
Accepted Manuscript

A general algorithm for covariance modeling of discrete data

Gordana C. Popovic, Francis K.C. Hui, David I. Warton

PII: S0047-259X(17)30752-2
DOI: https://doi.org/10.1016/j.jmva.2017.12.002
Reference: YJMVA 4311

To appear in: Journal of Multivariate Analysis

Received date : 1 April 2015

Please cite this article as: G.C. Popovic, F.K.C. Hui, D.I. Warton, A general algorithm for
covariance modeling of discrete data, Journal of Multivariate Analysis (2017),
https://doi.org/10.1016/j.jmva.2017.12.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jmva.2017.12.002


A general algorithm for covariance modeling of discrete data

Gordana C. Popovica,1,∗, Francis K.C. Huib, David I. Wartona,c,2

aSchool of Mathematics and Statistics, The University of New South Wales, NSW 2052, Australia
bMathematical Sciences Institute, The Australian National University, Acton, ACT 2601, Australia

cEvolution and Ecology Research Centre, The University of New South Wales, NSW 2052, Australia

Abstract

We propose an algorithm that generalizes to discrete data any given covariance modeling algorithm originally intended
for Gaussian responses, via a Gaussian copula approach. Covariance modeling is a powerful tool for extracting mean-
ing from multivariate data, and fast algorithms for Gaussian data, such as factor analysis and Gaussian graphical
models, are widely available. Our algorithm makes these tools generally available to analysts of discrete data and
can combine any likelihood-based covariance modeling method for Gaussian data with any set of discrete marginal
distributions. Previously, tools for discrete data were generally specific to one family of distributions or covariance
modeling paradigm, or otherwise did not exist. Our algorithm is more flexible than alternate methods, takes advan-
tage of existing fast algorithms for Gaussian data, and simulations suggest that it outperforms competing graphical
modeling and factor analysis procedures for count and binomial data. We additionally show that in a Gaussian copula
graphical model with discrete margins, conditional independence relationships in the latent Gaussian variables are
inherited by the discrete observations. Our method is illustrated with a graphical model and factor analysis on an
overdispersed ecological count dataset of species abundances.

Keywords: Factor analysis, Gaussian copula, graphical model, overdispersed count data, species interaction.

1. Introduction

Models for covariance give us valuable information about the structure of multivariate data when there are a large
number of response variables, and the literature on such tools for Gaussian data is quite advanced. Gaussian graphical
models [2, 13, 28, 36, 41] for example, describe conditional independence relationships between variables, which can
be used to distinguish between direct and indirect relationships among variables. Factor analysis models can identify
latent factors which drive the covariance between variables [9]. In addition, covariance modeling of Gaussian data is
a fast moving field, with interesting algorithms continually being developed, including sparse factor analysis [4] and
latent variable graphical model [29]. These and other covariance modeling methods were developed in the context of
Gaussian data, and equivalent algorithms for discrete data are often limited or do not exist. In this article, we aim to
develop a flexible method to apply covariance models to discrete data, with particular focus on overdispersed counts,
our motivating example.

Covariance modeling of discrete data has been advanced separately for each covariance modeling paradigm, and
these advances generally allow only a narrow class of discrete distributions. In the context of factor analysis, for bino-
mial and multinomial data, item response theory allows limited latent variable modeling [15]. Counts and categorical
outcomes can be modeled using, for example, generalized latent variable models [18, 37], a flexible covariance mod-
eling method. These models combine generalized linear mixed models and structural equation models into a unifying

∗Corresponding author
Email addresses: g.popovic@unsw.edu.au (Gordana C. Popovic), fhui28@gmail.com (Francis K.C. Hui),

david.warton@unsw.edu.au (David I. Warton)
1GCP is supported by an Australian postgraduate award from the University of New South Wales
2DIW is supported by Australian Research Council Discovery Projects and Future Fellow funding schemes (project number DP130102131 and

FT120100501)

Preprint submitted to Journal of Multivariate Analysis December 4, 2017

*Manuscript
Click here to download Manuscript: GCP_FKH_DIW_Manuscript.pdf Click here to view linked References



framework. However these cannot be used to carry out other forms of covariance modeling. More recently graphical
models have also been extended to discrete data, but the solutions currently available are piecemeal. For example it is
possible to build graphical models for discrete data by extending Gaussian graphical models to other members of the
exponential family [2, 21]. However for many distributions, including the commonly used Poisson, these extensions
place restrictions on the direction of conditional relationships between variables. To overcome this limitation, node
wise graphical models have been proposed [1]; however, these are local in nature and do not estimate a global model
of dependence, making them inefficient. Other models for discrete data do not allow modeling of count data [34],
while others still do not allow for covariates to be included, as marginal distributions are estimated nonparametrically
[10, 24]. Many of these solutions also do not take advantage of the fast graphical modeling algorithms now available
for Gaussian data.

In this article, we propose a general algorithm for covariance modeling of discrete data which allows for graphical
modeling, factor analysis, as well as other covariance models within a Gaussian copula framework. Our algorithm
is very flexible in that it allows any set of marginal distributions to be combined with any covariance modeling
algorithm that was originally designed for Gaussian data. Our method also does not restrict the direction of conditional
dependence parameters between variables, while still estimating a global model. Finally, the proposed approach
allows us to plug in covariance modeling algorithms designed for Gaussian data to model covariance in discrete data,
thereby taking advantage of fast algorithms.

Our model and estimation method are most closely related to the Bayesian model described in [6, 14] (see Ap-
pendix A.2), and can be understood as a generalization of their method to handle a broader range of covariance
modeling frameworks.

We will begin in Section 2 by describing our model and estimation procedure, and presenting a general algorithm
for combining any set of marginal distributions with any covariance modeling algorithm. We will then investigate
statistical and computational properties of our algorithm. In Section 3 we describe how our method can be used with
both maximum likelihood and penalized likelihood covariance models, using graphical models and factor analytic
models as examples, and compare our model with alternate algorithms for graphical and factor analytic models for
discrete data. We finish by analyzing an example dataset in Section 4.

2. Model formation and estimation

2.1. Notation
Throughout this article, we denote the standard N(0, 1) univariate Gaussian density by φ, the corresponding dis-

tribution function by Φ and the multivariate zero mean Gaussian density with covariance matrix S by φd(·; S ).
Let y and z denote the observed data and latent variables respectively, both of which are of dimension N ×d where

N is the sample size and d is the dimension of the response. For instance, in our applied example in Section 4, N
denote the number of sites visited and d the number of species recorded. We use yi and zi to denote the d-dimensional
observed data and latent variable, for i ∈ {1, . . . ,N}, and yi j with j ∈ {1, . . . , d} to refer to the scaler observation i for
dimension j.

2.2. Model formulation
We model response yi as a Gaussian copula coupled with discrete marginal distributions Fi j, characterized by

marginal parameters (β j, ψ j), and correlation matrix Rθ, parameterized by a set of variables θ. The distribution of yi is
then given [31] by the d-dimensional rectangle integral

Li(yi|β, ψ, θ) =

∫

Bi

φd(zi; Rθ)dzi (1)

where Bi =∩ j[Φ−1{Fi j(y−i j|β j, ψ j)},Φ−1{Fi j(yi j|β j, ψ j)}] and Fi j(y−i j) = lim
x→y−i j

Fi j(x) is the left limit of F at y.

The above model can be viewed as a latent variable model. To see this, write the joint distribution of y and z
(suppressing the i subscript) as

f (y, z) = f (y|z) f (z) =

d∏

j=1

1[Φ−1{F j(y−j )}≤z j<Φ−1{F j(y j)}]φd(zi; Rθ).
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and we obtain the density of y by integrating over the latent variable z, thereby arriving at Eq. (1).

2.3. Estimation
We implement a type of Monte Carlo expectation maximization (MCEM) algorithm to estimate this integral [40].

We chose an algorithm which is easy to implement, and allows the flexibility we desire. We will start by defining the
MCEM algorithm, Gaussian score equation, and Dunn–Smyth residuals [8].

Definition 1 (Monte Carlo Expectation Maximization). The expectation maximization (EM) algorithm [7] is a method
to maximize the likelihood function in the presence of missing data z. This is done iteratively. In the E-Step one
calculates the Q function, viz.

Q(θ, θ̂(m)) =

∫

zi

f (z|y; θ̂(m)) ln f (z; θ)dz,

which is the expectation of the log likelihood with respect to the conditional predictive distribution f (z|y; Rθ̂(m) ), under
the current value of the model parameters θ̂(m) at the mth iteration. The Q function is then maximized in the M-Step
to find the new value of the model parameters, viz.

θ̂(m+1) = arg max
θ

Q(θ, θ̂(m)).

These steps are repeated iteratively until convergence. When the Q function is not available in closed form, a Monte
Carlo estimate of the required expectation can be used instead. This is the Monte Carlo Expectation Maximization
(MCEM) algorithm [40]. The Q function is replaced by

Q̃(θ, θ̂(m)) =
1
K

K∑

k=1

ln f (zk; Rθ̂(m) ),

in the E-Step, where z1, . . . , zK are drawn from f (z|y; θ̂(m)).

Definition 2 (Gaussian score equation for covariance parameters). The solution to the Gaussian score equations gives
the maximum likelihood estimate for covariance parameters θ for Gaussian data. The score equation for a zero mean
multivariate Gaussian random variable is given by

∂

∂θ
`(z; Rθ) =

N∑

i=1

∂

∂θ
ln φd(zi; Σθ) = 0, (2)

where z1, . . . , zN are mutually independent Gaussian random variables and Σθ is the covariance matrix, parameterized
by θ.

Definition 3 (Dunn–Smyth residuals). Dunn–Smyth residuals are a useful diagnostic tool for generalized linear mod-
eling [8]. They are used here as a device for numerical approximation of the integrand in Eq. (1). Let ui j be inde-
pendent draws from a standard uniform random variableU(0, 1). We first define υi j = Fi j(y−i j) + ui j fi j(yi j), which are
uniformly distributed on the (0, 1) interval, if yi j has distribution function Fi j [12, 30].

A Dunn–Smyth residual is then defined by ζi j = Φ−1(υi j). The distribution of these residuals, conditional on the
data and marginal distributions, is a truncated multivariate normal with identity covariance matrix. We can write the
distribution of the vector of Dunn–Smyth residuals as

g(ζi) =

∏d
j=1 φ(ζi j)

∏d
j=1 fi j(yi j)

1ζi∈Bi .

This distribution has positive probability only in the region of integration of the likelihood defined in Eq. (1),
making it a candidate for importance sampling to estimate this integral. Importance sampling schemes using these
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and similar constructs appear by other names in Heinen and Rengifo [16], Nikoloulopoulos [32] and others, where the
resulting approximations are maximized numerically. Instead of implementing a numerical optimization scheme, we
note in the following result that the score function, when approximated by importance sampling with Dunn–Smyth
residuals, can be rewritten as a weighted sum of Gaussian score equations. This key finding allows us to maximize
the likelihood using the same algorithms developed for covariance modeling of Gaussian data.

Lemma 1. The likelihood of the discrete Gaussian copula can be approximated by importance sampling with K sets
of Dunn–Smyth residuals

L(y|β, ψ, θ) =

N∏

i=1

∫

Bi

φd(zi; Rθ)dzi ≈
N∏

i=1

d∏

j=1

fi j(yi j)
N∏

i=1

K∑

k=1

c(ζk
i ; Rθ), (3)

where c(ζi; Rθ) = φd(ζi; Rθ)/
∏d

j=1 φ{Φ−1(ζi j)} and fi j is the marginal density of variable j and observation i, and ζi

are Dunn–Smyth residuals distributed according to g.

The proof of Lemma 1 is given in Appendix A and follows from importance sampling arguments. We now present
the main result of the article, which demonstrates the link between the Gaussian score equation and the Gaussian
copula score.

Theorem 1. An estimate of the derivative (with respect to covariance parameters) of the likelihood of the Gaussian
copula with discrete margins can be written as a weighted sum of derivatives of the multivariate Gaussian distribution.
So

∂`(y; Rθ)
∂θ

=

N∑

i=1

K∑

k=1

wik(Rθ)
∂

∂θ
ln φd(ζk

i ; Rθ), (4)

where `(y; Rθ) = ln{L(y; Rθ)}, wik(Rθ) ≡ c(ζk
i ; Rθ)/

∑K
m=1 c(ζm

i ; Rθ)

Proof. Differentiating the log likelihood approximation from Lemma 1, we have

∂

∂θ
`(y; Rθ) =

N∑

i=1

1
∑K

m=1 c(ζm
i ; Rθ)

K∑

k=1

∂

∂θ
c(ζk

i ; Rθ)

=

N∑

i=1

1
∑K

m=1 c(ζm
i ; Rθ)

K∑

k=1

∂c(ζk
i ; Rθ)

∂ ln c(ζk
i ; Rθ)

∂

∂θ
ln c(ζk

i ; Rθ)

=

N∑

i=1

1
∑K

m=1 c(ζm
i ; Rθ)

K∑

k=1

c(ζk
i ; Rθ)

∂

∂θ
ln c(ζk

i ; Rθ)

Bringing the first fraction inside the sum over K, we obtain a weighted sum of derivatives of the multivariate Gaussian
distribution

∂

∂θ
`(y; Rθ) =

N∑

i=1

K∑

k=1

c(ζk
i ; Rθ)

∑K
m=1 c(ζm

i ; Rθ)
∂

∂θ
ln c(ζk

i ; Rθ) =

N∑

i=1

K∑

k=1

wik(Rθ)
∂

∂θ
ln φd(ζk

i ; Rθ)

which completes the argument. �

Covariance modeling algorithms, like those which estimate a factor analytic model or structured covariance ma-
trices, maximize the Gaussian likelihood by design, or equivalently solve the Gaussian score equations, Eq. (2). By
writing the copula score equation as a weighted sum of the Gaussian scores, we are able to utilize these algorithms
with a weighted set of the Dunn–Smyth residuals. As the weights wik are a function of the parameters to be estimated,
these must be iteratively updated, and so we propose the following algorithm.
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2.3.1. Algorithm
To carry out covariance modeling on discrete data with a Gaussian copula, we iteratively implement the covariance

modeling algorithm designed for Gaussian data on a weighted set of Dunn–Smyth residuals.

Algorithm 1 Covariance modeling for discrete data
For data y and covariates X

1. Estimate Fi j(·; Xi) using a univariate modeling algorithm (e.g., glm).

2. For each k ∈ {1, . . . ,K}, generate Dunn–Smyth residuals ζi jk = Φ−1{F̂i j(yi jk − 1) + ui jk f̂i j(yi j)}.
3. Initialize w(0)

ik ∝ 1 and write {ζ,w(m)} for the set of Dunn–Smyth residuals and weights.

4. For m = 1, 2, . . ., until convergence

a Apply the covariance modeling algorithm to weighted residuals (ζ,w(m−1)) to obtain θ̂(m).

b Recalculate weights w(m)
ik ∝ c(ζik; Rθ̂(m) ) from Theorem 1.

Note: As most covariance modeling algorithms use the sample covariance matrix as a sufficient statistic, we can in
practice use the weighted correlation matrix of Dunn–Smyth residuals

R(m)
w =

1
N

N∑

i=1

K∑

k=1

wik(Rθ̂(m−1) )ζk
i (ζk

i )>

as a sufficient statistic in Step 4a.

This algorithm has two estimation steps. First, marginal parameters (β, ψ) are estimated assuming indepen-
dence, as with independence estimating equations [23]. Second, these estimates (β̂, ψ̂) are plugged into the likelihood
L(y|β, ψ, θ), defined in Eq. (3). The resulting plug-in likelihood L(y|β̂, ψ̂, θ) is maximized for covariance parameters θ
using an iterative procedure, which can be understood as a MCEM algorithm [27] where the sample for the E-step is
achieved by reweighting the residuals, and the M-Step is the covariance modeling algorithm; see Appendix A.2 for
proof. Such algorithms are sometimes referred to as inference function of margins [33] and have good asymptotic
properties, including asymptotic efficiency relative to maximum likelihood [19].

Our algorithm produces consistent estimates of all model parameters (proof in Appendix A.3). It extends the flex-
ibility of Gaussian copulas to implement any covariance modeling framework designed for Gaussian data to discrete
data.

2.3.2. Comparison to other efficient methods
The main purpose of our proposed algorithm is to provide flexibility — the capacity to take data from any marginal

distribution and fit any covariance modeling algorithm originally designed for Gaussian data. This flexibility comes
at some cost in computational efficiency, with inefficiencies introduced at two places. First, we use a Monte Carlo
approach to estimation, hence our computations scale linearly with NK rather than with N alone. Second, by using
importance sampling rather than sampling directly from the posterior, a larger number of samples (K) is required
for estimates with comparable accuracy. Several improvements could be made to Algorithm 1 (see, e.g., [26, 32])
to improve computational efficiency, but this would come at the cost of reducing the generality of the algorithm.
However it is worth noting that our use of a two-step process, estimating marginal parameters once prior to covariance
modeling, offers a significant computational saving as compared to joint optimization, as seen later in our simulations
(Figure 4).

2.3.3. Bias, variance and Mean Squared Error (MSE)
For Algorithm 1, variance and bias may arise as a result of two mechanisms. First, Monte Carlo error is introduced

by the importance sampling. Second, we estimate marginal model parameters assuming independence, followed by
correlation parameters conditional on these.
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To investigate this issue we simulate data from a bivariate Gaussian copula model with marginal Poisson dis-
tributions, no intercept and one balanced binary predictor with coefficients equal to 1 for both margins, correlation
ρ ∈ {0, 0.2, 0.4, 0.8}, and sample sizes N ∈ {10, 100, 1000}. In other words, the true parameter vector is given by
θ0 = (1, 1, ρ). Furthermore, these marginal parameters lead to low means (1 and 2.72 in the two groups), and hence
very low counts. We simulated 200 datasets for each of the above combinations, and computed the empirical bias,
variance and MSE of the estimated parameters, averaged over the 200 datasets.

For each simulated dataset we estimate the likelihood with K ∈ {1, 10, 100, 1000} blocks of uniform random
variables. In this simple setting, given the low dimensionality of the problem, we can use the optim function in R
to find maximum approximate likelihood solutions θ̂K similar to the estimation method in Heinen and Rengifo [16],
Nikoloulopoulos [32] and others. We also implement Algorithm 1 to find θ̃K . We carry out 200 simulation of each
with the above combinations.

Algorithm 1 is generally more biased than maximum approximate likelihood for the correlation parameter (Fig-
ure 1 top). However, MSE for Algorithm 1 is smaller when sample size (N) is small, and for moderate ρ (Figure 1
bottom). This may be due to smaller variance of estimates based on Algorithm 1, as ρ is not jointly maximized for
marginal and covariance parameters. There are no clear patterns in relative bias for the marginal coefficient β for
the two methods. Particularly for large sample sizes, the two methods do about equally well (Figure 2 top). MSE is
generally lower for Algorithm 1 for small sample sizes, and higher for moderate sample sizes, while in large sample
sizes the algorithms performed about equally well in terms of MSE.

To explore Monte Carlo error, we ran each of the above simulations 10 times, with different sets of K random
uniform values but keeping y constant. Monte Carlo error is estimated as the average variance within each simulation
of y. We plot Monte Carlo error relative to the sampling error of the maximum likelihood solution θ̂. We estimate this
by noting θ̂ = limK→∞ θ̂K and letting K = 10,000. In our simulation settings, Monte Carlo variance was always less
that sampling error, with the ratio decreasing rapidly as K increases (Figure 3). With K = 100, the Monte Carlo error
was less than 1% of sampling error for small and moderate correlations.

Finally, the computational time for both algorithms not surprisingly increased with both N and K, with optim

being much slower that Algorithm 1 (Figure 4). The ratio of computational time also decreased with N, particularly
when K is small.

2.3.4. Guidance for number of Monte Carlo samples
As both the bias and Monte Carlo error of Algorithm 1 reduce with K, while computational time increases, it is

important that we chose an appropriate value for K in practical applications. One approach for choosing the number
of Monte Carlo samples is to start with a relatively small value of K, and increase it with each iteration until a stopping
criterion is reached [3, 22]. The stopping rule is derived from a normal approximation of the current estimate γ(m+1)

based on the previous estimate γ(m). That is, if γ(m+1) is inside a 100 × (1 − α)% confidence ellipsoid for γ(m), then K
is increased according to K ← K + K/q, where q is a positive constant; see [3] for details. We repeat this process until
the convergence criterion is reached in three successive occasions.

3. Application to covariance modeling methods

Algorithm 1 can be implemented with covariance models estimated by penalized likelihood as well as maximum
likelihood. We will demonstrate this with two examples, graphical modeling for penalized likelihood and factor
analysis for maximum likelihood.

3.1. Application to graphical models
Modern implementations of graphical modeling for Gaussian data optimize a penalized likelihood with a lasso

penalty [2]. Though this is not a maximum likelihood algorithm, as required by Theorem 1, we will show that
Algorithm 1 can nevertheless be used to carry out graphical modeling of discrete data.

We begin by applying the relevant likelihood penalty to the approximate log likelihood in Theorem 1. Let Θ = R−1

be the precision matrix. The penalized log likelihood estimate then can be written as

`λ(y; Θ) =


N∑

i=1

d∑

j=1

ln{ fi j(yi j)}
 +

N∑

i=1

ln


K∑

k=1

c(ζk
i ; Θ)

 − λ ||Θ||1,
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Figure 1: Bias ratio (top) and MSE ratio (bottom) for correlation parameter ρ: Algorithm 1 is generally more biased than optim, except for small K.
However, for small sample sizes and small ρ, Algorithm 1 has smaller MSE relative to optim, while for larger sample sizes and large ρ, optim
performs better.
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Figure 2: Bias ratio (top) and MSE ratio (bottom) marginal coefficient β: There is no clear pattern in bias, with each algorithm being less biased in
some circumstances. For large ρ, and small sample sizes, Algorithm 1 has smaller MSE, while optim has smaller MSE for moderate sample sizes.
Both algorithms perform similarly in terms of MSE for large sample sizes.
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Figure 3: Ratio of Monte Carlo variance to sampling error for the covariance parameter ρ for Algorithm 1: Monte Carlo variance is less than
sampling error for all K, N and ρ. Monte Carlo variance reduces relative to sampling error as the number of Monte Carlo samples (K) increases
and for smaller ρ.
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Figure 4: Ratio of time taken for Algorithm 1 and optim: Algorithm 1 is quicker than optim for all K, N and ρ, though the ratio of times is largely
stable with changing K, N, and ρ.
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from Lemma 1. To find the maximizer of this function, we write

0 =
∂`λ(y; Θ)
∂Θ

=

N∑

i=1

K∑

k=1

wik(Θ)
{
∂

∂Θ
ln φd(ζk

i ; Θ)
}
− λΓ,

0 =

N∑

i=1

K∑

k=1

wik(Θ){Θ−1 − ζk
i ζ

k>
i } − λΓ,

0 = Θ−1 −


1
N

N∑

i=1

K∑

k=1

wik(Θ̂)ζk
i ζ

k>
i

 − λΓ, (5)

where Γq,r = sign(Θq,r) if Θq,r , 0 and Γq,r ∈ [−1, 1] if Θq,r = 0. Now, note that the subgradient equation solved by
Gaussian graphical modeling algorithms like the graphical lasso [13] is 0 = Θ−1 − S − λΓ, where S is the sample
covariance matrix. Therefore, we can see that Eq. (5) is analogous to this, with the sample covariance matrix replaced
by a weighted covariance matrix with weights wik. We can therefore solve Eq. (5) iteratively using the graphical lasso
algorithm together with Algorithm 1.

3.2. Application to factor analysis

As a second example, consider a factor analytic model for discrete data. Factor analysis can be estimated by
maximum likelihood, either by numerically solving the score equations or with the EM algorithm. The numerical
algorithms are implemented to solve the following score equations [9]:

0 = diag

Σ−1


1
N

N∑

i=1

yiyi
>
 Σ−1 − diag(Σ−1)

 , 0 = Σ−1


1
N

N∑

i=1

yiyi
>
 Σ−1Λ − Σ−1Λ.

Now looking at the likelihood estimate we have

`(y; Λ,Ψ) =


N∑

i=1

d∑

j=1

ln{ fi j(yi j)}
 +

N∑

i=1

ln


K∑

k=1

c(ζk
i ; R)

 ,

where R = ΛΛ> + Ψ. We differentiate with respect Ψ to obtain

0 =
∂`(y; R)
∂Ψ

=

N∑

i=1

K∑

k=1

wik(R)
{
∂

∂Ψ
ln φd(ζk

i ; R)
}
,

0 =

N∑

i=1

K∑

k=1

wik(R)
[
diag{R−1ζk

i ζ
k>
i R−1 − diag(R−1)}

]
,

0 = diag

R−1


1
N

∑

i

K∑

k=1

wik(R)ζk
i ζ

k>
i

 R−1 − diag(R−1)

 .

Similarly the derivatives with respect to Λ give us score equations

0 = R−1


1
N

N∑

i=1

K∑

k=1

wik(R)ζk
i ζ

k>
i

 R−1Λ − R−1Λ.

Comparing these to the score equations for a factor analytic model for Gaussian data, it is clear that we can replace
the data covariance matrix with a weighted covariance matrix of Dunn–Smyth residuals with weights wik, and use
standard factor analysis algorithms, iteratively updating the weights, to model the correlation matrix R.

10
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Figure 5: Comparison of Algorithm 1 to factor analysis of Pearson residuals (top) and the lava.tobit package (bottom). Values above the red
line indicate the copula model is performing better. Algorithm 1 with K = 50 generally outperforms these alternatives, especially as dimension
increases.

3.3. Simulation results

3.3.1. Factor analysis: Binary data
We compare Algorithm 1 to two alternative strategies for factor analysis of discrete data. We generate a one factor

binomial model for binary data with probit link using the lava.tobit [17] package. This package is able to simulate
and estimate a probit regression with latent factors using composite likelihood. In this special case, the Gaussian
copula is equivalent to a hierarchical model [32], and thus can be fitted using software for hierarchical latent variable
modeling, like lava.tobit. Additionally we will compare to a naive procedure in which we carry out a factor
analysis on Pearson residuals or one set of Dunn–Smyth residuals from a binomial generalized linear model. Both
these sets of residuals should be approximately normally distributed marginally, and so a factor analysis algorithm
can be applied directly to these residuals for an approximate solution. Simulations used K = 50 sets of Dunn–Smyth
residuals.

We measure the performance of factor analysis models by the Frobenius norm, as in [20], of the difference of
estimated and true covariance matrices. Figure 5 (top) shows that Algorithm 1 generally outperforms the naive ap-
plication of factor analysis algorithms to Pearson residuals. One set of Dunn–Smyth residuals performs similarly
to Pearson residuals, and we do not include these results. Figure 5 (bottom) shows that with as few as 50 sets of
Dunn–Smyth residuals Algorithm 1 generally outperforms the lava.tobit package in terms of accuracy.

3.3.2. Graphical model: Count data
For graphical modeling we simulate data from a a Gaussian copula model with Poisson marginal distributions,

and a chosen graphical structure. We then measure how well our model, and others, are able to discover the graphical
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Figure 6: Comparison of Algorithm 1 to graphical modeling of Pearson residuals (top) and the local Poisson model [bottom; 1]. Values above the
red line indicate the copula model has a higher recovery rate, (i.e., proportion of correctly identified conditional dependence relationships) and is
therefore performing better. Algorithm 1 generally outperforms these alternatives, especially as dimension increases.

structure. We generated and estimated graphical structures and data using the huge package [42] in R, which simulates
and estimates Gaussian graphical models. Graphical modeling works best for sparse matrices, so the graphs we
generate have a 70% probability for conditional independence for any pair of variables. For model selection we use
the StARS criterion [25] which chooses the model with the most stable graphical structure across sub samples. We
then compare Algorithm 1 to the local Poisson model [1] as well as a naive application of a graphical modeling
algorithm to Pearson and one set of Dunn–Smyth residuals.

We measure the performance of the graphical modeling algorithms as the proportion of correctly identified condi-
tional dependence relationships. Figure 6 (top) shows that Algorithm 1 generally outperforms the naive application of
graphical modeling algorithms to Pearson residuals, one set of Dunn–Smyth residuals performs similarly to Pearson
residuals and is not shown. Algorithm 1 also generally outperforms the local Poisson model (Figure 6 (bottom)),
particularly as dimension (d) increases.

Poisson distributed counts were simulated for easy comparison to the local Poisson model, but note our model can
easily be extended to modeling overdispersed counts by using a negative binomial regression in the marginal model,
as below.

4. Practical application

4.1. Count data: Spiders

We demonstrate our method on counts of the number of hunting spiders caught in traps for 12 species taken from
28 sites modeled as a function of environmental variables [38]. For these data we fit marginal negative binomial
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generalized linear models with all the available environmental covariates using the mvabund package [39], which also
contains these data. We then use Algorithm 1 to estimate the graph of conditional independences using the graphical
lasso implemented in the glasso package [13]. We also carry out a factor analysis using the factanal function in
base R [35].

In Figure 7 we present output from a factor analysis and graphical model before controlling for covariates (left)
and after (right). The first row are factor scores in a two factor model, the second row are loadings for each species,
and the third row are the graphs obtained from a graphical model.

In our ecological example, we are interested in studying the covariance relationships before and after accounting
for correlation due to the environmental covariates. With variables representing different species, we can interpret
the graphical model as a model of species interactions, and attempt to identify which species interact directly with
one another, and which are correlated due to their interaction with common species. The factor analysis of these
data highlights latent factors which drive correlations among species, and which may be unmodeled environmental
variables.

We have coded the plots of scores (Figure 7a-b) according to the presence of bare sand (filled for present and
unfilled for absent), and the presence of fallen leaves (blue triangle for present and red square for absent). We observe
clustering in Figure 7a according to both variables. Sites with bare sand and no fallen leaves (filled squares) load
negatively on both factors (bottom left of Figure 7a), while sites with fallen leaves and no bare sand (unfilled triangles)
load positively on factor 2 and negatively on factor 1 (top left of Figure 7a). No patterns are visible after controlling
for these covariates (Figure 7b).

Additionally there are patterns among species in Figures 7c-f. For example, species Pardlugu (Pardosa lugubris)
has negative interactions with both Alopacce (Alopecosa accentuata) and Pardmont (Pardosa monticola), who inter-
act positively with one another, before controlling for covariates (Figure 7e). However these negative interactions
are absent after controlling for covariates (Figure 7f), suggesting that this negative correlation can be explained by
contrasting habitat preferences. The factor loadings (Figure 7c) suggest the main difference between these species
was on Factor 2, and sites seem to differ along this axis primarily in the amount of bare sand (7a), suggesting that the
negative correlation can be largely explained by differences in preferences for bare sand. Specifically, Pardlugu seems
to prefer sites with bare sand, whereas Alopacce and Pardmont do not.

5. Discussion

We have developed a general algorithm for covariance modeling of discrete data. It can combine any likelihood
based covariance modeling procedure designed for Gaussian data with any set of marginal distributions, and is simple
and flexible to implement. The algorithm we present does not place restrictions on the sign of covariance parameters,
nor is it restricted to one or a small class of covariance models. It is fully flexible in terms of both the marginal
distributions and covariance parameters, and only assumes the covariance structure of the latent variable is that of a
multivariate Gaussian, and marginal distributions are correctly specified.

Simulation results show our method is not only more general than alternative proposals but also seems to have
advantages in performance relative to some. For graphical modeling of counts, our model outperforms the local
Poisson model [1], and has the further advantage that it can additionally accommodate covariates and overdispersion.
For factor analysis of binary data, our method also outperformed the lava.tobit package on R, although at the cost
of increased computation time. An alternative approach we also considered was to perform covariance modeling on a
single set of residuals from univariate models, but this seemed to lose considerable statistical efficiency.

We demonstrate our method with two well known covariance modeling frameworks, but it is simple to substitute
other (possibly penalized) likelihood-based covariance modeling algorithms for Gaussian data. Also, there is also no
reason that all the marginal distributions need be from the same family, nor do they need to all be discrete. In principle,
all combinations of covariance modeling algorithms and marginal distributions are possible, and this is a key strength
of our proposed method.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Results of covariance models before (left) and after (right) controlling for covariates. Specifically, we present factor scores (a and b), and
factor loadings (c and d) from a factor analytic model, and the resulting graphs (e and f) based on a graphical model. We observe clustering of sites
in terms of these covariates in Figure (a), while these patterns are absent in Figure (b), after controlling for covariates. For the graphical model,
before controlling for covariates in Figure (e) we observe that Pardlugu has negative interactions with both Alopacce and Pardmont, who interact
positively.However these interactions are absent after controlling for covariates in Figure (f).
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1
The distribution of the randomized Dunn–Smyth residuals given the data and marginal distributions is

g(ζi) =

∏d
j=1 φ(ζi j)

∏d
j=1 fi j(yi j)

1ζi∈Bi . (A.1)

We can approximate the likelihood by importance sampling with K sets of Dunn–Smyth residuals

Li(yi|β, ψ, θ) =

∫

Bi

φd(zi; Rθ)dzi =

∫

Bi

φd(zi; Rθ)

∏d
j=1 fi j(yi j)

∏d
j=1 φ(zi j)

g(zi)dz =

d∏

j=1

fi j(yi j)
∫

Bi

φd(zi; Rθ)∏d
j=1 φ(zi j)

g(zi)dz

which can be approximated using with K samples from g, viz.

Li(yi|β, ψ, θ) ≈
d∏

j=1

fi j(yi j)
K∑

k=1

φd(ζi; Rθ)∏d
j=1 φ(ζi j)

=

d∏

j=1

fi j(yi j)
K∑

k=1

c(ζk; Σ)

where ζi ∼ g(ζi).

Appendix A.2. Proof of equivalence to EM algorithm
Following Dauwels et al. [6], but in a frequentist framework, we have an EM algorithm with

Σ̂m+1 = arg max
Σ

Q(Σ, Σ̂m),

where

Q(Σ, Σ̂(m)) =

N∑

i=1

∫

zi

f (zi|yi; Σ̂(m)) ln f (zi; Σ)dzi,

where zi are the latent Gaussian vectors and yi are the discrete data, both of dimension d. Now f (zi; Σ) = φd(zi; Σ) and

f (yi|zi; Σ) = f (y = y′|z = z′; Σ) =


1 if zi ∈ Ai = ∩ j[Φ−1{F(y−i j)},Φ−1{F(yi j)}],
0 otherwise.

And so f (zi|yi; Σ) ∝ f (yi|zi; Σ) f (zi; Σ) = 1zi∈Aφd(zi; Σ). This is the truncated multivariate normal distribution with
covariance matrix Σ.

To carry out an MCEM algorithm we need to sample from f (ζi|yi; Σ̂m) at the mth iteration. We do this by first
sampling Dunn–Smyth residuals, whose distribution is a truncated multivariate normal with identity covariance matrix
(see equation A.1), and then weight observations accordingly. So the weighted sample (ζk

i ,wik(Σ(m))) is distributed
according to f (ζi|yi; Σ(m)) where ζk

i ∼ g(ζ) are randomized Dunn–Smyth residuals, and

w′ik(Σ(m)) =
f (ζk

i |yi; Σ(m))

g(ζk
i )

∝ φd(ζk
i ; Σ)

∏
j φ(ζk

i j)
= c(ζk

i ; Σ), wik(Σ(m)) =
w′ik(Σ(m))

∑
k w′ik(Σ(m))

=
c(ζk

i ; Σθ)∑
k c(ζk

i ; Σθ)

as in Eq. (4). So

Q(Σ, Σ̂(m)) =

N∑

i=1

∫

zi

f (zi|yi; Σ̂(m)) ln f (zi; Σ)dzi ≈
∑

i

∑

k

wik(Σ(m)) ln φd(ζk
i ; Σ)

And hence for covariance parameters θ the derivative needed for maximization is given by

∂

∂θ
Q(Σθ, Σ̂

(m)
θ ) ≈

∑

i

∑

k

wik(Σ(m)
θ )

∂

∂θ
ln φd(ζk

i ; Σθ)

This is the same form as Eq. (4). �
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Appendix A.3. Proof of consistency
We aim to prove the consistency of estimates obtained by estimating a Gaussian copula model with discrete

marginal distributions using Algorithm 1. We follow the standard proof of consistency for maximum likelihood found
in Ferguson [11], for instance. The standard proof proceeds by defining τ(θ), which is maximized at the maximum
likelihood estimate (MLE) θ̂,

τ(θ) = ln
`n(θ)
`n(θ0)

=
1
n

n∑

i=1

ln
f (yi; θ)
f (yi; θ0)

,

where yi is a d-vector of data corresponding to observation i ∈ {1, . . . ,N}. This quantity then converges to its expec-
tation under θ0 by the Strong Law of Large Numbers, viz.

1
n

n∑

i=1

ln
f (yi; θ)
f (yi; θ0)

P−→ Eθ0

{
ln

f (y; θ)
f (y, θ0)

}
.

This expectation is equal to the negative of the Kullback–Leibler divergence,

Eθ0

{
ln

f (y; θ)
f (y, θ0)

}
= −K(θ0, θ) < 0

unless f (y, θ) = f (y; θ0). Therefore the MLE maximizes τ(θ) (assuming identifiability), which converges to a function
which is maximized by θ0, from which θ̂

p−→ θ0 follows. A difficulty in our case is that we are not using MLEs for
estimation — Algorithm 1 is a two-step estimation procedure, where we estimate β from a marginal likelihood and
then maximize the conditional likelihood given these parameter estimates. We wish to show that treating β as nuisance
parameters, we can get consistent estimates of parameters of R in the covariance model.

Conditions: We assume the following mild regularity conditions, where Conditions 1–6 equivalent to those found in
Chapter 10 of Casella and Berger [5], for example.

1. The observations yi ∼ f (y, β,R) for i ∈ {1, . . . ,N} are independent.

2. β is identifiable, i.e., if β , β′ then f (y, β,R) , f (y, β′,R).

3. The densities f (y, β,R) have common support, and f is differentiable in β.

4. The parameter space Ω contains an open set ω of which the true parameter β0 is an interior point.

5. For every y inY, the density f (y, β,R) is continuous and at least three times differentiable in β, and
∫

f (y, β,R)dy
can be differentiated three times under the integral sign.

6. There exists an open subset of ω ∈ Ω containing β0 and an integrable function Mr(y), such that for every β ∈ ω
and y ∈ Y, |∂3 ln f (y, β,R)/∂3βr | ≤ Mr(y) for r ∈ {1, . . . , dim(β)}, where Eβ0 {Mr(y)} < ∞

7. For r ∈ {1, . . . , dim(β)} there are bounded functions Vr(y) such that in the neighborhood of β0 for any fixed R,
{∂ ln f (yi, β,R)/∂βr}2 ≤ Vr(y) with Eθ0 {Vr(y)} < ∞.

We proceed by defining the likelihood for θ = (β,R) as

`n(θ) = ln `n(β,R) =
1
n

n∑

i=1

ln f (ti; β,R),

where β is the d × K matrix, with β j,k being the coefficient for the kth covariate regressed on the jth variable. Let
θ0 = (β0,R0) be the true parameters, and β̂ be the matrix of coefficients where the jth row is found by maximizing the
jth marginal likelihood, as in step 1 of Algorithm 1,

β̂ j = argmaxβ j

n∑

i=1

ln L j(y j, β j). (A.2)

We now state a result, without proof, concerning the consistency of the marginal parameters.

16



Lemma 2. Eq. (A.2) is equivalent to using independence estimating equations in the GEE framework, which under

Conditions 1–6, are consistent [23], so β̂
P−→ β0.

Analogously to the proof of standard maximum likelihood estimation, the value R̂ found by Algorithm 1 maxi-
mizes τ′(R), where

τ′(R) = ln
`n(β̂,R)
`n(β̂,R0)

=
1
n

n∑

i=1

ln
f (yi; β̂,R)
f (yi; β̂,R0)

.

However, we cannot use the Law of Large Numbers directly to show this converges to its expectation under θ0 as each
summand of τ′(R) is a function of all the data, through β̂. Instead, we develop the following result.

Lemma 3. `n(β̂,R)/n
P−→ Eθ0 {ln f (y, β0,R)} as n→ ∞.

Proof. Under Conditions 1–7 one has that, for any fixed R, the Taylor expansion of the standardized likelihood around
β0 is

1
n
`n(β̂,R) =

1
n
`n(β0,R) +

1
n

(β̂ − β0)>
∂

∂β
`n(β,R)

∣∣∣∣∣
β̃
, (A.3)

where β̃ is between β̂ and β0. By the Cauchy–Schwarz inequality, the last term is
∣∣∣∣∣∣

∣∣∣∣∣∣
1
n

(β̂ − β0)>
∂

∂β
`n(β,R)

∣∣∣∣∣
β̃

∣∣∣∣∣∣

∣∣∣∣∣∣ ≤
1
n
||β̂ − β0|| ×

∣∣∣∣∣∣

∣∣∣∣∣∣
∂

∂β
`n(β,R)

∣∣∣∣∣
β̃

∣∣∣∣∣∣

∣∣∣∣∣∣.

By Lemma 2, we know ||β̂ − β0|| = op(1). We then look at the square of the last term, viz.

∣∣∣∣∣∣

∣∣∣∣∣∣

{
∂

∂β
`n(β,R)

∣∣∣∣∣
β̃

} ∣∣∣∣∣∣

∣∣∣∣∣∣
2

=

dim(β)∑

r=1


n∑

i=1

∂

∂βr
ln f (yi, β,R)

∣∣∣∣∣
β̃



2

= OP(n2),

which follows from the regularity conditions. Hence
∣∣∣∣∣∣

∣∣∣∣∣∣
∂

∂β
`(β,R)

∣∣∣∣∣
β̃

∣∣∣∣∣∣

∣∣∣∣∣∣ = OP(n),

So the remainder term in Eq. (A.3) is given by
∣∣∣∣∣∣

∣∣∣∣∣∣
1
n

(β̂ − β0)>
∂

∂β
`(β,R)

∣∣∣∣∣
β̃

∣∣∣∣∣∣

∣∣∣∣∣∣ ≤
1
n
||β̂ − β0|| ×

∣∣∣∣∣∣

∣∣∣∣∣∣
∂

∂β
`n(β,R)

∣∣∣∣∣
β̃

∣∣∣∣∣∣

∣∣∣∣∣∣ =
1
n

oP(1)OP(n) = oP(1).

This in turn implies

1
n
`n(β̂,R) =

1
n
`n(β0,R) +

1
n

(β̂ − β0)>
∂

∂β
`n(β,R)

∣∣∣∣∣
β̃

=
1
n
`n(β0,R) + oP(1).

Hence for any R, `n(β̂,R)/n
P−→ Eθ0 {ln f (y, β0,R)} .

Now we can return to the standard proof. We have

τ′(R) = ln
`n(β̂,R)
`n(β̂,R0)

=
1
n

n∑

i=1

ln
f (yi; β̂,R)
f (yi; β̂,R0)

P−→ Eθ0

{
ln

f (y; β0,R)
f (y, β0,R0)

}
= −K(θ0, θ) < 0

unless f (y, θ) = f (y; θ0), and so θ̂
P−→ θ0 and hence R̂

P−→ R0.
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