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Abstract  

Platinum group element concentrations in felsic to intermediate rocks from the Forest Reef 

Volcanics, Cadia-Neville region, southeastern Australia have been analysed by the Ni-S fire assay-

isotope dilution method. The Forest Reef Volcanics are shoshonitic to calc-alkaline in 

composition and fractionated to produce a wide range of compositions, with MgO varying 

between 9.7 and 1.8 wt.%. The interest in this suite is that it is coeval with Au-Cu porphyry-style 

mineralisation in the Cadia mineral district. This study uses PGE geochemistry to determine the 

timing of sulfide saturation, relative to volatile (ore-fluid) saturation, in the magma that gave rise 

to the Forest Reef Volcanics and, in turn, to assess how this timing affected the mineralisation 

potential of the evolving magmatic system.  

 

The Forest Reef Volcanics can be subdivided, on the basis of their contrasting PGE geochemistry, 

into high-Mg (>6.8 wt.% MgO) and low-Mg suites (≤6.8 wt.% MgO). Platinum, Pd and Re 

concentrations increase in the high-Mg samples, whereas Ir and Ru decrease and Rh 

concentrations remain steady, with decreasing MgO. The coupled Ir, Ru and Rh depletion is 

attributed to the partitioning of these elements into magnetite. The rate of Pt and Pd enrichment 

is not possible by closed-system fractional crystallisation alone, which suggests that the parent 

magma was replenished by a Pt-Pd-rich melt.  In contrast, the PGE concentrations in the low-Mg 

samples decrease with decreasing MgO indicating the onset of sulfide saturation at 6.8 wt.% 

MgO, which is confirmed by the presence of spheroidal sulfide inclusions in liquidus crystals (i.e. 

clinopyroxene, plagioclase, magnetite). The rate of Pd depletion is appreciably less than for any 

other sulfide saturated felsic system for which data are available. This requires either that the 

amount of sulfide melt to have precipitated was unusually low, or that the rate of Pd depletion 

was limited by the mass of silicate melt the sulfide melt reached equilibrium with, or both. In any 

event, the fraction of sulfide melt that precipitated was too small to have had a significant affect 

on the Cu and Au content of the magma so that both Cu and Au were available to enter the ore-

forming fluid when the magma became volatile saturated at, or shortly after, it reached ca. 2.9 

wt.% MgO.   



  

1. Introduction  

Platinum-group elements (PGE; Os, Ir, Ru, Rh, Pt, Pd) are highly chalcophile and can be used to 

constrain the role of sulfides in magmatic processes, including mantle petrogenesis, magmatic 

differentiation and the timing of sulfide saturation (Naldrett and Duke, 1980). The PGE 

geochemistry of ultra-mafic to mafic systems has been studied extensively because of their 

association with economic Ni-Cu-PGE deposits (e.g. Noril’sk, Siberia; Jinchuan, China; Voisey's 

Bay, Canada; Kambalda, Australia; Naldrett, 1999). Studies on PGE in felsic to intermediate 

systems, such as those associated with porphyry Au-Cu deposits, have been limited due to the 

difficulty of measuring PGE at the ultra-low concentrations (sub-ng/g- to pg/g-level) at which 

they are present in these systems (Park et al., 2013a). However, a recent refinement of the Ni-S 

fire assay-isotope dilution method at the Australian National University (ANU) allows the 

determination of the PGE at the pg/g-level. 

 

Processes that contribute to the formation of economic porphyry-style mineralisation include: (i) 

those that influence metal endowment during magma generation, (ii) magma chamber processes 

that enrich or deplete the magma in Cu and Au during fractional crystallisation, and (iii) 

magmatic-hydrothermal processes that mobilise metals from the magma chamber to the site of 

Au-Cu or Cu mineralisation. Although all three processes are important, the focus of this study is 

on process (ii): the contribution of magmatic processes to ore formation.  

 

The significance of the PGE is that their extreme partition coefficients make them sensitive 

indicators of sulfide saturation (Park et al., 2013b). The aim of this study was to test the 

hypothesis that the timing of sulfide saturation relative to volatile saturation controls the fertility 

of an evolving felsic system and, in the case of a fertile system, whether the ore that forms is Au-

Cu or Cu-only. If sulfide saturation occurs before volatile saturation the sulfide melt will 

sequester Cu, Au and PGE from the silicate melt and lock these elements in disseminated sulfide 

phases in a deep underlying magma chamber, where they are unavailable to enter magmatic-

hydrothermal fluids (Park et al., 2013b). Conversely, if volatile saturation occurs before sulfide 

saturation, Cu, Au and the PGE will be available to enter a magmatic-hydrothermal fluid, which 

may produce Cu-only or Au-Cu mineralisation. The term ‘volatile phase’, as used in this study, 



  

encompasses H2O-rich vapour or brine but does not include CO2 gas, which saturates early from 

an evolving magma (Lowenstern, 2001) but has negligible effect on the PGE-Au-Cu budget. 

 

The PGE are used in preference to Cu and Au to identify the timing of sulfide saturation for two 

reasons. First, because PGE partition more strongly into a sulfide melt than Cu or Au (e.g. Mungall 

and Brenan, 2014) and are therefore more sensitive indicators of sulfide saturation. Second, the 

PGE are significantly less mobile than Cu or Au in hydrothermal fluids and, as a result, their 

concentrations in rocks are dominated by magmatic rather than hydrothermal processes (e.g. 

Mukherjee et al., 2014; Park et al., 2016).  

 

The aim of this study was to measure the ultra-low PGE concentrations in the Forest Reef 

Volcanics, from the Cadia-Neville Region in southeastern Australia, to constrain the timing of 

sulfide saturation relative to volatile saturation in the magma that gave rise to this suite (Fig. 1). 

The Forest Reef Volcanics are of interest because of their genetic association with Au-Cu 

porphyry-style mineralisation in the Cadia mineral district. This study will improve the 

understanding of felsic magmatic processes, and in particular, the timing of sulfide saturation, 

and how this affects the mineralisation potential of the magmatic system. Sulfide saturation 

occurred early in the Forest Reef Volcanics, well before volatile saturation. However, the low rate 

of PGE depletion with fractionation indicates that the amount of sulfide melt to have precipitated 

was too small to affect the net concentrations of Cu and Au in the evolved silicate melt. As a 

consequence, the magma that gave rise to the ore-associated intrusions at Cadia, which are 

thought to be the plutonic expression of the Forest Reef Volcanics (Harris et al., 2014), was not 

depleted in Au or Cu at the time of volatile saturation and therefore able to form an economic Au-

Cu deposit. 

 

1.1 Geological background  

The Lachlan Fold Belt preserves a complex subduction-accretionary history spanning the 

Cambrian to Carboniferous with the most significant event being the collision of Gondwanaland’s 

proto-Pacific margin with an oceanic terrane, the Macquarie Arc, during the Late Ordovician (ca. 

455–448 Ma; Squire and Crawford, 2007). This collision resulted in regional uplift, the closure of 



  

a back-arc basin and a quiescent period with little arc-magmatism (Glen et al., 1998). Shortly 

thereafter (ca. 440 Ma), east–directed slab roll–back resulted in extensional rifting (Crawford, 

2007). The development of deep–seated extension along the Lachlan Transverse Zone (LTZ) is 

interpreted to have triggered decompressional partial melting of a subduction-modified mantle 

and facilitated the emplacement of high-K calc-alkaline and shoshonitic magmas, including the 

Forest Reef Volcanics, to higher crustal levels in a volcano-sedimentary sub-basin (Fox et al., 

2015).  

 

The Lachlan Fold Belt is host to a range of magmatic-hydrothermal deposits including porphyry 

Au-Cu, Fe-Cu skarn, high–sulfidation Au and carbonate base–metal epithermal deposits, with 

porphyry mineralisation being the most economically significant (Cooke et al., 2007). All four 

deposit styles are hosted either within the Cadia or Northparkes mineral districts, and are 

genetically associated with the high-K, calc-alkaline to shoshonitic magmas emplaced in a 

volcano-sedimentary sub-basin during the Late Ordovician to Early Silurian. The largest Au-Cu 

deposit in the region, Cadia East, contains >37 MOz (>1.05 x 106 kg) of Au, which is hosted in 

quartz-calcite-sulfide veins that strike parallel to alkali porphyry dikes (Fox et al., 2015). Two 

discrete mineralising events occurred at Cadia, with the first at ca. 460–450 Ma, and second at ca. 

443–439 Ma (Wilson et al., 2007).  

 

The Forest Reef Volcanics encompass both porphyritic intrusive (monzonite, syenite) and 

volcanic (basalt, andesite, latite) rocks (Harris et al., 2014; Fox et al., 2015). Units of the Forest 

Reef Volcanics represent the upper sequences of the volcano-sedimentary sub-basin, and are 

host to younger alkali-porphyry dikes, and associated Au-Cu mineralisation. The Forest Reef 

Volcanics were deposited during the Middle to Late Ordovician (Harris et al., 2014; Fox et al., 

2015) and intruded by alkali porphyry dikes (Cadia Intrusive Complex), that gave rise to Au-Cu 

mineralisation, shortly thereafter during the Early Silurian (ca. 440 to 437 Ma; Squire and 

Crawford, 2007; Wilson et al., 2007).  

 

The Forest Reef Volcanics show temporal variation in their geochemistry from shoshonitic (ca. 

463–453 Ma) to medium-K calc-alkaline (ca. 448–445 Ma) and back to high–K calc-alkaline and 



  

shoshonitic magmatism (ca. 443–439 Ma; Squire and Crawford, 2007). The focus of this study is 

on the volcanic and intrusive rocks from the latter period (ca. 443–439 Ma). Samples used in this 

study vary in composition from trachyandesites and trachydacites through to basalts, basaltic 

trachyandesites, syenites and porphyritic monzonites (Squire and Crawford, 2007).   

 

The magmas from which the intrusive and volcanic rocks in the Cadia-Neville region crystallised 

were strongly oxidised (Blevin, 2002). They have high εNd values, with the Forest Reef Volcanics 

ranging from εNd +6.2 to +6.9 (Squire and Crawford, 2007), which closely resemble values of the 

Ordovician depleted upper mantle (εNd +5.7 to 8.0; Wyborn and Sun, 1993) and, in combination 

with low 87Sr/86Sr ratios (0.704; Cooke et al., 2007), indicate a primitive mantle source with 

negligible crustal assimilation (Squire and Crawford, 2007).  

 

1.2 Petrography of the Forest Reef Volcanics  

A detailed petrographic description of samples used in this study, as previously described by 

Squire (2001), is provided in supplementary information, Table A.1. The following is a brief 

overview of each unit as described by Squire (2001).  

 

Burnt Yards Basalt and Sundew Basalt  

Highly porphyritic basalt to basaltic andesite comprised of euhedral to subhedral, fine- to 

medium-grained (0.3-5.0 mm) clinopyroxene (20-40%), plagioclase (15-35%), olivine (0-2%) 

with trace amounts of FeTi-oxide set in a fine- to medium-grained holocrystalline 

quartzofeldspathic groundmass containing minor clinopyroxene, FeTi-oxides and opaques.  

 

Porphyritic Nullawonga Latite Member   

Highly porphyritic trachyandesite containing weak to moderate flow foliation. The samples 

consist of euhedral to subhedral, fine- to medium-grained (0.3-5.0 mm) plagioclase (25-40%), 

clinopyroxene (3-5%), biotite (3%), and K-feldspar (2%) crystals with trace amounts of FeTi-

oxide and up to 20% volcanic clasts set in a fine- to medium-grained holocrystalline plagioclase, 

and minor clinopyroxene, groundmass. 

 



  

Glen Ayre Syenite 

Holocrystalline syenite comprised of euhedral to subhedral, fine- to medium-grained (0.3-4.0 

mm) plagioclase (35-50%), K-feldspar (35-60%), clinopyroxene (5-25%), biotite (10%) and 

apatite (1%) crystals, poikilitically enclosed by K-feldspar.  

 

Errowan Intrusive Complex  

Highly porphyritic monzonite comprised of variable amounts of equigranular, euhedral to 

subhedral, fine- to medium-grained (0.4-7.0 mm) plagioclase (20-60%), clinopyroxene (7-30%), 

hornblende (0-25%), K-feldspar (10-30%), biotite (0-2%), and quartz (0-10%) with trace 

amounts of apatite and FeTi-oxide, set in a fine-grained holocrystalline quartzo-feldspathic 

groundmass.  

 

Hornblende Basalt Andesite Intrusion 

Highly porphyritic basaltic andesite comprised of euhedral to subhedral, fine-to medium-grained 

(0.3-5.0 mm) plagioclase (10-50%), clinopyroxene (7-15%) and hornblende (5-20%) with traces 

of apatite and FeTi-oxides, set in a fine- to medium-grained holocrystalline quartzo-feldspathic 

groundmass.  

 

The Forest Reef Volcanics are closely spatially and temporally associated with porphyry Au-Cu 

mineralisation. As a consequence, samples have been subjected to varying degrees of potassic, 

propylitic or quartz-albite alteration (Holliday et al., 2002). This alteration is commonly observed 

as partial- to complete-replacement of primary plagioclase by calcite, sericite and/or albite; 

clinopyroxene by actinolite, chlorite and/or epidote; and olivine by chlorite and/or actinolite 

(supplementary information, Table A.1). A few samples contain additional secondary 

(hydrothermal) sulfides, notably pyrite with minor chalcopyrite. The total amount of secondary 

sulfides does not exceed 1% modal of the bulk rock.  

 

This study concentrates on 13 of the least altered volcanic and intrusive rocks. Least-altered 

samples were determined by petrographic examination of all available samples in thin section 

(28 samples). Samples containing the least amount of secondary minerals, including sulfides, and 



  

least destruction of primary mineral textures, were selected. Rocks showing significant degree of 

hydrothermal alteration (i.e. complete destruction of magmatic textures and complete mineral 

replacement) were excluded.  

 

2. Analytical Techniques  

This study draws on 13 of the least-altered samples, including 9 volcanic and 4 intrusive rocks, 

from the Forest Reef Volcanics, collected and previously characterised by Squire (2001) and 

Squire and Crawford (2007; see Fig. 1) 

 

Samples were collected from drill core and surface exposures throughout the Cadia-Neville 

region and were hand picked to exclude oxidised or weathered rinds, veins or amygdales. 

Samples cover a range of MgO contents, between 9.7 and 1.8 wt.% MgO, and were selected to 

trace the magmatic evolution of the suite. The PGE and Re concentration of samples were 

determined using the Ni-S fire assay–isotope dilution ICP-MS method. The PGE content of two 

mineralised quartz-calcite-sulfide veins (MQV) were also analysed for comparison with the 

Forest Reef Volcanic rocks (supplementary information, Table A.1). 

 

2.1 Whole rock PGE and Re determination 

Samples were powdered in an agate swing mill to minimize PGE contamination during crushing 

(Takamasa and Nakai, 2009) and analysed in three separate batches, along with duplicates, a 

procedural blank and the TDB-1 (CCRMP-CANMET diabase) standard, following the Ni-S fire-

assay isotope dilution method described by Park et al. (2012a). 

 

The Ni-S fire-assay isotope method has three advantages over the Carius tube method when 

applied to the measurement of PGE in felsic rocks: (i) it avoids problems associated with acid 

digestion of refractory phases, (ii) it facilitates the use of large sample sizes, which reduces 

sampling problems caused by the nugget effect, and (iii) it removes elements that interfere with 

the PGE, notably Y, Zr and Mo that interfere with Pd, and Hf, and rare-earth elements (REE) that 

interfere with Pt. 



  

 

The Ni-S fire-assay isotope dilution method involved mixing approximately 5 g of sample powder 

with Ni, S and sodium borax in the ratio sample:Ni:S:Na–borax = 10:1:0.5:10. A PGE-enriched 

spike solution (99Ru, 105Pd, 185Re, 191Ir and 195Pt) was added to each unknown, blank and the TDB-

1 standard for internal standardization. Prepared powders were placed in porcelain crucibles, 

contained in a second larger crucible, dried at 100 °C and then fused at 1100 °C for 30 min. 

Reducing conditions were induced during fusion by placing ~5 g of wheat flour in outer crucibles 

and supplying a steady flow of N2 gas into the furnace. Fusion concentrates PGE in the powdered 

sample into extractable Ni-S beads. After quenching, the Ni-S beads were separated from their 

glasses, weighed to assess recovery, and then dissolved by fluxing with 6M HCl in a conical flask 

at ~150 °C. After 5 hours of boiling in HCl, to ensure complete Ni-S bead dissolution, samples 

were removed, allowed to cool and filtered through Millipore (0.45 μm cellulose membrane) 

filter paper to extract un-dissolved PGE micro-nuggets. Filter papers were then digested in aqua 

regia and the solutions evaporated to incipient dryness (~100 μL). Finally solutions were diluted 

with 2% HNO3, fluxed for 2 hours and centrifuged, prior to measurement by inductively coupled 

plasma mass spectrometry (ICP-MS).  

 

Solutions were measured for PGE, Re and trace element isotopes using an Agilent 7700x 

Quadrupole ICP-MS at the Research School of Earth Sciences (RSES), Australian National 

University (ANU). Solutions, commencing with procedural blanks, were measured in order of 

increasing expected PGE and Re concentrations. Standard solutions were measured prior to, 

during and following unknown analyses to monitor instrumental drift and molecular 

interferences. Acid blanks were analysed between each analysis to assess background levels and 

‘memory’ effects. The isotopes measured, length of analyses and dwell times were set to 

minimize molecular interferences yet maximize counting statistics and analytical sensitivities to 

2.5–3.0 x 104 cps/ng/g for determination at the pg/g-level.  

 

Data reductions and corrections (i.e. background, molecular interferences and mass bias) were 

performed following the methods of Park et al. (2012a). Briefly, all standards, procedural blank 

and unknown analyses were background corrected by subtracting average count rates from acid 



  

blank analyses. Molecular interferences were monitored by measuring standard Ni, Cu, Zn, Co, Hf, 

Mo, Zr, Ta and V solutions and corrected for by subtracting argide and oxide production rates. 

Mass bias factors were determined from isotopic ratios of certified standard PGE and Re 

solutions. Background, molecular interference and mass bias corrections for all PGE and Re are 

generally less than 10%.  

 

Absolute PGE and Re concentrations were determined by isotope dilution. Mono-isotopic 103Rh 

was determined relative to 106Pd, assuming that recovery rates for Rh are similar to Pd.   

 

All unknown and TDB-1 standard analyses were blank corrected by subtracting procedural blank 

averages. The PGE and Re concentrations of procedural blanks are detailed in the supplementary 

material (Table A.2). Batch 2 blank (Blank-2) contained higher than expected Ir, Rh, Pt and Re 

concentrations (see supplementary material, Table A.2). Close agreement between duplicate 

analyses of unknowns and the TDB-1 standard from batch 2 with that of other batches (batch 1 

and 3), however, suggest that only the blank was contaminated during sample preparation and 

therefore Blank-2 was excluded from blank corrections.  

 

Method detection limits (MDL), defined as three standard deviations of the procedural blanks, 

are 0.7 pg/g for Ir, 3.7 pg/g for Ru, 1.3 pg/g for Rh, 13 pg/g for Pt, 11 pg/g for Pd and 2.0 pg/g for 

Re (see supplementary material, Table A.2). All PGE and Re analyses were above the MDL, except 

for Ru in three samples (147-709D, 147-757D and 147-743). 

 

Analytical accuracy and precision were assessed from multiple analyses of the TDB-1 standard 

(see supplementary material, Table A.3). The TDB-1 PGE and Re concentrations fall slightly 

below values reported by Ishikawa et al. (2014), Yang et al. (2014) and Chu et al. (2015), which 

were all measured using the Carius tube method. For example, Ir, Ru and Re were on average 

~20% less, whereas Rh and Pt were ~10% less and Pd ~5% less. Nonetheless the TDB-1 

analyses from this study are consistent with values reported by other studies including Peucker-

Ehrenbrink et al. (2003), Meisel and Moser (2004a), Park et al. (2013a, b) and Marchesi et al. 

(2014). The multiple TDB-1 analyses (n=5) showed absolute differences of <0.05 ng/g for Ir, Ru 



  

and Rh, which are present at low concentrations (<0.5 ng/g), and differences of no more than 1.2 

ng/g for Pt and Pd, which are present at high concentrations (>4 ng/g), confirming the precision 

of the Ni-S isotope dilution ICP-MS technique.  

 

Uncertainties in PGE and Re data mainly arise from sampling error due to the presence of PGE 

micro-nuggets, blank subtractions and ICP-MS counting statistics. Analytical uncertainties, 

determined by error propagation of ICP-MS counting statistics and background-, interference- 

and mass-bias- corrections, are quoted to 2σ and are generally <5% of absolute PGE 

concentrations. Ten duplicate analyses of Forest Reef Volcanic samples showed variances for Ir, 

Ru, Re, which are well above analytical error and attributed to sampling error caused by the 

presence of micro-nuggets (Table 1). The variances of Pt and Pd concentrations are lower (-34 to 

+13% relative) than those of Ir, Rh and Ru concentrations (-55 to +605% relative).  

 

2.2 Homogeneity of Forest Reef Volcanic samples  

The presence of micro-nuggets can complicate sampling and the measurement of precious metal 

concentrations, such as the PGE, particularly when these elements are present at low 

concentrations in the bulk rock (pg/g-level; Meisel and Moser, 2004b). The presence of one or 

more micro-nuggets in a sample aliquot is enough to significantly affect their measured 

concentration. Platinum group element-rich micro-phases such as platinum group minerals 

(PGM) and immiscible sulfide blebs have been shown to cause a heterogeneous distribution (i.e. 

‘nugget effect’) at the 5 g sampling scale (e.g. Park et al., 2013b, 2015).  The presence of such 

phases can be inferred from differences between duplicate analyses that lie beyond analytical 

uncertainty.  

 

The PGE concentrations of samples analysed in this study are affected by the presence of micro-

nuggets resulting in a difference in duplicate analyses that is beyond analytical error. Pt-rich 

nuggets in magnetite affect the PGE concentrations of the high-Mg samples, whereas immiscible 

sulfide melts affect the low-Mg samples. Differences between duplicate analyses are greatest for 

the PGE present in the lowest concentrations (1-200 pg/g) such as Ir, Ru and Rh. The relative 

difference in Ir, Ru and Rh concentrations, between duplicate analyses, vary up to 605%. 



  

Differences between duplicate analyses for Pt and Pd are less (up to 13% relative), despite the 

presence of Pt-rich nuggets, because of their higher overall concentrations in the bulk rock (300-

9000 pg/g).  

 

Given the problem of the nugget effect, the duplicate aliquot containing the lowest PGE 

concentrations should always be used when making inferences about the PGE content of the 

magma. It is assumed that this sample will contain the lowest number of nuggets. However, this 

sample may still contain one or more nuggets and therefore the lowest measured concentration 

will represent the maximum possible concentration for the magma.    

 

2.3 Analyses of magnetite and sulfides for PGE and major and trace elements  

The major and trace element concentrations in magnetite grains from 10 samples and primary 

(magmatic) and secondary (hydrothermal) sulfides from 6 samples (pyrrhotite, pyrite, 

chalcopyrite) were then determined by electron microprobe analysis (EPMA) using a Cameca SX-

100 at the RSES, ANU. The elements and x-ray lines used for both measurements were: Al (Kα), Si 

(Kα), S (Kα), Fe  (Kα), Co (Kα), Ni (Kα), Cr (Kα), Cu (Kα), Zn (Kα) and Ag (Kα). The operating 

conditions were: accelerating voltage 15 kV, beam current 20 nA, beam diameter 5 μm. Analytical 

accuracy and precision was measured from multiple standard analyses of Fe-metal, Chromite, 

Andradite and Cr2O3 standards. Accuracy for all major and minor elements was better than 5% 

and precision better than 1% relative standard deviation (RSD) for most elements. 

 

The PGE and trace element content of magnetite, from 8 samples, and secondary sulfides, from 4 

samples, were measured by laser ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS) at the RSES, ANU. Primary sulfides, which are present as 5-15 μm wide spheroidal 

inclusions, were too small for measurement by LA-ICP-MS. The analytical system consisted of a 

Lambda Physik Complex 110 Excimer laser (λ=193 nm) and HelEX ablation cell coupled to an 

Agilent 7700x quadrupole ICP-MS. Spot analyses were carried out at a 5 Hz laser pulse rate, 45 ± 

2 mJ output energy, using a 81 or 47 μm spot diameter. Spot analyses consisted of 15 s of 

background (Ar-gas blank) measurement, followed by 30 s of sample analysis. The isotopes 



  

measured were 24Mg, 27Al, 29Si, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, 61Ni, 65Cu, 66Zn, 101Ru, 103Rh, 

105Pd, 189Os, 192Os, 193Ir and 195Pt.  

 

The isotopes measured, volume ablated, length of ablation and integration times were all set to 

minimize potential interferences and maximize counting statistics. The NIST 610 glass was used 

as an external standard for most of the trace elements and the USGS MASS-1 synthetic polymetal 

sulfide standard was used for the PGE and Au. Only Pt, Ir and Os from the PGE could be quantified 

in magnetite and sulfide given that only these values are reported for MASS-1 by the USGS. The Fe 

content obtained by EPMA was used as an internal standard for both trace elements and PGE 

determination. Data reduction was carried out using Iolite v 3.31. Molecular interferences on 

103Rh and 105Pd caused by 63Cu–40Ar and 65Cu–40Ar, respectively, were monitored by measuring a  

Cu-metal standard and corrected for by subtracting argide production rates in pyrite and 

chalcopyrite. Molecular interference corrections are generally ~40% for 103Rh and 105Pd in pyrite 

and ~50% for 103Rh and ~100% for 105Pd in chalcopyrite. The corrected count rates for Pd in 

chalcopyrite analyses are at background-level indicating either i) no detectable Pd in 

chalcopyrite, or ii) over-correction due to different 105Pd/65Cu yield between Cu-metal and 

sulfide, coupled with high Cu-concentrations in chalcopyrite. Micro-phases, identified as spikes in 

time-resolved data, were omitted from integrations. Small sulfide grains, notably chalcopyrite, 

were often limited in their ablation time because of down-hole boring. Care was taken to ensure 

only count rates from sulfide, and not groundmass, were integrated.  

 

Multiple analyses of the NIST 610, NIST 612 and USGS MASS-1 standards were used to assess the 

analytical accuracy during magnetite analysis. Results are presented in supplementary 

information Table A.4. The measured PGE and trace element concentrations, including Pt and Ir, 

generally agree within 2σ of the values from Jochum et al. (2011) and GEOREM. Multiple analyses 

of USGS MASS-3 standard were used to assess the analytical accuracy during sulfide analysis. 

Results are presented in supplementary information Table A.5. The measured PGE and trace 

element contents, including Pt and Ir, agree within 2σ of the values reported by Fonseca et al. 

(2007).  

 



  

3. Results  

 

3.1 Whole rock major and trace elements 

The whole rock major and trace element data used in this study were measured by X-ray 

Fluorescence (XRF) and ICP-MS by Squire (2001) and Squire and Crawford (2007), and are 

detailed in supplementary information, Table A.6 and are plotted in Fig 2 (a-f) and in 

supplementary material, Fig A.1 (a-e). All major element data are reported on an anhydrous basis 

with iron oxide as 100% Fe2O3. 

 

The analysed samples are shoshonitic, varying from trachy-basalts to trachytes and follow a calc-

alkaline evolution trend (Squire, 2001). The compositions of the samples range between 50 to 60 

wt.% SiO2, 13 to 19 wt.% Al2O3, 9.7 to 1.8 wt.% MgO, 11.3 to 5.6 wt.% Fe2O3 and 0.9 to 0.4 wt.% 

TiO2.  

 

Silica, Al2O3, Na2O and K2O increase with decreasing MgO, whereas CaO, Ni and Cr decrease (Fig. 

2 (a-f) and supplementary information, Fig. A.1). Copper data show significant scatter when 

plotted against MgO and have no identifiable trend (supplementary information, Fig. A.1d). The 

scatter observed in MgO, the alkalis, CaO and Cu is attributed to hydrothermal alteration as 

indicated by the partial replacement of primary silicates (olivine, clinopyroxene, orthopyroxene, 

plagioclase) by secondary chlorite, epidote, sericite, calcite and albite, and the addition of 

secondary (hydrothermal) sulfides. Iron-oxide, TiO2 and V initially increase with decreasing MgO, 

from 9.7 to 8.7 wt.%, then decrease with decreasing MgO. The coupled behaviour of Fe2O3, TiO2 

and V indicate the onset of magnetite saturation somewhere between 8.7 and 5.9 wt.% MgO as 

defined by samples 147-760 and 147-789, respectively. Three basaltic samples (147-767, 147-

754 and 147-789), which fall below the general Fe2O3, TiO2 and V fractionation trend, contain 

lower abundances of magnetite (<2% modal), relative to other basaltic samples (4-10% modal 

magnetite). This discrepancy makes it difficult to determine the timing of magnetite saturation, 

however it is best estimated at 8.7 wt.% MgO. 

 



  

A primitive mantle normalized incompatible trace element diagram (Fig. 3) shows no Eu-

anomaly and strong enrichment in the large ion lithophile elements (LILE), moderate enrichment 

in the light-REE (LREE) and slight enrichment in the heavy-REE (HREE) with respect to primitive 

mantle values (Sun and McDonough, 1989).  

 

3.2 Whole rock PGE and Re concentrations  

Whole rock PGE and Re concentrations for the Forest Reef Volcanics are listed in Table 1 and 

plotted against MgO in Fig. 4 (a-g). All PGE show tight co-variation with MgO (see Fig. 4 a-g) and a 

clear break is observed in the trends at 6.8 wt.% MgO. Above 6.8 wt.% MgO Pt and Pd are 

observed to increase, with decreasing MgO, whereas below 6.8 wt.% MgO both Pt and Pd 

decrease. Based on this contrast in PGE geochemistry, the Forest Reef Volcanics have been 

subdivided into the high-Mg (>6.8 wt.% MgO) and low-Mg samples (≤6.8 wt.% MgO). 

 

The high-Mg samples contain between 4.2–9.3 ng/g Pd, 1.9–6.9 ng/g Pt and 0.01–0.25 ng/g Re. 

Rhenium abundances do not correlate well with MgO, but in general increase with decreasing 

MgO. The high-Mg samples contain lower concentrations of the remaining PGE, with 0.01–0.15 

ng/g Ir, <0.003–0.28 ng/g Ru and 0.11– 0.27 ng/g Rh. The abundances of Ir and Ru decrease, 

whereas that of Rh remains constant with decreasing MgO, from 9.7 to 6.8 wt.%.  

 

The low-Mg samples contain lower abundances of PGE than the high-Mg samples, with 1.3–6.5 

ng/g Pd, 0.3–6.2 ng/g Pt, 0.001–0.016 ng/g Ir, 0.002–0.012 ng/g Ru, 0.006–0.14 ng/g Rh and 

0.04–1.39 ng/g Re. Rhodium, like Pt and Pd, decreases with decreasing MgO, between 6.8 and 1.8 

wt.%, in contrast to the high-Mg samples. Their behavior is similar to that of Ir and Ru, whose 

abundances continue to decrease, however at lower rates than during fractionation of the high-

Mg samples. In contrast to the PGE, Re concentrations are an order of magnitude higher in the 

low-Mg than in the high-Mg samples.  

 

Primitive Mantle (PM) normalized PGE and Re patterns for the Forest Reef Volcanics are shown 

in Fig. 5. The less evolved, high-Mg samples have PGE abundances comparable to Grenada Arc 



  

Picrites. In contrast, the low-Mg samples are depleted in all PGE, but enriched in Re, relative to 

the high-Mg samples. Both high- and low-Mg samples have negative Ru anomalies.  

 

Platinum-group element concentrations were measured in two mineralised quartz-calcite-sulfide 

veins (MQV). They vary between 4.8–19.8 ng/g Pd, 0.5 to 0.8 ng/g Pt, 0.002 to 0.005 ng/g Ir, 0.02 

to 0.08 ng/g Ru, 0.02 to 0.05 ng/g Rh and 20 to 97 ng/g Re (Table 1). The mineralised quartz 

veins are enriched in Ru and Pd relative to the Forest Reef Volcanics (MQV/FRV= ~5.8 and ~2.7, 

respectively) and depleted in Rh, Ir and Pt (MQV/FRV = <0.5).  

 

3.3 Magnetite and sulfide major and trace element geochemistry  

Magnetite is observed in most samples and usually occurs as individual euhedral grains typically 

80 to 100 μm in diameter and, more rarely, as smaller sized aggregates up to 100 μm in size. The 

proportion of magnetite varies from 10% modal in the high-Mg samples, to 4% modal in low-Mg 

samples.  

 

Magmatic sulfide inclusions are observed only in the low-Mg samples (≤6.8 wt.% MgO) as 5–15 

μm spheroidal inclusions of dominantly pyrite, pyrrhotite and rarely chalcopyrite in 

clinopyroxene, plagioclase and magnetite phenocrysts (Fig. 6 a-i). Sample 147-754 (6.8 wt.% 

MgO) is the most mafic sample in which spheroidal sulfide inclusions are found. This suggests 

sulfide saturation occurred around 6.8 wt.% MgO, which as shown later, is in agreement with the 

PGE geochemistry.  

  

Secondary (hydrothermal) sulfides are dominated by pyrite with lesser chalcopyrite. Secondary 

sulfides are only observed in 5 out of the 13 samples and occur in trace (<1% modal) amounts. 

Pyrite grains are found as disseminated, euhedral (cubic) grains up to 50 μm in size. Chalcopyrite 

occurs as disseminated anhedral grains typically <20 μm, but with few up to 50 μm, in size.  

 

The major element composition of magnetite is presented in supplementary material Table A.7, 

the data for primary (magmatic) sulfides in Table A.8 and secondary (hydrothermal) sulfides in 

Table A.9. Magnetite and both primary and secondary pyrite, pyrrhotite and chalcopyrite 



  

compositions are typical of arc-related Fe-Ti oxides and sulfides (e.g. Ikehata et al., 2010; Velasco 

et al., 2016). The trace element and PGE content of magnetite is presented in supplementary 

information Table A.10, and that of secondary sulfides in Table A.11.  

 

The concentration of PGE in magnetite was found to be at or slightly above detection limit values 

(supplementary information, Table A.10). Count rates of Rh, Ru, Ir and Pd are continuous in 

magnetite and are at or slightly above background levels (<101 CPS), whereas count rates of Pt 

occur as ‘spikes’ (102 to 103 CPS) in time-resolved data (supplementary information, Fig. A.2). 

Only Ir, Os and Pt concentrations could be quantified using the MASS-1 external standard. 

Magnetite from two high-Mg samples contained Ir and Os concentrations of 8-9 ng/g and 0.2-0.7 

ng/g, respectively, whereas these elements in the remaining samples fell below the detection 

limit of <4 ng/g and <0.2 ng/g, respectively. Given that Pt count rates are ‘spiked’, the 

concentration of Pt in magnetite could not be quantified. However, if the Pt-spikes were to be 

removed the Pt concentrations would fall below detection.  

 

Only secondary (hydrothermal) sulfide grains were large enough for their trace elements to be 

measured by LA-ICP-MS. Platinum-group element concentrations in secondary sulfides (pyrite, 

chalcopyrite) were found to be at or below detection limit values (supplementary information, 

Table A.11). Count rates of Rh, Pd and Ru are continuous (100 to 103 CPS) in both pyrite and 

chalcopyrite, whereas count rates of Pt occur as ‘spikes’ in time-resolved data and Ir count rates 

fall slightly above or at background level (supplementary information, Fig A.3). Only Pt, Ir and Os 

could be quantified using the MASS-1 external standard. Iridium and Os concentrations fell below 

their detection limits in all sulfide analyses (<2 ng/g and <0.2 ng/g, respectively). Because Pt 

count rates occur as ‘spikes’ in time-resolved data, the concentration of Pt in secondary sulfides 

was not quantified.  

 

4. Discussion  

 

4.1 Whole rock major and trace elements 



  

The coherent trends formed by the major and trace elements suggest that the analysed samples, 

despite being classified into different units, experienced similar fractionation pathways and were 

sourced from a single magma chamber or similar parent magma chambers at depth. 

 

The trace element signature of the Forest Reef Volcanics is characteristic of arc magmas and 

comparable to the continental arc signature of Rudnick and Fountain (1995; Fig. 3). A lack of Eu 

anomaly suggests that the parent magma did not fractionate plagioclase at depth. An alternative 

explanation for the lack of negative Eu anomaly is that the effect of plagioclase crystallisation was 

balanced by amphibole fractionation, which produces a positive Eu anomaly (Setiabudi, 2001), or 

by apatite or titanite fractionation (Fourcade and Allegre, 1981). Another factor that may be 

relevant is the fO2 of the melt, which could have been high enough for Eu3+, which has similar 

incompatibility to the other REE (Blevin, 2002), to be the dominant Eu species in the melt. 

 

4.2 Identifying the timing of sulfide and volatile saturation 

The aim of this study was to test the hypothesis that the timing of sulfide saturation, relative to 

volatile saturation, controls the Au-Cu fertility of an evolving felsic system. Before discussing the 

geochemistry of the PGE it is therefore necessary to identify the timing of these two critical 

events. 

 

4.2.1 Timing and likely cause of sulfide saturation  

Platinum and Pd abundances, in samples with MgO above 6.8 wt.%, increase with decreasing 

MgO, however decrease once the MgO falls below 6.8 wt.% (Fig. 4a-g). This change is attributed 

to the magma reaching sulfide saturation at 6.8 wt.% MgO. The precipitation of PGE-alloys or 

sulfide minerals are discounted for the following reasons: (i) Pd is not compatible in an alloy 

phase, (ii) sulfide inclusions are observed in liquidus minerals in low-Mg samples but not in the 

high-Mg samples, and (iii) the spherical shape of these sulfide inclusions indicates that the sulfide 

phase was in a molten-state at the time of entrapment. 

 

The solubility of sulfur in a silicate melt, commonly described as the sulfur content at sulfide 

saturation (SCSS), is a function of temperature (T), pressure (P), melt composition (especially the 



  

H2O, Cu and Fe content of the melt), oxygen fugacity (fO2) and sulfur fugacity (fS2)(O’Neill and 

Mavrogenes, 2002; Liu et al., 2007). Sulfate is an order of magnitude more soluble than sulfide in 

a silicate melt (Jugo et al., 2005), hence the nature of the sulfur species, which is a function of the 

fO2 of the melt, is also important. Sulfide is dominant in melts where fO2 ≤ FMQ, whereas sulfate 

predominates if fO2 ≥ FMQ+2 (Yang, 2012). The fO2 of arc magmas, expressed asΔFMQ, is +0.5 to 

+1.7 (Parkinson and Arculus, 1999). As a consequence sulfur will be present, at least in part, as 

sulfate with the estimated proportion of sulfate in arc magmas ranging from ca.20% of the total 

sulfur at fO2 ΔFMQ = +0.5, to ca.80% at fO2 ΔFMQ = +1.7 (Yang, 2012; references therein). The 

Forest Reef magma has been previously described as ‘strongly oxidised’ by Blevin (2002) but its 

fO2  has not been quantified. 

 

Although other factors may have contributed to sulfide saturation in the Forest Reef magma, a 

decrease in fO2 associated with magnetite saturation appears to be the principal trigger. 

Magnetite saturation, as identified by the coincident depletion in Fe2O3, TiO2 and V, starts at 8.7 

wt.% MgO and is followed shortly after by sulfide saturation at 6.8 wt.% MgO, suggesting a 

genetic link between these processes. Magnetite precipitation lowers the Fe3+/Fe2+ ratio of the 

silicate melt and therefore its fO2, driving the reduction of sulfate to sulfide and triggering sulfide 

saturation (Jenner et al., 2010). 

  

4.2.2 Timing of volatile saturation  

Before it is emplaced into the upper crust, the magma that gives rise to a porphyry intrusion 

consists of a mixture of volatile-rich melt and crystals (e.g. Shinohara and Hendequist, 1997). 

Upon ascent, the magma will decompress and exsolve a volatile phase. The removal of this fluid 

phase lowers the solidus temperature of the porphyry causing it to quench. The fine-grained 

groundmass in a porphyritic sample therefore represents the composition of the magma at the 

time of volatile-saturation. The MgO content of the magma at the time of volatile saturation can 

therefore be estimated from the MgO content of the porphyry, after allowing for the MgO content 

of the phenocrysts.  

 



  

Whole rock MgO values of the porphyry intrusions genetically associated with Au-Cu 

mineralisation in the Cadia district (Cadia Intrusive Complex; Holliday et al., 2002) range from 

2.5 to 5.9 wt.% MgO (see supplementary information Table A.12). After deducting the MgO 

content of the Mg-rich phenocrysts (i.e. clinopyroxene, biotite, hornblende) and correcting for 

plagioclase, the resulting MgO content of the groundmass ranges from 1.1 and 2.9 wt.% MgO. 

This suggests that volatile saturation occurred at or slightly after the Forest Reef magma 

fractionated to 2.9 wt.% MgO. 

 

4.3 Effects of hydrothermal overprinting on whole rock PGE  

Iridium and Os concentrations in secondary sulfides (pyrite, chalcopyrite) are below the 

detection limit (supplementary information, Table A.11). Count rates of Rh, Pd and Ru are 

continuous, whereas count rates of Pt are ‘spiked’ indicating that Rh, Pd and Ru are held in the 

pyrite and chalcopyrite lattice whereas Pt is present as a Pt-rich micro-phase (supplementary 

information Fig. A.3). Despite not being able to quantify the concentrations of Rh or Pd, high 

count rates of Rh (101 to 102 CPS) indicate detectable concentrations in the sulfides whereas low 

count rates of Pd, slightly above or below detection (100 to 101 CPS) indicate negligible Pd 

concentrations in sulfides. Given (i) that only 5 out of the 13 of the analysed samples contained 

secondary (hydrothermal) sulfides, (ii) that where secondary sulfides are present their 

abundance is low (<1% modal), and (iii) that only a few secondary sulfide analyses contain PGE 

at or below detection, it is likely that the bulk of the PGE in these samples is magmatic and that 

little has been introduced during hydrothermal alteration. Rhodium is the most likely PGE to be 

affected by hydrothermal alteration since its count rates in pyrite and chalcopyrite are high (101 

to 102 CPS) compared with the other PGE (100 to 101 CPS). However, the tight co-variation of the 

PGE with MgO confirms the hypothesis, that the PGE have been little affected by hydrothermal 

alteration. This is in sharp contrast to Cu, which shows considerable scatter when plotted against 

MgO (supplementary information, Fig. A.1d). Conversely, the removal of PGE during 

hydrothermal alteration is unlikely given the findings of Barnes and Liu (2012) who found that Pt 

and Pd are relatively immobile, irrespective of the nature and degree of alteration, especially in 

sulfide-poor, silicate rocks.  

 



  

4.4 PGE variations in the high-Mg samples (>6.8 wt.% MgO) 

Platinum, Pd and Re exhibit incompatible behaviour in the high-Mg rocks, whereas Ir, Ru, and to 

a lesser extent Rh, behave compatibly as MgO decreases from 9.7 and 6.8 wt.% (Fig 4 a-g). The 

enrichment in Pt and Pd requires the exclusion of these elements from early crystallising silicate 

and oxide phases, notably olivine, pyroxene and plagioclase. The strongly incompatible behavior 

of Pt and Pd during this period suggests that the magma did not experience early sulfide 

saturation.  

 

The slope of Primitive Mantle (PM) normalized PGE patterns for the Cadia samples (Fig. 5) shows 

that the mantle source from which the primitive melt was derived was enriched in the PPGEs 

(Platinum-group PGE: Pt, Pd, Rh) and Re, relative to the IPGE. The negative Ru anomaly in the 

high-Mg samples can be attributed to early crystallisation of chromite at depth (Arguin et al., 

2016).  

 

The concomitant depletion of Ir and Ru in the high-Mg samples could be attributed to either: (i) 

saturation of a PGM phase directly from the silicate melt (e.g. Brenan and Andrews, 2001), (ii) 

partitioning of Ir and Ru into a spinel phase such as magnetite or chromite (e.g. Park et al., 2012b, 

2016), or (iii) spinel-induced saturation of a Ir- and Ru-rich PGM micro-phase at the boundary of 

the growing crystal (e.g. Arguin et al., 2016). 

 

Erlichmanite (OsS2), laurite (RuS2) and an IPGE-alloy (Brenan and Andrews, 2001) are significant 

hosts of the IPGE in mafic and ultra-mafic systems and the precipitation of one or more of these 

phases could account for the depletion of Ir and Ru in the high-Mg samples. The likelihood of 

erlichmanite cannot be evaluated due to a lack of Os data. Laurite can be discounted because the 

partitioning of Ir and Ru into laurite is Ru >> Rh ~ Ir (Brenan and Andrews, 2001), which 

contrasts with that observed in the high-Mg samples (Bulk D = Ir ~ Ru >> Rh). 

 

Saturation of an IPGE-alloy depends on the solubility of Ir and Ru in a silicate melt, which 

decreases with decreasing fO2, temperature and increasing Fe-content (Borisov and Palme, 

2000). On the basis of the Borisov and Palme (2000) experiments, the solubility of Ir and Ru in a 



  

felsic-intermediate oxidized magma (fO2 = FMQ+1 to +2 and T = 700-900 °C) is approximately 1 

μg/g Ir and 0.1 μg/g Ru (see supplementary material, Fig. A.4,). These solubilities are four to five 

orders of magnitude greater than the amount of Ir and Ru found in the highest-Mg samples 

(~0.04 ng/g), precluding the possibility of IPGE-alloy saturation and making precipitation of a 

PGM phase unlikely.  

 

Iridium and Ru have been shown to partition into spinel phases, namely magnetite and chromite 

(e.g. Park et al., 2012b, 2016; Pagé and Barnes, 2016). Only magnetite is found in the samples 

used in this study. Magnetite is an inverse spinel phase and is expected to take Ir, Os, Ru and Rh 

into its structure (Park et al., 2017). Its precipitation is the most likely explanation for the 

observed depletion of Ir and Ru with decreasing MgO in the high-Mg samples (Fig. 4 b,d). The Ir 

and Os concentrations in magnetite, measured by LA-ICP-MS and reported in supplementary 

information Table A.10, support this hypothesis. The concentration of Ir and Os in magnetite 

from two of the high-Mg samples is 8-9 ng/g and 0.2-0.7 ng/g, respectively. The abundance of 

magnetite in these two samples, based on their Fe-content, and after allowing for the Fe-content 

of the co-existing silicate phases, is about 10 wt.%. As a consequence the bulk partition 

coefficient for Ir into magnetite in the high-Mg samples is probably above 1. Iridium and Os were 

not detected in magnetite in the low-Mg samples because, by this stage, crystal fractionation had 

decreased the concentration of Ir, and most likely Os, to a low-level.  

 

Rhodium and Ru concentrations could not be quantified because there are no reported data for 

these elements in the external standard MASS-1. The compilation by Park et al. (2017) suggests 

that Ru has a higher partition coefficient into the inverse spinel structure than Rh, which would 

explain why Ru decreases with decreasing MgO, whereas Rh remains constant (Fig. 4 d,e.).  In 

summary magnetite crystallisation provides the best explanation for the depletion of Ir, Ru and 

Rh with decreasing MgO in the high-Mg samples. 

 

The count rates for Ir, Os, Ru and Rh during spot ablation of magnetite were constant, which 

suggests that Ir, Os, Ru and Rh are held in the magnetite lattice rather than in micro-phase 

inclusions such as an Ir-Ru-rich PGM (e.g. Arguin et al., 2016; Fig. A.2). In contrast, the count rates 



  

for Pt have spikes suggesting the presence of Pt-rich micro-phase inclusions in magnetite. This 

phase may have precipitated in a localised reduction front, caused by magnetite crystallisation, 

similar to one that forms during chromite crystallisation (e.g. Arguin et al., 2016). The solubility 

of Pt is highly sensitive to fO2 and can range from 130 ng/g to 0.8 ng/g at fO2 between FMQ+2 to 

FMQ-2, respectively (Borisov and Palme, 2000). The Pt content of the silicate melt, at the time of 

magnetite saturation, was between 1.9 and 6.5 ng/g. Pt-alloy saturation therefore requires the 

localized oxygen fugacity in the magnetite crystallisation induced reduction front, to have fallen 

to below FMQ. 

 

The ~2.9 and ~2.2 fold increase, of Pt and Pd respectively, between 9.7 to 6.8 wt.% MgO, is 

higher than expected from fractional crystallisation. The observed enrichments require 70% and 

50% crystal fractionation, respectively, if both elements are perfectly incompatible. This is 

unlikely given the small decline in MgO (~2.9 wt.%) in the high-Mg samples. Because fractional 

crystallisation cannot account for the rate of Pt and Pd increase, other processes, namely 

assimilation and replenishment, must be considered. Crustal material typically contains <1 ng/g 

Pt and Pd (Park et al., 2012a; and references therein) so crustal contamination would decrease 

the PGE content of the magma and can therefore be ruled out. 

 

Magma replenishment can prolong magmatic activity, facilitate eruption and modify magma 

geochemistry (Huppert and Sparks, 1981). It is common to most volcanic terranes including arc-

environments (Anderson, 1976). Modelling (supplementary information, Fig. A.5) demonstrates 

that when lower fractions of replenishing magma are added to a system, the replenishing magma 

must contain higher Pt and Pd concentrations to explain the observed increase. For example, 

10% and 20% replenishment requires the replenishing magma to have 65 and 11 ng/g Pt and 94 

and 21 ng/g Pd, respectively. In contrast, 30 and 40% replenishment require only 18 and 3 ng/g 

Pt and 25 and 6 ng/g Pd, respectively. The highest Pd concentrations observed in primitive 

boninites and arc tholeiites is 38 ng/g (Hamlyn et al., 1985) rendering significant replenishment 

(>30%), by a magma only slightly more PGE enriched than the primary magma, the most likely 

scenario in the case of the Forest Reef Volcanics.  

 



  

In the discussion that follows, the Rayleigh fractionation equation is used to model the low-Mg 

rocks, despite evidence of open-system behavior during the evolution of the high-Mg suite. 

Although there is no unambiguous evidence of open system behavior, during evolution of the 

low-Mg suite, we cannot dismiss this possibility. As a consequence, the modelling is not definitive 

and but rather serves to constrain magma evolution in the Forest Reef system.  

 

4.5 PGE variations in the low-Mg samples (≤6.8 wt.% MgO) 

4.5.1 Extent of fractional crystallisation in the low-Mg samples 

Before modelling the evolution of the low-Mg samples, the amount of fractional crystallisation 

required to lower the MgO content of the melt from 6.8 to 1.8 wt.% must first be quantified. Two 

methods were used: first, the amount of fractional crystallisation required to raise the Zr content 

of the melt by the observed amount using the Rayleigh equation, and second, the amount 

required to lower its MgO content from 6.8 to 1.8 wt.% using Petrolog.  

 

Zirconium was chosen because (i) it behaved as an incompatible element during magma 

evolution of the Forest Reef Volcanics (supplementary information Fig. A.1e), whereas other 

normally incompatible elements, such as P and La, did not, and (ii) because it shows the least 

amount of scatter when plotted against MgO relative to the other incompatible trace elements. Its 

tighter co-variation with MgO, relative to other incompatible elements, likely reflects its 

‘immobile’ nature and its resistance to hydrothermal alteration. Despite this, some scatter in bulk 

rock Zr concentrations increases the uncertainty in the Zr concentration in the melt at a given 

MgO. A least-squares exponential curve was therefore fitted to the Zr data. The resulting curve 

(red trend, Figure A.1e), which has an R2 value of 0.6, was used to estimate the evolution of the Zr 

concentrations in the Forest Reef Volcanics melt during Rayleigh crystal fractionation. The initial 

concentration of Zr (C0) was set to that estimated by the least-squares model at 6.8 wt.% MgO to 

be 56 g/g Zr. The bulk distribution coefficient (DZr) was calculated to be 0.27, assuming the 

proportion of plagioclase: clinopyroxene: amphibole: magnetite to be 60:29:10:1 and using 

partition coefficients from the literature (Fujimaki et al., 1984; Ewart and Griffin, 1994). These 

mineral proportions were calculated using the CIPW normative method of Johannsen (1931). 

The obtained mineral proportions were crosschecked by petrographic inspection assuming 



  

closed system fractional crystallisation. The low-Mg rocks would have required ~54% crystal 

fractionation to raise the Zr content from 56 g/g to 97 g/g as the MgO decreases from 6.8 to 

1.8 wt.% MgO.  

 

The estimate of fractional crystallisation was crosschecked using the fractionation software 

model Petrolog (Danyushevsky and Plechov, 2011). The bulk starting composition was set to that 

of the most primitive low-Mg sample. Petrolog estimates ~52% fractionation is required to 

reduce the magma from 6.8 to 1.8 wt.% MgO, assuming fractionation of plagioclase, 

clinopyroxene, orthopyroxene and magnetite at a pressure of 4 kbar, 5 wt.% H2O and an fO2 of 

FMQ+1. This is in good agreement with ~54% fractionation estimated from the Zr modelling.  

 

4.5.2 Effect of sulfide saturation on PGE variations in low-Mg samples 

Fig. 7 compares the rate of depletion of Pd in the low-Mg samples with its rate of depletion in 

other felsic-intermediate systems that have been analysed for Pd. Note that the rate of depletion 

of Pd at Cadia is appreciable less than for any of the other S-saturated system shown in Fig. 7. If 

the rate of depletion of Pd, with its extreme partition coefficient into sulfide melts, is low, the 

rates of depletion of Au and Cu, with their lower partition coefficients, must be less and they may 

even become enriched by fractional crystallization. Either the Cadia S-saturated magma 

precipitated an unusually low fraction of immiscible sulfide melt or the sulfide melt failed to 

reach equilibrium with a sufficiently large volume of silicate melt. The latter occurs when R, the 

silicate-to-sulfide melt mass ratio, is much greater than DPd: the Pd sulfide-to-silicate melt 

partition coefficient. Both possibilities are considered. 

 

4.5.3 Rayleigh Fractionation  

The Rayleigh fractionation equation was used to model the post-sulfide saturation behavior of 

the PGE (Fig. 8a-e), assuming the volume of silicate melt the immiscible sulfide melt reached 

equilibrium was not a limiting factor (i.e R >> DPd). Only the analyses with the lowest PGE 

concentrations from duplicate analyses were used to define the modeled trend lines because 

these samples are interpreted to contain the lowest concentration of ‘nuggets’, therefore 

providing a more accurate estimate of PGE concentrations in the Forest Reef magma. Model 1 



  

(blue) assumes fractionation of a typical silicate and oxide assemblage (plag:cpx:amp:mag = 

60:29:10:1), with the starting concentrations set to that of the most primitive low-Mg sample 

(6.8 wt.% MgO), again using partition coefficients from the literature (supplementary material, 

Table A.13). Model 2 (red) accounts for the fractionation of an immiscible sulfide. If DPd
sul-sil is 

taken to be 105 (Mungall and Brenan, 2014) the fraction of sulfide melt required to obtain the 

best fit to the data is 0.003 wt.%. At this fraction of sulfide melt, the partition coefficients 

required to model the depletion of the remaining PGE vary between 104 to 105, which lie within 

the low end of the range proposed by Mungall and Brenan (2014; i.e. DPGE
sul ~105 to 106). 

However, the fraction of sulfide required is one- to two-orders of magnitude less than normally 

found in felsic systems (0.15 to 0.3 wt.%; Hao et al., 2017). 

 

4.5.4 Finite reservoir fractionation  

An alternative approach is to use the experimentally derived equation of Liu et al. (2007) to 

calculate the sulfur content of the melt at sulfur saturation (SCSS) and use this value to calculate 

the apparent partition coefficient required to produce the observed Pd vs. MgO trend (Fig. 4c). 

The Liu et al. (2007) equation is:  

                         
      

 
         

 

 
                

                   
                     

                           (1) 

 

where T is temperature in Kelvin, P is pressure in bars and MFM is a parameter describing the 

melt composition in terms of cation mole fractions: 

     
                   

              
   (2) 

The Liu et al. (2007) model was used in preference to the Li and Ripley (2005), and Holzheid and 

Grove (2002) models because it takes into account the influence of pressure, temperature, water 

concentration and fO2 on the SCSS in natural basaltic to rhyolitic melts by using both 

experimental data from their study and data from the literature. The composition of the melt 

used was that of the bulk rock composition of the most primitive low-Mg sample (147-754 at 6.8 

wt.% MgO; see supplementary material Table A.6). The temperature of the Forest Reef Volcanics 

at 6.8 wt.% MgO is assumed to be ~800 °C, the H2O content ~5 wt.% and the pressure ~4 kbar. 



  

Under these conditions, the Liu et al. (2007) equation estimates that the SCSS of the Forest Reef 

Volcanics to be 110 μg/g S. The stoichiometry of the sulfide melt in the Forest Reef Volcanics, as 

determined by EPMA, is Fe0.34S0.61Cu0.05. Assuming this stoichiometry, the calculated S content of 

the melt converts to 0.023 wt.% sulfide melt. This is an order of magnitude greater than that 

calculated from the rate of Pd depletion (0.003 wt.% sulfide), assuming a DPd
sul ~105. 

 

 The caveat of using the Liu et al. (2007) equation is that the pressure and temperature range of 

their experiments (1150 to 1450 °C and 500 MPa to 1 GPa) were higher than those assumed for 

the Forest Reef magma (~800 °C and 400 MPa). Nevertheless the estimated SCSS from the 

equation is intermediate between those calculated from the Li and Ripley (2005), and Holzheid 

and Grove (2002) models and within the range expected for granitic magmas (Yang, 2012). The 

cause of the low SCSS of the Forest Reef Volcanics magma is uncertain but it maybe that its fO2 is 

closer to FMQ than assumed by Blevin (2002). 

 

If the amount of sulfide melt to have precipitated following sulfide saturation was 0.023 wt.%, 

the partition coefficient required to account for the depletion of Pd, with decreasing MgO, is 1.4 x 

104. This partition coefficient is at least an order of magnitude lower than those measured by 

Mungall and Brenan (2014; i.e. DPGE
sul ~105 to 106), which suggests that the mass of silicate melt 

the sulfide melt reached equilibrium with was a limiting factor. It is therefore an apparent 

partition coefficient (D’) controlled by R (Campbell and Naldrett, 1979).  

 

In a dynamic, open-system, the R is defined as the mass ratio of silicate melt a sulfide droplet of 

given mass can equilibrate with prior to being removed from the silicate melt (Mungall, 2002). 

The degree to which a droplet of sulfide melt attains chemical equilibrium with a body of silicate 

melt is dependent on a number of kinetic factors, including: the diffusion rate of metals through a 

silicate melt, the radius of the droplet, the velocity with which the droplet is advected through 

the melt and the duration of the co-existing phases (Mungall, 2002). It is not practical to calculate 

the effective R from first principles because diffusion rates of the PGE are poorly known and the 

mass of silicate melt a sulfide droplet reaches equilibrium with before it settles, varies between 

droplets, especially if the velocity of the convecting magma exceeds the settling rate of the 



  

droplet. In this case the sulfide droplet may be carried through more than one cycle of convection 

before it settles (Martin and Nokes, 1989). 

 

Fortunately the average R in an open-system can be calculated from D’. Campbell and Naldrett 

(1979) proposed the following equation for quantifying the relationship between R and D:  

  
       

                         (3) 

where Ci
sul is the concentration of element i in the sulfide liquid, Ci

sil is its concentration in the 

silicate melt and Di is its partition coefficient between the sulfide and silicate melt. From eq. (3) it 

follows that: 

         
       

                         (4) 

where Di’ is the apparent partition coefficient of element i between the sulfide and silicate melt. It 

can be shown from eq. (4) that if R > 10xDi, then Di’ ~ Di, whereas if Di > 10xR, then Di’ ~ R. 

Between these two extremes both Di and R affect Di’. Because DPd’ (1.4 x 104) is much less that DPd 

(105 to 106), R ~ DPd’ = 1.4 x 104. Taking the value of R to be 1.4 x 104 and assuming DCu
sul-sil ~1500 

and DAu
sul-sil ~8000 (Mungall and Brenan, 2014) the calculated values for D’Cu

sul  and D’Au
sul , from 

eq. (4) are ca.1400 and ca. 5200, respectively.  

 

4.5.5 Implications of sulfide saturation for Cu and Au fractionation 

Fig. 9 shows the effect of Rayleigh fractionation on the concentration of Pd, Au and Cu in the 

evolving Forest Reef Volcanics assuming (a) equilibrium fractional crystallization (R >> DPd), and 

(b) finite volume fractional crystallization (R ~ DPd’ = 1.4 x 104). In both cases sulfide saturation 

is assumed to start at F = 0.34 and the rate of sulfide precipitation to increase gradually over 10% 

fractionation, as seen in the Skaergaard Intrusion (Keays and Tegner, 2016), to the maximum 

amount of 0.003 wt. % (model a) or 0.023 wt.% (model b) sulfide melt. The partition coefficients 

used for model (a) were DPGE
sul-sil ~105, DAu

sul-sil ~8000 and DCu
sul-sil ~1500 (Mungall and Brenan, 

2014), whereas those for model (b) were D’PGE
sul-sil ~104, D’Au

sul-sil ~5200 and D’Cu
sul-sil ~1400. The 

net enrichment in Au and Cu between the initial concentrations and the concentration at volatile 

saturation (F= 0.65) are x3.8 and x4.8 for Au and Cu, respectively, for model (a) and x1.2 and x3.5 

for model (b; Fig. 10). The equilibrium model (a) concentrates both Au and Cu prior to volatile 

saturation, which is consistent with Cadia being a Au-Cu deposit but the low amount of sulfide 



  

required to have precipitated by this model makes it questionable. Model (b) has a more realistic 

amount of sulfide precipitation. Copper is enriched by fractional crystallization but Au is not, 

which is unexpected if the parent magma is to form Au-Cu mineralisation (Fig. 10). Either the 

parent magma had an unusually high Au/Cu ratio or the high Au/Cu of the Cadia ore is the 

product of hydrothermal rather than magmatic processes.  

 

A third model (not shown) explored the implications of a higher rate of sulfide precipitation 

(0.15 wt.%). The Au in this model drops to x0.15 of the initial Au concentration, at the time of 

volatile saturation, and Cu to x0.67, making the formation of an Au-Cu deposit highly unlikely. 

This is because the higher the fraction of immiscible sulfide melt assumed in the calculation, the 

lower R must be to model the observed depletion rate for Pd. The lower the value of R the higher 

the depletion rate of Au and Cu (compare Fig. 9a and b). It is difficult to escape the conclusion 

that the amount of immiscible sulfide melt to have precipitated in the Forest Reef magma was 

less than that of the other sulfide saturated felsic-intermediate systems.  

 

4.5.6 PGE variations in Cadia ore veins: Implications for PGE mobility in magmatic-

hydrothermal fluids 

The solubility of PGE in saline solutions is several orders of magnitude lower than that of Au, Cu, 

Ni and Fe (Simon and Pettke, 2009; Tagirov et al., 2013; Park et al., 2016). The solubility of Pd in 

brine is ~1 ng/g (Tagirov et al., 2013), whereas that of Au is 0.3-0.8 μg/g and Cu is 0.3-0.8 wt.% 

(Ulrich et al., 1999). Despite this, several porphyry Au-Cu deposits are known to host significant 

amounts of PGE although not at economic concentrations (e.g., Eliopoulos and Economou-

Eliopoulos, 1991; Tarkian and Koopmann, 1995; Tarkian and Stribrny, 1999). The partitioning of 

the individual PGE into magmatic volatile phases is poorly understood, but porphyry deposits are 

enriched in the PPGE but not the IPGE (e.g. Ir <1 ng/g; Pd/Ir~102 to 104; Park et al., 2016 and 

references therein), and are more enriched in Pd than Pt, with Pd/Pt ranging from 7 to 60 (Park 

et al., 2016). High Pd/Pt ratios have been interpreted to indicate that Pd is more soluble than Pt 

in magmatic-hydrothermal fluids (Augé et al., 2005). 

 



  

A recent study by Park et al. (2016), who measured the PGE concentrations in Niuatahi-Motutahi 

ocean-floor sublimates, suggests that Pt is more soluble than Pd in magmatic-hydrothermal fluids 

and that the high Pd/Pt of ore-forming fluids is inherited from the parent magma, which has a 

high Pd/Pt as a result of early Pt-alloy precipitation.  

 

The results of this study are inconsistent with the findings of Park et al. (2016). Instead they 

support the conventional interpretation that Pd is more soluble than Pt. Two mineralised quartz-

calcite-sulfide veins were analysed, in duplicate, from the Cadia region. The Pd/Pt of these veins 

range from 10 to 31, which is typical of porphyry deposits. In contrast, the Pd/Pt of the most 

evolved Forest Reef Volcanic samples, which contain <5 wt.% MgO, range between 4 and 8. The 

two- to three-fold higher Pd/Pt of the ore-veins, compared with the Forest Reef Volcanics, 

suggests that Pd is more soluble than Pt in magmatic-hydrothermal fluids and that the high Pd/Pt 

is not inherited from the magma.  A comparison of the PGE concentrations in the mineralised 

quartz vein and magmatic rocks analysed in this study, shows the solubility of the PGE in the 

Cadia magmatic-hydrothermal fluids is Ru > Pd > Rh > Ir > Pt.  Irrespective of their different 

solubilities, the PGE are not as mobile as Au and Cu and must therefore become highly 

concentrated in a fractionating magma before they can make a significant contribution to the 

mineralisation in a porphyry system (Park et al., 2016).  

 

5. Conclusions  

A decrease in the PGE concentrations in the Forest Reef Volcanics, during magmatic 

differentiation, indicates that sulfide saturation occurred at around 6.8 wt.% MgO, about 4 wt.% 

MgO before volatile saturation. Although sulfide saturation occurred earlier in the Forest Reef 

Volcanics than in other ore-associated suites, the rate Pd depletion is appreciably less.  Either the 

amount of sulfide melt to have precipitated was unusually low and/or the sulfide melt reached 

equilibrium with a limited volume of silicate melt so that the silicate-to-sulfide mass ratio is a 

significant factor. The evolution of Pd, Au and Cu, in the low-Mg samples can be modeled if the 

silicate melt precipitated 0.023 wt.% sulfide melt, provided the sulfide melt extracted these 

elements from a finite volume of silicate melt, ~1.4 x 104 times that of the sulfide melt. This 

fraction of sulfide melt is small compared to that found in other sulfide saturated felsic-



  

intermediate systems (e.g. Park et al., 2013a; Cocker et al., 2016; Hao et al., 2017) but it is large 

enough to produce a small reduction in the PGE content of the silicate melt with fractionation 

without reducing its Cu or Au content. This is because of the differences in the partition 

coefficients of these elements into the sulfide melt (DPGE > DAu > DCu; Mungall and Brenan, 2014). 

Despite sulfide saturation, Cu would have increased by x3.5 its initial concentration in the melt 

and Au by x1.2, following the ~65% fractionation required to reduce the MgO content of the melt 

from 9.7 to 2.9 wt.%. The bulk of Cu and Au in the silicate melt would have therefore been 

available to enter the magmatic-hydrothermal fluid at the time of volatile saturation. 

Nevertheless the observation that the mineralisation at Cadia has a high Au/Cu ratio suggests 

that either the Au/Cu ratio of the parent magma was unusually high or that hydrothermal 

processes played an important role in controlling the nature of the mineralization.  

 

This study demonstrates that sulfide saturation does not necessarily adversely impact the 

fertility of a magma provided the fraction of sulfide to form is small so that the bulk partition 

coefficients for Cu and Au are less than 1, or that the fractionation interval between sulfide and 

volatile saturation is small. It also highlights the important role of fractional crystallisation in 

concentrating Cu and Au in the parent magma, until the point of volatile saturation. 
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Fig. 1 Geological map of the Cadia-Neville study region showing the approximate location of 
samples used in this study. Note that sample 147-789 was collected from drillcore and does not 
sample Tertiary Basalts (Post early Llandovery Units) as depicted on the map. Main map 
modified from Squire and Crawford (2007) and inset map modified from Cooke et al. (2007). 
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Fig. 2 (a-f) Whole rock major, minor and trace element co-variations plotted against MgO for 
samples from the Forest Reef Volcanics (FRV). Symbols in blue represent samples used in this 
study. Dark blue symbols = volcanics; light blue symbols = intrusive rocks; orange diamonds = 
Cadia Intrusive Complex (CIC); orange squares = other Forest Reef Volcanic samples not used in 
this study. Major and trace element data, measured by XRF and ICP-MS, from Squire (2001) and 
Squire and Crawford (2007). BYB = Burnt Yards Basalt; EIC = Errowan Intrusive Complex; GAS = 
Glen Ayre Syenite; HBAI = Hornblende Basalt Andesite Intrusive; NLM = Nullawonga Latite 
Member; SDB = Sundew Basalt. Note. Scatter in the data, particularly CaO, is, in part, attributed to 
weak hydrothermal alteration and multiple magma injections following replenishment. 
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Fig. 3 Primitive mantle-normalised spidergram showing the trace element pattern of Forest Reef 
Volcanic samples used in this study. The trace element signature of typical continental arc is 
show for comparison. Continental arc values from Rudnick and Fountain (1995) and primitive 
mantle values taken from Sun and McDonough (1989). Trace elements measured by XRF and 
ICP-MS, from Squire (2001) and Squire and Crawford (2007).  
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Fig. 4 (a-g) Whole-rock PGE and Re concentrations plotted against MgO for the Forest Reef 
Volcanics depicting the point of sulfide saturation (SS). Dark blue symbols = volcanics; light blue 
symbols = intrusive rocks. BYB = Burnt Yards Basalt; EIC = Errowan Intrusive Complex; GAS = 
Glen Ayre Syenite; HBAI = Hornblende Basalt Andesite Intrusive; NLM = Nullawonga Latite 
Member; SDB = Sundew Basalt.  Grey areas denote minimum and maximum PGE concentrations 
in the two mineralised quartz veins. Vertical dashed lines connect duplicate analyses. Trend lines 
are nonlinear exponential least squares fit for the high-Mg (dashed) and low-Mg samples (solid). 
Analytical uncertainties (2σ), large enough for display, are shown. Where method detection 
limits (MDL) are too small to display their values are provided. MgO data from Squire (2001).   
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Fig. 5 Primitive mantle-normalised PGE and Re concentrations of the high-Mg and low-Mg 
samples from the Forest Reef Volcanics. The PGE and Re range of two mineralised quartz veins 
from Cadia (grey dashed; this study) and arc picrites (purple; >10 wt.% MgO) are shown for 
comparison. Arc picrite data from Woodland et al. (2002). Primitive mantle PGE and Re 
concentrations from McDonough and Sun (1995).  
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Fig. 6 (a-i) SEM and optical microscope images of magmatic sulfide melt inclusions found in low-
Mg samples from the Forest Reef Volcanics, which contain ≤6.8 wt.% MgO. (a,b) Round pyrrhotite 
in cumulus clinopyroxene in porphyritic trachyandesite (147-709). (c) round pyrite in cumulus 
clinopyroxene in porphyritic trachyandesite (147-709). (d) cubic pyrite in sieve-textured 
plagioclase phenocryst in porphyritic basaltic andesite (147-715). (e) subhedral pyrite trapped 
in sieve-textured plagioclase phenocryst in porphyritic basaltic andesite (147-715). (f) rounded 
pyrrhotite and pyrite sulfide bleb trapped along with vapor bubble in cumulate clinopyroxene in 
in porphyritic basaltic andesite (147-715). (g,h) Cu-rich sulfide and vapor bubble trapped in 
cumulate clinopyroxene in basalt (146-754). (i) Cu-rich sulfide trapped in sieve-textured K-
feldspar phenocryst that is partially replaced by albite in a holocrystalline syenite (147-756). Alb 
= albite; cpy = chalcopyrite; cpx = clinopyroxene, kfs = K-feldspar; po = pyrrhotite; py = pyrite. 
Note. Pyrite and pyrrhotite are interpreted to have crystallised after sulfide melt inclusions were 
trapped. 
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Fig. 7 A plot comparing the rate of Pd depletion with decreasing MgO, following sulfide 
saturation, in Forest Reef Volcanics (i.e. Cadia; Au-Cu deposit), the El Abra-Pajonal Intrusive suite 
(Cu-only deposit; Cocker et al., 2016), Woombin suite (barren; Hao et al., 2017) and Pual Ridge 
(Cu-Au; Park et al., 2013a). Dashed lines = pre-sulfide saturation, and solid lines = post-sulfide 
saturation. The rate of Pd depletion in the Forest Reef Volcanics is appreciably less than for any 
of the other sulfide saturated systems, which is attributed to either a lower fraction of sulfide 
melt and/or a smaller effective R factor in the former, relative to the latter. 
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Fig. 8 (a-e) Co-variation plots of PGE in the low-Mg samples modeled as a function of fraction 
melt remaining (F), assuming F=1 at 6.8 wt.% MgO. The fractionation factor was calculated using 
Zr. The fractionation of PGE was then modeled for 1) the fractionation of a simple silicate and 
oxide assemblage represented in blue (plag:cpx:hbl:mag = 60:29:10:1) and 2) silicate and oxide 
assemblage containing sulfide melt. The rate of PGE depletion can be explained by the saturation 
of either (i) 0.003 wt.% sulfide melt, assuming complete equilibrium between the sulfide and 
silicate melt, such that DPd

sul~105, or (ii) 0.023 wt.% sulfide melt, assuming limited equilibrium 
between the sulfide and silicate melt, such that D’Pd

sul~104. Note, only the lowest data points from 
duplicate analyses have been plotted.  
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Fig. 9 (a,b) Model simulating the PGE, Cu and Au concentration of the silicate melt, as a function 
of fractional crystallisation, following a) 0.003 wt. % sulfide melt precipitation with an infinite R 
factor and, b) 0.023 wt.% sulfide melt precipitation with a smaller R factor of 1.4 x 104. The 
silicate melt begins to precipitate a sulfide melt after ~34% fractionation (F calculated from the 
increase in Zr in the high-Mg rocks). Volatile saturation is estimated to have occurred following 
~65% crystal fractionation however its affects on PGE, Cu or Au concentrations are not shown to 
demonstrate how further crystal fractionation would enrich the magma in these elements. See 
text for further details. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 A schematic diagram showing the enrichment of Cu and Au in the Forest Reef magma 
with fractional crystallisation following the saturation of 0.023 wt.% sulfide melt (onset at 6.8 
wt.% MgO) up to the point of volatile saturation (at 2.9 wt.% MgO). The net enrichment of Cu and 
Au in the silicate melt from 9.8 to 2.9 wt.% MgO is x3.5 and x1.24, respectively. Precipitation of 
0.023 wt.% sulfide melt would have depleted Au by only 18% from the time of sulfide saturation 
to the time of volatile saturation. 
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Table 1. Whole rock concentrations of MgO, PGE and Re in samples from the Forest Reef 
Volcanics. 
 
 

Sample 
MgOa 

(wt.%) 

Ir 

(pg/g) 

Ru 

(pg/g) 

Rh 

(pg/g) 

Pt 

(pg/g) 

Pd 

(pg/g) 

Re 

(pg/g) 

Sundew Basalt 
       

147-7841 9.7 48 ± 3 40 ± 3 129 ± 3 2217 ± 77 4206 ± 169 34 ± 4 

147-784 D3 9.7 146 ± 6 282 ± 14 143 ± 7 2220 ± 57 4509 ± 227 24 ± 4 

RD (%) 
 

204 605 11 0.1 7 -29 

        147-7601 8.7 55 ± 3 92 ± 8 115 ± 2 1985 ± 66 9011 ± 310 46 ± 4 

147-760 D2 8.7 51 ± 3 104 ± 16 110 ± 17 1928 ± 65 8978 ± 1239 27 ± 5 

RD (%) 
 

-7 13 -4 -3 -0.4 -41 

        Burnt Yards Basalt 
       

147-7672 8.0 18 ± 2 34 ± 4 227 ± 9 5132 ± 317  6772 ± 329 229 ± 13 

147-767  D3 8.0 32 ± 2 73 ± 10 140 ± 4 4059 ± 183 7677 ± 318 254 ± 22 

RD (%) 
 

78 115 -38 -21 13 11 

        147-7542 6.8 17 ± 1 7 ± 2 131 ± 4 6939 ± 227 9166 ± 522 15 ± 4  

147-754 D3 6.8 15 ± 1 11 ± 1 118 ± 6 6539 ± 288 9317 ± 536 35 ± 4 

RD (%) 
 

-12 57 -10 -6 2 133 

        147-7892 5.9 9.0 ± 0.5 9.0 ± 1.9 136 ± 6 6224 ± 469 6133 ± 446 44 ± 5 

147-789 D3 5.9 9.2 ± 0.8 8.7 ± 1.5 127 ± 4 5814 ± 149 6032 ± 321 53 ± 6 

RD (%) 
 

2 -3 -7 -7 -2 20 

        
147-7521 5.4 

10.1 ± 

0.8 

11.2 ± 

1.0 
73 ± 2 3742 ± 109 6463 ± 296 1394 ± 54 

147-752 D2 5.4 7.3 ± 0.7 6.7 ± 2.1 68 ±3 3488 ± 231 6124 ± 328 1377 ± 81 

RD (%) 
 

-28 -40 -7 -7 -5 -1 

        Hornblende Basalt Andesite Intrusion 
     

147-7152 5.1 
15.9 ± 
0.5 

9.2 ± 1.3 60 ± 2 3135 ± 156 4551 ± 251 138 ± 8 

        Errowan Intrusive Complex 
      

147-7011 4.4 7.8 ± 0.7 8.8 ± 1.1 46 ± 2 2176 ± 61 4980 ± 331 509 ± 19 

        Sundew Basalt 
       

147-7111 3.6 9.9 ± 0.4 
12.4 ± 

2.3 
41 ± 1 1224 ± 32 5950 ± 141 159 ± 6 

        Porphyritic Nullawonga Latite Member 
     

147-7091 3.2 2.9 ± 0.4 4.4 ± 1.0 
10.9 ± 

0.7 
979 ± 41 2585 ± 131 1075 ± 57 

147-709 D2 3.2 1.3 ± 0.4 <3.7 9.3 ± 0.7 785 ± 45 2579 ± 189  879 ± 58 

RD (%) 
 

-55 
 

-15 -20 0 -18 

        Glen Ayre Syenite 
       

147-7561 2.6 1.9 ± 0.2  4.5 ± 0.8 
21.3 ± 

0.8 
490 ± 15 4293 ± 129 286 ± 8 

        
147-7571 2.0 2.6 ± 0.3  <3.6 

10.4 ± 

0.4 
474 ± 14 1559 ± 61 729 ± 28 

147-757 D2 2.0 1.2 ± 0.3 <3.7 7.7 ± 0.3 313 ± 17 1338 ± 66 567 ± 31 

RD (%) 
 

-54 
 

-26 -34 -14 -22 

        Porphyritic Nullawonga Latite Member 
     

147-7431 1.8 4.1 ± 0.3 2.2 ± 1.3  5.8 ± 0.6 282 ± 9 1271 ± 35 699 ± 35  

        Quartz-sulfide vein 
       

SV-E2 N.D. 3.7 ± 0.3 60 ± 12 50 ± 13  547 ± 21 14 380 ± 2526 147 857 ± 7785 

SV-E D3 N.D 2.4 ± 0.2 80 ± 8 24 ± 4 461 ± 15 4871 ± 438 97 713 ± 4402 

RD (%) 
 

-35 33 -52 -16 34693 -34 

        SV-L 2 N.D. 5.2 ± 0.4 19 ± 2 17 ± 4 574 ± 19 17 799 ± 1180 33 173 ± 2416 

SV-L D3 N.D 0.9 ± 0.1 17 ± 5 20 ± 5 758 ± 35 19 758 ± 2267 20 745 ± 1012 

RD (%) 
 

-83 -11 18 32 12 -39 

Notes 

 

 

1 samples processed in batch 1 

2 samples processed in batch 2 
3 samples processed in batch 3 
a Squire (2001) 

MQV-E = Early-stage mineralised quartz vein 

MQV-L = Late-stage mineralised quartz vein 

RD = relative difference  

Italics denotes analyses with interference 

corrections >50% 

Uncertainties have been quoted as 2σ 
N.D. = No data 

D = Duplicate  

Ir, Rh, Pt, Re from batch 2 and 3 samples 

corrected using 3 blank average and Ru 
and Pd using 4 blank average. 

 
 


