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On two questions from the Kourovka
Notebook

A. Ballester-Bolinches∗ John Cossey† S. F. Kamornikov‡

H. Meng §

Abstract

The aim of this paper is to give answers to some questions con-
cerning intersections of system normalisers and prefrattini subgroups
of finite soluble groups raised by the third author, Shemetkov and
Vasil’ev in the Kourovka Notebook [10]. Our approach depends on
results on regular orbits and it can be also used to extend a result
of Mann [9] concerning intersections of injectors associated to Fitting
classes.
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1 Introduction
The first part of this paper has as its main theme the study of intersections
of normalisers and prefrattini subgroups of finite soluble groups associated
to saturated formations, and provides answers to two questions raised by
the third author and Shemetkov and Vasil’ev in the Kourovka Notebook
[10]. Hence all groups to be considered here are finite, and we assume this
without further comment.

∗Departament de Matemàtiques, Universitat de València, 46100 Burjassot, València,
Spain, email: Adolfo.Ballester@uv.es

†Australian National University, Canberra, ACT 2601, Australia, email:
John.Cossey@anu.edu.au

‡Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019,
Belarus, email: sfkamornikov@mail.ru

§Departament de Matemàtiques, Universitat de València, 46100 Burjassot, València,
Spain, email: hangyangmenges@gmail.com

1



In order to understand and motivate what is to follow it is convenient to
use theorems of Dolfi, Passman and Zenkov as a model. Dolfi [3] proved that
if π is a set of primes, the largest normal π-subgroup Oπ(G) of a π-soluble
group is the intersection of three G-conjugates of a given Hall π-subgroup H
of G. This result extends earlier theorems of Passman [12] (case |π| = 1) and
Zenkov [13](case H nilpotent). On the other hand, as Mann pointed out in
[9], the results of Passman imply that the Fitting subgroup F(G) of a soluble
group G is the intersection of three G-conjugates of a nilpotent injector H
of G.

Bearing in mind the above results and the important role played by the
system normalisers and prefrattini subgroups in the structural study of sol-
uble groups, the following questions turn out to be natural and interesting:

Question 1. [10, Kamornikov, Problem 17.55] Does there exist an absolute
constant k such that the Frattini subgroup Φ(G) of a soluble group G is the
intersection of k G-conjugates of any prefrattini subgroup H of G?

Question 2. [10, Shemetkov and Vasil’ev, Problem 17.39] Is there a positive
integer k such that the hypercentre of any finite soluble group coincides with
the intersection of k system normalisers of that group? What is the least
number with this property?

Recall that a formation is a class of groups F which is closed under taking
epimorphic images and such that every group G has an smallest normal
subgroup with quotient in F. This subgroup is called the F-residual of G
and denoted by GF. A maximal subgroup M of a group G containing GF is
called F-normal in G; otherwise, M is said to be F-abnormal.

We say that F is saturated if it is closed under Frattini extensions. In
such case, by a well-known theorem of Gaschütz-Lubeseder-Schmid [2, The-
orem IV.4.6], there exists a collection of formations F(p) ⊆ F, one for each
prime p, such that F coincides with the class of all groups G such that if
H/K is a chief factor of G, then G/CG(H/K) ∈ F(p) for all primes p divid-
ing |H/K|. In this case, we say that H/K is F-central in G and F is locally
defined by the F(p). H/K is called F-eccentric if it is not F-central.

Note that a chief factor H/K supplemented by a maximal subgroup M
is F-central in G if and only if M is F-normal in G.

Every group G has a largest normal subgroup such that every chief factor
of G below it is F-central in G. This subgroup is called the F-hypercentre of
G and it is denoted by ZF(G) (see [2, Section IV.6]).

Our first main theorem subsumes the main result of [8] and gives a com-
plete answer to a general version of Question 1. It provides a beautiful
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description of the intersection of four (in some cases three) F-prefrattini sub-
groups of a soluble group introduced by Hawkes in [6], where F is a saturated
formation. If F is the trivial formation, then these subgroups coincide with
the prefrattini subgroups formulated by Gaschütz in [5].

In order to state it, we consider convenient to give some definitions.

Definition 3. A 3-tuple (G,X, Y ) is said to be a k-conjugate system if G
is a group, X, Y are subgroups of G with Y = CoreG(X), and there exist k
elements g1, ..., gk such that Y =

⋂k
i=1 X

gi .

Let Σ be a Hall system of the soluble group G (see [2, Chapter I, Sec-
tion 1.4]). Let Sp be the p-complement of G contained in Σ, and denote by
W p(G) the intersection of all F-abnormal maximal subgroups of G contain-
ing Sp (W p(G) = G, if the set of all F-abnormal maximal subgroups of G
containing Sp is empty). Then W (G,Σ,F) =

⋂
p∈π(G) W

p(G) is called the
F-prefrattini subgroup of G associated to Σ. The F-prefrattini subgroups of
G form a characteristic class of G-conjugate subgroups (see [1, Section 4.3]
for an exhaustive study of F-prefrattini subgroups).

According to [1, Proposition 4.3.17], the intersection LF(G) of all F-
abnormal maximal subgroups of a soluble group G is the core of every F-
prefrattini subgroup of G and LF(G)/Φ(G) = ZF(G/Φ(G)) for every group
G. In fact, we have:

Theorem A. Let F be a saturated formation and let H be an F-prefrattini
subgroup of a soluble group G. Then (G,H,LF(G)) is a 4-conjugate system.
Furthermore, if either G is S4-free or F is composed of S3-free groups, then
(G,H,LF(G)) is a 3-conjugate system.

Recall that a group X is Sn-free if the symmetric group of degree n does
not appear as a quotient of any subgroup of X.

If F = N, the formation of all nilpotent groups, then LF(G) = L(G)
is the intersection of all self-normalising maximal subgroups of G. It is a
characteristic nilpotent subgroup of G that was introduced by Gaschütz in
[4]. If F is the trivial formation, then LF(G) = Φ(G), the Frattini subgroup
of G. Hence:

Corollary 4 ([7]). If G is soluble and H is an N-prefrattini subgroup of G,
then (G,H,L(G)) is a 3-conjugate system.

Corollary 5 ([8]). If G is soluble and H is a prefrattini subgroup of G, then
(G,H,Φ(G)) is a 3-conjugate system.

To describe our second main result, we shall give a review of the definition
of the F-normalisers of a soluble group.
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Let F(p) be a particular family of formations locally defining F and such
that F(p) ⊆ F for all primes p. Let π = {p : F(p) �= ∅}. For an arbitrary
soluble group G and a Hall system Σ of G, choose for any prime p, the p-
complement Kp = Sp ∩ GF(p) of the F(p)-residual GF(p) of G, where Sp is
the p-complement of G in Σ. Then DF(Σ) = Gπ ∩ (

⋂
p∈π NG(K

p)), where Gπ

is the Hall π-subgroup of G in Σ, is the F-normaliser of G associated to Σ.
The F-normalisers of G are a characteristic class of G-conjugate subgroups.
There were introduced by Carter and Hawkes and coincide with the classical
system normalisers of Hall when F is the formation of all nilpotent groups
(see [2, Sections V.2 and V.3] for details).

According to [1, Proposition 4.2.6], if D is an F-normaliser of G, then
CoreG(D) = ZF(G). We prove:

Theorem B. Let F be a saturated formation and let D be an F-normaliser of
a soluble group G such that Φ(G) = 1. Then (G,D,ZF(G)) is a 4-conjugate
system. Furthermore, if either G is S4-free or F is composed of S3-free groups,
then (G,D,ZF(G)) is a 3-conjugate system.

Recall that if F = N is the formation of all nilpotent groups, then the N-
normalisers of a soluble group G are exactly the system normalisers of G and
ZN(G) = Z∞(G) is the hypercentre of G. Therefore the answer of Question 2
for groups with trivial Frattini subgroup is contained in the following:

Corollary 6. Let G be a soluble group with Φ(G) = 1. If D is a system
normaliser of G, then (G,D,Z∞(G)) is a 3-conjugate system.

Our next example shows that (G,D,Z∞(G)) is not a 2-conjugate system
in general.

Example 7. Let D be the dihedral group of order 8. Then D has an ir-
reducible and faithful module V of dimension 2 over the field of 3-elements
such that CD(v) �= 1 for all v ∈ V . Let G = V � D be the corresponding
semidirect product. Then D is a system normaliser of G and Z∞(G) = 1. By
[2, Lemma A.16.3], D∩Dv = CD(v) �= 1 for all v ∈ V . Hence (G,D,Z∞(G))
is not a 2-conjugate system.

Our third main theorem has Mann’s result as starting point and analyses
the intersections of injectors associated to Fitting classes of soluble groups.
A class of groups F is said to be a Fitting class if F is a class under taking
subnormal subgroups and such that every group G has a largest normal F-
subgroup called F-radical and denoted by GF. Every soluble group G has
a conjugacy class of subgroups, called F-injectors, which are defined to be
those subgroups I of G such that if S is a subnormal subgroup of G, then
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I ∩ S is F-maximal subgroup of S ([2, Theorem IX.1.4]). Note that, in this
case, CoreG(I) = GF. We prove:

Theorem C. Let F be a Fitting class and let I be an F-injector of a soluble
group G. Then (G, I,GF) is a 4-conjugate system. Furthermore, if either G
is S4-free or F is composed of S3-free groups, then (G, I,GF) is a 3-conjugate
system.

Corollary 8 ([9]). If I is a nilpotent injector of a soluble group G, then
(G, I,F(G)) is a 3-conjugate system.

2 Background results
The notation and terminology agree with the books [1, 2], and we refer the
reader to them for results on formations.

In the sequel, F will be a saturated formation.
We begin with an elementary observation which will be used throughout

the paper.

Lemma 9 ([2, Lemma A.16.3]). Let G = NH be a semidirect product of a
normal subgroup N with a subgroup H.

(a) If n ∈ N , then H ∩Hn = CH(n),
(b) CoreG(H) = CH(N).

The elementary properties of the subgroup LF(G) are collected in the
following.

Lemma 10. If N is a normal subgroup of a group G, then the following
conditions hold:

1. LF(G)N/N ≤ LF(G/N).

2. If N ≤ LF(G), then LF(G/N) = LF(G)/N .

3. LF(G/LF(G)) = 1.

The set all F-prefrattini subgroups of a group G is denoted by PrefF(G).
We begin by recalling some known properties about F-prefrattini sub-

groups.
Recall that a subgroup X of a group G covers the section A/B of G if

A ≤ XB and avoids A/B if X ∩ A ≤ B.

Lemma 11 ([1, 6]). Let G be a soluble group and N a normal subgroup of
G.
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1. PrefF(G) is a G-conjugacy class of subgroups of G.

2. PrefF(G/N) = {HN/N : H ∈ PrefF(G)}.
3. If H ∈ PrefF(G), then H avoids every complemented F-eccentric chief

factor of G and covers the rest.

Our next result turns out to be crucial in the proof of Theorem A.

Lemma 12. Let N be a minimal normal subgroup of a soluble group G.
Assume that M is an F-abnormal maximal subgroup of G complementing N
in G. Then PrefF(G) =

⋃
g∈G PrefF(M

g).

Proof. Since F-prefrattini subgroups of G are conjugate in G, it suffices to
show that PrefF(M) ⊆ PrefF(G).

Let H = W (M,ΣM ,F) be the F-prefrattini subgroup of M associated to
the Hall system ΣM of M . Let p be the prime dividing the order of N and
let P be the Sylow p-subgroup of M in Σ. Then Σ = ΣM ∪ {PN} is a Hall
system of G.

Let 1 = A0 ≤ A1 ≤ ... ≤ An = M be a chief series of M , and let
{Ai/Ai−1|i ∈ I} be the set of all complemented F-eccentric chief factors in
this series. By [1, Proposition 4.3.6], H = W (Σ) =

⋂
i∈I Mi, where Mi is a

maximal subgroup of M , complementing Ai/Ai−1 in G, into which the Hall
system ΣM reduces, i ∈ I. Consider the following chief series of G:

1 ≤ N = A0N ≤ A1N ≤ ... ≤ AnN = MN = G

Then AiN/Ai−1N is a complemented F-eccentric chief factor of G if and
only if Ai/Ai−1 is a complemented F-eccentric chief factor of M . Moreover,
N is an F-eccentric chief factor of G which is complemented by M , and Σ
reduces into M . Thus {N,Ai/Ai−1|i ∈ I} is the set of all complemented
F-eccentric chief factors in the above chief series.

On the other hand, MiN is a maximal subgroup of G complementing
AiN/Ai−1N in G and Σ reduces into MiN for all i ∈ I. Applying [1, Pro-
position 4.3.6], M ∩ (

⋂
i∈I MiN) =

⋂
i∈I Mi(M ∩ N) =

⋂
i∈I Mi = H is the

F-prefrattini subgroup of G associated to Σ.

Remark 13. Under the hypotheses of Lemma 12, (H∩Hm)N = HN∩HmN
for all m ∈ M .

Proof. HN ∩HmN = (H ∩HmN)N = (H ∩M ∩HmN)N and M ∩HmN =
Hm(M ∩N) = Hm.
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Lemma 14. Let N be a minimal normal subgroup of a soluble group G.
Assume that M is an F-abnormal maximal subgroup of G complementing N
in G. Then LF(G) = CLF(M)(N).

Proof. By Lemma 12, we have:

LF(G) =
⋂

{H : H ∈ PrefF(G)}
=

⋂

g∈G

⋂
{H : H ∈ PrefF(M

g)}

=
⋂

g∈G
LF(M)g = CoreG(LF(M)).

Since LF(G)∩N ≤ M∩N = 1, we have LF(G) ≤ CLF(M)(N). On the other
hand, since CLF(M)(N) is normalised by M and centralised by N , we have
that CLF(M)(N) is normal in G and hence CLF(M)(N) ≤ CoreG(LF(M)) =
LF(G).

The following facts about S3-free groups are quite useful.

Lemma 15 (see [11, Lemma 1]). Let G be a soluble group and let H be a
Hall {2, 3}-subgroup of G. Then G is S3-free if and only if H is 3-nilpotent.

Lemma 16 (see [11, Lemma 2]). Let G be a soluble group with O2′(G) = 1.
Then G is S3-free if and only if G is S4-free.

Corollary 17. Let G be a soluble S3-free group such that O3′(G) = 1. Then
G is of odd order.

Proof. Let H be a Hall {2, 3}-subgroup of G and let X be a Hall 3′-subgroup
of G. Then H ∩ X is a Sylow 2-subgroup of G and G = HX by [2,
Lemma A.1.6]. Hence H ∩X �H by Lemma 15. Therefore

(H ∩X)G = (H ∩X)HX = (H ∩X)X ≤ X.

This implies that (H∩X)G is a 3′-subgroup of G and so H∩X � (H∩X)G �
O3′(G) = 1. Thus G is of odd order.

Lemma 18. Let G be a group and L,K � G such that K � Φ(G). If L/K
is a soluble S3-free group, then L is a soluble S3-free group.

Proof. Assume that (G,L,K) satisfies the hypotheses but L is not a soluble
S3-free group. Choose such counterexample (G,L,K) such that |G|+|L|+|K|
is minimal. Let H be a Hall {2, 3}-subgroup of L.
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Write X = O3′(L). Then X � G. Denote with bars the images in G =
G/X. We have that (G,L,K) satisfies the hypotheses of the lemma. Hence, if
X �= 1, it follows that L is a soluble S3-free group. Since H is a Hall {2, 3}-
subgroup of L, we can apply Lemma 15 to conclude that H = HX/X ∼=
H/H ∩ X is 3-nilpotent. Then H/O3′(H) is 3-nilpotent since H ∩ X �
O3′(H). Thus H is 3-nilpotent and so L is S3-free by Lemma 15, which is a
contradiction. Consequently, X = 1.

Since O3′(K) � O3′(L) = 1 and K is nilpotent, we have that K is a
3-group. Let T/K = O3′(L/K). Then T � G. By [2, Theorem A.11.3],
T = KT1, where T1 is a Hall 3′-subgroup of T . The Frattini Argument
for Hall subgroups implies that G = NG(T1)T = NG(T1)K = NG(T1) since
K � Φ(G). Thus T1 �G and so T1 � O3′(L) = 1. Hence O3′(L/K) = 1. By
Corollary 17, L/K is of odd order. Thus the order of L is odd and so it is
S3-free. This final contradiction proves the lemma.

Combining Lemmas 15 and 18, we have:

Corollary 19. The class of all soluble S3-free groups is a subgroup-closed
saturated formation.

Recall that a regular orbit of the action of the group G on a set X is an
orbit with |G| elements. Clearly G has a regular orbit on X if and only if
there exists x ∈ X such that CG(x) = 1. Considering the natural action of
G on X × X, we have that G has a regular orbit on X × X if and only if
there exist x, y ∈ X such that CG(x) ∩ CG(y) = 1.

The proofs of our main theorems strongly depend on the following results.

Lemma 20 ([3, Theorem 1.4]). Let G be a soluble group and V a finite faith-
ful G-module. If V is completely reducible (possibly of mixed characteristic),
then there exist v1, v2, v3 ∈ V such that CG(v1) ∩ CG(v2) ∩ CG(v3) = 1.

Lemma 21 (see [11, Theorem A]). Suppose that G is a soluble group and
V is a finite, faithful and completely reducible G-module (possibly of mixed
characteristic). Let H be a subgroup of G such that the semidirect product
V H is S4-free. Then H has at least two regular orbits on V

⊕
V .

3 Proof of Theorem A
Assume we are trying to prove a result of the following type: Let G be a sol-
uble group and let H be an F-prefrattini subgroup of G. Then (G,H,LF(G))
is a k-conjugate system.
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Assume the statement is false. Thus there would exist a counterexample
G of minimal order. Let H be an F-prefrattini subgroup of G such that
(G,H,LF(G)) is not a k-conjugate system. Then:

(i) LF(G) = 1. In particular, Φ(G) = 1.
For suppose that X is a minimal normal subgroup of G contained in

LF(G). Then H/X is an F-prefrattini subgroup of G by Lemma 11. There-
fore, because |G/X| < |G|, it follows that (G/X,H/X,LF(G/X)) is a k-
conjugate system. Since LF(G/X) = LF(G)/X by Lemma 10, we have that
(G,H,LF(G)) is a k-conjugate system, giving a contradiction. Thus State-
ment (i) must hold.

Also (ii) There exists a minimal normal subgroup N and an F-abnormal
maximal subgroup M containing H of G such that G = MN and M ∩N = 1
and (M,H,LF(M)) is a k-conjugate system.

Let N be the minimal normal subgroup of G. Then N is a p-group for
some prime p. By Statement (i), N is not contained in LF(G) = 1 and so
there exists an F-abnormal maximal subgroup of M such that G = NM
and N ∩M = 1. By Lemma 12, we may assume that H is an F-prefrattini
subgroup of M . Again by choice of G, (M,H,LF(M)) is a k-conjugate system
and therefore there exist m1, ...mk ∈ M such that

⋂k
i=1 H

mi = LF(M).
(iii) Assume that N is a p-group for some prime p and L = LF(M). Then

N is a faithful completely reducible L-module over GF(p), the finite field of
p-elements.

Clearly N is an irreducible M -module over GF(p). By [2, Theorem B.7.3],
N is a completely reducible L-module. By Lemma 14 and Statement (i),
CL(N) = 1 and so N is faithful for L.

Let T = LN . Then CoreT (L) = 1. Moreover:
(iv) (T, L, 1) is not a k-conjugate system.
Assume that (T,L, 1) is a k-conjugate system. Let n1, ..., nk ∈ N such

that
⋂k

i=1 L
ni = 1. We consider the subgroup D =

⋂k
i=1 H

mini . Then

D ≤
k⋂

i=1

HminiN =
k⋂

i=1

HmiN = (
k⋂

i=1

Hmi)N = LN

by Remark 13. Then

D = D ∩ LN =
k⋂

i=1

Hmini ∩ LN

=
k⋂

i=1

(Hmi ∩ LN)ni =
k⋂

i=1

Lni = 1 = LF(G).

Therefore (G,H,LF(G)) is a k-conjugate system, against our supposition.
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Theorem 22. Let H be an F-prefrattini subgroup of a soluble group G. Then
(G,H,LF(G)) is a 4-conjugate system.

Proof. Assume that the result is not true and let G be a counterexample of
minimal order such that (G,H,LF(G)) is not a 4-conjugate system. Then
Statements (i)-(iv) hold for k = 4. By Statement (iii), N is a faithful com-
pletely reducible L-module over GF(p) for some prime p. By Lemma 20,
there exist v1, v2, v3 ∈ N such that CL(v1) ∩ CL(v2) ∩ CL(v3) = 1. It implies
that L ∩ Lv1 ∩ Lv2 ∩ Lv3 = 1 by Lemma 9. Thus (T,L, 1) is a 4-conjugate
system, contrary to Step (iv).

Theorem 23. Let H be an F-prefrattini subgroup of a soluble group G. As-
sume that either G is S4-free or F is composed of S3-free groups. Then
(G,H,LF(G)) is a 3-conjugate system.

Proof. Suppose, arguing by contradiction, that (G,H,LF(G)) is not a 3-
conjugate system. Let us choose G a counterexample of least order. Then
Statements (i)-(iv) hold for k = 3. By Statement (iii), L ∩ N = 1 and
N is a faithful completely reducible L-module over GF(p) for some prime
p. If G is S4-free, then LN is S4-free. Assume that F is composed of S3-
free groups. Recall that L = LF(M), by [1, Proposition 4.3.17], L/Φ(M) =
ZF(M/Φ(M)). Let X be the class of all soluble S3-free groups. By Co-
rollary 19, X is a subgroup-closed saturated formation. Since F ⊆ X by
hypothesis, it follows that ZF(M/Φ(M)) � ZX(M/Φ(M)). By [2, The-
orem IV.6.15], ZX(M/Φ(M)) ∈ X. Thus L/Φ(M) = ZF(M/Φ(M)) is S3-free.
Then, by Lemma 18, L is S3-free. If p is odd, then LN is S4-free and if p = 2,
then LN is S4-free by Lemma 16. In both cases, we can apply Lemma 21 to
conclude that there exist v1, v2 ∈ N such that CL(v1)∩CL(v2) = 1. Thus, by
Lemma 9, (T, L, 1) is a 3-conjugate system, contrary to Statement (iv).

4 Proof of Theorem B
The proof of Theorem B depends on a nice result about factorisations of
prefrattini subgroups proved in [6, Theorem 4.1] (see [1, Theorem 4.3.32]).

Lemma 24. If D is an F-normaliser and W is a prefrattini subgroup of a
soluble group G, both associated to the Hall system Σ of G, then D and W
permute and DW is the F-prefrattini subgroup of G associated to Σ.

Theorem 25. Let D be an F-normaliser of a soluble group G. If Φ(G) = 1,
then (G,D,ZF(G)) is a 4-conjugate system.
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Proof. Let D be the F-normaliser of G associated to the Hall system Σ.
Assume that H is the F-prefrattini subgroup of G associated to Σ. Then,
by Lemma 24, we have D ≤ H. Since Φ(G) = 1, it follows by [1, Proposi-
tion 4.3.17] that LF(G) = ZF(G). By Theorem A, we have that (G,H,ZF(G))
is a 4-conjugate system. Hence

ZF(G) ≤ D ∩Dx ∩Dy ∩Dz

≤ H ∩Hx ∩Hy ∩Hz

= ZF(G).

Thus (G,D,ZF(G)) is a 4-conjugate system.

Theorem 26. Let D be an F-normaliser of a soluble subgroup G such that
Φ(G) = 1. Assume that either G is S4-free or F is composed of S3-free
groups. Then (G,D,ZF(G)) is a 3-conjugate system.

Proof. Assume that Σ is the Hall system of G to which D is associated.
Let H be the F-prefrattini subgroup of G associated to Σ. By Theorem
A, (G,H,ZF(G)) is a 3-conjugate system. Since D ≤ H by Lemma 24 and
LF(G) = ZF(G) by [1, Proposition 4.3.17], it follows that (G,D,ZF(G)) is a
3-conjugate system.

5 Proof of Theorem C
Let R = CoreG(I) = GF. We prove that (G, I, R) is a 4-conjugate system by
induction on the order of G. Let F be the normal subgroup of G such that
F/R = F(G/R), the Fitting subgroup of G/R. Clearly, F ∩ I is contained
in R. Hence F ∩ I = R. On the other hand, by [2, Theorem IX.1.5], I is an
F-injector of FI. Thus R ≤ S = (FI)F is contained in I. Assume that R is
a proper subgroup of S and let N/R be a minimal normal subgroup of FI/R
contained in S/R. Then N belongs to F and so N is contained in R. This is
a contradiction yields S = R. If FI were a proper subgroup of G, (FI, I, R)
would be a 4-conjugate system. Hence (G, I, R) would be a 4-conjugate
system and the result would follow. Therefore we may assume that G = FI.
Let M be the normal subgroup of G such that M/R = Φ(G/R). Then
G/M = (IM/M)(F/M). Applying [2, Theorem A.10.6], F/M = Soc(G/M)
is a self-centralising normal subgroup of G/M . In particular, F/M is a
completely reducible G/M -module (possibly of mixed characteristic). By
Lemma 20, there exist v1M, v2M, v3M ∈ F/M such that CIM/M(v1M) ∩
CIM/M(v2M) ∩ CIM/M(v3M) = 1. It implies that I ∩ Iv1 ∩ Iv2 ∩ Iv3 ≤ R by
Lemma 9. Thus (G, I, R) is a 4-conjugate system.
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Assume that either G is S4-free or F is composed of S3-free groups. If
G is S4-free, then G/M = (IM/M)(F/M) is S4-free. By Lemma 21, there
exist v1M, v2M ∈ F/M such that CIM/M(v1M) ∩ CIM/M(v2M) = 1.

Suppose that F is composed of S3-free groups. Denote with bars the
images in G = G/M = IF . Since I ∈ F, I is S3-free. Let A be the Hall 2′-
subgroup of F . It follows that IA is S4-free. Let B be the Sylow 2-subgroup
of F . By Lemma 16, IB/CI(B) is S4-free. Then we can apply Lemma 21
to conclude that there exist a1M, a2M ∈ A and b1M, b2M ∈ B such that
CI(a1M) ∩ CI(a2M) ⊆ CI(A) and CI(b1M) ∩ CI(b2M) ⊆ CI(B). Let vi =
ai + bi, i = 1, 2. Then CI(v1M) ∩ CI(v2M) ⊆ CI(A) ∩ CI(B) = CI(F ) = 1.

In both cases, we have that (G, I, R) is a 3-conjugate system by Lemma 9.
This completes the proof of the theorem.
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