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Enhanced Electrical, Mechanical and Thermal Properties by 

Exfoliating Graphene Platelets of Larger Lateral Dimensions 

 
 
 
A way to highly effectively produce graphene sheets with large lateral dimension 
in aqueous solution is demonstrated by combining electrochemical and ultrasonic 
methods. Electrical and mechanical properties of graphene film materials fabricated 
with these graphene sheets are largely improved. As well, polymer-graphene 
composites can be prepared conveniently both for water soluble polymers and for 
organic soluble polymers. 
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Abstract 

Conventional liquid-phase graphite exfoliation (LPE) dramatically reduce the lateral 

dimension of graphene sheets to submicrometer levels due to bond cleavage induced 

by high shearing force or long processing time, resulting in highly degraded 

properties of graphene materials. Herein, a modified high-yielding LPE for producing 

graphene in the cosolvents of ethanol and water is demonstrated, via the prior use of 

an electrochemical expansion process on graphite. The electrochemically expanded 

graphite allows the use of significantly lower sonication power and shorter sonication 

times. Therefore graphene platelets with largely increased lateral dimension were 

achieved compared to conventional LPE (the size can reach up to 10 micrometers). 

The electrical and mechanical properties of graphene film are significantly enhanced 

as a result, with the electrical conductivity doubled and the modulus increased by a 

factor of 4 as well as a considerably higher areal capacitance for the assembled solid 

supercapacitor. Furthermore, a type of multifunctional benzoxazine surfactant was 

used to stabilize graphene sheets, which can also facilitate to transfer graphene sheets 

into organic solvents from aqueous dispersions. On this basis, polymer-graphene 
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nano-composites have been easily prepared for both water soluble poly(vinyl alcohol) 

(PVA) and organic soluble poly(methyl methacrylate) (PMMA) with improved 

mechanical properties and thermal diffusivity. 

 

1. Introduction 

The two-dimensional (2D) material graphene has attracted attention as a 

promising nanomaterial for use in diverse applications such as electronic 

devices, energy storage devices and nano-composites [1-3]. With the sp2 

bonded carbon atoms, pristine graphene sheets have extraordinary properties 

including electron mobility, mechanical strength and thermal conductivity [3-6]. 

There are many top-down and bottom-up methods to produce graphene, all with 

advantages and challenges [7-12]. Methods involving chemical modifications 

to generate graphene oxide (GO) with subsequent reduction can produce 

reduced graphene oxide (rGO) with high yield and large flake size, however 

introduce significant basal-plane defects that will degrade the intrinsic 

properties of graphene [13-15] or require subsequent special reduction methods 

[9,16]. Scalable production routes for high quality graphene are crucial for the 

development of graphene applications yet still remain a challenge [10,17]. 

Liquid-phase graphite exfoliation (LPE) is regarded as a promising scalable 

route for achieving this goal by avoiding introducing basal-plane defects on 

graphene platelets [10,18-20]. This includes ultrasonic or shearing exfoliation 

in proper solvents [10,20-22]. 
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The properties of many graphene based materials also strongly depend on the 

lateral dimensions of graphene sheets, as larger sheet dimensions will reduce 

the contact resistance between sheets caused by the boundary/edge defects 

[23-25]. Nevertheless, extensive LPE processing using high shearing force or 

long processing time can dramatically reduce the lateral dimensions. Moreover, 

the exfoliation yield is notably low even though graphitic sediment is recycled 

[10,26]. Expanded graphite has been proposed to facilitate the LPE process 

such as by thermal expansion [27] or ion intercalation [28]. Recently, the 

electrochemical method has been proposed, which includes an electrochemical 

expansion process and a subsequent LPE process. The prior use of 

electrochemical expansion on graphite facilitates the LPE process thereby 

leading to high production efficiency, as well as larger sheet dimensions 

[24,29-31]. Therein to be eco-friendly and economical, this electrochemical 

expansion process could be carried out in aqueous solutions [24,32]. On the 

contrary, the subsequent LPE process is often to be conducted in selected 

organic solvents in order to match the solid-liquid interfacial energy, such as 

1,2-dichlorobenzene, diphenyl ether, N-methyl pyrrolidone (NMP) or 

dimethylformamide (DMF) [24,29]. These solvents are commonly unfavorable 

due to high cost, toxicity and difficult removal from the targeted materials. 

Water is regarded as the ideal solvent in LPE, with excellent economic and 

environmental benefits [21,26,31,33]. Through a rational selection of cosolvent 

from water and non-toxic alcohols to minimize the solid-liquid interfacial 
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energy difference between graphene and solvent, graphene and other 2D 

materials have been exfoliated successfully [20,34]. 

Herein we demonstrate graphene exfoliation through combining the 

electrochemical expansion process in aqueous electrolyte solutions and 

ultrasonic process in an optimized cosolvent of water and ethanol with low 

sonication power and short sonication time. The selection of ethanol would 

reduce the production cost as well as potential safety hazards. In comparison to 

exfoliation only involving shearing force, the usage of electrochemically 

expanded graphite (EEG) and a weakened sonication process lead to larger 

lateral dimension of graphene sheets [10,21,24,26]. This results in highly 

enhanced electrical conductivity and mechanical modulus.  

Surfactants function to stabilize graphene sheets against reaggregation 

following exfoliation either by electrostatic force for ionic surfactants or by 

steric repulsion for nonionic surfactants [34,35]. Nevertheless surfactants with a 

single function are sometimes viewed as redundant or even detrimental to 

properties of the graphene based materials and need to be removed by extensive 

washing or burning out. Therefore multifunctional surfactants show potential, 

such as offering biocompatibility [36,37], fluorescence [38], or healing defects 

[39,40]. As a specific example here a curable nonionic benzoxazine surfactant 

(BM1000, structure and synthesis are shown in Scheme S1 and previous report 

[41]) was utilized. This multifunctional benzoxazine surfactant endows the 

graphene materials some merits such as better mechanical strength and 
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improved biocompatibility when assembled in a graphene film [41]. This 

modified exfoliation route can also avoid the surfactant degradation [41,42] as 

well as the evaporation of cosolvent [20] during the sonication. Moreover, the 

ratio of graphene to surfactant might be tuned in a wide range to fit different 

targeted applications due to the successful exfoliation in the optimized 

cosolvent in the absence of surfactants.  

In some applications of graphene based materials, water is not desirable. For instance, 

the presence of residual water molecules will enhance charge trapping at the interface 

with dielectrics [43]. Likewise, graphene nanocomposites with polymers allow 

diverse applications in devices and sensors [32,44-46], but water has to be removed to 

prepare nanocomposite with water-insoluble polymers. A few works focus on 

transferring GO/rGO into organic solvents with some additives [47,48]. There is 

another desire for developing a facile way to transfer pristine graphene flakes from 

aqueous environment into a wide range of organic solvents, with the concentration as 

high as possible. Recently, we reported a versatile surfactant exchange method for 

atomic force microscope (AFM) characterization of 2D materials, by transferring 2D 

flakes into chloroform with the help of the benzoxazine surfactant of BM1000 [49]. 

On the basis of this method, dispersions with high graphene sheets concentration in 

varied organic solvents have been achieved in this work. Therefore, both water 

soluble and organic solvent soluble polymers could be easily fabricated through a 

solution process, other than that only either water soluble polymers or organic solvent 

polymers could be used [3,25,50]. Therein graphene flakes play an excellent role in 
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strengthening mechanical properties and enhancing thermal diffusivity respectively 

due to their large size. 

 

2. Experimental 

2.1 Production of EEG and Graphene 

Graphite foil (99.8% Alfa Aesar) was used for the electrochemical reaction 

according to a previous report [24]. 0.1 M (NH4)2SO4 was selected as the 

electrolyte, with a Pt wire as the cathode. Electrochemical expansion of 

graphite foil was carried out with a voltage of +10 V. Afterwards, the received 

EEG was filtered through a PVDF filter (0.45 µm pore size) and then 

extensively washed with Millipore water to remove the inorganic salt. Then the 

exfoliation of graphene was carried out using a Q700 Qsonica ultrasonicator 

with converter model CV334 and a 12.7 mm probe with replaceable tip, and a 

recirculating chiller was used to maintain the sonicating graphene dispersion at 

room temperature. Typically, the suspension of EEG in 50mL cosolvent 

with/without specific stabilizer was sonicated at 20% amplitude (corresponding 

to a power of around 20 W) for 30 min. Then the graphene dispersion obtained 

was centrifuged at 1500 rpm for 10 min (JOUAN centrifuge with a swing-out 

rotor) to remove any large unexfoliated or aggregated particles. When the 

concentration of EEG was used we specified the concentration of wet EEG only 

if demonstrated particularly.  

2.2 Graphene films fabrication 
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Graphene films were fabricated by vacuum filtration through Anodisc 

membrane filters (47 mm in diameter, 20 nm pore size, Whatman). To peel 

graphene films easily, additional vacuum time was applied to further dry the 

membranes (usually overnight) after solutions were filtered out, and then 

reverse suction was applied by flipping the filter carrying the graphene film 

onto another identical filter. 

2.3 Fabrication of solid state supercapacitor 

The gel electrolyte was prepared firstly. 2 g PVA (average Mw 50000, ≥ 99% 

hydrolyzed, Aldrich) was added to 15 mL water and heated to 80 ˚C for 12 h. 

After cooling to room temperature, 2.0 g H2SO4 with 5 mL water was added 

dropwise. Then the mixed solution was agitated to uniform state and stored 

until bubbles disappeared. As prepared electrolyte was coated onto two 

graphene films surfaces and dried at room temperature for 12 h. Afterwards, 

two electrodes were pressed together gently to be assembled into an integrated 

device. 

2.4 Characterizations 

UV-visible absorption was measured on a Shimadzu spectrophotometer 

UV1800. FTIR was collected on a PerkinElmer Frontier FTIR spectrometer. 

TEM was conducted on a Hitachi H7100FA transmission electron microscope 

with a voltage of 75 kV. Graphene flakes were deposited on a TEM holey 

carbon grid using vacuum suction method. A Multimode 8 AFM from Bruker 

was used for imaging of the graphene flakes. Standard noncontact rectangular 
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cantilevers (tip radius < 10 nm, resonant frequency 300 kHz, force constant 40 

N/m, Budget Sensors) were used for the tapping mode imaging. AFM samples 

were prepared using a Langmuir-Blodgett method by dropping chloroform 

dispersion onto water surface and collected using a clean silica wafer carefully. 

Afterwards, 350˚C calcination was used to remove surfactant and solvent. TGA 

was carried out on a simultaneous thermal analyzer (STA8000, PerkinElmer). 

The sample was heated from room temperature to 800 ºC at a heating rate of 20 

ºC min-1 with a nitrogen flow. XPS (AXIS Nova, Kratos Analytical Ltd., 

Manchester, UK) was conducted using a monochromated Alkα X-ray source 

operating at a power of 150 W. Both survey and high resolution spectra were 

acquired at 160 and 20 eV pass energies, respectively. Three spots on each 

sample with an elliptical area approximately 300 × 700 µm2 were analyzed. 

Obtained data analysis and peak fitting were performed using CasaXPS 

processing software version 2.3.16 (Casa Software Ltd. Teignmouth, UK). The 

morphology and thickness of graphene films were analyzed by a field-emission 

scanning electron microscope (FE-SEM, Zeiss UltraPlus). The four-point probe 

method (Jandel multiheight four-point probe RM3000, Jandel Engineering Ltd.) 

was used to measure the electrical conductivity of graphene films. Static 

uniaxial tensile tests were conducted with an Instron 5848 MicroTester. 

Graphene films were cut with a scalpel into rectangular strips of around 3 × 15 

mm2. All tests were conducted with a preload of 0.001 N and a displacement 

rate of 0.1 mm min-1. Each type of sample was tested at least 3 times. The 
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sample thickness was measured from SEM images of fracture edges, and each 

sample was tested on at least 5 different positions to get the mean film 

thickness and the variability. Raman spectra were performed on a Renishaw 

Raman inVia Reflex with a with laser excitation at 532 nm. Graphene 

dispersions were deposited on membrane filter with pore size of 0.1 µm. XRD 

spectra were carried out on a Bruker D2 Phaser desktop diffractometer with the 

scanning theta range of 5º to 70º.  

Cyclic voltammograms were collected on an electrochemical station 

(PGSTAT302N Metrohm Autolab B.V.) with a two electrode setup. All scans 

were run at room temperature. Areal capacitance (Carea) was calculated 

according to the equation: Carea = S/(vU*s). S is the integration area of cyclic 

voltammetry data v is the scanning rate; U is the voltage range for scanning; s 

is the area of electrode.  

Thermal diffusivity analyses were conducted on a Linseis LFA 1000 by the 

laser flash technique at room temperature. Pallets prepared by casting 

dispersion on PTFE plate were used due to the better uniformity compared with 

the pressed one. Each sample was shot at least 20 times to get average results. 

PMMA or PMMA-graphene composites were spray-coated with a thin layer of 

graphite according to the instrument procedure. Thermal diffusivity (α, cm2 s-1) 

can be calculated by:  

2
1/20.1388 /I tα = ×  
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Where I represent thickness of test specimen in cm and t1/2 is the time in second 

at 50% of temperature increase.[51] 

 

3. Results and Discussion 

Production of EEG is detailed in the Experimental section according to a 

previous report [24]. A thermal gravimetric analysis (TGA) (Figure S1) shows 

around 8.0 wt% of the EEG is expanded graphite and the rest is the residual 

water, which could help EEG to maintain its expanded state. Once the EEG is 

dried at 90 ºC, the exfoliation yield drops dramatically (Figure S2), either with 

or without assistance of surfactants. X-ray diffraction (XRD) confirms that the 

dried EEG becomes more graphitic comparing with the wet state (Figure S3). 

The broad peak of wet EEG indicates the disturbed stacking orientation of 

graphite, which facilitates to produce graphene flakes during the following 

weakened LPE process [6,50]. 

EEG was exfoliated in the cosolvents of water and ethanol at varying 

concentrations of ethanol (Figure 1a). In the concentration range between 20 wt% 

and 40 wt% corresponding to a surface tension range of 38 ~ 30 mN m-1 [52], 

higher exfoliation yields were obtained comparing to that in other ethanol 

concentrations. This is consistent with previous reports on the favorable liquid 

surface tension value for LPE [20,22]. The optimal ethanol concentration of 25 

wt% for the exfoliation of EEG was obtained, which was used in the following 

experiments. A series of initial concentrations of EEG (CEEG) were further 
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sonicated with and without addition of surfactants to probe the exfoliation 

efficiency. Interestingly, the exfoliation yield is prominent when using this low 

sonication power (20% amplitude, corresponding to a power of around 20 W) 

for a short time (10 minutes) even without the addition of surfactant. An 

absorption coefficient of 2460 mL mg-1 m-1 was applied to calculate graphene 

concentrations [21]. True initial graphite concentration (excluding the water 

content in wet EEG), which can be obtained via the TGA result, was divided by 

the graphene concentration, and then the exfoliation yield was collected in the 

inset in Figure 1a, which is up to 75% at the optimal ethanol concentration of 

25 wt%. The graphene flakes show apparent irreversible aggregation after 

storage without surfactant addition. In this case, there is no significant repulsive 

energy barrier between graphene flakes leading to flocculation (inset, Figure 

S2). As shown in Figure 1b, with the addition of surfactants (benzoxazine 

surfactant BM1000, sodium dodecylsulfate (SDS), Pluronic surfactant F108), 

the exfoliation yield was improved under the same exfoliation parameters 

comparing with that without the addition of surfactant. This indicates that the 

surfactant can promote the exfoliation process, as well as stabilize the pristine 

graphene sheets against reaggregation. This can also be supported by the results 

in Figure S4 where more addition of BM1000 gave rise to higher graphene 

concentrations [20,34]. The exfoliation yield was further boosted to higher than 

79% from a yield of 67% at the CEEG of 5 mg mL-1 using the sonication 

condition of Figure 1b. With CEEG of 50 mg mL-1 the concentration of graphene 
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can reach 2.7 mg mL-1 (Figure 1b). This concentration could be even higher 

with a greater initial CEEG similarly to the previous work from Parvez et al [24]. 

Transmission electron microscopy (TEM) images of graphene flakes are shown in 

Figure 1c. Graphene sheets with larger lateral size and relative uniformity were 

obtained (most of them reach up to 2 µm), compared to those using the extensive 

ultrasonic method in a previous study where size of several hundred nanometers was 

obtained [41]. A higher resolution image in the inset of Figure 1c shows a typical 

layer structure (bilayer), and the selected area electron diffraction pattern shows the 

fine crystal lattice of the graphene flake. Typically, there is a distribution of 

monolayer and few-layer graphene obtained using the sonication procedure [10]. 

Cross sectional analysis of AFM image on several flakes in Figure 1d shows a typical 

thickness of ~ 0.7 nm. The sample was prepared by using a Langmuir Blodgett 

method according to the previous report to avoid serious aggregation [49]. This sheet 

thickness is consistent with the monolayer thickness from previous reports where the 

sonication was conducted in dimethylformamide (DMF) [30,32]. demonstrating the 

eminent exfoliation under the low sonication power and short sonication time. A 

comparison with other reported methods including conventional LPE and existing 

electrochemical exfoliation methods is shown in Table S1, where the advances and 

advantages are classified. This method presents economical and eco-friendly 

advantage, and receives larger graphene flakes size comparing to conventional LPE 

method. 
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Figure 1. (a) Absorbance of exfoliated graphene suspension as a function of ethanol 

concentration in the cosolvent. Sonication for 10 min at 20% amplitude (a power 

around 20 W), CEEG = 4 mg mL-1, and centrifuge for 10 min at 500 rpm. Inset is the 

corresponding exfoliation yield at different ethanol concentration. (b) Absorbance of 

exfoliated graphene as a function of initial concentration of EEG (CEEG) in 25 wt% 

ethanol with and without the addition of surfactants. All samples were sonicated for 

30 min at 20% amplitude. (c) TEM imaging of graphene with the addition of BM1000. 

Insets are a higher resolution image and a selected area electron diffraction pattern 

respectively. (d) AFM image of graphene with the addition of BM1000 on a clean 

silica wafer and cross-sectional analysis. Sample was calcined at 350 ºC in air in a 

muffle furnace. 

 

(c) (d) 
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As shown in Figure 2a, electrical conductivity of up to 40 kS m-1 for free-standing 

graphene films was obtained after annealing at 250 ˚C, which is even higher than that 

for a rGO film thermally annealed at 500 ˚C [6]. When the benzoxazine surfactant of 

BM1000 was incorporated into free standing graphene films, 20 ~ 28 kS m-1 can be 

obtained after curing the surfactant (Figure 2a). This value is twice as large as before 

using smaller graphene sheets [41]. It is clear that the electrical conductivity only 

degrades slightly when BM1000 concentration increases. Sheet resistance of graphene 

films before and after curing is shown in Figure S6, which dropped by one order of 

magnitude after curing for the graphene films with BM1000 incorporated, while the 

graphene film without the addition of surfactant only reduced by half. This suggests 

that the increase in electrical conductivity for graphene films with BM1000 

predominately originates from the surfactant curing, rather than the solvent removal 

or other factors. Better electron mobility in the matrix is achieved after curing [41]. 

Overlapped graphene sheets in film materials were confirmed in the scanning electron 

microscopy (SEM) image (Figure S5a) and the expected layered structure was 

observed from the cross section imaging using SEM (Figure S5b). High resolution 

X-ray photoelectron spectroscopy (XPS) analyses on the O1s peak deconvoluted into 

its components is shown in Figure 2b. The peak at 533.8 eV is attributed to the 

oxygen bonded on graphene boundary due to the partial oxidization on the edge 

during the electrochemical process. This could be caused by the radical production 

(e.g., HO�, which generated from water electrolysis during anodic potentials) 

[24,53,54]. The radicals may attack the edges of the layers to expand the graphite to 
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facilitate water molecules and ions intercalation. Mild degradation of graphene sheets 

edges happens simultaneously. In spite of these edge defects, the large lateral size of  

the produced graphene sheets can help abating the effects of edge defects in electrical 

conductivity and mechanic properties. The peak located at 532 eV originates from 

surfactant BM1000, with the intensity enhanced with increasing surfactant 

concentration used during the sonication process. Similarly, the N1s signal shows the 

same trend (Figure S7b), indicating that more surfactant adsorbs on the graphene 

sheets when higher surfactant concentration was used. Fourier-transform infrared 

(FT-IR) spectra confirm the incorporation of BM1000 in graphene films (Figure S8). 

Peaks between 1150 cm-1 and 1000 cm-1 are attributed to the polyether C-O-C 

stretching vibration and symmetric stretching mode of the benzoxazine ring, and 

peaks at 2980 cm-1 and 2880 cm-1 belong to the stretching vibration of C-H in 

BM1000 chain groups [41,55], which are more intensive at high BM1000 

concentration both before and after curing. In addition, peaks of the polyether C-O-C 

stretching vibration and symmetric stretching mode of the benzoxazine ring become 

narrower after curing, due to the “ring opening” reaction [41]. 
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Figure 2. (a) Electrical conductivity of graphene films as the function of BM1000 

concentration used in the sonication process. (b) High resolution XPS analyses on 

O1s of graphene films. Data has been fitted into 2 peaks using CasaXPS software. (c) 

Stress-strain curves of graphene films by tensile test. (d) Photographs of graphene 

film strips in water before sonication and after 1 min bath sonication (60 W). Strip on 

the left is without BM1000 and the right one is with 10 mg mL-1 BM1000. (e) Cyclic 

voltammetry curves of graphene film based supercapacitor at scan rates from 10 mV 
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s-1 to 2000 mV s-1. Inset is the cyclic voltammetry data of graphene film based 

supercapacitor at scan rate of 20 mV. (f) Areal capacitance versus different scan rates 

(from 10 mV s-1 to 2000 mV s-1) for the graphene film based supercapacitor. Insets are 

SEM images of a graphene film used. 

 

A much higher modulus of ~17 GPa was obtained from tensile tests compared 

to the film modulus of 4.5 GPa obtained by using conventional sonication 

method in a previous work [41], indicating an increase in strength by a factor of 

4 (Figure 2c). The better mechanical properties can be attributed to the larger 

graphene sheet dimensions (and aspect ratio), where connections among sheets 

are firmer compared to those with smaller sheets. Unlike the usual viewpoint 

that the surfactant residual would degrade the intriguing properties of graphene 

materials [21,56], tensile tests reveal that the incorporation of BM1000 did not 

reduce the mechanical property of graphene films, where all stress-strain curves 

show no significant difference in Figure 2c. Instead, the incorporation of cured 

BM1000 improves the graphene film performance to sustain harsh treatments 

such as bath sonication in liquid (Figure 2d). The film without surfactant was 

observed to disintegrate after undergoing 1 min of bath sonication (60 W) in 

water, while the structural integrity of the film with the cured BM1000 was 

better maintained. Samples dealed with longer sonication time (from 1 min to 

10 min) are displayed in Figure S9, revealing the same trend. 
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The graphene films were also easily transferred onto a flexible poly(ethylene 

terephthalate) (PET) substrate after vacuum filtration through a hydrophobic 

polytetrafluoroethylene (PTFE) filter (Figure S10a). The lower surface tension 

of 25 wt% ethanol solution compared to water allows the liquid to freely 

imbibe by using ethanol to wet the PTFE filters. Conversely, graphene 

dispersions in water are usually filtered through inorganic hydrophilic filters, 

resulting in a strong interaction between graphene films and filters that makes 

transferring the graphene to other substrates difficult. The sheet resistance as 

the function of film thickness is also shown in Figure S10b, which presents 

similar values previously reported for graphene films containing surfactant [57]. 

After curing the BM1000 surfactant within the graphene film on the PET 

substrate, the film can resist tape adhesion and mild rubbing with an eraser 

(Figure S10c, d and e) [41]. Based on this method patterned conductive 

graphene layers on flexible substrates could be achieved [30]. 

The free-standing graphene film was employed to assemble a solid-state 

supercapacitor to demonstrate a potential application in energy storage devices. 

Poly(vinyl alcohol)/H2SO4 (PVA/H2SO4) gel was used as the electrolyte as well 

as the binding material and separator. The graphene films also served as current 

collectors. Different scan rates of cyclic voltammetry (CV) from 10 mV s-1 to 

2000 mV s-1 were swept (Figure 2e). The nearly rectangular shape at low scan 

rates indicates the typical electrical double-layer capacitive behavior (inset, 

Figure 2e, 20 mV s-1), while the oblique angle in CV curves at a high scan rate 
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may suggest contact resistance between graphene films and gels [58-60]. Areal 

capacitances at different scan rates (the calculation method is detailed in 

Experimental) are shown in Figure 2f. Considering the flat surface of the 

graphene film with a reasonable smaller active surface area compared to rough 

structures such as a 3D graphene network (insets, Figure 2f) [24,58,60], a 

considerable high areal capacitance of 38 mF cm-2 was achieved at a scan rate 

of 10 mV s-1. The gravimetric capacitance can be calculated as 44 ± 1 F g-1 

through the areal capacitance by applying the thickness of 4.3 ± 0.1 µm (from 

SEM characterization on cross-section) and the film density around 2.0 g cm-3. 

This is comparable to or even higher than previous reports in regard to 

graphene film structures [61,62]. 

Polymer-graphene nanocomposites allow diverse applications. Owing to the 

solubility of PVA in 25 wt% ethanol solution, biomimetic nacre-like 

nanocomposite of graphene and PVA can be easily fabricated by mixing 

graphene suspension and PVA solution and drying at room temperature (Figure 

3a). The typical section morphology by SEM is shown in Figure 3a with a 

compact lamellar microstructure within the composite. PVA molecules act as 

the binder to keep graphene sheets together [63], in addition to well dispersed 

graphene sheets in the PVA matrix. TGA shows three typical weight losses for 

PVA (Figure S11), corresponding to the loss of adsorbed water, elimination of 

water from side group and degradation of the main chain respectively. By 

mixing with different amounts of PVA, the proportion of graphene in the 
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composite can be tuned based on demand. Stress-strain curves from tensile tests 

on this nanocomposite with different proportions of graphene are shown in 

Figure 3b. A trend of higher graphene loading leads to better mechanical 

properties, where the large graphene sheets play the role of reinforcing agent 

[63,64]. 

In addition, the dispersibility of graphene in organic solvents is also critical for 

making graphene-polymer composites of water-insoluble polymers, which can reduce 

the agglomeration of graphene in resultant polymer matrices [3]. The amphiphilic 

property of BM1000 allows solubility in water and polar organic solvents. 

Freeze-dried graphene sample with 2 mg mL-1 concentration of BM1000 was well 

redispersed in organic solvents (such as chloroform (CHCl3), dimethylformamide 

(DMF), dimethylacetamide (DMAc) and dimethylsulfoxide (DMSO) seeing Figure 

S12, but not limited to these). The dispersibility of graphene sheets with BM1000 in 

CHCl3 allows the graphene to be directly extracted to CHCl3 from aqueous dispersion 

(Figure 3c and Figure S13) [49]. Different concentrations of BM1000 were studied on 

the efficiency of extraction, and it was found that the addition of enough BM1000 (2 

mg mL-1 BM1000 for 0.5 mg mL-1 graphene) can make a successful extraction of 

graphene sheets. TEM imaging shows that after transferred to CHCl3 the graphene 

flakes were kept in the exfoliated state (Figure S14a). Raman spectra also support that 

their highly exfoliated state was well maintained after extraction to CHCl3(Figure 

S14b). In the Raman spectra, a ratio of 0.65 of ID/IG suggests excellent quality of 

graphene sheets even though there is an obvious D peak representing the edge defects 
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[53]. Meanwhile, a ratio of ID/I2G smaller than 4 was obtained, which sits in the 

section of 3.5–4.5 for trilayer suggested by Loh et al, demonstrating a mean layer 

number of 3 or less [29]. This further confirms the eminent exfoliation under the low 

sonication power and short sonication time, and also confirms the successful transfer 

to CHCl3. 
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Figure 3. (a) Photograph of PVA-graphene nanocomposite film and the corresponding 

SEM cross section image. (b) Stress-strain by tensile test on these nanocomposite 

films with different graphene percentage. (c) Photographs of process transferring 

graphene to CHCl3 from aqueous dispersion with different BM1000 concentration and 

the corresponding absorbance of graphene suspension in chloroform after 

centrifugation of 1500 rpm for 10 min. (d) Photograph of stable solution of PMMA 

and graphene in CHCl3. Insets is the PMMA/graphene tablet by pouring dispersion 

onto a PTFE plate. (e) Thermal diffusivity (α) of PMMA/graphene tablet as the 

function of graphene content. Inset is the LFA data after normalization. 

 

Dropping this stable graphene dispersion in chloroform onto a water surface 

and adopting the Langmuir Blodgett (LB) method, conductive and highly 

transparent graphene films could be deposited on different substrates (Figure 

S15). Furthermore, the extraction of larger volumes of the dispersion was 

carried out successfully and stable graphene dispersions in CHCl3 were 

obtained (Figure S16). Polymer materials such as poly(methyl methacrylate) 

(c) 

(d) 

(e) 
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(PMMA) are stably dissolved in the graphene suspension in chloroform (Figure 

3d). Graphene loaded nanocomposites powder with PMMA was produced by 

precipitating in cyclohexane (Figure S17). PMMA pellets with graphene were 

prepared via casting the CHCl3 solution onto a PTFE template or pressing 

nanocomposite powder via a hydraulic press (insets of Figure 3d and S17). 

Laser flash analysis (LFA) was performed to characterize the thermal 

diffusivity after incorporation of graphene into PMMA (Figure 3e). As expected, 

incorporation of small quantities of graphene can effectively enhance materials 

thermal diffusivity, due to the well dispersed graphene in the PMMA matrix and 

the large flake dimension to play a highly effective thermal diffusivity 

enhancer. 

 

4. Conclusions 

In summary, a modified LPE using low sonication power and short sonication time to 

produce graphene in cosolvent of ethanol and water has been developed, via the prior 

use of an electrochemical expansion process on graphite. This efficient method can 

produce graphene sheets with high yield and excellent quality. Using this method, 

graphene flakes with large lateral dimension were exfoliated, leading to a double 

electrical conductivity and an increase by a factor of 4 in modulus for graphene film 

materials, as well as a considerable high areal capacitance value on the assembled 

solid supercapacitor. In addition, the usage of cosolvent of ethanol and water allows 

fabricating transparent graphene films on different substrates, via vacuum filtration 
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through a hydrophobic PTFE filter. Furthermore, the employment of a type of 

multifunctional benzoxazine surfactant facilitates to transfer graphene sheets into 

organic solvents. Therefore polymer-graphene composites were produced both for 

water soluble PVA and for organic soluble PMMA, where the large graphene flakes 

act as excellent reinforcing agent and thermal diffusivity enhancer. 

 

Supplementary Information 

TGA of wet EEG, XRD, SEM images of graphene film, XPS of C1s and N1s of 

graphene films, FTIR of graphene films, photographs of transferring graphene film 

onto PET substrate, TGA of PVA-graphene composite, photographs of transferring 

graphene into chloroform, and photograph of PMMA-graphene composites. 
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