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obtain finer results. We believe that we have already partly countered the
first objection, in that generality leads to clarity, which is a necessary
first step to building more realistic generalized models, and, in addition,
we feel tﬁat some idea of robustness of already available models is
desirable., We fully concur with the second objection, but frequently the
general method obtains optimal results (often more siﬁply). Even if it does
not, it is worth knowing what it can achieve, in order to elucidate the
advantages of tools which exploit the distinctive features of particular
models. |

The transformation referred to in the opening paragraph will usually
take the form of a mapping between measure spaces. Sometimes (rarely)
measurability of this mapping is all the 'smoothness' we will require of it.
Other times we will‘demand that it be more coherent, in the sense of
preserving the component structure, and as this.is usually not provided, we
must impose conditions guaranteeing it. Typically we will find an
approximating 'coherent' mapping, and the conditions will arise in
demonstrating that the differences are irrelevant.

The question arises as to whether our approach can be generalized still
further: if there are two or more component processes, can tﬂeir independence
be removed? The answer to this, in some cases, is in the affirmative, ' For
example, it will be clear from the proof of Theorem 4.4,1 that mixing of
cluster processes will follow from joint mixing of the centre and subsidiary
processes, However, in those situations in which 'coherency' conditions on
our mapping must be imposed, it becomes correspondingly more difficult to
interpret their meaning, and probably also to verify. For this reason too
(ease of writing down conditions), we have required throughout the thesis
that our processes be stationary, although often, but not always, this
’assumption can, with care, be removed.

Chapter One, as well as providing a brief historical introduction and a

definition of point processes, aims at setting down those concepts and
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classes of point processes which are frequently employed in the body of the
dissertation. This still does not render the thesis self-contained, but
minimizes to some extent the amount of external referencing required later.

Chaﬁter Two investigates weak forms of asymptotic independence and
(ordinary) limit laws for the number of busy servers process associated with
the G/G/» queue. In particular we demonstrate that stationarity, mixing,
strong laws, fhe central limit theorem and rates of functional convergence
derive from those of the arrival and server processes under reasonable
conditions., Ergodicity does not, and rates of ordinary convergence seem to
depend on a factor associated with the transformation operation.

Functional limit laws for cluster processes are examihed in Chapter
Three. A sufficient condition for existence of our generalized cluster
process is given, and the measurability of the mapping defining the cluster
process is investigated. Then, as in Chapter Two, the functional central
limit theorem for the cluster process is shown, under suitable conditions
predictably more severe than those of Daley (1972) for ordinary convergence,
to flow from those of its components; the same is true for functional laws
of the iterated logarithm for processes witﬁ right-hand clusters, but an
unsolved problem is the extension to processes with left-hand clusters.
Related topics (functional étrong laws, the law of the iterated logarithm
for the G/G/* queue, and limit laws for doubly stochastic Poisson
processes) are then mentioned.

Chapter Four deals with the preservation of strong forms of asymptotic
independence under the clustering operation, initially attempted with a view
>to weakening the theorems in Chapter Three. This has not eventuated,
however, but the theorems are of interest in their own riéht. Strong, ¢~
and complete mixing possess an ipcreasing degree of uniformity of their
~ asymptotic independence, and this turns out to be a significant factor in
fheir preservation., In particular, it is indicated that ¢-mixing may be

maintained only under very stringent conditions (bounded clusters), whereas
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strong mixing is maintained under considerably milder conditions. It is
also argued that the probability generating functional is not an applicable
tool in these circumstances, even if the subsidiary processes are
independent.,

Chapter Five consists of characterization problems associated with
renewal point processes, of which the main contribution is contained in a
forthcoming paper (Laslett (1875)), in which we conclude that the output
process of a finite capacity GI/M/1 queue (i.e., with renewal input) is
never renewal. This is not unexpected, since the property of being a
renewal process is very much a local one., This subsection is written in the
language of queueing theory, unlike the rest of the thesis. We also look
briefly at the problem of n (= 2) independent, identically distributed
point processes being superposed to produce a renewal process. It is
conjectured that all processes must then be Poisson, and proved in the case
of the superposed processes being alternating renewal; counter-examples in
the non-identical case have come from this area.,

Chapter Six provides a list of unsolved and partially solved problems
and generaiizations. In addition to those associated with the bulk of the
thesis, it also exhibits identifiability of the cluster structure of a
stationary Pﬁisson cluster pfocess from‘a complete centre process-cluster
process record. The problem is included in this chapter, because it is not
solved in the generality required of the rest of this thesis, although it is
conjectured that it can be.

For record and referral purposes, we have included a relatively
extensive bibliography. It will be apparent that some of these references
are only of an incidental nature, whereas others are more extensively
applicable, in that they are required in the original sections of the thesis,

Once the Ihtroduction and the definition of a cluster process (Sections

3.2 and 4.4) have been assimilated, the chapters may, apart from the unsolved
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problems, be read independently. The section 'Symbols and Abbreviations'

should be perused before commencing on the thesis itself.
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SYMBOLS AND ABBREVIATIONS

Some of the details which follow are almost conventional and are given

simply to remove any possible ambiguity.

]

At times we write ab/ed rather than the more cumbersome (ab)/(ed) .

B(r)
B(X)

card{-}
ch.fl.

COV{‘ ’ *}

E{}

Pr

p.g.fl.

R(X)

o(X)

ox)¥

the usual Borel O-field of the real line R

the Borel o-field generated by the open sets of a
specified topology on the space X

cardinality of the set {<}

characteristic functional -

the covariance with respect to the appropriate probability
measure |

expectation with respect to the appropriate probability
measure

independent and identically distributed

(the probability measure of) a point process or other
specified process

probability measure on the appropriate measure space
probability generating functional

product of real or complex numbers 2,
the real line

[0, =)

a specified ring of subsets of a set X

a specified 0-field of subsets of a set X

]
the restricted product 0-field on XT s where

TcT'cR , i.,e., the smallest 0-field containing sets
of the form {z(*) € X* : x(t.) €C x(t ) €Cc } for
' 1 12 **t? n n

nez ., tl, cees B, € T and C; € o(X) . Unless



ggen.(C)

ofx;) x o(x,)

supp.f
Var{«}

A+t

"{xtt : x € A} where A is a subset of R

(xi)

otherwise specified T’ = T , and then this corresponds to

the usual product o-field.

the minimal o-field generated by sets in the class C
the product o-field of G(Xl) and O(Xz] . 1.e.,

qgen.{clxcz 10y € c(xl), C, € 0(X2]} .
the support of the function f

the variance with respect to the appropriate probability

measure

the set of mappings T - X . We will occasionally abuse

this notation e.g. if card{T} = n , we may write X" and

the members of Xt may be indexed other than by

1, s 7o '

the set of all integers {0, *1, ...}

the set of non-negative integers {0, 1, ...}

Z, v {=}

, t €ER .
complement of the set A

closure of the set 4
disjoint union of sets Ai
indicator function of the set 4

Lebesgue measure of the set A , where A € B(R)
absolute value of the real or complex number 2
scalar product of vectors @ and b

composition of mappings f and g




(xii)

() ~ g(¢) f(t)/g(t) tends to 1
)

as t tends to some limit

0(g(t))  f(£)/g(t) remains bounded
(which may be infinite)

£(£) = o(g(#)} f(¢£)/g(t) tends to O

~2eBey almost sure convergence

£, convergence in probability

—2* convergence in distribution

= weak convergence (but also used as an implication sign)

* convolution

O end of proof, or of statement of theorem etc., if no proof
given

Section x.y is the yth section of Chapter x. Section x.y;z. is the zth
subsection of Section x.y.

Statements of conjectures, definitions, lemmas, propositions and
theorems are numbered consecutively (irrespective of type) within each
section: thus Statement X.y.z. is the zth such statement in Section x.y.

Equations and similar entities are numbered consecutively within
sections and subsections, i.e., equation (y.z) is the zth equation of Section
X.y (for any x). Within chapters, we will refer to equation (y.z), but

between chapters to equation (y.z) of Chapter x (similarly with equations

from subsections).



CHAPTER 1

INTRODUCTION

1.1. Historical background

It is by no means an accident that many of the major works on point
processes do not contain an historical account of the subject - the task of
compiling such a survey would be formidable indeed. Hence we will attempt
only a brief outline of the development of the subject; further references
specific to the topics discussed in this thesis will be cited in the
appropriate places., In this introduction we will not hesitate to draw on
D. Vere-Jones' (1873) excellent account of the early history of point
processes.

Fluctuations in the counts of objects in various situations seem to
have been recognized as a stochastic problem since the latter half of the
nineteenth century, although distributions other than the simple Poisson
do not occur until the early 1920's, where they appear in problems on
accident proneness (Greenwood and Yule (1920)) and contagion (Polya (1931))
Neyman (1939) introduced the important idea of clustering.

Population processes’ are intricately part of counting processes, and
probably originate from the Bienaymé-Galton-Watson process. Development of
the theory (for finite populations) begins with Feller (1950) and Bartlett
(1954), and is extended by Moyal (1962) and Harris (1963). The study of
particle showers (Bhabha (1950), Ramakrishnan (1950)) should also be
mentioned as an early stimulus.,

Consgiderations of distributions of interval lengths can be traced bac}
as far as life-tables themselves, so -that, surprisingly, renewal theory
seems to have a longer history than counting problems. Attention seems to
have been paid to the problem of relating the two properties, counts and

intervals, of renewal processes on the line well before the 1940's (see




Lotka (1939)). The first treatment of processes with correlated intervals
ié by Wold (1949), to whom the term "point process'" is due. He also made
the first progress with processes with an infinite number of points.

Queuéing theory has provided great impetus to the theory, particularly
since Khinchin's monograph (1955). Palm (1943) attempted (without complete
success) the first limit theorem for point processes (Poisson processes as
the limit of 7 superposed processes, #n -+ ® ), as well as probing the
question of Palm measures and functions. An account of the theory of
superpositions may be read in Ginlar (1972); Palm functions and measures
have been studied by Khinchin (1955), Slivnyak (1962), Ryll-Nardzewski (1961)
and others.

During the 1960's and 1970's the theory has evolved rapidly, with
expositions on stationarity and general properties (Matthes (1963a), Beutler
‘and Leneman (1966)), statistical analysis (Cox and Lewis (1966)), spectral
theory (Bartlett (1963), Daley (1971), Vere-Jdones (1974)), Palm-Khinchin
theory (Neveu (1968), Papangelou (1974), Leadbetter (1972a), Jagers (1973)),
infinitely divisible point processes (Kerstan and Matthes (1964), Lee
(1967), (1968)), cluster models (Neyman and Scott (1958), Lewis (1964a,b),
(1969)) and probability generating functionals (Vere-Jones (1968), Westcott
(1972)). Generalizations to multivariate (Milne (1971)), multidimensional
(Fisher (1972) for a survey) and more abstract point processes (Mecke
(1967), Kallenberg (1973), Jagers (1974) and Krickeberg (1974)) have been
effected.

Of course in the above list we have omitted many topics and references
(which are not intended to indicate priority), and more complete coverage
can be obtained from Lewis (1972) and Kerstan, Matthes and Mecke (1974) and
references therein. Daley and Milne (1973) have compiled a bibliography.

The rest of this chapter sets out the basic definitions and properties
of point processes and weak convergence in a more coherent manner than their

piecemeal introduction in the text of the thesis allows. After the formal




definition in Section 1.2, we catalogue in Section 1.3 some known
properties for easy reference later. Many of these have become part of the
folklore, in which case reference to their source is omitted. The
definitions of a few special processes needed in this thesis are given in

Section 1.4, while weak convergence is summarised in Section 1.5,

1.2. The definition of a point process

Let N denote the set of non-negative integer-valued measures on the
real line R which are finite on compact sets, and O(N) the o-field

generated by {{N(4) <k}, k € Z+, bounded 4 € B(R)} . Then we define a

point process to be a probability measure on [N, O(N)] . Througﬁout this
thesis we will reserve N (possibly subscripted) for members of N ; P
(possibly subscripted) will meah a point process, or other (specified) random
process. |

Denote by (f, F, Pr) an (arbitrary) probability space, and n (a

random "N") a measurable mapping from Q, F, Pr) +to (N, G(N)) . Then

P = Prn‘l specifies a point process, but on some occasions, in particulaf
those in which we wish to emphasize that a fixed underlying probability
space is necessary for our arguments to be meaningful, we will refer to n
as the point process,

The question of existence of measures P arises. As for ordinary
stochastic processes, the problem is solved by extending the finite
dimensional distribﬁtions of the process.

THEOREM 1.2.1 (Moyal (1962), Harrls (1963), p. 53; Nawrotzki (1962)).

Given a set of functione

{p(Al, cees Ags kl’ ooy ka) : 8 2 1 and integral, ki € Z+ R
A; bounded € B(R), 1517 = 8},

satiefying the consisatency conditions



(7:) p(Al, ey AB; kl' LRI ke) =p(A1:lg sey A?:S; k’l:l’ LIE I k'l:s)

for every permutation (il, Sy is) of (1, «v.5 8) 3

(i3) p(Ays vevs Ags ks vevs k) Z 0 and

=0 p(Al’ rees Agys Agh Ry eees Ky ks)

o 8

= p(Al, cs ey As—l; kl’ s ey ks-l) ;
(vit) Y plAys k) =15
k.=0
1
(iv) whenever Al, ooy AS are disjoint,

8
p[‘U Ai; k) = Z p(Al, to ey Aa; klg ey kB)
=1 kl+...+k8—k

8
p{i';ll A'l:’ Al’ s o0y AB; k, kl, ey ks] = O

.
unlegs 9. ki = k , when it equals
1=1

p(Al, vesy AS; kl’ seeny ks) ;
(v) plays 0) *+ 1 whenever 4, + 8 ;

then there exists a unique probability measwre P on (N, o(N)) for which

1}

PN = B(Ay) = kys woes N(A) = Ko} =04, cons A Ry s ) a

It will be required to characterise P more finely (Chapter 6),
Since the class of bounded half-open intervals with rational endpoints

generates B(R) , we may restrict the Ai's to this class. Further, suppose
we have functions pO(Al, ey As; kl, vees ks) defined whenever the A4's
are disjoint; then the functions Py may be regarded as defining a joint

distribution for random variables ECAl), P 5048) defined on a space



(R, F, Pr) . Suppose (Zv) is modified as follows:

(iv)! Let Al, veey A be any mutually disjoint sets in B(R) ,

8
n

1
and suppose A; = Y Aik s A €B(R), for some
k=1

My =1, 25 een s then the joint distribution of

g[Al), coes E(4) e the same as the joint distribution of

'ﬂl ns
kgl E(A)s oo k§=jl E(4,) -

Then
THEOREM 1,2.2 (Harris (1963), p. 54). A set of functions

{po[Al, cees Ags kl’ cessy ks) : 8 21 and integral, k; €2,

bounded diajoint A, € B(R), 1 =1 < s}

AN

satisfying (1) and (ii) of Theorem 1.2.1 whenever the Ai'a are disjoint,’

and (iit), (iv)' and (v) can be uniquely extended to functions

p(Al, cens AB; kl’ cees ka) sattafying (1)-(v) of Theorem 1.2.1, and

agreeing with the po('; *) whenever the A, are disjoint. 0

In particular, if our functions p, are generated by a point process,

i

then the requirements of Theorem 1,2.2 are met. Also, we only need to know

Py for Ai's being bounded half~open intervals with rational endpoints.
Although our processes will only be on the real line, there is no

difficulty in extending the preceding concepts to R’ (e.g. Fisher (1972))

and Polish spaces (Jagers (1974)).

We may associate with each. N € N the distance tj(N) of the Jth

point of N from the origin (commonly referred to as the Jjth epoch)

defined as follows:



t. = tj(N) inf{ly >0 : N(O, y1 24} , J=1,2, vee »

J

sup{ly =0 : N[y, 0] > -4} , G =0, =1, «u. . (2.1)

Note that tj N + R is measurable, since

W : N0, 212 g€ oN) , 5

—_—
=
Ay
A

j .’E} la 29—"‘ L]

—_—
=
ot
A

A

W : Nz, 0] = -4} € a(N), 4

0, —l, "'2,.....:. (212)

. <X
;<@
For any N € N , the set {tj(N)} is a finite or countably infinite
subset of R , multiple points included but with no finite limit points, and
satisfying the inequalities
vee SE_ S0, S8, ., (2.3)
(This is not the conventional indexing (see Daley and Vere-Jones (1972),

p. 308), but is employed to simplify the notation in Chapters 2 and 3.) If

we denote the class of all such subsets of R by Ri , then we can define
n: Ri + N by

n(4a)(t) = cara{j :'tj €tnAl , A€B®R , te¢ Ri ; (2.4)

if also we introduce the O-algebra G(Ri] generated by the sets

{t :n(A)(t) =k}, A €B®R),, k €Z_, i.e.;such that the mappings n
+

are measurable, then we may define a point process as a probability measure
Z A . . , . .

on Rt’ G(Rt) . It is intuitively clear that we may specify a point

process also via the intervals {Hj} = {tj-tj_l} and to and tl >

but, throughout this thesis, unless explicitly stated otherwise, we will
consider our event epochs as generated in (2.1). We do this for two reasons:
not only is [N, U(N)) more amenable to generalization, but at times it will
be the convenient to introduce the space Nm , the set of all non-negative
integer-valued measures on R which may also be infinite on compact sets.
Finally we mention that Matthes and others have extended the scheme to

marked point processes, where each point ti is associated with a mark ki




from a fixed measure space [X, 0(K)] . As this idea will only be employed

circumspectly in this thesis, we will not expand on it. An account may be

found in Kerstan, Matthes and Mecke (1974).

1.3. Basic properties of point processes

Define the translation operator Ty :N+N, y €R by
TyN(-) = N(-%y) . A point process P is (strictly) stationary if
P(TyC) =P(C) , all C € o(N) . , (3.1)

If P is stationary, P{N(R) =0 or ®} =1, and P has no atoms in
the sense that P{N({x}) > 0} = 0 for all singleton point sets {z} -(Ryll-

Nardzewski (1961)).

A stationary point process P is ergodic if any member G of the
invariant o-field T, = {G € o(N) :'T;lG = G} satisfies P(G) =0 or 1.

Rosenblatt (1962) demonstrates that ergodicity may be charactized by

L
lim 1% J P(C n T D)dy = P(C)P(D) , all C, D € o(N) . (3.2)
T 0 Y '

P is weakly mixing! if
-1 T & ‘
lim T J |P(c n T D)-P(C)P(D)|dy = 0 , all C, D € o(N) , (3.3)
T 0 . y
and mixing if

1im P(C n TTD) = P(C)P(D) , all C, D € o(N) . (3.4)

T-»00
Note that mixing = weak mixing = ergodicity = stationarity.
We will also use the following stronger forms of asymptotic independence.

Let

a(NB)) = ogen.{{N(A) =k}, 4 €B(RY nB, k €2}, BEBR . (3.5)

A stationary point process P is strong mixing with rate a(t) if

! The noun is ‘weak mixing'; the adjective is 'weak mixing' or 'weakly

mixing'; similarly with other types of mixing.



| |P(¢ n D)-P(C)P(D)| = alT) (3.6)
for all ¢ € o(N(-=, ¢1) , D € o(N(t+1,®)) , t € R, T=0 . Here
o : [0, ») » [0, 1] is a monotone decreasing function satisfying

lima(t) =0, Let ¢ and D be as in (3,6). Then P is ¢-mixing if

)
|P(c n D)-P(CIP(D)] = ¢(1)P(C) (3.7)
and completely mixing (with rate y(1)} if |
|P(c n D)-P(CIP(D)| = Y(T)P(CIP(D) ERER
where ¢ and Yy have the same properties as o in (3,6). Clearly
complete mixing = ¢-mixing = strong mixing = mixing.
For a real valued function g : N + R , we will define the expectation

E of g by
E{g} = Eplg} = JN g(N)ydp(N) . (3.9)

Hence we can define the first moment measure M of a point process by
M(*) = E{N(*)} , where existence of M is taken to mean M(4) < » for all
bounded Borel sets A . Clearly M is indeed a measure. If P is
stationary, then easily M(4) = m|4| , where m = EN(0, 1] is called the
intensity of the point process, Higher moments are defined as

M4 x oo x4) = B{N(4,) na)} . 4, ¢ B(R) , 1=sispr, (3.10) |
and -are easily shown fo be measures in K . The cumulant measure ¢,
exists if AM2 does, and is defined by

Co(aa,) = my(a,xa,) - ma)m(a,) = cov(uf(a,), nla,)) . (3.11)
02 may be a signed measure., If P is stationary, and M}(-) exists, then
Mr(') is stationary in the sense that M}{ﬂ41+¢) X eee X L4r+mﬂ} is

independent of & € R ,

A point process is defined to be weakly stationary if M, and M,

exist and are stationary in the above sense (Daley (1971)). Important for -

us is the fact that the cumulant measure 02 of a weakly stationary point



process may be decomposed into Lebesgue measure and the reduced covariance
measure C(*) in the following way (using differential notation)

C,((t+dt) x (ttutdw)) = C(dwdt , (3.12)

and in particular (Daley and Vere-Jones (1972), p. 323)

ty
var(N(0, y]) = 02((0, ylx (0, yJ) = I, (y-lul)ctdu) . (3.13)
—y .

The superposition of n independent point processes Pls eees Pn is

intuitively the overlaying of all the points on one line, but may be

specified rigorously via the mapping n : N* > N defined by

™M

n({».}) = v. . (3.14)
1 i=1 ¢ ,
¢ -1
Then P = (;x( Pi]n is the process of superpositions, Note that n may
1=1

be regarded as the sum of n coordinate mappings g each defined on N* ,

It will be convenient on occasions to conform to the usual practice of

supposing the summands to be random measures TN, : (Q, F, Pr) + (N, o(\))

on a fixed space I , and defining their superposition n by
n

nw) = Y ni(m) . This scheme allows for dependent n; .
=1

We recall that for functions f : R+ R of compact support,

+m
J f(e)an(e) = z,f(t;) (3.15)

is well defined. By Fubini's theorem

+0 +©
EU f(t)dmt)}:f F(E)AU(E) (3.16)

-0Q =00

+0
if J |FCE) | dm(t) < =

Supposing 1log E(%) to have compact support, we may define the

probability generating functional (p.g.fl.) of a point process P by
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+00

GLE] = E{exp J log E(t)dN(t)} . 7 (3.17)

-
We will denote by V the class of measurable functions & : R + [0, 1]
such that vl - £ has compact support. G exists if & 1is in this class,
or if P{N(R) <} =1, For an extensive discussion of the p.g.fl. see

Westcott (1972). Note that if Pl’ cess Pn are n indepgndent’point

processes with p.g.fls. Gl, ceey Gn , then the superposition P has

n
peg.fl. GLE1 =T [ G,[E] .
1=1

A point process P is said to be a.s8. orderly (or without multiple

points) if‘

P{N({z}) =0 or 1 (all ®} =1, (3.18)
and a atationary process‘ P 1is orderly (or analytically orderly) if

P{N(O, Kl =22} =0o(h) (h ¥y o). (3.19)

If P is stationary with finite intensity m , then analytically orderly
<=+ a,s, orderly (« is Dobrushin's Lemma). We shall also require Khinchin's
existence theorem, namely that for a stationary point process P the rate

A = lim P{N(0, h] > 0}/h (3.20)
hy0

exists, although it may be infinite. An interesting relation exists between
m and A : for a stationary point process, the 'batch-size' diétribution
for the number of events in a multiple occurrence e#ists, and has mean
m/\A . Hence X\ = m , and a necessary and sufficient condition for m = )
is that the process be orderly.
An important recent discovery is the Rényi-Monch-Kallenberg Theorem:
if P 1is a.s. orderly, then it is determined by knowing
¢(I) = P{N(I) = o} (3.21)
for all I in the semi-ring generated by‘half-open intervals. Kurtz (1974)

has characterized the functions ¢ in terms of a property he calls complete

monotonicity.
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Further properties may be found in the references cited in Section 1.1.

1.4. Some examples of point processes

The Poisson process N with parameter A(*) (a non-afomic Borel
measure) is defined by
(i) For A € B(R) such that A(4) <« , n(4) has a Poisson
distribution with mean A(4) . Otherwise n(4) = « with
probability one.

(ii) n is completely random, i.e., n(Al), N ﬁ(An) are mutually

independent for all finite collections of disjoint sets

Al, coes An € B(R) .

The Poisson process has been characterized in many ways: Prékopa
(1957a,b) showed that a point process is Poisson if and only if it is
atomless, completely random and has no multiple points. On the other hand,
if

Pr{n(I) = 0} = M)

and Pr{n(I) =z 2} = o(M(D)) , MI) ¥+ 0, (4.1)
for some non-atomic A(*) and all I consisting;of a finite union of
intervals, then 1N is Poisson (Rényi (1967)). If A(4) = Al4| , some

A < ® | we recover the stationary Poiéson process,

If the parameter measure of a Poisson process n is taken to be the
realization of a random measure A(*) , we obtain the doubly stochastic
Poigson process. Kingman (1964) characterized doubly stochastic Poisson
processes as stationary Poisson processes with unit parameter subjected to a
random change 6f time independent of the original process, an important and
too often neglected result,

The best example of a point process which is generated by its interval
properties is the renewal process, which starts at time O and has i.i.d.

inter-event times. The stationary renewal process has the time tl to the
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first event delayed according to the distribution
u
Pr{t, = u} = A JO {1-F(z)}dz , (4.2)
where F ’is the distribution function of inter-event times, and Al its
,(finite) mean.,
Alternating renewal processes have independent inter-event times, but
their distribution switches successively from one lifetime distribution

function Fl to another F2 . The concept may be generalised. 7Processes

with consecutive pairs of points equidistant we will call deterministic,
and, as a general rule, are very useful for providing counter-examples.

A point process P is infinitely divisible if for every 7n = 1, 2, ...
it may be represented as the superposition of »n i.,i.d. point processes

Pn i (2 =1, ooy n) . Other definitions are possible. Since such
]

processes are the subject of a book by Kerstan, Matthes and Mecke (1974),
they will not be discussed in this work, except when they occur incidentally
as Poisson cluster processes (see the cited reference).

Point processes may be generated in many other ways: e.g. as the
transition times of Markov processes (Rudemo (1973)), or by level crossings
(Leadbetter (1972b)). We shall not attempt to expand on these, as this thesis
is not concerned with specific point processes, except for illustrative |

purposes.,

1.5. A summary of some weak convergence concepts

If probability measures P, Pn on a separable metric space S with
metric d (referred to as IS, d)) and Borel sets B(S) satisfy

j fdPn—*J fiP (n » ) (5.1)
S S

for every bounded, continuous real function f on S , then we say Pn
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converges weakly to P and write Pn = P , The theory of weak convergence

on metric spaces is outlined in Billingsley (1968), and for most theorems we
need we will refer to this text., However, we mention the continuous mapping
theorem (Theorem 5.1 of Billingsley (1968)), which we often use. Let:

h : (S, d) + (S', d') be a measurable mapping with a set of discontinuities

Dh L]

CONTINUOUS MAPPING THEOREM, If P =P and P(Dh = 0) , then
-1 -1
Pnh = Pp -, O

Various metrics are associated with weak convergence: since we shall

use almost all of them, we give a brief summary (adapted from Whitt (1974b)).

Let RV

RV(S, d) denote the set of all random variables
(@, F, Pr) +» (5, d) defined on a fixed space § , and P(S, d) the space
of all probability measures on LS, B(S)) .

Firstly, for X5 X2 € RV , define
a(x,, X,) = infle z 0 : Prld(x, x,) z €] =€}.. (5.2)

a corresponds to convergence in probability.
Now, for any € > 0 , define

4% = {y : d(z, y) <e for some =z € A} . ' (5.3)

The Prohorov metric p which induces the topology of weak convergence on P

is given by

D(Pl, P2] = max{Y(Pl! 22)9 Y(Pz’ Pl)}

Y(Pl, P2] inf{s >0 : Pl(F) < etP, ), closed} . (5.4)

Note immediately that p may be regarded as acting on RV , by setting

p[Perl, Prxgl] » but is now only a pseudometric. Clearly

p(xys X))

afx), x,) . Dudley (1968) proved that Y25 B,) = ¥(2,, ),

1A

p(x,» X5}

provided Pl(S) = P2(S) and there are no restrictions on closed F's ,
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conditions satisfied here. The Lévy metric A on P(R) is the Prohorov
metric restricted to closed sets of the form (-», x] , Clearly A =p ,
but it is well known that A characterises weak convergence (e.g. Logve
(1960), p. 215).

The supremum metric O is defined by

(P, P,) = sup{|P (4)-P,(4)], 4 € B} . (5.5)

0 generates a stronger topology on P than p . We shall also refervto
the restriction of o on P(R) to sets of the form (-», ] as the
supremum metric v, Now A < Vv, but V also metrizes weak convergence to
those P in P(R) with continuous distribution functions.

Dudley (1966) demonstrates that the dual bounded Lipschitz metric 8
also induces the weak convergence topology. A function f : (S, d) » R
is Lipschitz if

Ifl, = sup {|f(x)-fy)|/d(z, )} < = . (5.6)
Yy

For any such f we may associate the norm

IFl = ey * lell, (5.7)

where ||fll, = sup{|f(z)|, x € S} . Then B is defined by

BLPl, 22) = sup{ J fap, - j fdP2|, 7l = 1} . , (5.8)

" Also, according to Dudley (1968), B =< 2p , so that we may summarize the
inter-relationship between the metrics (regarded as pseudo-metrics on RV )

by

\) .
Closely related to weak convergence is vague convergence, a concept of

great importance to point processes: a sequence {Nn}' of measures Nn €N

converges vaguely to N € N if
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[ san,» [ sar 2> (5.9)
for every f € CK , the set of continuous functions f : R + R with compact

support. This convergence generates the vague topology on N , a basis for

which is given by

frew [ rar- [ g

n= 1y 2y ees f3 €C, , Nl €N, €>0 . The vague topology is

<g,l=g= n} R (5.10)

metrizable (by the Prohorov metric) and renders N separable. Weak
convergence of probability measures on (N, B(N)} may then be studied
(Jagers (1974)). The vague topology is a natural topology for N , since,
if B(N) denotes the Borel o0-field generated by the open sets of the
vague topology, B(N) = o(N) by Proposition 1.1 of Jagers (1974).

Weak convergence may also be studied on the space ([0, 1] of
continuous functions on [0, 1] , where ([0, 1] has the uniform topology
(U) induced by the metric p (no confusion with the Prohorov metric ¢
should arise)

olx, y) = sup |x(t)-y(¥)| , =,y €C . (5.11)
0st=1 '

More appropriate to the study of point processes is the space D[0, 1]
of functions on [0, 1] which are right-continuous and have left-hand
limits. D will be endowed with the J1~topology induced by the Skorokhod

metric (using I = I(t) =t and yoA(t) = y(A(£)) )

d(xz, y) = inf {max(p(X, I), o(x, yor)}} (5,12,
A€A : )

where A consists of all continuous strictly increasing maps of [0, 1]
onto itself., We need note only that d(z, y) < p(x, y) , %,y € D , but

d[xn, x) 0 = p@xﬁ, z) >0 (n~+®) if z is continuous.

Weak convergence of probability measures on ¢ and D 1is characterize
by convergence of the finite-dimensional distributions and tightness
(Billingsley (1968), Theorems 8,1 and 15.,1). Necessary and sufficient

conditions for tightness of a sequence {Pn} of probability measures on C
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may be established via the Arzela-Ascoli theorem in terms of the modulus of

continuity of « € C ,

v, (8) = su |x(e)~2(t)| . ' (5.13)
le-t] <8

The following elementary inequality exists between w and p
(Billingsley (1968), p. 220),

lwx(a)—wy(a)l < 2p(x, y) , x, y € D[O, 1] . (5.14)

Weak convergence on C[0, 1] or D[0, 1] will be referred to as
functional convergence. Jagers ((1974), Proposition 3.3) relates functional

and weak convergence of a sequence {Pn} of point processes converging to a

point process P . In this case tightness is unnecessary (Straf (1872), Whitt

(1975)), provided D[0, 1] has the Jl-topology if P is orderly, or the

M, -topology (see Skorokhod (1956)) if P is non~ordérly. Hence p.g.fls.

may be used to characterize weak convergence of point processes (Westcott

(1972)).
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CHAPTER 2

LIMIT LAWS FOR THE G/G/= QUEUE

2.1. Introduction

The G/G/® queue may be regarded as a point process (the process of
arrival times) subjected to independent random displacements. An important
process associated with the G/G/*® queue is the number of servers ¢(¢)

busy at any time ¢ . Central limit theorems for the accumulated traffic

~ ot
time f ¢(8)ds have been obtained in the case of the M/G/® queue with
0

bulk arrivals by Rao (1966), under the assumption of finite third service

time moment, and the GI/G/® queue with buik arrivals by Narasimham (1968),
for finite second moment, Iglehart and Kennedy (1970) generalised the model
to the case in which the service times may be mutually dependent, and, using

functional weak convergence techniques, demonstrated a functional central

t

limit theorem for J ¢(8)ds , which, specializing to i.i.d. service times,
o |

required finite (2+§)-th moment for the service time distribution. By

confining ourselves to the G/G/® queue in which the arrival time point

process is stationary, we obtain in Section 2.5 a central limit theorem for

t
f ¢(8)ds when the service times have finite second moment,
0

Brown and Ross (1969) studied almost sure convergence of the M/G/«
queue with bulk arrivals, and in particular examined the strong law of large
numbers for this case. In Section 2.3 we look at stationarity, ergodicity an
mixing of the ¢(8) process, and in Section 2.4 derivewcénditions under whicl
it obeys the strong law of large numbers.r We defer investigation of the law

of the iterated logarithm to Chapter 3, where it will be discussed in
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conjunction with cluster processes. Finally, in Sections 2.6 and 2.7, we
enquire into rates of convergence (both ordinary and functional) of the
accumulated traffic time to normality.

In eéch of the above limit theorems our assumptions will be too general
to allow the use of specialized techniques, predominant in weak and a.s.
convergence applications, such as (with particular reference to the G/G/®
queue) renewal theory, the Skorkhod representation theorem (in Section 2.7),
or the probability generating functional (Vere-Jones (1968),.Westcott (1970),
Section 3.6). Indeed, in accordance with the philosophy outlined in the
Preface to this thesis, we will always ask, in a way to be defined more

strictly later, that the limit law we desire of the service expended

‘ ,
f ¢(8)ds be obeyed by the component processes - for other samples of this
0

attitude; see Iglehart and Kennedy (1970) and Loulou (1973). In particular,
we will retain the assumption of dependence between service times. This
particular chapter was precipitated by a paper of Kaplan (1974), in which
the various limit theorems (except rates of convergence) were obtained for
the GI/G/® queue by methods strongly depending on the independence
assumptions of that system.

Many of the theorems of ‘this chapter have been stated as assuming
stationarity, a condition which seems necessary in Sections 2.3 and 2.4,
but may (see Problem 6.3.4) be removed in later sections. In some of the
theorems of this chapter, two almost identical results exist, and here we
have indicated the differences of the second from the first in brackets in
the statement of the theorem,

Infinite server queues have been widely applied. The pure birth-and-
death process is an M/M/® queue (Feller (1968); p. 460), Amongst early
investigations were those by C. Pélm, A.K. Erlang and T.C., Fry in telephone
trunking problems (see Fellef (Zbid.) for references), Benes (1957)

obtained the distribution of traffic time average in the M/M/® case,
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T. Lewis (1961) and Nelsen and Williams ((1968), (1970)) consider regular
events under arbitrary i.i.d. translations, i.e., the D/G/® queue., Smith
(1958) has used the generating function of ¢(s) in the GI/G/® queue to
illustrate infinite products occurring in renewal theory. Thedeen (13869)
discusses the queue as a model for traffic on a long road with free
overtaking. For applications to textile research, see Rao (1966) and
references there. The queue arises in engineering applications as the
"jitter" process (Beutler and Leneman (1966)). Other works on the G/G/®

queue will be referred to in Section 6.2.

2.2, Notation and preliminaries

It will be convenient to regard the arrival process as a probability
measure P, on (N, o(N)) , although we will also refer to it as a random
non-negative integer-valued measure n : (Q, F, Pr) - (N, O(N)) , so that

Pl = Prn-l . As always, we may define measurable mappings tj : N+ R

giving the arrival times tj(N) for any realisation of the arrival process

N,

The process of service times may be viewed as a probability measure P2

i

on (Rf, B(R;)Z],,where Z is the set of integers; alternatively, (in

Section 2.7 and Chapter 4), we will specify it as a random vector {Vj} of

Z

gservice times from a fixed space (Q, F, Pr) to {R+,

B(R%)Z], so that

_ -1
P, = Pr{VJ.} .

Z Z ,

Finally, we form the probability triple (NXR+, O(N)XB(R$) R PlXPQ] 3

i.e.swe fegard the arrival process and service process as independent., We
will denote vectors {mj} € Rf as X if no ambiguity will arise.

Let 2; denote z, u {«} . Then Zf will mean the set of
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non-negative integer or infinite valued functions on R . Let 0(2;)3

-denote the product o-field on Zf , Where G(Z;) consists of all subsets

of Z+ .

We can then define the 'number of busy servers' process via a mapping
7
¢ = ¢l ° ¢, from NXR+ > Zf by

(1) ¢2 : N x Ri ad RZ X RZ

¢, (W, X) = (tw), x)
(i1) ¢1:RZxRZ+zf

400
¢l({wj}s {mﬁ})(t) = 3§lw 1Edj,wj+xj](t)' ‘2.1)

It is clear that for any joint realization (N, X) of the arrival and
server processes, ¢ will record 1 if an arrival occurs up to and
including ¢ and is still being served after ¢ , 0 otherwise and then
will add these numbers, therefore corresponding to the number of busy servers
at t , for each t € R . To prove measurability of a mapping to a product
space, we need only prove that each cocrdinate mapping is measurable. Heﬁce

it is immediately clear that

THEOREM 2,21, ¢ ie measurable with respect to o(N) x B(r)? . O
Throughout this chapter we assume that the number of busy servers is
R

finite, i.,e., that ¢ € Z+ ’ Pl x P2 - a.s. We then define a probability

measure Pna (corresponding to the number of busy servers process) on
7 (K
@, o(Z)%) by
-1
P = (PO,
such that P (ZR] =1 . From now on we will refer to P as if it vere
ng‘ + na

acting on Zf . We may similarly define a stochastic process
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m : (Q, F, Pr) > (Zf, 0(7;)Rj such that Prm © = Pna . We will refer to

Pns’ ¢ , or m as the "number of busy servers' process.

We will frequently employ the following decompositions.

¢(s)ds
0 =1

T N(o,t] 0 .
J min(z,, 1-t;) + ¥ [minfzre,, U]7

1=

@l(T) + @2(1) . 7 (2.2)

say. Here we have split the integral into two parts, corresponding to those
arriving up to time zero and those arriving later. Also, for some sequence

e(t) =1 , define

N(0,T]
3'(1) = ‘d)l(r) - (2.3)
N(o,T] ( )+
= x.tt.-T
i=1 v
N(0,1=c (1) N(0,7]
= ](x.+ti-7)+ + (xi+ti-T)+
i=1 v 1=N(0,t-c(1)] +1
N(o,T] + N(o,t]
< (z.(D)T + z,
i=1 * 1=N (0,1 (1)]+1
= @6(T) + @i(T) s (2.4)

say, where we have used a devfge due to Iglehart and Kennedy (1970). We

-
will decompose j m(e)de similarly as
0
T
[ nte)as =m0 + w0 @
0
M'(1) = Mi(1) + M (1) . (2.6)

Note that (2,2) and (2.4) (similarly with (2.5) and (2.6)) give

T N(O,T]
‘Jo ¢(8)ds - %zi‘ @ | = of(1) + ¢1(1) + (1) . (2.7)

Thus we have bounded the difference between the quantity we are
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interested in, and another quantity in which the structure of the component

processes is more evident.

2.3, Stationarity, ergodicity and mixing

To examine stationarity of Pna , Wwe must introduce certain translation

operators T, (¢t € R) , Sk (k € Z) and Su (u € R) as follows.

t
T, ot NN where TtN(A) = N(A+t) , all A € B(R) , | (3.1)
s, : R + B* where S {z;} = {= | } ‘ (3.2)
x ACH IR L '
5, 2% > 27 where S {a(£)} = {a(t+u)} . (3.9)

The processes Pl’ P2 and Pne are called stationary if

-1 -1 -1) .
Pl(Tt B] = Pl(B) R P2[Sk B] = PZ(B) , PﬂB{Su B] = Pns(B) for B within

-1 -1 -1
+ B, Sk B and ‘Su B are the

the appropriate o-algebra, where T

corresponding inverse image sets., Mixing and related concepté can be

defined in a way analogous to (3.4) of Chapter 1 for any stationary process

whose translation operator is indexed by Z or R . Before proving our

next theorem, we note that, as is well-known from ergodic theory, it is

sufficient to prove ergodicity for a class of sets C ‘(i.e. for C, D € C)
n

such that {{tu Ci}’ Ci € Cyn ¢ Z+} is an algebra A which generates the
ey

o-field we require.

THEOREM 2.3.1. (a) If the arrival process P and the service time

process P, are stationary, then so is the "number of servers' process

ne

(b) If Py 18 ergodic and P, 18 mixing, then P g 18 ergodic.

(e¢) If P., P, are mixing, then so is Pns .

1’ 2
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Proof. We define Té : N x Rf + N x Rf » Yy €R , by

]

Té(N, X) (Tzv Sn(o, ]x) y >0,

=(T1v S[yo)]' y <o,

W, x) , y =0 . (3.4)

For any sets (, D € G(Z+)R , we see that
-1 -1(,-1
P (Cnsp) =P x Pz{(tt: ) n 1o D]} ,

where ¢-lC = {(N, X) : ¢(N, X) € C} € o(N) % B(R+)Z by Theorem 2.2.1.

Hence stationarity, ergodicity and mixing of Poa will follow from

stationarity, ergodicity and mixing of Pl'x P2 with respect to the

transformation T' , We prove only (b): proofs for (a) and (e) are

similar.
Z
Let (' = Cl X 02 , D' = Dl X D2 € o(N) x B(R+)
Then

-1 (T
lt Jo PleQ(C' n'T&D!}du-PleQ(C')PlXP2(D')‘

H

Tt r E PlA(c nT Dl, o, ul = n})[py(c, ns D ) -P,(C,)P, (D )] du
0 n=0

w2, ()P, 0,)1 [: [, (¢, n 7,0,)-P, (¢))P, (p;)]du

IA

T
o7t f P {N(0, ul = mldu + swp |P, (c n 5D )P, (C5)P, (0,) |
0 n>m

+

! IO 1(6y 01 p)du-p, (0))P D)‘ (3.5)

But for any € > 0 , there exists m(e) such that for n > m(g) ,

sup |P,(c,n5D.)-P ()P, (D) =€
om(e) 2(2 n2) Al 2) 2( ) ’

since P2 is mixing. Thus 1lim sup (3.5) <€ , i,e., lim (3.5) = 0 , By
' T T+
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the remark immediately preceding Theorem 2.3.1, this proves (b) and completes

our proof of the theorem, O
It is clear from the above proof that if we had defined
z z

mn .,

Iy : N x R+ + N x R+ by
"N, X) = (T’ N, S 3.6
s %) = (TN, 5 (3.6)

ergodicity of Py x P2 would have followed from ergodicity of Pl and weak

mixing (Equation (3.3), Chapter 1) of P2 . Spectral theory (see e.g.

Mackey (1974), p. 213) suggests that this condition is necessary as well as

sufficient for Tg » but we have been unable to weaken Theorem 2.3.1 (b) to
include this case for Té (but see Problem 6.3.1). Note that the argument

above actually becomes slightly more difficult when modified to the

independent service times situation, if it is not realised that then P2 is

mixing.

2.4, The strong law of large numbers

A theorem associated with ergodicity is the strong law of large numbers.
Before we can prove it, howevgr, we need some new equipment.

We will suppose as in the previous section that our arrival process Pl

is stationary, but now with finite intensity, i.e.,

m = E N0, 1] <@ ' (4.1)
if also Pl is orderly [for Pl non~orderly, see discussion after Corollary

2.4.2), then it is known (e.g. Slivnyak (1962), (1966)) that uniquely

associated with Py is a probability measure Pi (Palm measure) on

(N, a(N)) (in general, non-stationary) such that the arrival times t

satisfy ... < t—l <'t0 =0< tl < e Pg - a.s., and the sequence

{Hj} = {tj+l-tj} of a,s. positive random variables is stationary, i.e., if we
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define Bk : N> N (k € Z) by
() = N(o+ty) (4.2)

then, if C €0 {HjeA},AeB(R),,jez}soﬂc:o(N),

genj
0f,-1 0
Pl(ek C] = Pl(C) . (4,3)
We will require the expectation
Ux) = EgN(O, z] < C(4.4)

for some finite x . According to Kaplan (1955), this guarantees finiteness

for all finite « , and also

sup {U(z+u)-U(x)} < 20(u) + 1 , (4.5)
x>0

whence U(x) = 0(x) , (x -+ ») . Under this assumption of orderliness,
Daley ((1971), Lemma 9) shows that U(x) ~ A’z for some constant A' Zm ,

which is stronger. We will tacitly assume when discussing Pi in the rest

of this chapter that the Pl to which it corresponds is orderly. We point

out, though, that our arguments involving only Pl (not Pi or Ul(x) )

will still go through without this assumption.

Finally we define various invariant o-fields: let

T= {c ¢ o(N) x B(R)? Té‘lc = c} . T, {c € o(N) T;lC - c} .

= Z " -1 — 0 = . -1 -
T2 = {C € B(R+) 2 Sk C = C} and Tl - {C €o, ¢ ek C = C}», where we have

used the definitions at (3.1), (3,2), (3.3) and (4.2).
We may now prove some ergodic theorems for the "busy server" process.
THEOREM 2.4.1. If the arrival process is stationary with m < @ , and
the service time process ig 8stationary with |
(a) Ez{xl} < then
-1 (T
T JO ¢(s)ds - B, ox E2{¢(l)|T} s Py XP, -a.s.

where, also,
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B, x £,{o)|T} = B {nC0, 1T }E {,|T,} , Py x P, - aws.’

2

(b) E,{(x log 2 )%} <=, and (4.4) and (4.5) are satisfied,

then

-1 [F , 0 0 0
T Jo ¢(8)ds E2{ml[T2}/El{Hl|Tl} » Pp XP, -a.s.,
provided the right-hand side ie Pg x P, - a.s. defined,

Proof. (a) Clearly the theorem will be proved if we can show

N(o,T]

T
!0 ¢(e)de - ié;. @, | +0, P)xP, -a.s. (4.6)

-1
T

We use the inequality (2.7). Clearly if c(1) = o(t) , which we assume,

T-lQi(T) + 0 a.s. Now

-1 _, M(o,T]
lim sup T ¢6(T) < lim sup lim sup T
T ko To0 =1

+
(:B?:-k) .
But (x-k)* is a Borel-measurable function of & , for any k €2z _, and

E2{(xl—k]+} = Ez{xl} < ®, and hence by‘the ergodic theorem

29T g o, 21T
lim T &L= = E_{N(0, 1 Eo o1\, - .
e = LU 2T Tl 2
But E2{(xl-k)+|T2} + 0’ ars, (k+r=), since Lxl-k]+ Y0 a.s. as
k > » (Breiman (1968), Proposition 4.,24), To complete the proof 6f (a),

we note only that since Pl X P2 is stationary with respect to Té » by the

ergodic theorem

. T ‘ .
7t J ¢(g)ds > E, % E2{¢(l)|T} , P. XP_ - a.,s.,

0 1 2
and 7
By x E,{E) * E 1) |T1} = B {N(0, 1I1E {x ] (4.7)
N(0,T]
Now, since @l(T) - Y ©,| »0 a.s.,

i=1
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T
) -1
lim inf T J ¢(e)ds = B {N(0, 11|T,}.E {x,|T.}
T . 1 1}eEo e 1T,

and, clearly,
B, x BB [WC0, 11|T ] .E, [, |T ]} = E {N(0, 11}.E fx  } . (4.8)
(4,7) and (4.8) are consistent only if ¢2(T) + 0 a,s.

1 N(0,t]
(b) Again we prove . T ¢l(T) - z: x; + 0 a.s, in exactly the
=1

same waj. Now we show' @2(T) + 0 a.s. Let F denote the distribution
function of the service times, i.e., F(1) = P {z; =1} . Let r, = [ck—l]
for some fixed @ >1 . For a given € > 0 , suppose @2(T) > g1 for some
T . Let ry be the first term of the geometric subsequence larger than -

T . Then &,(r,) z er,_; . Hence we need only prove 0,(1) >0 a.s. for a

-1

geometric subsequence. But

0 -1
P, x PQ{rk Qz(rk) > e}

0
E| X E2{¢[rk)}/erk

1A

fw dv(u) fm max [min(Z-u, rk), O]dF(Z)/erk
0 o '

z by
- -1 -1
= (er,) dr(1) (1-w)du(u) + € dr(1) dv(u)
1 [k Z
¢ (en) j (1) f (0@
0 0

so that



28

s}

0 -1
€ k§1 P, x P2{rk ¢2(rk) > e}

< 28(log &)t r 1 log 1dF(1) + (log o)™+ r log 1dF(1)
1 1 ,

+ [2 Y ot ot B(202+2):| Jﬁ 1dF(1) + (2024-1) <o,
k=1 K o .

where we have used U(l) < Bl + 1 for some constant B , bounded -the sums

by integrals and exchanged the order of integration. Hence @2(T) +0 a.s.
by the Borel-Cantelli lemma. The proof is now completed by observing that

. 3.8.. .0 0
br = El{HlITl} g

and employing {N(0, y] < j} = {tj >y} and the monotonicity of N(0, 1] .0
We would anticipate that Theorem 2.4.1 (b) is sub-optimal: E2{xl} < @

should suffice (see Problem 6.3.2), We deduce immediately from Theorem
2.4.1 the .strong law of large numbers.
COROLLARY 2.4.2. If the arrival procese is stationary with m < @

(and (4.4) and (4.5) hold), and satisfies N(0, nl/n +m , Pl[Pg] - Q.8.,

n
and if the service time process is stationary with ) z. /n > Ez{xl} <o,
=1

i

P, - a.s., (and E{(z, log xl)+} <), then

T
-1 0
T fo ¢(8)ds + mE2{wl} » P XP, -a.s. [Pl xP, - a.a.}. 0

We should compare Corollary 2.4,2 with Theorem 2.3.1 (b) and the comments
following Theorem 2.3,1: it would appear (although we have no example) that
the strong law of large numbers could hold for ¢(8) without the process
being ergodic - simple examples of this behaviour in other contexts are easy
to construct (Breiman (1968), pp. 110 and 113, or Hannan (1973), p. 163).

Functional strong laws can be proved for this process in the manner of

Iglehart (1971b).




29

Because queues with bulk arrivals are given much attention in the
literature, we wish to make a few points in this context about the Palm
measure corresponding to a non-orderly stationary point process. Slivnyak
in fact goes further than indicated in the opening paragraphs of this

section,

Consider the set Ri of subsets t' of R without finite limit
points satisfying

< +! < £ = < 4! <
e Stlostl=0strs L,

Note that if, for a given t' , there are k points at the origin, then

there will be (k-1) other members of Ri , which will constitute only a
relabelling of t' . Let 0o(4) denote the minimal o-algebra generated by

sets of the form {t’ : té <yl, y€R, kez.
Slivnyak then proves that uniquely coupled with a stationary point
process P of finite intensity m is a probability measure PrO on

z - e s C N
(R+, o(%)) such that {Hé} = {t3+l_t5} is stationary, i.e.,if we define

Sk as in (3.2),

PrO[S’;lD] =p°D) , k€z,

i

where D € O N’ ¢ B}, B ¢ BR), j € 2} c 0(+) . Note that a mapping

geni{ J

n: Ri +~ N may be defined analogously to (2.4) of Chapter 1, and will be

measurable, e.g. for u, v >0, Kk € Z, s

{t" : n(u, utvl = k} = .

1=1

nc 8

{tr el =v, 8l >u, t], s utv} .

Therefore Pro induces a probability measure Po = Pron—l on
(N, o(N)} such that if NO = {¥ ¢ N : n({0}) > 0} , PO(NO) = 1 . However,

as is readily seen, several t''s may map to one N , so that an inverse

mapping is undefined, i.e., it is no longer meaningful to refer to
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tj(N) = té(t’) in an obvious notation, unless P 1is a.s. orderly. However,

had we adopted Slivnyak's approach, our theorems would hold, with some

modifications, for non-orderly processés too.
0 Z . . .
Let Prl on R+ correspond to a given stationary arrival process,
Despite the aforementioned difficulties, it is natural to identify the t'

with arrival epochs, Hence define ¢’ : Ri X Rf * Zf in a way similar to

T
(2.1). The quantity naturally thrown up from I‘ ¢'(e)ds corresponding to
0
N(o,t]
Y zs is D x. , an expression not in a suitable form for
J=1

t}e(o,rl

application of random change of time lemmas. However,

n(0,t] nlo,t]
x, = E: X, = X. s
j=n({o}) ¢ t1€(0,1] R =5

and by showing (use geometric subsequences, (4.9), and Chebyshev's
inequality) that for any & > 0 ,

nfo,1] n(o,t]
X . X .

T—G - g
=1 ¢ g=n({o}

+0, Prg X P2 - @.8.,, (T *®),

we could employ the same techniques as for the orderly case to establish the
same results. However, we do not consider the notational inconvenience is

worth the extra generality.
We would also require generalisations of (4.4) and (4.5). Recall that

a finite intensity and stationarity imply that the finite rate A exists

(Chapter 1, (3,20)). Again, Kaplan shows that if
- 0 _ 0
U(x) = E'n(0, x] = E1N(0, 2] < o

for a finite « , then U(x) 1is finite for all «x , and

sup {U(z+v)-U(x)} = 2U0(v) + m/X , ©(4.9)
x>0 ' -

whence U(x) = 0(x) (x + =) , Our theorems now go through as before.
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2,5u The central 1imit theorem

Before we prove the central limif theorem, we need the following simple
lemma (which is possibly known, but we could locate no statement or proof).
The lemma may also be used to weaken Theorem 3 of Daley (1972).

LEMMA 2.5.1. Let {Yn}’ {Zn} and {Nn} be sequences of random

variableg defined on the same fixed probability space such that Y R Y

and z, R Z for some vandom variables Y and 7 defined on (not

necessarily) another probability space. If {Nn} consigts of non-negative

integer-valued random variables euch that N, Lo agnd {(w, z,)} s

independent of {Yn} s then

D

(¥ — (Y, 2) .

Z ]

?
Nn n
Proof, Let (y, z) be a continuity point of (Y, Z2) . Then clearly

y is a continuity point of Y , and 3 a continuity point of Z . Hence,

Ky s

for any arbitrary € > 0 and for k = ko(y, €)

o
.

|Pr{y, = y}-PriY sy} =

(For the purposes of this proof we assume all random variables on a single

space (R, F, Pr) ). Thus

1A

PriY, =y, %, < a}

) PriN, < ko} + kzi Priy, s ylpr{z =<2, N, =k}

0

tA

PriN, < ko} + Pr{Y = y}Pr{z, < z} + €,

i,e., lim sup Pr{YN <Y, 2, s 2} <Pr{¥Y =y, Z <2z},
noo n

Also,
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Pr{YNn sy, 2, s z}

v

ég% Pr{Yk < y}Pr{Zn =23, 0 = k}

v

PriY = y}Pr{z, = z} + PriY = y}Prin = k }

- Pr(y = y}Pr{(n = k()u(z, ='2)} - €

v
A

Pr{Y = y}Pr{z, < z} + Pr{y = y}Pr{Nn > ko} -Pr{Yy syl -¢€.
Hence

lim inf Pr{YN sy, 2, < z} =2 Pr{Y =y, 2 = 3},
(e n ’

ie., limPrly, =y, 2 =3z}l =Pr{¥sy,2s=<3z}. O
N n
[(Naad n

We also require the following lemma, which, conforming to a general
theme of this chapter (and this thesis), proves that the difference between
the quantity we require (the traffic time average) and a quantity which is

(0,7]

N
easy to handle ( Z
=1

xi] 'is small under suitable circumstances.
LEMMA 2.5.2. If the arrival process is stationary with m < @ (and
(4.4) and (4.5) hold), and the sequence of service times is stationary with

finite (2-6+v)-th moment, any v > 0, 0 <8 =2, or under any

circumstances 1f 6 > 2 , then

-3
T

JT N(0,1] P xP, (P)xP,)

oe)ds - Y a 12,0, (1>,

0 =1

Proof. We confine our proof to the Pl x P_  case. Arguments for the

2
P, x P, case use techniques similar to those in Theorem 2.4.i (b), and
account has to be taken of arrivals at 0 , but no new ideas are involved.
Now by (2.2) and (2.3),

f’[ N(o,T]

$ledda - Y al = o)1)+ 0r(D) .
0 i1
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For any € > 0 ,

)
Pl X P2{T QQ(T) > e}

iA

' 8
E, % E2{¢2(T)}/€T

4]

-1 -6 L
€T Jw dr(l) J min(Z-u, T)du
0 0

1A

T ]
eV f 127805000y + 71 r 1284r(1)  (5.1)
0 T

where F(1) = P2{x P S 1} is the service time distribution (independent
of 7 since P, is stationary). Hence (5.1) » 0, (1> ) , Similarly,

Chebyshev's inequality yields exactly the same upper bound for
-8
P, x Py{t770"(1) 2 €} . O
This leads to a simple proof of the central limit theorem. We denote
e 0 0 . s
convergence in distribution by Dl’ Dl, DQ’ Dl X 92, Dl X 02 in an obvious
notation.

THEOREM 2.5.3. If the arrival process is stationary with m < = (and

(4.4) and (4.5) hold), and satisfies

T-%{N(O, T]emr} —2— X (5.2)

where Xl 18 some random variable, and the service times form a stationary

sequence with finite (3/2 + 8)th mqment,,and satisfy
%[ 02
n {jéi xj—nEQ{xl}} =X, (5.3)

where X, 18 some other random variable defined on the same probability

apace as Xl’ then

0
T D, xD [D XD ]
r'}“U ¢(s)de-mE2{xl}'r} e AR YR m%X2 . (5.4)
0

Proof. We will only prove the Dl x D, convergence: Dg X D, only

2 2

requires writing Dg for Dl and Pg for Pl . All of the random variable
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in the following indexed by T are on the space N X Ri » SO Lemma 2.5.1
may be applied. For this proof, set u = Ez{xl} , and IVT = N(O, T] .

According to Lemma 2.5.2,

N
T T T T P _xp
T-JEI{J ¢(3)ds-—mu'r} -4y w.—mu'r}l = T—JE” oe)ds - ¥ x| ——2>0 .
0 21 1 0 . 1

But

N .
T
-%{12 x, -mpT = 1% Y (a:i-u) + T_qu{NT-mT} . (5.5)

i=1
Pl
By (5.2), (NT+1)/mT —= 1 , and hence by Theorem 4.4 of Billingsley
(1968), and the continuous mapping theorem (Section 1.5)

(IVT-mT)/(NT+l) —= X, /Vm .

In Lemma 2.5.1 (or a continuous version of it), put

T

_ % _ [zl %
2. 2w -mt)/ (W +1)*, ¥ = g (w,-u) 7/([T+L)*

i

where [T1] is the integer part of T , and NT N(0o, T] 3 ‘then, applying

simultaneously the continuous mapping theorem,
Iy : 0,D,
(v_+1) {Z (. -n)+u(m -m"c]} —— X+ WX /Y7,
T i=1 T T 2 1

Again using Theorem 4.4 of Billingsley (1968) and the continuous

mapping theorem,

0,0,
(5.5) —— mX2 + le . O

In Theorem 2,5.3, we have avoided the question of norming (see Problem

6.3.3)). Hence, writing u = E2{ml} again,
LEMMA 2.5.4. If the arrival process is stationary, and the process of

service times ig stationary with EQ{xg} < » , gnd
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L olegl <=y (5.6)

1=1
where p, = Ep{(2,-u) (x;-u)} , and

(a) Var), N(O, ul ~ Alu , then
1

{N(g,ﬂ } [ () 2
Var Z.r~ |m Var, (& j+tmp+A_u ]T sy (T >r®),
PP\ o TR P,1 1

]
where p =2 Y Py
=1

(b) Var (N(0, ul~ Au, and U(T)/T + A' < =, then

1

N(0,T] 2
Var , { Y xt} ~ ‘[A' Var, [xl):fl'pt}\zu ]T s (1=,
PlXP2 =1 2

Remark, If the arrival process is orderly, then it is known (Daley
(1971)) that U(T)/T > A! <>,
Proof. Again we prove only (a). Write N = N(0O, T] . Easily
N'l' 0 N'r
Vax{izl x’z,} = m Var{z,}1 + u* Var N+ 2El{j§l (v T-J)pj} .

Clearly, by (5.6),

IVT . .
‘El P (NT—J)pj =m ;g |pj| <o
Now,
NT o . o
(3, ) o 5o

N

<

N
() 50

By dominated convergence and the fact that N'r +® 3,8, a T*>® ,

+ r“lzl{;:;l J‘IpJ-I} + mEl{ § Ip-l}v‘ » (5.7)

the final term of (5.7) - 0 (1 + ») , The second term has an upper bound

of
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N
{3 T lojl}

=1 j:i J
| N v
s j 3 z; lo;ldp, + <7t [ §; §; lo;ld, + (5.8)
{N >k} i=1 j=t {v <k} =1 g=1

[}
k(e) be such that Y |p.| <e .
g=k Y

For an arbitrary € > 0 , let k
Then clearly the second term of (5,8) has an upper bound of

k jgl lo 12y {0, = kbt (>0, (1)

and the first term is bounded by

k=1
T T lojle > e o, (=)
=1 g=1
+ert f N _dP, (s me, (1 +=) .
{w >k}

A similar style of argument applied to the first term of (5.8) yields

an asymptotic upper bound of 2me for this term: here we need the fact

that

f (o ri)aey = - | E
xS Tt fw s} " 1
Hence we conclude that (5.7) + 0 (1 +» @) ., 0

This central limit theorem has been proved here under second moment
conditions: however, the functional case (Iglehart and Kennedy (1970))
seemé to require that the service times have finite (2+6)-th mbment. The

generalisation to non-stationary arrival processes seems difficult (see

Problem 6,3.4),

2.6, Rates of convergence

Let X be a random variable on a space (Ql, Fl, Prl) ,and Y a

random variable on another (not necessarily distinct) space [92, F2, Pr ) .
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Then we will define the supremum metric for these two random variables by

VX, ¥) = sup |Pr{x < e}-Pr (¥ = «}| .
=00 <0

Then we say that Xh-—2+ X at rate (at least) ¢ + 0 (n+«) if

V(Xn, X) =e, . Note that X, {Xh} do not have to be on the same space,

and hence, in searching for rates of convergence results for the traffic
time average for the G/G/® queue, we can (and will) retain the same
ﬁotation as in the previous sections. We will require the following result,
which is proved as Lemma 1 of Tomko (1972).

LEMMA 2.6.1. Let X, =Y, + Gt » t €R , be the sum of two random

variables, and N be a random variable with the normal distribution. If

Gt + 0 1in probability as t +* and Pr{|6t| Ed at} =8B then

t’

v(Xt, N} < v(Yt, N +e, + B, - 0

t

It is clear that a result similar to Lemma 2.5.1 may be obtained:
however, our metric V , unlike some closely related metrics (discussed
later) is not continuous under suitably smooth mappings (Whitt (1974bH)) and
hence we state more specifically: |

LEMMA 2.6.2. Let {YT}, {ZT}’ {NT} be sequences of random variablea
on the same space (R, F, Pr) esuch that vr, ¥ swn o, vz, z) s o(1)
where Y, Z are continuous and are on a common space (not necessarily ).
If N £y 4w and {(NT, 2.)} tia independent of {r .}, then

v(YNT+ZT, y+z) = oT) + f: q)(:c)dPr{NT <z} .

Proof, Omitted. Similar to the proof of Lemma 2.6,12. O
In our applications of this lemma, we will suppose always that Y and

Z have a standard normal distribution. As such it can be supplemented by

(denoting standard normal random variables by N ) -

LEMMA 2.6.3. Suppose (NTﬁKT)/O/?-‘Q* N at rate B(1) , where N_
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18 a positive random variable for each T > 0 , and 0O, Kk are some

constants, and, not necessarily independently, XT//T'-2+ N2 at rate

a(1) ; then

o]

for some constant Al .

1
-1 2 %
XT/ (K NT] - XT/T

> 2K(logT)/o/?} s 4, max{a(t), B(T), 1/V7)

Proof., Let &(x)

L

L 2/2
J e ¥ dy/vemn 3 then, for some Yo >0,
Q0

e}

_l'%
Pr{ > yT} + Pp{ [T/K NT] -1} = ET/yT}

20(t) + 2(1-0(y ) + Pr{|¥_-«t|/0T 2 we_ /20y }

%
-1 %
XT/[K NT] -XT/T l

oo

v

%

1A

XT/T

A

IA

2{a(D)+8(D} + 2{1-0(y )} + 2{1—¢(meT/?72oyT)} .

To optimise the rate of convergence, we choose Yo = KET/?72OyT .

. 2
According to Feller (1968), p. 175, 1 - ®(x) < e-;fx [(2“)%&']-1 s & >0,

Hence, since we will require €. and 1 - @[yt) to converge to zero at

about the same rate, we choose = (log T)% , and obtain
, Y1

1- Q(yT) < (QTTT)—%(log 7

and e = 2(log T)/0V/T. Note that we really only require y, such that

e /yT = 1//T , and finer solutions are possible, e.g.

yp = [log(t/log 01t | 0

T
We will require a statement of the rate at which T-% J ¢(e)ds and
0

N(o,t]

x approach each other. Since we will make several such estimates
=1
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(Lemmas 2.6.7, 2.6.8 and 2.6,10), we propose
DEFINITION 2.6.4. Suppose

% (T N(o,T]
Py X PQ{T Jo ¢(g)ds - 1:§=:1 x| =z eT} =83

then we set y(1) = max(ET, BT) .

With this definition we have a simple estimate of rate of convergence
to normality of the 'number of busy servers'process.

THEOREM 2.6.5. Suppose there are constants m, \u, 0,» 0, 8uch that

2
Dl
the arrival process of the G/G/= queue satisfies (N(0, Tl-mt)/0)/T —= N,
n 02
at rate o(t) , and ) [xi-u]/OQJE —= N, at rate y(1) , then
=1 .
T Y D,xD,
U ¢(s)d3-—mm] /oVT ——= N

0

where N = (uclNl+ﬁﬁozN2)/o at rate
A, max[p(T), éz Y(kIP (N0, 11 = k}, x(1), (log T)/vqj (6.1)
=0 ’ .

2

for some constant A2 s Where 02 = uzci + mo, .

Proof. Write NT = N(0, 7] . A's will denote constants. We firstly note

% % -% -%
Pl N +l) /NT 2T = AT for some constant AS + By Lemmas 2,6.3 and

v(ﬁE(NT-mT)/ol(NT+l)J5, Nl} < 4, max(p(1), (log T)/VT) ;

hence, by Lemma 2.6.2,

i
-1 % -1 T %
vivo o Vil _-mt) fo, (N +1)Fevmo, 0T Y (wp-u) /o, (0 #1), N
=1

0

< 4, max[tp('r), S $(oOP (N0, 1] = K}, (log r)/ﬁ] :
k=0
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where we have defined N = (uolNl+Vﬁb2N2)/0 . Thus we obtain by Lemma

2.6.3,

N
T. ) ©

\)U Y xi-—muT] /oVT, N} s Ag max[cp(r), Y wkP {n(0, T] =k}, (log T)/ﬁ] .
1=1 k=0

By Definition 2.6.4 and Lemma 2.6.,1 the conclusion follows. a
A valid enquiry is into the technical handling of the second term in

(6.1). Since many rates of convergence results have a (k) of the form
p(k) = {log(l+k)}Y/(l-t-k)(S s, YZO0, §>0 we prove

LEMMA 2.6.6. (a) If (k) ='{1og(1+k)}Y/(1+k)6 , some Y=zZ0, §>0

and El{N(O, nl} = 0(n) , then

El{w(N(O, n1)} = 0(max[{1og(1+n) Vo (n), w(n)]) .
. | 1+6
(b) If also, 1lim sup EllN(O, nl-mn|= " /n < © , then
oo

2 {v@o, n1)} = o(ym)) .

Remark, If 0 < 8§ =1 , condition (b) holds if

lim sup Var N(0, nl/n < «© , true for many point processes.
N ‘

Proof., Write N =N(0,n], C, = {§(0, n]l = nm/2} . Then

f {10 (2t ) Y
c (1+Nn)6

8
P, = (2/nm)°E {10g(14V ) }Y
n

< A7{log(l+n)}y/n6

by Jensen's inequality, since {log(l+x)}Y is a concave function. Also to

prove (a),
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dp, = A,;{log(l+n)}YPl(C7c1}

IA

A;{log(l+n)}YPl{|Nﬁ/n_m{ > mf2} - (6.2)

< A%({log(lm)}Y/na){nﬁfl-‘P(/ﬁ/%)]} + [1og(1+n) }Yo(n)

as in the proof of Lemma 2.6.2. But

nd{l-@(_/ﬁ/Qo)} < (2c1r/»/§'ﬁ)n‘s"J“e'"/2"2 >0 (n+=) .
(b) follows by applying Chebyshev's inequality to (6.2). 0
We now turn to estimation of X(1) . Our first result follows easily
from Chebyshev's inequality: since all of our results seem to go through
most naturally with stationary arrival processes, we make this assumption
explicitly from now on. |

LEMMA 2.6.7. If the arrival procese is stationary with

m = EIN(O, 1] < « and the sequence of service times is stationary with

finite second moment, then x(T) = O(T—%) . ]
In our next two estimates we assume the service times to be i.i.d.
LEMMA  2.6.8. If the arrival process is stationary and orderly with
m = E N0, 1] < e and (4,4) ayd (4,5) hold and the service times are t.t.d.
with finite third moment, then ¥(T) = O(T-l/3) .

Proof. Once again we use Chebyshev. Following Daley (1972), Theorem

L4, we assert that from the stationarity and orderliness of Pl R
duldu(w)| = P {(u, utdul = 1, NQu+v, wrvtdv] = 1} + o(dudv)  (6.3)

(where m = 1 ), so that, using the decompositions (2.2) and (2.3),
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T

Ei x £ {o"(D)?) = f du [m [(u+2-1) " 1%dF(2) ' (6.4)

0 0

T Uu
¥ f du f du(v) fw dF(1) fm (utl-1) w-vtm-0) TP () (6.5)
0 0 0 0

T T-U . .
+ J du J du(v) fw dF(Z)-foo (u+l-1) (vtm=-1) dF(m) (6.6)
0 0 0 0

where F is the service time distribution function. Easy manipulation then

yields [” ZadF(Z) < @ as an upper bound for (6.4), whereas (6.5) and (6.6)
0

have upper bounds of 4/ f” ZSdF(Z) f“ ldF(l) . The term E, X EZ{Q (T)2}
0 0 2

has similar bounds. O
Unless the arrival process is renewal, the technique used in Lemma
2.6.8 cannot readily be extended to higher moments. However, we make
CONJECTURE 2.6.9. If the arrival process is stationary and orderly

with m = ElN(O, 1] <« and (4.,4) and (4.5) hold, and the service times

are i,i.d. with finite g¢qth moment, then ¥(1) = O(T_%(q-l)/q) . O
By making some rough approximations, we can achieve a lower bound for

x(T) . Here, as is often done, we ignore the contributions of arrivals

before time zero to the traffic average.

LEMMA 2.6.10, If the arrival process i8 stationary with finite plth

moment, and the service times arve i1.1.d. with finite qth moment, then,

aetting p2 = (Vl+q-l) s P = min(pl' p2) s I min(pl’ 2) 4

O(T-%(l-pq'l)p(pﬂ)'l) )

x(T) p>2,

: O(T—%(l-2q-l)r(r+l)-l) , ps2.

Proof. We use the decomposition (2,4) and the inequality of von Bahr

and Lsseen (1965) and Dharmadhikari, Fabian and Jogdeo (1968) for
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{Xn : n 2 1} a sequence of i.i.d. random variables with EX; =V <=z if

k
lz1,and & = Z: X, , then
=1

E|Sk-k\)|Z s 44 kmaxu"}ﬂ)1:7|Xl-\)|Z .

1/n
for some constant 4y . We also require that Mh(u)l/n = {ElN(O, u]n}

is a sub-additive function of u for stationary arrival processes Pl

(easily deduced as in Daley (1971)), and hence that for some constant .Alo s

7

E N0, ul" s 4, " .

10
Thus, by Chebyshev's inequality, with u = E2{xl} as usual,

Py x Py {oj(t) z e}

A

: § 8
B, X E2{<I>i('r) }/eT

QG{EI{N(T-G(T), T]G}Ua + El{N(T-G(T), T]max(l,%ﬁ)}E2lxl_pl5}/€5

tA

T

1A

§, 8
All e(T) /c»:T .

Also,

A

| 1,%8 6\ .6
Py x ooy = e} = 4™ { (o o) "op, (o, -e00) 1 e

T
+ Als'r(S (&, (=)~ () +]6/e$
< Alu[TmaX('l'}éG)/sﬂEz{[(xl-c(T))+] 5} (6.7)
+ AlS[TG/ei] [EQ(xl-c(T))+]6 . (6.8)
In (6.8), if we set o(1) = T% , 0<as%, then

TG(T)-lEQ(xl—c(T))+ < to(m)”t r

1dF(1) sr Moap1y
4 alT1) a

and hence, provided f” Zl/adF(Z) <@,
0
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Similarly,

(6.7)

IA
S
=
~J
—
—
Q
™~
™
~
——
O

v

provided [” Z(G/Qa)dF(Z) <o (§

2) , or r 1Mr) <o (5 < 2) .
0 0

Hence

$
P x PNtz e} = Ale[T-(%-a)/eT] ,

. ~(5-a),_ \° |
i.e., x(1) = max[eT, T /eT } . Choosing €, optimally gives

x(1) = L~ (F-a)[6/(8+1)]

Thus the problem becomes to maximize f(a, §) = (%;a)[G/(6+l)] subject

to the constraints 0 < § <= min(pl, q) » (1/a) =g and (8/20) <q (for

§=2). If Py < 2 , the answer clearly is to choose o = 1/q and

[=c]
n

qq - If Py Z 2 , the situation is not so simple. Drawing an (o, 6)

graph including the constraint regions, and observing that f(a, 6) + , o ¥

and f(a, 8) 4+ , &6 4+ , one sees that the optimal (a, &) paif lie on the

line § = 209 , where 2 <6< min(pl, q} . Thus the problem evolves into

maximising g(8) = (%—(6/2q)}6(6+l)—l subject to this constraint. It is
easily demonstrated that g(6) has two turning points only, at
§ = tygtl - 1 . The one which concerns us, vg+l - 1 , is always a maximum.

Thus, writing Py, = Vq+l -1, p= min(pl, p2] , we find x(71) = T-g(p)

unless p, < 2 , i.e,, g < 8 when it becomes x(1) = T—g(2) . 0O

A point to note here is that as Pipq > (provided PR q )

x(t) ~ T—% , which one would hope for., Indeed, for large g¢q ,

X(T) ~ T—%(l—l/‘/&_)
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We focus attention now on ¢(t) . For point processes specified in
terms of counting measures, we will assume ¢(T) can be calculated;
however, many point processes on the real line are more easily defined via

their inter-arrival times, and for these we provide

LEMMA 2.6.11. Suppose the inter-arrival times {Hi} of a point

process satisfy, for some congtante X and O ,

< ¢(n) ;

éwl%(i m{npuwasy}-uw

Y 1=0

then, for any § < 1,

sup IP{(N(O, T]—X_lT)/(A—S/QG T) <y} - ()]
Y

= O[max[w(k-ldT],(log T)/V?j), (6.9)
where & <8 the cumulative distribution function of the normal distribution.
Remark. For the purposes of this proof, we set HO = tl .
Proof. We divide fhe real line into four segments,
(1) y > (Qog DF : Let y_=27lr+ 232501 10g DF , ana [zl
denote the smallest integer less than « 3 then

p{o, 11x72) /(Y %) =y} - e (6.10)

12{ w0, 11-x"2)} /(A3 %0/R) > y} - [1-0(y)1]

n

1A

p{n(o, 11 > yT} + e‘%logT/(Qﬂ log T)%

[Y]

LZ -k) (Om = (T-_}‘[[YT]"'l]}/(Gm} + (2nt lvog"r)-%

A

Q(EYT]) * Q((T'AYT)/(XJV;]) + (21T log T)—%

IA

w(l_lT] + @{-[A_lT(logT)/YT]%] + (27T log T)—% (6.11)
remembering that T - AYT is negative., In the algebra we have used an

inequality on p. 175 of Feller (1968), which also yields an upper bound for

the middle term of (6.11) of
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.
{YT/(k'lT log T)} exp{-%(k'lr(log T)/YT]}.. (6.12)

Let us call the exponential factor in (6.12) f(t) . Then .

log (VTF(t)} = ¥(log r){x'%o<r log T)%/YT} >0, (1),

so that f(1) = O(T-%} . Since Yo = o(t) , (6.12) is 0O(T log T)-% .

Hence (6.10) is
- -%
0(max[o(A"'1), (r 108 D7F]) .
(i1) y < -(log T)% ¢ By similar methods to those of (i)

(6.10) = 0(maxfo(rx"t61), T7¥])

for any 6 <1,
(iii) 0=y = (log 'r)g"f : Let GT = GT(y) = ALt + X_S/ZOT%Q , and set
®*(y) = 1 - ®(y) . Then

p{ (e, t3-2711)/ (A3 %/7) =y}
L6, ]
P{(igo (ni-x)]/(c/l_'é:l) > [T-A[[GT]H))/(Om} (6.13)

1A

o(fs,]) + o[ (a6 )/ @75, (6.1

remembering that T - X([GT]+1] is negative. Now [®(x)-0(y)| = |z-y|/v2T ,

so that by adding and subtracting ¢*((T—AGT]/(OX-%¢?)] to the last term

in (6.14), we obtain an upper bound of (N.B. o*(-y) = d(y) )

o(x"1) + (QnAOQT]'% + ®(y) .

In the other direction, (6.,13) has a lower bound of
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-@([61]) + 04 ((1-28_}/0/8 )

v

-¢(K—lT) + Q*(-y(l+k—%6y/V?)-%)

v

—o(A7H) + 04(=y) - (Jy| /oM | (142 Foy /7)1

v

-¢(A—1T) + &(y) - (log T)%(A-%b(log T)%/VT)/VE_'.

Hence

(6.10)

0(max[¢(k—lT), (log 1)//1]) .
(iv) -(log T)% =y <0 : By methods similar to those of (iii),
(6.10) = 0(max[e(A™61), (log T)/¥7])
for any § < 1. O |

It would interesting to know if the (log T)//T term in (6.9) can be
replaced by 1//T . Applying our result to the GI/G/® queue, we obtain
(see Problem 6,3.5)

COROLLARY 2.6.12. If the inter-arrival times and the service times ‘of
the GI/G/» queue have finite third moments, then

T “D.xD
[Jo ¢(s)d3-mE2{xl}T]/o/? L2, 0\
at rate O(T_l/a) . O

As remarked earlier, the ‘metric used up till now is not continuous
under Holder continuous or Lipschitz mappings (Whitt (1974b)). Two suitable
metrics are the Prohorov metric p and the dual bounded Lipschitz metric 8
(see (5.4) and (5.8) of Chapter 1), Our theorems (except possibly Lemma
2.6.11 and Corollary 2.6.12) hold with these metrics if we prove

LEMMA 2.6.13. Suppose B(Y, ¥) = w(r) [p(¥,, ¥) = w(D)] , and
8(2;, 2) se(v) [p(2,, 2) s @] . Then if N_ s a sequence of positive
random variables such that N_~+ +» in probability, and {(N'r’ Z T)} ig

independent of {YT} , then
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(@) Bl(ry . 2), (¥, D] so(n) + Jm Wx)dPril_ = x} ,
T 0
and, 1f in addition,
¢(T) = (log )Y /2Y s Y>>0, &§>0 and

lim sup EINT-mT|l+5/T < o for gome constant m , then
oo ‘

(b) o7y » 2), (7, 2)] = O[max(e(r), w(D)] .
T

Proof. (a) Let f denote an arbitrary bounded real-valued Lipschitz

. 2 . .
function on R~ with norm =1 ; 1i.e.,

2 ]
Ifl = sup (lfuc)-f(y)l)/[[,z (x,;-yi)z]’] + sup{|F2)|, « € R} =1,
Ty 1=1

(:1: $yER2]

Then the functions gl(x) = flx, xz) , &, fixed, and

2

gQ(x) = f(xl, x) s Xy fixed, are clearly bounded real-valued Lipschitz

+00
functions on R> with norm < 1 » and hence (f will mean f )
' 00

Jf fly, z)Pr{(YNT, z.) € (dy, da)}

r ”[f(é, z)Pr{YZ € dy}]Pr{z_ € dz, N_ € di}
0 T T

IA

rtp(l)Pr{N € di} +_J U £, 2)Pr{Z_ ¢ dz}]Pr{Y € dy}
0 T T

A

E{U)(NT]} + o(T) + ” fly, 2)Pr{(Y, 2) € (dy, da)} .
A similar inequality may be found in the other direction.

(b) Let F be any closed set in B(Rz) . Then

F_= {xl : (xl, m) € F} is a closed set in B(R) , and hence
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Pr{(YN , zT) € F}

f: f Pr{yZ € Fx}Pr{ZT € dc, N €di}

00

_j w(Z)Pr{NT € di} + fm [ Pp{y € Fg(z)}Pr{Z € dec, N_ € di} . (6.15)
0 0 T K _

IA

Let © < 1 ; then splitting the I“ in the second term of (6.15) into
0

we obtain an upper bound for it of

I and J
(0,mb1] (mBT ,)

Pr{N_ < mot} + Pr{(Y, ZT) € pw(meT)} (6.16)

$ (m@ 5}
< Alg/r + Pr{(Y,_ZT] € Fw maT

Alg(log T)Y/Td + ¢(1) + Pr{(¥, 2) € (F mot )@(T)}

IA

= Aqu(T) + () + Pr{(y, 2) ¢ FQW(meT)+w(T)}

using Chebyshev's inequality for the first term in (6.16). For our Y(T) ,

Y(mét) = 0(y(1)) , and the first term in (6.15) is < A,g¥(T) , by Lemma

2.6.6, so that the ;onclusion follows., 0

As usual, in this theorem it has been tacitly understood that YT, IVT
and ZT are all on the same Space (Ql, Fl’ Prl] and Y and Z are on a
possibly different space (92, FQ, Prz) . In (6,16), we have assumed Y
and ZT on the same space: to be rigorous, one should work the proof

through on the product space with measure Prl X Pr2 . However, we still

need not demand that the limit variables be on the same space as the others

in the final analysis.

2.7. Rates of functional convergence

Ideas related to speeds of convergence have received a boost since

Rosencrantz' illuminating paper in 1968, The results of this section
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represent a generalisation of Section 3 of Kennedy (1972b), which is partly
baéed on Rosencrantz' work. According to the usual procedure (and
Kennedy's), our random functions will take values in the space D[0, 1] of
right—continuous functions on [0, 1] with left-hand limits., We will
consider rates of convergence in terms of the metric

alX, ¥) = infle 2 0 : Pr{p(X, ¥) = €} <€} , (7.1

where pl(x, y) = sup |x(t)-y(t)| , x, y € D[O, 1] . Note that this
0st=<l

definition is only meaningful if X and Y are on the same space
(@, F, Pr) , say, a fact which we will assume from now on. « corresponds
to convergence in probability (Section 1,5) in the uniform metric on
D[0, 1] (see Problem 6.3.6). Observe that if D[0O, 1] is endowed only
with the Skorokhod topology (Billingsley (1968), p. 111), it is easy to
prove {p(X, Y) 2 e} € F » or, more generally, that p(X, ¥) is a random
variable on (2, F) . Hence, the difficulty referred to in Section 2 of
Whitt (1974b) of D being non-separable with the uniform topology
(Billingsléy (1968), p. 150) is avoided;

In this section we will regard the arrival process as a point process

n and the service times as a sequence {Vi} of non-negative random

variables on (R, F, Pr) , and also suppose that standard Brownian motions

Wl and W2 are defined on § , such that (n, Wl] and ({Vi}’ W2) are

independent. We will require the following random functions in D[0, 1] :

4, (t) = (nCo, ntl-mnt)/ (o /n) , (7.2)
[nt]
5 (1) = .zﬁ (Vi—u]}/(OQVQ} , | (7.3)

for some appropriate constants m, W, 0, and 9, and

1

1

n(o,nt]
[ i Vi-munt] /(avn) (7.4)

=1

Qn(t)

2 .22 2
where 0 = U ol + m02 .
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We first require a random change of time lemma.

LEMMA 2.7.1. If for the G/G/® queue, a(An, Wl) = ¢(n) and

O‘(Sn’ w2).s Y(n) , then

a(e,, #) = ¢, maxfo(n), y(n), (log m>/*/n"] (7.5)
for some constant C, , where W(+) = (pchl(')+c2W2(m'))/c ig aleo a

standard Brownian motion.

Remark. We will choose a scale such that m < 1 ., For another remark

see Problem 6,3.7,.
Proof. Let Yn be a sequence ¥ 0 (n * ®) , and set

¢, = max[ZmOz/O, 1601/0] . Then

Pr{p[Qn, W) = CQYn}

< Pr{p(An, W) =z %C2o(u02)'lyn} + Pr{pﬁsn(m-), W,(me)) = %Czoollyn} (7.8)

n(0,nt] _
+ Pr{p( Y (Vi-u)/ol/ﬁ', Sn(m-)] z %C,00, n} . (7.7
=1

Clearly, for Gn ¥+ 0 (n -+ ), and provided €, = Sn + n—l =1-m

(true for n = some nl )

A

(7.7) = Pr{ sup IDSQiﬁil -mt
0=t=1l

. s}
n
+ Pr{ su
|s-t|<e
n

Pr{p(An, 0) = V%Bn/oz} + Pr{wsn[en) > uyn}

[nt]
] C

L =[ns+1

Z.uyn}

1A

Prip(4,, W) = /u8 /20,} + Pr{p(W

n? 1°?

0) = /ns, /20,}

+ Pr{pcsn, Wé) Ed Yn} + Pr{ub2(€n) Ed Yn} (7.8)

where Qx(') is the modulus of continuity, and we have used inequality

‘ %
(5.14) of Chapter 1. We choose Gn = (203 log n] /Y7 . Then by equation
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(2.4) of Kennedy (1972b), the second term of (7.8) has an upper bound of

l&/(’lm2 log n]% . But n%én +®© (n -+«) , and hence, for some n, , the

2

first term of (7.8) has an upper bound of o¢(n) , n = n, « The final term

of (7.8) has, by Lemma 2.4 of Kennedy (1972b), an upper bound of
pry =%, -1 2 ¥
2u(2m) Y, exp -Yn/[laen] /en
for n = some n Take Yy = 66%6 = /iﬁé%e for n = some n, ) for
- 3° n- " nn v nn - i

some en . Then the upper bound becomes (go back to (7.8) and reapply
] "JE 2 - %
Kennedy's Lemma 2.4) 4T ° exp -Gn /enen . Hence we take 6, = (log n)* ,

and obtain (u4//)(log n)-ln-% for this rate, but only if

3/4

3
Y, Z 6/562(10g n)"""/m* . Hence if

v, = max[e(n), W(n), 6/20,(log ¥ /"] ,
we obtain an upper bound for (7.6) and (7.7) of
2(0(m)+y(m) + C log m)¥ ¥ /¥
for some constant 03 s, provided n = max[nl, Mys Ngs n“J . (7.5) then
follows, where the constant Cl may possibly need to be increased to

account for the .initial terms. O

For our main result we need to define a random function derived from

the number of servers process. Let

nt
Mh(t) = ([ m(8)ds-munt|/(avn) (7.9)
0
. . . . . 2 22 2
where m(g) is defined in Section: 2.2, and ¢ =y o, + mo, .

We will also explicitly make the assumption now that the service times

are stationary (but see Problem 6.3.4) so that u = EV; , but we will not

assume the arrival process is stationary. Now we can prove



THEOREM 2.7.2. If for the G/G/e queue a[An, Wl) < ¢(n) and

2p
O‘(Sn, W2) < Y(n) , and in addition En(~u, u) = O(u) and E[Vi 2] <

(b, > 1) , then

-(p,-1)/(2p,+1 -
a@Mn, W) = C, max[¢(n), y(n), n 2 2 ), (log n)B/u/n%] ,

where W <8 as defined in Lemma 2.7.1.

Proof, Clearly, for y, + 0, and (g = max{201, 64, 8/0] ,

Prio(, , W) = oy } = Pr{p(M, @} = Cov, 72} + Prio(a,, W) = Cgv,/2}

nt n(o,nt]
=< Pr{p(” m(g)ds - t Vs

0 =1

. o] > cscwn/ﬁ/z}

tCy max[@(n), v(n), (log n)s/u

provided vy, 2 max[o(n), y(n), (log n)3/u/n%] . Now the first term has an

upper bound (for some e, 4o (n > ») ] of

53

/ n%]

Pr{M,(n) 2 %Cov, /n} + PriMi(n) 2 coov, Vn/8} (7.10)

n(o,nt]
o+ Pr-{p( f, Vi/o\/ﬁ, o] = csyn/s} (7.11)
i=n

(O,nt-ch]+l

7

in the notation of (2.5) and (2.6). If E[Vi} < « , then the first term of

-4 % :
(7.10) is 0(n") if = ° =0(y,}) (ef. Lemma 2.6,7), which we require.

Also,

(7.11)

1A

Pr'{an(an/n) 2 CgY,/16} + Prle //n 2 Cgy, /16}

= Prip(e,, W} = Y} + Pr{ww(cn/n) > Y_n} (7.12)

provided Y, Z cn//n_ » By Chebyshev's inequality, the second term of (7.10)

has an upper bound of

csn’fy;lf: 1dr(1) , (7.13)

n
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where F is the distribution function of the service times. Hence, for this

term to have an upper bound of Yn » We require

lim sup n%Y;2 fw 1dr(l) < =,
e

7o n

a sufficient condition for which is

lim sup n3(2:2 f? 1dF(1l) < = ,
e

n

If e = n® s, some o > 0 , this occurs if E[Vé3/2a)~l] < « . and hence

- (b ,~1)/ (20 ,+1) -(p 1) /(2 ,11)

» 1.e.,we require Y,z " . Finally,

n

3/2

the second term in (7.12) has an upper bound of C7nc; exp{—cn/le} ,

using Lemma 2.4 of Kennedy (1972b), which converges to zero at a rate much

faster than cn/vﬁ‘ and hence Y, 0O

Applying these result to the GI/G/~ queue, we obtain

COROLLARY 2.7.3. If the arrival process to the G/G/® queue is

2p
renewal with E[Hi J] < » , where Hi i8 an inter-arrival time, and the

L . : L2 .
service times are i.i.d. with E(V ) <= &ﬁﬂ p, > 1) , then if

p = min(Pl’ p2) s

' X ' -1
a@un, W) = 08{(log n)p/nmln(p-l,p/2)}(2p+1) = Cggln, p) .

Proof. Heyde (13969) establishes W(n) = 0(g(n, p2)) and Kennedy

(1972b), Lemma 3.4, that o(n) = 0(g(n, p,)) - 0

Note that by using Lemmas 2.2 and 2.3 of Kennedy (1972b), and employing
the techniques of his Lemmas 3.1 and 3.4 and proceeding as in (7,8) here, we

can establish g(n, pl) as the relevant rate of convergence for the arrival

process without recourse to Kennedy's Skorokhod representations: we only



require the Skorokhod representation to give us the rate for

[nt] 2
Y (Hi-)\) /ovn  (where A = E{Hi} s O
=1

This is a conceptually simpler approach.

= Var{Hi} ) as per Heyde (1969).

55



56
CHAPTER 3

FUNCTIONAL LIMIT LAWS FOR CLUSTER POINT PROCESSES

3.1. Introduction

The cluster process has appeared extensively in the literature, a
tribute to its practical interest as well as its theoretical accessibility.
It has modelled many processes with some sort of regular "triggering"
mechanism: early examples are contagion problems in ecology (Thompson
(1955)), and the spatial distribution of galaxies (Neyman and Scott (1952),
(1958)), followed by failure patterns in computers (Lewis (1964a), (196u4b)),
and the occurrence times and energies of earthquakes and aftershocks (Vere-
Jones (1970)). It has also been used to investigate "bunching" in traffic
flow (Bartlett (1963)). Recently, Hawkes and Oakes (1974) have demonstrated
its close alliance to the Hawkes process. Finally, Matthes and others (e.g.
Matthes (1963b), Kerstan, Matthes and Mecke (1974)), Goldman (1967) and Lee
(1967), (1968) have studied these processes ih relation to infinitely
divisible point processes, since Poisson cluster processes are equivalent to
regular infinitely divisible point processes. Closely related modeis also
exist, such as Neyman and Scott's (1964) br;nching type model for
epidemics. As can be seen, multidimensidnal cluster processes (e.g.
galaxies, epidemics) are clearly important, but in this thesis we confine
ourselves to one dimension,

This chapter is concerned with functional limit laws for stationary
cluster processes. Weak convergence has come into vogue particularly since
the publication of Billingsley's (1968) text on the subject, although the
theory in its present form has been available since 13956 (Prohorov (1956),
Skorokhod (1956)). Applications of the theory of wéak,convergence have been
too diverse to detail - for a review and references, see Iglehart (1974).

We mention only that Jagers (1974) has a theory of weak convergence of
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random measures and point processes on Polish spaces. The equivalence of
functional central limit theorems for counting processes and the partial
sum processes derived from inter-event times has been established in
Iglehart and Whitt (1971) and Verwaat (1972). A summary of the theory of
superpositions of point processes, ihcluding weak convergence problems, is
given in Cinlar (1972). Whitt (1973) investigates rates of convergence of
superposed processes to a Poisson process., Thinning of point processes is
the subject of a paper by Jagers and Lindvall (1974) and also more generally
in Kallenberg (1974). In these latter contexts (superpositions, thinning)
in which a sequence of point processes converge to a point process, weak
convergence and convergence of finite-dimensional distributions coincide, as
was first pointed out by Straf (1972) and more generally by Whitt (1975).
This equivalence has been generalized by Saunders (1975) to the space M of
finite non-negative measures on a complete O-compact metric space, where M
is endowed with the topology of weak convergence,

The functional version of the law of the iterated logarithm for i.i.d.
random variables was presented by Strassen in his famous paper in 1964. It
has since been extended in various directions, for example in Heyde and
Scott (1973) and Wichura (1973), and references there. Functional strong
laws were introduced by Iglehart (1371b),

Section 2 of this chapter defines and examines existence of cluster
processes with dependent clusters, as well as establishing notation needed
to prove the limit theorems of Sections 3, % and 5. As with G/G/® queue,
we ask for limit theorems for the cluster process in terms of the same
properties holding for the components. Also in Section 5, we investigate
two processes related to cluster processes, by way of looking at limit laws
for doubly stochastic Poisson processes, and the law of the iterated

logarithm for the G/G/* queue.
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3.2. Definition and existence of cluster processes

A cluster point process n* (compare Daley (1972)) is generated by
two independent components, the centre process n consisting of points

{tj} (j = 0, £1, ...) , say, each of which initiates a subsidiary process
nj which is a.s. finite and independent of n , The full process consists

of the superposition of the nj‘s s lee.,

‘n*@) = Y n.(4-t.) , bounded 4 € B(R) . (2.1)
all j J

However, as in the arrival process for the G/G/® queue, we mainly

refer to the centre process as a probability measure P, on (N, o(N)) .

The subsidiary processes may be considered a probability measure P, on

2

(NZ, O(N)Z] , so that again assuming that the centre process and proéess of

subsidiaries are independent we form the probability triple
Z Z
NxN", a(N)xa(N)", PlXP2 .

Let N_ denote the set of all non-negative integer or infinite valued

measures on R with o0-field generated by the sets {N € NOo : N(A) < m} ,
A€BR) , mez v {»} . This is the smallest 0-field such that the

mappings 9, N, - [0, @] defined by ¢A(N).= N(4) are measurable, all
A € B(R)
We will define our cluster process via the mapping n, = ¢3 o ¢2 o ¢l
Z .
from N x N° +~ N_ defined by

¢ 0 o}
Nox NG =2 g8 x N 22 N0 S

N, (2.2)

¢
(1) W, N — ({tj(N)}, N)

@ ({8} AT} —= {7, (--8,) }
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400

¢
(3) {Mj}*-——g-* y M, ,

j=—o

where the product spaces in (2.2) are equipped with the product o-fields,
and {tj} are defined as in (2,1) of Chapter 1. It should be clear that
(2.2) performs the same function as (2.1), namely, sums the contributions of
each subsidiary process Nj centred at t., to any Borel set 4 to give

the number of cluster points in 4 .

If n, is measurable, we can define a probability measure PC on
(Nco’ O(Nw)) by
P = (e )0t . (2.3)
e 1727 ° *
If Pc(N) = 1 , then Pc is referred to as the cluster point process.
Since proving measurability of ¢2 seems to be surprisingly difficult, we

give a complete proof of

THEOREM 3.2.1. (a) The mapping n, defined around (2.2) is

measurable.
(b) o(N_) n N = ao(N) .

Proof. (a) Measurability of ¢l follows from that of the sequence of

maps N+ tj(N) , J € Z , which in turn follows from (2.2) of Chapter 1.

Let ¢A : N, + [0, »] be defined by ¢A(N) = N(A) , A € B(R) . To prove
¢3 is measurgble we have to show that ¢A ) ¢3 is measurable for each Borel

set A . We also have the factorization ¢A o ¢3 =Y o WA where

1
{MJ.}J.EZI-—L M} s Leees Y . N > [0, »12
+00
i : 0 Z - ©
{ej}jezk—‘y—»jg_w B, s ieen, ¥ L0, = [0, =],

Z
We prove that both ¢ and wA are measurable. [0, ®] takes the

product o-field, so that measurability of wA follows immediately from
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measurability of the map Mb — ME(A) from N to [0, ®] . Since

B.t. = 1i B, and each of the maps B.t — B. i
v({8} ) L ljin ;s ps {8} Ij}l:Sn 5 s

continuous (when Lo, WJZ is given the product topology) and the product
o-field is precisely the Borel o-field induced by the product topology,

measurability follows.
Measurability of ¢2 will follow from measurability of the coordinate

map ({Bj}, {Nj})r—+ Nj(-—sj) » and since this map only depends on
[Bj, Nj) , from the measurability of (B, N) + N(+-B) , or from the (joint)

measurability of (B, N) +> N(A-B) for any A € B(R) . For this purpose,

define

g(B, N) = f h(x-B)di(x) ,
where h(x) € C, , the class of continuous functions with compact support.

Without loss of generality N may be endowed with the vague topology (see
(5.9) and (5.10) of Chapter 1). Now, for any € > 0 , there exists a §

such that Ih(x-B)—h(x-Bo]| < g for IB-BO| < 6§ . Let
K=z : |x—y| =68, y € (supp h)+80} . Then clearly
Ih(x—B)-th—BQ)I < E]K for |S—BOI < 8 . So on the neighbourhood

v :n&) = zvo(x)+1} of N,

” [h(x-s)-h(x-so)]zv(dx)] < eN(X) = e[NO(K)+1] .

<€} is a

Also, as B, is fixed, {zv : U h(x-B'O)IV(dx) - f h(z-8 )0 (dz)

neighbourhood of NO in the vague topology on N ., Thus
lg(B, N)—g(BO, IVO)I < g[NO(K)+2]
on the intersection of these two. neighbourhoods x{8 :,|5_30| < 8} . Thus

g(B, N) 1is a jointly continuous function of (B, N) . According to

Proposition 1.1 of Jagers (1974), o(N) = B(N) , the Borel o-field generated
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by the open sets of the vague topology. Since the product o-field on
R x N 1is the Borel o-field generated by the product topology
((usual topology on R) x (vague topology on N)] ,» it follows that g is

also (jointly) measurable in this product o-field.

Let G be the class of bounded measurable functions g : R + R for
which ! f(x-B)g(x-B)dN(x) 1is a jointly measurable function of (B, N) for
every f € CK ; Then every boﬁnded cgntinuous function is in G , since
f(xz-B)g(x-B) 1is then continuous and has support a closed subset of a
compact set, i.e., compact support, and G is closed under uniformly

bounded pointwise limits. Hence G contains all bounded Borel measurable

functions, and, in particular, ]A for every Borel set A . Thus

J f(x—B)]A(m-B)dN(x) is measurable. Taking f%(m—B) 4+ 1 , we obtain by the

monotone convergence theorem that [ 1A(x-B)N(dx) = N(A-B) is measurable.
(b) follows from Halmos (1950), Theorem E, p. 25. a

The existence of the cluster process (i.e., the condition Pc(N) =1)

is a vital question, but a non-stochastic sufficient condition may be given
as follows:
THEOREM 3.2.2. If the subsidiary processes of a cluster process are

uniformly bounded in the sense PQ{N : Ni(I) >0} = F(I) (all i €2,

bounded intervals I ) for some set function F , then the cluster process

exists 1f
f F(I-v)dMl(v) < (2.4)

for all bounded intervals I , provided the centre process has finite first

moment measure Ml .
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Proof.

Pc{N : N(I) < o} =1

. +°° ’
= JN PQ{N Y Nj(I-tj(N)] < oo}Pl(dlv) =1,

j:_oo
by (2.3) and Fubini's Theorem,
+0
= PQ{N : z: Nj(I-tj) < w} =1, P, - as,
J:-—w
= PN :n(I-t) >0i0} =0, P, -as.,
Since Ni(R) < s P2 - aoso’
400
< ’Z PQ{N : N{,(I'ti) > O} < e, Pl — eSa,
==
by the Borel-Cantelli Lemma,
40 ,
< .Z: F( _ti) <o Pl - a.s., (2.5)
1/-..00
400
= j F(I-v)di(v) < « , Pl - @.Sey
00

+00
had '[ F(I-U)Cﬂwl(v) < ®, a

=00

It is clear that the reverse implications at (2.5) and the preceding
step are also necessary if the clusters aré i.i.d. (see also Westcott (1971);
in fact the condition immediately following (2.5) was already familiar to
the German school (see e.g. Kestan, Matthes and Mecke (1374), Chapters 5 and
6 and references there): their derivation was via the Borel-Cantelli Lemma).
In fact, (2.4) is known to be neceésary for a stationary Poisson cluster
process with i.i.d. clusters (Matthes (1963b), Westcott (1971)). Westcott's
techniques and Matthes' formulation do not seem to readily extend to non-
independent subsidiaries.

Let us say that the subsidiary processes are stétionary if with

S, NZ

z :
% + N? defined by Sk{Nj} = {Nj+k} , ;



ADDENDUM (at examiner's request)

We will follow Daley (1972) in employing the decomposition of

nc into a 'coherent' mapping n+ withvremainder terms 1 and

n . Specifically, we write

n,(0, «1 = fi(o, =1 + n (0, ]
= n+(0, x] + 1 (0, x] -n (0, x] (2.7)
where
N(0,x]
nt(o, «1 = i N.(R) ,
PR
N(o,x]
ﬁ(oa x] = N (_t ) x_t'] H
g=1 J
(2.8)
- 0 ©
n(o,xl=1|)Y + D No(-t:, @-t.1,

j=—00  F=N(0,x]+1

_ N(Oix]
n (0, x] & zvj (R\(-tj, :x:—tj])
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_l _
PQ{Sk c] = PQ(C) (2.8)

for any C € O(N)Z , all k € Z . Then just as in Theorem 2.3.1 (a), we can
prove

THEOREM 3.2.3. If the centre process and process of subsidiaries of a
cluster process are both stationary, then the cluster process itself is
stationary. a

In the remainder of this qhapter, we will require, for notational
convenience, that the centre process be stationary with finite intensity
m , and the process of subsidiaries be statiénary with finite first moment,

i.e., U= E2{N1(R)} < © , Under these circumstances it is easy to prove,
as in Daley (1872), equation (26), that ECN(O, x] = ymx . We will write

m, = wm . Also it is clear that the cluster process exists in the sense of

Theorem 3.2.2,

ﬁ’ We will follow Daley (1972) in employing the decompositions into a -

b‘é\ ' "coherent' mapping n
' Q% n (0, @3 = fi(0, I + n"(0, 1 , (0, 1 =n"(0, x1 -n7(0, 21 (2.7
;év b\)’r (<]
$'§f where
o N(0,x] N N(0,x]
‘&\ (0, €1 = ) Nj(—tj, x—tj]- , n(,xl= Y zvj(R) . (2.8)

L -

Again the device due to Iglehart and Kennedy (1970) will be very

useful, Let ¢ + (n > ©) : then, as in (2.4) of Chapter 2,

sup n (0, nt]
0<t=s

N(O,ns] N(OE?S] .
. 00 N . {-o, —¢. - . (2,
= j§l Wile, ) + P s -] S (nt-c,, nt] . (2.9)

Similarly,




n

sup n:(o, nt]

0=t=s
N(O YZS] = +
< i N, (o, —cn] + n (0, nsl + sup n (nt, nt+cn] . (2.10)
j=1 J 0<t<s

3.3. A functional central Timit theorem for cluster point processes

In théir summary of the theory of point processes, Daley and Vere-Jones
(1872) ask for a functional central limit theorem for cluster point processes.
We show in Chapter 4 that ¢-mixing theorems, and some strong mixing theorems
ére inapplicable in this context, but in this section we demonstrate that a
different proof may be readily assembled from known sources. The proof
follows mainly from techniques employed by Iglehart and Kennedy (1970), and
by modifying Daley's (1972) proof for one dimension. In the process we
remove a second moment condition on the centre process, and find an
alternative to a first moment condition on the subsidiaries, but invoke one
extra constrainf not required in Daley (1972), namely that the weak limit of
the normed centre process should have a.s. continuous sample paths (i.e.,
is in ([0, ®) ; see Whitt (1870)). We shall‘use = to denote weak
convergence in D[0, ®) , the space of functions on [0, ©®) which are right
continuous with left-hand limits., The technique is to prove the weak
convergence theorem on D[0, 8] , each & > 0 , and thus on D[0, =)
(Lindvall (1973), Whitt (1971)).

Before embarking on the main theorem itself, we will prove the following

lemma, which is of independent interest. Let

L(¢) = PN (==, t] > 0} , R(%) = PN (¢, =) >0} . (3.1)
LEMMA 3.3.1. If the centre process Pl of finite intensity m and

process of subsidiaries P, are both stationary,

2

oo}
f: L(-u)du < = jZi Nj(‘“, —tj] <w, P, xP, -as.,



0
R(W)duy < = = N.{-t., © < P. X P, -~ a,.s.
[: ,jg—w J( J’ ) -

Proof. The proof seems more natural in the reverse direction. (= in

this proof means ‘'implies'.)

0
Elm Nj(-tj, ©] < o Py X P, - a.s.

= PQ{N_: Nj(—tj, ©] >0 i.0.,4 =0} =0, P, - a.s.
O .
B jg_w P (25, ©) > 0b <=, P -ase,

by the Borel-Cantelli Lemma,

=~ de.S,

0 _ }
= f 3 P2{Nl(-v, ®) > 0}dN(v) < @ , P

« Jm R(w)dv < =
0

where we have taken expectations in the last step, and effected the change
of variable v’ = -v . The other half of the proof is similar. a
We aim for weak convergence to the Wiener process W(+) of the process

z2,(£) = (n (0, ntl-mnt)//n | (3.2)

for t € [0, ) . We also require the processes Xn : N »D[0, =) ,

Y NZ + D[Q, ) defined by

n
x () = (W(o, ntl-mt)/Vn , (3.3)
[nt]
Y (%) = jgl (zvj(R)-u)//ﬁ . (3.4)

THEOREM 3.3.2. If the centre process Pl is stationary, and
-1 1
Pth = PrX~ . (3.5)
where Pr{X(*) € C[0, )} = 1 , and the process of subsidiaries P2 18

stationary with the functions (3,1) satisfying
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A2 {L(-n)+R(M} > 0 (n > =) (3.8)

and

1 -1

— =
PY Pry | | (3.7)

then, writing Z(t) = WX(t) + Y(mt) ,
(p, xP)z b = Prz ™t (3.8)
and X and Y are independent.
Remark. We choose a scale such that m < 1 .
Proof. We use the decompositions (2.8), (2.9) and (2.10). For random
functions Sn, 8 , we will abbreviate (Pl X P2)9;l = Pre—l as Gn =0 .
Then

(n"(0, nt1-m nt) /v = ux(£) + ¥Y(mt) (3.9)

in the Skorokhod topology on D[0, s8] , by Lemma 1 of Iglehart and Keﬁnedy

(1970). Let p, and ds respectively denote the uniform and Skorokhod

metrics for D[0, 8] (ef. (5.11) and (5.12) of Chapter 1). To prove that

the 1imit (3.8) occurs, it is sufficient to show that

o ({n (Co, nel4n (0, n+1)/¥n» 0) = 0 by Theorem 4.1 of Billingsley (1968),
8

since Py Z ds . Provided e, = o(/n) (n + ») , then
sup n+(nt—c » ntte ] =0 (3.10)
n n
O=t=s

by Lemma 2 of Iglehart and Kennedy (1970). Also, for any ¢ > 0 ,

N(Q,ns]

RS R

A

JN N(o, ns]PQ{Nl[(-cn, cn]c] > O}dPl(N)

-2) 2
< no{s (e ) R(e,)} = olne;?|el{L () (e,)}
so that if a sequence dn + (ﬁ + o) exists such that dnmn >0 (n+» ) ,

where m, = nQ{L(—n)+R(n)} , then (3.11) > 0 (n » ) . Clearly m. 0

. . . ~% ey s
(n > ») 1is necessary for this. Taking dn = mn2 shows that it is also

sufficient.
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Consider
- O ®
n (0, nsl= Y IJj(-tj, o] +

j:-m

N.|l-», ns-t.| .
J=N(0,ms 41 (== '7]

But by stationarity of Pl X P2 with respect to the transformation Tés

defined analogously to (3.4) of Chapter 2,

N.{-», ns-t.| and N.{-=, L. (3.12)
F=N(0mel+l *7( ’ 3] jz=:l '7( ’ J] '

have the same distribution. Also, the middle term of (2.9) has an upper

o]
bound of E: Nj[—w, —tj] » so that, since the conditions of Lemma 3,3.1 are
i=1 |

satisfied, dividing by V% means that it converges Pl X P2 - a.s. to zero

as n > , Similarly n=(0, ns] converges to zero in PlXPz-probabili’ty.D

Unfortunately the above argument contains one step which depends
critically upon stationarity (see Problem 6.4,1). If the clusters are only
right-handed, this is unimportant, but a more robust technique is of course
to estimate the small probabilities by Chebyshev's inequality. This yields

COROLLARY 3.3.3. Replacing (3.6) in Theorem 3.3.2 by the pair of

conditions
B, {0 ((-n, 71} >0 (n >
1 " e
—j EQ{Nl((—u, ul ]}du +0 (n~>®) (3.13)
Vn 70
yields the same conclusions under the same conditions. a

The conditions (3.13) are predictably more severe than those of Daley
(1972) for ordinary convergence, who used this technique. It should be
clear though that we can find a weaker version of Theorem 3.3.2 for ordinary

convergence,

is8 stationary, and

COROLLARY 3.3.4. If the centre process P

0

Xn(l) — X(1) , (3.14)
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and the process of subsidiaries P, 1is stationary with the functions (3.1)

2
satisfying
Jw'{L(—u)+R(u)}du < @ (3.15)
0
and
DQ
Yn(l) — Y(1) , (3.16)

then X(1) and Y(1) are independent and

D lXD2
Zn(l) — Z(1) . O

In Theorem 3.3.2 and its Corollaries we have avolided the question of
norming. Denote the norming constants for Xh('), Yn(°) and Zn(') by

¥ Oy and O vrespectively; then clearly 02 = u202 + m02

X Y:

o] If the

centre process is, say, ¢-mixing with finite first and second moments and
totally finite reduced covariance measure C((*) (see Section 1.3), then

U§ = IR c(du) (= 0, supposed > 0) and X(*) = OXWl(’) » where Wl(') is a

standard Brownian motion. It is not difficult to prove, via equation Al of

Vere-Jones (Appehdix to Daley (1971)) that 1lim Var(n(o, u])/u = f Cn(du)
R

Ur®

for any suitable weakly stationary point process n . If, also, the

clusters are i.i.d. with u, = E.{N (R)2 < o , then 02 = —u2 and
e 2 201 ? Y 2 ?

Y(e) = OYWQ(') for a standard Brownian motion W2(°) . Then Zn(t) = W(t)

for a standard Brownian motion W(*¢) by Theorem 3.3.2, and also nc(')

has totally finite reduced covariance measure Cc(') satisfying

J Cc(du) = 02 (Theorem 4 of Daley (1972)).
R
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3.4, The law of the iterated logarithm for cluster point processes

3.4,1. SOME DEFINITIONS AND LEMMAS

The law of the iterated logarithm (LIL) has been studied extensively
for many years. In the context of point processes, the law has been
demonstrated for the split times of branching processes by Athreya and
Karlin (1967), and in queueing situations by Iglehart (197l1a). The
equivalence of the LIL for the counting process and the process of inter-
epoch times has been demonstrated by Verwaaf (1972), from which results for
many point processes are immediate.

Firstly we require some lemmas which are mostly known., Denote by

DJ[O, ) (DJ[O, s]) the J-fold product space of D[0, «) (D[O, s]] .
These spaces will be endowed with the product Skorokhod topology (Whitt

(1971)). Generalizing Strassen (1964), we begin with

DEFINITION 3.4,1. Let k7 (Kg) denote the set of absolutely
continuous functions =z in DJ[O, ©) QDJ[O, s]] such that
. 2 8 . 2
x(0) = 0 and rx(t) dt =1 U x(t) dt = 1] (4.1.1)
. 0 0
where & denotes the derivative of x determined almost everywhere with

respect to Lebesgue measure, and the square is to be interpreted as inner

product. o

It follows immediately from the Schwarz inequality that for « € ¥/

and 0<g=<b,

P :
|x(®)-z(a)| = (b-a)* . (4.1.2)
In the next definition we state formally the meaning of a functional

law of the iterated logarithm (FLIL).

DEFINITION 3.4.2. A process {Xﬁ(t)}n>3 defined on a probability

space (Q, F, Pr) , whose sample paths lie Pr - a.s. in DJ[O, ®)
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(DJ[O, s]) satisfies a FLIL if it is a.s. relatively compact in DJ[O, )

(DJ[O, s]) and has x/ [Kg) as its set of limit points. a

% .
Let ¢(n) = (2n log log n)° . If {Xi} is a sequence of zero mean,

unit variance i.i.d. randomvariables, then Strassen's (1964) proof is easily

[nt]
adapted to show that Sn(t) =y Xi/¢(n) satisfies a FLIL in D[O, s] ,
' =1

any s > 0 . Now we quote the continuous mapping theorem for the FLIL
(Strassen (1964), Wichura (1973)) in the form we require.
LEMMA 3.4.3. Let (Q, F, Pr) be a probability space and 8, S'

metric spaces with K a compact subset of S . Let fh : Q>S5 be
mappings such that {fh(m)} , WE€Q is a.s. relatively compact in S and

has K as its set of limit points. Let & : S + S' be a continuous

mapping; then a.s. the sequence @(fh(w)) is relatively compact in S'-
and its set of limit points is @(X) . a

We wish to relate the FLIL on DJ[O, ©) and DJ[O, sl, >0, to

each other. This can be done in the same way as Whitt (1971) for weak
convergence, Let the éontinuous mapping ro s Dj[O, ©) > Dj[O, sl ,
§ >0 , be defined by rs(x)(t) = x(t) , O‘S t < s , for arbitrary
x € Dj[O, @) , Then we obtain

LEMMA 3.4.4. A random vector {Xn(t)} in Dj[o, ®) gatisfies a FLIL
if and only if the random sequences {fS(Xn)(t)} in Dj[o, s8] satisfy a

FLIL for each s > 0 .

Proof. The forward direction follows immediately from Lemma 3.4.3 and
observing that rS(KJ) = Kg . Conversely, the relative compactness of

{Xh(t)} follows from that of {rs(Xn](t)} , all s >0 , by an easy
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extension of Theorem 2.3 of Whitt (1971) to DJ[O, ) , That the derived
set is kY ensues easily from the form of Kg . |

We require the following simple result in Section 3.4.2, Let

2 2 .

0O<A=1l, a=20, B=20, X + B =1 and define

2
g + D"[0, s] » D[O, 8] by

9y, 2) = ay(X*) + Bz(+) . (4.1.3)
2y _ 1
LEMMA 3.4.5, g(k]) = K .

Proof. Let x € K; , and define 3z(¢) € D[0, s] by z(¢) = Bx(t) .

Also define y(¢) € D[0, s]1 by

y(£) = adx(¢/X) , 0=t =<2As

odx(s) , ds=t<s.
Then clearly (y(O), z(O)) = (0, 0) , and (y, z) are absolutely
continuous with respect to Lebesgue measure. Also

s AS
f [ty 2+2(8) ) dt [' aQAQ[dZ(“)
0 o u

2 S
] dt + 82 I x(t)th
u=t/x 0

s
(ra?+82) f a(t)dt < 1
0
where we have made the change of variable ¢! = t/A in the final step.
. 2 1 .2
since x(t) = ay(At) + Ba(t) , (y, 2) €K, K C g(AS) .

1

Now to prove g(Kg) c Ks . Let (y, a) ¢ Kz . Clearly g(y, 2)(0) =0 ,

and g(y, 2) 1is absolutely continuous with respect to Lebesgue measure,
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S 2
f {a wnhy Bz(t)} dt
0

8 2 . 2
J (a2+82A-l)[éﬁ§%22J + (a?+8Yz(0)? - {a/ﬁ%(t) _B7E éﬂiﬁil} dt
0

A8 3
()2t + j 2(6) 24t
0

IA

[a2+62k—l)k J
0

IA

N Y.
J () +a(e))dt = 1. O
0

For z,y € D[0, s1 , s > 0 , define the supremum metric by

sup |x(t)-y(¢)] (4.1.4)
0=t=s

p (xs y)
and the modulus of continuity of & by
ws(x, §) = sup |x(t)-z(u)| . (4.1.5)
0=t ,uss
| t-u|=<¢
In Lemma 3.4.7 and Theorem 3.4.8 we will need
LEMMA 3.4.6. If a process {Xﬁ(t)} on D[0, ») satisfies a FLIL,

then for any s > 0 ,

(a) pg (X, K;) +0 a.s. (n~+w),

(b) 1lim lim sup ws(Xﬁ’ §) =0 a.s.
S¥Q  moeo

Proof., (a) Since K; is the derived set in the Skorokhod topology

[metric ds ) on D[O0, s] , ds(Xﬁ’ K;] + 0 a.s. Hence for each w € Q ,
€ > 0 , there exists an no(w, €) such that for each n = no(w, €) there

. 1 . .

is zn(w, €) € Ks satisfying

d,(x,,z) <e. | (4.1.6)

Now if As is the set of increasing invertible maps [0, s] » [0, s]

X, (8)-z (8)] < |x (£)-z (A (D)) + Izn(ln(#>)-zn<t>|

. 1 - %
for any An € A . Since z, € Ks ) Izn(a)—zn(b)l < (a-b)* , and by
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' 1
(4.1.6), suptlkn(t)—tl < e for some An . Hence ps(X K ) e +te¢

i.e., (a) holds.
(b) can then be proved as in Iglehart (1971a), Theorem 3.3 (see Problem

6.4.2). For completeness, we give it here. Clearly for gz € Ki s

%

ws(z, §) <8°. Butfor € >0, W€, n= no(w, €) , there exists (as

in (a)) a z, € Ki such that
1
w (X ,68) sw(z, 8 + 2ps(Xn’ 2 ) = 8%+ 2
using (5.13) of Chapter 1, and the conclusion follows, a
This proof depends strongly on the properties of Ks . It is not simply

a result of the relative compactness of processes satisfying the FLIL (i.e.,
of the Arzela-Ascoli Theorem (Billingsley (1968), p. 211)), although for
processes 'sufficiently like those in ([0, s] ' it is (since the Skorokhod

topology relativized to C coincides with the uniform topology there). For

[nt] ’
instance if 5 (¢) = )3 X3/0¢(n) satisfies a FLIL, where {Xj} is
=1
stationary, EX, = 0 and ¢ is some positive constant, and if we

1

associate with Sn(°) its linear approximation

[nt] :
Sé(t) = [;gl Xj+(nt—k)Xk+l]/0¢(n) , ks =nt <kstl , 0<k=<mns-1,

then " < .
p. (8 , 8" = max |X, |/op(n) . (4.1.7)
s\'n® n 1<k<ns k

Clearly the RHS of (4.1,7) + 0 a,s. if |Xn|/¢(n) + 0 a.s. which
follows from the Borel-Cantelli Lemma if EXi < © (see Problem 6.4.3).
This type of argument may also be applied to nn(t) S (n(O, nt]—mnt)/o¢(n)

for a suitable point process 1n . The point is, though, that if the derived
set is not Kl (e.g., Theorem 4.2 of Iglehart (197l1a)) for some process

Xh(t) which is relatively compact in D , and Xn is not 'sufficiently like
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a process in ([0, s8]’ , Lemma 3.4.6 will have to be reproved before it can
be used.

Finally we require a 'random change of time' lemma: this result has
been observed before by Freedman (1967) and Iglehart (1971b), although not
quite in this setting.

LEMMA 3.4.7. Let {Xﬁ(t)}n>3 and {Nt} (t = 0) be processes
defined on a space (R, F, Pr) such that Nt > 0‘; Nt d oo (t+°) and
Nyt >m, 0<m<l as. (t>x); if {Xn(‘)} satisfies a FLIL, then

upon setting

@n(t) Nnt/n R : (4.1.8)‘
ps(Xﬁ[Qn(')), Xﬁ(m°)) +0 a.s., each s >0 .

- Remark. This of course means that Xﬁ(Qn(')) and X (m*) obey the

same FLIL on D[O, s] , any & > 0 , and hence on D[0, ») by Lemma 3.4.4.
Proof. The process Nt obeys a functional strong law of large numbers

(as per Iglehart (1971b), Theorem 3.1); hence, a.s. for each w € Q ,

§ > 0 , there exists an n

0 no(w, §) such that for n=n

0 H

ps(én('), me) =86 .,

Hence, choosing 6 < s(l-m) , for n = ny s

o (x,(2,()), X, (m)) =w_(x , 6)

and the conclusion follows from Lemma 3.4.6 (b), ]

3.,4,2, THE LIL FOR PROCESSES WITH RIGHT HAND CLUSTERS
We are now in a position to prove our theorem for cluster processes Wit
right-hand clusters. We must suppose the centre process and process of‘
subsidiaries to be defined on the same space N X NZ .
| Once again we suppose our processes stationary. Let

x (t) = (80, ntl-mt)/o () , (4.2.1)
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[nt]

Y (¢) = jzi (Nj(R)—u]/02¢(n) (4.2.2)

%
for some appropriate constants 015 Oy s where ¢(n) = (2n log log n)* .

Then setting 02 = MQGi + mog , we define
z,(t) = (n (0, ntl-m nt})/op(n) . (4.2.3)

THEOREM 3.4.8. If (xn, ~yn) jointly satisfy a FLIL, i.e., if

(Xn’ Yn) is relatively compact in D2[0, ©) Pl x P:2 - a.s. and has K2

as its set of limit points, and if either
EQ{Nl(u’ )}/ (log log u)?du < (4.2.4)
e

or, i1f, in the notation of (3.1),

fw uR(u)du < « (4.2,5)
0

then Pl X P2 - a.s. I, is relatively compact in D[0, ) with limit
set K- .

Remarks. The condition on (Xn, Yn) and (4,2,4) and (4.2.5) will be

discussed in Section 3.4.3. We will take m < 1 , a condition easily
achieved by scaling (see Problem 6.4.4).

Proof, Clearly (recalling that m, = wn ),

-1 -1
z,(t) =0 uoan(t) +0 0 Yn(N(O, nt1/n)

2

N(0,nt]
+ { Y Nj(nt-tj, °o]/c¢(n)} + {

0
i=1 Z Nj("tj$ nt—tn]/dd)(n)} . (4.2.8)

e
Define a continuous mapping gg * D2[O, s] > D[0, s] by
g,(z, y) = (o pe()toy(me)) /o . (4.2.7)

Expressing the first two terms of (4.,2.6) in terms of gy » We find




pg (g, X, (), ¥ (WC0, ne/m)], g (%, ¥ ))

= 0700, (1, W0, meI/m), ¥ (m)) >0, P xP, - a.s,

by Lemma 3.4.7. Hence the FLIL for the first two terms of (4,2,6) is the

same as for gs(Xn, Yn) , which, by Lemma 3,4,3, is relatively compact in
p[0, s]1 and has gS[Ki) = Ki (Lemma 3.4,5) as its set of limit points.,

Then, defining g : DQ[O, @) > D[0, ©) as in (4.2.7), g(Xh, Yn] is almost

surely relatively compact in D[0, ®) with limit set Kl (Lemma 3.4.4).
We now prove that the condition (4.2.4) guarantees that the remainder

terms in (4.2.6) converge almost surely (i.e., Py (remainder terms, 0) + 0,

Pl X P2 - a.s.) to zero.

For any arbitrary fixed & > 0 , define random functions in D[0, s] by

Yn(t)

(n" (0, ntl-m nt) fo¢(n)

N(o,nt]
6,(%)

i

J=1 Nj(emns’ m)/¢(n) >

where ¢ 4 @ (n »®) ., Note that Yn(°) represents the first two terms
of (4.2.6). Now

N(0,nt]
0 [ i N, (nt-t., ©)/¢(n), 0

<9, (s) + ps(n+(nt—cmns, nt], o)

1A

6, (s) + op_(y (¢), Yn{t—cms/n)) tue, /o(n) . (4.2.8)
We take c, = o(¢(n)) » so that the final term of (4.2.8) converges to

/7’2) 1

zero, The second term of (4.2.8) has an upper bound of cws(yn, cmns

which, by Lemma 3.4.6, converges to zero almost surely since we have proved

Yn(t) satisfies a FLIL. We now tackle the first term. This term can be

handled using a geometric subsequence argument, but it seems worthwhile to
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record the following alternative argument, which yields exactly the same

condition. Let

[t ]
0!(t) = z (e e <) /0(n)

Since Xﬁ satisfies a FLIL, there exists, for any 8§ > 0 and for each

N €N (Pl - a.s.), a nO(N, §) such that for n = nO(N, §) ,

[(n(mt-8)] = N(0, nt] < [n(mt+s)] ; 0<t=<s.

Hence, for n = no(N, §) ,
04 (6,,5 0! =w (e, §) = 20(6), 0) = 26 (s)
and Sn(s) >0 a.s. if eé(s) + 0 a.s. But

Lrms]

6/(8) s{ S N.(e. oo)/¢([rms])}.{¢([mns])/¢(n)} (4.2.9)
n =1 Jvd

and the RHS of (4.2.9) converges to zero if the first factor converges to

n
zero, i.e., if 2: Nﬁ(ej’ a0/¢(j) + a.s. by Kronecker's Lemma. But by
J=1

monotonicity, we only require a subsequence to converge, i.e.,

0 N
) Nﬁ(cj, o) /$() > P P2 - a.s. (4.2.10)

We require cj = 0(¢(j)) , SO we take cj = nf%(j log log log j)% 5

sincethe LHS of (4.2.,10) will converge if it has an asymptotic upper bound wh

converges, and since 'tj/j > m“l a.s. (ef. Proof of Theorem 2.4.1 (b)),

we require only the convergence of

N(0,n]
y . (E,, <)/e(t.) . (4.2.11)
J=1 dJ dJ dJd
By the sub-martingale convergence theorem (Breiman (1968), p. 89), a
sufficient condition is

n
lim sup J EQ{Nl(/Z; ©)}/(u log log u)%du <o,
; e

n—)m
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Changing variables u' = vVu gives (4.2.4). Note that a finer condition can
be obtained by refining the v¢ factor in (4.2.11), bﬁt since the resultant
expression is untidy, and there is a grosser approximation in the argument
(see Problem 6.4.5), we have not given it.

The final term of (4.2.6) may be dealt with by a standard geometric
sybsequence argument, which we will not elaborate on. It yields the
condition (use Chebyshev's inequality, the Borel-Cantelli Lemma, bound sums

by integrals, exchange integrals c¢f. proof of Theorem 2.4.1 (b))
00
f E N (u, )}/Vu du <
0 241

which is weaker than (4.2.4).

To obtain the condition (4.2.5), we now employ a geometric subsequence

. 2k
argument on Gn(S) . Let o >1 , and consider Py = [u ] , k € Z+ .

For an arbitrary fixed € > 0 , writing d(n) = s define

N(O,rkt]

By = jzi Nj(dcrk_l), ) > €¢(Pk_l)} . Then clearly

. X . . .

Pl X P2{6n(8) > ep(n) i.o.} < Pl PQ{Bk i.o.}, since, if for some 1 ,
Gn(l) > e¢(7) , then, setting rk(l) to be the next term in the geometric
subsequence greater than 1 , Bk(l) holds (in an obvious notation). We
require P, x P2{Bk i.o.} to be zero, which occurs if Z:Pleé{Bk} < o by

the Borel-Cantelli Lemma. Arguing as in (3.11), and choosing d(n) = vn

[we require d(n) = 0(¢(n)) » and choosing finer d(n)'s 1leads to intractab
expressions), this occurs if

oo}

Y rR(r, .)
k=3 K ( k-1

tA

] aOr(0% %) de
3

IA

(as/log u) fw uR(uw)du < =
1

a6—3 in the last step.

where we change variables u
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The final term of (4.2.6) converges to zero a.s. under the condition
(4.2.5) by Lemma 3.3.1. a
COROLLARY 3.4.9 (Ordinary Law of the Iterated Logarithm). Under the

conditions of Theorem 3.4.8,

lim sup Zn(l) = +1 , 1lim inf Zn(l) = -1
nreo nreo

Proof. As indicated by Strassen (1964). O

3.4.3. COMMENTS
(a) The LIL for processes with double-sided clusteré

If the clusters can occur on the left-hand side of their initiating
points, we obtain more remainder terms which we must prove converge to zero

almost surely. Most of these can be handled as before, but

[eo3 .
Nﬁ(-tj, n—tj]/¢(n) (4.3.1)
J=N(0,n]+1
proves difficult. If the left-hand clusters have bound d , then o« in

(4.3.1) may be replaced by N(0, n+d] , and this converges to zero a.s. as

does Yn(t) in (4.2.8). In the general case, if we replace N(0, n] + 1

in (4.3.1) by N(O, a2n] + 1 for some o > 1 , then we can prove convergence
using the standard geometric subsequence argument and Chebyshev's inequality
under the condition

Q0

f E N (==, ul}/Vu du < = .
1

Conditions ensuring that the remainder (the‘sum from N(0, n] + 1 to

N(O, aQnJ ) converge to zero a.s. seem elusive. The reasoning around (3.12)
hés also defied extension to the a.s. convergence case.
(b) The conditions in Theorem 3.4.8.

It is clear that if the clusteré have only one member each, then
(4.2.4) is much weaker than (4.2.5). On the other hand, it is easy to

construct examples in which (4.2.5) is satisfied but (4.2.4) not, but mostly
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these involve Nl(R) not having a first moment. The following example

indicates that under fairly reasonable circumstances (4.2.4) may be much
weaker. A general comparison does not seem feasible.

The cluster members of a Bartlett-Lewils process form a finite
renewal process of length S , where the inter-point times are i.i.d. with
common distribution F and independent of S . Let

o0
> Pr{S =4} . Then, using Lawrance (1972), Equation (4.3.7),

R (r) =
8 J=r+l

(4.2.4) becomes
o0 o . R * L
J 5 Rs(z)[l-F(“l) (w))/(log log w)?du < = . (4.3.2)
e 1=0
Suppose, for example, that F has regularly varying tails with exponeni

o > 0 (see Feller (1966), p. 268), i.e., as U > «

2

1 -FPu) ~ u—ui(u)

where [(g) = 0 is of slow variation. Then, using the Corollary, p. 272 of

Feller (1966), and provided E(SQ) < o , (4.3.2) reduces to
® 3
J f(u)/(ua(log log w)?)du < = ,
e
so that even if ﬁ(u) is bounded, we still require o > 1 , a rather strong
o - .'* .
condition. However, R(y) = 2: Pp{s=j}(l--FJ (u)) , so that (4.2.5) will

J=0

require o > 2 , a much stronger condition.

The assumption that Xh and Yn jointly satisfy a FLIL warrants some

attention. Certainly this is true if the centre process is a stationary
renewal process (or the superposition of stationary renewal processes) whose

second moment exists, and the clusters are i.i.d.: for, if Wl and W2

are independent Brownian motions on a common space § , and we redefine X

. 1
and Yn also to be on ! , we can show pS(Xn, Wﬁ) >0 a.s. (Iglehart
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(1971a), Section 2) and Ds[Yn, Wﬁ] + 0 a.s. (Strassen (1964)), where
Wﬁ(t) = W%(nt)/¢(n) , 7 =1, 2 . Hence if pg is the product supremum
metric for 02[0, s] or 02[0, s] ,

pg[[Xn, Yn), [Wi, Wﬁ)] + 0 a.s. (4.3.3)
The result then follows from Strassen (1964), Theorem 1, who employed the
Skorokhod representation theorem approach. Altérnatively, if the centre
process n and process of subsidiaries Tn possess some form of asymptotic
independence, say ¢-mixing, and given this, satisfy the conditions of
Corollary 3 of Heyde and Scott (1973), then again the above Skorokhod type

approach, as used by Heyde and Scott, will prove that the joint FLIL follows

merely from the individual FLIL's and the independence of Xh and Yn .

Alternatively, for n and n ¢-mixing or strongly mixing, we may possibly
use Chover's (1967) approach as applied by Oodaira and Yoshihara (197la, b)
to demonstrate this. It is intuitively clear, however, that the joint FLIL
will not necessarily follow from merely the individual FLIL's and independenc
we need some statement such as (4.3.3) on the 'density' of subsequences
converging to particular points in the limit set. Indeed, in order to
satisfactorily achieve this, we may need to define the LIL for processes via

an appropriate generalization of (4.3.3).

3.5. Related topics

3.5.1. FUNCTIONAL STRONG LAWS FOR CLUSTER POINT PROCESSES

The strong law of large numbers for cluster processes has been
investigated by Daley (1972). Here we strengthen his theorem, ;s well as
generalize it to the functional case.

Let T : N>N, Sk:NZ

y > NZ and Té : N x NZ > N x NZ be defined

analogously to (3.1), (3.2) and (3.4) of Chapter 2, and let Tl, T2 and T
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denote their respective invariant o0-fields. We will assume Pl and P2

stationary (Theorem 3.2.3).

THEOREM 3.5.1. If the centre process P, s stationary with
ElN(O, 1] < =, and the process of subsidiaries P2 is stationary with
EQNl(R) < o, then

;iz n (0, nl/n = E x E{n (0, 11|T} , P, X P, - a.s.,

where (B ¥E,)n (0, 11 = E {N(0, 11}E,{N,(R)} < =, and
E, X Ez{nc(o, 11|71} = £/ {# (o, 1]|T1}E2{NI(R)lT2} . (5.1)
Remark. The LHS and RHS of (5.1) are random variables on N x NZ
(see Problem 6.4.6).

Proof. Omitted. Similar to the proofs of Theorem 5, Daley (1972) and

Theorem 2.4.1 (a). Q
COROLLARY 3.5.2. If the conditions of Theorem 3.5.1 are satisfied, and

N0, n] : n>1} and {Ni(R) : © > 1} both satisfy the strong law of
large numbers Pl - a.s8. and P2 - a.s. respectively, then as n + » ,

nc(o, nl/n -+ Ei{N(O, l]}EQ{Nl(R)} < o, Pl X P2 - a.s. 0

COROLLARY  3.5.3. Let L_(¢) = E {N(0, 11|T,}E {N (R)|T,}¢ ,
t € [0, 8] . Then if Pg 18 the supremum métric on D[0, s8] , and the

conditions of Theorem 3.5.1 are satisfied,

pg(n, (05 nel/n, L) >0, P, xP, -a.s.

Proof. Repeat the argument in Iglehart (1971b), Theorem 3.1, for each.

(v, N) € N x NZ for which convergence of nc(O, nl/n holds. 0O

3.5.2, THE LAW OF THE ITERATED LOGARITHM FOR THE G/G/® QUEUE

The LIL for the "number of servers process" of the g/g/® queue may be

proved using similar techniques to those for cluster processes (note that
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here we only have right-hand 'clusters'). Hence we will give no proofs.

Let the arrival process 1 and the process of service times {Vﬁ} be defineg

on a common probability space (f, F, Pr) (we need this formulation in

Corollary 3.5.5). Let

4 (t) = (nCo, nt]—mnt)/cl¢(n)
(nt]
s, () = gl (v;-E(V,)) /0,6(m)

for some appropriate constants 0;>» 02 » m=En(0, 1] < o , where

d(n) = (2n log log n)% .

THEOREM 3.5.4. Suppose n and {Vﬁ} are stationary with finite

second moments, and (An, Sn) Jjointly obey a FLIL; then the process

nt
{j m(s)ds—mE(Vl)nt)/0¢(n)
o}
obeys a FLIL, where o = (EVl)Qci + mcg . O

Once again we require m < 1 , A similar theorem holds if n is
replaced by no , the arrival process corresponding to Pi (see Section

2.4). The proof agaiﬁ consists of approximating by a coherent mapping, and
showing various remainder terms converge a.s. to zero. Geometric subsequence

arguments suffice for this latter half of the proof, indeed, seem necessary

for the nQ case, but in the N case neater proofs can be devised via
Kronecker's Lemma and monotonicity.

We will say that a process X(t) , t = 0 , obeys the ordinary law of
the iterated logarithm (dLIL) if, with W(¢t) , ¢t = 0 , a Brownian motion

defined on the same space (R, F, Pr) ,

| X(£)-9(E) ()| + 0 a.s.
The techniques of the proof of Theorem 3.5.4 reveal

COROLLARY 3.5.5 (see Prcblem 6.4.7). If the arrival process is
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stationary with m < ® , and An(l) obeys an OLIL, and the service times

are i.t.d. with finite second moment, then

t
[f m(s)ds—mE(Vl]t)/0¢(t)
0

obeys the OLIL. o

Note that the FLIL has been proved under weaker moment conditions than
the functional central limit theorem. Also, if a non-stationary arrival
process 1N (with appropriate centring and norming) satisfies the OLIL, and

En(I) = 0(|1]) , |I| »« , then so will the "accumulated number of servers"

process,

3.5.3. LIMIT LAWS FOR THE DOUBLY STOCHASTIC POISSON PROCESS

Kingman (1964) has shown that a doubly stochastic Poisson process may
be represented as a random time transformation of a stationary Poisson
process of unit parameter., Hence it is unnecessary to prove functional
limit laws for these processes, as they will follow from e.g. Section 17 of
Billingsley (1968), or Lemma 3.,4.7 hebe. Ordinary central limit theorems
can be deduced from Lemma 2.5.1, rendering unnecessary the characteristic
function techniques of Grandell (1971), at least in his cases 0 <k <

(see Problem 6.4.8).
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CHAPTER 4

ASYMPTOTIC INDEPENDENCE OF POINT PROCESSES, PARTICULARLY CLUSTER PROCESSES

4,1, Introduction

The concept of asymptotic independence arose simultaneously with
ergodic theory, and its suitability, in the form of stroﬁg mixing and
¢-mixing, as a sufficient condition for central limit theorems has been
known since the papers of Rosenblatt (1956), Billingsley ((1956), (1962))
and Ibragimov (1962). Important recent developments are due to Oodaira and
Yoshihara ((1971a), (1971b), (1972)) and Heyde (1974). Stronger mixing
conditions have also been studied e.g. Philipp (1969).

Our original motivation for considering p-mixing of point processes
was the hope that it would be preserved under the clustering operation
(independent subsidiaries), and hence give a simple avenue to functional
limit theorems for cluster point processes (Daley and Vére-Jones (1972),
Theorem 8.6). In fact, Westcott (1973), (Concluding remarks), suggests that
limit laws obtained by more direct methods (as in Chapter 3) should be
weakened in the presence of a mixing condition. However, our investigations
suggest that, unlike weaker forms of asymptotic independence (Westcott
(1971), (1972)), ¢-mixing and strong mixing are only maintained under extra
conditions, which are quite severe (bounded clusters) in the case of
¢-ﬁixing.

Our basic definitions conclude this section, and in Section 4.2 we give
two examples of point processes which are not ¢-mixing; the first of these
examples illustrates, in Section 4.3, the problem of characterizing complete
¢~ and strong mixing, and that complete mixing (or ¢-mixing) on a
determining class is not always sufficient to establish cqmplete mixing
(respectively ¢-mixing). Section 4.4 investigates the preservation of

various modes of mixing under clustering, and Section 4.5 contains concludir
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remarks.
We will need the following definitions: let

o(N(B)) = J {w@) =%}, 4 €BR nB,k €2}, BeB® ,

i.e., the smallest o-field such that the maps N > N(4) (for any
A €B(R) nB) from N - R are measurable.
We shall introduce the term 'complete mixing' for a stationary point
process P satisfying, for a given function vy(¢) ,
|P(c n D)-P(C)P(D)| = y(T)P(C)P(D) (1.1)
whenever ( ¢ O(N(—w, t]) s, D€ 0(N(t+T, w)) , t€R, T>0 ., Here
Y ¢ [0, ©) - [0, 1] is a monotone decreésing function satisfying

lim y(1) = 0 . This type of mixing appears in at least one paper of Philipp
To0 '

(1969). As a non-trivial example (not a point process), consider a process
that is defined as a real-valued function on the state space of a discrete
time aperiodic irreducible stationary Markov chain on some finite state
space. Such a process is completely mixing (for proof, see Billingsley
(1968), pp. 167-8, where the example is used to illustrate the weaker concept
of ¢-mixing).

A stationary point process P is ¢-mixing for a given function ¢(*)
if

|P(C n D)-P(CIP(D)| = $(TIP(C) , (1.2)
and strong mixing for a given function af(+) if o |
|P(¢ n D)-P(C)P(D)| = alT) , (1.3)
where C and D are as before, and ¢(1) and o(T) have the same
properties as y(1) (see Problem 6.5.13).

In the following we will assume, as usual, that the centre process is
stationary, and that the process of subsidiaries is stationary as well as
being independent of the centre process. Also, we will take it for granted
that our cluster processes exist (in the sense of Theorem 3.2.2), and the

subsidiaries are a.s. finite.
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4.2, Two examples of point processes which are not ¢-mixing

It is well-known that the output of a stationary M/G/® queue is a
stationary Poisson process, being equivalent to the random translations of

points of the original (input) process (see, e.g., Daley (1975) for

references).

Let Gy (8§ > 0) denote a distribution function satisfying
Gg(x) = 0 , £ =6,
= G(x-8) , ©>6 , - (2.1)

where G(x) 1is any arbitrary distribution function on [0, ®) . The
following is true:

THEOREM 4.2.1. Superposing the input and output of a M/G/> queue
for which G(x) < 1 for all finite x results in a stationary point procesé
which is not ¢-mixing.

Remark. In this example, and the next, we will take our processes on

an arbitrary probability space (§, F, Pr) , although we could equally as

well work from N X Rf .

Proof (see also Problem 6.5.2). We will only consider the case where

G(z) = Fd(x) , some &6 >0 , and some F . The stronger result can be
proved using the techniques of Example 4.2.2, but the E'(S case is neater.
Let A be the common parameter of the input (nl) and output (nQ]

processes. The superposed input and output process is denoted by
Let h satisfy exp(-2\h) > % , 0<h =38 . Then nl(—h, 0] and
n2(—h, 0] are independent Poisson variables, and hence, for all k € Z, »

-2k

Pr{n(-h, 0] = k} = e (2kh)k/k! . (2.2)

Now using Milne (1970), Theorem 2, or from first principles,
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Pl"{n('hs 0]

]

ks n(t, T+h] = 0} = exp(-4\rt2Mhp(T)) [2Ah(1-p(r)))k/k! , (2.3)

0
where p(T) f EF5(T+h‘v)‘F5(T‘v)]dv/2h .
h

Thus from (2.2) and (2.3), we have that

Pr{n(t, T+h] = o|n(-h, 0] = k} - Pr{n(T, T+h] = 0}

= exp(-2\h). [exp (2Mp(T)) [l-p(T))k-l] . (2.1)

For all finite « , Fgx) <1 , so for any given finite T we can

find t* > T such that p(t*) > 0 , and hence 1 - p(t#*) < 1 . Thus

supklPr{n(T*, T*+h] = Oln(—h, 0] = k} - Pr{n(t*, T*+K] = O}I

= exp(-2An) > ¥ .

Let Pn = Prn-l be the probability measure on (N, O(N)) corresponding

to n.. Clearly,

o(t) = sup |P_(D/C)-P_(D)| = ¢(T*) > % ,

where the supremum is taken over ( € O(N(—w, t]) » D € O(N(t+1, m)) .
Hence ¢(1) $ 0 (1 » «) , which shows that the process is not ¢-mixing. .

Unbounded translations of a ¢-mixing point process do not necessarily
result in a ¢-mixing point process. Counter—exampies can be difficult to
establish however, since, as remarked before, it is well-known that Poisson
processes are invariant under traﬂslation, aﬁd the "counting" behaviour of
non-Poisson centre processes after translatioh is in general algebraically
intractable (or well-nigh so), with the exception of the translation of
compound Poisson processes, as in the following example.,

EXAMPLE 4.2.2. Consider a centre process of Poisson doublets (i.,e., a
stationary Poisson process with each point doubled) with rate 1 , and i.i.d.
translations X such that Pr{X > ¢} = e ? . Hence if n is the cluster
process (see the remark at the end of this section), then by standard

techniques we can prove

E{z”(.’h’()]} = exp (-o+zp+z2\>) (2.5)
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-h -h
where p = Q(l-e } s, V=~h- (l-e ) and 0 =p +V . (This is the
probability generating function of the so-called Hermite distribution (Kemp
and Kemp (1965)).)

Similarly we can prove

n
E{zn( ’O]]{H(T,T+h]=0}} = exp(-yrasta’y) (2.8)

h)ze-T »and Y = 20 - (l-e—h)2 -t

where 6 = p - (1-e” e and 1A(w) , W€,

is the indicator function of the set 4 .

S

Let dn(a, B) = ), an—jszj/((n-j)!(Qj)!] for any o, B = 0 . From
Jj=0

(2.5) and (2.6),

Pr{n(t, t+h]1 = 0 | n(-h, 0] = 2k} = exp(q-(l—e-h)ze_r).dk(v, 6)/dk(v, p) .

We assert that lim dk(v, G)/dk(v, P) = 0 . To prove this, choose

Koo

€2 0 and J such that 62J = EpQJ for j>J . Then for k >J ,

J PR
dp(vs 8)/dy (v, p) S € + [}j vk‘JSQJ/((k-j>z(zj)z)}/dk(v, p) . (2.7)

J=0 .

Let . be any fixed integer, 0 <1 <J . Then

V2 (-1 1d (v, ) = (629) P/ ((22)10))

k=21 (8209 (k=1 2)1)

n‘MN

where Dk =

J=0

But the (Z+l)th term of Dy, is (k-l)(GQ/v)Z+l

% +> o as Kk » o , and all the terms in the fixed sum of'(2.7) have limit

/(27+2)! . Hence

D
0 . Hence for ¢ € o(N(->, ¢t]I) , D ¢ U(N(t+T, ©)) ,

sup |P_(D|C)-P_(D)| = exp(-0) ,
¢p M n

where Pn is the probability measure corresponding to n , so that n is

not ¢-mixing.
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Note that the point process in this last example is the same as an
elementary Neyman-Scott cluster process with Poisson centres, and in which

each subsidiary consists of 2 points whose positive distances Dl, D2

from the centre have independent exponential distributions with parameter

l -

4.3, On characterisations of complete, ¢- and strong mixing

Westcott (1871) has given a neat characterisation of mixing in terms of
the probability generating functional (p.g.fl.) (see also Westcott (1972)).

This is very useful for cluster point processes, since,if Gl[EJ is the
p.g.fl. of the centre process, and 02(E|t) is the p.g.fl. of a subsidiary

given its centre is at t (we are considering independent subsidiaries here)

then the p.g.fl. G[g] of the cluster point process is given by
Glel = G,[6,(g| )] .
(Our definition of p.g.fls. is over a suitable class V of real-valued

measurable functions & for which 1 - £ has bounded support, i.e.,

I

functions & in V for which 1 - £ vanishes outside I . Then we can

E(t) =1 for t outside some bounded set.) Let V,< V denote those

prove the following

THEOREM 4.3.1, Let gl € V(o 47 . 52 € Vit w) o and thus

SEE(u) E(u-T) € V(t+r,m) , T>0. Ifa stationary point process with

p.g.fl. G <s

(a) completely mixing with rate v(t) , then
|G[£lST€2:]-G [gl]G[€’2]| = Y(T)G[gl]G[€2] s (3°l)
(b) ¢-mixing, then
6le5.8,1-6[E, J6[e,]] = 26(06le)] . O (3.2)
The proof of (a) is almost immediate. For a proof of (b), see Theorem

4,3,3, in which similar, but slightly more complex techniques are used (see
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Problem 6.5.7).
The converses to Theorem 4.3.1 do not hold. It is easy to demonstrate
that the p.g.fl. of the superposed input and output of the M/M/*® queue

satisfies (3.1) (and thus also (3.2)), with

+o0
GLg]l = exp{— J [l—E(t) [” €(t+x)udhﬂkdt}
—® . 0

and

ﬂt)=mhﬂl,a@ﬂﬁdémﬁ—ﬂ (3.3)
where )\ 1is the arrival rate, and | the service time parameter (see
Problem 6.5.4).

For orderly point processes ‘P ,» mixing can be characterized using the
zero probability function
¢(B) = P{N(B) = 0} , B € B(R) . (3.4%)
Kurtz (1974) has stated without proof similar characterisations of
stationarity and ergodicity.
THEOREM 4,3.2, If, for an orderly point process P ,

lim ¢(Bl n (BQ+T)) = ¢(Bl)¢(B2) (3.5)
T

for any Bl’ B2 € R(1) , the ring of finite unions of intervals, then P 1is

mixing.

I

Proof, Firstly note that S = {{N(B) = 0}, B € R(I)} is closed under

intersections, and that Ggen S o(N) (Kallenberg (1973)). Then, for an

Fixed 4y €S,

D, = {4, : 1imP(4, nTA) = pla)r(a,)}

T
is a Dynkin system (Ash (1972), p. 168) and hence by the Dynkin system

theorem, Dl:D Ogen (S) . Similarly, for any fixed A4

1 € a(N) ,

]

D, = {4, : lim P(Al n TTAQ) = P(Al]P(A2)}

. T

is a Dynkin system so that 92.3 Ggen.(s) . O

The equations for complete mixing and ¢-mixing analogous to (3.5)
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follow from (3.1) and (3.2) by taking £'s of the form 1 - 1A(t) . Hence,

similar characterisations do not hold for complete mixing and ¢-mixing. If
they did, the converses to Theorem 4.3.1 would be true for orderly point
processes.,

We turn now to characterisations of strong mixing, aiming at an
analogue of Theorem 4,3,1., Firstly we note that we can extend the domain of
the probability generating functionals to include complex-valued, measurable
functions ¢ € & with ¢(x) = 1 on the complement of a bounded set, and

satisfying sup |¢(z)| = 1 (see, e.g., Fisher (1972)). This, because we
x€R

anticipate that the RHS of (3.2) will no longer contain G[El] , and the

modulus on the LHS can be interpreted more‘liberally. If, however, we
introduce the characteristic functional (ch.fl.)

Ci(6] = Glexp 26(%)] (3.6)
where 6(z) has bounded support (i.e., 6 € V ), and define

Q(t,t+x] = {¢ € : 1-¢ has support within (£, t+x]}

we can easily show, via the multidimensional maximum modulus principle

(e.g., Gunning and Rossi (1965), p. 7) that
lal6,5.0,)-¢[6,]6[6,]| = |c[o,+s 6,]-c[6,]cl6,]] SC
where ¢l € Q(_m £] ¢2 € é(t ) H Gl € V&_w £ 62 € V(t,m) . Hence

the ch.fl. is (potentially) more useful than the p.g.fl. in characterising
strong mixing.

THEOREM 4.3.3. If a stationary point process P is strongly mixing
with rate o(T) , then its ch.fl. satisfies

|c[el+sT62]-c[eljc[62]| = ba(T) (3.8)

where O 0

v .
1§ Vw,2712 Y2 € V(g0

Proof. Let Il, coes Ik € B(R) n (t+T, ) , and

J

1> +ee» Ig €B(B) n (-=, t] . Denote (Il, cous Ik) by I and
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(Jl, cees JZ) by J . Also, put

P=P(I, n; d, m
=P(N(Iy) = nps cens NI} = W) =y, wun, H(T)) = mZ}
=Pu(z) =gy e W(I) = PO ) =y, L, BT = m} .
Then

|20, exp ¢[6 V(T )+0 N (7 )]) - E(I, exp[20, (T J])E(N, exp[c00 (7 )])]

= IZanP(I, n; J, mexplZ(@.n+p.m)1| (3.9)
where 0 = (61, cees ek] s P = (wl, cees wz] . Now set vy = 6.,n + Y.m and
define D, ={n,m:P cosy=o0}, D, ={n, m: Psinyzo0}, and let

D2, Du be their respective complements, Clearly

(3.9) = max([ZDlP cos v/, IZDQP cos v|) |
+ max([ZD P sin vy|, IZD P sin YI) . (3.10)
3 m

Now let El ={n, m: cos y =0} , E’3 ={n, m: siny = 0} and E2, E’4 be

their respective complements. Then

|2, P cos y| = |Z P cos y| + |Z P cos y| = 2a(T1) (3.11)
Dl DlnEl DlnEQ , >

and similarly for the other expressions in the right-hand side of (3.10).

Hence (3.9) =< ua(t) . If we define
l : k
61(“) = ;gl wilJi(u) ) 62(u) = ;gl 6i1Ii_T(u)
then we have

lcle,+s.0,]-c[0,]c[6,] | = Halr) . (3.12)

A measurable function 6 € V can be approximated pointwise by a
sequence of simple functions within the same class, so, since ([8] is
continuous for 6'6 V (ef. Westcott (1972)), (3.8) follows. 0

Examples of disjoint distributions wifh uniformly close characteristic

functions are well known in Fourier series theory (for probabilistic




94

examples, see Chung! (1968), Ex. 6.3.12, or Dudley (1968), Section 4), so
that a converse to Theorem 4.3.3 would clearly require extra conditioms.
According to Prohorov and Rozanov ((1969), p. 162), convergence "in variation'
(which we require) cannot adequately be expressed in terms of characteristic
functions, so we abandon this approach in favour of more direct techniques.,
Finally, for reference, we quote a kﬁown theorem which characterizes
complete, ¢~ and strong mixing in terms of rings of events R(N(I)]
generating the o-algebras O(N(I)] used in the definitions.
THEOREM 4.3.4. A stationary point process P 1is
(a) complete mizing 1f and only if
|P(¢ n D)-P(C)P(D)| = y(T)P(C)P(D)
(b) ¢-mixing if and only if
|P(C n D)-P(C)P(D)| = $(TIP(C)
(e) strong mixing if and only if
|P(C n D)-P(C)P(D)| = alT)
for all ¢ ¢ R(N(-=, t1) , D € R(N(t+t, ®)) , t €R, T >0, where
Y, ¢, & : [0, ©») > [0, 1] are monotone decreasing functions satisfying

lim yY(T) = 1lim ¢(T) = lim a(T) = 0 .

T T T

Proof. (b) is proved on p. 167 of Billingsley (1968), and (a) and (c)
are proved similarly. O

As far as we know, Theorem 4.3.4 cannot usefully be weakened. For

example, R(N(—W, t]) may, in (¢), be replaced by a class Sl such that

R(N(_m, t]) = Sl U {Cc : C € Sl} , and similarly for R(N(t+T, w)) , but we
know of no stronger reduction,

| The characterization Theorem 4.3.4 is as it stands not particularly
useful to us. It needs to be supplemented in particular cases by
characterizations‘of the sets in the classes R(N(—w, t])_ and R(N(t+T, w))
so that complete, ¢- , or strong mixing can be proved on these classes.,

! I thank Dr C.C. Heyde for this reference.




Examples occur in the next section.

4.4, Strong mixing of cluster processes

In this section we develop a technique which allows us decide whether a
cluster process is mixing in some sense if its centre process and the process
of subsidiaries are mixing in the same sense. The most interesting results
occur in the case in which the centre process ié strongly mixing, and hence
we will introduce the ideas in that setting.

Let the centre process of a cluster process be a measure Pl on
(N, o)) NE R
R and the process of clusters be a measure P, on ( , o))

Here O(N)A for any given A € B(R) 1is a product o-field on N , i.e.,

the smallest o-field such that the maps NR > Rk (k € Z+) defined by

w} -~ @, &), ..., v,

(Bk)), Bi € B(R) , v, €4, 1=12 =k, are
1 k ‘

measurable. Also we will denote members of N by N.
Let No° be the set of non-negative integer or infinite valued

measures on R which may be infinite on bounded Borel sets. Define

nc:NxNR->N¢x> by

nc(lv, {NU}) = J N (=)l () . (4,1)

Throughout the following, we will assume that n, €N, Pl X P2 -

a.s., and also that n, is measurable with respect to the product o-field

o(N) x o) (see Problem 6.5.10). We define the cluster process via (4,1)

. _ -1 . .

(l.e., as Pc = (PleQ)nc ), rather than as in Chapter 3, to avoid
substantial indexing problems., Note that our process therefore differs from
the usual model, in that if the centre process has a multiple event of size

n at «x , then the contribution to the RHS of (4.1) is an('—x) , rather
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than the sum of #»n different subsidiaries all having the same origin. Oun
model and the usual correspond if the centre process is orderly. We point
out that if the subsidiaries are i.i.d., the theorems of this section may be
proved for non-orderly centre processes in the manner of Kerstan, Matthes
and Mecke (1974), p. 326. We prefer the simplicity of our formulation (4.1).

As usual, we require that P, be stationary with respect to

1

Ib : N> N defined by TyN(~) = N(*+y) , and also we will take P2

stationary with respect to Sx : NR > NR defined by Sx{NU} = {N

.

pa!
Hence let Ty x Sy : N x NR + N x NR by specified by

T xS (W, N) = (TN, SN} . Then clearly P. x P_ 1is stationary with
y Ty (z,0. 5N) R Y

respect to Ty X Sy , and, for C € o(N) ,

H]

Pc(TyC) P. x PQ{(N, N) : JNU('—v)dN(v) € Tyc}

W, N) : jlvv('~v+y)dﬁ(v) ¢ c}

2
{

- x 2 {0, N) : [Nmy(o—v)dlv(my) ¢ c}
=P xPz{Tny (n, € O}
=P ) ,

so that Pc is also stationary.

Our most relevant results will occur in the case of P2 having

independent increments, i.e;, if C € G(N)I , D € o(N)J , I, J intervals,

Ind =g ,then Py(CanD) =Py, D) .

Finally, before proving our theorem, we define an event GT in

ag(N) x c(N)R as follows: for an arbitrary fixed ¢ ¢ R ,

421 ' '
GT = {(.N, N) : J Nv(t'f.?.fr-v, w)dV(v) + r

-0 t+T

B (e, t-0 W) = o} . (4.2)
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This event imposes restrictions on the extent of interactions of the
subsidiary processes. Its occurrence is sufficient to allow the properties
of the centre process to dominate, since it effectively means that events of
the cluster process within (-°, ¢) and (¢+3T, ®) only interact via the

centre process if P2 has independent increments (see Problem 6.5.1).

THEOREM 4.4.1, If P, 1is strongly mixing with rate o(1) , P, has

independent increments, and P, x PQ(GT] > 1 (1+w), then P, is
. . . 1
strongly mixing with rate o(dt) + 6P x P2[G§T) .

Proof (see Problem 6.5.13). Let ¢t be an arbitrary but fixed number

in R . We will denote by ofm and 0? the product o¢-field

o(N(D)) x o(N)T for I = (-, t] and I = (¢, ®) respectively. We will
say that P, x P, is strongly mixing if there exists y : [0, w) + [0, 1]

such that 1lim Y(t) = 0 , and

>0
|Pl x P,(C n D)-P; x P,(C)P X PZ(D)I < ¥(1) (4,3)

. t 0
if C¢€o_, amd D €0,

We first prove that P, x P, is strongly mixing with rate alt) .

n
Consider the class of sets in ofm of the form ( Y Cli x C2i .
7=1

C.. € o(N(-=, tT} , ¢

14 € O(N(_w’t]] and n € Z_ , where {C2i} are

27

disjoint. Then this class forms a ring, for if F x F,. , then

1 W 2J

il
s
oy

dJd
n m m n
CuF= 2 [Cli * [C% " a T 23” " [Flj"‘ [F 2% " 42 C%”
n m




98

n m

C-F=i%dgl@nx@§{%ﬂ]+i%4gluﬁfﬁﬂxw%”F%H

o
are in the same class. The same of course holds for sets in ct+T . By

Theorem 4,3.4 (which holds more generally than for point processes), we only

P, strongly mixing for sets in these classes. Hence, with

need prove Pl x P,

m
¢ as above, and D = jgl Dl,j x D2j € GO;T )
|, x P,(Cn D)-Pl x P(C)P, x P,(D)]
n m
= ’l:gl ng [Pl(cli n Dlj)-Pl(cli]Pl(Du)]PQ(cgi]PQ(Dzj)i
< al1) . | (4.4)

For any set F € o(N) , let F 2 {nc € F} € Of: . Hence if

¢ € o (-=, t1) , then

c_ngG
n

+c0
i {(N, N) J W (+=0)di() ¢ c} n G,

-00

t+T
{(N, N) : f n (e-v)di(v) € C} nG

-0

c'n G_ ,
n T

say, where Cﬁ € cf:T . Correspondingly, for D ¢ 0(N(t+31, w)) ,

Thus

[o o]
=Nt '
?ﬂ n GT Dn n GT s Where Dn € 0t+2T .
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|P,(C n D)-P (C)P (D) |

P, x P2(Cn n Dn)—Pl x PQ[Cn)Pl x P2(Dn]|

= Py x Py(c, 0 D, G)-P, X 2,(c, 0 G )P P2(Dn na)l +3p xP,(¢])

Py x By(c Dl G )-P X Py(cr nG )P

L ¥ By 0G|+ apy x P,(¢%)

= | x P2(CT'] n _DTg)-Pl x P, (CT'])Pl x PQ(D;])I

+ P) x Py[(c) n ~Dr'1) UG] + P X A CARY G) +P xP

2(Dr'1 U GT)

- 3P x P,(¢) + 8P, x P,(¢7)

IA

olt) + 6Pl x P

@ . o

2
It is clear that the same techniques will yield

COROLLARY 4.4,2. (i) If P, is ergodic and P

o Weakly mixing, then

P  is ergodic. Similarly, if Py is weakly mixing and P, ergodic, Pc

2
18 ergodic.

(22) P, 18 weakly mixing 1f both Py and P, are.

(1i1) P, is mixing if both P, and P, arve.

(tv) If Pl 18 strongly mixing with rate ao(t) and P2 18 completely
mixing with rate vy(t) and Pl x Pz(GT) > 1 (1 +w»), then P, i8
strongly mixing with rate

1 1 e
(X(ET) + 'Y(-s'[) + BPl X PQ(G%T) .
The same conclusion holds 1f P is completely mixing with rate ao(t) and
P2 is strongly mixing with rate vy(T) .
(v) If P 18 ¢-mixing and P, completely mixing with rate vy(T) ,

and the subsidiary processes are P, - a.s. bounded (i.e.,

P2{N : Nl(Kc) = 0} = 1 for some bounded interval K:|K| =8}, then P,
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18 ¢c-miming, where, for T =0,

9,(1) = ¢(1-6) + y(1-6) , T=6,

=1 , T <6,

Alternatively, 1if Pl is completely miming (rate vy(T) ) and P, 18
¢~mixing and the subsidiaries are bounded as above, then P, 18 ¢c—ndaing.
(vi) If Pl i8 completely mixing with rate Yl(T) and the subsidiary

processes are completely mixing with rate YQ(T) and are P2 - a.8.

bounded as in (v), then P, is completely mixing with rate Yc(r) s where

YG(T) Yl(T-G) + Y2(T-6) s T

v

6 ,

=1 , T <68.
Proof (see Problem 6.5.8). We prove only the first half of (Zv), the
rest being similar. Clearly all that is needed is an extension of the

argument at (4.4). So

P, x P,(C n D)-P, X P, (C)P) x PQ(D)I

) izj[Pl(Cli o Dy )Py (€)1 (015)17,(Cp5 0 D,))

+ 7:2.7' [P2(021: n DQJ.) —P2(Cﬁ)PQ(Dzj)]Pl(cli)Pl[Dlj)

< ol1) + v(1) ™ a
Unfortunately the strong mixing rate in Theorem 4.4.1 involves

Py X PQ[GT) , @ quantity which is very difficult to calculate without further

knowledge of the structure of the process. Of course, Chebyshev's inequality

yilelds the crude upper bound for P, X PQ[Gi) of (with m = ElN(O, 1] < =)

1
m f: {EQNl(aw, -u]+E2Nl(u, ©)}du ,

but by arguing more precisely we can discover a finer condition involving

only the component processes which guarantees Pl X PZ(GT) +1 (T>®),

Define
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L(z) = P{N : N (==, x] >0}, R(z) = PN = 0 (z, ) > 0} . (u.5)
Note that Nl could be replaced by any NZ because of the stationarity of

P2 .

LEMMA  4.4.3. 4 sufficient stochastic condition for P, x PQ(GT) > 1

(T > ») <s

a .
jw L(a-v)dli(v) + f R(a-v)dN(v) < = , Pl - a.8. (4.6)
a -0 :

for at least one a ¢ R . If P2 has independent increments, and there is

a uniform bound on the multiplicity of events of the centre process, then
this condition is also necessary.

Remark. This result overlaps with Lemma 3.3.1, but for clarity, we
give all details.

Proof. In (4.2), we may write G = G0 G2T , where

e o]

t+21 , ]
GlT = {f Nv(t+3r-v, o)dN(v) = o} . G2T = {[:+T Nv(-w, t-v]dN(v) = 0} .

It is necessary and sufficient for P_ x PQ(GT) + 1 (T +®) that

1

Py xPy(6 ) » 1 and P, xP,(G, ) *1 (1+%) . Let

t-T |
= U N (t-v, «)i(dv) = o} .

00

’
GlT

. . ' = V >
By stationarity, Pl X PQ(GlT) Pl X P2(G1T) . So let t €R, T, >0 be

arbitrary and fixed. Then note that, for given N € N ,

t-T

1l t-T
{N : f Nv(t—v, ®)N(dv) < m} U {N : f Nv(t-v, @)N(dv) < m}

- T™>T —00
1

-1
lim {N : f Nv(t—v, w)N(dv) = 0} (4.7)

T—)OO -0

and this limit is monotone + . Hence, writing F(v) = {N : Nv(a-v, ®) > O}



fa R(a-v)N(dv) < = Pl - a.s. for any fixed a € R
-0
t—Tl
= f R(t-v)N(dv) < = P, - a.s.
o 1
= P bt o< P, - a.s.
t.(IVZ):<t—T AF ) <o LT ee
7 - 1
by the Borel-Cantelli Lemma,
t-Tl
-0

since the Nv's are a.s, finite,

t-T
= PQ{N: J Nv(t—v, ©)N(dv) = O} +1 (1 > «) P

~00

l - pPOb., (’4.10)

by (4.7),

t-1

- Pl X PQ{(N, N) : f Nv(t—v, o)N(dv) = 0} > 1 (t +«) , (4.11)

=00

by dominated convergence,

= P, x PQ{GlT} +1 (T,

In the forward direction, we have (4,9) = (4,10) by (4.7), but in the

reverse direction we are using the fact that if random variables Xh > X
a.s., and Xﬁ + Y in probability, then X =Y a.s.. Also (4.11) = (4.10)

because in (4.11) we have convergence in first mean. Finally, observe that

if the centre process is orderly, and P2 has independent increments, then.
the reverse implication in (4.8) is immediate, since {F(ti]} are then

independent events. If the centre process is non-orderly (see Problem 6.5.1

then we can find a subsequence {té}‘ of {ti} such that té # t3 s, T #J

by counting multiple events as one. If there is an upper bound M on the
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multiplicity of centre points, then

v T R MYtz Y ()} ==,
téft—Tl tift—Tl

so that the Borel-Cantelli Lemma still applies to give PQ{F(té) i.o.} =1
and hence PQ{F(ti) io} =1,

In a similar manner we can handle the other half of (4.6). O

COROLLARY 4.4.4. A sufficient condition for P, x P,(G) > 1 is

fw{L(—t)+R(t)}dt < o (4.12)
0

if the centre process has m = ElN(O, 1] <,

Proof. One proof is to take expectationsiin (4.6), but a more

instructive proof is as follows: clearly

P, x PQ(Gi) <P. x PQ(Gif) + P PQ(GO ),

1 21
&Y -
P, x P, (617]) = IN Pz{t Bt-r Fc(ti(N))}dPl(N)
-
-1 .
< JN J.m P {F" () }ai(v)dp, (W)
=m Jm R(v)dv .
. |
Similarly for P, x P,(67 ) . m

It would appear from Lemma 4.4.3 and Corollary u.4.4 that (4.12) is a

fairly fine condition for Py X PQ(GT) + 1 . This is confirmed in the next

result, in which we interpret (4.12) in special cases (see Lawrance (1972)).

LEMMA 4.4.5. (a) If the centre process .P, 1is Poisson, and P, has

1 2
independent increments, (4.12) is also necessary.
(b) If the subsidiary structure is Neyman-Scott with F denoting the

distribution of each point from the centre and S the number of points per




1oy

subsidiary, (4.12) becomes

?Z Pr{s = k} fw [l—F(t)@]dt <o, (4.13)
=0 0

(c) If the subsidiary structure is Bartlett-Lewis with inter-epoch

distribution F and S points per subsidiary, (4.12) becomes

kzg Pr{s = k} fw [1-ka(t)]dt <o, (4.14)
= 0 .

Proof. We prove only (a). The random process {V&} in RR
specified by v, = inf{t : Nx(t, ©) = 0} clearly has independent

increments. Note that

'
GlT

il
—~

Nx(t—¢, ®)dl(x) = O}

1l
—~—A—

t-1
f_m i (e 50} B - o}

1t
—~t—

1{Vé>t_x}dw(x) = o} , (4.15)
so that calculating P, x PZ(GlT) becomes equivalent to determining the

probability of (4.15) for a Poisson process (of rate A , say) subjected to
i.i.d. translations V . This is easily calculated using the techniques of

Milne (1970) to be

P, X PQ(GH) = exp[-x E R(t)dt] . (4.16)

Similarly, we may calculate

Pl X PQ(GQT) = exp[—l fj L(-t)dt] . O (4.17)

4.5, Conclusions

Since a Poisson process subjected to i.i.d. translations is also

Poisson, the conditions of bounded subsidiaries for ¢-mixing and complete




105

mixing and of Pl X P2(GT) + 1 for strong mixing are not also necessary for

preservation of the mixing property. However, the counter-examples
contained in Section 4.2 suggest that the clustering operation may not
preserve ¢-mixing under fairly wide circumstances. The conditioning event
{N(-h, 0] = n} implies for large =n that there are a large number of
centres in the neighbourhood of (-Z, 01 and hence that {N(T, T+h] = 0}
wili have a reduced probability of occurrence. 'Hence we may conjecture that

the conditions R(x) > 0 for all finite g« , and P2{Nl[0’ ®) > l} >0 may

be sufficient for a cluster process not to be ¢-mixing.

We should also remark on the applicability of Theorem 4.4.1 to limit
laws. All such theorems (Oodaira and Yoshihara (197la, b), (1972), Heyde
and Scott (1973), Heyde (1974)) seem to impose on the strong mixing rate

o'(t) the condition

f” a’(1)dt <« , ' (5.1)
0

if not the stronger condition in which the integrand is raised to the power
(6/(2+6)) , for some 6 > 0 . As in the proof of Corollary 4.4.4, we have

the following upper bound for the strong mixing rate ac(T) of the cluster

process:

ac(ST) <alt) +m [w [L(-t)+R(£)1dt . (5.2)
T 4

(Write a(t) for the second term in the RHS of (5.2). If the centre

process is Poisson, o(T) = 0 , and ac(ST) = 0fa(m)) , but # ofalm)) ,

when the subsidiaries are i.i.d., by (4.16) and (4.17).) Thus, (5.1)

becomes

fw'{a(t)+t[L(—t)+R(t)]}dt <w (5.3)
0

which is stronger than (3.6) or (for processes with right-hand clusters)

(4.2.5) of Chapter 3, so that it does not appear promising to prove limit
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laws for cluster processes via strong mixing theorems. However, we point
out that strong mixing theorems are potentially able to provide laws of the
iterated logarithm for unbounded double-sided clusters, which Theorem 3,4.8

was unable to do.
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CHAPTER 5

RENEWAL CHARACTERIZATIONS OF POINT PROCESSES

5.1. Introduction

Problems of characterization of point process systems arise, amongst
other reasons, from the fact that very few classes of point processes can be
handled réasonably; renewal processes, after Poisson processes, are prime
examples of those which are tractable. . Consequently it is pertinent to
study characterizations via renewal processes. It should be pointed out,
though, that such characterizations are not particularly useful unless
complemented by some idea of "robustness"., For example, it is known that
the superposition of »n 1i,i.d, stationary point processes is apﬁroximately
Poisson for large 7 , and it is believed (Conjecture 5.3.1 below) that the
superposition of n 1i.i.d. stationary poiﬁt processes is a renewal process
if and only if all processes are Poisson. Thus, althoﬁgh characterization
problems are of mathematical interest, they are not necessarily of such
practical importance. A suitable definition of "robustness" (see Problem
6.6.1) may be difficult to come by, however. A possibility is to replace
the renewal characterizations here by processes with uncorrelated inter-epoch
times (Problems 6.6.2, 6.6.4). Alternatively, we may ask for the Prohorov
distance ((5.4) of Chapter 1) between the point process in question and a
renewal (or Poisson) process of the same intensity. The context will
probably decide the appropriateness or otherwise of any particular concept.

In this chapter we tackle two characterization problems: the first in
a queueing situation, and the second an example concerning superpositions of

point processes.
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5.2, Characterizing the finite capacity GI/M/1 queue with renewal output

5.2.1, INTRODUCTION AND SUMMARY

In tandem queueing systems in which the output of one queue becomes the
input of the next, it is computationally convenient to know when this output
is a renewal process. The problem of characterizing outputs of queueing
systems has been of interest since Burke (1956) proved that the stationary
M/M/s queue has Poisson output; a summary of some of the work in the
problem is available in Daley (1975). The object of this section is to
complete the proof of the following results for certain single-server
queueing systems with waiting room capacity N , i.e., for certain GI/G/1l/N
systems.v |

THEOREM 5.2.1. The only stationary GI/M/1/N (0 <N = ®) queueing
systeme with renewal output are the M/M/1/0 and stable (traffic intensity
<1) M/M/1/® sgystems. O

THEOREM 5,2.2, The only stationary GI/M/1/N (0 = N = ») queueing
systeme with adjacent departure intervals independent are the M/M/1/0 and
stable M/M/1/» sgystems. a

Theorem 5.2.2 is, of course, stronger than Theorem 5.2.,1, which,
however, is of more interest to us, in that it demonstrates the non-
conservation of a local property (that of being renewal) of a point process
when subjected to a sufficiently rough transformation.

Daley ((1968), (1974)) has completely characterized the stationary
GI/G/1/0 and GI/M/1/» systems with renewal output;; our proof of Theorem -
5.2.1 handles only the intermediate situations (1 <N < ®) . Complete
renewal characterization results have now been obtained for the stationary
M/G/1/N (0 < N < ») (Disney et al. (1973)) and GI/M/1/N systems; the
solution techniques involve using the imbedded Markov chain of queue lengths
at service completions or at arrivals. The general problem of

characterizing the GI/G/1/N queue with renewal departure process (Problem
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6.6.3) seems very difficult (but see Daley (1975)).

The point of Theorem 5.2.2 is the contrast with the M/G/1/N
(1 = N < ») situation, in which Daley and Shanbhag (1975) show fhat there
are service time distribution functions G for which adjacent departure
intervals are independent, although the output is not renewal. We will only
prove Theorem 5.,2.2 for 1 <N <® ; Daley (1974) handles the GI/G/1/0
situation (see the analysis prior to his Theorem 1): adjacent departure
intervals are independent if and only if the output is renewal.

Throughout this section we will assume without further comment that our
random variables are all defined on a common probability space (&, F, Pr) .

Consider a single server queueing system with independent service times

{s,} » (m=...-1,0,1,...), vhere Pr{S sz} =Bx)=1- P

1

x = 0 and u > 0 . Potential customers arrive at successive epochs {ti}

v

[... < to =0« tl = ...) of a renewal process, with inter-epoch times

{m, = t,-

ti_l}~9v Pr{Hi < x} = A(z) , A(0+) = 0 . An arrival finding a

queue with N customers waiting does not enter the system, and is not
considered here as part of the output (compare Boes, (1969)). The nth

served arrival finds Qn customers in the system (queue and service), waits

for a time  until service, and is served for a time Sn .
n

Let q; denote the number of customers in the system the instant before

(2)

arrival epoch ti , and W the waiting time of the arrival at ti if

q; =NV . If v(n) is defined to be the index of the nth served arrival, the

v(0) = sup{i : ti+W(t) =0,q, = N}
v(n) = inf{i > v(n-1) : q; =N}, n>0,
v(n) = sup{i < v(ntl) : q, = ¥}, n<o.

Observe that v(n+l) = v(n) + 1 if Q, < N , while when Qn =N,

1
inf{'zl: Y om, > s }
j=vin)+1 n-

v(ntl)
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where Sé-N is the time elapsing from the v(n)th arrival epoch to the

completion of servicing of the customer being serviced. Since the service
time distribution function B(e¢) 1is exponential, B(e¢) is also the

distribution function of SA-N .

Denote the stationary state probabilities of the number of customers in

the system the instant before an arrival occurs by {ﬂj} , 0=g =N+l ,

i.e., ﬂj = Pr{q. = J} . These probabilities are known to exist (e.g.,

Keilson (1966)), Clearly

priQ = i} = nj/('no taoaotm) o= ﬂj/(l-ﬂN+l) , 04 =¥, (2.1.1)
and
Q %
Prii = x} = B "@ , zzo0, (2.1.2)
where
0* .
B () =1 if =0,

0 if <0,

and Bj*(x) is the Jj-fold convolution of B with itself,
Always, then, the time between arrivals of the nth and (ntl)th
customers to be served is
Hé =1

v(n)+1 + o t Hv(n+l) . (2.1.3)

Let
- W
I, = max(0, I'-W -5 ) (2.1.4)
denote the idle time for the server between the completion of the nth
service and the beginning of the (n+tl)th service. We define the output

process of the queueing system via the sequence {Dn} of inter-departure

times, these being almost surely positive random variables given by

. Dn = Snﬂ+ In (2.1.5)

where Sn and In are independent, since the arrival process and service
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times are independent.

5.2.2. THE DISTRIBUTION OF INTER-DEPARTURE TIMES

From the definitions, it is easily seen that

| N
(l—?rN+l)Pr{In+l <y} = Jz=o Pr{In+l syla,-= ,y}nj . (2.2.1)

After some algebra, we find

PriI syl @

1A

i} = FA(uw)dB(jﬂ)*(u) » 0=<gj=snN-1 (2.2.2)
0

Prir ., =y | @ =N}

1

*
= f: dB(u) J: Pr{H; < ytutv | Sy = u}dBN (v)

' tutv
= fm ds(u) !m dBN*(v) Jy [1-A(y+tutv-w) ldH(w) (2.2.3)
0 0 U

where

[« ’ % X

B = T 4% = 4l + [ Alz-u)dH () (2.2.4)
1=1 0

is the renewal function of the arrival process. By interchanging the order

of integration in (2.2.3), we can replace the renewal function by the

Laplace~Stieltjes transform' a(p) where

ale) = fm e-StdA(t) s, Re(g) =0 . - (2,2.5)
0

P{r =y | q,=0}= [l—a(u)]_l[f: A(u+y>d3‘”*l>*(u);a(u>] .. (2.2.8)

Putting
=7, 0<jsWhN-1
7 g N J
! = - " =
T ﬂN/[l a(w)] Tyt Ty (2.2.7)

we obtain, for y =20 ,
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| N .
[1—nN+l)Pr{In+l =yl= Y vl an(wy)dB(Jﬂ)*(u) - mha(w) . (2.2.8)
J=0 0

Using similar technigues, we can obtain the joint distribution of

(Dn, In+l) . If Qn > 0 , then In =0, since S has not yet been

n-1
completed, and by (2.1.2), (2.1.3), (2.1.4) and (2.1.5) we can discuss the
joint distribution of (Dn’ In +l) in terms of the arrival of the nth served
customer. Otherwise we have to consider the (n-1)th served arrival. For
xz0, yz0,
(l N+l) { =X, In+l = y}

N

ng mPr{D, s@, L, sy | @, =d}

1]

N
+ jgo nJ.Pr{Dn sz, I 1 5YsQ, =0 le, = il

N . X
y ot Jm dB'j*(u) J Alutv+y)dB(w) - mra(u)B(x)
=1 7 Jo 0 N

N (F+1)* utye utx-v
+ Yy r ds? (u) J dAw) I Alwty)dB(w) . (2,2.9)
i=0 90 u 0
5.2.3. PROOFS OF THE THEOREMS
A necessary condition for the output to be renewal is that

Prip, =z, D

el S Y= Pr{D s alpr{D ., sy} , for all @,y . By

recognising that (Dn, In +l) is jointly independent of Sn +1 and taking
Laplace-Stieltjes transforms, this necessary condition reduces to

Prip = e}pr{r . =y} =Pr{D, <=, I qs y} . (2.3.1)

In particular, for all y=20 , ¢ = -y,

J: e_dePr{Dﬁ' < z} J‘; e-(¢+u)ycﬂ’r{l'n+l < y}

- -Y =(d+udy <. -
= f: e f; e dxdyPr{Dn <x, In+l <y} . (2.3,2)
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Write (2.3.2) as L(¢, Y) = R(¢, Y) say. Let P (¢, Y)

(n =1, 2, 3, 4) denote functions of ¢ and 7Yy that are in fact
polynomials of degree N in ¢ . Then (we omit some algebraic detail; see
Section 5.2.4) L and R are expressible in the form

N+l

(1- -y l)( =0)" L(¢, ¥) = al¢twP (¢, ¥) + Py (¢, Y) , (2.3.3)

and
N .
(l—ﬂN+l)(¢-Y)(-¢) R(¢, v) = al¢t)P (¢, Y) + P (¢, ¥) . (2.3.4)
The coefficients of ¢$ (0 =42 <=VN) in each of the polynomials
Pn(¢, Y) (L =<n=<4) simplify considerably using the properties of the

imbedded Markov chain of queue lengths just prior to arrival. Solving the

equation L(¢, Y) = R(¢, Y) then leads to the following expression for

a(p+u) , valid for ¢2 -4, Y>>0, o#£7Y,

-YWﬂN+luN+l+ Z:( Y Jﬂ[un PINCENEL IR LIS - ey
alety) = ” ° (2.3.5)
yympd L }j (-7 J+l[u'rr'+l(l—tp) ~yim ) +(- "V o)
J—
where
...‘YD
pEPY) =Ele ) (2.3.6)

and (C(*) and D(°) are independent of ¢ ; we need note only the form of

D(*) , namely
DY) = —umy + (1-m, ) [Gurydy-ppr{z = o}] . (2.3.7)

We see immediately that C(y) = 0 , since a(¢+u) >0 as ¢ > « , but
since this yields a complidated functional equation for o , we pass it by.
Instead, observe that the term independent of ¢ in the denominator of
(2.3.5) cannot vanish for all Y , and that therefore the denominator cannot
~vanish identically in ¢ .

From (2,2.8) we observe that

PriI = o} 1= my/(1- (2.3.8)

N+l) °
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We require a(0) = 1 , which from (2,3.5) is possible only if

V(Y) = m/(mty) (2.3.9)
where (using (2.3.8))
m = w(i-m /(1-m-m, )] . (2.3.10)
Taking Laplace-Stieltjes transforms in (2.1.5), and employing (2.3.9), we
find
Pr{I_ = 0} = m/u (2.3.11)

and (2.3.7) vanishes identically.

Thus, substituting (2.3.9) into (2.3.5), we obtain, for ¢ = -u ,

N-1 .
- N+1 _aylV-g. gtl _
I\7+l]'l +.§0( ¢) H [“mj+2 "mj+1]
algty) = = . (2.3.12)
N+l N-g g+l
—) - [ —
myu +j§g( ¢) Yy [uﬂj+l mnj]
Again we set a(0) = 1, and (2,3.12) yields
m/ = m /T (2.3,13)
Substituting (2.3.13) into (2.3.12), we deduce that
m/u = ﬂi+l/ﬂi , 0<i1 =N, (2.3.14)
It follows that, for ¢ = -u ,
- 14 ‘
al+y). = mmy ./ (mwrN+¢1rN+l] . (2.3.15)
Thus Ax) = 1 - e ™ s, 220 , i,e., the system has a Poisson arrival

process.

Finally, we appeal to a known result (finch (1959)) that the M/M/L/N
queueing system (1 < N < ) never has renewal output, which proves Theorem
5.2.1.

If N < o , then Theorem 5.2.2 follows immediately from (2.3,15) and

Daley and Shanbhag (1975), but Daley (1968) asks for Dn’ Dn+2 to be

independent in the GI/M/1/*® situation. However, a similar analysis to the

above yields instead of (2.3.5),
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o o] . l
Z:(-u/¢)J+ [uﬂj+2(l-w)~Y¢ﬂj+l]+C(Y)

algtp) = L= - , (2.3.16)
j%g('u/¢)g+l[Uﬂj+l(l-w)-Y¢ﬂj]+D(Y)
valid for ¢ = -p, ¢ >u , Y > U , where
DY) = —umy + [Guy)yp-wPr{I = o}] . (2.3.17)

The same procedure gives rise to Y(y) = m/(m+y) , (Y > u) , and also

m/y = ﬂi+l/ﬂi s © =20 . However, (2.3,16) is now unhelpful, in that the

RHS gives 0/0 ; similarly for the identity ((y) Z 0 . However, it is not

difficult to establish (Daley (1968), Theorem 3) that

V) = ) T 8Y-u(1-8)aly) ¥-u(1-8) 1L
where & is the unique root in 0 <8 <1 of § = a(u(l—ﬁ)) . Solving for

a(y) , we obtain

a(y) = [v2(m-u6)-mi®(1-6)] . [~u2(mry) (1-6)] %
~and hence m = ué , since a(y) 0 as Yy >« ., Thus oly) = m/(mty) ,
(Y > u) which establishes A(*) wuniquely (Feller (1966), p. 410) and thus

the input process must be Poisson. O

5.2.4. SUPPLEMENTS TO SECTION 5.2.3

For reasons of clarity, we outline the transition from (2.3.2) to
(2.8.5) in this section, since the steps are purely manipulative. Straight—
forwardly, for ¢ =2 -y, Y>0, ¢#7Y,

N .
P.(¢, y) = —u(—¢)N{r e Vr(u, v)daw) + ¥ (-u/y)%',}
-8 0 J=v J

N L g1 .
) Y I Y R e Rl e
J=1 J k=0

where we have used only

N U .
Flu, y) = ) “.;I ACEARA! (2.4.2)
7=0 0 o

and the trivial'identity
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£ . j
f P AR P TR PR R L %j OV IR (2.4,3)
0 k=0

Expanding the final term in (2.4,1) gives

N . N ' .
_ J W g+l _\N=g
-u j§1 (-u/Y) 'n‘;.( o) + .7’§1 u 1rJ'.+l( o) (2.4.,4)
so that (2.4,1) simplifies to
N . |
(¢, v) = -u(-9)" fw e VP (u, y)da(w) - 3 u3+le(—¢)N-J . (2.4.5)
0 J=1

A similar surprising simplification occurs in P4(¢, Y) .

P4(¢, v) = -aly+y) {first term of (2.4.1)}

N oy d-1 ok o
+ (o=y) Y (-u/y)'7+l1r‘;. Y (-Y)k+l r L y (-(1))1‘]+Z k l(tz/Z!)dA(t)
j k=0 0 1=0

J=1
(2.4.6)
and expanding the second term of (2.4.6) we obtain
~OMO R, YY) + Rlu, $)
where
vog-l e
u, ¢) = Y ) It () VR re ”t(tk/k!)dA(t) . (2.4.7)
Jj=1 k=0 J 0

Denote the transition probabilities of the imbedded Markov chain of the

number of people in the queue the instant before arrivals occur by pij .

Clearly
%j=reﬂﬂmfﬂﬂmaﬁuzaw),osism, 1sg si+l,
0 i
' *
Do = fm (1-a()3aB 1 (1) , 0<i<UW,
10 0 ,
pN+1,j - pzv,j s 0=J=0N+1.

Looking at the coefficient of (-¢ 1l<isN ,in (2.4,7) we

obtain
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N

. N . .
(-1 ydtl fw “WE J=T ;0 oy, = (gt T+l '
(-¢) .7'2:5 T | e 70 /(G-1)1 dA(t) = (-)" Py Ja TIPS e
= (-da)N'iui’“lﬂi}(l . (2.4.8)

Hence (2.4.6) becomes

P4(¢, v) = ~oa(y+u) {first term of (2.4.1)}

Ny , :
N 1+1 -1 -1
- (-9) iglu vriﬂ_{(-y) (=)} . (2.4.9)

With reference to (2.4.5) and (2.4.9) (compare (2.3.7)) note that

N o u .
u fm e Y¥P(u, v)dA(w) Yy w! jw e'YudA(u)f erdB(J+l)*(w)
0 =0 7o 0

(l—ﬂN+l) I:+ é_YudPr{In+l < u}

—YD
= (1-mp, ) [(U'P’Y)E(e n)-uPr{In = o}} . (2.4.10)

-YD
Straightforward manipulation also yields (put u(y) = Ef(e n) )

N . .
P(4, ) = 9(v) ¥ whd -
1 : =0 J

i+
VAR

N V-j
P2(¢, v) = =P(y) jZ% e

_¢)

arguing as in (2.4.8). Substituting (2.4.10) and the above expressions for

Pn(¢, Y) into (2.3.3) and (2.3.4) then gives (2,3.5), with

N .
C(Y) = -aluty){first term of (2.%.1)} - w Y (-wy)m, - wiy)m .
. j=l J+l

The expression C(y) = 0 only readily yields information on
o(pu+y) for y >0, |

It is interesting to note that equation (2,3.5) has its LHS independent
of Y , but not its RHS. We have exploited this fact only peripherally in
our analysis. A more direct aﬁgument is as follows:

There are two possibilities to consider:
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(a) the coefficient of ¢N in the numerator of (2.3.5) vanishes

identically, from which we easily deduce
Wvy) =m/(mty) , m = UNz/ﬂl

and the analysis proceeds as from (2.3.12);
(b) the coefficient of ¢N in the numerator does not vanish
identically, and neither therefore can D(y) . In this case, since the LHS

of (2,3.5) is independent of Y , so is the RHS, and so the ratio of the

coefficient of ¢N in the numerator to D(Y) must be independent of vy ,
equal to some constant X , say. This leads to
YCy) = m'/(n'+y) (2.4,11)

where m' = [ﬁﬂ2+pK(l—nN+l)Pr{In = O}]/[nl+(l—wN+l)K] .
But if (2.4.11) is true, then from (2.1.5) and (2.2.8) we find

PP{In = 0} =m'/u = l~ﬂ0/(l—ﬂN+l)

and D(y) vanishes identically. Thus case (b) is impossible.

5.3. Point processes whose superposition is a renewal process

In this section we solve a problem in support of the following
CONJECTURE 5.3.1. n <independent and identically distributed

stationary point processes n; (1 =7 =n) superpose to an orderly

stationary renewal process n 1if and only if all processes are Poisson, 0O
Daley (1973a, b) found counter-examples to the corresponding conjecture
in the non-identically distributed case, but now conjectures (private‘
communication) only that at least one of the superposed processes must be
Poisson (see Problem 6.6.5). The above conjecture, which he proves (1973a)
when the summands are renewal (see also Stormer (19689)) is therefore a
special case of his. We prove here only that his counter—éxample (1973a)
does not apply to the above conjecture, and we suspect this non-extension

anyway since the argument for his Theorem 1 does not reproduce. Since the
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proof of his Theorem 2 and our theorem are virtually identical, we skétch
only enough to point out the differences, and assume complete familiarity
with Daley's paper.

THEOREM 5.3.2. n Z.7.d. stationary alternating renewal processes n;

superpose to an orderly stationary renewal process 1n +<if and only if all
processes are Poisson,
Proof. As in Daley (1973a), consider

G(x) = E[n(0, zl-mc | n({0}) > 0]

i

G(z, y) = E[{n[-z, 0)-mz}{n(0, yl-my} | n({o}) > 0]

where m = En(0, 1] . Define Gi(.) s Gi(.’ +) for n; (L=<7=n)

similérly. It is easily deduced from (9) of Daley (Zbid.) that

1y [Y
Gz, y) = 6 (@, y) +m(1n") | [6) (wtw)-¢, )]du , (3.1)
0
and immediately it follows that
-1 [Y
m(1-n"") [Gl(x+u)—Gl(u)]du = K(x)k(y)
0
for some function X(+) . Hence Daley's Sections 1, 2, 3 and 5 immediately

carry over., Thus if the lifetime distributions of the alternating renewal

processes are F,, F, respectivély, then with Qi(x) =1 - Fk(x) )

—cém —ch
i . =4, + ~-4. 0 < A1 < A
(1) @ (2) =4.e (1 4 )e , el <cll s

0<4. <eceh-c!
sa, scf/lelel) , 4 #1.

-Cc.Xx

(i1) @ (2) = (1ta,z)e * , o< Ay s e, s S (3.2)

where @, Q, cannot both be of the form (ii), nor both of the form (i) if

Ai >0, Gi = cé < cf = cg ., If we define

R(z) = Prin(o, 21 = 0 | n({0}) > o} (3.3)

R(z, y) = Pr{nl-z, 0) = 0, n(0, y1 =0 | n({0}) >0} , (3.4)
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then since 1 1is stationary renewal,

R(x, y) = R(x)R(y) . (3.5)
Hence, if Ri(.) » R.(*, *) are defined similarly,

1
oo foe] 00 n..]_
J J Rl(u, D) U Rl(w)dw} dudv
x‘y utv

0 n
] (m”-l/n”+l)[f R (wdu jm Rl<v)aw] (3.6)
X Y

where 2R (@) = (@) + @,(a) , and 2R, (%, ¥) = Q ()Q,() + &,(x)Q )

If Q2 is of the form (ii), and Ql of (i), then the RHS of (3.6) contains

a term in (xy)n » whereas the LHS does not., If Ql and Q2 are both of

the form (i), then the LHS consists of sums of terms of the form

- . ] ! " .1 '
. (2ty) e & cjy] , where e; is e or cf, and c‘7 is ¢,

5
eXp [— 2. €
5k 1 1

[/

or cg , and ep is any of ‘cé, eg , and the RHS is a sum of terms of the

A

- n n
form exp[— Y Cq T = Y c, y] . But there exists a smallest (or largest)
=1 "1 =l s

exponential constant ¢ , say, with coefficient A4 » say. Then the

. s . - +
coefficient of exp (-ne(xty)) on the RHS is (A/Qc)Qn.(mn l/nn l) » but
zero on the LHS. Since ¢ is the largest or smallest exponential constant,
no other sum of xn exponential constants can contribute to

exp (-ne(axry)) . O
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CHAPTER 6

UNSOLVED PROBLEMS AND GENERALIZATIONS

6.1. Introduction

In this final chapter we collect together, for easy reference (rather
than having them scattered randomly throughout the thesis) some unsolved
problems and possible generalizations which relate to the ideas presented in
the body of the thesis. Of course, there are many more unsolved problems
than there were solved, but only few of those we suggest will fall into fhat
elusive class "interesting and (possibly) resolvable". Some of the rest
(probably) defy currently available techniques, while others may be of only
borderline interest. The problems from each éhapter will be listed
approximately in order of occurrence with miscellaneous problems.last.
Reference to its source will be given at the beginning of any problem whose
origin is not specified in its statement. If the formulation is due to
another person, then he will be‘appropriately accredited. We will not
attempt to impose our own bias-by indicating those we regard as most
important. Some partial solutions will be provided.v

Before embarking on this project, however, wé will present in the
next section a problem which is solved, but not in the sense of this thesis,

and hence is included in this chapter.

6.2. Identifiability of the cluster structure of a stationary Poisson

cluster process

6.2.1. INTRODUCTION

Suppose we know that the centre process of a cluster process is
stationary Poisson with finite intensity; can we deduce from a complete
record of the cluster process alone the structure of the subsidiary processes?

~ The answer to this question is in the negative when each subsidiary is of unit
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size, because Poisson processes subjected to independent random translations
are themselves Poisson. Milne (1970), Brown (1970) and Ross (1970) have all
shown that the service time distribution of the M/G/® queue can be
identified from a complete input-output record. We answer affirmatively the
corresponding question for Poisson cluster processes here, that is, we prove
that the structure of a subsidiary process can be identified given
realizations of a cluster process and of the Poisson process from which it
is derived, without any information being given on the linkage betweeh the
two processes. Bendrath (1974) uses completely different techniques (no
probability generating function(al)s) in a generalization of Milne's

(1970) result. I thank Dr R.K. Milqe for pointing out the existence of this

alternative generalization and Dr D.J. Daley for finding the reference.

6.2.2. IDENTIFIABILITY WITH GENERAL CLUSTER STRUCTURE

Our solution will be in the spirit of Milne (1970). We shall assume
throughout that the subsidiaries are i.i.d., and employ the notation of

Section u.u4.
To identify the cluster structure, it is sufficient to specify
P AN = W (4)) =ms oouy B (4) = m} : (2.2.1)
for Al, ooy Ak left-open, right-closed adjacent intervals with rational

endpoints, and k%, Mys eevs My each within Z+ (Theorem 1.2.2). We need

to define a mapping (%, nc) : N x NE > N x N, (compare (4.1) of Chapter 4)
by

(Zs )W, N) = [ , L? Nv(--v‘)dN(v)] , (2.2.2)
and define a measure P (with expectation denoted by E ) on
(NxN,, o(N)xa(N)) by P = (PyxP)) (2, n 0)“1 . We will let N, ’stand for a

typical member of N_ . Note that here we are assuming {Z, na) is
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measurable with respect to O(N) x G(N)R (which will follow from the

measurability of N, defined at (4.1) of Chapter 4). We will also assume

that (7, nc] € N? , Py x P2 - a.s., If Tb : N+ N is defined as usual

by TyN(°) = N(*+y) , then it is easy to verify that P is stationary with
respect to Ty X Ty , and that the ergodicity of P will follow immediafely
from the ergodicity of Pl X P2 ,» which in turn follows from Pl being
ergodic, and P2 weakly mixing (ef. Theorem 4.4.1).

Let A = (0, ] for a given rational »r > 0, and Ai = (r{_l, rz]

ro =0, r, rational, 1 =<7 =<Kk .' Setting ®

max(r, rk) , we define

the sets D, € U(N)2 for 1 € Z+ by

A

D. = {(N, Nc) : N(A+7:ﬁ) =m, NG(AZVI:?{) =m (1

; k)} = (TA xTA

where m, m, (1= 1 < k) are each within Z+ . Clearly

1D. . N2 5 {0, 1} satisfies E!1D.| < ® , and hence by the pointwise
i i

ergodic theorem,

-1 k-1 ,
;z 1 o E(]D ) = P(Do) , P - a.s. (2.2.3)
1=0 0
Hence for 2, al, vees B rational, we have identified
A) N (4,)7
- N(A) c( 1 eV'k
M(z, s ees zk) E[ 3, cee B } . (2.2.4)

By continuity, we have identified M(z, zl, ceey zk) for all

(z, Bys aeey zk) € [o, l]k+l . In particular, we have also identified

log M(z, 3 s 3

[ s )

Now, it is known for the Poisson cluster process that, for &, Ec

within appropriate function classes (see Westcott (1971), Milne (1971),
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pP. 49), the probability generating functional of P is

400
G[E, gc] E[exp f {10g E(t)AN(E) + log ec(t)dzvc(t)}} )

+00
exP[-}»J [l-E(t)GQ(sclt)]dt] , (2.2.5)

where A is the rate of the Poisson centre process, and GQ(Eclt) is the

probability generating functional of a subsidiary process whose centre is at

t , defined by

-0

' 400
G,(g,1%) sf [expf log Ea(u+t)cﬂvl(u)}dP2(N) :
NE
1f, in particular, we set £(¢) =1 - (1-z)1A(t) , and

k
Ee(u) =1 - izi (l-zi)1Ai(u) , we find that log M(z, Bis eees zk) is a

function linear in gz , so differentiating we have identified

+o Ny (A;-t) Ny (A,-t)
. 11 1k
A J 1A(t)E2[zl e 2y ]dt . (2.2.86)
Now A can be identified as 1im N(0, nl/n P, - a.s. Since
nro

(2.2.6) is clearly an absolutely convergent power series in Bys cees 3 oo

‘we can equate coefficients to obtain

. _
F(p) = Jo PNy (4-t) = mps «ovs Wy (4y-t) = m}dt . (2.2.7)

It is not difficult to show that the integrand in F(») is a continuous

function of ¢ . To prove this, let us write
P,(As ts v) = PpiN, [(4,-t) na,v)] = m, (1 =2 =n)}.

Then for any € > 0 , there exists by consistency condition (v) of

Theorem 1.2.1 a §; > 0 such that for [v-t| < §;
|P2(A5 1) t)‘Pz(Ag ts v)l <e/2,

and, similarly, a §, > 0 such that for lv-t| < 62 .
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|2, (A, ¢, v)-P (R, v, V)| = €/2 .
Hence, for [v-t| < min(Gl, 62) s
IPZ(As t, t)-PQ(A, V, v)l =€,
which we require, Thus, evaluating the limit
[F{res)-F(x)] /8,
for a sequence of rationals An ¥ 0 (n+ ) , we obtain
P {0 (A-7) =m, ooy B (A7) = m}
and thus (2.2.1).
We state this result as
THEOREM 6.2.1. The cluster structure of a stationary Poisson cluster

procese with i.7.d. subsidiaries is identifiable with probability one from a

complete centre process-gubsidiary procees record. a

6.2.3. SPECIAL CLUSTER PROCESSES
In both special processes below (see e.g. Lawrance (1972), Section U4,

for definitions), we first wish to identify the distribution of Nl(R) .
Note that {N,(-k, k) = 2} ¥ {#,(R) =1} (k+w) , 1 €2 , and hence the
distribution of Nl(R) is identified.

(a) The Bartlett-Lewis process

By standard results

P,{n,(0, t1 = 0} = 1 - P,{N,(R) > O}F(¢) ,
so F is identified.

(b) The Neyman-Scott process

Again, looking at the same event,
i n
P,{N,(4) = 0} = ngo P {#,(R) = n}[1-F(4)]

for any A € B(R) , so that F once again is uniquely specified.
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6.2.4. CONCLUDING REMARKS

There are several unanswered questions associated with this problem.
In particular, we point out that identifiability should be a robust
property; and hence we should only need to assume P ergodic. Note that

this means that Pl must be weakly mixing and P2 ergodic or vice versa.
One way to tackle the general problem in the case of P2 having independent

increments would be to expand the p.g.fl. of P (ef. Brillinger (1974)).
However, we consider that a more aesthetic technique shoﬁld be available.

Secondly, Milne (1970) has shown that if we are given a realization
which is in fact the superposition of a Poisson process and an i.i.d.
translation of it (i.e., each point of the Poisson process is independently
subjected to a translation with d.f. G say) then, provided G is either
symmetric or concentrated on a half-line [0, ®) or (-», 0], G is still
jdentifiable. We pose the corresponding problem for Poisson centres and
right-hand clusters.

Finally, we remark that our formulation gives no idea of the robustness
of identifiability of the cluster structure, i.e., given only finite
realizations of our processes, can we identify the alternative possible
cluster structures and do they differ substantially (in a way that will have

to be defined)?

6.3. Problems concerning Chapter 2

P.6.3.1 (REMARKS FOLLOWING THEOREM 2.3.1). Define the service process

instead as a probability measure P2 on Rf . Then we can replace ¢ by

¢’ : N x Rf -> Ef defined as

o' (N, X)(t) = f )(t)dN(v) .

1 ERZER

With this new model we can weaken Theorem 2.3.1 (p). But one pays a
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price - it is harder to prove measurability of ¢' , and (more significantly)

the model only corresponds with the usual one (i.i.d. service times) if Pl

is a.s. orderly. We think lack of orderliness more important than the
weakening, and so have retained the other model.
P.6.3.2 (THEOREM 2.4.1). Weaken the condition in Theorem 2.4.1 (b)

to E2{xl} < o, Possibly the proof there is insufficient, in that the

argument used is not via the ergodic theorem, unlike part (a). However, if

we disregard the contribution from ti <0, Ez{xi} <« is sufficient.

P.6.3.3 (LEMMA 2.5.4)., Virtually unexplored is the question of
replacing v and T in (5.2) and (5.3) of Chapter 2 by
n
VarP { z: xi} and VarP N(0, ] . Initial probings reveal difficulties,
2\i=]1 1
which may, however, disappear under closer scrutiny.
P.6.3.4 (END OF SECTION 2.5). Suppose we have a general non-stationary
arrival process P with first moment measure M(4) = EN(4A) . We would like
T
the central limit theorem for [ ¢(8)ds asking only (in addition to the
0
components satisfying a central limit theorem and possessing suitable
moments) that M[0, x] = 0(x) (x + «) (ef. Iglehart and Kennedy (1970)).

Then, as in Lemma 2.5.2,

P, x PQ{T_GQl(T) > e}

A

8
B, x B {0, (1)}/en

® T
J dF (1) f Cutl=1)dM(u) Je®
T 0

T T s
+ f ar (1) f (utl-0) M) exd
0 ™1 , :

Now the first term is < M(0, <] [w ZdF(Z)/e't6 , and so is easily
T

handled. The second term has an upper bound of
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T 6
f M(T-1, t1dF(L)/eT’ .
0

If P is stationary, then M(t-1, Tl =ml , or if P corregponds to a
Palm measure then we can use (4,5) of Chapter 2., However, if we have no
information such as M(I) = M(|I|) , |I| - , i.e., no information on how
nicely segments I (intervals) of our process are behaving (ef. functional
convergence), then it seems difficult to handle this-term.

The stationarity of the process of service times can also bé removed if
'again one imposes a condition ensuring that no one service time contributes
too much to the central limit theorem (of. uniform asymptotic negligibility).
For example, suppose that there exists a distribution function F such that

Fi(@) = P2{xj <z} = F(x) ,

so that, in a sense, the random variable corresponding to F 1is dominating

the service times. Then, after some algebra,

E, x E oy} = B) § {'r - F F.(z-'tj]vdz}

d:—@ 0 J

I
o |
B
R
]
1
S
o ~
w .
~—~
T
Q\.ﬂ.
~—
[
o~
~——

i
N
~
~
~
—
(=]

and, similarly,
T
E, x E_{® } = am(u) min(Z, t-u)dr(1)
1 271
_ 0 0
so that the analysis*may be carried out as before,

P.6,3.5 (COROLLARY 2.6.12). Our feeling is that this result is
suboptimal. It would be interesting to compare this approach to one using
characteristic functions and an inequality due to Esseen (Lemma 2, Chung
(1968), p. 208) on the stationary M/G/® queue (cf. Rao (1966)).

Pe6.3°6 (BEGINNING OF SECTION 2.7)~ The results of Section 2.7 are
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therefore not really an extension of those of Section 2.6. An examination
of other rates of functional convergence theorems reveals that they too are
often expressible in terms of the metric of convergence in probability. This
seems strange: one should attempt to obtain rates of functional convergence
results asking only that the arrival process and service time process
converge to the Wiener process at rates in terms of the Prohorov or dual
bounded Lipschitz metrics, although for the GI/G/® queue the stronger
result is available. Dudley's (1972) comment that rates of functional
convergence are better expressed via the Prohorov metric therefore seem§
open to dispute, although his comparison was with Lipschitz functional
formulations. The clue to changing the metric from p to d in (7.1) of
Chapter 2 is given in Billingsley (1968), p. 112, line 15.

P.6.3.7 (LEMMA 2.7.1), Rates of convergence results are prime examples
for improvement b& fine arguments in unexpected directions. It is by no

3/, %

means clear that the (log n)°’ '/n® +term is optimal; in particular, the

logarithmic factor.

6.4. Problems concerning Chapter 3

P.6.4.1 (THEOREM 3.3.2). The tail sums could hopefully be dealt with
as in Barbour (1974), although here we have triangular arrays of‘c0nvergent’

series rather than a straight sequence.

P.6.4.2 (LEMMA 3.4.6 (b)). Note that Iglehart (1971a), Theorem 3.3

does not need (directly) the properties of X in his proof. In his
notation, p[si, ojgn] + 0 a.s. has already been proved, where

En(t) = E(nt)/¢(n) for E a standard Brownian motion. His result thus
follows from inequality (5.13) of Chapter 1, the relative compactness of £

(Strassen (1964)) and the Arzeld-Ascoli theorem.
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P.6.4.3 (AFTER LEMMA 3.4.6). Of course, these remarks are vacuous if
a process Xn is defined to obey a FLIL as in Problem 6.4.2 above, i.e.,

O(Xn, En) + 0 a.s. for En defined there.

In (4.1.7) of Chapter 3 note that if

An = {32¢(n)2 =< Xi < e2¢(n+1)2} .
G J x2dPr = 26 T nPria } = 26 ¥ Pr{XSL > 82¢(n)2}
n=1 44 n=1 n=1

provide the intermediate steps. The ideas succeeding (4.1.7) of Chapter 3
are probably well known - for an instance without details see Heyde and
Scott (1973).

P.6.4.4. Removing the condition m < 1 , which is not a logical
requirement, but apparently a technical one, in SECTIONS 2.7, 3.3 AND 3.4
seems difficult.

P.6.4.5 (THEOREM 3.4.8)., The RHS of (4.2.9) of Chapter 3 is a
significant overestimate of the LHS. Using the current arguments, weakening
the éondition (4.2.4) of Chapter 3 means decreasing in some manageable way
the RHS of (4.2.9) of Chapter 3, or estimating tail probabilities in the
geometric subsequence argument by sqmething other than Chebyshev's inequalityﬂ

P.6.4.6 (THEOREM 3.5.1), A direct proof of the relationship (5.1) of
Chapter 3 is not known (to me).

P.6.4.7 (COROLLARY 3.5.5). We seem to require that the service time
process obeys a FLIL; the problem is achieving a result parallel to Lemma
3.4,7 for the OLIL.

P.6.4.8 (SECTION 3.5.3). It is by no means clear whether infinite
divisibility is a global property. Dr M. Westcott (private communicatiqn)
has informed me that a student of Matthes is working on the problem: "a
doubly stochastic Poisson process is infinitely divisible if and only if its
stochastic intensity is infinitely divisible". We pose the question more

generally in the light of Kingman's (1964) characterization (not his renewal
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gharacterization ~ see Section 3.5.3): "if a point process is subjected to
a random change of time independent of the original process, then the
resultant point process is infinitely divisible if and only if the original
and time transformation processes are'.

P.6.4.9. An open question is the generalization of Theorem 4 of Daley
(1972) to a stationary process of subsidiariés, in the style of Lemma 2.5.4
for the G/G/~ queue. It is clear that this generalization goes through if
we assume that the process of subsidiaries is say, strong mixing, with an
appropriate condition on the rate of mixing. We would anticipate that we

need only assume

E | E{ (NO'(R)-u) (W} <=
J=0

where W = E{NO(R)} < ®© (compare Lemma 3 of Billingsley (1968), p. 172).

However, the problem then seems to involve justifying exchanging the order
of some limits and integrals.

P.6.4.10 (LEMMA 4, Westcott (1972)). It would be interesting to know
whether there exists a small class of functions £ with nice properties such
that the convergence of the p.g.fls.

GnEEJ -+ GLE]

i

guaranteés weak convergence for the corresponding point processes (ef. the
dual bounded Lipschitz metric for weak convergence (Section 1.5)).

- P.6.4.11 (WEAK CONTINUITY OF CLUSTER PROCESSES). Kennedy (1972a) and
Whitt (1974a) have demonstrated weak continuity for queues. Such an idea
should extend to cluster processes, but their proofs rely heavily on the
queues beginning at ¢ = 0 , and the service times being non-negative.
However, in the following, we will demonstrate that weak continuity for
cluster processes is a valid concept. The proof is via the p.g.fl., and
" hence we have not striven for the finest possible conditions via this

technique, which demands (unnecessarily, we surmise) that the centre process
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and process of subsidiaries be independent, and the subsidiaries themselves

be i.i.d. We use the model (2.2) of Chapter 3, but now write

+00

P, = X sz , where P2j is a probability measure on (N, o(N)) , and set
gamro

P_.. = P! for some generic point process P’ for which P'{N(R) < o} =1 ,

27

PROPOSITION 6.4.1. If P, and the sequence {Pin} are stationary
centre processes with finite intensities m, {m} and satisfy

P =P and m< o, limsupm < (4.1)
n 1 e T n

and if P' and the sequence {Pé} of esubsidiaries have first moment
measures M'(+), {M;(-)} satisfying

P'=P" and M'(R) < o, 1lim sup M'(R) < = (4.2)
n o T

then the sequence of corresponding cluster processes satisfy
Pcn = Pc .
Proof. By Lemma 4 of Westcott (1972) and equation (15) of Vere-Jones
(1968), we must prove that the corresponding p.g.fls. satisfy

¢, [GrEle)] » 6 16" (E[8)] (4.3)

for & € V (recall that weak convergence and convergence of finite
dimensional distributions correspopd for a sequence of poipt processes
converging to a point process).

We prove (4.3) in two parts. Firstly, by an inequality in the proof of
Theorem 2 of Westcott (1972),

6, [ Elt)]-6 16l (4.4)

IA

o .
m, Lo |G;L(£|t)—G'(g|t)|dt (4.5)

A

400 4o
mn{J (1-6(E|t)]dt +[ [l-G'(Elt)]dt} . (4.6)

-0

By some easy inequalities, (4.6) has an upper bound of
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mn{M;(R)+M'(R)}|supp.[log 1|
and hence by (4.1), (4.2) and the dominated convergence theorem, (4.5) + 0
(n » «) .

For the second half, let Em € V be a sequence of functions
¥ G2(E|t) (this is always possible since our functions take values in

[0, 1] ). Then

6, [6¢"(E|£)1-G [6"(E|)] G

. 400 _
< (mn+m);J—m |g,-6"Ele)|dt + |e,[E,]-6,[E,]] .
Hence, by Lemma 4 of Westcott (1972),
400
lim sup (4.7) =K f IEm—G'(EIt)Idt (4.8)
e o .

for some constant K ., But the RHS of (4,8) has a uniform upper bound of

400
2K J [1-67(&|t)]dt

which we have already shown to be finite. Hence, by dominated convergence

the RHS of (4.8) + 0 (m + ®) , and thus we have proved (4.3). a
Hopefully, a more direct analysis will yield a stronger result., We

remark, though, that continﬁity in itself is not really what we are looking

for: instead (in an obvious phraseology) we require 'rate of continuity'.

6.5. Problems concerning Chapter 4

P.6.5.1 (THEOREM 4.4.1). It was pointed out in Section 4.5 that the

condition Pl X P2(GT) + 1 (T »+ ) is not a necessary condition foy strong

mixing of cluster processes to occur., In fact, we know of no example of a
cluster process with strong mixing centre which is not strong mixing. But
consider the Neyman-Scott process (Poisson centres) with two points per

cluster. Then this process always exists (Westcott (1971)), but if F , the
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distribution of each point of a cluster from its centre, does not have
finite mean, then (4.13) of Chapter 4 fails. We have no suggestions, however,
as to the relevant events to consider for the potential counter-e#ample.
P.6.5.2 (THEOREM 4.2.1) (D.J. Daley - solved problem). We point out
that a continuous time Markov chain need not be ¢-mixing. Let @Q(z) be the
size of a classical immigration-death process; it is well-known that this is
a Markov chain. Note that the classical immigration-death process
corresponds to the M/M/o queue, and @Q(t) to the number of servers. Again
Pr{@(t) = 0 | @(0) = n} can be made arbitrarily small by taking = large
enough, so that counter-examples of the style of Section 4.2 follow (compare
Bloomfield (1973)).
P.6.5.3. Given a point process which is ¢-mixing, and

¢ * [0, ©») » [0, 1] satisfying ¢l(1) ¢4 0 (1t + o) and ¢l(1) > ¢(1)
(all Tt € R+) , construct a process which is ¢l-mixing but not ¢-mixing

(P.A.P. Moran).

If we subject the original process to random deletions via an

independent process which is (¢l—¢)—mixing, then by Corollary u4.4.2 (v), the

new process is ¢l-mixing. It is at least intuitively clear that the

derived process will not be ¢-mixing.
P.6.5.4 (THEOREMS 4.3.1, 4.3.3). We suspect that the following is
true: if the centre process of a cluster process with i.i.d. clusters is

complete, ¢- or strong mixing, and its p.g.fl. Gi satisfies (3.1), (3.2)

or the p.g.fl. equivalent to (3.8) of Chapter 4 respectively, then so does .
the p.g.fl. G of the cluster process.
P.6.5.5 (D.J.vDaley). ¢-mixing point processes P may be represented
as satisfying, for ( € G(N(-m, t]) and D € O(N(t+T, w)) s
|P(D|C)-P(D)| = ¢(1) .

Taking C = {N(t-h, t] > 0} and letting % + 0 suggests that ¢-mixing
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processes may have nice properties for Palm-Khinchin measures.

P.6.5.6 (D.J. Daley). A more general quéstion'is the possibility of a
p.g.fl. formulation for the Palm-Khinchin equations, i.e., to relate the
p.g.fl. G(*) of a stationary point processbto the "conditional p.g.fl.

GO(') » the p.g.fl. for the process given a point at zero".

P.6.5.7 (THEOREM 4.3.1) (P.A.P. Moran). Define and study the
properties of the "conditional characteristic functional". This remark arose
in relation to the inequality (3.2) of Chapter 4. A relevant reference is

Bartlett (1938).

P.6.5.8 (COROLLARY 4.4.2). Let (X, Y) = {(XJ., Yj)} be a double

sequence of stationary random variabl;s, where X and Y are independent.

If X is strong mixing, Y is strong mixing, is (X, Y) strong mixing?
Professor E.J. Hannan (private communication) conjectures that this is not

so, but knows of no counter-example. Presuming he is correct, then, comparing.

(X, Y) to Pl X P2 and thus Pc in Theorem 4.4.1, we conclude (tentatively)

that Corollary u4.4.2 (Zv) (and (v)) are optimal. If X is ergodic and Y
is ergodic then (X, Y) is not necessarily: for a counter-example, see
Hannan (1973), p. 163, or Breiman (1968), pp. 100 and 113.

P.6.5.9. Of the same ilk as Problem 8 is the question of superpositions.
The techniques of Theorem 4.4.1 yield: independently supérpoSing a completely
mixing point process with a strong mixing point process results in a strong
mixing point process. Characteristic functional arguments (Theorem 4.3.3)
suggest the stronger conjecture: independently superposing a strong mixing

(rate al) process with a strong mixing (rate a2) process yields a strong
mixing (rate al+a2] process. We do not believe the stronger statement.
P.6.5.10 (SECTION 4.4). Find conditions on n, which guarantees its

measurability. They will probably include the measurability of v > NU(A)

from R + 7 _ for any given {Nv} € NR for which Nv(R) <o (all v €R )
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and any given A € B(R) .

P.6.5.11. 1In LEMMA 4.4.3 we conjecture that if P2 has independent

increments, the necessity of (4.6) of Chapter 4 holds in general. The

problem is to find a path proving

P {F(t.)} == P. - a.s.
t,str, 2 ¢ 1

* P {P(t;) o, t, s t-1 )} =1 P - a.s.

by exploiting the independence of subsidiaries located at different points.
P.6.5.12, THEOREM 4.4,1 should generalize to multivariate point

processes. However, a problem of definition is encountered in the

generalization to multidimensional poiﬁt processes: \what is meant, for

example, by strong mixing of a point process on the plane?

| P.6.5.13 (SECTION 4.1). We have not attempted to indicate when a

~ point process is complete, ¢- or strong mixing. Many point processes are

specified by their inter-epoch times. Therefore a relevant question is:

if the inter-epoch times of a point process are complete, ¢- or strong

mixing, does the point process itself have the same property?

6.6. Problems concerning Chapter 5

P.6.6.1 (SECTION 5.1). Robustness of characterizations of queueing
systems is very closely allied to the idea of continuity of queues (Kennedy
(1972a), Whitt (1974a)). We discuss this idea further in Problem 6.4.11.

Dr D.J. Daley has suggested the following metric of robustness:

Dy (P, F) = Im Pl
,Z 0

where |z| <1, EO is the expectation with respect to the Palm measure of

E'O (zN( 0 ,u]) -, (zN( 0 ,u]) du

a given point process P , and Ei the expectation of a renewal process Pl

with lifetime distribution F . This metric suffers from the defect
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(possibly) that it is zero when 2 = 1 , but could easily be modified. The

point is, though, that Dy (P, F)
9

(a) plays down the importance of what happens for large u ;

(b) 1is small when N(O, u] is large,

i.e., it emphasizes lqcal behaviour. (a) and (b) seem to be desirable
properties of any 'robustness' metric.

P.6.6.2 (SECTION 5.1) (D.J. Daley). Characterize stationary
GI/M/1/N (1 = N7< ®) queueing systems with uncorrelated output. Daley
(1968) has characterized GI/M/1/® and M/G/1/® systems with uncorrelated
output, while Daley (1974) and Vlach (1971) have characterized GI/M/1/0
gystems with such an output. King (1971) has answered the M/G/1/1 case,
and has given an expression for the covariance in the M/G/1/N situation.
Preliminary investigations suggest that the techniques of these papers do
not assist us here. |

P.6.6.3 (SECTION 5.2.1) (D.J. Daley). Characterize stationary
GI/D/1/N (0 < N = ») queueing systems with renewal output. It is known
(Daley (1974)) that no restrictions on the inter-arrival distribution are
required if N = 0 , and that the output is renewal for N =1 if the input
. is Poisson (King (1971)). We conjecture that no other non-degenerate
situations (i.e., for which Pr{arrival time > service time} < 1 ) give rise
to renewal output.

P.6.6.4 (SECTION 5.1) (D.J. Daley). For a pure loss GI/G/1 queue
(i.e., GI/G/1/0 ) find

| U(x) = E{number of departures in (0, x] | departure at 0} ,
and ask when is U(x) = M for some constant A (i.e., when do departures
look like a Poisson process as far as second order properties go)? We
could also investigate when U(x) 4is a renewal function. This may not be a

tractable problem, although Laplace transforms may be of assistance.

P.6.6.5 (SECTION 5.3) (D.J. Daley). Let n = n; tn, be a renewal
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process which is the superposition of independent alternating renewal

processes. Prove that either n, or n, is Poisson. (If Daley's (1973a)

technique is to be used, it may be necessary to assume that Ny is derived

from the jump epochs of a Markov chain, i.e., the lifetime distributions are
exponential, with rates o and B (o # B) ).

P.6.6.6 (D.J. Daley). Let SM denote a point process derived froﬁ
the jump epochs of a stationary irreducible semi-Markov process.
Characterize those SM processes for which

P+ SM=R (6.1)
(P is Poisson, R vrenewal ). In particular, it is of interest to know
whether any two state semi-Markov process with
Pij = Pr{transition © + § | lifetime of type ¢ just ended} , %, J =1, 2
and with p.. # 0 can satisfy (6.1). (This is to be‘compared with Daley's
(1978a) counter-example.)

P.6.6.7 (D.J. Daley). Let MC denote a point process derived from
the jump epochs of a stationary irreducible continuous time Markov chain on
a countable state space. Daley (1973b) has obtained necessary and
sufficient conditions on MC to guarantee

" P+ M =R.

What is the distribution function F (or its Laplace Transform) of the

renewal lifetimes in R ? Daley (private communication) anticipates that

1/J e ar(t) = [A + 0+ f (1—_e"e°°)u(dx))/)\ ,
. )

(0,]

for some measure 1y , because the problem seems to be linked with continuous
time regenerative phenomena. Note that this would mean that R is also a
doubly stochastic Poisson process (e.g., Kingman, discussion to Bartlett

.(1963)).

P.6.6.8 (D.J. Daley). Let n(e¢) be a stationary renewal process, and

let
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1 if n(nh, (n+1)h] >0,

%

0 otherwise,

CHARACTERIZATION CONJECTURE, {xﬁ} ie a discrete time stationary

renewal process for every h > 0 <if and only 1f n(e) <s Poisson. If so,

can the conclusion hold if h ie restricted to an interval. 0

P.6.6.9 (D.J. Daley). Let n(*) be a non-arithmetic renewal process

with lifetime distribution F having finite mean A-l , and set
g * P4 .
H(z) = Z: F? (x) , where ¥ (x) denotes the J-fold convolution of F ,
n=1
Can skeleton arguments (Kingman (1972), p. 34) be used to show
H(x+h) - H(x) + Ak (x + @)

for every h > 0 ? (That is, can the Blackwell renewal theorem be deduced
from the Erdos-Feller-Pollard theorem?)

P.6.6.10 (D.J. Daley). Let a stationary, orderly point process nge)
with finite rate A be mixing in some appropriate sense. Does this imply a
quasi-Blackwell renewal theorem? That is, does the expectation function
U(z) = E(n(o, 1 | n({o}) > 0) satisty

U(z+h) - U(x) » Ah (x> «) ?

i



140

BIBLIOGRAPHY

Ash, R.B. (1972). Real Analysis and Probability. New York and London:
Academic Press.

Athreya, K.B. and Karlin, S. (1967). Limit theorems for the split times of
branching processes. J. Math. Mech. 17, 257-278.

Barbour, A.D. (1974). Tail sums of convergent series of independent random
variables. Proe. Camb. Phil. Soe. 75, 361-364.

Bartlett, M.S. (1938). The characteristic function of a conditional
statistic. J. Lond. Math. Soe. 13, 62-67.

Bartlett, M.S. (1954), Processus stochastiques ponctuels. Ann. Inst. H.
Poincaré 14, 34-60.

Bartlett, M.S. (1963). The spectral analysis of point processes. J.R.
Statist. Soe. B 25, 264-296.

Bendrath, R. (1974). Verallgemeinerung eines Satzes von R.K. Milne. Math,
Nachr. 59, 221-228,

Benes, V.E. (1957). A sufficient set of statistics for a simple telephone
exchange model. Bell System Tech. J. 36, 939-96u4.

Beutler, F.J. and Leneman, O0.A.Z. (1966). The-theory of stationary point
processes. Acta Math. 116, 159-197. .

Bhabha, H.J. (1950). On the stochastic’theory of continuous parametric
systems and its application to electron cascades. Proc. Roy. Soc. Ser.
4 202, 301-322.

Billingéley, P. (1956). The invariance principle for dependent random
variables. Trans. Amer. Math. Soc. 83, 250-268.

Billingsley, P. (1962). Limit theorems for randomly selected partial sums.
Ann. Math. Statist. 33, 85-92.

'Billingsley, P. (1968). Convergence of Probability Measures. New York:

Wiley.



141

quomfield, P. (1973). Note on a central limit theorem of I.A. Ibragimov,
with an application to the sojourn times of the M/G/® queué.
Technical Report 41, Series 2. Princeton University: Dept. of
Statiétics.

Boes, D.C. (1969). Note on the output of a queueing system. J. Appl. Prob.
6, 459-461.

Breiman, L. (1968). Probability. Reading, Mass.: Addison-Wesley.

Brillinger, D.R. (1974). Cross-spectral analysis of processes with
stationary increments including the stationar& G/G/» queue. Ann,
Probability 2, 815-827. |

Brown, M. (1970). An M/G/» estimation problem. Awmn. Math. Statist. 41,
651-654,

Brown, M. and Ross, S.M. (1969). Some results for infinite server Poisson
queues. J. 4ppl. Prob, 6, 604-61l.

Burke, P.J. (1956). The output of a queueing system. Operat. Res. 4,
699-704.

Chover, J. (1967). On Strassen's version of the 1log log 1law. 2,
Wahrscheinlichkeitstheorie verw. Geb. 8, 83-90.

Chung, K.L. (1968). A Course in Probability Theory.. 1lst ed. New York:
Harcourt Brace and WorldiInc.

Ginlar, E. (l§72). Superposition of point processes. In Stochastie Point
Processes, Ed. P.A.W. Lewis. New York: Wiley, 549-606.

Cox, D.R. and Lewis, P.A.W. (1966). The Statistical Analysis of Series of
Fvents. London: Methuen and Barnes, New York: Noble.

Daley, D.J. (1968). The correlation structure of the output of some single
server queueing systems. Ann. Math. Statist. 39, 1007-1019.

Daley; D.J. (1971). Weakly statiomary point procésses and random measures.,
J. Roy. Statist. Soc. B 33, 406-428.

Daley, D.J. (1972). Asymptotic properties of stationary point processes with

generalized clusters. Z. Wahrscheinlichkeitstheorie verw. Geb. 21, 65-76.



142

Daley, D.J. (1973a). Poisson and alternatipg renewal processes with
superposition a renewal process. Math. Nachr. 57, 359-369.

Daley, D.J. (1973b). Markovian processes whose jump epochs constitute a
renewal process. Quart. J. Math. Oxford (2), 24, 97-105.

Daley, D.J. (1974). Characterizing pure loss GI/G/1 queues with renewal
output. Proe. Camb. Phil. Soc. 75, 103-107.

Daley, D.J. (1975). Queueing output processes. Adv. Appl. Prob. (to appear).

Daley, D.J. and Milne, R.K. (1973). The theory of point processes: a
bibliography. Internat. Statist. Rev. 41, 183-201.

Daley, D.J. and Shanbhag, D.N. (1975). Independent inter-departure times in
M/G/1/N queues. J, Roy. Statist. Soc. B (to appear). |

Daley, D.J. and Vere-Joneé, D. (1972). A summary of the theory of point
processes. In Stochastic Point Processes, Ed. P.A.W, Lewis. New York;
Wiley, 299-383.

Dharmadhikari, S.W., Fabian, V., and Jogdeo, K. (1968). Bounds on the moments
of martingales. Awn. Math. Statist. 39, 1719-1723,

Disney, R.L., Farrell, R.L. and Morais, P.R. de. (1973). A characterization
of M/G/1/N queues with renewal departure processes. Management Sci.
19, 1222-1228.

Dudley, R.M. (1966). Convergence of Baire measures. Studia Math. 27,
251-268.

Dudley, R.M. (1968). Distances of probability measures and random variables.
Ann. Math. Statiet. 39, 1563-1572,

Dudley, R.M. (1972). Speeds of metric probability convergence. Z,
Wahrscheinlichkeitstheorie verw. Geb. 22, 323-332.

Feller, W. (1950). An Introduction to Probability Theory and Ite Applicationas.

Vol. 1, 1lst ed. New York: Wiley.

Feller, W. (1966). An Introduction to Probability Theory and ite Applications,

Vol. 2. New York: Wiley.



143

Feller, W. (1968). An Introduction to Probability Theory and Its Applications.
Vol. 1, 3rd ed. New York: Wiley.

Finch, P.D. (1959). The output process of the queueing system M/G/1 . J.
Roy.‘Statiat. Soe. Ser. B 21, 375-380.

Fisher, L. (1972). A survey of the mathematical theory of multidimensional
point processes. In Stochastic Point Processes, Ed. P.A.W. Lewis. New
York: Wiley, 468-513.

Freedman, D. (1967). Some invariance principles for functionals of é Markov
chain. Ann. Math. Statist. 38, 1-7.

Goldman, J.R. (1967). Infinitely divisible point processes in . J.
Math. Anal. Appl. 17, 133-1u6.

Grandell, J. (19871). On stochastic proceéses generated by a stochastic
intensity function. Skand. Aktuar. Tidskr. 54, 20u4-240.

 Greenwood, M. and Yule, G.U. (1920). An inquiry into the nature of frequency
distributions representative of multiple happenings, with particular
reference to the occurrence of multiple attacks of disease or of repeated
accidents. J.R. Statist. Soc. 83, 255-279,

Gunning, R.C. and Rossi, H. (1965). Analytic Functions of Several Complex
Variables. Englewood Cliffs, N.J.: Prentice Hall.

Halmos, P.R. (1950). MbasureiTheory. Princeton, N.J.: D. Van Nostrand Co.
Inc.

Hannan, E.J. (1973). Central limit theorems for time series regression. 2.
Wahrecheinlichkeitetheorie verw. Geb. 26, 157-170.

Harris, T.E. (1963). The Theory of Branching Processes. Berlin: Springer.

Hawkes, A.G. and Oakes, D. (1974). A cluster process representation of a
self-exciting process. J. Appl. Prob. 11, 493-503.

Heyde, C.C. (1969). On extended rate of convergence results for the
invariance principle. A4nn., Math. Statist. 40, 2178-2179.

ﬁeyde, C.C. (1974). On the central limit theorem for stationary processes.

2. Wahrscheinlichkeitstheorie verw. Geb. 30, 315-320.



e

Heyde, C.C. and Scott, D.J. (1973). Invariance principles for the law of
the iterated logarithm for martingales and processes with stationary
increments. Ann. Probability 1, 428-436,

Ibragimov; I.A. (1962). Some limit theorems for stationary processes.
Theor. Probability Appl. 7, 349-382,

Iglehart, D.L. (1971a). Multiple channel queues in heavy traffic IV, Law
of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw Geb. 17,
168-180.

Iglehart, D.L. (1971b). Functional limit theorems for the queue GI/G/1 in
light traffic. Adv. Appl. Prob. 3, 269-281.

Iglehart, D.L. (1974). Weak convérgence in applied probability. Stoch.
Procs. and their Applns. 2, 211-241,

Iglehart,.D.L. and Kennedy, D.P. (1970). Weak convergence Bf the average of
flag processes. J. Appl. Prob. 7, 747-753.

Iglehart, D.L. and Whitt, W. (1971). The equivalence of functional central
limi{ theorems for counting processes and associated partial sums.

Ann. Math. Statiet. 842, 1372-1378.

Jagers, P. (1973). On Palm probabilities. Z, Wahrscheinlichkeitstheorie
verw Geb. 26, 17-32.

Jagers, P. (1974). Aspects of random measures and point processes. In
Advances in Probability 3, Ed. P. Ney. New York: Marcel Dekker, Inc.
(to appear).

Jagers, P. and Lindvall, T. (1974). Thinning and rare events in point
processes. Z. Wahrescheinlichkeitstheorie verw Geb. 28, 89-98. (Erratum
29, 272).

Kallenberg, 0. (1973). Characterization and convergence of random measures
and point processes. Z. Wahrscheinlichkeitstheorie verw Geb. 27, 9-21.

Kallenberg, O. (1974)., A limit theorem for thinning of point processes.

Institute of Statistice Mimeo Series No. 98, University of North

Carolina.



145

Kaplan, E,L. (1955), Transformations of stationary random sequences. Math.
Seand. 3, 127-149,

Kaplan, N. (1974), Limit theorems for a GI/G/® queue. Preprint,
University of California: Berkeley.

Keilson, J. (1966). The ergodic queue length distribution for queueing
systems with finite capacity. J. Roy. Statist. Soc. Ser. B 28, 190-201.

Kemp, C.D. and Kemp, A.W. (1965). Some properties of the 'Hermite'
distribution. Biometrika 52, 381-394,

Kennedy, D.P. (1972a). The continuity of the single server queue. J. Appl.
Prob. 9, 370-381,

Kennedy, D.P. (1972b). Rates of convergence for queues in heavy traffic. I.
Adv. Appl. Prob, 4, 357-381, |

Kerstan, J. and Matthes, K. (1964), Stationare zufallige Punktfolgen, II.V
Jber. Deutsch. Math.-Verein. 66; 106-118,

Kerstan, J., Matthes, K., and Mecke, J. (1972). Unbegrenzt teilbare
Punktprozesse. Berlin: Akademie Verlag.

Khinchin, A.Ya. (1955). Mathematical Methods in the Theory of Queueing.
Trudy Mat. Inst. Steklov 49. (English translation (1960). London:
Griffin.)

King, R.A. (1971). The covariance structure of the departure gfocess from
M/G/1 queues with finite waiting lines., J. Roy. Statist. Soc. Ser. B
33, 401-406,

Kingman, J.F.C. (1964). On doubly stochastic Poisson processes. Proc.
Camb., Phil. Soe. 60, 923-930,

Kingman, J.F.C. (1972). Regenerative Phenomena. New York: Wiley.

Krickeberg, K. (1974). Moments of point:processes. In Stochastic Geometry,
Eds. E.F. Harding and D.G. Kendall. New York: Wiley, 89-113,

Kurtz, T.G. (1974). Point processes and completely monotone set functions.

Z. Wahrecheinlichkeitatheorie verw. Geb., 30, 57-67.




146

Laslett, G.M, (1975). Characterising the finite capacity GI/M/1 queue
with renewal output. Management Sei. (to appear).

Lawrance, A.J. (1972)., Stationary series of univariate events., In
Stochastic Point Processes, Ed. P,A.W. Lewis. New York: Wiley,
199-256,

Leadbetter, M.R., (1972a). On basic results of point process theory. Proe.
Sixth Berkeley Symp. 3, 449-u461, |

Leadbgtter, M.R. (1972b). Point processes_generated by level crossings. In
Stochastie Point Processes, Ed. P.A.W, Lewis, New York: Wiley,
436—467.

Lee, P.M, (1967). Infinitely divisible stochastic processes. Z.
Wahrecheinlichkeitstheorie verw. Geb. 7, 147-160.

Lee, P.M, (1968). Some examples of infinitely divisible point processes.
Studia Sci. Math. Hung. 3, 219-22u.

Lewis, P.A.W. (1964a). A branching Poiss§n process model for the analysis
of computer failure patterns. J.R. Statist. Soc. B 26, 398-456.

Lewis, P.A.W. (1964b). The implications of a failure model for the use and
maintenance of computers. J. Appl. Prob. 1, 347-368.

Lewis, P.A.W. (1969). Asymptotic properties and equilibrium conditions for
branching Poisson processes. J. Appl. Prob, 6, 355-371.

Lewis, P.A.W. (1972). Stochastic Point Processes. Ed. P.A.W. Lewis. New
York: Wiley.

Lewis, T. (1961). The intervals between regular events displaced in time by
independent random deviations of large dispersion., J.R. Statist. Soc.
B 23, u476-483,

Lindvall, T. (1973). Weak convergence 6f probability measures‘and random
functions in the function space D[O0, «) . J. 4ppl. Prob. 10, 109-121,

.LoEve, M. (1960). Probability Theory, 2nd ed. Princeton, N.J.: D. Van

Nostrand Co., Inc.




147

Lotka, A.J. (1939). A contribution to the theory of self-renewing aggregates,
with especial reference to industrial replacement. Ann. Math. Statist.
10, 1-25.

Loulou, R.b(1973). Multi~channel queues in heavy traffic. J. 4ppl. Prob.
10, 769-777.

Mackey, G.W. (1974). Ergodic theory and its significance for statistical
mechanics ;nd probability theory. Advances in Mathematics 12, 178-268,

Matthes, K, (1963a), Stationdre zufdllige Punktfolgen, I. Jber. Deutsch.
Math.-Verein., 66, 66-79.

Matthes, K. (1963b). Unbeschrdnkt teilbare Verteilungsgesetze stationdrer
zufalliger Punktfolgen. Wiss. Z. Hochsch. Electro. Ilmenau 9, 235-238,

Mecke, J. (1967). Stationare zufdllige Masse auf localkompakten Abelschen
Gruppen. Z. Wahrecheinlichkeitstheorie verw. Geb. 9, 36-58.

Milne, R.K, (1970). Identifiability for random translations of Poisson
processes. 2., Wahrscheinlichkeitstheorie verw. Geb. 15, 195-201,

Milne, R.K. (1971). Stochastic Analysis of Multivariate Point Processes.
Canberra: Australian National Univ., PhD thesis.

Moyal, J.E. (1962). The general theory of stochastic population processes.
Acta Math. 108, 1-31.

Narasimham, T. (1968). A note on the asymptotic distribution of the traffic-
time average in a GI/G/® with bulk arrivals. J. 4ppl. Prob. 5,
476-480,

Nawrotzki, K. (1962). Eine Grenzwertsatz fiir homogene zufdllige Punktfolgen,
Math. Nachr. 24, 201-217.

Nelsen, R.B. and Williams, T. (1968). Randomly delayed appointment streams.
Nature 219, 573-574.

Nelsen, R.B. and Williams, T. (1970). Random displacements of regularly
spaced events. J. Appl. Prob. 7, 183-195,

Neveu, J. (1968). Sur la structure des processus ponctuels stationnaires.

C.R. Acad. Sci. Parie Sér. A 267, A561-564.




148

Neyman, J. (1939). On a new class of contagious distributions applicable to
entomology and bacteriology. Ann. Math. Statiet. 10, 35-57,

Neyman, J. and Scott, E.L. (1952). A theory of the spatial distribution of
galaxies. Astrophys. J. 116, 144-163,

Neyman, J. and Scott, E.L., (1958), Statistical approach to the'problemé of
cosmology. J. Roy. Statist. Soc, Ser., B 20, 1-u3,

Neyman, J. and Scott, E.L. (1964). A stochastic ﬁodel of epidemics., In
Stochastic Modele in Mediocine and Biology, Ed., J. Gurland. Madison:
The University of Wisconsin Press, 45-83. |

Oodaira, H. and Yoshihara, K. (1971a). The law of the iterated logarithm
for stationary processes satisfying mixing conditions. Kodai Math.
Sem. Rep. 23, 311-334, |

Oodaira, H. and Yoshihara, K. (1971b). Note on the law of the iterated
logarithm for stationary processes satisfying mixing conditions. KXodai
Math. Sem. Rep. 23, 335-342.

Ooodaira, H. and Yoshihara, K. (1972). Functional central limit theorems
for strictly stationary processes satisfying mixing conditions. KXoda?
Math. Sem. Rep. 24, 259-269.

Palm, C. (1943). Intensitgtsschwankungen im Fernsprechverkehr. Ericsson
Technike 44, 1-189,

Papangelou,.F. (1974). On the Palm probabilities of processes of points and
processes of lines. In Stochaétic Geometry, Eds. E.F. Harding and
D.G. Kendall. New York: Wiley, 1lu-147,

Philipp, W. (1969). The central limit theorem for mixing sequences of
random variables. 2. Wahrecheinlichkeitstheorie verw. Geb. 12, 155-171.

Polya, G. (1931). Sur quelques points de la théorie des probabilités. Ann,

de 1'Inet, Henri Poincaré 1, 117-162.

~ Prékopa, A. (1957a). On the compound Poisson distribution. Aeta Sei. Math.
Szeged. 18, 23-28,

Prékopa, A. (1957b). On Poisson and cbmpound Poisson stochastic functions,

Studia Math. 16, 142-155,




149

Prohorov, Yu.V., (1956). Convergence of random measures and limit theorems
in probability theory. Theor. Probability Appl. 1, 157-21k.

Prohorov, Yu.V. and Rozanov, Yu.A, (1969). Probability Theory. Berlin:
Spriﬁger-Verlag.

Ramakrishnan, A. (1950). Stochastic processes relating to particles
distributed in a continuous infinity of states. Proe. Camb. Phil. Soc.
46, 595-602.

Rao, J.S. (1966). An application of stationary point processes to qﬁeueing
theory and textile research. J. Appl. Prob. 3, 231-2u6,

Renyi, A. (1967). Remarks on the Poisson process. Stud. Sei. Math. Hung.
2, 119-123,

Rosenblatt, M. (1956). A central limit thecrem and strong mixing condition.
Proc., Nat. Acad. Sei. USA 42, u3-u7, (

Rosenblatt, M. (1962). Random Processes. New York: Oxford University
Press,

Rosencrantz, W.A. (1968). On rates of convergence for the invariance
principle. Trane. Amer. Math. Soc. 129, 542-552,

Ross, S,M., (1970)., Identifiability in GI/G/k queues. J, Appl. Prob. 7,
776-780,

Rudemo, M., (1973). Point précesses‘generated by transitions of Markov chains.
Adv. Appl. Prob., 5, 262-286.

Ryll-Nardzewski, C, (1961). Remarks on processes of calls. Proe. 4th
Berkeley Symp. 2, 455-u465,

Saunders, D.I. (1975). Convergence of random measures. Preprint, Flinders

| University: School of Mathematical Sciences.

Skorokhod, A.V, (1956), Limit theorems for stochastic processes. Theor,
Probability Appl. 1, 261-290.

Slivnyak, I.M, (1962). Some properties of stationary flows of homogeneous
random events. Teor. Veroyatnoet. i Primenen 7, 347-352, (English

translation in Theory Prob. Appl. 7, 336-341). Addendum 9, 190 (English



150

translation in Theory Prob. Appl. 9, 168).

Slivnyak, I.M. (1966)., Stationary streams of homogeneous random events.
Vest. Harkov. Gos. Univ., Ser. Mech.-Math. 32, 73-116. (English
tranélation: Statistics Department, Australian National University.)

Smith, W.L. (1958). Renewal theory and its ramifications. J. Roy. Statist.
Soce. Ser. B 20, 243-302.

Stormer, H., (1969). Zur aberlagerung von Erneuerungsprozessen. Z.
Wahrescheinlichkeitstheorie verw. Geb. 13, 9-2u4,

Straf, M.L. (1972). Weak convergence of stochastic processes with several
parameters. Proc. 6th Berkeley Symp. 2, 187-221,

Strassen, V. (1964). An invariance principle for the law of the iterated
logarithm. 2. Wahrscheinlichkeitstheorie verw., Geb. 3, 211-226,
Thedeen, T. (1969). On road traffic with free overtaking. J. Appl. Prob.

6, 524-549,

Thompson, H.R. (1955). Spatial point procesées, with applications to
ecology. Biometrika 42, 102-115,

Tomko, J. (1972). The rate of convergence in central limit theorems for
service systems with finite queue capacity. J. Appl. Prob. 9, 87-102.

Vere-Jones, D, (1968). Some applications of probability generating
functionals to the stud& of input/output streams. J.R. Statist. Soc. B
30, 321-333,

Vere-Jones, D, (1970). Stochastic models for earthquake occurrence. J.R,
Statist., Soe. B 32, 1-62,

Vere-Jones, D, (1971). Appendix to Daley (1971).

Vere-Jones, D, (1973). Lecturee on Point Processes. Unpublished notes,
University of California, Berkeley: Department of Statistics.

Vere-Jones, D, (1974). An elementary approach to the spectral theory of

stationary random measures. In Stochastic Geometry, Eds. E.F, Harding

and D.G. Kendall. New York: Wiley, 307-321.



151

Verwaat, W. (1972). Functional central limit theorems for processes with
positive drift and their inverses., 'Z., Wahrscheinlichkeitstheorie verw,
Geb. 23, 245-253.

Vlach, T.L. (1971). Further results concerning the simple queueing loss
system. Z. Operat. Res. 15, 55-57.

Von Bahr, B. and Esseen, C.G. (1965). Inequalities for the rth absolute
moment of a sum of random variables, 1< »r =< 2 , Ann. Math. Statist.
36, 299-303. "

Westcott, M. (1970). Some applications of the probability generating
functional to point processes. Canberra: Australian National Univ.
PhD Thesis.

Westcott, M. (1971). On existence and mixing results for cluster point
processes. J.R. Statist. Soe. B 33, 290-300.

Westcott, M. (1972). The probability generating functional. J. Austral.
Math, Soc. 14, 448-u66,

Westcott, M. (1973). Results in the asymptotic and equilibrium theory of
Poisson cluster processes. J. Appl. Prob. 10, 807-823.

Whitt, W. (1970). Weak convergence of probability measures on the function
space C[0, ®) . Ann. Math. Statist. 41, 939-94y,

Whitt, W. (1971). Weak convérgence of probability measures on the function
space D[0, «) ., Technical report, Yale University.

Whitt, W. (1973). On the quality of Poisson approximations. Z.
Wahrscheinlichkeitatheorie verw. Geb. 28, 23-36.

Whitt, W. (1974a). The continuity of queues. Adv. Appl. Prob. 6, 175-183,

Whitt, W. (1974b). Preservation of rates of convergence under mappings. Z.
Wahrscheinlichkeitstheorie verw. Geb. 29, 39-ul,

Whitt, W. (1975). Representation and convergence of point processes on the

line. Ann. Probability (to appear).



152

Wichura, M.J. (1973). Some Strassen-type laws of the iterated logarithm for
multiparameter stochastic processes with independent increments. Ann,
Probability 1, 272-296.

Wold, H. ‘(1949). Sur les processus stationairres ponctuels. Le Calcul des

Probabilités et ses Applications. Publications du C.N.R.S. 13, 75-86.



