography from the early Eocene (~50 Ma) 

to Pliocene (~5 Ma), based on the work of Escalona and Mann (2011; see also Pindell et al., 

2005), can be used to reconstruct the evolution of the river system. Simplified versions of 

such maps, showing only key geologic features related to the magmatic evolution of the 

Cenozoic Antilles arc and the likely provenance of the old zircon grains are illustrated in Fig. 

12 and discussed in section 5.4. 

 

5.2. Age of arc magmatism in the southern lesser Antilles 

The single zircon U-Pb ages in the present study corroborate and define the age of arc-

volcanism in the southern Lesser Antilles (Grenada, Carriacou and Petite Martinique) and 

define an upper (late Eocene; ~34 Ma) and lower age limit (late Pleistocene; 241 ± 12 ka). 

Note that active (submarine) volcanism persists offshore of the north Grenada coast at 

Kick’em Jenny (Fig. 1b; Devine & Sigurdsson, 1995). Evidence for the oldest volcanic 

activity comes from zircon grains (~34–29 Ma) found in samples from the Tufton Hall 

(Grenada) and the Belvedere (Carriacou) Formations. Even though the sites of Eocene island 

arc rocks are unknown, the presence of zircon with almost the same age as the depositional 

age of the two units and of fresh pyroxene grains (Saunders et al., 1985) suggest igneous 

activity very close to the sedimentary basin (Fig. 12a). Paleogene magmatic rocks have been 

described north of Grenada (middle Eocene pillow basalt) and in Carriacou (upper Oligocene 

basalt of the Belvedere Formation), but such occurrences may not be a product of Paleogene 

arc magmatism, but of a spreading event related to the formation of oceanic lithosphere in the 

southern Grenada Basin (Speed et al., 1993). It is important to note that the REE signatures 

from zircon within this age range are markedly different from those of the younger (Neogene 

to late Pleistocene) zircon suggesting a different magmatic history.  

The occurrence of Neogene zircon grains in our samples point to local middle Miocene 

active subaerial volcanoes with volcanic centers located in and near Petite Martinique. From 

the Late Miocene to Late Pleistocene volcanic centers were particularly active, with the 

generation of copious magmatism.  
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5.3. Zircon xenocryst provenance in volcanic rocks of the southern Lesser Antilles 

The extent of subducted sediment input into the mantle wedge in the Lesser Antilles 

remains controversial (Devine, 1995; Thirlwall et al., 1996; Carpentier et al., 2008, Bézard et 

al., 2014, 2015); some authors argued that the sediment signature of lavas was acquired within 

the crustal portion of the overriding Caribbean plate during magma ascent rather than from a 

contaminated source in the mantle wedge (Thirlwall et al., 1996, Van Soest et al., 2002). 

Chauvel et al. (2012) suggested, however, that beneath the southern part of the Lesser Antilles 

arc, large volumes of subducted sediment were melted to produce island arc magmas with 

trace element characteristics and isotopic signatures typical of continental crust, namely low 

initial 
143

Nd/
144

Nd and 
176

Hf/
177

Hf and high initial 
87

Sr/
86

Sr and Pb isotopic ratios. O’Neill 

(2016) also presented evidence that the elevated LREE/HREE of the Grenada magmas derives 

from sediment contamination of wedge sources rather than residual garnet in the source. 

In a broad sense, the zircon xenocrysts identified in the Grenada and Carriacou volcanic 

rocks have a similar age distribution to that of detrital zircon recovered from beach and river 

sands from these islands. This detrital zircon is probably derived from a local source, although 

input from a more distal source through longshore drift, currents and wave action, at least for 

the beach samples, cannot be excluded. The xenocrystic zircon with dates around 42–61 Ma 

found in Carriacou, likely represent early Paleocene to Eocene volcanic rocks in the 

subsurface of the southern Lesser Antilles.  

On the other hand, the ages and geochemical composition of the older xenocristic grains in 

our samples are broadly consistent with ultimate derivation from northern South America. 

The histograms in Figure SM16 compare our xenocristiczircon results with zircon dates from 

nearby regions such as the Barbados, Trinidad, the Orinoco River and the Maracaibo basin. 

The purpose of showing the histogram is to present the ages from nearby regions rather than 

exact correlations with the ages we obtained. In our opinion the lack of peak concordance is 

more the result of statistically limited sampling than a real correlation. Whether the 

xenocristiczircon was introduced into the rocks of the southern Lesser Antilles arc by 

incorporation of subducted sediments into the mantle source rocks or through crustal 

assimilation is the salient question. 

 

5.3.1. Incorporation of inherited zircon into the mantle source via subducted sediment  

One possibility for the incorporation of older zircon into the arc-magmas is that the grains 

were originally deposited on the subducting Atlantic ocean crust (North American plate), 

possibly transiting via the Barbados accretionary prism. Evidence of arc contamination by 
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subducted terrigenous sediments is well-documented in the Lesser Antilles island arc (e.g. 

Carpentier et al., 2008, 2009). According to Carpentier et al., (2009) zircon-rich clastic 

(coarse) sediments deposited next to the South American continent have very low whole-rock 

Hf(t) values inherited from old zircon. These sediments, which were also subducted below the 

intra-oceanic arc, have “continental” isotopic ratios and their presence has been used as a 

strong argument for the extreme isotopic compositions of the arc lavas (Carpentier et al., 

2008; 2009). 

Taking into account the strong petrogenetic evidence from the present study that the 

magmas hosting xenocrystic zircon are derived predominantly through fractional 

crystallization of primitive (high liquidus temperatures) basaltic parents, a subducted zircon 

source seems unlikely.  Furthermore, the absence of negative Eu anomalies in the Grenada 

suite is inconsistent with any involvement of partially melted, detrital Proterozoic and 

younger subducted sediment. The latter, although characterized by high La/YbN, would also 

have strong negative Eu anomalies. Arculus (1978) documented the occurrence of quartz 

grains with reaction coronae of clinopyroxene in many of the M and C series basalts of 

Grenada. Quartz grains are better interpreted as partially assimilated intra-crustal material 

rather than recycled detritus from a subducted sedimentary source. We therefore support the 

conclusions of Bezard et al. (2014) who have suggested that subducted sedimentary material 

has not been a major factor in causing major isotopic heterogeneity in the Lesser Antilles arc 

lavas.  

 

5.3.2. Incorporation of zircon by assimilation of crustal material 

Bezard et al. (2014) favored crustal sediment assimilation (up to 20–40%) in the Lesser 

Antilles volcanic rocks related to storage of magma in (and/or passage through) the associated 

pre-Oligocene sedimentary basin. Intra-arc basins are present in Martinique and St Lucia, and 

sediments of the Tufton Hall Formation of Grenada and the Belvedere Formation of Carriacou 

are potentially one of the local intra-arc zircon-bearing sources through which the younger arc 

magmas were emplaced. Even though the nature of the basement of the Southern Lesser 

Antilles arc is poorly known, Aitken et al. (2011) suggested that the central-southern Lesser 

Antilles arc developed above a deep fore-arc basin of the (now extinct) Aves Ridge Arc. The 

sediments that filled the ≤ 13 km-thick fore-arc basin originated from the nearby South 

American continent and were transported fluvially from regions as far away as the northern 

Andes of Colombia and Venezuela. Xenocrystic zircon morphology argues for a sedimentary 

origin (e.g., Fig. 8d).  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

24 

 Rojas-Agramonte et al., 2016 

Bezard et al. (2014) proposed a schematic model for the Soufrière Volcanic Complex (St 

Lucia) showing active assimilation of sediments at shallow depths. A similar scenario was 

envisaged for Grenada in which Thirlwall et al. (1996) suggested from a Pb isotope study that 

the composition of Grenada magmas is strongly affected by high-level crustal assimilation. 

Most probably some of the old zircon dissolved, and the melt became saturated in zirconium 

and crystallized new zircon grains. Preservation of old crystals is favored in cases of relatively 

short residence time in crustal chambers (Bea and Montero, 2013). 

 

5.4. Evolution of the Lesser Antilles region: A zircon perspective 

During the early Eocene (~ 50 Ma), deep-water sedimentation began in the proto-

Barbados accretionary prism and Tobago-Grenada forearc basin in the Proto-Caribbean 

(Escalona and Mann, 2011). The fluvial-deltaic complex of the proto-Maracaibo River was in 

close proximity to the proto-Barbados accretionary wedge (Fig. 12a). This proximity suggests 

that the xenocristiczircon in Grenada and Carriacou (up to Grenville age) was probably 

derived from the central Andean Cordillera. Even though most clastic material was entering 

the forearc basin from the south (Aitken et al., 2011), uplifted Caribbean terranes (Great arc 

of the Caribbean) were also localized sources of clastic sediments (Xie at al., 2010; Escalona 

and Mann, 2011). Such arc-derived volcanogenic sediment began to accumulate on the 

oceanic crust and its pelagic cover between ~ 43 and 46 Ma (middle Eocene; Speed et al., 

1993). This sedimentation and the basin environment persisted through the Oligocene. 

During the Oligocene (~30 Ma), the Caribbean plate moved eastwards relative to South 

America, triggering a series of tectonic events that completely modified the paleodrainage 

systems and basin fill along the entire northern South American margin (Escalona and Mann, 

2011). Isostatic rebound of the Maracaibo basin and uplift of Caribbean terranes created 

geomorphologic barriers that diverted north-directed paleodrainages towards the east into the 

present-day area of the Orinoco delta (Fig. 12b). To the east, the proto Grenada-Tobago 

forearc basin was split into two basins by the rising Lesser Antilles arc. The main Oligocene 

source rocks include: 1) deep water terrigenous shales derived from the continent and 

deposited in the eastern Venezuela and Trinidad basins; and 2), terrigenous shales derived 

from the assembled Caribbean terranes and deposited into the forearc basin depocenters. At 

this stage, sediments continued to originate primarily from the south, as demonstrated by our 

sample from the Belvedere Formation in Carriacou (GR45) in which old zircon with ages 

between 200 and 500 Ma suggests derivation from the western Andes of Venezuela and 

Colombia.  
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Even though there are many volcanic-derived sediments from this period, there was no 

magmatism of demonstrable arc origin within the fore-arc sedimentary basin until initiation of 

volcanism of the Neogene arc, which was underway at about 14 Ma (Speed et al., 1993). Only 

minor volumes of basalt of uncertain tectonic affinity extruded within the sediments of the 

Belvedere Formation (Speed et al, 1993). 

Oblique convergence in Miocene times (14 Ma) between the Caribbean and South 

American plates in the Trinidad area induced final uplift of the rising Lesser Antilles arc and 

final separation of the Grenada and Tobago basins in the southeastern Caribbean (Aitken et 

al., 2011). The proto-Orinoco system collected the east-directed drainages of the eastern 

Cordillera, the south-directed drainages of the Merida Andes and Cordillera de la Costa, and 

the north-directed drainages of the Guyana shield to become the largest paleodrainage system 

in northern South America (Fig. 12c). On the other hand, from the early Miocene, a large part 

of the drainage of northwest Amazonia was directed northward along the paleo–Orinoco river 

system to a delta in Lake Maracaibo. Uplift of the Eastern Cordillera in the late middle 

Miocene initiated development of the Amazon River. No connection with the Atlantic was 

established, however, and the Amazon fed the paleo–Orinoco river system, which drained 

toward the Caribbean (Hoorn et al., 1995). To the northeast of the basin, alluvial fan deltas, 

deep-water turbidites and mass transport complexes were deposited into the foreland basin 

(Rodriguez, 1999). The Mesoproterozoic and Archean xenocristiczircons found in porphyritic 

tuff sample GR30 from Grenada and the volcanic-derived sample GR42 from the Grand Bay 

Formation in Carriacou suggest derivation from the Guyana shield. Samples GR30 and GR42 

are coarse- to medium-grained, respectively, and indicate a dynamic geological setting in 

close proximity to the sedimentary basin. The detrital zircon analysis reveals a likely nearby 

source. The old zircon grains most likely come from a volcanic rock that picked up the 

ancient grains during magma ascent and was later eroded. The erosional products were 

deposited in the basin. The Lesser Antilles arc continued to develop during the late Miocene-

early Pliocene to the present. This phase is similar to the present-day geography of the South 

America-Caribbean margin, with the continued development of a major right-lateral transform 

fault (El Pilar) between the Caribbean and the South American plates (Fig. 12d).  

During the late Miocene (Aitken 2011), the Grenada and Tobago basins were divided by 

the emergent Lesser Antilles arc and associated inverted forearc crust between Margarita 

Island and Grenada. The Tobago basin received significantly more sediment influx from the 

proto-Orinoco River, which almost filled the southern parts of the basin to sea level. The 

Grenada basin developed a strongly symmetrical depocenter, with sediments coming 
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primarily from the Neogene Lesser Antilles arc as demonstrated by our 41–60 Ma grains in 

sand samples derived from the Great Arc of the Caribbean. 

 

6. Conclusions 

The single zircon U-Pb ages in the present study corroborate and define the age of arc-

volcanism in the southern Lesser Antilles (Grenada, Carriacou and Petite Martinique) and 

define an upper (late Eocene; ~34 Ma) and lower age limit (late Pleistocene; 241 ± 12 ka), 

although active volcanism continues off-shore of Grenada. Since most zircon grains in our 

study are younger than 2 Ma, a new analytical procedure was developed to correct for lack of 

secular equilibrium in the 
238

U decay chain. 

The trace element characteristics of the zircon clearly differentiate between different types 

of magma generated during southern Lesser Antilles volcanism through time between the 

younger arc (Miocene, ~22–19 Ma) and older arc (Eocene to mid-Oligocene, ~30–28 Ma). All 

igneous zircon has positive εHf(t), reflecting derivation from a predominantly juvenile mantle 

source. However, the εHf(t) values vary considerably within samples, reflecting considerable Hf 

isotopic heterogeneity in the source rocks. 

Our study of zircon from the islands of Grenada, Carriacou and Petite Martinique shows, 

for the first time, the presence of Paleozoic and Paleoarchean (250–3469 Ma) xenocrysts 

within late Paleogene to Neogene (~34–0.2 Ma) volcanic rocks and late Jurassic to 

Precambrian zircons (158–2667 Ma) in beach and river sands. These findings together with 

the geochemistry of the rocks containing zircons provide strong evidence for the assimilation 

of detrital sediments from the intra-arc proto-Grenada/Tobago basin. Paleogeographic 

reconstructions show that the old detrital zircons could have been derived from distant regions 

such as the Eastern Andean Cordillera of Colombia, the Merida Andes, and the northern 

Venezuela coastal ranges, transported first by the Proto-Maracaibo and proto-Orinoco rivers. 
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Figure captions: (these captions are too short) 

Figure captions 

Fig. 1. Regional bathymetric map of the Lesser Antilles arc showing: a) position of the inner 

(younger) and outer (older) arcs as well as the Aves ridges, the Grenada and Tobago 

basins, b) Location of the Orinoco River and the Orinoco River delta south of the 

Lesser Antilles arc. Inset shows location of Fig. 2. 

http://www.sciencedirect.com/science/article/pii/S003707381400061X
http://www.sciencedirect.com/science/article/pii/S003707381400061X
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Fig. 2. Geological map of Grenada after (Legend 1&2) Arculus (1976), Saunders et al. (1985) 

and (Legend 3) Robertson (2005). The geological map of  Carriacou after Donovan 

et al. (2003). The location of Petite Martinique relative to Carriacou is also shown. 

Fig. 3.  Concordia diagrams showing SHRIMP analytical data from Canberra (a, b) and 

Beijing (c, d, e, f) for samples from Grenada, Carriacou and Petite Martinique.   

Fig. 4.  Concordia diagrams showing LA-ICP-MS results from Mainz (a, f, g ) and London (b, 

e) and SHRIMP data (c, d) for zircons from samples from Grenada, Carriacou and 

Petite Martinique. Fig. 5. Concordia diagrams showing SHRIMP (a) and LA-ICP-

MS (c, d) data for zircons of samples from Grenada and Carriacou. 

Fig. 6. Total alkali versus silica (TAS) classification diagram (LeBas et al., 1986) for samples 

from Grenada, Carriacou and Petite Martinique. Samples with black spot or black 

cross inside indicate samples containing zircon.  

Fig. 7. Chondrite-normalized REE patterns of studied samples (a, c, e). Normalizing values 

from McDonough and Sun (1995). (b, d, f) Multi-element variation diagrams 

normalized to N-MORB (Sun and McDonough, 1989). 

Fig. 8. 
87

Sr/
86

Sr vs. 
144

Nd/
143

Nd diagram. Data for MORB are from Hart et al. (1999) and 

Kelemen et al. (2003); Cretaceous Atlantic MORB data are from (Jahn et al., 1980); 

the adakite field includes data from Ecuador (Samaniego et al., 2005), Chile (Stern and 

Kilian, 1996), Argentina (Kay et al., 1993), Mexico (Aguillón-Robles et al., 2001), 

and Panama-Costa Rica (Defant et al., 1992); the Antilles Sediments and Sediments 

subducted at trenches fields are from Plank and Langmuir (1998); and the Atlantic 

Cretaceous Pelagic Sediment (AKPS) field was constructed after data from (Jolly et 

al., 2006). Mixing curve between NMORB (Hart et al., 1999) and South Antilles 

Terrigene Sediment is from Plank and Langmuir (1998). 

Fig. 9. Representative cathodoluminiescence images (CL) for young igneous (a,b,c) and 

xenocristiczircons (d). Numbers above CL images in a, b, c indicate mean age for the 

sample. Numbers in d show single spot ages. SHRIMP spot sites are shown together 

(in some cases) with laser ablation sites for isotopic trace elements and Hf isotopic 

analysis. Scale bars are all 100 µm.   

Fig. 10. Hf isotope evolution diagrams for zircons from Grenada samples. Note spread in εHf(t) 

values (a, b) suggesting a heterogeneous source. 

Fig. 11. Rare earth element concentration in zircons representing the Recent (a, b) and the 

Older Arc (c, d) as well as xenocristiczircons (e). 
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Fig. 12. Paleogeographic reconstruction showing the effects of interaction between northern 

South America and the Greater Antilles arc, modified after Escalona and Mann 

(2006); Xie et al (2010); Xie and Mann (2014). The inferred paths of major 

paleofluvial systems (Maracaibo and Orinoco rivers) draining from northern South 

America is shown from the: a) Early Eocene (~50 Ma); b) Middle Oligocene (~30 

Ma); c) Middle Miocene (~14 Ma); and d) Pliocene (~5 Ma). See text for discussion 

(section 5.4). 

 

 

Table captions 

Table 1a. SHRIMP II analytical data (Beijing SHRIMP Center) for spot analyses of single 

zircons from Grenada rocks, using the SQUID data reduction procedure. In bold 

best ages. 

Table 1b. SHRIMP II analytical data (Beijing SHRIMP Center) for spot analyses of 

magmatic zircons from rocks of the Grenadine Islands, using the Nelson (1997) 

data reduction procedure. 

Table 2. SHRIMP analytical results for zircons >2 Ma obtained at the Beijing SHRIMP 

Center. 

Table 3. SHRIMP analytical results for zircons <2 Ma obtained at the Research School of 

Earth Sciences, Australian National University, Canberra. 

Table 4. LA-ICP-MS analyses of zircons from Grenada, Carriacou and Petite Martinique 

islands (measured at the Natural History Museum, London, and Mainz University), 

using an in house data reduction procedure. In bold best ages. 
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Figure 10 
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Figure 11 
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Figure 12 
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Table 1a. SHRIMP II analytical data (Beijing SHRIMP center) for spot analyses of single zircons from Grenada rocks, using the SQUID data reduction procedure. 

 In bold best ages. 
 Spot % 

206
Pbc 

U 
(ppm) 

Th 
(ppm) 

232
Th/

238
U ppm 

206
Pb* 

Total 
238

U/
206

Pb 
±% Total 

207
Pb/

206
Pb 

±%  
207

Pb
*
/
235

U 
±%  

206
Pb

*
/
238

U 
±% err 

corr 

206
Pb/

238
U 

Age 

207
Pb/

206
Pb 

Age 
% 

Discordant 

GR1       
 
   

 
  

 
  

 
  

 
    

 
  

 
    

GR1-1  0.00 2546 914 0.37  1.54   1,422    4.2 0.0491   5.2  0.00476 
 

6.7 0.000703  
 

4.2 .629 4.53 ± 0.19  154 
± 

120 97  

GR1-2  0.00 3905 1193 0.32  2.58   1,298    3.6 0.0533   3.6  0.00566 
 

5.1 0.000770  
 

3.6 .708 4.96 ± 0.18  340 ±  81 99  

GR1-3  0.46 6206 2280 0.38  4.20   1,271    3.6 0.0529   3.0  0.00532 
 

4.9 0.000783  
 

3.6 .725 5.05 ± 0.18  159 ±  79 97  

GR1-4  0.20 6050 4550 0.78  4.26   1,220    4.3 0.0508   2.8  0.00556 
 

5.6 0.000818  
 

4.3 .768 5.27 ± 0.23  161 ±  84 97  

GR1-5  0.21 7297 9210 1.30  4.70   1,334    4.5 0.0506   2.8  0.00505 
 

5.8 0.000748  
 

4.5 .776 4.82 ± 0.22  147 ±  85 97  

GR1-6  0.26 7200 8144 1.17  4.95   1,250    3.6 0.0466   6.2  0.00491 
 

8.1 0.000798  
 

3.6 .438 5.14 ± 0.18  -77 
± 

180 107  

GR1-7  0.26 5926 1963 0.34  3.84   1,325    3.6 0.0516   3.1  0.00515 
 

5.6 0.000753  
 

3.6 .655 4.85 ± 0.18  175 ±  98 97  

GR6           
 

  
 

  
 

  
 

    
 

  
 

    

GR6-1  0.00 441 40 0.09 1.83      207.4 3.7 0.0593  4.2 0.0394  
 

5.5 0.00482   3.7 .658 31 ±1.1   579 ± 91 95  

GR6-2  0.00 1705 332 0.20 7.13      205.4 3.5 0.0484  3.1 0.0325  
 

4.7 0.00487   3.5 .752 31.3 ±1.1   119 ± 73 74  

GR6-3  0.00 1272 227 0.18 5.47      199.6 3.5 0.0463  2.8 0.0320  
 

4.5 0.00501   3.5 .788 32.2 ±1.1   16 ± 66 -105  

GR6-4  0.25 1069 181 0.17 4.42      207.6 3.6 0.0495  3.1 0.0314  
 

5.3 0.00480   3.6 .669 30.9 ±1.1   73 ± 94 58  

GR6-5  0.51 506 74 0.15 2.26      192.5 3.6 0.0466  3.8 0.0303  
 

9.1 0.00517   3.7 .402 33.2 ±1.2   -195 ±210 117  

GR6-6  0.00 518 57 0.11 2.19      203.1 3.6 0.0468  4.4 0.0318  
 

5.7 0.00492   3.6 .636 31.7 ±1.1   41 ±110 22  

GR6-7  0.00 788 417 0.55 0.0400 16,900   8.0 0.726  11   0.00592 14   0.0000592 8.0 .584 0.381 ±0.031 4,783 ±160 100  

GR7           
 

  
 

  
 

  
 

    
 

  
 

    

GR7-1  0.39 500 73 0.15 2.40 178.5 3.7 0.0474  4.0 0.0341 
 

7.2 0.00558 3.7 .516 35.9 ±1.3 -95 ±150 138  

GR7-2  0.70 423 43 0.10 1.89 192.1 3.7 0.0520  5.9 0.0331 12   0.00517 3.7 .325 33.2 ±1.2 20 ±260 -70  

GR7-3  0.00 390 49 0.13 1.84 182.3 3.8 0.0449  4.4 0.0340 
 

5.8 0.00549 3.8 .651 35.3 ±1.3 -61 ±110 157  

GR7-4  0.00 679 81 0.12 3.12 186.9 3.6 0.0520  3.8 0.0384 
 

5.3 0.00535 3.6 .683 34.4 ±1.2 287 ± 88 88  

GR7-5  0.00 773 42 0.06 3.66 181.6 3.6 0.0496  3.1 0.0377 
 

4.7 0.00551 3.6 .755 35.4 ±1.3 178 ± 72 80  

GR7-6  0.00 1690 231 0.14 7.89 184.0 3.5 0.0481  2.2 0.0360 
 

4.1 0.00544 3.5 .849 34.9 ±1.2 103 ± 52 66  

GR7-7  0.00 553 39 0.07 2.51 189.2 3.6 0.0472  4.3 0.0344 
 

5.6 0.00528 3.6 .647 34 ±1.2 57 ±100 41  

GR7-8  0.00 751 81 0.11 3.96 163.2 3.6 0.9631  1.0 0.814  
 

3.7 0.00613 3.6 .962 39.4 ±1.4 5,184 ± 14 99  

GR7-9  0.00 1147 362 0.33 5.20 189.3 3.5 0.0410 12   0.0298 13   0.00528 3.5 .273 34 ±1.2 -290 ±320 112  
GR7-

10  0.00 440 31 0.07 1.91 197.3 3.6 0.0469  4.1 0.0328 
 

5.5 0.00507 3.6 .660 32.6 ±1.2 42 ± 99 23  

GR13           
 

  
 

  
 

  
 

    
 

  
 

    
GR13-

1  0.00 4321 1856 0.44 2.43 1,529 3.6 0.0558  3.6  0.00503 
 

5.1 0.000654 3.6 .708 4.21 ±0.15 444 ± 80 99  
GR13-

2  0.32 6033 4974 0.85 3.37 1,540 3.6 0.0504  3.0  0.00427 
 

6.2 0.000647 3.6 .579 4.17 ±0.15 91 ±120 95  
GR13-

3  0.41 3581 1632 0.47 1.99 1,545 3.6 0.0479  4.3  0.00396 
 

7.6 0.000645 3.6 .481 4.15 ±0.15 -78 ±160 105  
GR13-

4  0.00 3801 1568 0.43 2.25 1,453 3.7 0.0469  5.6  0.00445 
 

6.7 0.000688 3.7 .552 4.44 ±0.16 44 ±130 90  
GR13-

5  1.62 2213 919 0.43 1.56 1,217 7.5 0.33   51    0.036   53   0.000808 7.5 .140 5.21 ±0.39 3,597 ±810 100  

                    Table 1a. Continue 
 Spot % 

206
Pbc 

U 
(ppm) 

Th 
(ppm) 

232
Th/

238
U ppm 

206
Pb* 

Total 
238

U/
206

Pb 
±% Total 

207
Pb/

206
Pb 

±%  
207

Pb
*
/
235

U 
±%  

206
Pb

*
/
238

U 
±% err 

corr 

206
Pb/

238
U 

Age 

207
Pb/

206
Pb 

Age 
% 

Discordant 

GR13       
 
                     

 
   

 
     

GR13- 0.00 4752 2764 0.60 2.36 1,732 4.1 0.0459  4.0  0.00365  0.000578 4.1 .712 3.72 ±0.15 -9 ± 97 143  
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6  5.7 

GR13-
7  0.00 5409 4696 0.90 3.65 1,272 3.6 1.347   1.0  0.1459  

 
3.7 0.000786 3.6 .962 5.06 ±0.18 5,652 ± 14 100  

GR13-
8  0.00 9741 11016 1.17 5.20 1,610 3.5 1.753  

 
0.79 0.1501  

 
3.6 0.000621 3.5 .976 4 ±0.14 6,015 ± 11 100  

GR15           
 

  
 

  
 

  
 

    
 

  
 

    
GR15-

2  1.07 1597 783 0.51 91.0       15.08 3.5 0.2303 
 

0.55 2.022   
 

3.6 0.0656    3.5 .979 410 ±14     3,006 ± 12 86  

GR16           
 

  
 

  
 

  
 

    
 

  
 

    
GR16-

3  0.04 321 167 0.54 38.2        7.22 3.5 0.07205  1.1 1.368   
 

3.7 0.1384    3.5 .952 836 ±28     977 ± 23 14  

GR23           
 

  
 

  
 

  
 

    
 

  
 

    
GR23-

2  0.01 212 91 0.44  80.3  2.267 3.5 0.13940 0.45 8.47  3.6 0.441  3.5 .992 2355 ±70   2218 ± 7.9 -6  
GR23-

3  0.02 589 82 0.14 124    4.08  3.5 0.10074 0.42 3.40  3.5 0.2453 3.5 .992 1414 ±44   1634 ± 8.1 13  
GR23-

4  0.04 533 224 0.43  58.8  7.79  3.5 0.06846 0.71 1.205 3.6 0.1283 3.5 .978 778 ±26   872 ±15   11  
GR23-

5  0.00 577 109 0.20  36.6 13.56  3.5 0.05585 1.0  0.568 3.7 0.0737 3.5 .959 459 ±16   446 ±23   -3  
GR23-

6  0.01 2128 75 0.04 125   14.61  3.5 0.05518 0.48 0.520 3.6 0.0684 3.5 .991 427 ±15   418 ±11   -2  
GR23-

7  0.03 2259 202 0.09 132   14.69  3.5 0.05591 0.56 0.523 3.6 0.0680 3.5 .988 424 ±15   440 ±12   4  
GR23-

8  0.08 2241 99 0.05  75.4 25.54  3.5 0.05563 1.1  0.297 3.7 0.0391 3.5 .947 247 ±9 413 ±27   40  
GR23-

9  0.19 305 55 0.19  18.7 14.04  3.5 0.05762 1.4  0.550 4.1 0.0711 3.5 .870 443 ±15   455 ±45   3  
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Table 1b. SHRIMP II analytical data (Beijing SHRIMP center) for spot analyses on magmatic zircons from rocks of the 
Grenadine Islands, using the Nelson (1997) data reduction procedure. 

Sample 
No. 

U 
ppm 

Th 
ppm 

206Pb/204Pb 207Pb/206Pb 206Pb/238U 207Pb/235U  206/238 207/235 207/206 

              age ± 
1s 

age ± 
1s 

age ± 
1s 

PM2a           

PM2a-1 2587 1801 16864 0.0478±11 0.00197±3 0.01301±36 13±0. 13±0. 89±55 

PM2a-2 1750 562 12225 0.0471±15 0.00200±3 0.01299±46 13±0 13±0 53±63 

PM2a-3 3158 2143 22523 0.0463±  9 0.00200±3 0.01277±30 13±0 13±0 12±28 

PM2a-4 2118 851 13755 0.0471±13 0.00199±3 0.01292±42 13±0 13±0 53±59 

PM2a-5 1879 804 12255 0.0473±15 0.00199±3 0.01230±45 13± 13± 66±69 

PM2a-6 4338 2170 27933 0.0460±  7 0.00200±3 0.01268±27 13± 13± 0±17 

PM2a-7 2847 1130 18727 0.0471±10 0.00198±3 0.01283±34 13± 13± 55±51 

PM2a-8 3593 2242 25316 0.0472±  8 0.00201±3 0.01305±29 13± 13± 57±40 

PM2b           

PM2b-1 1648 753 10776 0.0485±16 0.00198±3 0.01321±50 13±0. 13±0. 122±80 

PM2b-2 314 123 17271 0.0456±23 0.00197±3 0.01242±68 13±0 13±0 0±48 

PM2b-3 4375 6487 16181 0.0464±  8 0.00198±2 0.01260±29 13±0 13±0 18±30 

PM2b-4 2081 931 14684 0.0485±13 0.00198±3 0.01325±40 13±0 13±0 125±61 

PM2b-5 3208 1399 23202 0.0479±  8 0.00198±3 0.01304±30 13±0. 13± 94±42 

PM2b-6 1805 889 12225 0.0463±15 0.00199±3 0.01269±45 13±0. 13± 12±43 
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Table 2. SHRIMP zircon U–Pb analytical results (> 2 Ma) obtained at the Beijing SHRIMP 
center. In Italic values excluded from the  

mean age calculation because are too young or too old.  

        

Total Pb, before common Pb 
correction   

Corrected for 
disequilibrium 

Me
an   

  
P
b U Th   

204
Pb     

20
8P
b   

20
7P
b   

206P
b   

206
Pb* 

and initial 234U 
and 230Th 

 
sa

mpl
e 

9
5
% 

Sa
mpl
e 

p
p
b 

p
p
m 

pp
m 

Th
/U 

206
Pb ± 

f20
6(7
) 

20
6P
b ± 

20
6P
b ± 238U ± 

238
U 

206P
b*/ 

D
at
e ± 

ag
e  

 
c.
l. 

GR5 
238U 

 
(k
a)   

 
(ka
)   

GR
5-1 1

5 

2
5
4
7 

14
31 

0.5
80
5 - - 

0.1
34 

0.
42
2 

13.
6 

0.1
63
8 

2
0.
7 

2.53E
-05 

2.1
1E-
06 

2.5
8E-
05 

3.773
E-05 

24
3 

1
4     

GR
5-2 3

1 

2
1
6
2 

19
02 

0.9
09
0 - - 

0.2
83 

0.
76
0 

13.
4 

0.2
90
9 

1
2.
7 

2.34E
-05 

2.3
8E-
06 

2.4
3E-
05 

3.405
E-05 

22
0 

1
5     

GR
5-3 3

1 

2
1
8
4 

20
25 

0.9
57
7 - - 

0.2
83 

0.
66
9 

11.
8 

0.2
90
3 

1
0.
5 

2.77E
-05 

2.4
4E-
06 

2.8
8E-
05 

3.856
E-05 

24
9 

1
6     

GR
5-
2.1 

5
4 

2
8
2 88 

0.3
22
7 

7.05
E-
02 

8.11
E+0

1 
0.5
01 

1.
61
0 

8.3
58 

0.4
75
5 

8.
8 

2.61E
-05 

3.2
3E-
06 

2.8
6E-
05 

4.243
E-05 

27
4 

2
1     

GR
5-
3.1 

4
7 

4
6
6 

24
4 

0.5
41
4 

5.20
E-
02 

3.70
E+0

3 
0.4
35 

1.
37
3 

7.0
30 

0.4
19
9 

8.
1 

2.77E
-05 

2.4
8E-
06 

2.9
7E-
05 

4.220
E-05 

27
2 

1
6     

GR
5-
4.1 

7
8 

8
5
4 

57
4 

0.6
94
5 

4.54
E-
02 

2.54
E+0

1 
0.7
16 

1.
75
4 

2.7
87 

0.6
58
4 

2.
4 

2.91E
-05 

3.8
6E-
06 

3.6
9E-
05 

4.880
E-05 

31
5 

2
5     

GR
5-
5.1 

2
1 

2
2
7
6 

18
65 

0.8
46
9 

4.53
E-
02 

4.81
E+0

1 
0.1
88 

0.
69
0 

5.7
67 

0.2
09
4 

5.
6 

2.44E
-05 

8.2
9E-
07 

2.5
0E-
05 

3.519
E-05 

22
7 5     

GR
5-
6.1 

4
8 

5
8
8 

32
6 

0.5
73
5 

5.13
E-
02 

1.05
E+0

2 
0.4
40 

1.
30
4 

6.3
96 

0.4
23
7 

6.
3 

3.06E
-05 

2.2
5E-
06 

3.2
9E-
05 

4.543
E-05 

29
3 

1
5     

GR
5-
7.1 

8
7 

3
1
0 

17
1 

0.5
69
3 

3.69
E-
02 

6.11
E+0

1 
0.8
07 

1.
95
8 

4.3
51 

0.7
35
7 

3.
0 

3.23E
-05 

7.7
0E-
06 

4.9
3E-
05 

6.241
E-05 

40
2 

5
0     

GR
5-
8.1 

3
0 

1
6
7
5 

12
29 

0.7
58
1 

3.41
E-
02 

3.56
E+0

1 
0.2
71 

0.
87
4 

4.2
28 

0.2
80
4 

3.
9 

3.98E
-05 

1.3
4E-
06 

4.1
3E-
05 

5.293
E-05 

34
1 9     

GR
5-
9.1 

4
1 

3
2
0
0 

31
17 

1.0
06
4 

2.93
E-
02 

2.26
E+0

1 
0.3
75 

1.
06
4 

3.5
37 

0.3
68
8 

5.
8 

3.07E
-05 

1.6
3E-
06 

3.2
5E-
05 

4.216
E-05 

27
2 

1
1 

24
5 

1
3 

GR
5-
10.1 

3
0 

1
3
6
6 

93
6 

0.7
08
0 

2.83
E-
02 

9.20
E+0

1 
0.2
71 

0.
84
2 

5.4
68 

0.2
80
0 

5.
1 

2.86E
-05 

1.2
1E-
06 

2.9
7E-
05 

4.112
E-05 

26
5 8     

GR
5-
11.1 

2
2 

1
4
9
7 

67
8 

0.4
68
4 

2.97
E-
02 

4.14
E+0

1 
0.1
97 

0.
67
9 

7.3
59 

0.2
17
3 

7.
3 

2.13E
-05 

8.5
1E-
07 

2.1
8E-
05 

3.406
E-05 

22
0 5     

GR
5-1 

3
6 

1
6
0
0 

10
23 

0.6
60
6 

-
7.18

E-
02 

6.35
E+0

1 
0.3
26 

0.
73
3 

9.2
81 

0.3
26
9 

9.
9 

2.73E
-05 

2.1
6E-
06 

2.8
6E-
05 

4.027
E-05 

26
0 

1
4     

GR
5-2 

1
4 

2
7
6
9 

42
20 

1.5
74
7 - - 

0.1
24 

0.
68
2 

7.1
25 

0.1
55
7 

1
1.
3 

2.76E
-05 

1.3
3E-
06 

2.8
1E-
05 

3.396
E-05 

21
9 9     

GR
5-3 

2
5 

9
3
2 
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3 

0.6
79
8 

-
1.53
E-

6.38
E+0

1 
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28 

0.
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0 

11.
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5 
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0 
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5 
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-05 
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06 
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05 
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4 
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Table 3. SHRIMP zircon U–Pb analytical results (< 2 Ma) obtained at the Australian National 
University SHRIMP center. 
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Table 4. U-Pb data for LA-ICP-MS analysis of zircons from Grenada, Carriacou and Petite 
Martinique islands  

(measured in the Natural History Museum, London and Mainz University). In bold best ages. 
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Highlights 

 

 Presence of late Jurassic to Paleoarchean (158–3469 Ma) xenocrysts within 

volcanic rocks and beach and river sands of the southern Lesser Antilles.  

 Evidence for the assimilation of detrital sediments from the intra-arc proto-

Grenada/Tobago basin.  

 The xenocrystic zircons could have been derived from the Eastern Andean 

Cordillera of Colombia, the Merida Andes, and the northern Venezuela coastal 

ranges.  

 A new analytical procedure was developed to correct for lack of secular 

equilibrium in the 
238

U decay chain. 


