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Abstract 

Müller cells, the supporting cells of the retina, play a key role in responding to retinal stress by 

releasing chemokines, including CCL2, to recruit microglia and macrophages (MG/MΦ) into the 

damaged retina. Photobiomodulation (PBM) with 670nm light has been shown to reduce 

inflammation in models of retinal degeneration. In this study, we aimed to investigate whether 

670nm light had an effect on Müller cell-initiated inflammation under retinal photo-oxidative 

damage (PD) in vivo and in vitro. Sprague-Dawley rats were pre-treated with 670nm light 

(9J/cm2) once daily over 5 days prior to PD. The expression of inflammatory genes including 

CCL2 and IL-1β was analysed in retinas. In vitro, primary Müller cells dissociated from neonatal 

rat retinas were co-cultured with 661W photoreceptor cells. Co-cultures were exposed to PD, 

followed by 670nm light treatment to the Müller cells only, and Müller cell stress and 

inflammation were assessed. Primary MG/MΦ were incubated with supernatant from the co-

cultures, and collected for analysis of inflammatory activation. To further understand the 

mechanism of 670nm light, the expression of COX5a and mitochondrial membrane potential 

(∆Ψm) were measured in Müller cells. Following PD, 670nm light-treated Müller cells had a 

reduced inflammatory activation, with lower levels of CCL2, IL-1β and IL-6. Supernatant from 

670nm light-treated co-cultures reduced activation of primary MG/MΦ, and lowered the 

expression of pro-inflammatory cytokines, compared to untreated PD controls. Additionally, 

670nm light-treated Müller cells had an increased expression of COX5a and an elevated ∆Ψm 

following PD, suggesting that retrograde singaling plays a role in the effects of 670 nm light on Müller 

cell gene expression. Our data indicates that 670nm light reduces Müller cell-mediated retinal 

inflammation, and offers a potential cellular mechanism for 670 nm light therapy in regulating 

inflammation associated with retinal degenerations. 
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1. Introduction 

Irradiation with low energy light wavelengths from far red to the near infrared 

spectrum (600nm-1000nm), termed as PBM, has been shown to display beneficial effects on 

various tissue injuries (Albarracin et al., 2011; Albarracin et al., 2013; Wong-Riley et al., 

2005), such as accelerated wound healing in skin, decreased pain perception in joint disorders 

(Herranz-Aparicio et al., 2013) and reduced inflammation in autoimmune diseases (Brosseau 

et al., 2005). PBM has also been used to reduce neuroinflammation in rodent models of brain 

damage and spinal cord injury (Giacci et al., 2014; Hu et al., 2016). 

PBM has been shown to be beneficial in human retinal diseases and animal models of 

age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinitis pigmentosa 

(RP) (Abrahan et al., 2009; Albarracin et al., 2011; Geneva, 2016). It is proposed that 

cytochrome c oxidase (COX), the rate-limiting enzyme in terminal phosphorylation in the 

mitochondrial respiratory chain, is the most likely primary photoacceptor of 670nm light 

(Desmet et al., 2006; Karu, 1999). Exposure to 670nm light has shown to enhance COX 

activity in retinas (Begum et al., 2013; Kaynezhad et al., 2016) and primary neurons (Desmet 

et al., 2006; Wong-Riley et al., 2005), mediate the increase of redox states in mitochondria 

(Kaynezhad et al., 2016), increase ATP production (Calaza et al., 2015; Gkotsi et al., 2014; 

Wong-Riley et al., 2005) and up-regulate mitochondrial membrane potential (∆Ψm) 

(Kokkinopoulos et al., 2013b). One of the beneficial effects of treatment with 670nm light is 

the apparent reduction of oxidative stress and the mitigation of the subsequent inflammatory 

response in the retina both of which are key features of several retinal diseases including 

AMD and DR (Tang et al., 2013; Whitcup et al., 2013). 
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However, due to the lack of understanding of the precise cellular signalling events 

during 670nm irradiation, there are still roadblocks in the translation of 670nm light therapy 

to the clinic (Hamblin, 2016). Previously we have demonstrated in the PD model that Müller 

cells, the principal macroglia of the retina, are the key source of the potent chemokine Ccl2 in 

retinal (Rutar et al., 2012; Rutar et al., 2011a), which is responsible for the recruitment and 

activation of MG/MΦ in retinas (Grigsby et al., 2014; Natoli et al., 2017b; Rutar et al., 2015).  

We postulated that the anti-inflammatory effect of 670nm may be due to a reduction of 

Müller cell-mediated inflammation during retinal degeneration. Our previous in vivo study 

suggested that pre-treatment with 670nm light mitigated photo-oxidative damage-induced 

structural changes in Müller cells (Albarracin and Valter, 2012). However, this model did not 

allow us to investigate the direct effects of 670nm light on the activation of Müller cells. In 

this study, by using a co-culture system where primary Müller cells are exposed to the 

environment of damaged photoreceptors, we can mimic gliotic changes that occur during 

photoreceptor degeneration in vivo, while allowing us to investigate the effects of PBM 

directly on the Müller cells.  

2. Materials and Methods 

2.1 Animals and light exposure  

All procedures were conducted in accordance with the ARVO Statement for the Use 

of Animals in Ophthalmic and Vision Research and with ethics approval from the Australian 

National University Animal Experimentation Ethics Committee (Ethics ID: A2014/56). 

Albino Sprague-Dawley (SD) rats were born and raised in low light levels (5 lux) in a 12-

hour light, 12-hour dark cycle. Food and water were available ad libitum. Twenty adult 

animals aged 100-120 postnatal (P) days were used for all experiments.  Animals were 

separated into 4 experimental and control groups as follows: Control (n=5); Control + 670nm 
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(n=5); PD only (n=5); PD + 670nm (n=5).  The animal received 670nm light prior to PD, 

according to previously described methods (Albarracin et al., 2011; Albarracin and Valter, 

2012; Jager et al., 2008; Rutar et al., 2010). PD was induced by 2x36W COLDF2 fluorescent 

tubes, as described previously (Fernando et al., 2016) delivering 1000lux (147uW/cm2) 

power density. Whole eyes and retinas were immediately collected after PD for histological 

analysis and RNA extraction. Five animals were used for each experimental group.  

2.2 Maintenance of 661W photoreceptor-like cells  

Murine photoreceptor-derived 661W cells were kindly gifted by Dr. Muayyad R. Al-

Ubaidi (Department of Cell Biology, University of Oklahoma Health Sciences Centre, 

Oklahoma City, OK, USA). Cells for experimental purposes were used within five passages 

of authentication, and validation of authenticity was performed using gene expression of 

green cone pigments and cone arrestin. Cells were further validated for species authenticity 

(CellBank, Sydney, Australia). Cells were cultured in growth medium (GM) containing 

Dulbecco’s Modified Eagle Medium (DMEM; Sigma-Aldrich, MO, USA) supplemented 

with 10% fetal bovine serum (FBS; Sigma-Aldrich), 6mM L-glutamine (Thermo Fisher 

Scientific, MA, USA) and antibiotic-antimycotic (100U/ml penicillin, 100µg/ml streptomycin 

and 0.25µg/ml Fungizone; Thermo Fisher Scientific), and incubated in dim conditions in a 

humidified atmosphere of 5% CO2 at 37°C in the dark. 

2.3 Preparation of rat primary Müller cells 

Retinas were isolated from 36 SD rats aged P8-10 days following the modified 

methods described previously (Hicks and Courtois, 1990). Isolated retinas were immersed in 

DMEM supplemented with 6mM L-glutamine and antibiotic-antimycotic for 2 hours at 4°C. 

Retinas were dissociated into small fragments and then incubated with DMEM containing 

0.1% trypsin, 70U/ml collagenase type IV, and antibiotic-antimycotic for 1 hour at 37°C. Cell 
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pellets were collected by spinning at 210g for 10 minutes at 37°C and then dissociated in 

fresh GM by triturating with plastic serological pipettes. Cell suspension was cultured in a 

T25 flask (Thermo Fisher Scientific) in a humidified incubator with 5% CO2 at 37°C. The 

GM was left unchanged for the initial 4 days; GM was replenished on day 5. After 7-8 days, 

cellular aggregations, which are attached to the base of the flask, were removed by agitating 

the media and the GM was replenished. Until cells reached 90% confluency, cells were 

detached with 0.25% trypsin/EDTA from a T25 flask and then expended in a T75 flask 

(Thermo Fisher Scientific). After reaching 90% confluency in a T75 flask, cells were 

subcultured in the appropriate plates for subsequent experiments. Primary Müller cell 

characteristics were confirmed using immunolabelling for vimentin, S100β, glutamate 

synthetase (GS) (data not shown). 

2.4 Photo-oxidative damage in co-culture of 661W cell line with primary Müller cells 

  For mimicking in vivo interactions between photoreceptors and Müller cells, a 

transwell co-culture system was used. Primary Müller cells were seeded into 24-well plates at 

a density of 2.5x104 cells per well or 6-well plates at density of 2x105 cells per well in GM, 

and plates incubated in 5% CO2 at 37°C. After 24 hours, in separate plates, 661W cells were 

seeded onto the membranes of transwell inserts (pore size 0.4µm; Corning, NY, USA) at a 

density of 4x103 cells per insert (24-well transwell), or at a density of 5x104 cells per insert 

(6-well transwell) in GM, and were incubated with 5% CO2 at 37°C for 24 hours. Following 

incubation, inserts containing 661W cells were placed into wells seeded with Müller cells. 

The co-cultures were incubated in reduced-serum DMEM (supplemented with 1% FBS, L-

glutamine and antibiotic-antimycotic) and exposed to 15,000 lux light (2.2mW/cm2; 

irradiance measured with PM100D optical power meter, THORLABS, NJ, USA) from two 

white fluorescent lamps (2x10W T4 tri-phosphor 6500K daylight fluorescent tubes; 

Crompton, NSW, Australia), for 4.5 hours with 5% CO2 at 37°C. Control plates were placed 
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in the same incubator, but shielded with aluminium foil to avoid light exposure. For air/gas 

exchange, small incisions were cut on the aluminium foil. Following 4.5 hours of PD, co-

cultures were incubated under dim light conditions with 5% CO2 at 37°C. After 24 hours of 

recovery, cells and supernatant were collected for analysis. 

2.5 670nm red light treatment of co-cultures 

The 670nm LED array (Quantum Devices) was applied to different co-culture groups 

(with or without PD stress) as follows. (A) PD + 670nm group - inserts containing 661W 

cells were removed from the co-culture during 670 nm light exposure. Only Müller cells were 

exposed to 670nm light (9J/cm2) and were treated three times over the first 12 hours of 

recovery following PD. (B) Control + 670nm group - Müller cells received treatment with 

670nm light using the same paradigm, but with no PD. For (C) PD only and (D) control 

groups, the inserts were removed from plates and only Müller cells were exposed to the 

670nm LED array, but with the light source switched off.  

2.6 Isolation and assessment of activation of rat MG/MΦ 

Rat retinal microglia and macrophages (MG/MΦ) from SD rats (P50-60) were 

isolated using a fluorescence-activated cell sorter (FACS) (BD FACSAria II; BD 

Biosciences, NJ, USA), using previously described protocols with minor modifications 

(Fernando et al., 2016; Ma et al., 2013; Rutar et al., 2015). Isolated cells were subsequently 

cultured in GM containing mouse granulocyte-macrophage colony-stimulating factor (GM-

CSF, 1ng/ml; Stem Cell Technologies, Vancouver, Canada) with 5% CO2 at 37°C. Media 

was replaced every 3-4 days until cells reached 80% confluency.  

Supernatant (SN) was collected from co-cultures of the control, 670nm only, PD only 

and PD+670nm groups. MG/MΦ cells were incubated with the SN of these groups for 24 
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hours with 5% CO2 at 37°C. MG/MΦ were then collected for RNA extraction, or 

immunostained with CD11b/CD86 for flow cytometry. MG/MΦ were collected and fixed in 

2% paraformaldehyde (PFA) for 10 minutes on ice. Cells were blocked with 1% BSA and 

then incubated with biotin CD86 (1:100; Biolegend), or anti-rat CD11b PE antibody in 1% 

BSA for 30 minutes on ice. Cells were washed once in PBS containing 0.2% Tween-20 and 

resuspended in the secondary antibody with streptavidin conjugated with Alexa-Fluor-488 

(S32453; Thermo Fisher Scientific) for 30 minutes on ice. The expression of CD11b or CD86 

was measured using FACSort (LSRII; BD, CA, USA) and data was analysed using FlowJo 

(FLOWJO, OR, USA). 

2.7 Assessment of cell viability and cell toxicity 

For measuring cell viability, an ATPlite 1 step assay (PerkinElmer, MA, USA) and an 

MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide; Sigma-Aldrich) 

were used according to the manufacturer’s instructions and protocols previously described 

(Lu et al., 2013; Natoli et al., 2016). A CellTox assay (Promega, Madison, WI, USA) was 

performed to measure cell death according to previously described methods (Natoli et al., 

2016).  

2.8 Immunocytochemistry on primary Müller cells 

Müller cells were seeded onto poly-L-lysine-coated (100µg/ml; Sigma-Aldrich) glass 

coverslips at a density of 30x104 cells/mm2 for 48 hours and then co-cultured with 661W 

cells with/without 670nm light as described above. Coverslips containing Müller cells were 

fixed with 2% PFA for 30 minutes and then washed twice with PBS. Immunocytochemistry 

was performed as described previously (Albarracin et al., 2011; Albarracin and Valter, 2012) 

using a primary antibody for COX5a (1:500, #ab110262, Abcam), an anti-mouse IgG (H+L) 

conjugated with biotin (SAB3701153; Sigma-Aldrich) and Streptavidin conjugated with 
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Alexa-Fluor-488 (S32453; Thermo Fisher Scientific). Fluorescence was visualized using a 

laser-scanning A1+ confocal microscope (Nikon, Tokyo, Japan) and captured with NIS-

Element AR software (Nikon). 

2.9 Quantitative real-time PCR (qPCR) 

Retinas were collected and stored in RNA stabilizer (RNAlater; Thermo Fisher 

Scientific) overnight at 4°C. RNA extraction was performed described previously (Rutar et 

al., 2011a), using a combination of TRIzol (Thermo Fisher Scientific) and an RNAqueous 

Total RNA Isolation kit (Thermo Fisher Scientific) following the manufacturer’s instructions. 

cDNA was synthesised from extracted RNA using a Tetro cDNA Synthesis Kit (Bioline, 

London, UK), according to the manufacturer’s protocol. Gene expression was determined by 

real-time quantitative PCR (qPCR), using Taqman hydrolysis probes (Table 1; Thermo Fisher 

Scientific) and Taqman Gene Expression Master Mix (Thermo Fisher Scientific), which were 

applied according to the manufacturer’s instructions. qPCR reactions were run in duplicate 

using a QuantStudio Flex 12K instrument (Thermo Fisher Scientific). Data analysis was 

performed using the comparative cycle threshold method (∆∆Ct), which was normalised to 

the expression of the Gapdh reference gene. 

2.10 In situ hybridization  

To localise Ccl2 mRNA expression in retinas, Ccl2 was cloned from PCR products 

(550-bp amplicon) using cDNA synthesis from retinal RNA (as described above). A 

digoxigenin (DIG)-labelled riboprobe for Ccl2 mRNA was synthesised according to our 

previous publication (Rutar et al., 2011b). In situ hybridisation was used on retinal 

cryosections as described previously (Cornish et al., 2005). Briefly, the Ccl2 riboprobe was 

hybridized overnight at 55°C and then washed in a series of saline sodium citrate solutions 

(pH 7.4) at 60°C. The bound probe was visualised using NBT/BCIP. 
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2.11 Enzyme-Linked Immunosorbent Assay 

Cell culture media were assayed for IL-6 (#R000B, R&D Systems, MN, USA) and 

CCL2 (#ab100777, Abcam, Cambridge, UK) using a sandwich enzyme-linked 

immunosorbent assay (Cornish et al.) as per the manufacturer’s instructions. 

2.12 Western blotting  

Whole cell protein lysates were extracted using the Cellytic M buffer (Sigma-Aldrich) 

containing a Protease Inhibitor Cocktail (Sigma-Aldrich). Western blotting was performed 

according to previously described methods with minor modifications (Begum et al., 2013; 

Walker and Steinle, 2007). 20µg of denatured protein was loaded onto a 4-20% Mini-Protean 

TGX Precast Protein gel (Bio-Rad, CA, USA) followed by semi-dry transfer to a 

nitrocellulose membrane. To measure the protein expression of COX5a in cells, a COX5a 

primary antibody (1:500-1:1000, #ab110262, Abcam) was used, as well as a secondary 

antibody-peroxidase conjugate for visualisation (Bio-Rad). The protein was visualised with 

chemiluminescence using a Clarity Western ECL kit (Bio-Rad) and images captured and 

analysed using a Chemidoc MP with Image Lab software (Bio-Rad). The expression of 

COX5a was normalized to GAPDH. 

2.13 Mitochondrial membrane potential (∆Ψm) 

The JC-1 dye (Sigma-Aldrich) was used to assess changes in the mitochondrial 

membrane potential (∆Ψm) of living cells, following previously published methodology 

(Kokkinopoulos et al., 2013b; Smiley et al., 1991). Fluorescence of JC-1 (525nm/575nm) in 

cells was measured using flow cytometry (FACSort, LSRII) and analysed with FlowJo 

(FlowJo, OR, USA). Data is presented as a ratio of red to green fluorescence intensity. 

2.14 Statistical analysis 
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Statistical analysis was performed using Prism 6 (GraphPad Software, San Diego, CA). Data 

were analysed using Tukey's multiple comparisons test, with P<0.05 considered to represent 

a statistically significant difference. All data is represented as the mean ± SEM. 

3. Results 

3.1 670nm light suppressed cytokine expression following PD in vivo 

We examined the expression of Il-1β and Ccl2 in rat retinas following photo-oxidative 

damage (PD) and assessed the effect of 670nm light treatment. The expression of Il-1β and 

Ccl2 increased significantly in PD retinas compared to dim-reared controls (P<0.05, Figure 

1A, B). 670nm light-treated animals had significantly reduced levels of Il-1β and Ccl2 

expression compared to untreated PD retinas (P<0.05). Il-1β and Ccl2 expression was 

comparable between 670nm-treated dim-reared animals and dim-reared controls (without 

670nm treatment or PD, Figure 1A, B). 

For localisation of Ccl2 in the PD retinas, we examined Ccl2 expression using in situ 

hybridisation (Figure 1C-F). In PD retinas (Figure 1E) a large number of Ccl2-positive cells 

were apparent in the inner nuclear layer, where the nuclei of Müller cells reside. Conversely, 

PD retinas treated with 670 nm light had fewer Ccl2-positive cells in the INL compared to 

untreated PD retinas (Figure 1F). Quantification of the number of Ccl2-positive cells in the 

INL demonstrated that 670nm light significantly suppressed cells in the INL to express Ccl2 

post-PD compared to untreated PD retinas (P<0.05, Figure 1G). 

3.2 670nm light reduced stress in primary Müller cells co-cultured with damaged 661W 

cells 

We assessed Müller cell changes under photoreceptor damage-initiated stress, and 

investigated whether treatment with 670nm light had an effect on these changes. Co-culturing 
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primary Müller cells with photo-oxidative damaged-661W cells did not have a significant 

effect on Müller cell death (Figure 2D), survival (MTT, Figure 2C), and their ability to 

produce ATP (Figure 2B). Treatment with 670nm light had no significant effect on these 

factors (Figure 2B-D). When assessing activation of Müller cells, we found that expression of 

Gfap, a marker of gliosis, was significantly down-regulated in 670nm-treated Müller cells 

compared to non-treated stressed cells (P<0.05, Figure 2E). Rlbp1 has been linked with the 

maintenance of normal metabolic homeostasis in the retina. There was a significant reduction 

in Rlbp1 expression in stressed Müller cells (Figure 2F). Treatment with 670nm prevented 

this loss of expression in stressed Müller cells (P<0.05, Figure 2F). 

To further confirm whether 670nm light influences the function of Müller cells in PD, 

the neuroprotective effect of Müller cells on 661W photoreceptor cells was measured. In the 

absence of Müller cells, PD increased cell death (Figure 2I), reduced viability (MTT, Figure 

2H) and reduced ATP production (Figure 2G) in 661W cells, compared to non-damaged 

661W cells. When co-cultured with Müller cells, 661W cells had elevated levels of ATP and 

MTT and a reduced level of cell death following PD, compared to control 661W cells 

(P<0.05). Co-culture with Müller cells treated with 670nm light resulted in increased cell 

survival and ATP production of 661W cells, as well as reduced cell death. However, these 

changes were not significantly different from those co-cultured with non-treated Müller cells 

(Figure 2G-I). Co-culture with Müller cells, treated or un-treated with 670nm, did not alter 

viability or death of control (non-PD) 661W cells (Figure 2G-I). 

3.3 670nm light suppressed oxidative stress and inflammation in Müller cells following 

PD  

A key feature of retinal degenerations is the increased production of free radicals and 

oxidative stress (Nita and Grzybowski, 2016). We examined the gene expression levels of 
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two NADPH oxidases, Nox1 and Nox4. Nox1 gene expression significantly increased in 

activated Müller cells compared to controls, while the expression of Nox4 did not change 

significantly (Figure 3B, C). Treatment with 670nm light significantly reduced the expression 

of both Nox1 and Nox4 in activated Müller cells (P<0.05, Figure 3B, C).  

Another hallmark of neurodegenerative diseases is the activation of the immune 

response (Chen and Xu, 2012). We examined the expression of CCL2, a potent chemokine 

produced by Müller cells shortly after retinal injury, as well as IL-6, a pro-inflammatory 

cytokine. Müller cells activated by the supernatant of PD-damaged 661W cells showed an 

increased gene and protein expression of CCL2 (Figure 3D, F). Treatment with 670nm light 

reduced CCL2 expression significantly (Figure 3D, F), confirming our in vivo findings 

(Figure 1B, G). Il-6 gene expression did not change in activated Müller cells, but was 

significantly reduced by 670nm irradiation (P<0.05, Figure 3E). IL-6 protein levels were 

significantly lower in activated Müller cells than controls, and 670nm treatment reduced IL-6 

protein levels further (P<0.05, Figure 3G). 

3.4 670nm light treatment has no effect on NLRP3 inflammasome activation in Müller 

cells 

NLRP3 inflammasome activation has been found in retinal degenerations including 

AMD (Doyle et al., 2012a; Tarallo et al., 2012). Using the in vivo PD model, we have 

previously shown an increase in the expression of IL-1β in recruited microglia and 

macrophages and subsequent NLRP3 inflammasome activation (Natoli et al., 2017b). Using 

our in vitro model, we investigated whether this inflammasome activation is Müller cell 

related, and if 670nm light treatment can influence inflammasome activation by its direct 

effect on Müller cells. The gene expression levels of Casp8, Nlrp3, Pycard, Casp1 and Il-18 

were not significantly different in the activated Müller cells compared to controls. Treatment 
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with 670nm light did not have any altering effect on their expression (Figure 4B-F). The 

expression of Il-1β increased significantly in activated Müller cells, and 670nm treatment 

significantly reduced the expression level of this pro-inflammatory cytokine (P<0.05, Figure 

4G), confirming our finding in in vivo (Figure 1A).  

3.5 Mitochondrial function is improved by 670nm light following PD 

Cytochrome c oxidase (COX) is the terminal component of the electron transport 

chain in mitochondria and is the most likely photoacceptor of 670nm light (Desmet et al., 

2006; Diaz, 2010; Karu, 1999). COX5a is one of 13 subunits of the COX enzyme in 

mammals. To understand whether COX participates in the effects of 670nm light on Müller 

cells, the expression of COX5a was measured in Müller cells. Low expression of COX5a was 

detected in the cytoplasm of Müller cells co-cultured with normal 661W cells (Figure 5B). 

Treatment with 670nm light of control Müller cells resulted in a significantly increased 

COX5a protein expression. In activated Müller cells, COX5a expression was significantly 

higher than control cells, and this expression further increased when activated cells were 

treated with 670nm (P<0.05, Figure 5B). Western blot analysis was used to quantify these 

changes (Figure 5C). Treatment with 670nm light increased the protein levels of COX5a in 

both control and activated Müller cells (P<0.05, Figure 5C, D). The increased expression of 

COX5a in control Müller cells following 670nm treatment confirmed the mechanistic effects 

of PBM. However, exposure to PD led to a higher expression of COX5a in Müller cells 

(P<0.05). 

The mitochondrial membrane potential (∆Ψm) is an important driver of ATP 

production and thus is a measure of mitochondrial function. The ∆Ψm significantly dropped 

in activated Müller cells compared to controls (P<0.05, Figure 5E). Treatment with 670nm 
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did not alter ∆Ψm in control cells, but increased in activated Müller cells, compared to 

untreated activated cells (P<0.05, Figure 5E).   

3.6 670nm light regulated Müller cell-mediated activation of microglia and 

macrophages (MG/MΦ) following PD 

After incubation with control supernatant (SN) (Figure 6B), or 670nm SN (Figure 

6C), primary MG/MΦ displayed a ramified morphology with defined processes, indicating a 

resting state. However, the shape of MG/MΦ became more amoeboid with smaller processes 

following incubation with SN from activated Müller cells (PD SN, Figure 6D), indicating 

activation of these MG/MΦ. After incubation with SN from 670-treated activated Müller 

cells (PD+670nm SN, Figure 6E), MG/MΦ were more ramified and processes extending 

from cell soma were apparent, indicating that 670nm reduced activation of MG/MΦ. 

We used flow cytometry to detect the fluorescence intensity of CD11b (Figure 6F-G) 

and CD86 expression (Figure 6H-I) after stimulation with differing SN to assess their 

activation state. MG/MΦ had a higher expression of CD11b and CD86 after incubation with 

PD SN compared to cells incubated with PD+670nm SN (P<0.05, Figure 6F-I), suggesting 

that PBM reduced macrophage activation. To further confirm MG/MΦ activation, we 

assessed the gene expression of Ccl2, Il-1β, Tnfα, Il-6, Il-10 and Sod2, which are all markers 

of macrophage activation (Figure 6J-O). The expression of these genes was increased in 

MG/MΦ incubated in PD SN, indicating that supernatant from PD-stressed Müller cells have 

an activating effect on these cells. Treatment with 670nm significantly lowered MG/MΦ 

activation as suggested by the reduced expression of these genes (P<0.05, Figure 6J-O).  

4. Discussion 
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 Treatment with 670nm red light has been shown to reduce inflammation in retinal 

diseases (Geneva, 2016), however, there is still a lack of understanding of the precise cellular 

mechanisms underpinning its anti-inflammatory effects. The current study offers insight into 

cellular signalling pathways influenced by photobiomodulation during retinal degeneration, 

and demonstrates that treatment with 670nm light reduces Müller cell gliosis and subsequent 

MG/MΦ activation. Firstly, 670nm light suppressed glial activation by reducing the 

expression of pro-inflammatory cytokines, chemokines and oxidative stress components in 

Müller cells exposed to damaged photoreceptors. Secondly, 670nm light reduced activation 

of MG/MΦ by influencing the expression of inflammatory activators by Müller cells. 

Thirdly, we demonstrated that a potential mechanism of action of 670nm light is through the 

support of mitochondrial membrane potential (∆Ψm) to stabilise mitochondrial function, and 

the improvement of metabolic function in stressed Müller cells. 

4.1 670nm light modulates Müller cell reactive gliosis 

In our earlier in vivo studies, we found that 670nm treatment reduced photoreceptor 

death following PD, and mitigated Müller cell stress (Albarracin et al., 2011; Albarracin and 

Valter, 2012). However, what remained unclear was whether 670nm light directly regulates 

Müller cell stress, or indirectly influences their activation through the damaged 

photoreceptors (Abrahan et al., 2009). In the current study, as only Müller cells were exposed 

to 670nm light, we were able to isolate the direct effects of 670nm on these macroglia. 

We show that treatment with 670nm light reduces Müller cell stress in isolated cells, 

as evidenced by their reduced expression of Gfap following PD, which is consistent with 

previous in vivo studies using PD (Albarracin et al., 2011; Marco et al., 2013) and ageing 

(Begum et al., 2013). GFAP is a well-known marker of Müller cell stress and gliosis in 

retinal diseases (Albarracin et al., 2011; Bringmann et al., 2009; Bringmann et al., 2006; 
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Bringmann and Wiedemann, 2012). Mice deficient in GFAP exhibit less glial scars after 

retinal detachment (Nakazawa et al., 2007; Verardo et al., 2008), indicating a reduced 

activation of Müller cells. This may lead to the reduced expression of CCL2 and subsequent 

macrophage infiltration into retinas following damage (Nakazawa et al., 2007).  

4.2 670nm light reduces Müller cell-mediated activation of MG/MΦ 

In the present study, we found the rapid upregulation of Ccl2 and Il-1β in the PD 

model in vivo, and by using a co-culture system of 661W photoreceptors and primary Müller 

cells in vitro, we have confirmed that the source of these factors are the Müller cells. 

Furthermore, using supernatant from activated Müller cells, we were able to initiate 

activation of MG/MΦ, confirming the direct link between Müller cell and macrophage 

activation. We have previously demonstrated that inhibition of Ccl2 and Il-1β reduces the 

infiltration of microglia and macrophages into the damaged outer retina in PD models (Natoli 

et al., 2017b; Rutar et al., 2012). The accumulation of MG/MΦ in the subretinal space is a 

well-established feature of retinal degenerations (Fernando et al., 2016; Knickelbein et al., 

2015), which is associated with photoreceptor death (Natoli et al., 2017a; Zhao et al., 2015). 

The present study has demonstrated that treatment with 670nm light mitigates Ccl2 

and Il-1β expression in the retina in vivo, and in primary Müller cells in vitro. Further, we 

found that 670nm light-treated Müller cells were able to mitigate MG/MΦ activation. This 

indicates that 670nm light targets the expression of pro-inflammatory cytokines and 

chemokines by Müller cells. Previous studies have found that 670nm light resulted in reduced 

activation and recruitment of MG/MΦ in retinal damage in vivo (Albarracin et al., 2011; 

Begum et al., 2013; Kokkinopoulos, 2013a; Kokkinopoulos et al., 2013b), but to our 

knowledge, this is the first report that demonstrated the direct effect of 670nm light on Müller 

cells and its downstream effect of reduced MG/MΦ activation.  
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The inflammasome has been linked to the progression of retinal degenerations such as 

AMD (Doyle et al., 2012a; Tarallo et al., 2012), and generation of IL-1β is one of the direct 

consequences of NLRP3 inflammasome activation (Ambati et al., 2013; Schroder and 

Tschopp, 2010). In the current study, we demonstrated that the irradiation of Müller cells 

with 670nm light leads to down-regulation of IL-1β in response to PD. However, it does not 

influence the expression of the NLRP3 inflammasome in these cells, indicating that the 

production of IL-1β may be inflammasome-independent in some retinal cell types (Netea et 

al., 2015). Our results showed that Müller cells are not major contributors to inflammasome 

activation, further supporting the view that the RPE and microglia/macrophages are the 

primary sites of inflammasomes (Doyle et al., 2012b; Kataoka et al., 2015; Kauppinen et al., 

2016; Tseng et al., 2013).  

4.3 670nm light increased COX5a expression and elevated ∆Ψm  

We have shown that 670nm light treatment leads to an increase in Rlbp1 in Müller 

cells. RLBP1 is required for the maintenance of normal metabolic function (Taylor et al., 

2015), so the increase towards control levels suggests that treatment with 670nm light 

supports Müller cells in maintaining normal cellular functions, to withstand tissue stress 

caused by PD and to protect photoreceptors. In addition, we also found that the treatment 

with 670nm light increased the ∆Ψm and expression of COX5a in Müller cells under PD. 

COX is complex IV of the mitochondrial respiratory chain, known to absorb energy from far 

red to near infrared light (Schroeder et al., 2007). This can trigger a higher ∆Ψm, which 

generates ATP in cells (Verardo et al., 2008). Kaynezhad and colleagues reported that 670nm 

light increased the level of oxidized COX, for 1-2 hours after a single 5-minute exposure 

(Kaynezhad et al., 2016). Elevated production of ATP and higher protein expression of COX 

were observed in models of retinal degeneration.  The ∆Ψm was increased in RPE cells in 

response to 670nm light in aged mice (Begum et al., 2013; Kokkinopoulos et al., 2013b). The 
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current study is consistent with these results, and although we did not detect a higher level of 

ATP production in 670nm light-treated Müller cells, higher levels of ∆Ψm and COX5a were 

observed in this study. Therefore, we speculate that ATP production is a consequence of up-

regulated ∆Ψm and COX5a. 

 PBM is known to potentially influence cellular DNA and RNA synthesis (Karu, 

1999). As photoacceptors are located in the mitochondria, Karu et al. proposed that 

mitochondrial retrograde signalling can be triggered with PBM (Karu, 2008). PBM-induced 

changes in ∆Ψm, ROS, and calcium mobilization may be associated with mitochondrial 

retrograde signalling that leads to modifications in DNA and RNA expression in the nucleus. 

A growing body of evidence suggests that increased ∆Ψm is related to changes in gene 

expression. Gavish and colleagues reported an increase in ∆Ψm in human keratinocytes 

immediately after exposure to 780nm light with a subsequent reduction in IL-6 gene 

expression 2 hours later (Gavish et al., 2004). Treatment with an inhibitor of the electron 

transport chain abolished PBM-induced gene expression changes in fibroblasts following 

irradiation with 760nm or 1140nm light (Schroeder et al., 2007). Therefore, our data strongly 

support the hypothesis that PBM stimulates mitochondrial retrograde signaling providing further 

insight into the cellular mechanisms underlying PBM. The understanding of these mechanisms are 

crucial in the efforts to transition light-based therapy (PBM) from experimental models to clinical 

acceptance and clinical applications.  

5. Conclusions 

 Our findings suggest that 670nm light can directly affect Müller cells and mitigate 

stress-induced inflammation, which subsequently can reduce microglia/macrophage 

activation and recruitment. Further, the maintenance of mitochondrial function in Müller cells 

may enhance their tissue support functions, and thereby contribute to the neuro-protective 

effects of 670nm light. These data suggest that 670nm light plays a key role in controlling 
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inflammation during retinal stress. As a non-invasive and relatively non-expensive treatment, 

670nm light has adjuvant therapeutic potential for retinal degenerations where inflammation, 

macrophage recruitment and photoreceptor loss play a key role. 
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Table 1. Taqman hydrolysis probes used for qPCR 

Gene 
Symbol 

Gene Name Catalog Number Entrez 
Gene ID 

Casp1 Caspase 1 Rn00562724_m1 25166 
Casp8 Caspase 8 Rn00574069_m1 64044 
Ccl2 Chemokine (C-C motif) ligand 2 Rn01456716_g1 24770 
Cox5a Cytochrome c oxidase, subunit Va Rn00821806_m1 252934 
Gapdh Glyceraldehyde-3-phosphate 

dehydrogenase 
Rn99999916_s1                        24383 

Gfap Glial fibrillary acidic protein                                        Rn00566603_m1                                   24387 
Il-1β Interleukin 1 beta                                                                                             Rn00580432_m1                 24494 
Il-6  Interleukin 6     Rn01410330_m1 24498 
Il-10  Interleukin 10                                                                                                               Rn00563409_m1                             25325 
Il-18  Interleukin 18                                                                                                               Rn01422083_m1                                      29197 
Nlrp3  NLR family, pyrin domain containing 3         Rn04244620_m1                                       287362 

Nox1  NADPH oxidase 1                                                                                                              Rn00586652_m1 114243 
Nox4  NADPH oxidase 4                                                                                                              Rn00585380_m1        85431 
Pycard  PYD and CARD domain containing                                                                              Rn00597229_g1                                       282817 

Rlbp1  Retinaldehyde binding protein 1   Rn01477965_m1                 293049 

Sod2  Superoxide dismutase 2, mitochondrial                                                   Rn00690588_g1                                         24787 

Tnf  Tumor necrosis factor                                                          Rn00562055_m1       24835 
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Figure 1. In vivo expression of cytokines was mitigated by 670nm light treatment following 

photo-oxidative damage (PD) in rat retinas. A-B:  PD significantly increased levels of Il-1β 

(A) and Ccl2 (B) in retinas compared to dim-reared controls (P<0.05). However, Il-1β and 

Ccl2 were significantly reduced after 670nm light treatment compared to PD retinas 

(P<0.05). C-F: Ccl2 in situ hybridization revealed that numerous Ccl2-positive cells (arrows) 

were present in the INL of PD retinas (E) compared to dim-reared controls (C). After 670nm 

light treatment, a lower number of Ccl2-positive cells were detected in PD retinas (F). G: 

670nm light significantly reduced the number of Ccl2-positive Müller cells in the INL 

following PD (P<0.05). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer 

nuclear layer. N=5 was used for all experimental comparisons, except for (B) (N=10), and 

was performed in biological duplicate. The data is presented as the mean ± SEM.  * denotes a 

significant change (P<0.05). 

Colour should be used 
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Figure 2. 670nm light treatment reduced primary Müller cell stress when co-cultured with 

661W cells exposed to photo-oxidative damage (PD). A:  Timeline of experimental paradigm. 

B-D: Neither PD nor 670nm light influenced ATP (B), MTT (C) and cell death (D) in Müller 

cells. E: 670nm light reduced Gfap expression in Müller cells following PD (P<0.05). F: 

Expression of Rlbp1 was elevated in 670nm-treated Müller cells compared to untreated 

Müller cells (P<0.05). G-I: Following PD, co-culturing Müller cells (M) with 661W cells 

increased ATP (G) and MTT (H) and diminished cell death (I) in 661W cells compared to 

661W cells cultured alone (P<0.05). ATP, MTT and cell death were not affected by 670nm 

light treatment. DIV; days in vitro. N=6 was used for all experimental comparisons and was 

performed in biological triplicate. The data is presented as the mean ± SEM.  * denotes a 

significant change (P<0.05). 

Colour should be used 
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Figure 3. Müller cell-derived inflammation was mitigated by exposure to 670nm light 

following photo-oxidative damage (PD). A:  Timeline of experimental paradigm. B-E: Müller 

cells exposed to 670nm light had significantly reduced Nox1 (B), Nox4 (C), Ccl2 (D) and Il-6 

(E) expression compared to untreated Müller cells (P<0.05). F-G: CCL2 and IL-6 in co-

culture supernatant was significantly decreased by 670nm light post-PD (P<0.05). DIV; days 

in vitro. N=6 was used for all experimental comparisons and was performed in biological 

triplicate. The data is presented as the mean ± SEM.  * denotes a significant change (P<0.05). 

Colour should be used 
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Figure 4. The effects of 670nm light on activation of the NLRP3 inflammasome in Müller 

cells following photo-oxidative damage (PD). A:  Timeline of experimental paradigm. B-F: 

Expression of inflammasome genes including Casp8 (B), Nlrp3 (C), Pycard (D), Casp1 (E), 

and Il-18 (F) were comparable between 670nm-treated and untreated Müller cells following 

PD (P>0.05). G: Il-1β expression was significantly lowered in 670nm-treated Müller cells 

compared to untreated Müller cells (P<0.05). DIV; days in vitro. N=6 was used for all 

experimental comparisons and was performed in biological triplicate. The data is presented as 

the mean ± SEM.  * denotes a significant change (P<0.05). 

Colour should be used 
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Figure 5. The activation of cytochrome oxidase (COX5a) was enhanced in 670nm-treated 

Müller cells after photo-oxidative damage (PD). A:  Timeline of experimental paradigm. B: 

Müller cells were immunolabelled with COX5a antibody (green). Low levels of COX5a were 

detected in Müller cells co-cultured with normal 661W cells. Following PD, a higher 

intensity of COX5a was detected in Müller cells compared to controls. The intensity of 

COX5a was further elevated by 670nm light in Müller cells compared to untreated Müller 

cells after PD. C-D: Western blotting quantification relative to GAPDH expression 

confirmed the higher expression of COX5a by Müller cells treated with 670 nm light 

(P<0.05). E: The JC-1 ratio in mitochondria to cytoplasm was used to measure mitochondrial 

membrane potential (∆Ψm). Following PD, 670nm light triggered a higher level of ∆Ψm in 

670nm-treated Müller cells compared to untreated Müller cells (P<0.05). DIV; days in vitro. 

N=6 was used for all experimental comparisons and was performed in biological triplicate. 

The data is presented as the mean ± SEM.  * denotes a significant change (P<0.05). 

Colour should be used 
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Figure 6. 670nm light ameliorated Müller cell-mediated activation of primary 

microglia/macrophages (MG/MΦ) following photo-oxidative damage (PD). A:  Timeline of 

experimental paradigm. B-E: After incubation with supernatant (SN) of the PD group (D), 

MG/MΦ cells displayed an amoeboid morphology. However, a ramified shape was observed 

in MG/MΦ incubated with SN of the PD+670nm group (E). F-I: A higher mean of 

fluorescence intensity (MFI) of CD11b (F, G) and CD86 (H, I) was found in MG/MΦ 

incubated with SN of the PD+670 group compared to SN of the control group (P<0.05). 

However, MG/MΦ incubated with SN of the PD+670 group had a lower MFI of CD11b and 

CD86 compared to the PD group (P<0.05). J-O: Reduced gene expression of Ccl2 (J), Il-1β 

(K), Tnfα (L), Il-6 (M), Il-10 (N), and Sod2 (O) was found in MG/MΦ incubated with SN of 

the PD+670 group compared to the PD group (P<0.05). DIV; days in vitro. N=6 was used for 

all experimental comparisons and was performed in biological triplicate. The data is 

presented as the mean ± SEM.  * denotes a significant change (P<0.05). 

Colour should be used 
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Highlights 

 
• Photobiomodulation using 670 nm light directly affects Müller cells 

and mitigates their pro-inflammation reactions on retinal 
microglia/macrophages following photo-oxidative stress 

 
• Photobiomodulation using 670 nm light maintains mitochondrial 

function in Müller cells, thereby supporting the retinal homeostasis 
and providing the protection to photoreceptors during the photo- 
oxidative stress. 

 
• We suggest that photobiomodulation using 670 nm light is a non- 

invasive and non-expensive treatment and can be used as an adjuvant 
therapeutic approach to reduce inflammation in retinal degeneration. 

 

 
  


