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ABSTRACT 

Electron-withdrawing 4-cyanophenyl-, electronically innocent phenyl-, and 

electron-donating 4-dimethylaminophenyl-functionalized porphyrin/single-walled 

carbon nanotube (SWCNT) nanohybrids have been synthesized and characterized by 

ultraviolet‒visible absorption, steady-state fluorescence, Fourier transform infrared, 

and Raman spectroscopies, X-ray photoelectron spectroscopy, scanning electron 

microscopy, transmission electron microscopy and thermogravimetric analysis. 

Nonlinear optical (NLO) studies using the Z-scan technique revealed that both the 

cyano (CN) and the dimethylamino (DMA) substituents have a positive effect in 

optimizing the optical limiting performance of the SWCNT–porphyrin nanohybrids, 

owing to increased reverse saturable absorption (RSA) of the porphyrin moieties after 

functionalization by CN or DMA. In comparison with CN, the DMA group has a 

more positive influence on the porphyrin excited states and thereby the RSA and NLO 

activity. 
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1. Introduction 

Carbon nanoallotropes from 0D to 1D and 2D, examples of which include C60, 

single- and multiple-walled carbon nanotubes (CNTs), and graphene, respectively, 

have been intensively investigated within both the scientific and the industrial 

communities during the past two decades [1‒3]. Special attention has been paid to 

single-walled CNTs (SWCNTs), which comprise a single graphene layer seamlessly 

wrapped into a cylindrical tube with an internal void [4‒8]. The hexagonal lattice of 

sp2 carbon atoms bestows excellent electrical, mechanical, thermal and optical 

properties on SWCNTs, making them favored candidates for applications in 

electronic/optical devices, catalysis, and nanomedicine, and as nanoreactors [9‒13]. 

However, owing to high surface energy and significant π-π electron interactions 

between the tubes, SWCNTs have a high tendency to aggregate into bundles [4]. This 

gives rise to very limited solubility/dispersity of SWCNTs in organic solvents or 

water, creating a serious difficulty for processing and thus real-life applications. To 

solve this, surface functionalization of SWCNTs has been proposed, which might also 

introduce enhanced or novel properties, thereby leading to new applications for 

certain functional entities (e.g. inorganics, polymers, organic dyes, etc.) [14‒18].  

Porphyrin is a natural organic dye comprising a square-planar 18π-electron 

aromatic macrocycle. It possesses many appealing properties, such as high chemical 

and thermal stability, a large extinction coefficient in the visible light region, multiple 

stable cationic states, and strong reverse saturable absorption (RSA) for laser pulses in 

the visible region. These attributes equip porphyrins for use across a wide range of 

research fields [19‒22]. In addition, the rich metal coordination chemistry as well as 

the readily available methods of chemical modification on the periphery of the 

porphyrin skeleton provides great flexibility for the synthesis of novel porphyrin-dyes 

with specific properties [23‒25]. 

Recently, many reports have focused on combining SWCNTs with porphyrins to 

form inorganic/organic hybrid composites, and this has been shown to be a promising 

approach in the pursuit of photon-to-electron transfer, solar energy conversion, and 

nonlinear optical (NLO) applications [26‒29]. In particular, the combination of 
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porphyrins (exhibiting RSA) and SWCNTs (with strong nonlinear optical scattering 

(NLS) properties) results in interesting SWCNT-porphyrin (SWCNT–Pr) ns with 

enhanced optical limiting (OL) behavior, useful in the efficient extinction of 

potentially damaging high intensity light such as that from lasers [30]. The first 

nonlinear characterization of a SWCNT-porphyrin nanohybrid material [31], in which 

porphyrins spontaneously adhered to the nanotube surface in solution through 

non-covalent van der Waals interactions, revealed a strong nonlinear absorption effect 

with nanosecond pulses (Z-scan technique at 532 nm). Subsequent studies of π-π 

stacked SWCNT–Pr nanohybrids revealed an ultrafast OL response and a low limiting 

threshold from femtosecond nonlinear measurements at 780 nm [32]. In order to avoid 

possible dissociation and to ensure that the SWCNT–Pr nanohybrids are stable, 

several covalent linking methodologies have been examined [33–38]. Tian and 

coworkers reported that covalently-linked SWCNT–Pr has a lower linear absorption 

than the physically blended combination. Energy transfer (ET) and photo-induced 

electron transfer (PET) from porphyrins to SWCNTs play an important role in 

increasing the OL performance, with the π-conjugated bridge (phenylene) between the 

SWCNTs and the porphyrins resulting in much more efficient ET/PET than with 

amide or ester covalent linkages, and thereby a more efficient OL effect [30].  

However, in sharp contrast to the great progress achieved in optimizing the NLO 

properties of purely organic porphyrins and metalloporphyrins through synthesis and 

modification [20,39,40], NLO research on covalently-linked SWCNT–Pr nanohybrids 

is sparse [34]; there is no report thus far on the influence of further chemical 

modification, especially at the organic porphyrin moiety, on the NLO performance of 

covalent SWCNT–Pr nanohybrids. In this work, we have designed and synthesized 

three novel SWCNTs covalently functionalized with tert-butyl substituted 

5,10,15,20-tetraphenylporphyrins (TPPs), employing one classical organic 

electron-acceptor cyano group (CN) and one classical organic electron-donor 

dimethylamino group (DMA) attached at the opposite extremity of TPP to the 

SWCNTs (SWCNT–Pr2 and SWCNT–Pr3 respectively), as well as an example with 

an unmodified phenyl as control, SWCNT–Pr1 (Fig. 1). Thorough characterization 
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was carried out by ultraviolet-visible (UV–vis) absorption, steady-state fluorescence, 

Fourier transform infrared (FTIR), and Raman spectroscopies, X-ray photoelectron 

spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), and thermogravimetric analysis (TGA), which collectively 

unambiguously confirmed that the chosen porphyrins were successfully attached to 

the surface of the SWCNTs by a 1,2,3-triazole-containing π-conjugated covalent 

bridge rather than by non-covalent means. Nonlinear transmittance tests by the Z-scan 

technique (532 nm, 4 ns duration) revealed that both electron-withdrawing CN and 

electron-donating DMA substituents have positive effects in further optimizing the 

OL performance of the SWCNT–Pr nanohybrids, owing to the increased RSA ability 

of the porphyrin moieties after attaching CN or DMA. In comparison with CN, the 

DMA group has a more positive influence on the porphyrins’ excited states and thus 

effectively further enhanced the RSA process and the final NLO performance of the 

SWCNT–Pr nanohybrids. This may provide a useful guide to the design of better 

NLO materials for device applications in optoelectronics and photonics. 

 

Fig. 1. Schematic depiction of the preparation and NLA origins from SWCNT‒Pr1, SWCNT‒Pr2 

and SWCNT‒Pr3. (a) 4-(2-trimethylsilyl)ethynylaniline, isoamyl nitrite, NMP, 70 °C; (b) TBAF, 

NMP, 0 °C; (c) Pr1 (or Pr2 or Pr3), CuSO4
.5H2O, sodium ascorbate, 70 °C. 
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2. Experimental 

2.1 Materials and reagents 

The pristine SWCNTs (p–SWCNTs) with average diameters of 1-2 nm and 

lengths of 0.5-2 µm were purchased from Beijing DK nano technology Co. Ltd. and 

used as received. All of the reactions were performed under a nitrogen atmosphere 

with the use of standard Schlenk techniques. All materials were of chemical or 

analytical grade. 5,15-bis-(3,5-bis{tert-butyl}phenyl)porphyrin 1 and 

5-(4-aminophenyl)-10,20-bis-(3,5-bis{tert-butyl}phenyl)porphyrin 2 (Fig. 2) were 

prepared according to those reported literatures [41,42]. Tetrahydrofuran (THF) and 

diethyl ether were dried and distilled over sodium before use. N-methyl-2-pyrrolidone 

(NMP), N,N-dimethylamide (DMF), dimethylsulfoxide (DMSO), toluene, chloroform, 

dichloromethane (DCM), pyridine and triethylamine (TEA) were used without further 

purification. 

2.2 Measurements 

UV–visible absorption spectra (UV–vis) were recorded on TU-1901 

spectrophotometer. Fluorescence spectra were obtained with a CARY Eclipse 

Fluorescence Spectrophotometer. FTIR spectra were recorded on a WQF-600N 

spectrometer. Raman spectra were measured using an inVia Raman microscope 

(Renishaw) with both the 532 and 785 nm lines of an Ar ion laser as excitation source. 

The X-ray photoelectron spectroscopy (XPS) experiments were performed on an 

ESCALAB250Xi system (ThermoFisher, USA) equipped with a monochromatic Al 

Kα (1486.6 eV) source and a concentric hemispherical energy analyser. Nuclear 

magnetic resonance (NMR) spectra were recorded on a Bruker (400 MHz) 

spectrometer using tetramethylsilane as internal standard. Mass spectral data were 

recorded on a Bruker Daltonics ultrafleXtreme MALDI-TOF/TOF. The water bath 

sonication was performed with a KQ-400KDE sonicator (400 W, 40 kHz, Kunshan 

Sonicator Instrument Co., Inc.). For thermogravimetric analysis (TGA), a 

TGA/1100SF instrument was used and samples were heated in an alumina pan in a 

dry nitrogen flow (20 sccm) to 600 °C at a rate of 10 °C·min-1. Field emission 

scanning electron microscope and transmission electron microscope images were 
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obtained on Hitachi/S-4800 and JEM-2100 instruments, respectively. All the 

measurements except TGA were carried out at room temperature. 

The nonlinear optical properties of the samples were investigated using the 

open-aperture Z-scan technique with linearly polarized 4 ns pulsed 532 nm light 

generated from a mode-locked Nd:YAG laser with a repetition rate of 2 Hz; the 

absorption extinction coefficients were calculated by the theory reported previously 

[43]. The normalized transmittance TNorm(z) as a function of position (z) is given by 

TNorm(z) = Log[1 + q0(z)]/q0(z), where q0(z) = βI0Leff/[1 + (z/z0)
2], Leff = [1 − 

exp(−αL)]/α, z0 is the diffraction length of the beam, I0 is the intensity of the light at 

focus, Leff is the effective length of the sample, L is the true optical path length 

through the sample, and α is the linear absorption coefficient. The focal length was 

400 mm. The DMF dispersions of the samples were placed in 5 mm thick quartz cells 

mounted on a computer-controlled translation stage, and then moved along the z-axis 

of the incident beam. The input energy and the transmitted energy were measured 

using two energy detectors (Rjp-765 Energy Probe), which were linked to an energy 

meter (Rj-7620 Energy Ratiometer, Laser Probe Inc.). A computer was used to collect 

and process the data that were sent from the energy meter through a GPIB interface. 

For the ease of comparison, all the measurements were performed at an input intensity 

of 0.54 J/cm2 at room temperature, and the linear transmittance of all samples was 

adjusted to 68%. 

2.3 Preparation of organic porphyrins  

2.3.1 Preparation of 5-Bromo-15-(4-aminophenyl)-10,20-bis-(3,5-bis{tert-butyl} 

phenyl)porphyrin 3  

N-Bromosuccinimide (NBS) (11.4 mg in 20 ml chloroform, 0.0640 mmol) was 

added dropwise at ‒14 °C to a solution of 2 (50.0 mg, 0.0640 mmol) (synthetic details 

see the Supporting Information, SI) and pyridine (0.3 ml) in chloroform (50 ml). The 

extent of the reaction was monitored by TLC. The reaction was quenched with 

acetone (10 ml), and the mixture was filtered and the collected solid washed with 

MeOH to remove residual NBS. Further purification was achieved by column 

chromatography (silica, 1:3 light petroleum / DCM), to give compound 3 as a purple 
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powder (43.0 mg, 78%). 1H NMR (400 MHz; CDCl3; SiMe4): δ = ‒2.90 (2H, s, 

2×NH), 1.54 (36H, s, CH3), 4.02 (2H, s, NH2), 7.05 (2H, d, J = 8.0 Hz, H Ph), 7.81 

(2H, t, J = 2.0 Hz, H Ph), 7.96 (2H, d, J = 8.4 Hz, H Ph), 8.06 (4H, d, J = 1.6 Hz, H 

Ph), 8.80‒8.95 (6H, m, H β-pyrrole), 9.66 (2H, m, H β-pyrrole). 

2.3.2 Preparation of 5-Phenyl-15-(4-aminophenyl)-10,20-bis-(3,5-bis{tert-butyl} 

phenyl)porphyrin 4  

A mixture of 3 (20.0 mg, 0.0233 mmol), phenylboronic acid (3.10 mg, 0.025 

mmol), tetrakis(triphenylphosphine)palladium(0) (2.70 mg, 0.00234 mmol) and 

potassium carbonate (32.0 mg, 0.233 mmol) was evacuated and back-filled with 

nitrogen 3 times. DMF/toluene (7 mL, 5:2) was added and the mixture was heated 

overnight at 90 °C under a nitrogen atmosphere. After cooling, the solution was 

filtered through silica gel. The crude product obtained after evaporating the organic 

solvents was further purified by column chromatography (silica, 2:3 light petroleum / 

DCM) to give 4 as a purple powder (16.0 mg, 80%). 1H NMR (400 MHz; CDCl3; 

SiMe4): δ = ‒2.71 (2H, s, 2×NH), 1.54 (36H, s, CH3), 4.00 (2H, s, NH2), 7.05 (2H, d, 

J = 8.0 Hz, H Ph), 7.70‒7.80 (5H, m, H Ph), 8.00 (2H, d, J = 8.4 Hz, H Ph), 8.10 (4H, 

d, J = 1.6 Hz, H Ph), 8.20‒8.25 (2H, m, H Ph), 8.80‒8.95 (8H, m, H β-pyrrole). MS 

(MALDI-TOF): m/z calcd for C60H63N5 853.51, found 853.5083 [M]+. 

2.3.3 Preparation of 5-(4-Cyanophenyl)-15-(4-aminophenyl)-10,20-bis-(3,5-bis 

{tert-butyl}phenyl)porphyrin 5  

The synthetic steps followed the procedure described above for compound 4, 

using 4-cyanophenylboronic acid (3.68 mg, 0.025 mmol) instead of phenylboronic 

acid (17.0 mg, 83%). 1H NMR (400 MHz; CDCl3; SiMe4): δ = ‒2.73 (2H, s, 2×NH), 

1.53 (36H, s, CH3), 4.04 (2H, s, NH2), 7.07 (2H, d, J = 8.0 Hz, H Ph), 7.81 (2H, t, J = 

2.0 Hz, H Ph), 8.00 (2H, d, J = 8.4 Hz, H Ph), 8.05 (2H, d, J = 8.0 Hz, H Ph), 8.08 

(4H, d, J = 1.6 Hz, H Ph), 8.35 (2H, d, J = 8.0 Hz, H Ph), 8.71 (2H, d, J = 4.8 Hz, H 

β-pyrrole), 8.85‒9.00 (6H, m, H β-pyrrole). MS (MALDI-TOF): m/z calcd for 

C61H62N6 878.50, found 878.5035 [M]+. 

2.3.4 Preparation of 5-(4-N,N-dimethylaminophenyl)-15-(4-aminophenyl)-10,20- 

bis-(3,5-bis{tert-butyl}phenyl)porphyrin 6  
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The synthetic steps followed the procedure described above for compound 4, 

using 4-(N,N-dimethyl)phenylboronic acid (4.13 mg, 0.025 mmol) instead of 

phenylboronic acid (14.6 mg, 70%). 1H NMR (400 MHz; CDCl3; SiMe4): δ = ‒2.67 

(2H, s, 2×NH), 1.53 (36H, s, CH3), 3.23 (6H, s, CH3), 4.03 (2H, s, NH2), 7.06 (2H, d, 

J = 8.4 Hz, H Ph), 7.11 (2H, d, J = 8.8 Hz, H Ph), 7.79 (2H, t, J = 2.0 Hz, H Ph), 8.00 

(2H, d, J = 8.4 Hz, H Ph), 8.10 (6H, m, H Ph), 8.80‒8.95 (8H, m, H β-pyrrole). MS 

(MALDI-TOF): m/z calcd for C62H68N6 896.55, found 896.5505 [M]+. 

2.3.5 Preparation of [5-Phenyl-15-(4-triazinophenyl)-10,20-bis-(3,5-bis{tert-butyl} 

phenyl)porphinato]zinc(II) Pr1 

To a solution of 4 (50.0 mg, 0.0585 mmol) in THF/water (10 mL, 9:1) at 0 °C 

were added hydrochloric acid (0.3 ml, 10%) and sodium nitrite (4.40 mg in 0.5 ml 

water, 0.0638 mmol). After stirring for 10 min, two portions of sodium azide (each 

4.20 mg in 0.2 ml water, 0.0646 mmol) were added dropwise with an interval time of 

30 min. The reaction was completed within 2 h and the mixture was then extracted 

with CH2Cl2. Flash column chromatography using CH2Cl2 as eluent afforded a purple 

solid which was then directly used for the next step without further purification. The 

solid was stirred with Zn(OAc)2
.2H2O (100 mg, 0.457 mmol) in CH2Cl2 / CH3OH (8:1, 

100 ml) at room temperature for 24 h in the absence of light. The crude product was 

purified by column chromatography (silica, 3:1 light petroleum / DCM) to give Pr 1 

as a purple powder (38.1 mg, 72%). 1H NMR (400 MHz; CDCl3; SiMe4): δ = 1.53 

(36H, s, CH3), 7.40 (2H, d, J = 8.0 Hz, H Ph), 7.70‒7.85 (5H, m, H Ph), 8.12 (4H, s, 

H Ph), 8.23 (4H, t, J = 6.4 Hz H Ph), 8.95 (4H, m, H β-pyrrole), 9.02 (4H, m, H 

β-pyrrole). MS (MALDI-TOF): m/z calcd for C60H59N7Zn 941.41, found 941.4123 

[M] +. 

2.3.6 Preparation of [5-(4-Cyanophenyl)-15-(4-triazinophenyl)-10,20-bis-(3,5-bis 

{tert-butyl}phenyl)porphinato]zinc(II) Pr2 

The synthetic steps followed the procedure described above for compound Pr 1, 

using 5 (50.0 mg, 0.0569 mmol) as the starting reactant instead of 4 (42.9 mg, 78%). 

1H NMR (400 MHz; CDCl3; SiMe4): δ = 1.53 (36H, s, CH3), 7.39 (2H, d, J = 8.4 Hz, 

H Ph), 7.82 (2H, t, J = 2.0 Hz, H Ph), 8.05 (2H, d, J = 8.4 Hz, H Ph), 8.09 (4H, d, J = 
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1.6 Hz, H Ph), 8.20 (2H, d, J = 8.4 Hz, H Ph), 8.35 (2H, d, J = 8.4 Hz, H Ph), 8.83 

(2H, d, J = 4.8 Hz, H β-pyrrole), 8.95 (2H, d, J = 4.4 Hz, H β-pyrrole), 9.03 (4H, m, H 

β-pyrrole). MS (MALDI-TOF): m/z calcd for C61H58N8Zn 966.41, found 966.4075 

[M] +. 

2.3.7 Preparation of [5-(4-N,N-dimethylaminophenyl)-15-(4-triazinophenyl)- 

10,20-bis-(3,5-bis{tert-butyl}phenyl)porphinato]zinc(II) Pr3 

The synthetic steps followed the procedure described above for compound Pr1, 

using 6 (50.0 mg, 0.0528 mmol) as the starting reactant instead of 4 (35.5 mg, 65%). 

1H NMR (400 MHz; CDCl3; SiMe4): δ = 1.53 (36H, s, CH3), 3.00 (6H, s, N(CH3)2), 

7.39 (2H, d, J = 8.4 Hz, H Ph), 7.53 (2H, d, J = 8.8 Hz, H Ph), 7.79 (2H, t, J = 2.0 Hz, 

H Ph), 8.04 (2H, d, J = 8.0 Hz, H Ph), 8.09 (4H, d, J = 1.6 Hz, H Ph), 8.21 (2H, d, J = 

8.0 Hz, H Ph), 8.91 (2H, d, J = 4.8 Hz, H β-pyrrole) , 8.95‒9.05 (4H, m, H β-pyrrole), 

9.04 (2H, m, H β-pyrrole). MS (MALDI-TOF): m/z calcd for C62H64N8Zn 984.45, 

found 984.4545 [M]+. 

2.4 Preparation of f‒SWCNTs 

A mixture of p‒SWCNTs (15 mg) and NMP (50 mL) was sonicated for 30 min, 

and then 2.5 equiv. C of 4-(2-trimethylsilyl)ethynylaniline (594 mg, 3.14 mmol) and 

28 equiv. C of isoamyl nitrite (426 µL, 3.17 mmol) were added. The resultant 

suspension was stirred at 70 °C for three days under a nitrogen atmosphere before 

another identical portion of 4-(2-trimethylsilyl)ethynylaniline and isoamyl nitrite was 

added. After another four days, the suspension was filtered through a PTFE 

membrane (0.22 µm), and the collected solid washed several times with NMP and 

CH2Cl2. The resulting filter cake was redispersed in NMP (50 mL). The entire 

filtering procedure above was repeated several times until the mass of the filter cake 

were constant, giving a black powder of 18 mg. FTIR: ν (cm-1) = 2931, 2877, 1108. 

2.5 Preparation of SWCNT–Pr1, SWCNT–Pr2, SWCNT–Pr3 

All the novel nanohybrids were prepared according to the following procedure: 

A mixture of f‒SWCNTs (10.0 mg) and NMP (40 mL) was sonicated for 30 min after 

which tetra-n-butylammonium fluoride (1.40 g) was added at 0 °C. The reaction was 

completed after stirring at room temperature for 2 h. The suspension was then filtered 
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through a PTFE membrane (0.22 µm) and the collected solid washed several times 

with DMF, THF and CH2Cl2. The entire filtering procedure above was repeated 

several times until the mass of the filter cake was constant. It was then immediately 

redissolved in NMP (20 ml), and Pr1 (15 mg) (or Pr2 or Pr3) (synthetic details see the 

SI), CuSO4
.5H2O (3.20 mg, 0.0128 mmol), and sodium ascorbate (24.8 mg, 0.125 

mmol) were added successively. The reaction mixture was stirred at 70 °C for 48 h 

and then cooled to room temperature. In order to thoroughly remove residues 

including sodium ascorbate, copper catalyst and unbound ZnP, the resultant mixture 

was resonicated and washed successively with mixtures of DMF/water (v/v = 1/2) and 

DMF/THF (v/v = 1/2). These operations were repeated several times and the filter 

cakes were further washed with THF and CH2Cl2. The yields of the final dried 

products SWCNT‒Pr1, SWCNT‒Pr2 and SWCNT‒Pr3 were 15, 15, and 16 mg, 

respectively. 

 

3. Results and Discussion 

3.1 Synthesis   

To introduce additional electronically active organic groups onto traditional 

SWCNT–Pr nanohybrids, we used a synthetic strategy to build differently substituted 

porphyrins in advance of linking them onto SWCNTs through the azide-alkyne click 

reaction. The successful preparation of porphyryl azides with different substituents is 

therefore a key component of the overall synthesis (Fig. 2). To this end, 

5,15-bis-(3,5-bis{tert-butyl}phenyl)porphyrin 1 was first obtained by acid catalyzed 

condensation of 3,5-bis{tert-butyl}benzaldehyde and dipyrrolylmethane [41]. A 

nucleophilic attack at one of the free meso-carbons of 1 was then carried out by 

Senge’s method [42], using an organolithium reagent freshly prepared by treating 

4-bromoaniline with 3 molar equivalents of n-butyllithium, and subsequent oxidation 

with 2,3-dicyano-5,6-dichlorobenzoquinone (DDQ) to afford compound 2. 

Bromination at the last free meso position of 2 with N-Bromosuccinimide (NBS) [44] 

then afforded 3. Suzuki-Miyaura cross-coupling of 3 and the different three aryl 

boronic acids gave compounds 4, 5, and 6, differentiated by H, CN, and NMe2 
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substituents, respectively. Porphyryl azides were then synthesized from the 

corresponding porphyryl amines via their diazonium compounds, and these were 

subsequently metalated by zinc in order to avoid possible copper insertion during the 

final Cu(II)-catalyzed click reaction step. All the aforementioned reactions proceeded 

in moderate to high yields (48–78%). 

 

Fig. 2. Synthesis of Pr1, Pr2 and Pr3. (a) 3,5-di(tert-butyl)benzaldehyde, TFA, DDQ, Et3N, 

CH2Cl2, RT; (b) 4-bromoaniline, n-BuLi, Et2O, 0 °C to RT; (c) NBS, pyridine, CH2Cl2, ‒14 °C; (d) 

arylboronic acid (phenylboronic acid, 4-cyanophenylboronic acid, or 

4-(N,N-dimethyl)phenylboronic acid), Pd(PPh3)4, K2CO3, DMF/toluene, 90 °C; (e) NaNO2, HCl, 

NaN3, 0 °C; (f) Zn(OAc)2
.2H2O, MeOH/CH2Cl2, RT. 

 

The p–SWCNTs were initially covalently grafted with trimethylsilyl-protected 

ethynylphenylene groups, forming f–SWCNTs (Fig. 1). After removal of the 

protecting trimethylsilyl group, these pre-functionalized SWCNTs were immediately 

mixed with the porphyryl azides to yield the final SWCNT–Pr1, SWCNT–Pr2 and 

SWCNT–Pr3 by azide-alkyne cycloadditions. After purification, all functionalized 

SWCNTs were found to have increased in weight by ca. 50% during this final step. 

After a few minutes of ultrasonic treatment, all of the as-prepared nanohybrid 

materials exhibit a green-grey color and significantly improved stability in 
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dimethylsulfoxide (DMSO), dimethylpyrrolidone (NMP), and dimethylformamide 

(DMF), and are stable for several weeks at room temperature, while dispersions of the 

p–SWCNTs in DMF show a gray color and quickly agglomerate (Fig. 3). 

 

Fig. 3. Photograph of the samples dispersed in DMF (from left to right: p‒SWCNTs, Pr1, 

SWCNT‒Pr1, Pr2, SWCNT‒Pr2, Pr3 and SWCNT‒Pr3). 

 

3.2 UV–vis and Fluorescence spectroscopy 

The UV–vis absorption spectra of p‒SWCNTs, Prs and SWCNT‒Prs in DMF are 

displayed in Fig. 4 and the key data summarized in Table 1. The UV–vis spectrum of 

p‒SWCNTs contains a typical broad absorption peak at ca. 300 nm with the intensity 

slowly decreasing on proceeding to longer wavelengths [45]. The porphyrins with 

varying substituents (H, CN, DMA) opposite to the azide group (Fig. 2) show strong 

Soret absorptions at ca. 430 nm and weak Q bands at ca. 560 and 600 nm. There was 

little spectral change seen on proceeding from Pr1 to the CN-substituted Pr2, while 

the DMA-containing Pr3 exhibits slightly red-shifted but much broadened Soret and 

Q bands when compared to Pr1 (Soret, 428 nm to 430 nm; Q, 560/601 nm to 565/607 

nm). The absorption profile of these SWCNT‒Pr nanohybrids combine the spectral 

characteristics of both the p‒SWCNTs and the corresponding porphyrins, except for a 

distinct 2-3 nm red shift of the porphyrin signals, the latter suggestive of a successful 

covalent combination of the SWCNTs and the porphyrins. It is also noteworthy that 

the differences in the Soret and Q bands of SWCNT–Pr1, 2, and 3 mimic those 

observed for the Pr1, 2 and 3 precursors, i.e. SWCNT–Pr3 with electron-donating 

DMA substituents possesses broader and slightly red-shifted Soret and Q bands 

compared to SWCNT–Pr1 and SWCNT–Pr2. This suggests that DMA promotes 
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electronic communication within the molecule or the composite systems in the ground 

states, an outcome of its classical electron-donating nature. 

 

Fig. 4. UV‒vis absorption spectra of p‒SWCNTs, Pr1, Pr2 and Pr3, SWCNT‒Pr1, SWCNT‒Pr2 

and SWCNT‒Pr3. Inset: spectra of SWCNT‒Pr1, SWCNT‒Pr2 and SWCNT‒Pr3 within the range 

375-500 nm.  

 

Table 1. Absorption and emission spectra parameters (λabs and λem) of Pr1, Pr2, Pr3, 

SWCNT‒Pr1, SWCNT‒Pr2 and SWCNT‒Pr3. 

Samples λabs (Q2) /nm λabs (Q1) /nm Soret/nm λem2/nm λem1/nm 

Pr1 601 560 428 660 608 

SWCNT‒Pr1 604 563 430 660 608 

Pr2 601 560 429 663 611 

SWCNT‒Pr2 603 562 431 663 612 

Pr3 607 565 430 ‒ 623 

SWCNT‒Pr3 609 566 433 ‒ 623 

 

To probe the excited-state interactions in these composites, we carried out 

fluorescence spectra measurements in DMF, exciting at 430 nm, and with the 

porphyrin absorption intensities adjusted to be identical. Fig. 5 illustrates the 

fluorescent emissions of p‒SWCNTs, Prs and SWCNT‒Prs. p‒SWCNTs failed to 

exhibit any noticeable emissions in the 550-750 nm region. In this region, two 

characteristic porphyrin photoluminescence bands emitting from the singlet excited 

states of S1 and S2 were observed, with the S1-S0 transitions showing luminescence 

maxima. The differences in fluorescence amongst the Prs are much more prominent 

than differences in their absorption profiles. The introduction of CN in Pr2 gives rise 
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to a bathochromic shift in the emission peaks of ca. 3 nm and with a slightly 

decreased intensity, while DMA in Pr3 intensifies the emissions and red-shifts the S1 

fluorescence by 15 nm, resulting in mixing with the S2 fluorescence. These behaviors 

should be correlated with the inductive electron effect and/or conjugation effect of the 

CN and DMA group; DMA in particular should enhance the intramolecular charge 

transfer (ICT) from porphyrin through the azide group by enhancing the electron 

density at the porphyrin [46,47]. Interestingly, the fluorescence profiles and 

wavelengths of each SWCNT–Pr nanohybrid is almost identical with those of its 

corresponding Pr (Fig. 5 and Table 1), which suggests that the singlet excited states of 

the composites are mostly located on the porphyrins and their peripheral organic 

substituents, rather than the SWCNTs. Nevertheless, the SWCNTs still played a key 

role in quenching the S1 and S2 excitons (Fig. 1); as a result, the fluorescence intensity 

was quenched by 97%/98%/99% in SWCNT–Pr1/SWCNT–Pr2/SWCNT–Pr3, 

respectively, demonstrating efficient ET/PET from porphyrins to the carbon 

nanotubes [48,49]. 

 

Fig. 5. Fluorescence spectra of Pr1, Pr2, Pr3, SWCNT‒Pr1, SWCNT‒Pr2 and SWCNT‒Pr3 in 

DMF upon excitation at 430 nm (ten times magnification of the fluorescence curves of 

p‒SWCNTs, SWCNT‒Pr1, SWCNT‒Pr2 and SWCNT‒Pr3). 

 

3.3 FTIR, Raman and X-ray photoelectron spectroscopy 

FTIR, Raman and X-ray photoelectron spectroscopy can be used to track the 

stepwise conversion from p‒SWCNTs to terminal porphyrin-covalently 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

functionalized SWCNTs. FTIR spectra of p‒SWCNTs, f‒SWCNTs, Prs, and 

SWCNT‒Prs are compared in Fig. 6. In the spectrum of p‒SWCNTs, no obvious 

signals are observed, indicating that nothing is on the surface of the as-received 

p‒SWCNTs. Following treatment with 4-trimethylsilylethynylaniline diazonium 

compounds, new broad peaks at 2933 and 2885 cm−1 corresponding to the C–H 

vibrations of the trimethylsilyl group are observed in the spectra of f‒SWCNTs, which 

suggests an initial covalent attachment onto the surface of the SWCNTs. After 

removal of the protecting trimethylsilyl group and subsequent azide-alkyne 

cycloaddition with the porphyrin azides, the FTIR spectra are modified significantly. 

The characteristic signals of the trimethylsilyl groups and the strong absorption at ca. 

2120 cm−1 from the azide unit of Prs disappear [50], while several fingerprint peaks 

appear in the FTIR spectra of the composites, including sharp bands at 2850, 2922 

and 2957 cm−1 of the C–H stretching modes, 1715 cm−1 corresponding to the bending 

vibration of the C=N bonds from the porphyrin skeletons [51], and a characteristic 

signal at 1015 and 1057 cm−1 from the newly formed triazole rings [52‒54]. These 

spectroscopic changes are consistent with the successful covalent functionalization of 

the SWCNTs with porphyrins via the green and efficient “click” reaction.   
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Fig. 6. FTIR spectra of (a) p‒SWCNTs, f‒SWCNTs, SWCNT‒Pr1, SWCNT‒Pr2 and 

SWCNT‒Pr3 and (b) Pr1, Pr2, and Pr3. 

 

This conclusion is also supported by Raman spectroscopy, and specifically 

changes in the D and G bands (Fig. 7), which correspond to sp3- and sp2-hybridized 

carbons of the carbon nanotubes, respectively [55,56]. Proceeding from p‒SWCNTs 

to f‒SWCNTs results in the G band shifting to slightly lower frequencies and the 

intensity ratio of the D band to the G band (ID/IG) increasing under both 532 nm (1.06 

to 1.15) and 785 nm (1.87 to 1.96) laser excitation. This provides strong evidence for 

the transformation of sp2 carbons into sp3 carbons within the SWCNT framework, and 

thus effective covalent chemical modification of the SWNCT surface [57‒59]. When 

f‒SWCNTs are further transformed to SWCNT‒Prs, the ID/IG ratio is invariant under 
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785 nm excitation (1.96 to 1.97, 1.95, and 1.96 for SWCNT‒Pr1, SWCNT‒Pr2, and 

SWCNT‒Pr3, respectively), but decreases under 532 nm radiation (1.15 to 1.01, 1.02, 

and 1.05 for SWCNT‒Pr1, SWCNT‒Pr2, and SWCNT‒Pr3, respectively). This 

difference can be understood as follows: with 532 nm excitation, porphyrins have 

non-negligible Raman signals between 1400 and 1600 cm-1 (Fig. S1 in the SI), which 

overlap the D band of SWCNTs near 1600 cm-1, and thus afford a misleading result of 

decreased ID/IG ratios, while in contrast, 785 nm excitation results in no observable 

Raman signals for porphyrins in the wavelength regions of interest (Fig. S2 in the SI). 

The nearly constant ID/IG ratios of f‒SWCNTs and SWCNT‒Pr1-3 with 785 nm laser 

excitation are therefore more reliable, and consistent with the “click” reaction step 

taking place at the pendant acetylenes on the SWCNTs rather than directly on the 

SWCNT sidewalls [60,61].  
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Fig. 7. Raman spectra of p‒SWCNTs, f‒SWCNTs, SWCNT‒Pr1, SWCNT‒Pr2 and SWCNT‒Pr3 

at different excitation wavelengths: (a) 532 nm and (b) 785 nm.  

 

XPS is a unique surface analysis technique that may determine relative atomic 

composition, in the present case providing evidence of the covalent attachment of the 

porphyrin moieties onto the surface of the SWCNT. From Fig. 8a, four main peaks, 

corresponding to the carbon, nitrogen, fluorine (tetra-n-butylammonium fluoride 

residual) and zinc species are observed in the spectra of SWCNT‒Pr1, SWCNT‒Pr2, 

SWCNT‒Pr3, while only carbon, oxygen species were found in the unfunctionalized 

p‒SWCNT. Moreover, two additional peaks can be unambiguously observed in 

SWCNT‒Pr1, SWCNT‒Pr2, SWCNT‒Pr3 that are ascribed to Zn 2p1/2 at 1044.0 eV 

and Zn 2p3/2 at 1021.0 eV respectively (Fig.8e: Zn 2p spectrum of SWCNT-Pr3, Zn 

2p spectra of SWCNT‒Pr1, SWCNT‒Pr2 see Fig. S3 in SI). These XPS spectra 

confirm the successfully covalent attachment of ZnTPPs to carbon nanotubes. The 

expanded N 1s regions of three nanohybrids (Figs. 8b, 8c, 8d) reveal different peaks 

owing to structural difference. A single N 1s peak is observed at a binding energy of 

398.3 eV, arising from the four nitrogen atoms of the metalloporphyrin macrocycle 

[62,63]. This peak proves the presence of ZnTPPs in the nanotube derivatives. 

Another N 1s peak located at ca. 402.0 eV is attributed to one of the nitrogen atoms of 

the triazole ring [62,64], which is a powerful proof that azidoporphyrins are 

covalently attached to the nanotube surface via a triazole ring and click reaction and 

are not simply physisorbed on the surface by π-stacking interaction. 
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Fig. 8. (a) XPS survey spectra of p‒SWCNTs, SWCNT‒Pr1, SWCNT‒Pr2 and SWCNT‒Pr3; (b) 

N 1s XPS spectrum of SWCNT‒Pr1; (c) N 1s XPS spectrum of SWCNT‒Pr2; (d) N 1s XPS 

spectrum of SWCNT‒Pr3; (e) XPS spectrum of SWCNT‒Pr3 in the regions of Zn 2p1/2 and Zn 
2p3/2. 

 

3.4 Morphological analysis 

The morphological features of the p‒SWCNTs and the as-prepared SWCNT–Pr 

nanohybrids were investigated by SEM and TEM. These techniques confirmed the 
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existence of individual as well as very thin bundles of SWCNTs. As shown in the 

SEM and TEM images (Fig. 9), the surface of the p‒SWCNTs is smooth and clean 

without any species adhering to the nanotubes. In contrast, discontinuous and irregular 

nanoparticles were observed on the surfaces of the SWCNT‒Prs. Although 

information obtained from SEM and TEM should not be over-interpreted, these 

electron microscope techniques do provide complementary evidence for the covalent 

functionalization of SWCNTs with porphyrins [65,66]. 

 

 

Fig. 9. SEM and TEM (inset) images of (a) p‒SWCNTs, (b) SWCNT‒Pr1, (c) SWCNT‒Pr2 and 

(d) SWCNT‒Pr3. 

 

3.5 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) has been employed widely to authenticate 

the thermodynamic stabilities of carbon nanoallotropes [67‒69]. The thermodynamic 

stabilities of the p‒SWCNTs, f‒SWCNTs and SWCNT‒Prs were investigated by TGA 

under a nitrogen atmosphere flow (Fig. 10). The TGA curve of p‒SWCNTs reveals no 

loss of weight upon increasing the temperature from 25 to 600 °C, which indicates 

little residual amorphous carbon remaining and no organic or inorganic impurities 

trapped in the p‒SWCNTs. However, f‒SWCNTs showed an obvious thermodynamic 
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instability with approximately 15% weight loss in the temperature range 25‒600 °C. 

This weight loss corresponds to the loss of the (2-trimethylsilyl)ethynylphenyl 

moieties, which were covalently bound to the surface of the SWCNTs. Over the same 

temperature range of 25‒600 °C, poorer thermodynamic stability was observed for 

SWCNT‒Prs, and approximately 45‒50% weight loss was seen, with ca. 30‒35% of 

the net weight loss. According to the reported literatures [34,70-72], large weight loss 

of pure porphyrins was found at 450 to 550 ℃, from which it could be inferred that the 

sudden and abrupt decrease arises mainly from the dissociation of covalently bound 

TPP moieties, but to different degrees. At the same time, this TGA result could be 

used as another proof to authenticate that the porphyrin moieties were successfully 

introduced to the surface of SWCNTs. 

 

Fig. 10. TGA thermograms of p‒SWCNTs, f‒SWCNTs, SWCNT‒Pr1, SWCNT‒Pr2 and 

SWCNT‒Pr3 at a heating rate of 10 °C·min-1 under a nitrogen atmosphere. 

 

3.6 Nonlinear optical properties 

Previous works has confirmed that enhanced third-order NLO performance can 

be achieved by hybridizing SWCNTs and porphyrins both covalently and 

non-covalently [31‒35]. In contrast, reports exploring the impact of further chemical 

modification at the organic porphyrin moiety on the third-order NLO performance of 

composite materials are lacking. Seeking to bridge this gap in our understanding, the 

nonlinear transmittance of the three TPP derivatives differing in one meso terminal 
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substituent (H, CN, DMA) as well as their corresponding SWCNT-based nanohybrids 

that contain similar weight ratios of porphyrins were investigated by the open-aperture 

Z-scan technique using linearly polarized 4 ns duration laser pulses at 532 nm. The 

blank solvent DMF was also measured under the same conditions and no NLO 

response was found (Fig. S4 in the SI). This gives assurance that any detectable NLO 

responses stem from the novel materials prepared in this work. The experimental data 

points and their theoretical fits (solid lines) are shown in Fig. 11.  

 

Fig. 11. Normalized open-aperture Z-scan data of Pr1, Pr2, Pr3, p‒SWCNTs, SWCNT‒Pr1, 

SWCNT‒Pr2, and SWCNT‒Pr3 at a wavelength of 532 nm in the 4-ns regime. The solid lines are 

the numerical fittings. 

 

All samples exhibited a distinct reduction in transmittance when they approached 

the focus of the 532nm laser beam, indicative of their excellent OL effect, a property 

that can be employed for the protection of eyes or optical sensors [31,32]. At the focal 

point (Z = 0), the light transmittance (T) of Pr1, Pr 2, Pr3, and p‒SWCNTs is reduced 

to 77%, 75%, 67%, and 58%, respectively, and that of SWCNT‒Pr1, SWCNT‒Pr2, 

and SWCNT‒Pr3 is reduced further to 54%, 52%, and 47%, respectively, from their 

initial normalized settings. The hybrid composites based on SWCNTs and porphyrins 

therefore demonstrate superior optical limiting behavior to that of their individual 

constituents, either SWCNTs or porphyrins, an observation in agreement with 

previous reports [31‒35,56,59]. Both the CN (in Pr2 and SWCNT–Pr2) and DMA (in 
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Pr3 and SWCNT–Pr3) substituents have a positive effect on the OL performance 

compared to the behavior of the reference samples Pr1 and SWCNT–Pr1. In particular, 

the simple classical electron-donor group DMA affords the best OL effect among the 

Prs and composites, which is possibly owing to the fact that DMA can stabilize holes 

effectively after the excitation. As for the electron-withdrawing group CN, on the one 

hand, the relatively stable triple bond within the CN group may give rise to the 

conjugation enlargement of porphyrin [73,74], generating positive effect on NLO 

performance of porphyrin and its corresponding hybrid [75]. On the other hand, it is 

also known that CN group possesses limited influence on the intramolecular charge 

transfer between the CN group and the macrocycle of porphyrin, which may lead to a 

weakly changed HOMO–LUMO gap and a small modification on the photophysical 

properties of Pr2 and its nanohybrid SWCNT-Pr2 [76]. Owing to the joint effect from 

the aforementioned two reasons, the CN group will possess a weak improvement on 

the NLO performance of Pr2 and its nanohybrid SWCNT-Pr2, particularly as 

compared to that of the unsubstituted SWCNT-Pr1. 

In the case of nanosecond laser pulse measurements, the third-order NLO 

response of porphyrin-functionalized carbon nanotubes derives primarily from three 

aspects: reverse saturable absorption (RSA) from porphyrins, nonlinear scattering 

(NLS) from SWCNTs, and the ET/PET between these components. SWCNTs have 

shown strong OL effects in the nanosecond regime due to the formation of new 

nonlinear scattering centers of ionized carbon microplasmas and solvent microbubbles 

[34,35]. In the present work, because all hybrid composites consist of SWCNTs from 

the same batch and each has highly efficient internal ET/PET processes indicated by 

the high fluorescence quenching yields all above 97%, it is likely that the RSA 

performance of the porphyrins is the most important determinant in modulating the 

overall NLO performance of the composites. Such RSA processes arise from the 

absorption of excited states and can be evaluated from the ratio ka of the excited-state 

absorption cross-section (σex) to the ground-state absorption cross-section (σ0). ka for 

Pr1, Pr2, and Pr3 in this work were calculated to be 1.90, 1.95, and 2.40, respectively. 

It can thus be seen that Pr2 with a CN substituent possesses a marginally greater RSA 
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ability as compared to that of the control Pr1, while the electron-donating DMA group 

affords Pr3 the highest σex/σ0 ratio and the strongest RSA performance, which is in 

good agreement with the enhanced OL effects discussed above. We believe that the 

increase in RSA upon introducing CN or DMA groups into porphyrins is largely 

responsible for optimizing the OL effects in the present SWCNT–Pr nanohybrids, and 

this may be a useful guideline for optimizing other hybridized optical limiters.   

We also obtained the β values of the three new porphyrins and SWCNT‒Pr1, 

SWCNT‒Pr2 and SWCNT‒Pr3 from numerically fitting the Z-scan curves obtained 

using an open-aperture configuration (Table 2). SWCNT‒Pr3 showed the largest β 

value of 2.30 × 10-10 m/W of the three composites (in the case of SWCNT‒Pr1 and 

SWCNT‒Pr2, the corresponding values are 1.95 × 10-10 and 2.00 × 10-10 m/W, 

respectively). The Prs exhibit the same trend but with larger β values due to the NLA 

predominantly originating from RSA. 

Table 2. NLO coefficients of the composites and Pr1-Pr3 in DMF at 532 nm. 

Sample I0(J/cm2) T(%) β (×10-10m/W) ka 

p-SWCNTs 0.54 68 1.30 − 

SWCNT–Pr1 0.54 68 1.95 − 

SWCNT–Pr2 0.54 68 2.00 − 

SWCNT–Pr3 0.54 68 2.30 − 

Pr1 0.54 68 6.10 1.90 

Pr2 0.54 68 8.50 1.95 

Pr3 0.54 68 10.0 2.40 

 

4. Conclusion 

Three novel porphyrin-covalently-functionalized SWCNTs (SWCNT‒Pr1, 

SWCNT‒Pr2, and SWCNT‒Pr3) have been prepared with different organic 

substituents (H, CN, DMA) on the periphery of the porphyrins. The hybridization 

synthetic procedure involved initial alkyne attachment, de-protection, and finally 

azide-alkyne cycloaddition, forming a π-conjugated bridge of 

4-p-phenylene-1,2,3-triazole which established an effective fluorescence quenching 

channel for possible ET/PET processes from porphyrins to SWCNTs, and with 

quenching yields above 97%. The covalent linkages were confirmed by multiple 
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techniques, including UV–vis, fluorescence, FTIR, and Raman spectroscopies, XPS, 

SEM, TEM, and TGA. The nonlinear transmittance tests revealed the superior OL 

properties of the novel composites over their individual components. More 

importantly, the RSA ability of the porphyrin components makes a major contribution 

to modulating the OL response of the composites, with the additional organic 

substituents (CN or DMA) affording a positive influence by increasing the σex/σ0 ratio 

and the RSA ability of the Pr precursors and thus the final OL performance of either 

Prs or SWCNT–Prs. In addition, in comparison with CN, the electron-donating DMA 

group has a more positive influence on the excited states of the porphyrins, and thus 

effectively enhances the RSA process and the global NLO performance of the 

SWCNT–Pr nanohybrids. This work contributes to the goal of rational design of 

better optoelectronic devices such as those in solar energy conversion and light 

limiting applications. 
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Appendix A. Supplementary data 

Supplementary materials (synthesis details of compound 1 and 2, Raman spectra 

of Pr2 at 532 and 785 nm, Zn 2p XPS spectra of SWCNT-Pr1 and SWCNT-Pr2, the 

open aperture Z-scan curve of blank DMF) are available online. 
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