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Abstract 

Early to mid Carboniferous I-type granites distributed in a broad meridional belt west of 

Sydney, southeastern Australia, represent the last phase of granite magmatism in the southern 

Lachlan Fold Belt. Rare inherited zircon in the granites, in combination with zircon 

precipitated from the melt phase of the magmas, provides direct evidence of the nature and 

age of the source rocks from which the granites were derived, and the isotopic compositions 

of those rocks. Most granites from the north and central parts of the belt, represented by the 

Wuuluman, Home Rule, Oberon and Lett plutons (334 ± 3, 328 ± 4, 339 ± 2 and 328 ± 2 Ma, 

respectively), are characterized by scarce inherited zircon dominantly of Siluro-Devonian age, 

consistent with all being derived from a common zircon-poor source rock of mid to late 

Devonian age. Based on the isotopic compositions of the igneous zircon rims, that source was 

relatively homogeneous and immature (18Ozrn 6–7‰, Hf(t) 0–+4). Two samples of the 

Tarana pluton (331 ± 2 Ma), near the centre of the belt, show evidence for heterogeneity in 

that source and the presence of a more evolved component that is also more zircon rich. 

Together with the Lett pluton from the same geochemical suite, their zircon rim compositions 

define a mixing array between more and less evolved end members (18Ozrn 5.5–9.5‰, Hf(t) 

-4–+4). Only in the southern Chapmans Creek pluton (327 ± 3 Ma) is there clear evidence 

that the source of the granite also contained a minor component with a similar older protolith 

to the LFB early Palaeozoic sediments that host most of the LFB pre-Carboniferous granites. 

Presence of that component, which overwhelmingly dominates the inheritance in the pre-

Carboniferous granites, is also reflected in a slightly elevated whole rock initial 87Sr/86Sr (> 

0.7050) and igneous 18Ozrn (ca. 7.5‰), but not in the igneous zircon Hf(t) (ca. +2). The 

amount of restitic zircon in granite is determined by not only the proportion of restite present 

but also the zircon contents of the various source rock components. The process of restite 

unmixing does not necessarily mean that more mafic, restite-rich granites will contain more 

inherited zircon. 

 

Keywords: I-type granites; Lachlan Fold Belt; O isotopes; Hf isotopes; restite model; zircon 

inheritance 
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1. INTRODUCTION 

Inherited zircon in granites, namely zircon that predates the magmatism, provides valuable 

information about the processes involved in magma generation. Inherited zircon from the 

source rock of a granite preserves chemical and isotopic evidence of the composition of the 

source rock from which it was, in turn, derived. Inheritance entrained from wall rocks 

provides evidence of the nature and extent of crustal assimilation during magma genesis. 

Determining the origin of zircon inheritance can be difficult, however. 

 

S-type and I-type are the terms commonly used to distinguish granites derived from 

predominantly sedimentary (or supracrustal) and igneous (or infracrustal) source rocks, 

respectively (Chappell and White, 1974). S-type granites commonly contain abundant 

inheritance, probably residual from their sedimentary sources. In contrast, I-type magmas, in 

which dissolution of inherited zircon is enhanced by the metaluminous magma compositions 

and higher temperatures, have been supposed to contain rare or no inherited zircon (Watson 

and Harrison, 1983). Thus, it has been suggested that the inherited zircon found in I-type 

granites is derived from the host rocks, not from the source rocks of the granite magma (e.g. 

Collins, 1998; Kemp et al., 2005; Lackey et al., 2005), particularly in the Lachlan Fold Belt 

(LFB), southeastern Australia, where the inheritance age patterns in spatially associated, but 

not necessarily contemporaneous, S- and I-type granites are similar (Williams, 1992). 

 

It has been proposed by some researchers that host rock contamination played a 

significant role in the petrogenesis of the Silurian to Devonian I-type granites in the eastern 

LFB (Collins, 1998; Keay et al., 1999; Kemp et al., 2005). Inherited zircon is scarce but 

ubiquitous in those granites and, as in the S-type granites, the age pattern of the inheritance is 

indistinguishable from that of the detrital zircon in the host regional Ordovician turbidites 

(Williams, 1992). The argument, based on this similarity, is that the inheritance was not from 

the sources of the granites, but derived from the country rocks by crustal assimilation. 

Although this mixing model might explain some of the isotopic data in isolation, it is 

inconsistent with the observed relationships between the isotopic and chemical compositions 

of the granites (Chappell, 1994; Chappell et al., 1999). 

 

Chappell and his co-workers have argued for a process of restite unmixing whereby, 

when the source rock of a granite is partially melted, residual unmelted material (restite) is 

carried in the magma together with the melt fraction. Differences in igneous rock 
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compositions are attributed to different degrees of restite separation, producing linear 

chemical trends similar to those of mixtures (Chappell et al., 1987), but retaining isotopic 

similarities in related rocks. In the restite model, the inherited zircon in the I-type granites is 

interpreted as being restite, just as it obviously is in the S-types, providing strong evidence in 

support of the model (Chappell et al., 1987) and for low-temperature, zircon saturated, 

magmatism (Chappell et al., 2000).   

 

Mixing and restite unmixing models cannot be distinguished just from the bulk-rock 

chemical compositions of granites, so it has long been debated which process was involved in 

the petrogenesis of the Palaeozoic granites in the LFB. Here we report newly-measured age 

patterns for inherited zircon cores, and O and Hf isotopic compositions for melt-precipitated 

zircon rims, from six Carboniferous I-type granites located at the northeastern edge of the 

LFB, and discuss the granite petrogenesis and the origin of the inherited zircon. The 

inheritance study provides critical information in terms of the magma genesis that could not 

be provided by the O and Hf isotopes alone. We also show how such a study provides a test of 

the applicability of the restite model to particular granite suites. 

 

 

2. REGIONAL GEOLOGY 

The LFB Carboniferous granites (LCG; ca. 350–320 Ma) are exposed in a region along the 

easternmost edge of the LFB from south of Nowra to north of Gulgong that cuts 

approximately NNW across the structural zones formed during earlier deformations (Fig. 1). 

The outcrop area is bounded by the Sydney Basin in the east, but the granites extend beneath 

the basin, as evidenced by granite exposed in some basement windows and intersected by 

deep drilling. The LCG are the youngest granites in the LFB, all I-types, and distinguished 

from the other Lachlan pre-Carboniferous granites by having K-feldspar megacrysts, high K 

and Sr, and low Y (Shaw and Flood, 1993; Chappell, 1994). They are relatively unevolved in 

Sr isotopic composition, with initial 87Sr/86Sr ratios of 0.7040–0.7055 (S. Shaw, unpublished 

data; age corrected using zircon U-Pb dates). The LCG are distributed in two main intrusive 

complexes, the Bathurst and Gulgong Batholiths, with small dispersed satellite plutons that 

occupy the central and northern area, and more than 15 small scattered plutons in the south 

(Fig. 1). The central-northern LCG are compositionally well grouped into several suites with 

initial 87Sr/86Sr ratios mostly less than 0.7050, whereas the southern LCG are more diverse, 

with slightly higher initial 87Sr/86Sr ratios (S. Shaw, unpublished data). 
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The central-northern LCG in part are intrusive into late Silurian to Devonian marine 

sedimentary and volcanic rocks (Hill End Trough and Capertee High) (Pogson and Watkins, 

1998; Barron et al., 1999). The southern LCG mostly intrude Ordovician turbidites, the 

typical host rocks of most of the pre-Carboniferous granites in the LFB (Pogson and Watkins, 

1998; Glen, 2005). 

 

2.1. Granite samples and their host rocks  

Six plutons were sampled to encompass the north-south range of the LCG (Fig. 1). 

Descriptions below of each granite and their host rocks are mainly based on the Explanatory 

Notes for the Dubbo and Bathurst 1:250,000 sheets (Pogson and Watkins, 1998; Barron et al., 

1999) and the 1:1,250,000 map of granites and related rocks of the LFB (Chappell et al., 

1991). 

 

Chapmans Creek (OG37), one of the southern LCG, is a medium-grained biotite-

hornblende monzogranite with no K-feldspar phenocrysts. It intruded Ordovician turbidite 

and late Silurian (Coven Creek Formation) to Mid-Late Devonian (Bindook Group) 

sedimentary and volcanic rocks. 

 

Five samples were collected from three plutons of the central LCG: Oberon, Tarana 

and Lett. Oberon is a medium to coarse-grained, equigranular biotite-hornblende granodiorite, 

and the northernmost pluton of the LCG that does not contain pink K-feldspar megacrysts. It 

intruded Middle to Late Ordovician turbidites (Adaminaby Group) and the Late Ordovician 

Rockley Volcanics. Two samples were collected from the zoned Oberon granodiorite, one 

from the central region (OG16) and the other within about 500 m of the pluton margin 

(OGY). This provided a test of whether the presence of inherited zircon in the Oberon pluton 

was due to contamination of the magma by assimilation of its host sedimentary rocks.  

 

The Tarana and Lett monzogranites are part of the Tarana Suite. Their common 

textural, mineralogical and compositional characteristics (B. Chappell, unpublished data) are 

consistent with their being derived from the same source, or sources of the same composition. 

Sample HB83, collected from the central region of the Tarana body, is a pink, coarse-grained, 

equigranular biotite monzogranite with K-feldspar phenocrysts (≤ 30 mm long). Tarana is the 

largest granite body of the LCG, and was emplaced as a zoned pluton or series of plutons in 
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sequence from west to east. A second sample of more mafic Tarana granite (HB82) is coarse-

grained biotite-hornblende monzogranite containing pale pink K-feldspar phenocrysts (≤ 20 

mm long). The Tarana monzogranite intruded a series of Late Ordovician (Rockley 

volcanics), Silurian (Bells Creek Volcanics and Campbells Formation) and Devonian (Crudine 

Group) volcanic and sedimentary rocks.  

 

Lett (sample HB11), the easternmost pluton of the Tarana Suite, is a medium-grained, 

pink K-feldspar megacryst-bearing biotite-hornblende monzogranite. Little of the contact 

between the monzogranite and country rock is exposed, and the eastern side of the pluton is 

overlain by Permian sedimentary rocks of the Sydney Basin (Shoalhaven Group). It is likely, 

however, that the granite at least in part intruded terrestrial sedimentary rocks of the late 

Devonian Lambie Group. 

 

Samples were collected from two plutons of the northern LCG: Home Rule and 

Wuuluman. The Home Rule (HG21), a part of the Gulgong Batholith, is an equigranular 

biotite quartz monzonite containing large pink K-feldspar megacrysts (up to 50 mm diameter). 

It intruded Silurian volcanic rocks (Dungeree Volcanics) and Mid to Late Ordovician 

sedimentary rocks (Tucklan Formation). 

 

Wuuluman (HG03) is the northwesternmost pluton of the LCG. It is a quartz 

monzodiorite containing large K-feldspar megacrysts (sometimes surrounded by white 

plagioclase, i.e. rapakivi texture) up to 50 mm diameter and greenish plagioclase. It intruded 

Silurian (Gleneski Formation) and Devonian volcanic and sedimentary rocks (Cuga Burga 

Volcanics, Cunningham Formation, Waterbeach Formation, Crudine Group and Guroba 

Formation). 

 

 

3. METHODS  

Measurements of the O, Pb, Th and U isotopes were carried out using a Sensitive High 

Resolution Ion Microprobe (SHRIMP) at the Australian National University. Measurements 

of the Hf isotopes were carried out using the ANU ThermoFinnigan Neptune multi-collector 

Laser Ablation Multi-collector Inductively Coupled Plasma Mass Spectrometer (LA-MC-

ICPMS). Details of the technical conditions for each type of analysis and data reduction 

procedures are same as those described by Jeon et al. (2014) and outlined in the 
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supplementary documentation (Electronic Appendix 1). 

 

To determine the zircon inheritance age patterns, representative aliquots of 

approximately 3000–4000 unsorted zircon grains from the eight individual Carboniferous 

granite samples were mounted in epoxy and sectioned to expose the grain centres. Separate 

mounts were prepared for each sample, except for the zircon from the two samples of the 

Oberon pluton, which was mounted on the same disk so that analytical conditions for both 

were identical. Possible cores, recognized by their discordant zoning (3–10% of most zircon 

populations), were identified by cathodoluminescence (CL) using a Hitachi S-2250N 

scanning electron microscope and preferentially targeted to date the inherited components 

(Electronic Appendix 2).  

 

To measure the age of zircon crystallized from the melt phase of the magma (zircon 

rims), clear, euhedral zircon grains were hand-picked from the eight LCG samples under a 

binocular microscope. Approximately 200–300 grains were mounted on 35 mm megamounts 

separate from those prepared for the inheritance study. The spots selected for rim analysis 

were mostly on the margins of the zircon grains, where there was simple oscillatory zoning 

and no inclusions or fractures. After those spots had been dated by U-Pb and proved to be free 

of inheritance they were analysed for O and Hf isotopes. None of the zircon from the 

inheritance study was analysed for O or Hf. The isotopic data for the zircon rims (U-Th-Pb, 

O, Hf) and cores (U-Th-Pb only) are listed in Electronic Appendices 3 and 4, respectively. 

 

 

4. RESULTS 

Zircon inheritance age patterns, and rim ages and O-Hf isotopic compositions were 

determined for the eight granite samples (Electronic Appendices 1, 3 and 4). The U-Th-Pb 

dates, O and Hf isotopic ratios for the zircon rims are fully described in Electronic Appendix 

1, summarized in Table 1 and illustrated in Figures 2 and 3. Initial Hf values [Hf(t)] were 

calculated based on the individual or mean zircon rim ages for each sample. All O and Hf 

isotopic compositions described and discussed in this study are for the zircon grains from the 

granite samples: when the O isotopic compositions of granite whole rocks are discussed, the 

notation 18OWR is used. Unless noted otherwise, the term ‘core’ used in this study (‘apparent’ 

core in particular) refers only to a texturally discordant central zone in a zircon grain. A few of 

the dated cores proved to be detectably older than the granite magmatism, i.e. were clearly 
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inherited. Only those cores are considered in the following discussion. Detailed descriptions 

and analytical results for zircon cores can be found in Electronic Appendix 1 and inheritance 

age patterns are illustrated in Figure 4.  

 

 

5. DISCUSSION 

5.1. A common Devonian source rock for the central-northern LCG  

Of the eight granite samples studied from the length of the LCG, a similar, characteristic 

inheritance age pattern was found in six from the central-northern LCG: the Oberon 

granodiorite, Tarana (two samples) and Lett monzogranites, Wuuluman quartz monzodiorite 

and Home Rule quartz monzonite. It featured Silurian-Devonian dates and a lack of 

Archaean-Meosoproterozoic dates (Fig. 4). This inheritance pattern is distinct from those of 

the pre-Carboniferous granites, and the pattern of detrital zircon ages in Ordovician turbidites 

from the LFB, which typically show a strong peak in dates around 600–500 Ma, a second 

peak around 1.2–1.0 Ga, and a range of older dates into the Palaeoproterozoic and Archaean 

(see the background histogram in Fig. 4a; Williams, 1992; 2001).  

 

Regardless of their origin, it might be argued that the few inherited cores from the 

LCG are the remnants of a much larger older zircon population, with the majority of the older 

(pre-magmatic) zircons being resorbed under conditions of zircon undersaturation during 

magma formation. The LCG are low-temperature granites, however, with zircon saturation 

temperatures (Watson and Harrison, 1983; Hanchar and Watson, 2003; Boehnke et al., 2013) 

of at most ~ 800ºC (if not negligible, slightly overestimated due to the presence of 

inheritance; Table EA5), and Zr concentrations that show a consistent decrease with 

increasing SiO2, indicative of continuous zircon saturation during magma genesis (Fig. EA6; 

B. Chappell, unpublished data, summarized in Table EA 5). The rare inherited zircon grains 

will have been chemically stable since their incorporation into the Carboniferous magmas, 

either from the protolith or the wall/host rocks. For the purposes of the present discussion, it 

has been assumed that the inherited zircon age spectra mainly reflect the relative abundance 

of zircon in the source of the granites, although the mechanics of magma segregation and 

transport and/or other possible magmatic processes might influence this as well. 

 

The inheritance in the central-northern LCG (except the Tarana Suite discussed below) 

originated either from the source rock from which the magma formed, or from host rocks that 
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contaminated the magma during emplacement. The Oberon granodiorite samples provide a 

test for wall rock assimilation. The Oberon zoned pluton was emplaced into Ordovician 

turbidites, but there was no significant difference in the abundance or dates of the inherited 

zircon between the inner (OG16) and outer (OGY, closer to the host rock) samples of the 

pluton. The outer sample, in fact, contained Silurian-Devonian zircon cores which cannot be 

derived from the Ordovician host rock. The inherited zircon cores must have come from the 

granite's source rocks.  

 

For the northern LCG, the surrounding Devonian volcanic and/or sedimentary rocks 

are potential sources of the rare inheritance. Based on the data in OZCHRON Geochronology 

Database (Geoscience Australia, 2007), however, those rocks are not zircon-poor. OZCHRON 

lists the ages of several host rocks ranging from andesite, dacite to rhyolite to sandstone based 

on multiple zircon analyses (431–407 Ma), indicating an abundance of zircon in the Silurian-

Devonian age range. It is concluded, therefore, that the inheritance in most of the studied 

LCG was derived from the basement, the source rock of those granites, rather than from wall-

rock contamination.  

 

The growth textures of the zircon grains containing inherited cores also argue against 

country rock contamination. If the inheritance was entrained into the magma at a shallow 

level, it would have resided in the magma for a relatively short time before emplacement, so 

the cores should be overgrown by only thin melt-precipitated rims. Thin rims might also be 

explained by the magma becoming zircon saturated at a late stage, but this was not the case. 

The Carboniferous granite magmas were always zircon saturated, and the cores observed in 

the Oberon granodiorite, Wuuluman quartz monzodiorite and Home Rule quartz monzonite 

are surrounded by thick rims (Electronic Appendix 2), indicating that the inherited zircon was 

present in the magma from an early stage of magma genesis. 

 

The range of Hf and O isotopic compositions preserved in the zircon rims provides 

evidence that the zircon-poor, Mid–Late Devonian source rocks for the granite magmas were 

not isotopically uniform (Fig. 5). Except for Tarana monzogranite sample HB82, the Hf and O 

isotopic compositions of the zircon rims from each sample are homogeneous, but the mean 

compositions of the rocks differ. Plotting 18Ozrn vs. Hf(t) for the three granite samples from 

the Tarana Suite (HB11, HB82, HB83), however, shows a broad linear correlation consistent 

with the mixing between relatively less (ca. 18Ozrn 6‰ and Hf(t) +2) and more mature (ca. 
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18Ozrn 9‰ and Hf(t) -3, similar to the Oberon granodiorite) components. 

 

5.2. Heterogeneous source rock for Tarana Suite 

Tarana monzogranite sample HB83 contained much more inherited zircon (Fig. 4c) than other 

samples of the Tarana Suite or the nearby Oberon granodiorite. Conceivably the monzogranite 

sampled by HB83 was derived from a different source from that of the other central-northern 

LCG. On the other hand, HB83 must have shared the same source rock as the other 

comagmatic granites in the Tarana Suite (Tarana HB82 and Lett HB11), and hence as the 

Oberon granodiorite and the northern LCG. The more abundant inherited zircon in HB83 

therefore needs to be explained in another way, for example by crustal contamination, magma 

mixing or source rock heterogeneity. 

 

A clue to the character of the monzogranite HB83 source rock is provided by the 

isotopic composition of the zircon rims. The O and Hf isotopic compositions of the HB83 

rims are less juvenile (18Ozrn = 7.0 to 9.5‰; Hf(t) = -1 to -3) than those of the other studied 

LCG (Fig. 5), although the rim compositions of the two other samples of the Tarana Suite 

(HB82, HB11) overlap at least partly with those from the Oberon granodiorite. The Tarana 

Suite appears to be the product of mixing two isotopically different components, one of which 

is the same as the source rock of the Oberon granodiorite emplaced nearby. The Bathurst 

Suite, which adjoins the Tarana Suite, also has a very similar isotopic composition to the 

Oberon granodiorite (Fig. 5b, unpublished data), consistent with a common source rock for 

the granites throughout the central region. 

 

Given that the more juvenile end member of the linear isotopic trend is probably the 

common source rock of the central-northern LCG, the other, more evolved end member 

(18Ozrn ≈ 9.0‰, Hf(t) ≈ -3) is likely to be the component that provided the abundant 

inherited zircon to the Tarana monzogranite (HB83). Considering the large difference in 

zircon rim isotopic composition between HB83 and the other samples, a significant amount of 

that component was incorporated into the primary magma. The mixing could have occurred 

externally through magma mixing or crustal contamination, but there is no correlation 

between silica content (65–75% SiO2) and isotopic composition over the five granites in the 

Tarana Suite (Fig. 6, data from this study and B. Chappell unpublished data), indicating that 

the mixing did not occur during magma differentiation. Neither did it involve end members 
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with very different SiO2 contents. Further, the rims that mantle the inheritance are thick, 

indicating that the inherited zircon cores have been present in the magma for most, or all, of 

the period of igneous zircon growth (Electronic Appendix 2). It is most likely that the Tarana 

monzogranite sampled by HB83 came from a mixed source rock containing a component that 

was zircon-rich and isotopically evolved. 

 

As most of the inheritance in Tarana monzogranite sample HB83 was derived from the 

isotopically evolved component, the zircon age distribution of that component can be inferred 

by subtracting the age pattern of the rare inherited zircon from the common source rock of the 

LCG (represented by the combined inheritance pattern of the Oberon, Wuuluman and Home 

Rule granites) from the Tarana (HB83) pattern. The resultant inferred core age pattern (Fig. 

7a) resembles those from the Pre-Carboniferous LFB granites and the Ordovician turbidites 

(Williams, 1992; 2001), except for the presence of some Silurian-Devonian dates.  

 

Assuming that all the Silurian-Devonian cores were derived from the primary 

Devonian source rock (the juvenile component), the subordinate source rock might be a LFB-

like component. Given the high proportion of Silurian-Devonian cores compared to the other 

granites, however, it is more likely that the second source component with an isotopically 

mature composition is also of Devonian age. If it is assumed to be a separate source rock with 

a different composition, its relatively large contribution should have affected the chemical 

composition of the Tarana Suite, but it has not. The chemical composition of the Tarana Suite 

is similar to those of the Bathurst and Oberon Suites (Fig. EA7; B. Chappell, unpublished 

data). It is thus geologically more logical to consider isotopic heterogeneity within a source 

rock, rather than to postulate a separate, coeval (Devonian) and chemically similar component 

with different isotopic compositions (lower Hf and higher 18O). Incomplete isotopic 

homogenization of the source is evidenced by the range of zircon rim compositions, 

particularly from the other Tarana monzogranite sample HB82 (Fig. 5). Isotopic heterogeneity 

of the source rock for the LCG could also explain the O-Hf isotopic range and trends 

observed throughout the LCG. 

 

5.3. Relationship between source rock composition and inherited zircon 

abundance in the Tarana Suite 

The Lett monzogranite (HB11) has the least evolved zircon O and Hf compositions of the 

studied Tarana Suite granites. Seven inherited zircon cores were found, three of which were 
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mantled by only thin rims (Electronic Appendix 2), a feature not observed in zircon from the 

other Tarana Suite granites. The cores with thin rims probably resided in the magma for a 

relatively short time, that is, they originated from late crustal contamination at a shallow level. 

Despite this textural evidence of contamination, the Lett monzogranite shows no significant 

offset from the zircon O-Hf isotopic trend defined by the other central-northern LCG (Fig. 5) 

and no offset from the trends in chemical composition of the other granites in the Tarana Suite 

(B. Chappell, unpublished data). The level of contamination is therefore too low to have 

played a significant role in the magma genesis. 

 

There is a broad correlation between the isotopic compositions of the granites (represented by 

zircon rim composition) and the amount of zircon inheritance. Disregarding the cores with 

thin rims, Lett granite HB11 had four cores inherited from the source rock that is common to 

the central-northern LCG, ~ 0.25% of the zircon population. In Tarana monzogranite HB82, 

with zircon O and Hf compositions intermediate between Lett (HB11) and Tarana (HB83), ~ 

1% of the zircon grains contained inheritance. In Tarana monzogranite HB83, the most 

isotopically evolved granite in the Tarana Suite, ~ 1.5% of zircon grains had an inherited core. 

This could indicate that the more juvenile part of the heterogeneous Devonian source rock 

was relatively zircon poor (source of the Lett and Oberon), and the more evolved part was 

relatively zircon rich (source of Tarana HB83; Fig. 5). The source of Tarana HB82 was 

intermediate in isotopic composition and zircon content. 

 

5.4. The LFB sedimentary component in the southern LCG 

The Chapmans Creek monzogranite (OG37) contained a similar high abundance of inherited 

cores to Tarana monzogranite HB83, but much less Silurian-Devonian zircon and much more 

zircon of Proterozoic and Archaean age. At least some of the inheritance in the Chapmans 

Creek must have come from a different source from that in the Tarana and other central-

northern LCG. Nevertheless, the Chapmans Creek monzogranite had a similar range of zircon 

Hf(t) (+1 to +3) to, and only slightly heavier 18Ozrn (7–9‰) than, those of the central-

northern LCG (Table 1 and Fig. 5).  

 

It could be argued from the zircon rim Hf and O isotopic compositions that the 

Chapmans Creek monzogranite had the same source rock as the other LCG, implying that the 

LCG share a common Devonian source throughout the whole area from north to south. The 

difference in inheritance age patterns, however, shows that another source of pre-magmatic 
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zircon is required. It is notable that the melt-precipitated rims on several of the inherited 

zircon cores were thin (Electronic Appendix 2), implying that those cores originated from 

crustal contamination at a shallow level. The dates of those cores (n = 11) ranged from 

Ordovician to Late Archaean, and significantly, included all the Archaean-Proterozoic cores 

older than 1.6 Ga (Fig. 4a). Due to their small number, the 11 thin-rimmed cores do not define 

a distinctive pattern of dates in themselves, but their dates are consistent with the cores having 

originated from LFB Ordovician turbidite—Archaean-Proterozoic inheritance was not found 

in any of the other LCG samples. The presence of an Ordovician sedimentary contaminant 

picked up at shallow level is consistent with Ordovician turbidites becoming increasingly 

abundant amongst the host rocks to the LCG in the southern part of the region (Fig. 1). 

  

A third component is required to explain the abundant inheritance in the Chapmans 

Creek monzogranite. The zircon age distribution of that component can be inferred by 

subtracting the average inheritance pattern of the Oberon, Wuuluman and Home Rule 

granites, and the 11 cores with thin rims (Fig. 7b). The age pattern of the remaining zircon 

population is similar to that of typical LFB rocks (Pre-Carboniferous granites and Ordovician 

turbidites; Williams, 1992). The third zircon source was an LFB component that, given the 

thick rims that mantle that inheritance, probably resided in the source of the granite magma at 

depth (Electronic Appendix 2). 

 

The Chapmans Creek monzogranite was derived primarily from the same Devonian 

source rock as the other LCG, but included LFB components incorporated both at deep and 

shallow crustal levels, the only one of the six granite bodies sampled for this study to have 

done so. Other evidence for the presence of an LFB component in the southern LCG is their 

having slightly but distinctly higher initial 87Sr/86Sr (≥ 0.7050) than the northern-central LCG 

(< 0.7050, S. Shaw, unpublished data). As the Hf isotopic compositions of the Chapmans 

Creek monzogranite were not affected by the isotopically distinct LFB components (most 

LFB I-type granites have Hf(t) values in the range -10 to -1, and the S-type granites are -10 

to -8, Ickert, 2010; and the sediment values are probably even lower) and were similar to 

those of the Oberon granodiorite (the closest central LCG), the amount of LFB material 

incorporated in the magma was probably very small. The relatively high abundance of LFB 

inheritance is probably explained by the high abundance of zircon in the LFB sedimentary 

rocks. 
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To model the increase in initial 87Sr/86Sr of the Chapmans Creek monzogranite with 

the minimum amount of contaminant, it can be assumed that the LFB component was early 

Palaeozoic sedimentary rocks (McCulloch and Chappell, 1982; McCulloch and Woodhead, 

1993; Gray and Webb, 1995). Assuming that the Chapmans Creek monzogranite was 

primarily derived from Devonian source rock with a similar isotopic composition to the 

source of the Oberon Suite, with a minor contribution from LFB sediments, the amount of 

sediment can be approximated. Assuming an initial source composition of 0.7045 (mean value 

of the Oberon Suite, Table 2), a 87Sr/86Sr of 0.7344 (at 327 Ma) and a mean Sr concentration 

of 248 ppm in the LFB clastic sediments, to produce the initial 87Sr/86Sr of the Lockyersleigh 

Suite to which the Chapmans Creek monzogranite belongs (0.7053), the primary magma 

would require the addition of about 6% sediment from the LFB. Given that the 18OWR of 

sediment is typically about 15‰, this amount of LFB sediment could also explain why the 

18OWR of the Chapmans Creek monzogranite is slightly higher than that of the Oberon 

granodiorite. Based on a simple calculation of O isotopic compositions, the contribution of 

LFB sediments to the Chapmans Creek is ca. 10%, which would produce the difference of 

0.5–1.0‰ in 18OWR between the two granites (Fig. 5). 

 

Given the geographic distribution of contrasting initial 87Sr/86Sr in the LCG (S. Shaw, 

unpublished data), the significant involvement of LFB sediment appears to have been limited 

to the southern LCG. Although the incorporation of less than 6% sediment into the southern 

LCG seems too little to show up as a chemical distinction from the central-northern LCG 

(especially the Oberon Suite, the closest to the southern LCG), the slightly lower CaO of the 

southern LCG (average CaO of the Lockyersleigh and Isabella Suites, Mumbedah, Kanangra 

and Columba granites is 1.9%, compared to an average of 3.5% in the whole LCG; B. 

Chappell, unpublished data) might reflect that incorporation (Ca loss during feldspar 

weathering is a feature of the LFB Ordovician sedimentary rocks and the S-type granites 

sourced from them: Chappell, 1994). 

 

5.5. Importance of the inheritance study 

This inheritance study contributes more to understanding the genesis of the LCG than could 

have been learned from the O and Hf isotopic compositions of the igneous zircon alone. First, 

without the inheritance information, the 18Ozrn-Hf(t) correlation within the Tarana Suite 

could easily be misinterpreted as mixing between two separate components, one relatively 
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juvenile (the common source rock, compositionally similar to the source of the Oberon Suite) 

and the other a more evolved external 'contaminant'. However, the high proportion of 

Silurian-Devonian inheritance in the Tarana monzogranite (HB83), and the similarity in 

inheritance patterns between the Tarana Suite granites (HB82 and HB11) and the other 

northern-central LCG, shows that the evolved component was not an external component, but 

a part of the source rock that had a less juvenile composition and was more zircon rich. It 

demonstrates that the Devonian source rocks were heterogeneous in both isotopic 

composition and zircon abundance.  

 

Second, from the distinct inheritance age pattern of the Chapmans Creek 

monzogranite, it has been shown that a small amount of LFB sediment was added to the 

southern LCG, which explains their having slightly higher initial 87Sr/86Sr and 18Ozrn values 

than the other LCG. As the sedimentary contribution is too small (< 6%) to change the Hf 

isotopic composition of the southern LCG, the minor sedimentary component would be hard 

to distinguish without dating the inheritance.  

 

5.6. Source of inheritance in the I-type granites: insights into the restite model 

As there is no evidence for significant late-stage crustal contamination, the zircon inheritance 

in the LCG must have been derived from the source rock at depth, not from the host rocks, 

except possibly in the case of the Lett and Chapmans Creek monzogranites. The preservation 

of inherited zircon derived from the source materials in the low-temperature and zircon-

saturated granites is consistent with there having been other residual solid source components 

(restite) in the magmas. The relative proportions of melt and restite would determine the 

composition of each granite (restite model, Chappell et al., 1987).  

 

According to the concept of the restite model, the more mafic granites contain the 

more abundant residual materials derived from the source rock. As the inherited zircon is a 

part of the restite, it has commonly been argued that the more mafic granites within a suite 

should contain more restitic zircon than the felsic ones, and this is certainly the case in the S-

type granites of the LFB. It is a logical argument with the assumption of a homogeneous 

source composition and thus has been used to determine whether the restite model is 

applicable in a specific granite terrane (e.g. Black et al., 2010). The argument is not always 

correct if the source rock is not homogeneous, however, because the abundance of inherited 

zircon depends not only on the proportion of restite in the magma, but also on the zircon 
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contents of the relatively mafic and felsic components of the source rock. 

 

The three Tarana Suite samples studied here (HB11, HB82 and HB83) reveal the 

isotopic heterogeneity of the source rocks for those granites. The sequence from isotopically 

less evolved (higher Hf(t), lower 18O) to more evolved (lower Hf(t), higher 18O) source 

compositions is: HB11 < HB82 < HB83 (Fig. 5b). Based on the inherited zircon cores 

abundant in HB83 (1.5%) and rare in HB11 (0.25%), it is highly likely that the more juvenile 

part of the source rock was relatively zircon poor (for HB11) and the more evolved part was 

relatively zircon rich (for HB83). As a consequence, contrary to the common observation 

elsewhere, the most felsic sample (HB83; 74.4% SiO2), which contains the least restite, 

contains the most inheritance, whereas in the more mafic sample (HB11; 69.1% SiO2), which 

contains more restite, inheritance is the least abundant within the suite. The most mafic Tarana 

Suite sample HB82 (65.5% SiO2), which must contain the most restite, had intermediate and 

heterogeneous zircon O and Hf isotopic compositions and also contained an intermediate 

relative abundance of inheritance (1%).  

 

This is a critical implication for the restite model, meaning that mafic granite could 

contain less restitic zircon than felsic granite in the same suite. It is not inconsistent with the 

restite model already demonstrated for the LCG in the previous discussion (no assimilation 

during the granite differentiation), but rather illustrates the important fact that the 

amount/ratio of inheritance depends, not on the proportion of restite alone, but also on the 

zircon content of the heterogeneous source rock from which that restite was derived. 

Therefore, the presence of more inherited zircon in the more mafic rocks within a granite suite 

is not alone a valid test for the restite model. 

 

 

6. CONCLUSIONS 

Based on the predominant pattern of rare inheritance and the presence of Siluro-Devonian 

zircon cores in the Oberon, Wuuluman, Home Rule and two plutons in the Tarana Suite, it is 

proposed that the Lachlan Carboniferous granites have a common source rock that is Mid to 

Late Devonian in age and zircon poor. Although the Tarana monzogranite (HB83) contains the 

highest relative abundance of inheritance and its O-Hf isotopic compositions are distinct (less 

juvenile), the Tarana Suite shows a linear 18Ozrn-Hf(t) trend implying the mixing of two 

isotopically different components, of which the more juvenile, considering its similar isotopic 
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compositions, is probably the common Devonian source rock. The amount of the less juvenile 

material involved in the Tarana Suite magma seems to be significant, but there is no 

correlation between silica content (65–75% SiO2) and isotopic compositions in the suite, 

implying that the mixing occurred in the source, before the magma differentiated. As the 

inferred second source component of the Tarana monzogranite contained a significant 

proportion of Silurian-Devonian zircon, that component cannot be the LFB Ordovician 

turbidites, but was probably also of Devonian age. It is concluded that there was isotopic 

heterogeneity within the common Devonian source rock. The more juvenile part of the source 

was relatively zircon poor, and the more evolved part more zircon rich. Although the 

Chapmans Creek monzogranite was probably also derived from the common Devonian source 

rock (based on the similar range of Hf(t) and just a slightly higher 18Ozrn), its inheritance 

shows signs of crustal contamination by zircon-rich LFB material both at shallow and deep 

levels. As this had a minimal effect on the isotopic composition of the melt-precipitated 

zircon, the amount of the LFB component must be very small (≤ 10%).  

 

To summarize, all the LCG, from north to south, were derived primarily from 

isotopically heterogeneous Devonian source rocks. Incorporation of a minor LFB sedimentary 

component was limited to the southern LCG, where the initial 87Sr/86Sr and 18Ozrn values are 

slightly higher, and older inherited zircon is present. As inheritance has provided key 

information for understanding the petrogenesis of the LCG, the use of inherited zircon to 

study granite sources and petrogenesis should be widely applicable to other granite terranes. 

This study also showed that the amount of restitic zircon is controlled by not only the silica 

content (restite proportion) but also the source rock heterogeneity. Therefore, the process of 

restite unmixing does not necessarily imply that more mafic granites will contain more 

inherited (restitic) zircon. 
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FIGURE CAPTIONS 

Figure 1. Sketch geological map showing the distribution of Carboniferous granites and their 

host rocks in the northeastern LFB. Shading patterns discriminate the plutons belonging to 

different geochemical suites. Sample locations with emplacement ages are shown. Silurian-

Devonian granites are not shown, but are mostly within the Ordovician turbidite. The inset 
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map shows the distribution of SE Australian granite and the dashed box represents the area of 

the LCG. 

 

Figure 2. Tera-Wasserburg concordia plots of U-Pb analyses of zircon grains from the eight 

samples of the LCG. Two samples (OG16 and OGY) from the Oberon granodiorite are plotted 

together in (b). Grey filled ellipses are the data omitted from the calculation of mean zircon 

ages. Analytical uncertainties 1. 

 

Figure 3. Oxygen (18Ozrn, left-y axis, upper plots) and Hf (Hf(t), right-y axis, lower plots) 

isotopic ratios of zircon rims from the eight granites from which zircon cores were dated. 

Points marked with a cross are outliers and were omitted from the calculation of the weighted 

mean composition of each sample.  

  

Figure 4. Distributions of dates of inherited zircon cores: > 360 Ma for (a) Chapmans Creek 

(OG37), (b) Oberon (OG16 and OGY), (c) Tarana (HB83), (d) Tarana (HB82), (e) Lett 

(HB11) and (f) Wuuluman (HG03) and Home Rule (HG21) granites. The numbers of 

inherited cores are shown (numbers in brackets indicate total of the analysed cores). Some 

cores with high common Pb are counted, but not plotted as their ages could not be 

determined. The lightly dotted column throughout (a) to (f) corresponds to the Siluro-

Devonian period. Inset figures are Wetherill concordia diagrams of the inheritance with 1 

uncertainties. Black solid bars in (a) and (c) indicate detrital zircon ages from the Ordovician 

turbidites in the LFB (I. Williams, 2001 and unpublished data) and the abundance (y-axis) for 

those is compressed by over 5 times. Probability density plots are shown in (a) and (c) to 

compare to the age distribution of Ordovician turbidites better. 

 

Figure 5. Plot of Hf(t) versus 18O for zircon rims (a) from the five granites with the Tarana 

Suite compositions represented by a shaded area and (b) from the three granites in the Tarana 

Suite, the most felsic Tarana (HB83, 74.4% SiO2), the mafic Tarana (HB82, 65.5% SiO2) and 

Lett (HB11, 69.1% SiO2) granites. The O-Hf isotopic compositions of the Oberon samples are 

shown for comparison, and the shaded and dotted areas correspond to the compositions of the 

Tarana and Bathurst (unpublished data) suites, respectively. Vertical and horizontal bars 

correspond to the CHUR Hf and mantle zircon 18O of 5.3±0.3 ‰ (Valley, 2003), 

respectively. Error bars are 1. 
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Figure 6. Oxygen (18O, left-y axis, upper plots) and Hf (Hf(t), right-y axis, lower plots) 

isotopic ratios of zircon against SiO2 from the five granites in the Tarana Suite (data from this 

study and present authors’ unpublished data). There is no systematic change in isotopic 

compositions over a 10% range in SiO2, but good coupling between 18Ozrn and Hf(t). 

 

Figure 7. Date distributions of zircon from extra source component(s) for (a) Tarana and (b) 

Chapmans Creek. These histograms are inferred by subtracting the average population of the 

common Devonian source rock and the dates of cores mantled by thin rims (in the case of the 

Chapmans Creek). Note that the histograms do not show the numbers of measurements and 

the bars could have non-integer fractions, as the subtracted average inheritance pattern of the 

source rock was calculated as one fourth of the sum of the inherited cores from the Oberon, 

Wuuluman and Home Rule granites. The numbers in brackets are the total number of analysed 

cores. Black solid bars in (b) indicate detrital zircon ages from the Ordovician turbidites in the 

LFB (I. Williams, 2001 and unpublished data). The abundance (y-axis) for those is 

compressed by ca. 8 times. 
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Figure 4 (continued). 
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Table 1. Summary of O and Hf isotopic data for zircon rims from six granites of the LCG 
    

                 

Grain.spot   
Age a 

(Ma) 
1 176Hf/177Hf(t) 

 

Hf(t) 
1 

18O 
(‰)

1   Notes 
      

  Chapmans Creek (OG37) 
             

OG37-1.1 
 

326.6 b 2.7  0.282651 2.52 0.28 7.59  0.32  
 

age rejected 
    

  
OG37-2.1 

 

333.7  4.2  0.282612 1.31 0.28 7.81  0.32  
      

  
OG37-2.2 

 

322.0  4.0  
   

7.13  0.32  
 

center c 
    

  
OG37-3.1 

 

319.7  4.4  0.282614 1.05 0.29 7.92  0.32  
    

 
 

  
OG37-4.1 

 

325.4  4.2  
   

6.98  0.32  
      

  
OG37-5.1 

 

326.6 b 2.7  0.282669 3.15 0.29 7.40  0.32  
 

age rejected 
    

  
OG37-6.1 

 

331.4  4.2  0.282656 2.80 0.30 7.32  0.32  
      

  
OG37-7.1 

 

323.9  4.0  0.282607 0.91 0.26 7.65  0.32  
      

  
OG37-9.1 

 

330.5  3.9  0.282601 0.84 0.30 6.45  0.32  
 

center c 
    

  
OG37-9.2 

 

326.6 b 

    
7.58  0.32  

 
inner rim c, no age information 

  
  

OG37-9.3 
 

326.6 b 2.7  0.282653 2.61 0.22 6.43  0.32  
 

outer rim c, no age information 
  

  
OG37-10.1 

 

320.1  3.8  0.282632 1.70 0.27 7.55  0.32  
      

  
OG37-11.1 

 

333.0  4.0  0.282637 2.18 0.27 7.53  0.32  
      

  
OG37-12.1 

 

323.9  4.4  
   

6.90  0.32  
 

core mixed? 
    

  
OG37-13.1 

 

322.5  4.1  0.282621 1.37 0.25 7.55  0.32  
      

  
OG37-14.1 

 

331.8  4.1  0.282627 1.78 0.28 7.80  0.32  
      

  
OG37-15.1 

 

326.6 b 2.7  0.282612 1.14 0.26 6.46  0.32  
 

age rejected 
    

  
OG37-16.1 

 

326.6 b 2.7  0.282624 1.58 0.26 7.27  0.32  
 

age rejected 
    

  
OG37-17.1 

 

324.0  7.6  0.282652 2.52 0.33 7.46  0.32  
      

  
OG37-18.1 

 

324.2  4.3  0.282624 1.51 0.31 7.49  0.32  
      

  

  Oberon (OG16) 
              

OG16-1.1 
 

342.1  7.9  0.282597 0.95 0.31 6.55  0.35  
      

  
OG16-2.1 

 
338.9  3.7  0.282623 1.81 0.35 6.89  0.35  

      
  

OG16-3.1 
 

336.2  3.6  0.282595 0.75 0.32 6.21  0.35  
      

  
OG16-4.1 

 
342.9  3.6  0.282619 1.77 0.35 6.27  0.35  

      
  

OG16-5.1 
 

337.0  3.7  0.282623 1.76 0.33 6.24  0.35  
      

  
OG16-6.1 

 
339.9  3.6  0.282606 1.23 0.34 6.99  0.35  

      
  

OG16-7.1 
 

335.1  3.6  0.282606 1.11 0.33 6.22  0.35  
      

  
OG16-8.1 

 
339.9  3.9  0.282591 0.69 0.33 6.15  0.35  

      
  

OG16-9.1 
 

339.6 b 3.0  0.282594 0.81 0.35 6.73  0.35  
 

age rejected 
    

  
OG16-10.1 

 
331.1  6.7  0.282599 0.80 0.34 5.53  0.35  

      
  

OG16-11.1 
 

343.0  3.8  0.282586 0.59 0.33 6.91  0.35  
      

  
OG16-12.1 

 
337.7  3.8  0.282585 0.44 0.31 5.14  0.35  

      
  

OG16-13.1 
 

347.0  3.7  0.282611 1.56 0.34 7.21  0.35  
      

  
OG16-14.1 

 
340.6  3.7  0.282590 0.70 0.35 6.40  0.35  

      
  

  Oberon (OGY) 
              

OGY-1.1 
 

342.0  3.7  0.282602 1.14 0.27 6.09  0.34  
      

  
OGY-2.1 

 
343.3  3.6  0.282604 1.25 0.26 6.66  0.34  

      
  

OGY-3.1 
 

340.7  3.6  0.282608 1.32 0.34 6.44  0.34  
      

  
OGY-4.1 

 
344.1  3.6  0.282599 1.10 0.29 5.72  0.34  

      
  

OGY-4.2 

 
332.7  3.6  

   

6.75  0.34  
 

center c 
    

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

OGY-5.1 
 

341.2  3.6  0.282609 1.39 0.22 6.12  0.34  
      

  
OGY-6.1 

 
340.8  3.6  0.282601 1.07 0.25 6.01  0.34  

      
  

OGY-7.1 
 

336.5  3.5  0.282594 0.73 0.27 6.53  0.34  
      

  
OGY-8.1 

 
336.8  3.5  0.282601 0.98 0.26 5.77  0.34  

      
  

OGY-9.1 
 

335.7  3.6  0.282595 0.74 0.23 6.52  0.34  
      

  
OGY-10.1 

 
336.0  3.7  0.282621 1.68 0.27 6.25  0.34  

      
  

OGY-11.1 
 

333.9  3.5  0.282625 1.77 0.25 5.79  0.34  
      

  
OGY-12.1 

 
343.0  4.1  0.282611 1.48 0.24 6.30  0.34  

      
  

OGY-13.1 
 

335.7  3.6  0.282611 1.30 0.24 6.94  0.34  
      

  
OGY-14.1 

 
335.2  3.6  0.282612 1.36 0.24 7.17  0.34  

      
  

OGY-15.1 

 
338.6  3.7  

   

6.66  0.34  
      

  
OGY-16.1 

 
337.8  3.6  0.282643 2.52 0.26 6.81  0.34  

      
  

OGY-17.1 

 
332.5  3.5  

   

6.63  0.34  
      

  

  Tarana (HB83) 
              

HB83-1.1 
 

331.0  3.7  0.282502 -2.66 0.41 7.98  0.27  
      

  
HB83-14.1 

 
338.4  3.8  0.282497 -2.67 0.38 7.71  0.27  

      
  

HB83-2.1 
 

332.8  3.8  0.282489 -3.06 0.35 7.79  0.27  
      

  
HB83-3.1 

 
323.3  3.9  0.282489 -3.26 0.47 7.68  0.27  

      
  

HB83-15.1 
 

331.2  4.1  0.282522 -1.93 1.36 8.23  0.27  
      

  
HB83-16.1 

 
332.7  4.5  

   
8.40  0.27  

      
  

HB83-17.1 
 

331.3 b 2.5  0.282491 -3.02 0.35 
   

no age information 
   

  
HB83-4.1 

 
333.9  4.6  0.282482 -3.29 0.37 7.71  0.27  

      
  

HB83-5.1 
 

329.5  3.7  0.282497 -2.85 0.39 9.36  0.27  
      

  
HB83-9.1 

 
332.7  11.9  0.282540 -1.26 0.45 7.52  0.27  

      
  

HB83-6.1 
 

333.8  3.8  0.282506 -2.43 0.34 8.13  0.27  
      

  
HB83-10.1 

 
333.7  3.6  0.282500 -2.65 0.52 7.28  0.27  

      
  

HB83-11.1 
 

323.4  3.7  
   

7.08  0.27  
      

  
HB83-12.1 

 
329.4  3.8  0.282484 -3.30 0.39 8.02  0.27  

      
  

HB83-18.1 
 

331.3 b 2.5  0.282532 -1.57 0.38 
   

no age information 
   

  
HB83-19.1 

 
331.3 b 2.5  0.282521 -1.98 0.36 

   
no age information 

   
  

HB83-13.1 
 

334.5  3.8  0.282514 -2.14 0.37 8.17  0.27  
      

  
HB83-7.1 

 
330.9  4.0  0.282499 -2.76 0.41 9.20  0.27  

      
  

HB83-8.1 
 

332.0  4.8  0.282502 -2.61 0.37 7.84  0.27  
      

  

  Wuuluman (HG03) 
              

HG03-1.1 
 

334.6  3.5  0.282697 4.34 0.36 6.56  0.35  
      

  
HG03-2.1 

 
339.6  3.5  0.282681 3.88 0.37 7.01  0.35  

      
  

HG03-3.1 
 

331.7  3.5  0.282673 3.41 0.42 6.55  0.35  
      

  
HG03-4.1 

 
335.2  3.5  0.282656 2.91 0.31 6.85  0.35  

      
  

HG03-5.1 
 

337.4  7.7  0.282658 3.02 0.36 6.74  0.35  
      

  
HG03-6.1 

 
331.3  3.5  0.282688 3.96 0.36 6.10  0.35  

      
  

HG03-7.1 
 

343.2  9.0  0.282652 2.93 0.38 7.27  0.35  
      

  
HG03-8.1 

 
325.9  3.4  0.282673 3.29 0.39 6.20  0.35  

      
  

HG03-9.1 
 

339.3  5.8  0.282691 4.22 0.38 6.53  0.35  
      

  
HG03-10.1 

 
336.9  3.5  0.282705 4.67 0.35 5.98  0.35  

      
  

HG03-11.1 
 

330.3  7.4  0.282685 3.83 0.44 6.88  0.35  
      

  
HG03-12.1 

 
336.6  3.6  0.282665 3.24 0.70 7.11  0.35  

      
  

HG03-13.1 
 

328.1  3.4  0.282696 4.14 0.41 6.59  0.35  
      

  
HG03-14.1 

 
333.6  3.5  0.282683 3.81 0.34 6.53  0.35  
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  Home Rule (HG21) 
              

HG21-1.1 
 

325.1  3.7  
   

7.54  0.18  
 

core mixed 
    

  
HG21-2.1 

 
324.8  3.4  0.282567 -0.49 0.33 7.16  0.18  

      
  

HG21-3.1 
 

335.6  3.5  0.282582 0.30 0.30 7.01  0.18  
      

  
HG21-4.1 

 
327.9 b 3.6  0.282655 2.72 0.84 8.10  0.18  

 
too thin, age rejected 

   
  

HG21-5.1 
 

321.5  3.8  0.282566 -0.58 0.32 6.95  0.18  
 

center c 
    

  
HG21-6.1 

 
327.9 b 3.6  0.282581 0.07 0.34 7.16  0.18  

 
age rejected 

    
  

HG21-7.1 
 

331.5  6.2  0.282581 0.16 0.29 7.01  0.18  
      

  
HG21-8.1 

 
327.9 b 3.6  0.282577 -0.07 0.37 7.63  0.18  

 
age rejected 

    
  

HG21-9.1 
 

330.1  6.5  0.282574 -0.12 0.36 6.88  0.18  
      

  
HG21-10.1 

 
327.9 b 3.6  0.282578 -0.02 0.37 7.27  0.18  

 
age rejected 

    
  

HG21-11.1 
 

328.9  3.5  0.282580 0.07 0.40 6.77  0.18  
      

  
HG21-13.1 

 
330.8  12.8  0.282636 2.09 0.30 6.83  0.18  

      
  

HG21-14.1 
 

331.3  10.6  0.282591 0.52 0.32 6.96  0.18  
      

  
HG21-15.1 

 
327.9 b 3.6  

   

7.52  0.18  
 

age rejected 
    

  
HG21-16.1 

 
419.1  5.3  

   
8.61  0.18  

 
core c 

    
  

HG21-17.1   327.9 b 3.6  0.282593 0.49 0.31 7.20  0.18    age rejected 
    

  
                   All uncertainties are given at 1 level 

          
  

  a SHRIMP 206Pb/238U zircon ages. 
         

  
  b Weighted mean age used for the spot with no age information or age rejected 

       c Analyzed zoning domain. All without designation " c " from rims 

       
 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

Table 2. Sr, O, SiO2 compositions determined for Lockyersleigh Suite (that Chapmans Creek granite belongs) 
and its two main source components (source rock representative by Oberon Suite and LFB sediments) 

        
Suite sample id Sr (ppm) initial 87Sr/86Sr   δ18Ozrn SiO2 WR

3 δ18OWR 

Lockyersleigh FS11671 688 0.7056* 
    

Lockyersleigh FS11681 649 0.7050* 
    

Average                       
(representative of Chapmans Ck) 

669 0.7053   7.3 ‰ 66.5% 8.9 ‰4 

Oberon FS10421 688 0.7041^ 
    

Oberon D211 525 0.7046^ 
    

Oberon D131 685 0.7048^ 
    

Average                          
(representative of Oberon and/or 

Devonian source rock) 
633 0.7045   6.4 ‰ 63.6% 7.8 ‰4 

Representative of LFB sediments2 248& 0.7344#       15.0 ‰ 

        
* recalcuated using Chapmans Ck age dated in this study 

    
^ recalculated using Oberon age dated in this 
study      
& average Sr concentration in the LFB clastic sediments 

    
# recalculated using 327 Ma 

      
1 S. Shaw, unpublished data 

      
2 Champion et al., 2007; McCulloch and Chappell, 1982; Gray and Webb, 1995 

  
3 B. Chappell, unpublished data 

      
4 determined from δ18Ozrn and SiO2 using the equation of Lackey et al., 2008 
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