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ABSTRACT 

Comparisons of biodiversity patterns within lineages that occur across major climate 

gradients and biomes, can provide insights into the relative roles that lineage history, 

landscape and climatic variation, and environmental change have played in shaping regional 

biotas. In Australia, while there has been extensive research into the origins and patterns of 

diversity in the Australian Arid Zone (AAZ), how diversity is distributed across this biome 

and the Australian Monsoonal Tropics (AMT) to the north, has been less studied. We 

compared the timing and patterns of diversification across this broad aridity gradient in a 

clade of lizards (Strophurus: phasmid geckos) that only occur in association with a unique 

Australian radiation of sclerophyllous grasses (Triodia: spinifex). Our results indicate that 

overall genetic diversity is much higher, older and more finely geographically structured 

within the AMT, including distantly related clades endemic to the sandstone escarpments of 

the Kimberley and Arnhem Plateau. Niche modelling analyses also suggest that the 

distribution of taxa in the AMT is more strongly correlated with variation in topographic 

relief than in the AAZ. The two broad patterns that we recovered – i) lineage endemism 

increases as latitude decreases, and ii) endemism is tightly correlated to rocky regions –

parallel and corroborate other recent studies of habitat generalists and specialised saxicoline 

lineages occurring across these same regions. Early Miocene diversification estimates also 

suggest that, soon after Triodia grasses colonised Australia and began to diversify in the 

Miocene, phasmid geckos with Gondwanan ancestry shifted into these grasses, and have 

subsequently remained closely associated with this unique vegetation type. 

 

Keywords: Australian Arid Zone, Australian Monsoonal Tropics, cryptic diversity, northern 

deserts, spinifex, vegetative change  



  

1. Introduction 

 The interaction between local climatic change and topographic variation plays a pervasive 

role in shaping the contemporary distribution of biological diversity (Carnaval et al., 2009; 

Hewitt, 1996; Qiu et al., 2011). During the Neogene, the vast Australian continent 

experienced a profound spread and intensification of aridity, while remaining relatively 

geologically and topographically stable (Bowman et al., 2010; Byrne et al., 2011; Byrne et 

al., 2008). Comparative phylogenetic and phylogeographic analyses of lineages that occur 

across environmentally contrasting biomes provide valuable opportunities to understand how 

patterns of biodiversity may have been shaped by this combination of changing climate and 

stable topography (Byrne et al., 2011; Byrne et al., 2008; Crisp et al., 2009; Oliver et al., 

2014a; 2014c).  

 The two largest Australian biomes are the Australian Arid Zone (AAZ) and the Monsoonal 

Tropics (AMT), which share an extensive border spanning the north of the continent 

(Bowman et al., 2010; Byrne et al., 2008; Fig. 1). There has been a longstanding tendency in 

Australian biogeography to consider AAZ lineages derived from mesic ancestry (Chapple 

and Keogh, 2004; Ladiges et al., 2011; Toon et al., 2012; Williams et al., 2010), and many 

studies have found signatures of younger diversity and range-expansion within this region 

(Fujita et al., 2010; Jennings et al., 2003; Kuch et al., 2005; Marin et al., 2013). However, 

despite good evidence that many contemporary deserts have formed fairly recently (<4 Ma; 

Fujioka et al., 2009), significant genetic structure (especially in rocky ranges) and divergent 

lineages raise the possibility that arid and semi-arid habitats have had a much longer history 

(Kear et al., 2016; Maryan et al., 2007; Melville et al., 2011; Oliver and McDonald, 2016; 

Shoo et al., 2008).  

 The history and biogeography of the AMT remains more poorly resolved. Genetic insights 

into patterns of diversity within this biome, and its interrelationships with other biomes such 



  

as the AAZ, are only just beginning to emerge. Work to date has indicated two broad themes. 

First, lineages in arid areas tend to have wider distributions and lower genetic diversity, both 

along aridity gradients within the AMT, and also between the AMT and AAZ (Fujita et al., 

2010; Kuch et al., 2005; Laver et al., in review; Oliver et al., 2014c; Pepper et al., 2011b). 

Second, more specialised taxa (particularly saxicoline taxa) tend to show much higher levels 

of localised endemism, especially in the AMT, but also to lesser extent in the AAZ (Laver et 

al., in review; Pepper et al., 2011a; Potter et al., 2012; Rosauer et al., 2016). Evidence also 

suggests a potentially complex history of transitions between the AAZ and AMT biomes (e.g. 

Catullo and Keogh, 2014; Nielsen et al., 2016; Oliver et al., 2014a; Toon et al., 2015). To 

date, phylogeographic and phylogenetic work has focused on widespread terrestrial/generalist 

vertebrate taxa, or specialist saxicoline taxa. Studies of additional taxa with a range of 

ecological associations are needed to refine understanding of patterns of diversity and 

distribution.  

 A globally unique feature of the Australian environment is the abundant, drought-tolerant, 

sclerophyllous grasses of the genus Triodia (spinifex). Since initial colonisation of the 

continent in the Miocene, this lineage has radiated to become a dominant habitat component 

across ~30% of Australia, especially on disjunct rocky plateaux of the AMT, and over much 

larger expanses of the AAZ (Bowman et al., 2010; Crisp and Cook, 2013). Spinifex provides 

food, shelter, and a thermally-buffered microhabitat for a diverse associated biotic 

community (Pianka, 1981; Wilson, 2012), including apparently specialised lineages (e.g. 

birds, (Christidis et al., 2010); mammals, (Haythornthwaite and Dickman, 2006); reptiles, 

(Gordon et al., 2010); and invertebrates (Dessen, 2008)). Many Australian lizard taxa are 

particularly closely associated with spinifex (Rabosky et al., 2007b; Wilson and Swan, 2013; 

Wilson, 2012).  



  

  One of the most diverse lineages of specialised spinifex-dwelling (graminicolous) lizards 

are the colloquially named ‘phasmid’ geckos (5 species) within the genus Strophurus (19 

species). These geckos only occur on spinifex habitat (King and Horner, 1993; Storr, 1978; 

Wilson and Swan, 2013; Wilson, 2012) and have a distinctive morphology including small to 

very small size (44–56mm SVL; see Appendix: Fig. A.1), an elongate body-form, and, most 

distinctively, a ‘pin-striped’ dorsal, and sometimes ventral, colour pattern (Nielsen et al., 

2016; Wilson and Swan, 2013; Wilson, 2012). The phasmid Strophurus include five 

recognised species distributed across the AMT and AAZ: i) Strophurus jeanae – distributed 

throughout the northern deserts of the AAZ, from the Pilbara craton to the central ranges; ii) 

S. mcmillani – west Kimberley, iii) S. robinsoni – east Kimberley (Ord Region), iv) S. 

horneri – Arnhem Land (Top End), and v) S. taeniatus – Northern Deserts Region from the 

southwest Kimberley to the Selwyn Ranges (Fig. 1). Many of these taxa are difficult to 

distinguish (e.g. S. jeanae and S. taeniatus were synonymous for most of the last century; 

Storr, 1988). They are also relatively rarely collected, and both previously unknown 

populations (Vanderduys et al., 2012) and new species continue to be discovered (Oliver and 

Parkin, 2014). This suggests further diversity remains unrecognised, a pattern that has 

emerged from many other taxa within the AMT (e.g. Moritz et al., 2015; Oliver et al., 2016; 

Oliver et al., 2012).  

 The broader genus Strophurus, in which the phasmid geckos are placed, is part of a 

Gondwanan radiation with a history pre-dating the isolation of Australia from Antarctica 

(Oliver et al., 2009; Oliver and Sanders, 2009). Recent work by Nielsen et al. (2016) 

suggested that Strophurus, including the phasmid group, may have a long history in the AAZ. 

Phylogenetic analyses of spinifex have also suggested that while this lineage colonised 

Australia post the final break-up of East Gondwana (Miocene), it too initially diversified in 

what is now the arid zone, with subsequent colonisation of the AMT (Toon et al., 2015). 



  

Given the potential origins and long histories of both spinifex and spinifex-dwelling phasmid 

geckos in the AAZ, it could be predicted that phasmid geckos may show higher genetic 

structuring within this biome. Alternatively, based on recent analyses of other vertebrate 

groups, the more topographically complex and wetter landscapes of the north could be 

predicted to hold higher genetic structure.  

 Using newly generated genetic data, we compared lineage diversity and distributions of 

phasmid geckos across the broad aridity gradient and regions of the AMT and AAZ. Using all 

available tissues, we assembled a multi-locus dataset and used phylogenetic and species 

delimitation analyses to assess and compare levels and patterns of genetic diversity. We 

implemented dating estimation methods to further compare the timescales of diversification 

across the group. Finally, we performed species distribution modelling to assess if the 

environmental variables that best correlated with the distributions of phasmid Strophurus 

lineages varied between regions and biomes.  

 

2. Materials and methods 

2.1. Sampling 

Tissues used in genetic analyses are listed in Table A.1. Our sampling included all tissues 

registered in Australian museums (47 individuals) across all five currently recognised species 

of phasmid Strophurus geckos (Fig. 1, Table A.1a). Sequence data for an additional 57 

outgroup taxa (22 from Strophurus) were included to provide calibration nodes for dating 

analyses (Table A.1b). We sequenced a portion of the mitochondrial NADH dehydrogenase 

subunit 2 (ND2) locus for all samples, and three nuclear loci – phosducin (PDC), the 

prolactin receptor (PRLR), and the recombination-activating gene-1 (RAG-1) – for majority 

of individuals (including outgroups). Details and characteristics of genetic data are listed in 

Table A.2. Primer sequences and amplification protocols are provided in Table A.3. 



  

Genomic DNA was extracted from liver or tail tip samples using a Qiagen DNeasy 

extraction kit or a Qiaxtractor (Qiagen, Valencia, CA). PCR products were purified using 1uL 

of a 20% dilution of ExoSAP-IT (US78201, Amersham Biosciences, Piscataway, NJ), 

incubated at 37°C for 30 min, followed by 80°C for 15 min. Clean products were then sent to 

genetic services companies (Macrogen, Seoul, South Korea and DNASU, Arizona State 

University, USA) with amplicons sequenced in both directions. Gene sequences were 

assembled and edited using GENEIOUS v.6.1.7 (Drummond et al., 2008), and alignments were 

visually examined and translated into amino acids to confirm correct reading frames and full 

translation. Previously published sequences were also used in analyses and all new sequences 

were deposited to GenBank (Table A.1).  

 

2.2.  Nucleotide data and phylogenetic analyses 

Congruence between mitochondrial and nuclear data was assessed by estimating 

phylogenies for i) single loci, ii) a concatenated nuclear dataset, and iii) a combined four 

locus dataset (mtDNA + nuDNA). Models of nucleotide substitution and partitioning 

strategies (Table A.4) were selected for each locus in PARTITIONFINDER v1.1.1 (Lanfear et 

al., 2012) using the Bayesian information criterion (BIC). Phylogenetic relationships were 

estimated using Maximum-Likelihood (RAXML v8.0.24; Stamatakis, 2006; Stamatakis et al., 

2008) and Bayesian (MRBAYES v3.2.2; Ronquist and Huelsenbeck, 2003) analyses 

implemented through the CIPRES Science Gateway 3.1 for online phylogenetic analysis 

(Miller et al., 2010). Default RAXML settings were used in CIPRES following selected 

partition strategies. Bayesian analyses in MRBAYES also used selected models and partitions, 

running four independent Markov Chain Monte Carlo (MCMC) chains with 4 x 10 million 

generations sampling every 1000. Convergence and stability of log likelihoods were 

confirmed in TRACER v1.6 (Rambaut et al., 2014) and ARE WE THERE YET (AWTY; 



  

Wilgenbusch et al., 2004), then Maximum Clade Credibility (MCC) trees were constructed 

after 20% of samples were discarded as burn-in.  

To assess and compare diversity levels across regions and biomes average, minimum, and 

maximum genetic distances (Tamura Nei [TN]; Tamura and Nei, 1993) within and between 

major mtDNA (genetic divergence  8%) lineages within the phasmid geckos were 

calculated in MEGA v6.06 (Tamura et al., 2013). An 8% divergence threshold was chosen as 

it is equal to the divergence between other currently recognised Diplodactylid species, 

Oedura gemmata and O. marmorata, (Oliver et al., 2014c). This threshold is not considered 

as evidence of species status, rather to identify potentially divergent lineages which we then 

went on to test for evolutionary independence (see below). Phylogenetic tree methods can be 

problematic at the level of population genetics or lower diversity where reticulation and 

recombination can lower resolution and increase uncertainty of relationship estimation 

(Posada and Crandall, 2002; Vriesendorp and Bakker, 2005). For this reason, lineage 

relationships were also visualized by generating phylogenetic networks of mtDNA and 

concatenated nuDNA separately, using the Neighbor-Net algorithm (Bryant and Moulton, 

2004) in SplitsTree v4.10 (Huson and Bryant, 2006). As this method only compares the 

pairwise divergences between sequences rather than estimating evolutionary history, 

concatenating the nuclear loci is not an issue. We assessed support for inferred splits with 

1000 bootstrap pseudoreplicates.  

To determine if demographic histories varied in different biomes we also tested for 

signatures of range expansion in mtDNA using Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 

1997) neutrality tests calculated in DNASP v5.10.01 (Librado and Rozas, 2009) for the major 

lineages identified (see below).  

For accurate comparison of diversity patterns between regions it is important to assess if 

genetic structure observed is not a signal artefact of historical structure persisting in certain 



  

genetic markers. We therefore tested the independence of divergent mtDNA lineages detected 

using coalescent species delimitation with the program Bayesian Phylogenetics and 

Phylogeography (BP&P) v2.1 (Yang, 2015), which provides evidence for population 

structure if not species (Sukumaran and Knowles, 2017). We conducted multiple Bayesian 

species delimitation analyses using a nuDNA dataset (three loci) we had phased with the 

PHASE v2.1 program (Stephens and Donnelly, 2003; Stephens et al., 2001) and SeqPHASE 

online (Flot, 2010). The starting tree topology used matched the mtDNA tree and we 

explicitly tested for the distinctness of nine major lineages (see Results; Figs. 2 and 3, and 

Table A.5). We ran multiple BP&P analyses varying population size parameters ( s) and 

divergence time the species tree root ( 0). Gamma priors were assigned as i) both s and 0 

equal to G(1, 10), mean = 0.1; ii) both s and 0 equal to G(2,2000), mean = 0.001; iii) s – 

G(1,10), 0 – G(2,2000); and iv) s – G(2,2000), 0 – G(1,10). Other divergence time 

parameters were assigned the Dirichlet prior (Yang and Rannala, 2010]: equation 2). Species 

delimitation rjMCMC algorithm 0 with finetune  = 2 was used with species model prior set 

to 0 so as not to favour symmetric trees. Analyses were run for 100,000 generations, 

sampling every two, with a burn-in of 8,000; and two independent runs were conducted with 

different starting seeds to ensure consistency of results.  

 

2.3.  Phylogenetic dating 

To understand the evolutionary history of the phasmid geckos within different biomes we 

estimated timescales of diversification using StarBEAST2 v0.13.5 (Ogilvie et al., 2017). We 

wanted to build upon and improve the robustness of the phylogenetic dating analysis 

conducted in previous work by Nielsen (2016) by including an additional nuclear locus and 

using a multi-species coalescent estimation method. We analysed the combined four locus 

mitochondrial and nuclear dataset, with simplified substitution model and partitioning 



  

strategies (Table A.4), and a strict clock for each locus, with an overall Birth-Death prior. In 

addition, we included a single secondary constraint on the species-tree root height – a normal 

prior with mean = 46.9 Ma, standard deviation = 2.4 – derived from the age of the family 

Diplodactylidae as estimated by previous fossil calibrated gecko phylogenies (Skipwith et al., 

2016). Two independent analyses were run for 20 million generations, sampling every 1000. 

Convergence and stability were assessed in TRACER v1.6 (Rambaut et al., 2014) and AWTY 

(Wilgenbusch et al., 2004), and we ensured adequate ESS values for all parameters (ESS > 

200). After 20% of samples were discarded as burn-in from each analysis, remaining MCC 

trees were combined and summarised with TREEANNOTATOR v1.8.0 (Drummond et al., 

2012). 

 

2.4.  Distribution modelling 

In addition to comparing genetic diversity patterns across biomes, we wanted to assess if 

distributions of phasmid Strophurus lineages in different regions were closely correlated with 

the same or different ecological variables. The distribution of spinifex varies in the AMT – 

where it tends to be patchy and associated with oligotrophic soils in areas such as 

escarpments and surrounds (Bowman et al., 2010), compared to the AAZ – where it is more 

continuous and widespread (Crisp et al., 2004; Crisp and Cook, 2013). With this in mind, we 

predicted that environmental variables associated with topographic complexity (rock 

escarpments) might correlate more strongly with distributions of phasmid geckos in the AMT 

than the AAZ. We used MaxEnt v3.3.3 (Phillips and Dudík, 2008) to estimate species 

distribution models (SDMs) for the three major clades of phasmid Strophurus (see Results) 

and to compare the correlation of climate, geology and vegetation features with distributions 

of different taxa between biomes. Analyses were conducted at major clade level (i.e. 

Kimberley, Top End, and AAZ) because species and lineage level would have resulted in 



  

sample sizes too small to accurately model distributions (particularly within the Kimberley 

region). We chose eleven environmental variables (see Table A.6a) considered possible 

determinants of distributions for these geckos to compare in the SDMs. Modelling was 

conducted using all available museum records, which comprised 66 records for Kimberley, 

80 for Top End and 255 records for the AAZ, using a regularisation multiplier of 1 and 

sampling 10,000 background points from a 2.5 degree radius around presence locations. For 

each lineage the model was repeated 20 times using the MaxEnt bootstrapping option, with 

the median result retained. Model performance was evaluated using the sample withheld for 

testing in each replicate. 

 

3. Results 

3.1.  Phylogenetic relationships and lineage diversity 

Monophyly of the clade comprising the five recognised phasmid gecko species relative to 

other Strophurus was strongly supported in all analyses with concatenated datasets (i.e. 

nuDNA only vs. all loci [mtDNA + nuDNA]; Figs. A.2–3). The monophyly of this clade was 

similarly supported in individual locus analyses for two loci (PRLR, RAG1). Though the 

remaining two loci (ND2, PDC) did not recover strong support (i.e. <75 Maximum-

Likelihood bootstraps, <0.90 Bayesian posterior probabilities) for this node there were also 

no strongly supported incongruent relationships. Within the phasmid Strophurus clade, three 

geographically cohesive lineages were also strongly supported in all analyses: two clades in 

the AMT – i) mcmillani/robinsoni (Kimberley/Ord Region), and ii) horneri/taeniatus 

(Arnhem Land/Northern Deserts); and a single lineage from northern AAZ iii) jeanae (Figs. 

A.2–7). The pattern of relationships between these three lineages was not resolved.  

We recovered deep mtDNA structure within all nominal species except S. jeanae. The 

mcmillani/robinsoni clade comprised five lineages with mean Tamura-Nei (TN) mtDNA 



  

divergences ranging from 10.5–14.4% (Figs. 2a and 3, lineages 1–5; Table A.5). The 

distribution and relationships of these five lineages were inconsistent with current taxonomy, 

and samples identified as S. robinsoni render S. mcmillani paraphyletic. Within the Arnhem 

Land/Northern Deserts clade the two currently recognised species (S. horneri and S. 

taeniatus) formed two discrete mtDNA lineages, also showing further divergences (5.6–

9.2%; Figs. 2a and 3). Mitochondrial divergences within the relatively restricted S. horneri 

from the Arnhem Plateau were comparable to or deeper than those within the much more 

widely distributed Northern Deserts taxon S. taeniatus (S. taeniatus ‘west’ and S. taeniatus 

‘east’, Fig. 2a, Table A.5). In contrast to high mtDNA diversity in the AMT, diversity within 

S. jeanae occupying the AAZ is comparatively shallow (0–4.7%) despite the fact this taxon 

has the widest distribution.  

Analyses based on nuDNA (PDC, PRLR and RAG1) provided no evidence of further 

subdivisions or recognition of distinct taxa within the Kimberley/Ord Region and Arnhem 

Land/Northern Deserts clades (Fig. 2b). However, these loci typically used in phylogenetic 

studies across highly divergent genera often lack sufficient resolution for phylogeographic 

studies. 

Tajima’s D tests for range expansion within all three clades of phasmid geckos were not 

significant: Kimberley/Ord Region (D = 0.010, P = 0.545); Arnhem Land/Northern Deserts 

(D = 0.196, P = 0.623); and AAZ (D = -0.700, P = 0.258). The Fu’s Fs statistic for the AAZ 

jeanae lineage however, was significant (Fs = -6.448, P = 0.009*), unlike those of the AMT 

clades (mcmillani/robinsoni – Fs = 1.338, P = 0.661, horneri/taeniatus – Fs = -0.225, P = 

0.274), implying a signature of demographic expansion within the AAZ.    

Species delimitation tests in Bayesian Phylogenetics and Phylogeography (BP&P) 

consistently supported the distinctness of the nine divergent mtDNA lineages in the 



  

Kimberley and Top End ( 0.98 Posterior Probability), despite limited recovery in nuDNA-

based phylogenetic analyses.  

 

3.2.  Divergence dates 

Age estimates from the multi-species coalescent analysis indicated the crown radiation of 

the phasmid geckos dates to the early Miocene (21.6 Ma, 95% Highest Posterior Density 

[HPD] 17.3–25.9 Ma; Table 1). Estimated crown ages for the AMT clades tended to date to 

the late-Miocene or early-Pliocene (6.6–7.9 Ma, HPD 3.6–10.1 Ma; Table 1), while diversity 

within the single AAZ lineage is comparatively young (1–3 Ma; from preliminary analyses 

which included intra-specific sampling not shown here).  

 

3.3.  Distribution models 

The environmental variables that contributed most to the species distribution models 

(SDMs; Fig. A.8) differed between the three clades of phasmid Strophurus (see Table A.6b), 

although total annual precipitation contributed the highest percentage to all models. Climatic 

factors such as precipitation and radiation accounted for 88% of the distribution of the jeanae 

lineage in the AAZ. Lineages in the AMT showed a stronger signal from physical habitat 

variables; most notably slope (related to local topographic relief) contributed ~19% of the 

SDMs for both AMT lineages, as opposed to <3% for the AAZ lineage. Within the AMT 

lineages further differentiation was evident. Climatic (precipitation) variables contributed 

~50%, and physical habitat (topographic and vegetation) variables contributed ~50% to 

prediction of the horneri/taeniatus distribution in the Top End/Northern Deserts. While in 

comparison, climatic variables, especially those associated with precipitation (including 

rainfall seasonality), explained almost 80% of the distribution of mcmillani/robinsoni within 



  

the Kimberley. Performance for the AAZ, Top End/Northern Deserts and Kimberley models, 

according to the area under the curve (AUC) was 0.80, 0.90, and 0.94 respectively. 

 

4. Discussion 

We present a detailed phylogeographic and phylogenetic study of phasmid Strophurus, a 

lineage of spinifex-specialised geckos from the Australian Monsoonal Tropics (AMT) and 

Arid Zone (AAZ) biomes. Our analyses strongly support the monophyly of the phasmid 

geckos (concordant with previous work; Nielsen et al., 2016) and further support three major 

clades: i) jeanae – a single species widespread in the AAZ; ii) horneri/taeniatus – two 

species occurring in the semi-arid Northern Deserts (widespread) and Monsoonal Tropics 

(AMT) (restricted); and iii) mcmillani/robinsoni complex – entirely restricted to the AMT. 

Though not overt from the slowly evolving nuDNA loci sequenced here, the latter includes at 

least five deeply divergent mtDNA lineages consistently supported as evolutionarily distinct 

by BP&P. Further work is required to clarify the evolutionary significance of these lineages, 

but these results suggest the possible presence of additional cryptic candidate taxa within 

both the Kimberley and Top End regions. Relationships between the three major clades are 

not resolved.  

 

4.1.  Contrasting distributions across an aridity gradient 

An abundance of deeply divergent, highly geographically-structured, and taxonomically 

unrecognised lineages is a striking, and until recently overlooked, pattern emerging from 

multiple phylogeographic analyses of vertebrates from the AMT (e.g. Moritz et al., 2015; 

Oliver et al., 2014c; Potter et al., 2016; Rosauer et al., 2016). Geographic structuring appears 

particularly pronounced in topographically complex escarpments of the Kimberley (Doughty, 

2011; Oliver et al., 2010; 2014b; Potter et al., 2012) and Arnhem Land (Catullo et al., 2014b; 



  

Cracraft, 1991; Ladiges et al., 2003; Oliver and Parkin, 2014). The phasmid geckos conform 

to these patterns, despite having an ecology not linked (at least not directly) to rocks. Five 

divergent mitochondrial lineages (mcmillani/robinsoni complex) were identified in the 

Kimberley/Ord Region (divergences deeper or close to species-level divergences in other 

Diplodactylid geckos [e.g. 8–16%; Oliver and Sanders, 2009; Oliver et al., 2014c]; Fig. 3, 

lineages 1–5; Table A.5), and at least two (within S. horneri) on the Arnhem Plateau. Most of 

these mtDNA lineages were not recovered by slowly-evolving nuclear loci used in this study, 

however analyses with rapidly-evolving nuclear exons and greater sampling are required to 

further test their evolutionary significance (see Potter et al., 2016). In contrast, just one 

lineage with low genetic diversity (S. jeanae), also showing evidence of recent range 

expansion, is widespread across much of the AAZ – again a pattern replicated in many taxa 

(Chapple and Keogh, 2004; Fujita et al., 2010; Jennings et al., 2003; Oliver et al., 2014c). 

Although some groups, including spinifex grasses, show evidence of genetic structure within 

rocky isolates in the AAZ, especially the Pilbara (Anderson et al., 2016; Maryan et al., 2007; 

Melville et al., 2011; Pepper et al., 2008; 2011a), phasmid geckos show no evidence of this.  

These contrasting patterns across aridity gradients in Australia could be attributed to 

multiple factors: differing biome age (i.e. time for speciation; Fujita et al., 2010; Pepper et al., 

2011b) and/or differing net diversification (speciation minus extinction) rates in different 

regions (Hutter et al., 2013; Rabosky et al., 2007a). Given the small number of lineages 

involved and associated uncertainty in ancestral state estimates, our data provide no strong 

evidence phasmid geckos have a longer history in the AMT. However, in conjunction with 

spatial modelling, they do suggest topographic complexity is an important correlate with 

lineages in the AMT, but not in the AAZ. Empirically, the most geographically restricted 

lineages are associated with regions of geologically stable, ancient, and exposed escarpment 

in the Kimberley and Arnhem Land. Unlike many other highly geographically-structured taxa 



  

of this region, phasmid geckos are not rock specialists (saxicoline). However, in heavily burnt 

and wetter areas of the northern AMT, large areas of (typically) fire-sensitive spinifex are 

closely associated with stable rocky outcrops and often isolated by grassy savannah 

woodlands or black-soil plains (Bowman et al., 2010). In the AAZ, spinifex is more 

widespread, occurring across many different substrates (Crisp and Cook, 2013) and there is 

also strong evidence desert habitats have been highly mobile and changed significantly 

throughout the Plio-Pleistocene (Fujioka et al., 2009). Our findings would suggest that 

varying effects of underlying topography and climatic variation on the distribution of spinifex 

in different biomes may have also shaped contrasting patterns of phylogeographic diversity in 

phasmid geckos.  

 

4.2.  Definition and evolutionary history of Australian biomes 

The distributions of phasmid gecko clades broadly correspond with and support the 

boundaries of two major Australian biomes and bioregions. One is restricted to the arid 

biome (jeanae), one to the monsoonal tropics (mcmillani/robinsoni), whilst the third 

(horneri/taeniatus) includes sub-lineages associated with the Arnhem Plateau of the AMT (S. 

horneri) and the seasonally wet semi-arid zone (Northern Deserts) along the northern edge of 

the AAZ (S. taeniatus). The latter region has long been recognised as a broad interzone 

between biomes (Cracraft, 1991; Nix, 1982) and under different definitions could be viewed 

as either part of the AAZ (e.g. aridity index < 0.5) or AMT (> 85% of rainfall concentrated in 

summer; Bowman et al., 2010). Our findings complement a growing number of phylogenetic 

studies indicating the Northern Deserts region has a unique biota (Catullo et al., 2014a; 

2014b; Fujita et al., 2010; Ladiges et al., 2011; Melville et al., 2011; Smith et al., 2011).  

There is also a general and longstanding trend to place the trajectory of evolution in the 

Australian continent into a framework of a broad directional transition from ancestral mesic 



  

environments into derived and younger arid environments (Byrne et al., 2011; Byrne et al., 

2008; Crisp et al., 2004). This framework is generally supported when comparing the central 

arid and mesothermal biomes along the east coast (Byrne et al., 2011; Byrne et al., 2008; 

Chapple and Keogh, 2004; Hugall et al., 2008; Oliver and Bauer, 2011). However, there is 

potential for much nuance to this overall theme, and the history and patterns of biotic 

interchange between seasonally mesic or arid areas (especially the AMT and AAZ) remain 

rather poorly understood (Crisp and Cook, 2013; Jabaily et al., 2014; Toon et al., 2015).  

Previous work on Strophurus suggested that the arid biome may be ancestral (Nielsen et 

al., 2016); a pattern matching results for Triodia (Toon et al., 2015). The depth of 

divergences (early- to mid-Miocene) between the three major clades of phasmid geckos, and 

late Miocene diversification in the AMT clades, further emphasises that the seasonally arid or 

arid biomes to which this lineage is now restricted date back well into the Miocene. This 

concurs with a growing number of other paleo-ecological and phylogenetic datasets 

suggesting at least seasonally arid biomes – and/or fire-affected biomes – may have a long 

history on the Australian continent (Crisp and Cook, 2013; Kear et al., 2016; Oliver et al., 

2010; Oliver and Bauer, 2011; Toon et al., 2015).  

This result also adds to studies indicating a potentially long history of biotic interchange 

between the AMT and AAZ (Catullo and Keogh, 2014; Fujita et al., 2010; Oliver et al., 

2014a; Toon et al., 2015). Interestingly, however, the lack of genetic structure, and possible 

signatures of recent range expansion, within the phasmid gecko lineage (S. jeanae) in the 

AAZ is at odds with an inferred long history within this biome (Nielsen et al., 2016). This is 

particularly true when contrasted with the patterns observed in Triodia of elevated structure 

across the Pilbara (Anderson et al., 2016), as well as in other gecko taxa distributed across the 

AAZ (Pepper et al., 2008; 2013). Considering evidence for a long history of Strophurus in 

arid biomes, we argue that the comparative patterns of genetic diversity in phasmid geckos 



  

between the AMT and AAZ biomes cannot necessarily be explained by differences in age of 

the two biomes (Nielsen et al., 2016). In particular, the age of the AMT is poorly resolved, 

but mounting evidence for relatively young (mid- to late-Miocene) crown-ages of vertebrate 

lineages within the Kimberley and Top End regions suggests endemic diversity within the 

Monsoonal Tropics biome is likely no older than many arid zone radiations (Laver et al., in 

review). These findings and observations lead us to suggest that the heterogeneity of the 

landscape, and potentially the associated differences in distribution of spinifex within the 

AMT, has played an important role in facilitating diversification and persistence of short-

range endemic lineages within the more topographically complex escarpment regions. Thus 

the low divergence in S. jeanae may reflect long-term connectivity of this widespread 

population, perhaps facilitated by a more continuous distribution of spinifex habitat within 

this biome. 

 

4.3.  An evolutionary response to vegetative change? 

 The vegetation of the Australian continent has changed profoundly over the last 20 million 

years (Crisp and Cook, 2013). However compelling demonstrations of how this has affected 

the long-term evolutionary trajectory of the Australian biota are relatively few. Phasmid 

geckos are only known to occur on spinifex habitat (King and Horner, 1993; Storr, 1978; 

Wilson and Swan, 2013; Wilson, 2012) and show a number of traits that appear to associate 

with this ecology. In particular, amongst gekkotans, thin, longitudinal and highly contrasting 

stripes are particularly rare (< 30 examples in over 1,500 species; Appendix: Table A.7) and 

often associated with utilisation of longitudinally-oriented vegetation (e.g. bamboo, sedges, 

grasses, etc.) suggesting a specialised disruptive or camouflage function (Losos, 2009). 

However, despite the ecological dominance and importance of spinifex within the AMT and 

AAZ biomes, recent studies have suggested that the sub-tribe Triodiinae only colonised 



  

Australia around the mid-Miocene (Toon et al., 2015). In contrast, phasmid Strophurus are 

members of a near endemic Australian family of lizards with Gondwanan origins. Our early 

Miocene estimate for the crown radiation of phasmid Strophurus somewhat pre-dates current 

estimates for the initial radiation of spinifex. Conservatively, this temporal overlap suggests 

that phasmid Strophurus shifted into spinifex close to when it initially began to radiate, and 

have subsequently persisted with relatively little outward ecological diversification (little 

evidence of sympatry and deeply divergent taxa such as S. jeanae and S. taeniatus differ only 

in subtle scale characters). A less conservative interpretation is that these lineages shifted into 

this niche independently. More work is required to refine estimates of how and when other 

lizards (including other lineages of Strophurus) may have specialised to use spinifex. 

However, these data all point towards a potentially strong example of ecological shift in a 

pre-existing faunal lineage following invasion and radiation of a grass that is now a dominant 

component of a continental vegetation. 

 

4.4.  Conclusions 

Spinifex-specialised phasmid Strophurus geckos exhibit higher and older genetic 

structuring associated with rock regions in the AMT and wider distributions with shallower 

divergences in the AAZ, which do not reflect the inferred long history within this arid biome. 

Despite shallow present structure in the AAZ, the old crown age of the phasmid geckos, 

along with old diversity within the AMT support the growing body of data indicating that at 

least seasonally-arid environments may have a long history within Australia dating back well 

into the Miocene. Finally, this study emphasizes that biome age or history of occupancy alone 

cannot explain the especially high genetic diversity being uncovered in the AMT compared to 

the AAZ, and implies an important role of the topographically variable landscape in shaping 

and preserving diversity within the AMT.  
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Table 1 Prior and posterior distributions for root and crown-age estimates of major lineages 

within the Australian phasmid Strophurus complex and related taxa based. Results are 

derived from a multi-species coalescent analysis conducted in StarBEAST2 on the combined 

(mtDNA+nuDNA) dataset, with a secondary calibration set for the species-tree root height. 

Values in brackets represent standard deviation around the mean for the prior, and 95% 

Highest Posterior Densities (HPD) for the posteriors.  

  
Combined 

(mtDNA+nuDNA) 
Prior 

Root (Diplodactylidae; Normal) 46.9 (42.2–51.6) 
Posteriors (crown ages) 

Root (Diplodactylidae) 46.7 (41.9–51.3) 
Australian Diplodactylidae 37.2 (31.3–43.0) 
Strophurus 25.0 (20.8–29.4) 
   Spiny-tail Strophurus clade 10.8 (8.7–12.9) 
   Phasmid Strophurus complex 21.6 (17.3–25.9) 
      1) Arid Zone – Strophurus jeanae n.a. 
      2) Kimberley/Ord – Strophurus mcmillani/robinsoni 7.9 (5.6–10.1) 

      3) Arnhem/N Deserts – Strophurus horneri/taeniatus 6.6 (3.6–9.4) 

n.a., no estimate available  



  

Figure captions 

Figure 1 Distribution of all phasmid gecko specimen records in Australian museums, 

acquired from the Atlas of Living Australia online (ALA; http://ozcam.ala.org.au/). 

Strophurus jeanae (pink) – Arid Zone; S. mcmillani (blue) – Kimberley, S. robinsoni (yellow) 

– Ord Region; and S. horneri (purple) – Arnhem Land, S. taeniatus (green) – Northern 

Deserts. Approximate boundary of the Australian Arid Zone (AAZ) is indicated by the dotted 

line as modified from Byrne et al., (2008), whilst the Australian Monsoonal Tropics (AMT) 

spans the region to the north. Brown dashed regions indicate the boundaries of the Kimberley 

Plateau and Arnhem escarpment, whilst the blue dashed line surrounds the approximate Ord 

Region as modified from Catullo et al., (2014b). Photographs courtesy of Henry Cook, Ryan 

Francis, Stephen Richards, Brendan Schembri, and Stephen Zozaya. 

 

Figure 2 SplitsTree networks of phasmid Strophurus geckos for a) mitochondrial (ND2), and 

b) concatenated nuclear (PDC, PRLR, RAG1) datasets. Number symbols indicate lineages 

within the mcmillani/robinsoni clade, circles are taxa identified as S. mcmillani, whilst 

squares are identified as S. robinsoni. Triangle symbols indicate lineages within the 

horneri/taeniatus clade (S. horneri – purple, S. taeniatus – green). Red ellipse in b) highlights 

samples of S. horneri nested within S. taeniatus. Maps display geographic distributions of the 

three major phasmid gecko lineages. 

 

Figure 3 Chronogram of divergence dates between lineages of the Australian phasmid 

Strophurus complex and congeners estimated with StarBEAST2 using the combined 

mitochondrial (ND2) and nuclear (PDC, PRLR, RAG1) dataset with a secondary calibration 

on species-tree root height. Major genetically divergent clades ( 8% Tamura-Nei 

divergence) within the phasmid geckos are highlighted, black circles on key nodes indicate 



  

posterior probability support values of 95. Red shaded rectangles over key nodes indicate 

the 95% Highest Posterior Densities (HPD) for key nodes. Green column indicates range 

from minimum to maximum of 95% HPD estimates for the crown age of Triodia within 

Australia (Toon et al., 2015). Taxa labels in brown indicate lineages within the phasmid 

Strophurus clade. 

 

 

  



  

 

  



  

 

  



  

 

  



  

Trans-biome diversity in specialised Australian lizards (Diplodactylidae: Strophurus) 
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Highlights: 
 

• Cryptic diversity in the Australian Monsoonal Tropics. 
• Lineage diversity and endemism decreases over an increasing aridity. 
• Lineage endemism correlated with topographic complexity in the monsoonal biome. 
• Early ecological shift with subsequent stasis following Miocene vegetative change. 
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