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obtain finer results. We believe that we have already partly countered the 

first objection, in that generality leads to clarity, which is a necessary 
first step to building more realistic generalized models, and, in addition, 

we feel that some idea of robustness of already available models is 

desirable. We fully concur with the second objection, but frequently the 
general method obtains optimal results (often more simply). Even if it does 
not, it is worth knowing what it can achieve, in order to elucidate the 
advantages of tools which exploit the distinctive features of particular 

models.

The transformation referred to in the opening paragraph will usually 

take the form of a mapping between measure spaces. Sometimes (rarely) 

measurability of this mapping is all the 'smoothness' we will require of it. 
Other times we will demand that it be more coherent, in the sense of 
preserving the component structure, and as this is usually not provided, we 
must impose conditions guaranteeing it. Typically we will find an 

approximating 'coherent' mapping, and the conditions will arise in 
demonstrating that the differences are irrelevant.

The question arises as to whether our approach can be generalized still 
further: if there are two or more component processes, can their independence
be removed? The answer to this, in some cases, is in the affirmative. For 
example, it will be clear from the proof of Theorem 4.4.1 that mixing of 

cluster processes will follow from joint mixing of the centre and subsidiary 
processes. However, in those situations in which 'coherency' conditions on 

our mapping must be imposed, it becomes correspondingly more difficult to 

interpret their meaning, and probably also to verify. For this reason too 
(ease of writing down conditions), we have required throughout the thesis 

that our processes be stationary, although often, but not always, this 
assumption can, with care, be removed.

Chapter One, as well as providing a brief historical introduction and a 

definition of point processes, aims at setting down those concepts and
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classes of point processes which are frequently employed in the body of the 

dissertation. This still does not render the thesis self-contained, but 
minimizes to some extent the amount of external referencing required later.

Chapter Two investigates weak forms of asymptotic independence and 
(ordinary) limit laws for the number of busy servers process associated with 

the G/G/00 queue. In particular we demonstrate that stationarity, mixing, 
strong laws, the central limit theorem and rates of functional convergence 

derive from those of the arrival and server processes under reasonable 

conditions. Ergodicity does not, and rates of ordinary convergence seem to 

depend on a factor associated with the transformation operation.
Functional limit laws for cluster processes are examined in Chapter 

Three. A sufficient condition for existence of our generalized cluster 
process is given, and the measurability of the mapping defining the cluster 
process is investigated. Then, as in Chapter Two, the functional central 
limit theorem for the cluster process is shown, under suitable conditions 
predictably more severe than those of Daley (1972) for ordinary convergence, 
to flow from those of its components; the same is true for functional laws 
of the iterated logarithm for processes with right-hand clusters, but an 
unsolved problem is the extension to processes with left-hand clusters. 

Related topics (functional strong laws, the law of the iterated logarithm 

for the G/G/°° queue, and limit laws for doubly stochastic Poisson 
processes) are then mentioned.

Chapter Four deals with the preservation of strong forms of asymptotic 
independence under the clustering operation, initially attempted with a view 

to weakening the theorems in Chapter Three. This has not eventuated, 

however, but the theorems are of interest in their own right. Strong, <J>- 

and complete mixing possess an increasing degree of uniformity of their 
asymptotic independence, and this turns out to be a significant factor in 
their preservation. In particular, it is indicated that 0-mixing may be 

maintained only under very stringent conditions (bounded clusters), whereas
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strong mixing is maintained under considerably milder conditions. It is 
also argued that the probability generating functional is not an applicable 
tool in these circumstances, even if the subsidiary processes are 
independent.

Chapter Five consists of characterization problems associated with 
renewal point processes, of which the main contribution is contained in a 
forthcoming paper (Laslett (1975)), in which we conclude that the output 

process of a finite capacity GI/M/1 queue (i.e., with renewal input) is 

never renewal. This is not unexpected, since the property of being a 
renewal process is very much a local one. This subsection is written in the 

language of queueing theory, unlike the rest of the thesis. We also look 
briefly at the problem of n (> 2) independent, identically distributed 

point processes being superposed to produce a renewal process. It is 
conjectured that all processes must then be Poisson, and proved in the case 
of the superposed processes being alternating renewal; counter-examples in 
the non-identical case have come from this area.

Chapter Six provides a list of unsolved and partially solved problems 
and generalizations. In addition to those associated with the bulk of the 
thesis, it also exhibits identifiability of the cluster structure of a 
stationary Poisson cluster process from a complete centre process-cluster 
process record. The problem is included in this chapter, because it is not 
solved in the generality required of the rest of this thesis, although it is 
conjectured that it can be.

For record and referral purposes, we have included a relatively 

extensive bibliography. It will be apparent that some of these references 
are only of an incidental nature, whereas others are more extensively 

applicable, in that they are required in the original sections of the thesis.
Once the Introduction and the definition of a cluster process (Sections 

3.2 and 4.4) have been assimilated, the chapters may, apart from the unsolved
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problems, be read independently. The section 'Symbols and Abbreviations' 
should be perused before commencing on the thesis itself.
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SYMBOLS AND ABBREVIATIONS

Some of the details which follow are almost conventional and are given
4simply to remove any possible ambiguity.

At times we write ab/oct rather than the more cumbersome (ab)/(od) .

B(i?) the usual Borel cr-field of the real line R

Bür) the Borel cr-*field generated by the open sets of a 

specified topology on the space X

card{»} cardinality of the set {•}

ch.fl. characteristic functional

cov{•, •} the covariance with respect to the appropriate probability 

measure

£{•} expectation with respect to the appropriate probability 

measure

i.i.d. independent and identically distributed

P (the probability measure of) a point process or other 

specified process

Pr probability measure on the appropriate measure space

p.g.fl. probability generating functional

n.s. product of real or complex numbers z^

R the real line

Ä+ [0, »)

UX) a specified ring of subsets of a set X

O(X) a specified cr-field of subsets of a set X

T
a(X) the restricted product cr-field on , where

T c T r c R 9 i.e. , the smallest cr-field containing sets

of the form •) € X^ : for

n (! , t. , ... , t £ T and C. ( a(X) . Unlesst i n  i



( x i )

o th e rw ise  s p e c i f i e d  T '  -  T , and th e n  t h i s  co rresp o n d s to

a (C)gen .

th e  u s u a l  p ro d u c t a - f i e l d

th e  m inim al a - f i e l d  g e n e ra te d  by s e t s  in  th e  c la s s  C

a ( * i )  x 0 [X2) th e  p ro d u c t a - f i e l d  o f  a ^ J  and a  [x^] , i . e . ,

a g e n M l XC2 '■ C1 * a (Xl h  °2  i  °  ^ 2 ^  •

su p p . f th e  su p p o r t o f  th e  fu n c tio n  f

V ar{•} th e  v a r ia n c e  w ith  r e s p e c t  to  th e  a p p ro p r ia te  p r o b a b i l i t y  

m easure

/ th e  s e t  o f  m appings T -*■ X . We w i l l  o c c a s io n a l ly  abuse 

t h i s  n o ta t io n  e .g .  i f  card{!F} = n , we may w r i te  ^  and

Z

th e  members o f  ^  may be indexed  o th e r  th a n  by

} Yl •

th e  s e t  o f  a l l  i n t e g e r s  {0 , ± 1 , . . . }

Z+ th e  s e t  o f  n o n -n e g a tiv e  in te g e r s  {0 , 1 , . . . }

Z+ Z+ u {“ }

A + t {x+t : x  6 A} w here A i s  a  s u b se t  o f  i? , t  £ R .

A ° complement o f  th e  s e t  A

I c lo s u re  o f  th e  s e t  A

I  . A . d i s j o i n t  u n ion  o f  s e t s  A^

v > i n d i c a to r  fu n c tio n  o f  th e  s e t  A

M l Lebesgue m easure o f  th e  s e t  A 9 where A € B(i?)

M l a b s o lu te  v a lu e  o f  th e  r e a l  o r  complex number z

a.b s c a l a r  p ro d u c t o f  v e c to r s  a and b

f  ° 9 co m p o sitio n  o f  mappings f  and g
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fit) ~  git) 

fit) = 0[git)) 

f(t) = o[git))

fit)/git) 

fit)/git) 

fit)/git)

tends to 1 

remains bounded/- 

tends to 0

as t tends to some limit 

(which may be infinite)

almost sure convergence 

convergence in probability 

convergence in distribution

weak convergence (but also used as an implication sign) 

convolution

end of proof, or of statement of theorem etc., if no proof 

given

Section x.y is the yth section of Chapter x. Section x.y.z. is the zth 

subsection of Section x.y.

Statements of conjectures, definitions, lemmas, propositions and 

theorems are numbered consecutively (irrespective of type) within each 

section: thus Statement x.y.z. is the zth such statement in Section x.y.

Equations and similar entities are numbered consecutively within 

sections and subsections, i.e., equation (y.z) is the zth equation of Section 

x.y (for any x). Within chapters, we will refer to equation (y.z), but 

between chapters to equation (y.z) of Chapter x (similarly with equations

from subsections).
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CHAPTER 1 

INTRODUCTION

1.1. Historical background

It is by no means an accident that many of the major works on point 
processes do not contain an historical account of the subject - the task of 
compiling such a survey would be formidable indeed. Hence we will attempt 

only a brief outline of the development of the subject; further references 

specific to the topics discussed in this thesis will be cited in the 
appropriate places. In this introduction we will not hesitate to draw on 
D. Vere-Jones* (1973) excellent account of the early history of point 
processes.

Fluctuations in the counts of objects in various situations seem to 
have been recognized as a stochastic problem since the latter half of the 
nineteenth century, although distributions other than the simple Poisson 
do not occur until the early 1920's, where they appear in problems on 

accident proneness (Greenwood and Yule (1920)) and contagion (Polya (1931)) 
Neyman (1939) introduced the important idea of clustering.

Population processes' are intricately part of counting processes, and 
probably originate from the Bienayme-Galton-Watson process. Development of 
the theory (for finite populations) begins with Feller (1950) and Bartlett 
(1954), and is extended by Moyal (1962) and Harris (1963). The study of 

particle showers (Bhabha (1950), Ramakrishnan (1950)) should also be 
mentioned as an early stimulus.

Considerations of distributions of interval lengths can be traced bac) 
as far as life-tables themselves, so that, surprisingly, renewal theory 
seems to have a longer history than counting problems. Attention seems to 

have been paid to the problem of relating the two properties, counts and 
intervals, of renewal processes on the line well before the 1940's (see
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Lotka (1 9 3 9 ) ) .  The f i r s t  t r e a tm e n t  o f  p ro c e s s e s  w ith  c o r r e l a t e d  i n t e r v a l s  

i s  by Wold (1 9 4 9 ) ,  to  whom th e  te rm  " p o in t  p ro c e s s "  i s  due . He a l s o  made 

th e  f i r s t  p ro g re s s  w ith  p ro c e s s e s  w ith  an i n f i n i t e  number o f  p o i n t s .

Queueing th e o ry  has p ro v id ed  g r e a t  im petus to  th e  th e o ry ,  p a r t i c u l a r l y  

s in c e  K h in c h in 's  monograph (1 9 5 5 ) .  Palm (1943) a t te m p te d  (w ith o u t  com plete  

s u c c e ss )  th e  f i r s t  l i m i t  theorem  f o r  p o in t  p ro c e s s e s  (P o is so n  p ro c e s s e s  as  

th e  l i m i t  o f  n superposed  p r o c e s s e s ,  n -*■ 00 ) ,  as  w e l l  as  p ro b in g  th e  

q u e s t io n  o f  Palm m easures and f u n c t i o n s .  An accoun t o f  t h e  th e o ry  o f  

s u p e r p o s i t i o n s  may be r e a d  in  Q in la r  (1 9 7 2 ) ;  Palm fu n c t io n s  and measures 

have been s tu d ie d  by Khinchin (1 9 5 5 ) ,  S liv n y ak  (1 9 6 2 ) ,  R yll-N ardzew sk i (1961) 

and o t h e r s .

During th e  1960’s and 1970’ s t h e  th e o ry  has evo lved  r a p i d l y ,  w ith  

e x p o s i t io n s  on s t a t i o n a r i t y  and g e n e ra l  p r o p e r t i e s  (M atthes  (1 9 6 3 a ) ,  B e u t l e r  

and Leneman ( 1 9 6 6 ) ) ,  s t a t i s t i c a l  a n a l y s i s  (Cox and Lewis (1 9 6 6 ) ) ,  s p e c t r a l  

th e o ry  ( B a r t l e t t  (1 9 6 3 ) ,  Daley (1 9 7 1 ) ,  V ere -Jones  (1 9 7 4 ) ) ,  Palm -Khinchin 

th e o ry  (Neveu (1 9 6 8 ) ,  Papangelou  (1 9 7 4 ) ,  L e a d b e t te r  (1 9 7 2 a ) ,  J a g e r s  (1 9 7 3 ) ) ,  

i n f i n i t e l y  d i v i s i b l e  p o in t  p r o c e s s e s  (K e rs ta n  and M atthes (1 9 6 4 ) ,  Lee 

(1 9 6 7 ) ,  (1 9 6 8 ) ) ,  c l u s t e r  models (Neyman and S c o t t  (1 9 5 8 ) ,  Lewis ( 1 9 6 4 a ,b ) ,  

(1969))  and p r o b a b i l i t y  g e n e r a t in g  f u n c t i o n a l s  (V e re -Jo n es  (1 9 6 8 ) ,  W estco tt  

(1 9 7 2 ) ) .  G e n e r a l i z a t io n s  t o  m u l t i v a r i a t e  (M ilne ( 1 9 7 1 ) ) ,  m u l t id im e n s io n a l  

( F i s h e r  (1972) f o r  a su rv ey )  and more a b s t r a c t  p o in t  p ro c e s s e s  (Mecke 

(1 9 6 7 ) ,  K a llen b erg  (1 9 7 3 ) ,  J a g e r s  (1974) and K rickebe rg  (1 974 ))  have been 

e f f e c t e d .

Of co u rse  in  th e  above l i s t  we have o m it te d  many t o p i c s  and r e f e r e n c e s  

(w hich a r e  no t in te n d e d  to  i n d i c a t e  p r i o r i t y ) ,  and more com plete  coverage  

can be o b ta in e d  from Lewis (1972) and K e rs ta n ,  M atthes and Mecke (1974) and 

r e f e r e n c e s  t h e r e i n .  Daley and Milne (1973) have com piled a b ib l io g r a p h y .

The r e s t  o f  t h i s  c h a p t e r  s e t s  o u t  th e  b a s ic  d e f i n i t i o n s  and p r o p e r t i e s  

o f  p o in t  p ro c e s s e s  and weak convergence in  a more c o h e re n t  manner th a n  t h e i r  

p iecem eal i n t r o d u c t io n  in  th e  t e x t  o f  th e  t h e s i s  a l lo w s .  A f te r  th e  fo rm al
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d e f i n i t i o n  in  S e c t io n  1 . 2 ,  we c a ta lo g u e  in  S e c t io n  1 .3  some known 

p r o p e r t i e s  f o r  easy  r e f e r e n c e  l a t e r .  Many o f  th e s e  have become p a r t  o f  th e  

f o l k l o r e ,  in  which case  r e f e r e n c e  to  t h e i r  sou rce  i s  o m i t te d .  The 

d e f i n i t i o n s  o f  a few s p e c i a l  p r o c e s s e s  needed in  t h i s  t h e s i s  a r e  g iven  in  

S e c t io n  1 .4 ,  w hile  weak convergence i s  summarised in  S e c t io n  1 .5 .

1.2 .  The d e f in i t io n  o f  a point process

Let N deno te  th e  s e t  o f  n o n -n e g a t iv e  i n t e g e r - v a l u e d  measures on th e  

r e a l  l i n e  R which a r e  f i n i t e  on compact s e t s ,  and o(W) th e  a - f i e l d  

g e n e ra te d  by {{W(j4 ) 5 / c}, k € Z+ , bounded A t  6(7?)} . Then we d e f in e  a

p o in t  p ro c e s s  to  be a p r o b a b i l i t y  measure on (W, o(N)) . Throughout t h i s

t h e s i s  we w i l l  r e s e r v e  N ( p o s s i b ly  s u b s c r ip te d )  f o r  members o f  W ; P 

( p o s s i b ly  s u b s c r ip te d )  w i l l  mean a p o in t  p r o c e s s ,  o r  o th e r  ( s p e c i f i e d )  random

p r o c e s s .

Denote by (ft, F, Pr)  an ( a r b i t r a r y )  p r o b a b i l i t y  s p a c e ,  and n (a  

random "N")  a m easurab le  mapping from (ft,  F, Pr) t o  (W, ö(N)) . Then

P = P rp  1 s p e c i f i e s  a p o in t  p r o c e s s ,  b u t  on some o c c a s io n s ,  in  p a r t i c u l a r  

th o se  in  which we wish to  emphasize t h a t  a f ix e d  u n d e r ly in g  p r o b a b i l i t y  

space i s  n e c e s s a ry  f o r  our argum ents  to  be m e a n in g fu l ,  we w i l l  r e f e r  to  n 

as  th e  p o in t  p r o c e s s .

The q u e s t io n  o f  e x i s t e n c e  o f  measures P a r i s e s .  As f o r  o rd in a ry  

s t o c h a s t i c  p r o c e s s e s ,  th e  problem i s  so lv ed  by e x te n d in g  th e  f i n i t e  

d im en s io n a l  d i s t r i b u t i o n s  o f  th e  p r o c e s s .

THEOREM 1.2.1 (Moyal (1 9 6 2 ) ,  H a r r i s  (1 9 6 3 ) ,  p .  53; N aw rotzki (1 9 6 2 ) ) .  

Given a se t o f  functions

{p[ A{ > . . . ,  A Q; k ^  . . . ,  k ä) : e > 1 and in tegra l9 ?:. ( 2+ ,

bounded £ B(R)j 1 5 i £ s} ,

uatiufying the oonuiatency conditions
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(i) P [a  1* • * • » Ag > kq » ’ * » = P .... 't s ^  • •••>*:.)1 S i  S
for every permutation (f L, ..., £g) o/ (1, ..., s) ;

(ii) P {A\ ’ • * • » » ^2 » • • , k ) > 0 an<i 8;
oo

Z P (̂ q * * • • » q>
k = 0 1 81
8

V  q, fc8_1. fe8)

= p(q, .... q, .... ;

( Hi)
OO
y  p[A , k) = 1 ; 
fc1=0

(iv) whenever A ,, ..., 4x 6 are disjointy

r s 2
U A .; k. , t4,=1

and

Z •••» ^8» • • • > ^a)
fc,+...+fc =fc1 s

U A . , •••»  ̂  ̂» fc-i » •. , t 1 S 1
4 , = 1 S J = o

unless Z k. - k 3 when it equals 
i=l *

p [a ,̂ •••» Aq9 k±, • ••» kß) ;

(v) piAyf o) t 1 whenever A^ \ 0 ;

then there exists a unique probability measure P on (N, a(W)) for which 

P{,V : iVj/lJ = kv.... = fcg} = p ^ ,  .... Ag \ .... □

It will be required to characterise P more finely (Chapter 6).

Since the class of bounded half-open intervals with rational endpoints 

generates 6(P) , we may restrict the yl̂ ’s to this class. Further, suppose

we have functions . . ., A ; k̂  , . k) defined whenever the A's

are disjoint; then the functions may be regarded as defining a joint

distribution for random variables B,[A ), ...» E,[A ) defined on a spaces
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(ft, F, Pr) . Suppose (iv)  i s  m odified  as fo l lo w s:

(iv) ’ Let A , . . . ,  A be any mutually d is jo in t se ts  in  B(Ä) ,1 8
n .

and suppose A. = Y A . 7 ,  A .7 6 8 (R) y fo r some
k=l

n̂  = 1 ,  2, . . .  ; then the jo in t d istribu tion  o f

) ,  the same as the jo in t d istribu tion  o f

n n

Z £^i fc)* •••» Z *
fc=l k=1 ö*

Then

THEOREM 1 o2 c2 (H arris (1 9 6 3 ) ,  p. 54). /I s e t  o /  funotions 

{P0 (^2 > . . . ,  d0 ; k L, . . . ,  fe0) : s > 1 and in tegral ,  k̂  € 2+ ,

bounded d is jo in t Â  € B(/?), 1 5 £ < s}

sa tisfy in g  (i) and ( i i )  o f  Theorem 1 . 2 .1  whenever the are d is jo in ty

and (H i ) , (iv) ' and (v) can be uniquely extended to funotions

p i 4 , o. .  , 4 ; k , . . . »  fc ) sa tisfy in g  ( i ) - ( v)  of  Theorem 1 .2 .1 ,  and

agreeing with the pQ(*; • )  whenever the Â  are d is jo in t . □

In p a r t ic u la r ,  i f  our fu n ctio n s  are generated by a po in t p r o c e ss ,

then the requirements o f  Theorem 1 . 2 . 2  are met. A lso ,  we only need to  know 

Pq for  /K 's  being  bounded h a lf -o p en  in te r v a l s  with r a t io n a l  end p oin ts .

Although our p ro cesses  w i l l  only be on the r e a l  l i n e ,  there i s  no

Yld i f f i c u l t y  in extend ing the preceding concepts to  R ( e . g .  F isher  (1972))

and P o lish  spaces (Jagers ( 1974) ) .

We may a s s o c ia t e  with each N ( W the d is ta n ce  t  .(N) o f  the j th
0

point o f  N from the o r ig in  (commonly re fe rred  to  as the j t h  epoch)

defined  as fo llo w s:
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t. = t.(N) J 0

Note that t .
0

{/!/ : t. < x] 

{// : t. < x]

= inf{y > 0 : 2V(0, j/] > j} , j = 1, 2, ..

= sup{zy 5 0 : Nly 9 0] > -j} , j = 0, -1, . 
: SJ -*■ R is measurable, since

= {A/ : AJ(0, #] > j) ,€ Cf( W) , j = 1, 2, ...

= {// : //[a:, 0] < -j} € a(N), j = 0, -1, -2

j

9

• • • •

(2.1)

(2.2)

For any IV ( W the set {t̂ .(A0} is a finite or countably infinite

subset of R , multiple points included but with no finite limit points, and 
satisfying the inequalities

... < < tQ < 0 < t± 5. t ... . (2.3)

(This is not the conventional indexing (see Daley and Vere-Jones (1972), 
p. 308), but is employed to simplify the notation in Chapters 2 and 3.) If

2we denote the class of all such subsets of R by R, , then we can define

r\ : Rl N by

p(A)(t) = card{j : t . 6 t n d} , A € B(R) , t € R , ; (2.4)J t

if also we introduce the a-algebra o [r£] generated by the sets

(t : p(j4)(t) 5 k} , A € B(/?),, k € Z+ , i.e.,such that the mappings r\ 
are measurable, then we may define a point process as a probability measure

on R,, a[R.) . It is intuitively clear that we may specify a point

process also via the intervals {iK} = {t_.-t ̂ and and t̂  ,

but, throughout this thesis, unless explicitly stated otherwise, we will 

consider our event epochs as generated in (2.1). We do this for two reasons: 
not only is (W, o(N)j more amenable to generalization, but at times it will 
be the convenient to introduce the space W , the set of all non-negative 
integer-valued measures on R which may also be infinite on compact sets.

Finally we mention that Matthes and others have extended the scheme to 
marked point processes, where each point t. is associated with a mark k.



from a fixed measure space [£, G(iO] . As this idea will only be employed 

circumspectly in this thesis, we will not expand on it. An account may be 

found in Kerstan, Matthes and Mecke (1974).

7

lo3„ Basic properties of point processes

Define the translation operator T : N -*■ N 9 y € R by
y

T N(») = N(»+y) . A point process P is (strictly) stationary if

P[T C) = P(C) , all C (  O(N) .
y

(3.1)

If P is stationary, P{N(R) = 0 or °°} = 1 , and P has no atoms in 

the sense that P{#({x)) > o} = 0 for all singleton point sets (x) (Ryll- 

Nardzewski (1961)).

A stationary point process P is e rg o d io if any member G of the

invariant a-field T. G 6 cr(W) : 1' = Gf satisfies P(G) = 0 or 1 .

Rosenblatt (1962) demonstrates that ergodicity may be charactized by

lim t
T-KJO

-1 r t
P[C n T D)dy = PiC)P(D) , all C9 D £ a(N) . (3.2)

P is w eakly m ix in g1 if

lim T
X-K»

-1 |p(c n T D] -P(C)P(D) \ dy  = 0 , all € o(H) , (3.3)

and mixing if

lira P(C n T^D) = P(C)P(D) , all o(N) (3.4)

Note that mixing =*■ weak mixing =*• ergodicity =* stationarity.

We will also use the following stronger forms of asymptotic independence.

Let

a(W(fl)) E agen {{N(A) = k } , A € 8(P) n 5, k € Z+} , B € 8(P) . (3.5)

A stationary point process P is s tro n g  m ixing with rate a(t) if

1 The noun is ’weak mixing’; the adjective is ’weak mixing' or 'weakly 
mixing'; similarly with other types of mixing.
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IPiC n D)-PiC)P(D)I 5 a(T ) (3 .6 )

f o r  a l l  C ( ö(W(-°°, t ] )  , D £ o (N ( t+ t , °°)) , t  ( R , T > 0 . Here

OL : [ 0 ,  °°) -► [ 0 ,  1] i s  a monotone d e c re a s in g  fu n c t io n  s a t i s f y i n g

lim  a (x )  = 0 . Let C and D be as in  ( 3 . 6 ) .  Then P i s  $-mix'ing i f
J-X»

IP(C n D)-PiC)PiD)  I 5 (p('u)p(c) (3 .7 )

and compl e t e l y  miarlng (w ith  r a t e  y ( t )} i f

IPiC n D)-P(C)PiD)I 5 y ( t )PiC)PiD)  ( 3 .8 )

where and y have th e  same p r o p e r t i e s  as a  in  ( 3 . 6 ) .  C le a r ly  

com plete mixing =* c|)-mixing =* s t r o n g  mixing ^  m ix ing .

For a r e a l  va lued  fu n c t io n  g : N + R , we w i l l  d e f in e  th e  e x p e c ta t io n  

E o f  g by

E{g}  = E J g }  = [ g(N)dPiN)  . ( 3 .9 )
JM

Hence we can d e f in e  th e  f i r s t  moment measure M o f  a p o in t  p ro c e s s  by 

Mi •) = E{Ni9) }  , where e x i s t e n c e  o f  M i s  tak en  t o  mean Mi. A) < 00 f o r  a l l  

bounded B o re l  s e t s  A . C le a r ly  M i s  indeed  a m easure . I f  P i s  

s t a t i o n a r y ,  th e n  e a s i l y  M(A) = m\A\ , where m = ENi0 ,  1] i s  c a l l e d  th e  

i n t e n s i t y  o f  th e  p o in t  p r o c e s s .  H igher moments a re  d e f in e d  as

Mr [A1 x . . .  x A j  = . . .  , Ai  6 8(f?) , 1 < i  < r  , (3 .1 0 )

l7and a re  e a s i l y  shown t o  be measures in  R . The cumulant measure Cy 

e x i s t s  i f  My d o es ,  and i s  d e f in e d  by

C2 {a ^ A 2) = M2 { A ^ A ^  -  . ( 3 .1 1 )

Cy may be a s ig n e d  m easure . I f  P i s  s t a t i o n a r y ,  and M i * )  e x i s t s ,  th en  

AM.* ) i s  s t a t i o n a r y  in  th e  sen se  t h a t  M^{{a ^ x ] x . . .  x (/l^tcc)} i s  

independen t o f  x £ R .

A p o in t  p ro c e s s  i s  d e f in e d  t o  be weakly s ta t io n a r y  i f  M^ and My

e x i s t  and a re  s t a t i o n a r y  in  th e  above sense  (Daley (1 9 7 1 ) ) .  Im p o rtan t  f o r  

us i s  th e  f a c t  t h a t  th e  cum ulant measure Cy o f  a weakly s t a t i o n a r y  p o in t



p r o c e ss  may be decomposed in t o  Lebesgue m easure and th e  reduced covariance  

measure C (• )  in  th e  fo l lo w in g  way (u s in g  d i f f e r e n t i a l  n o ta t io n )

C2 ( ( t + d t )  x (t+u+du)) = C (du)dt , ( 3 .1 2 )

and in  p a r t ic u la r  (D a ley  and V ere-Jon es (1 9 7 2 ) ,  p . 323)

•+y
Var(/V(0, y\]) = C ( ( 0 ,  y ]  x ( o ,  y"]) = ( y - \ u \ ) C( du)  . ( 3 . 1 3 )

-y

The su p e rp o s itio n  o f  n in dependent p o in t  p r o c e ss e s  P ^ , . . . ,  P i s

i n t u i t i v e l y  th e  o v e r la y in g  o f  a l l  th e  p o in ts  on one l i n e ,  but may be

Yls p e c i f i e d  r ig o r o u s ly  v ia  th e  mapping r| : N -*■ N d e f in e d  by

n ( K J )  = • ( 3 . 1 4 )
i - 1

Then P = X  
^ = 1

-1 i s  th e  p r o c e ss  o f  s u p e r p o s it io n s .  Note th a t  r\ may

be regard ed  as th e  sum o f  n c o o r d in a te  mappings each  d e f in e d  on Un .

I t  w i l l  be co n v en ien t on o c c a s io n s  to  conform  to  th e  u su a l p r a c t ic e  o f  

su p p o sin g  th e  summands to  be random m easures rî  : (^ , F, Pr) (W, d(W))

on a f ix e d  sp ace  Q, , and d e f in in g  t h e ir  s u p e r p o s it io n  r\ by 

n
r)(u>) = V  r).(oj) . T h is scheme a llo w s  fo r  dependent r\. .

i  = 1  ̂ ^

We r e c a l l  th a t  f o r  fu n c t io n s  f  : R -+ R o f  compact su p p o r t ,

r + °°
f ( t ) d H t )  = Z^f [ t ^] ( 3 . 1 5 )

i s  w e l l  d e f in e d . By F u b in i's  theorem

E< I f ( t ) d f l ( t ) j f ( t ) d M( t ) ( 3 . 1 6 )

r+°°
i f I f i t )  \dM(t)  < 00 .

Supposing lo g  £ ( £ )  to  have compact su p p o r t , we may d e f in e  th e  

p r o b a b il i ty  g en era tin g  fu n c t io n a l  ( p . g . f l . )  o f  a p o in t  p r o c e ss  P by
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G[£] = Ei exp log £(t)d/V(t) f . (3.17)

We will denote by V the class of measurable functions £ : R [0, 1] 

such that 1 - £ has compact support. G exists if £ is in this class, 

or if P{N(R) < °°} = 1 . For an extensive discussion of the p.g.fl. see 

Westcott (1972). Note that if P^, ..., P^ are n independent point

processes with p.g.fls. Ĝ , ...» G » then the superposition P has

n
p.g.fl. C[£] = T T  <?.[£] .

i-1

A point process P is said to be a.8. orderly (or without multiple 

points) if

P{/V({a:}) = 0 or 1 (all #)} = 1 , (3.18)

and a stationary process P is orderly (or analytically orderly) if

P « 0 ,  hi > 2} = o(h) (h f 0) . (3.19)

If P is stationary with finite intensity m , then analytically orderly 

«*■* a.s. orderly («■ is Dobrushin’s Lemma). We shall also require Khinchin's 

existence theorem, namely that for a stationary point process P the rate

X = lim P{N(0, /z] > 0}//z (3.20)
h\0

exists, although it may be infinite. An interesting relation exists between 

m and A : for a stationary point process, the ’batch-size’ distribution

for the number of events in a multiple occurrence exists, and has mean 

m/\ . Hence X < m , and a necessary and sufficient condition for m - A 

is that the process be orderly.

An important recent discovery is the Renyi-Mönch-Kallenberg Theorem: 

if P is a.s. orderly, then it is determined by knowing

(p(I) = P{N(I) = 0} (3.21)

for all I in the semi-ring generated by half-open intervals. Kurtz (1974) 

has characterized the functions (J> in terms of a property he calls complete 

monotonicity.
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Further properties may be found in the references cited in Section 1.1.

1.4. Some examples of point processes

The Poisson process p with parameter X(*) (a non-atomic Borel 

measure) is defined by

(i) For A £ B(P) such that X(/4) < 00 , f|(4) has a Poisson

distribution with mean X(j4) . Otherwise p(j4) = 00 with 

probability one.

(ii) p is completely random., i.e., P P (-4 ) are mutually

independent for all finite collections of disjoint sets

^ 1 »  • • • » ^ B(-S) •

The Poisson process has been characterized in many ways: Prekopa

(1957a,b) showed that a point process is Poisson if and only if it is 

atomless, completely random and has no multiple points. On the other hand, 

if

Pr{p(-H = 0} = e and Pr{r\(I) > 2} = o(X(I)) , X(p) | 0 , (4.1)

for some non-atomic X(*) and all I consisting of a finite union of 

intervals, then p is Poisson (Renyi (1967)). If \(A) = X|yl| , some 

X < 00 , we recover the stationary Poisson process.

If the parameter measure of a Poisson process p is taken to be the 

realization of a random measure A(#) , we obtain the doubly stochastic 

Poisson process. Kingman (1964) characterized doubly stochastic Poisson 

processes as stationary Poisson processes with unit parameter subjected to a 

random change of time independent of the original process, an important and 

too often neglected result.

The best example of a point process which is generated by its interval 

properties is the renewal process, which starts at time 0 and has i.i.d. 

inter-event times. The stationary renewal process has the time t^ to the



12

first event delayed according to the distribution

(4.2)

where F is the distribution function of inter-event times, and X its

(finite) mean.

Alternating renewal processes have independent inter-event times, but 

their distribution switches successively from one lifetime distribution 

function F to another F2 . The concept may be generalised. Processes

with consecutive pairs of points equidistant we will call deterministic, 

and, as a general rule, are very useful for providing counter-examples.

A point process P is infinitely divisible if for every n = 1, 2, ... 

it may be represented as the superposition of n i.i.d. point processes 

P . (£ = 1, ..., n) . Other definitions are possible. Since such
Yl } 'l'

processes are the subject of a book by Kerstan, Matthes and Mecke (1974), 

they will not be discussed in this work, except when they occur incidentally 

as Poisson cluster processes (see the cited reference).

Point processes may be generated in many other ways: e.g. as the

transition times of Markov processes (Rudemo (1973)), or by level crossings 

(Leadbetter (1972b)). We shall not attempt to expand on these, as this thesis 

is not concerned with specific point processes, except for illustrative 

purposes.

1.5. A summary of some weak convergence concepts

if probability measures P, P^ on a separable metric space S with 

metric d (referred to as (£, d)) and Borel sets B(S) satisfy

fdP -*■ fdP (n °°) 
h  n >S

(5.1)

for every bounded, continuous real function / on S , then we say P
n
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converges weakly to P and write P^ =* P . The theory of weak convergence

on metric spaces is outlined in Billingsley (1968), and for most theorems we 
need we will refer to this text. However, we mention the continuous mapping 
theorem (Theorem 5.1 of Billingsley (1968)), which we often use. Let 
h : (S, d) ■+ (5', dr) be a measurable mapping with a set of discontinuities

CONTINUOUS MAPPING THEOREM. =» and P{D, = o) , then

P A"1 ■» PA"1 . □n

Various metrics are associated with weak convergence: since we shall
use almost all of them, we give a brief summary (adapted from Whitt (1974b)).

Let Rl/ = Rl/(iS, d) denote the set of all random variables 
(ft, F, Pr) -► (5, d) defined on a fixed space ft , and P(5, d) the space 
of all probability measures on (S', B(<S')) .

Firstly, for X^9 € Rl/ , define

a(Ar1, X2) = inf{e > 0 : Pr[d[x^9 X2) > e] < e} . (5.2)

a corresponds to convergence in probability.
Now, for any e > 0 , define

A = {y : di.Xy y) < e for some x £ A) . (5.3)
The Prohorov metric p which induces the topology of weak convergence on P 

is given by

p (P l> p 2) = m a x h (pl9 p 2 )> Y  (p 2 » p x )}

y(Pl# P2) = inf/e > 0 : P̂ iF) 5 e+?2 (p0) , F closed| . (5.4)

Note immediately that p may be regarded as acting on Rl/ , by setting

p [* .,, x j  = p Pi-x"1 , P i -Xj 1 , but is now only a pseudometric. Clearly 

p (y x, X2) < a [X±, X2) . Dudley (1968) proved that P ^  = Y (p 2 » Pj) >

provided P̂ (S) = P̂ iS) and there are no restrictions on closed F ’s ,
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conditions satisfied here. The Levy metric X on P(i?) is the Prohorov 
metric restricted to closed sets of the form (-00, x] . Clearly X < p , 
but it is well known that X characterises weak convergence (e.g. Loeve
(1960), p. 215).

The supremum metric G is defined by

0 ^ ,  P2) = sup{|P1U)-P2(il)| , € 8(5)} . (5.5)

G generates a stronger topology on P than p . We shall also refer to 
the restriction of ö on P(i?) to sets of the form (-00, x] as the 
supremum metric V . Now X < V , but V also metrizes weak convergence to 

those P in P(Z?) with continuous distribution functions.
Dudley (1966) demonstrates that the dual bounded Lipschitz metric 3 

also induces the weak convergence topology. A function / : (S, d) -*■ R 
is Lipschitz if

\\f\\± = sup {\f(x)-f(y)\/d(x9 y)} < 00 . 
xty

For any such f we may associate the norm

l l / l l  =  1 1 / 1 1  x  +  l l / I L  >
where \\f\\ - sup{|/(x)| , x € S} . Then 3 is defined by

3[P±, P2) = suP{ j fdP1 - I fdP2 , Il/H < l| .

(5.6)

(5.7)

(5.8)

Also, according to Dudley (1968), 3 - 2p , so that we may summarize the
inter-relationship between the metrics (regarded as pseudo-metrics on PU ) 
by

a 3/2

P
a X

v
Closely related to weak convergence is vague convergence, a concept of 

great importance to point processes: a sequence {N } of measures N € W
Yl Yl

converges vaguely to N € N if
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fdUn ■> ] fdN (n + oo) (5.9)

for every / € , the set of continuous functions f i R -*■ R with compact

support. This convergence generates the vague topology on M , a basis for 

which is given by

N € M fd*i (5.10)

n = 1, 2, ... , f. € , W € W , e > 0 . The vague topology isJ A i.

metrizable (by the Prohorov metric) and renders W separable. Weak 
convergence of probability measures on (W, 8(N)) may then be studied 
(Jagers (1974)). The vague topology is a natural topology for N , since, 
if 8(W) denotes the Borel a-field generated by the open sets of the 
vague topology, 8(W) = a(W) by Proposition 1.1 of Jagers (1974).

Weak convergence may also be studied on the space C[0, 1] of 
continuous functions on [0,1] , where C[0, 1] has the uniform topology 

(U) induced by the metric p (no confusion with the Prohorov metric p 
should arise)

p(ar, y) = sup |x(£)-z/(t)|, x, y 6 C . (5.11)
0<t<l

More appropriate to the study of point processes is the space Dl0, 1] 
of functions on [0, 1] which are right-continuous and have left-hand 
limits. D will be endowed with the «/^-topology induced by the Skorokhod

metric (using I = I(t) = t and yoX(t) - y[X(t)) )
d(xt y) - inf {max(p(A, -O , P(x, yoA))} (5.12.

A 6 A
where A consists of all continuous strictly increasing maps of [0, 1] 

onto itself. We need note only that d(x, y) 5 p(x, y) , x, y 6 D , but 

d[xyLi x) + 0 =* p(xn » a?) -► 0 (« + °°) if x is continuous.

Weak convergence of probability measures on C and D is characterize« 
by convergence of the finite-dimensional distributions and tightness 
(Billingsley (1968), Theorems 8.1 and 15.1). Necessary and sufficient 

conditions for tightness of a sequence °f probability measures on C
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may be established via the Arzela-Ascoli theorem in terms of the modulus of 
continuity of x € C ,

W (6) = sup |x(ö)-;c(t) I . (5.13)
X |ö-t|<6

The following elementary inequality exists between w and p 
(Billingsley (1968), p. 220),

|w (6)-w (6)| 5 2p(x, y) , x, y € £>[0, 1] . (5.14)x  y

Weak convergence on CL0, 1] or Z?[0, 1] will be referred to as 

functional convergence. Jagers ((1974), Proposition 3.3) relates functional 
and weak convergence of a sequence of point processes converging to a

point process P . In this case tightness is unnecessary (Straf (1972), Whitt 
(1975)), provided P[0, 1] has the «/^-topology if P is orderly, or the

Af^-topology (see Skorokhod (1956)) if P is non-orderly. Hence p.g.fls. 

may be used to characterize weak convergence of point processes (Westcott 
(1972)).
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CHAPTER 2

LIMIT LAWS FOR THE G/Gf* QUEUE

2 J 0 Introduction

The G/G/(X> queue may be regarded as a point process (the process of 

arrival times) subjected to independent random displacements. An important 

process associated with the G/G/°° queue is the number of servers (})(£) 

busy at any time t . Central limit theorems for the accumulated traffic

ft
time 4>(ö)<iö have been obtained in the case of the M/G/°° queue with

J 0

bulk arrivals by Rao (1966), under the assumption of finite third service 

time moment, and the GI/G/°° queue with bulk arrivals by Narasimham (1968), 

for finite second moment. Iglehart and Kennedy (1970) generalised the model 

to the case in which the service times may be mutually dependent, and, using 

functional weak convergence techniques, demonstrated a functional central

rt
limit theorem for <Kö)<i8 » which, specializing to i.i.d. service times,

J0

required finite (2+6)-th moment for the service time distribution. By 

confining ourselves to the G/G/°° queue in which the arrival time point 

process is stationary, we obtain in Section 2.5 a central limit theorem for

ft
$(8)d8 when the service times have finite second moment.Jo

Brown and Ross (1969) studied almost sure convergence of the M/G/°° 

queue with bulk arrivals, and in particular examined the strong law of large 

numbers for this case. In Section 2.3 we look at stationarity, ergodicity am 

mixing of the 4>(0 ) process, and in Section 2.4 derive conditions under whici 

it obeys the strong law of large numbers. We defer investigation of the law 

of the iterated logarithm to Chapter 3, where it will be discussed in



conjunction with cluster processes. Finally, in Sections 2.6 and 2.7, we 

enquire into rates of convergence (both ordinary and functional) of the 

accumulated traffic time to normality.
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In each of the above limit theorems our assumptions will be too general 

to allow the use of specialized techniques, predominant in weak and a.s. 

convergence applications, such as (with particular reference to the G/G/°° 
queue) renewal theory, the Skorkhod representation theorem (in Section 2.7), 

or the probability generating functional (Vere-Jones (1968), Westcott (1970), 

Section 3.6). Indeed, in accordance with the philosophy outlined in the 

Preface to this thesis, we will always ask, in a way to be defined more 

strictly later, that the limit law we desire of the service expended

(*
(j>(s)ds be obeyed by the component processes - for other samples of this

J 0

attitude, see Iglehart and Kennedy (1970) and Loulou (1973). In particular, 

we will retain the assumption of dependence between service times. This 

particular chapter was precipitated by a paper of Kaplan (1974), in which 

the various limit theorems (except rates of convergence) were obtained for 

the GI/G/<*> queue by methods strongly depending on the independence 

assumptions of that system.

Many of the theorems of this chapter have been stated as assuming 

stationarity, a condition which seems necessary in Sections 2.3 and 2.4, 

but may (see Problem 6.3.4) be removed in later sections. In some of the 

theorems of this chapter, two almost identical results exist, and here we 

have indicated the differences of the second from the first in brackets in 

the statement of the theorem.

Infinite server queues have been widely applied. The pure birth-and- 

death process is an queue (Feller (1968), p. 460). Amongst early

investigations were those by C. Palm, A.K. Erlang and T.C. Fry in telephone 

trunking problems (see Feller (ibid.) for references). Benes (1957) 

obtained the distribution of traffic time average in the M/M/°° case.
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T. Lewis (1961) and Nelsen and Williams ((1968), (1970)) consider regular 

events under arbitrary i.i.d. translations, i.e. , the D/G/°° queue. Smith 
(1958) has used the generating function of 0(e) in the £17(7/°° queue to 
illustrate infinite products occurring in renewal theory. Thedeen (1969) 

discusses the queue as a model for traffic on a long road with free 
overtaking, for applications to textile research, see Rao (1966) and 

references there. The queue arises in engineering applications as the 

"jitter" process (Beutler and Leneman (1966)). Other works on the G/G/00 

queue will be referred to in Section 6.2.

2o2. Notation and preliminaries

It will be convenient to regard the arrival process as a probability 
measure on [hi 9 o(M)) , although we will also refer to it as a random
non-negative integer-valued measure n : (ft, F, Pr) -* [hi, a (hi)) , so that

P1 = Prr\ 1 . As always, we may define measurable mappings t. : hJ -*■ R 1 3

giving the arrival times t .(AO for any realisation of the arrival process
3

N .
The process of service times may be viewed as a probability measure P,

on v , where Z is the set of integers; alternatively, (in

Section 2.7 and Chapter 4), we will specify it as a random vector {f.} of
11

service times from a fixed space (ft, F, Pr) to r z
;> b (*+)zl , so that

p2 = .

finally, we form the probability triple Z ZhJxP+9 o(W)xß(P+) ', P-1xP2

i.e.,we regard the arrival process and service process as independent. We
r i Zwill denote vectors \xj\ € P+ as X if no ambiguity will arise.

Let Z+ denote Z+ u {°°} . Then will mean the set of
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_ z?
n o n -n e g a t iv e  i n t e g e r  o r  i n f i n i t e  v a lu ed  f u n c t io n s  on R . Let o (Z +)

denote  th e  p ro d u c t  o - f i e l d  on Z^ , where ö (Z +) c o n s i s t s  o f  a l l  s u b s e ts

o f  Z .
+

We can th en  d e f in e  th e  ’number o f  busy s e r v e r s ’ p ro c e s s  v ia  a mapping

<p2(n , x )  = (tan, x )

( i i )  (j) : x RZ -+ ^

( 2 . 1 )

I t  i s  c l e a r  t h a t  f o r  any j o i n t  r e a l i z a t i o n  (IV, X) o f  th e  a r r i v a l  and 

s e r v e r  p r o c e s s e s ,  <J> w i l l  r e c o rd  1 i f  an a r r i v a l  occurs  up to  and 

in c lu d in g  t  and i s  s t i l l  b e in g  se rv e d  a f t e r  t  , 0 o th e rw is e  and th e n  

w i l l  add th e s e  num bers, t h e r e f o r e  c o r re sp o n d in g  to  th e  number o f  busy s e r v e r s  

a t  t  , f o r  each t  € R . To prove m e a s u r a b i l i ty  o f  a mapping to  a p ro d u c t  

s p a c e ,  we need on ly  prove t h a t  each  c o o rd in a te  mapping i s  m e asu ra b le .  Hence 

i t  i s  im m ediate ly  c l e a r  t h a t

THEOREM 2 . 2 * 1 .  <J> i s  measurable w ith  r e sp e c t to  o(N) * ß(R+) ‘̂ . O

Throughout t h i s  c h a p te r  we assume t h a t  th e  number o f  busy s e r v e r s  i s

f i n i t e ,  i . e .  , t h a t  4» € Z^ , -  a . s . We th e n  d e f in e  a p r o b a b i l i t y

{ f ,  o (Z +)Ä) by

P

such t h a t = 1 . From now on we w i l l  r e f e r  t o  P as i f  i t  werens

a c t in g  on We may s i m i l a r l y  d e f in e  a s t o c h a s t i c  p ro cess
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m : (ft, F, Pr) ■> fz*s a(Z such that Prm 1 = P . We will refer tov ' ns
P . , <j) , or m as the ’’number of busy servers” process. ns

We will frequently employ the following decompositions.

rt N( 0,T] 0 +
<\>(a)ds = Y T~ts) + S Qnin [x .+t., x)]Jo i=l  ̂  ̂ i=_oo  ̂ ^

= $x (t ) + $2(x) , (2.2)

say. Here we have split the integral into two parts, corresponding to those 

arriving up to time zero and those arriving later. Also, for some sequence 

°(t ) 5 T , define

$'(t ) =
JV(0,t ]

$ (t ) Y x
i-1

0,x]
e  H +V t)i=l

£ (2.3)

»(0,T-p(T)]I [x.+t.-T] +
i=l 1 1

tf(0 x]
£  (#.+£.-x)

£=# (o ,t-c (t)] +1
W(0,t ]s E fc-c'(T)} + iV ( 0 *I ]

t 'ii-1 u i-N (o ,t-c (x)] +1
= $^(x)  + $£(x) ,

say, where we have used a device due to Iglehart and Kennedy (1970). We

rx

(2.4)

will decompose m(s)d8 similarly as

m(s)ds = A^Cx) + A/2(t ) ,

M'(x) < Af̂ (x) + Af£(x) .

(2.5)

(2.6)

Note that (2.2) and (2.4) (similarly with (2.5) and (2.6)) give

N(0,T]rX nk U,1
${8)da - Y 

' 0 £=1
5 $q (t ) + $^(x) + $2(t ) . (2.7)

Thus we have bounded the difference between the quantity we are
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i n t e r e s t e d  i n ,  and a n o th e r  q u a n t i t y  in  which th e  s t r u c t u r e  o f  th e  component 

p ro c e s s e s  i s  more e v id e n t .

2.3 Stationarity, ergodicity and mixing

To examine s t a t i o n a r i t y  o f  P , we must in t ro d u c e  c e r t a i n  t r a n s l a t i o n
H8

o p e r a to r s  T
u

U  € P) * ( H Z )  ■and 5 (wu € P) as f o l lo w s .

h  : S I  S I where 2 y v U ) = P(A+t) , a l l  A € B(P) , ( 3 .1 )

s k ■■ PZ + PZ where = * ( 3 .2 )

Su ■■ z^ + z^+ + where = {;c(t+u)} • ( 3 .3 )

The p ro c e s s e s  P ^ ,  P^ and Pwo a r e  c a l l e d  s t a t i o n a r y  i f
Y18

f -1  1T. B = P ( B )  , P 0
/• \

= P J B)  , P
f \

l t J 1 * 2 J 2 * na l “
P (Ö) for B within ns

th e  a p p r o p r ia t e  o - a l g e b r a ,  where Tf^B , Bf^B and S B̂ a re  th e
V K U

co rre sp o n d in g  in v e r s e  image s e t s .  Mixing and r e l a t e d  concep ts  can be 

d e f in e d  in  a way analogous to  ( 3 .4 )  o f  C hap te r  1 f o r  any s t a t i o n a r y  p ro c e s s  

whose t r a n s l a t i o n  o p e r a t o r  i s  indexed  by Z o r  R . Before p ro v in g  our 

nex t theo rem , we n o te  t h a t ,  as i s  w ell-known from e rg o d ic  t h e o r y ,  i t  i s  

s u f f i c i e n t  t o  prove e r g o d i c i t y  f o r  a c l a s s  o f  s e t s  C ( i . e .  f o r  C, D £ C)

such t h a t j ^ U  £ C, n 6 Z+j • i s  an algebra A which generates the

O - f i e ld  we r e q u i r e .

THEOREM 2c3olo (a) I f  the a r r iv a l  p rocess  P and the s e rv ic e  time 

process  P are s ta tio n a ry  t then so i s  the "number o f  s e r v e r s " process

Pns

(b) I f  P i s  erg o d ic  and P 2 i s  mixing3 then  P ^  i s  e rg o d ic .

(c) I f  P , P̂  are m ixing , then so i s  P ^  .
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Proof. We define T' : N x /  N x /  1/ ( i? , byiv + + ° J

T ' ( N , X) = ( y ,  y 0ijy )  . y

= s«[^,o)d > y K 0 >

Ov, x) ,

vi?

zy = 0 .

For any sets C> D £ o(Z+)n , we see that

Pna^ n 5u°) = Pl x p2{(*‘1<7) n ^ V ^ ) }  *

where E {(tf, x) : 4>(̂ » X) 6 C] i G(W) * B(P+)Z by Theorem 2.2.1.

Hence stationarity, ergodicity and mixing of P will follow fromVIS

stationarity, ergodicity and mixing of P^ x P^ with respect to the

transformation T 1 . We prove only (b): proofs for fa,) and (a) are 

similar.

Let C  = C x £ , x P2 € a(W) x B(P+)Z .

Then

(3.4)

-1 P xP [ C f n T ' D ^ d u - P x P A O P x P A D ' )  1 2v w ' 1 2  1 2

-1 rT 00
I ^(C, n 2- D . W O ,  ul = n})[P2(C2 n SO,,)-P2(S2)P20 2)]<Z«

0 n - 0

+P2(C,2)P2(D2h ' 1 I n

< 2x-1
rT

Pn{JK0, w] 5 + sup |P2(C2 n 5̂ 2?2) - P ? [C2^P2 ̂  I

-1

n>m

rT 

0 pi(ci n . (3.5)

But for any £ > 0 , there exists tf?(e) such that for n > m(e) , 

sup I P2 [ c2n SnZ>2)-P2(<£?2)P2Ĉ a) I s e ,
n>m(e)

since P is mixing. Thus lim sup (3.5) 5 £ , i.e., lim (3.5) = 0 . By
X-*O0 'l~KX>
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th e  remark im m edia te ly  p re c e d in g  Theorem 2 . 3 . 1 ,  t h i s  p roves  (b)  and com pletes  

ou r p ro o f  o f  the  theorem . □

I t  i s  c l e a r  from th e  above p ro o f  t h a t  i f  we had d e f in e d

T"  : N x RZ + N x RZ byu + +

r'(N, x) = ( y ,  s [y]x) , (3 .6 )

e r g o d i c i t y  o f  P^ x P^ would have fo llow ed  from e r g o d i c i t y  o f  P^ and weak

mixing (E q u a t io n  ( 3 . 3 ) ,  C hap te r  1) o f  . S p e c t r a l  th e o ry  ( s e e  e . g .

Mackey (1 9 7 4 ) ,  p . 213) s u g g e s ts  t h a t  t h i s  c o n d i t io n  i s  n e c e s s a ry  as w e l l  as 

s u f f i c i e n t  f o r  T” , b u t  we have been unab le  t o  weaken Theorem 2 .3 .1  (b)  t o

in c lu d e  t h i s  case  f o r  T* (b u t  see  Problem 6 . 3 . 1 ) .  Note t h a t  th e  argument
P

above a c t u a l l y  becomes s l i g h t l y  more d i f f i c u l t  when m odif ied  t o  th e  

independen t s e r v i c e  t im es  s i t u a t i o n ,  i f  i t  i s  n o t  r e a l i s e d  t h a t  th en  P i s

m ixing.

2 04o The strong law of large numbers

A theorem  a s s o c i a t e d  w ith  e r g o d i c i t y  i s  th e  s t r o n g  law o f  l a rg e  numbers. 

B efore we can prove i t ,  how ever, we need some new equipm ent.

We w i l l  suppose as in  th e  p re v io u s  s e c t i o n  t h a t  ou r  a r r i v a l  p ro c e ss  P^

i s  s t a t i o n a r y ,  b u t  now w ith  f i n i t e  i n t e n s i t y ,  i . e . ,

m = ilK0 ,  1] < oo . ( 4 .1 )

i f  a l s o  P^ i s  o r d e r ly  ( f o r  P^ n o n - o r d e r ly ,  see  d i s c u s s io n  a f t e r  C o ro l la ry

2 . 4 . 2 ) ,  th e n  i t  i s  known ( e . g .  S livnyak  (1 9 6 2 ) ,  (1966))  t h a t  u n iq u e ly  

a s s o c i a t e d  w ith  P^ i s  a p r o b a b i l i t y  measure P^ (Palm m easure) on

(W, o(M)) ( i n  g e n e r a l ,  n o n - s t a t i o n a r y ) such t h a t  th e  a r r i v a l  t im es  t  

s a t i s f y  . . .  < t  ^ = 0 < f ^  < . . .  P^ -  a . s . ,  and th e  sequence

{il .} = { t .  -fc.} o f  a . s .  p o s i t i v e  random v a r i a b l e s  i s  s t a t i o n a r y ,  i . e . ,  i f  we
V  J '  1 0
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define 0. : N -+■ W (k £ Z) by

9^( •) = (4.2)

then, if C £ o {{n. £ A} 9 A £ B ( R ), j £ z] = o c o(W) ,
0 TT

g,'1?*  J
We will require the expectation

P l (*) ‘ (4.3)

I/(a?) = £°tf(0, a?] < oo (4.4)

for some finite x . According to Kaplan (1955), this guarantees finiteness
for all finite x , and also

sup {U(x+u)-U(x)} 5 2U(u) + 1 , (4.5)
x>0

whence Utx) = O(ar) , (a; ■> °°) . Under this assumption of orderliness,

Daley ((1971), Lemma 9) shows that U(x) ~  A f o r  some constant A' •£: m , 
which is stronger. We will tacitly assume when discussing P^ in the rest

of this chapter that the P^ to which it corresponds is orderly. We point

out, though, that our arguments involving only P^ (not P^ or U(x) )

will still go through without this assumption.
Finally we define various invariant G-fields: let

T 5 £ o(N) x B ( P + )Z : Ty~1C = cj , T± = lc £

Tn = {C £ B(P.)Z : S^C  = C\ and T-0 _

o(W) : T - C'\ , 2/ '
,-1,C £ : 0^ C = C f , where we have

used the definitions at (3.1), (3.2), (3.3) and (4.2).

We may now prove some ergodic theorems for the "busy server" process. 
THEOREM 2 04olo If the arrival process is stationary with m < 00 , and 

the service time process is stationary with 

(a) < 00 j then

-1 r t
<p(s)ds ■+ E x E {<j>(l)|T} , P x p  - a . 8.

where, also,
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F. X 2?2 { $ ( 1 ) | T }  = 0 ,  ,  P± * P? -  a . s .

(b) ^ 2 ^ x l  log  Xl^ +  ̂ < 00 j and ( 4 .4 )  and ( 4 8 5) are s a t i s f i e d ,2 1  ̂ 1 

then

tT

0

-1
* ( « ) *  -  ff2 ^ l l T2} / £ l { ni |Tl }  ' P1 X P 2 -  a . s .

-provided the rdght-hand s id e  i s  P^ x -  a . s .  defined.  

Proof, (a) C learly  the theorem w i l l  be proved i f  we can show

-1 T W( 0 , t ]
4>(e)ds -  £  xi  *  0 > Pi  * P2

i = l
-  a . s . ( 4 .6 )

We use the in e q u a l i ty  ( 2 . 7 ) .  C learly  i f  c( t ) = o( t ) , which we assume,

T 1$ | ( t ) -► 0 a . s .  Now

-1  _1 ^ (0 ,T ]  +
lim  sup T <I>'(t ) < lim  sup lim  sup T £  [x.-k]

T -x »  ]c+°° t -*°° i - 1

But (x-k)  + i s  a Borel-measurable fu n ction  o f  x  , fo r  any k € Z+ , and 

~ < °°* an<̂  hence by the ergod ic  theorem

0 ( 0 , l ]
lira T I  [x.-k] = S {J»(0, 1]|T } .£  {(x -fe) + |T } .
T-x» f  = 1

But P2{ + 1T2} -► O' a . s .  (fe ■+ 00) , s in c e  (a?j-fc) + 4 0 a . s .  as

k -+ 00 (Breiman (1 9 6 8 ) ,  P ro p o s it io n  4 .2 4 ) .  To complete the proof o f  (a ) ,  

we note only th a t  s in c e  P^ x P^ i s  s ta t io n a r y  with re sp ec t  to  T  ̂ , by the

ergod ic  theorem

r T

<f>(s)ds *  E x £ { $ ( ! ) |T} , x -  a . s . ,-1 rT

0

and

B1 X E2 ^ 1  X £ 2 Cl()(:L)lr ^  = E j W 0 . l ] } . ^ ! ^ }  • ( 4 , 7 )

Now, s in c e
tf (0 , t ]

<t> ( t ) -  y. x ,-
A i = i  A

0 a . s  . ,
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lim inf TJ-KO
-1 <K«)* > £1{ff(0, 1]|T1}.E2{x 1|T2}

and, clearly,
E1 x E2{E1[»(0> IDITJ^C^ITJ} = 0, 1]}.E2{x1}

(4.7) and (4.8) are consistent only if $2(t ) -► 0 a»s«

(4.8)

(b) Again we prove t-1
N( 0,T]

$ (t ) X  x
1 i=l

0 a.s. in exactly the

same way. Now we show $2(t ) 0 a.s. Let F denote the distribution

lifunction of the service times, i.e., FU) = P̂ [x̂  < 1} . Let E \o J 

for some fixed a > 1 . For a given e > 0 , suppose $2(t ) - eT ^or some 

T . Let be the first term of the geometric subsequence larger than

T . Then $2 (r )̂ - £2j, q • Hence we need only prove $2(t ) 0 a»s° f°r a

geometric subsequence. But 

P° X P2{r-h2 (rfc) 2

£ E° x E2{o(rfc)}/erfe

dll(u) max[min(Z--w, z\) , o]dF(£)/er7

(erd
-i *00

dFU) U-u)dU(u) + e
*00

dFU)J r Z-r7. ^r7

Z-r7f k
dU(u)

(e* Ü -1 tZ
dFU) (Z-u)dU(u) ,

so that
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5 25( lo g  a)
r°°

l  lo g  IdF(l)  + ( lo g  c )
J 1 J1

lo g  IdFU)

+

-  00

2 I  r l 1 + B (2 c2+2) 
k =1

r°°

J 0

where we have used  U(l)  S Bl  + 1 f o r  some c o n s ta n t  

by in t e g r a l s  and exchanged th e  o rd e r  o f  in t e g r a t i o n .

IdF(l)  + (2<?2+ l) < 00 ,

B , bounded th e  sums 

Hence $>2( t ) 0 a . s .

by th e  B o r e l -C a n te l l i  lemma. The p ro o f  i s  now com pleted  by o b se rv in g  th a t

and em ploying {N(0 , y~\ < j}  = \ t  • > y]  and th e  m o n o to n ic ity  o f  # ( 0 ,  t ]  .□
J

We would a n t i c ip a t e  t h a t  Theorem 2 .4 .1  (b) i s  su b -o p tim a l: E^{x } < 00

sh o u ld  s u f f i c e  (s e e  Problem  6 .3 .2 ) .  We deduce im m ediate ly  from Theorem 

2 .4 .1  th e  s tro n g  law o f  la rg e  num bers.

COROLLARY 2 04 02 . I f  the a r r iv a l  process i s  s ta tio n a ry  w ith  m < 00

(and ( 4 .4 )  and ( 4 .5 )  hold) ,  and s a t i s f i e s  N(0 , n ] /n  + m , P *" a • s • j

arzc? tfce s e r v ic e  time p rocess i s  s ta tio n a ry  w ith  £  x^./n •+ ^ { a ^ }  < 00 j
f = l

? 2 -  a . s . ,  [and 2? { (as lo g  < 00 )•»

»T
<\>(s)ds + mE {x } ,

J 0
P. x P. a . 8. x p. a . s .  . □

We sh o u ld  compare C o ro lla ry  2 .4 .2  w ith  Theorem 2 .3 .1  (b) and th e  comments 

fo llo w in g  Theorem 2 .3 .1 :  i t  w ould ap p ea r (a lth o u g h  we have no exam ple) t h a t

th e  s tro n g  law o f  la rg e  numbers co u ld  h o ld  f o r  (f)(8) w ith o u t th e  p ro c e s s  

b e in g  e rg o d ic  -  s im p le  exam ples o f  t h i s  b e h a v io u r  in  o th e r  c o n te x ts  a re  easy  

to  c o n s tru c t  (Breim an (1 9 6 8 ) , p p . 110 and 113 , o r  Hannan (1 9 7 3 ), p . 1 6 3 ).

F u n c tio n a l s t ro n g  law s can be proved  f o r  t h i s  p ro c e s s  in  th e  manner o f

I g le h a r t  (1 9 7 1 b ).
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Because queues with bulk arrivals are given much attention in the 

literature, we wish to make a few points in this context about the Palm 

measure corresponding to a non-orderly stationary point process. Slivnyak 

in fact goes further than indicated in the opening paragraphs of this

section.

Consider the set P. of subsets t' of R without finite limitt
points satisfying

... < t'_± < = 0 < t’± < ... .

Note that if, for a given t f , there are k points at the origin, then

there will be (k-1) other members of R. , which will constitute only a

relabelling of t' . Let a(t) denote the minimal o-algebra generated by 

sets of the form {t' : < z/} , i/ € P , H Z .

Slivnyak then proves that uniquely coupled with a stationary point 

process P of finite intensity m is a probability measure Pr^ on

, a(t)) such that {ilj} - is stationary, i.e., if we define

Sh as in (3.2),

Pr S^Dk Pr (P) , k € Z ,

where D 6 o {{IT' £ B}, B £ B(P), j € z] c: o(t) . Note that a mappinggen. j

Zn : P^ -*■ N  may be defined analogously to (2.4) of Chapter 1, and will be 

measurable, e.g. for w, v > 0 , k € ,T

(tf : n(w, w+y] > k) - U {t' : t\ 5 y, fc!+1 > w, < u+v] .
i-1

Therefore Pr^ induces a probability measure P^ = P r %   ̂ on

(N, o(W)) such that if = {tf 6 W : P({0}) > o} , P° C^0) = 1 • However,

as is readily seen, several t f,s may map to one N , so that an inverse 

mapping is undefined, i.e., it is no longer meaningful to refer to
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t .(N) = t'Xt f) in an obvious notation, unless P is a.s. orderly. However, 
J 0

had we adopted Slivnyak’s approach, our theorems would hold, with some 
modifications, for non-orderly processes too.

0 ZLet Pr^ on E^ correspond to a given stationary arrival process.

Despite the aforementioned difficulties, it is natural to identify the t'
Z Z Rwith arrival epochs. Hence define (J>' : E^ x E^ ■> Z+ in a way similar to

(2.1). The quantity naturally thrown up from rT
(p'(ß)d8 corresponding to

Y x . is Y x . , an expression not in a suitable form for 
J = 1 J t'€(0,x] J

application of random change of time lemmas. However,

n(0,x] r|[0,T]
Y x . < Y x . 5 Y x . ,j=n((o}) J t'.((o,i] 3 j=i J 

0

and by showing (use geometric subsequences, (4.9), and Chebyshev’s 

inequality) that for any 6 > 0 ,

-6 n C o , i ]  n ( o , t ]Y x . - y x • j = i  ^ J = n ( { o } )  J
0 , Prl x - a.s., (t > 00) ,

we could employ the same techniques as for the orderly case to establish the 
same results. However, we do not consider the notational inconvenience is 
worth the extra generality.

We would also require generalisations of (4.4) and (4.5). Recall that 
a finite intensity and stationarity imply that the finite rate A exists 

(Chapter 1, (3.20)). Again, Kaplan shows that if

£/(x) = £°n(0, x] E £°AKo, x ] < oo

for a finite x , then U(x) is finite for all x , and
sup (P(x+y )-(/(x)} < 2 U(v) + ml A , 
x>0

whence U(x) - 0(x) (x -► °°) . Our theorems now go through as before.

(4.9)
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2.5, The central limit theorem

B efore  we prove th e  c e n t r a l  l i m i t  theorem , we need th e  fo l lo w in g  s im ple  

lemma (which i s  p o s s ib ly  known, b u t  we cou ld  l o c a t e  no s ta te m e n t  o r  p r o o f ) .  

The lemma may a l s o  be used  t o  weaken Theorem 3 o f  Daley (1 9 7 2 ) .

LEMMA 2o5 ,lo  Let {Y }, {zn l tmd {N \̂ be sequences o f  random

Vvariables defined on the same fixed probability  space such that Y — ► Y

Vand Z — *■ Z for some random variables Y and Z defined on (not 

necessarily) another probability  space. I f  {N } consists o f  non-negative

integer-valued random variables such that Nn ► 00 and { (iV , Z ^ )} i 8 

independent o f  {Y^} , then

(*S • ZJZ) •n

P ro o f .  Let (zy, 2 ) be a c o n t in u i t y  p o in t  o f  (Y, Z) . Then c l e a r l y  

y i s  a c o n t in u i t y  p o in t  o f  Y , and z a c o n t in u i t y  p o in t  o f  Z . Hence, 

f o r  any a r b i t r a r y  e > 0 and f o r  k > k^iy , e )  = k  ̂ ,

\Pr{y^ < y}-Pr{Y  5 y}\  £ e .

(F o r  th e  p u rposes  o f  t h i s  p ro o f  we assume a l l  random v a r i a b l e s  on a s i n g l e  

space (ft, F, Pr) ) .  Thus

00

Pr{XN < y ,  Zn <3 } < Pr{Hn < kQ] + £  < S 2 , =
L n k=kQ

< Pr{Nn < + Pr{Y 5  y}Pr{zn £ z} + e ,

i . e . ,  l im  sup Pr{Y^ < y % Z^ < 2 } < Pr{Y < j / , Z < 3 } . 
n--*» n

A ls o ,
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M * n s  y ,  Zn;  3 }
n

00

^ I s  y)V r{z  S z ,  N - k}
k=kQ K n n

> pj>{y < y}Pr{Zn < 2} t  Pr{Y < p}Pr{0^ > kQ}

-  < y}Pr{{Nn 2 feQ)u (Z n 5 z ) } -  £

> Pr{Y < p}Pr{z < 3} + Pr{Y < p}Pr{0 > k } -  Pr{Y 5 p )  -  e .

Hence

l im  i n f  ?r{Y  ̂  5 y , Z^ < 2} > Pr{Y < p ,  Z < 2} ,
n-*» n

i . e .  , l im  Pr{Y^ < p ,  Z^ < 2} = Pp {Y < p ,  Z < a} . □
nr*00 n

We a l s o  r e q u i r e  th e  fo l lo w in g  lemma, w hich , conform ing to  a g e n e ra l  

theme o f  t h i s  c h a p te r  (and t h i s  t h e s i s ) ,  p roves  t h a t  th e  d i f f e r e n c e  between 

th e  q u a n t i t y  we r e q u i r e  ( th e  t r a f f i c  t im e  ave rage)  and a q u a n t i ty  which i s  

( 0 ( 0 , t ]  'v
easy  to  han d le I «.

i =1 i i s  sm a l l  under  s u i t a b l e  c i rc u m s ta n c e s .

LEMMA 2 05 02o I f  the a r r i v a l  process  i s  s ta t io n a r y  wi th  m < 00 (and 

( 4 .4 )  and ( 4 .5 )  hold) ,  and the sequence o f  s e r v i c e  t imes i s  s ta t io n a ry  with  

f i n i t e  (2-6+u)-£A  moment, any u > 0 ,  0 < 6 S 2 , or  under any

circumstances i f  <5 > 2 , then

P.XP (p°xp )
-6 r t 0 ( 0 , t ] 

§(s )ds  ]T x .
0 i -Y

0 ,  ( t  +  “ ) .

P ro o f .  We co n f in e  ou r  p ro o f  t o  th e  P  ̂ x P^ c a s e .  Arguments f o r  th e

?1 * ^2 case  use te c h n iq u e s  s i m i l a r  to  th o s e  in  Theorem 2 .4 .1  (b ) ,  and

accoun t has  t o  be ta k en  o f  a r r i v a l s  a t  0 , b u t  no new id e a s  a re  in v o lv e d .  

Now by ( 2 .2 )  and ( 2 . 3 ) ,

r t
<p(s)ds  -  

0 i - 1

0 ( 0 , t ]
(p(s)ds X $ 2( t ) + $ ' ( t ) .
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For any e > 0 ,

?1 x P2|t"6$2(t ) > ej < E1 * E2\$7(t )}/£T(

-1 -6 = e t

^ -1 -u < e t

dF(l) I min(l-u, T)du 
0

Z df(Z) + e z2 6dF(Z) (5.1)

where F(Z) = ?2{x : < Z} is the service time distribution (independent

of i since ?2 is stationary). Hence (5.1) ■+ 0 , (t -► 00) . Similarly, 

Chebyshev's inequality yields exactly the same upper bound for 

PJ X P2^T"0!I>,(t) - * D

This leads to a simple proof of the central limit theorem. We denote 

convergence in distribution by P-̂ , P^, V^9 V  ̂x P P^ x P^ in an obvious 

notation.

THEOREM 2o5.30 If the arrival process is stationary with m < 00 [and 

(4.4) and (4.5) hold), and satisfies

, 0 (0°) 
T *{/tf(0, T]-WT> ------- (5.2)

where X is some random variable, and the service times form a stationary 

sequence with finite (3/2 + 6)th moment, and satisfy

0 -1
where X i s  some other random variable defined on the sane probability 

space as X , then

(5.3)

-* r T
(\>(e)ds-mÊ {x̂ ) t V P2 p°xp 1 2 ► + A ,  • (5.4)

Proof„ We will only prove the V  ̂x p^ convergence: P^ x p^ only

requires writing P*j for P^ and for P^ . All of the random variable
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in the following indexed by T are on the space W x H , so Lemma 2„5.1 

may be applied. For this proof, set y = * anĉ  = •

According to Lemma 2„5.2,

N
-% I 4>(ö Ms-myxj - x̂ -wyxj = T-%

(T T
(p(8)d8 - Y X.

0 i =1 %

P xp 1 2 0 .

But

Nt Nt
t "I y x .-w \at\ = \~2 y (ac.-y) + x~̂ y{/l/ -mx} . (5.5)

H=1 1 j i=l  ̂ T
P1

By (5.2), +l) /ml--- ► 1 , and hence by Theorem 4.4 of Billingsley

(1968), and the continuous mapping theorem (Section 1.5)

; V
(tfT-/nx)/(0T+l)'*--X^/m .

In Lemma 2.5.1 (or a continuous version of it), put

, Lx] kZT H p(/VT-mT)/(/VT+l)2 , y 5 ,
i=l

where [x] is the integer part of x , and = tf(0, T] *» then, applying 

simultaneously the continuous mapping theorem,

,f*T ' ", V *V
(ffT+l)_*| I  (®i-u)+P0VmT) J ------ - X2 + vXyJm .

= 1

Again using Theorem 4.4 of Billingsley (1968) and the continuous 

mapping theorem,

v*v
(5.5) ----- ► /nZ2 + \iX . □

In Theorem 2.5.3, we have avoided the question of norming (see Problem 

6.3.3)). Hence, writing y = E^[x^\ again,

LEMMA 2„5„4„ If the arrival process is stationary, and the process of

service times is stationary with < 00 , and
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I  1 1  < ~
i-1

where = E?{(a^-y)(aN-y)} , and

(a) Varp N( 0, w] ~  X ^  , tfeen

VarP xP . • -, 1 2 ̂ t=l

717(0,x ]
I  x. > ~

e
m Varp (i )+mp+A y' 

1 1
(x + 00)

(5.6)

where p = 2 E  P • • 
i=l *

Var J\7(0, w] ~  X u , and £/(x)/t X* < 00 3 then
pi

r7V( 0 ,t ]  ̂ r '
var s E ~ r f Varp fo)+*'p+*9uP U X P  l 7-1 ^  i r 9 1 1 >P±XP2  ̂i=1

T , (t ■> °°) .

Remark. If the arrival process is orderly, then it is known (Daley 

(1971)) that U(t )/t + X' < °° .

Proof. Again we prove only (a). Write = 7V(0, x] . Easily

N Nt

Varj E  x \  = m Var^-Jx + y2 Var t 2£’1| £  (^-jjp.j •
H = 1 ' V  = 1 d

Clearly, by (5.6),

E1 i  ( V ^ P 7J=1 3
- m Z Ipj-I < “  •

«7=1
Now,

/v
£ x{ I  -J)p \ m 1 P,9=1 c J=1 J

/V oo
El { [ T~ \ ' ra] E P7-} + t " X {  E i | p 7- l |  + 'nffjj I  | p , l }  • <5 .7)U  1 J j=i •'J y=i 1 > H a  +i J '1 v = v i

By dominated convergence and the fact that N  ̂-* 00 a.s. as x -+ 00 ,

the final term of (5.7) -* 0 (x + °°) . The second term has an upper bound 

of
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= T-1
-[■ 00
I I  ,{A/ >k} i-1 j-i ^
I  Z + t’1 I £  Ip IdP . (5.8)

i-1 j=i "

For an arbitrary e > 0 , let P = fc(e) be such that Y | P . | < e .
J =k J

Then clearly the second term of (5.8) has an upper bound of

k I s fe}/T P  (t ->• »)) »
3=1 J

and the first term is bounded by
k—i co
I  I. > k]/z p  0, (T •+ »))
i-1 j-i

+ et-1 /V <2P,T 1 (< me, (t -*■ co))

A similar style of argument applied to the first term of (5.8) yields 
an asymptotic upper bound of 2me for this term: here we need the fact

that

p  /X-\i)dP = - f P  .JPT>fc} T 1 JPT<q T 1
Hence we conclude that (5.7) -► 0 (t 00) . □

This central limit theorem has been proved here under second moment 

conditions: however, the functional case (Iglehart and Kennedy (1970))
seems to require that the service times have finite (2+6)-th moment. The 

generalisation to non-stationary arrival processes seems difficult (see 
Problem 6.3.4).

2„6o Rates of convergence

Let X be a random variable on a space F^, Pr^) , and Y a

random variable on another (not necessarily distinct) space ^ 2) *
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Then we will define the supremum metric for these two random variables by 
v(Y, Y) = sup IPrAX S x}-Pr (Y 5 x}| .

_oo<^C <oo ^

Then we say that X --► X at rate (at least) a 10 (n + 00) ifn w
v (Y^, Yj < <3̂  . Note that Y, {Y^} do not have to be on the same space,

and hence, in searching for rates of convergence results for the traffic

time average for the G/G/°° queue, we can (and will) retain the same 

notation as in the previous sections. We will require the following result, 
which is proved as Lemma 1 of Tomko (1972).

LEMMA 206cl0 Let Ŷ  = Ŷ  + 6̂  , t € R 3 be the sum of two random

variables, and N  be a random variable with the normal distribution. If

6 + o  in probability as t + 00 and Pr{|6 | > e } 5 ß , then 
o  t u t *

v ( Y t , N) <  v ( Y t , N) +  zt + 3 ^  . □

It is clear that a result similar to Lemma 2.5.1 may be obtained: 

however, our metric V , unlike some closely related metrics (discussed 
later) is not continuous under suitably smooth mappings (Whitt (1974b)) and 
hence we state more specifically:

LEMMA 206020 Let {Ŷ .}, {Ẑ..}, {N̂ .} be sequences of random variables 

on the same space (ft, F, Pr) such that v (y^, y) < ip(t ) , v(z z) 5 <P(t ) 

where Y, Z are continuous and are on a common space (not necessarily ft ), 

If N +°° and { [n ., Z^)} is independent of {Ŷ } , then

v(Y^ +Z^, Y+Z) < 4*t ) + | i|)(x)dPr{N < a:} .
T i n

Proof. Omitted. Similar to the proof of Lemma 2.6.12. □
In our applications of this lemma, we will suppose always that Y and 

Z have a standard normal distribution. As such it can be supplemented by
( denoting standard normal random variables by N )

LEMMA 2 06 03o Suppose (tf -k t ) /o/r N at rate ß(x) t where N
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is a positive random variable for each t > o 3 and o, k are some
Vconstants3 ands not necessarily independently3 X /yR — *■ at rate

a(x) ; then

X / k"1̂
% V
- X /t*T r T> T > 2K(logT)/a/F> < A  max(a(T), 3(t ), 1 / R ]

for some constant A .

Proof. Let $(x) =

%

_y ̂ / 2
e * dy/y/̂ ii ; then, for some y^ > 0 ,

Pr V k N -X / TT > £

< Pr Xt/t > yT\ + t/k"1̂  -1 > eT/z/T

< 2a(t) + 2(l—<J>(zyT)) + Pr{ |iV -ict | /at > ke^/20^}

< 2{a(x)+3(T)} + 2{l-$(z/T)} + 2{1-$(k£ /F/2c% t)} 

To optimise the rate of convergence, we choose ŷ  - kz^R/2Oy .

L _ 1According to Feller (1968), p. 175, 1 - <Hx) < e [_(2l\)x‘] , x > 0 .

Hence, since we will require £ and 1 - to converge to zero at

about the same rate, we choose y = (log t )2 , and obtain

1 - < (2WT)"%(log T)”1

and £̂ _ = 2k (log t )/a/F. Note that we really only require y such that

-%Va T /—e /ŷ. = 1//T , and finer solutions are possible, e„g.

y - [log(T/log T)V  .

We will require a statement of the rate at which t-% <j)(s)ds and

M(0 ,t]
Y x. approach each other,, Since we will make several such estimates 
i-1 ^
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(Lemmas 2.6.7, 2.6.8 and 2.6.10), we propose 

DEFINITION 2.6,4. Suppose

rx N( 0,x]
P± * P2i x-% 4>(ö)ü!ß - Y  xj0 i=l %

> e > < 3 ;x x

then we set x (t ) = max(e^, ßT) •

With this definition we have a simple estimate of rate of convergence 

to normality of the Yiumber of busy servers'process.

THEOREM 2c6.5 U Suppose there are constants m , y, o^, suoh that

v ithe arrival process of the G/G/°° queue satisfies (#(0, x]-mx)/o1/r -- *- N.

at rate q>(x) , and Y  [x .-\i) /o /fi -- *■ N at rate iJj(t ) 3 then
;=i 1 2 2

rX
ty(s)d8-min

V *V

where N = (yo^N^t/wo^^N^)/a at rate

A 2 max <j>(x), Y  <jAk)P,{W(o, t] = k}, x (t ), d o g  x)//F| (6.1)
k -o

2 2 2 2for some constant A^ 3 where o = y a + mo^ .

Proof. Write N = W(0, x3 . /I’s will denote constants. We firstly note

fjjhr+i)  ̂ifä £ Ax for some constant /I . By Lemmas 2.6.3 and
J O

2.6.1,

V -mx)/o (/VT+l) , N < / max(ip(x), (log x)//xj ;
V.

hence, by Lemma 2.6.2,

yaxo 1Xm(/V -wx)/a1(yVT+l)̂ +v/wb2ö x Y  (^-y) /a
i=l

-l

5 max 6 <p(x), £  \p(k)P {N( 0, t ] = k}, (log x)//Fk=o 1
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where we have defined N = (yo1N1+/77ö2N2) /a Thus we obtain by Lemma

2.6.3,

-(N >T - p OOL
I  x.-myx 

|i = l
/o/F, N < 1  max 6 cp(t ), X  ^(k)P {N(o, T] = k], t )//F

L d o  J

By Definition 2.6.4 and Lemma 2.6.1 the conclusion follows. □

A valid enquiry is into the technical handling of the second term in 

(6.1). Since many rates of convergence results have a ip(k) of the form

ip(k) = (log(lfk)}^/(1+k)^ , Y - 0 j 6 > 0 we prove

LEMMA 206*60 (a) If ip(k) = {log(ltk)}̂ /(lt/c)̂  some y > 0 3 6 > 0
and E {N(0, n]} = 0(n) y then

E (̂A/C0 , n~\]} = <9(max[{log(l+n)}\ (n), .

(b) If alsoy lim sup E |#(0, n ] - m | 1+(̂ /n < 00 3 then
n-*x>

Ü7 {ip(.V(0, «])} = 6>(>(n)) .

Remark. If 0 < 6 5 1 , condition (b) holds if

lim sup Var W(0, n~\/n < 00 , true for many point processes.
«-*»

Proof. Write N = A/ (0, n] , C = {A/ (0, n~\ > nm/2} . Then
Yl  Tv

(log(ltJV)}Y &
%--- dP1 S (2/ }'

C fit«)n K nJ

< A^logd+n) }Y/n6

Yby Jensen’s inequality, since {logCl+x)}1 is a concave function. Also to 

prove (a) ,
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{log(l+il/J}Y
dP± < A^{log(l+n)}YP 1[Ĉ ]

n

- /lr'{log(l+n)}YP n { 1/1/ /n-m\ > m/2} ^6 *2
/ 1  k n  1

- ^ 7r ({logdt^)}Y/n(S){n(5[l-$()4r/2ö)]} + {log(l+n) }Y(p(n)

(6.2)

as in the proof of Lemma 2.6.2. But

r
n {l-<M/T/2a)} < (2o//2T\)n6-% -n/2o

2
e -* 0 (w -*■ °°) .

(P) follows by applying Chebyshev's inequality to (6.2). □

We now turn to estimation of • Our fitst result follows easily

from Chebyshev's inequality: since all of our results seem to go through 

most naturally with stationary arrival processes, we make this assumption 

explicitly from now on.

LEMMA 2 06o7. If the arrival process is stationary with 

m =■ E N(0, 1] < 00 and the sequence of service times is stationary with
finite second momentthen  x(T ) = ^ ( T • 0

In our next two estimates we assume the service times to be i.i.d.

LEMMA 2. 6 fc8 0 If the arrival process is stationary and orderly with 

m = E 0, 1] < 00 and (4.4) and (4.5) hold and the service times are i.i.d.
“I /  Q

with finite third moment3 then x (t ) - o [t ) .
Proof. Once again we use Chebyshev. Following Daley (1972), Theorem 

4, we assert that from the stationarity and orderliness of P^ ,

du\dll(v)\ = P {N(u, u+du~\ - 1, ZV(w+u, u+v+dv'] = 1} + o(dudv) (6.3)

(where m = 1 ), so that, using the decompositions (2.2) and (2.3),
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F x #  { $ ' ( t ) 2 }
-T

J 0
C(w+i-T) + ]2<if'(J) ( 6 .4 )

t
•T ru

du dUiv) 
J 0 J 0

fJO
d F U )

J 0
( u + Z - - T ) + ( u - v + m - t ) +dF ( m)

J 0
(6 .5 )

r T - u
dU(v) d F U ) (u+1-t )+(v+m-T)f dF(m) ( 6 .6 )

where F i s  th e  s e r v i c e  tim e d i s t r i b u t i o n  f u n c t i o n .  Easy m a n ip u la t io n  then

y i e l d s  | l  dFU)  < 00 as an upper bound f o r  ( 6 „ 4 ) ,  whereas ( 6 .5 )  and (6 .6 )  
0

r
have upper bounds o f  A 8 l ° d F U ) I d F U ) . The te rm  E’] x E2 y  2 ^

has  s i m i l a r  bounds. □

U nless th e  a r r i v a l  p ro c e s s  i s  r e n e w a l ,  th e  te c h n iq u e  used in  Lemma 

2 .6 .8  cannot r e a d i l y  be ex tended  to  h ig h e r  moments. However, we make

CONJECTURE 2o6„9. I f  th e  a r r i v a l  p ro c e s s  i s  s t a t i o n a r y  and o r d e r ly  

w ith  rn = E-^N(09 l j  < °° and ( 4 .4 )  and ( 4 .5 )  h o ld ,  and th e  s e r v i c e  t im es

a re  i . i . d .  w ith  f i n i t e  q th  moment, th e n  x ( T) = ^ ( t t □

By making some rough a p p ro x im a t io n s ,  we can ach iev e  a low er bound f o r  

X(t ) . H ere , as  i s  o f t e n  done, we ig n o re  th e  c o n t r i b u t i o n s  o f  a r r i v a l s  

b e fo re  tim e ze ro  to  th e  t r a f f i c  a v e ra g e .

LEMMA 2 t 6 o 1 0 .  I f  the a r r i v a l  prooess  i s  s ta t io n a ry  with f i n i t e  p^th

moment3 and the aerv ioe  t imes are i . i . d . with f i n i t e  qth m o m e n t th e n a 

n e t t in g  p 2 = ( / I + q - l )  , p = m i n (p1# P 2) , r  = min 2) ,

X(T) = 0 (T- * C - P f l " 1)P (P +l> _1) ,  p > 2 ,

= 0 ( t - M l - 2 i 1) K r + l ) ' 1) j p < 2 .

P ro o f .  We use  th e  decom position  ( 2 . 4 )  and th e  i n e q u a l i t y  o f  von Bahr 

and L'sseen (1065) and D harm adh ikar i , Fabian and Jogdeo (1968) f o r
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[X : n > l} a sequence of i.i.d. random variables with EX. - V < 0 0 : if

ln 1 , and 0 = [  h  , then
£=1

£ IS -fev I 4 < 4  fcmax( 1 'k l  I -VI

1ln I n 1for some constant An . We also require that M (u) E <E.N(Ot u]9 ^ n \ 1
1/rz

J
is a sub-additive function of w for stationary arrival processes 

(easily deduced as in Daley (1971)), and hence that for some constant A ,

E^N( 0 ,  u\n 5  4  w *  •

Thus, by Chebyshev's inequality, with \i = Ê {x-̂ \ as usual,

P 1 * p 2K (t) 2 £t )

s E,X E-Ito/(t )̂ \/ê1 2 1

26|p j{a/(t -c(t ) , T]ö}yö t E1{E( t -ö(t ), T]mdx(1,^t5)}E,2|a;1-y|(S|/e^

< i4 , c*(t )^/£^ . 11 T
Also,

P1 x P2ho(T) 2 eT} S '‘l2TmaX(1,%<5)E2 { l K ‘o(T))+-£2K ' C(T^ + l'5}/e?

< A.

+ A13-rS[E2(x1-c<T)) ̂ /e* 

Tmax( 1 ,%6>/e«]g2| (xi_e(Tj)+]«} (6.7)

+ A. 6 , 6 T /e T [P (x - ö(t ))+]6 . (6.8)2 ^ 1

In (6.8), if we set c(t ) = T , 0 < a < % , then

t c (t ) 1̂ '2̂ Xl” ö(T)^+ -
-1

<?(t )
M F (Z ) < I l 1/adF(l)  ,

and hence, provided l l / a dFU) < °° ,



44

(6.8) 5 A. a , t /e
't

Similarly,

(6.7) < A 17
a , t /el TJ

provided l (6 /2a) dF(l) < 00 (6 > 2) , or l1/adF(l) < oo (6 < 2) .

Hence

P1 * - eTl - ̂ 18
6

T - ( % ' a ) /E

i.e., y(x) = max T-(*-a)/E. . Choosing optimally gives

-(%-a)[6/(6+l)]X(t ) = T
Thus the problem becomes to maximize /(a, 6) = (%-a)[6/(6+l)] subject 

to the constraints 0 < 6 < min(p^, q) , (l/a) 5 q and (6/2a) 5 q (for

6 > 2 ). If p < 2 , the answer clearly is to choose a = 1/q and

6 = q^ . If P ± -  2 » the situation is not so simple. Drawing an (a, 6)

graph including the constraint regions, and observing that /(a, 6) t , a I 
and /(a, 6) t , 6 t , one sees that the optimal (a, 6) pair lie on the
line 6 = 2aq , where 2 < 6 < min(p^, q] . Thus the problem evolves into

maximising <7(6) = (%-(<5/2<?)) 6(6+1)  ̂ subject to this constraint. It is 

easily demonstrated that g (6 ) has two turning points only, at 

6 = ± J q + T  - 1 . The one which concerns us, /q+1 - 1 , is always a maximum.

Thus, writing p2 = /ptl - 1 , p = min(p , p ) , we find x t̂ ) = T

unless p2 < 2 , i.e., q < 8 when it becomes X^t ) = T . □

A point to note here is that as p^, q -* 00 (provided p^ £ <7 )

X(t ) -+• t , which one would hope for. Indeed, for large q ,

x (t ) ~ .
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We focus attention now on 4>(t ) . For point processes specified in 
terms of counting measures, we will assume (p(t) can be calculated; 
however, many point processes on the real line are more easily defined via 
their inter-arrival times, and for these we provide

L E M M A  2 o 6 0ll. Suppose the inter-arrival times {iU} of a point

sup
y

{( n 'I )p| X (Ĵ -A) / ( o / n)  <  y j  -  Hy )

process satisfy, for some constants A and a ,

( n
X

H=0

then, for any 6 < 1 ,

sup |P{(tf(0, t ]-A 1t)/(A 3/2o/F] 5 y] - $(#)|
y

S <p(w) ;

= ö(max[cp(A ,(log T)//rj), (6.9)
where $ is the cumulative distribution function of the normal distribution. 

Remark. For the purposes of this proof, we set 11̂ = .

Proof. We divide the real line into four segments.

(i) y > (log x)^ : Let YT = A_1t + A_3//2a(T log , and [x]

denote the smallest integer less than x ; then

| P { (/!/ (0 , t ]-A 1t) / (A 3/2a/T) < y) - <Kz/)| (6.10)

= |p { (a/(0, t ]-A 1t)/(A 3^2a/r} > y\ - [l-$(z/)]|

5 p {a/(0, t ] > yt} + e ^logT/(2TT log t )̂

= P
CV
X fi-X) /(ö/CyTT) < (t-A ([y ] +l)} / (a/Cy ]) } + (2TTT log T)

H-o z J
-%

- <p([yt]) + C(t-Xyt) / ) + C2ttt log t )~h

< cpfA 1t) + $[- A_1t (logt)/y. k\ + (2ttt log t ) (6.11)

remembering that t - Ay^ is negative. In the algebra we have used an

inequality on pc 175 of Feller (1968), which also yields an upper bound for 
the middle term of (6.11) of
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|yt/(X 1T log t)| expj^jx^xdog t)/Yt I .

Let us call the exponential factor in (6.12) /(t ) . Then

log(/r/(x)) = %(log x)jx '2a(x log t )^/yt| 0 > (t -► °°) ,

so that / ( t ) = o [ . Since Yt = 0(x) , (6.12) is 0(t log x)~^ 

Hence (6.10) is

0 (max[cj>(X 1t) , (x log x)~^J) .

(ii) y < -(log x)^ : By similar methods to those of (i)

(6.10) = 0(max[(p(X ^x) , x~^])
for any 6 < 1 .

(iii) 0 < y 5 (log x)^ : Let öT = 6̂ (z/) = X-1x + X_3//2ax\ ,

Q*(y) = 1 - <Ki/) . Then

p{(tf(0, x]-X-1x) / (X_3//2a»/x} < zy}

[6x]= p{fl (ni-X)]/(â 7D > (T-X([6x]+l))/(a/cril}

- + (x-X (öT+l)) / (aX~̂ /T)

remembering that x - X([6T]+l) is negative. Now | $(x)-$(y) | < \x-

so that by adding and subtracting (x-X6^)/(aX ^/r) 

in (6.14), we obtain an upper bound of (N.B. $*(-y) = $(y) )

tp(X \) t (2ttXo2x)~^ + Hy) .

to the last

(6.12)

and set

(6.13)

(6.14)

■y |//2tF ,

term

In the other direction, (6.13) has a lower bound of
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-4[öt]) + t)/o/T)

> —cp(X 1t) + ^ay//i]

> -cp(X 1t) + $*(-y)  - (\y | / / 2 tT) | (l+X~^o?y//F) '2-l\

> -<p(X 1t) + $ (y )  -  ( lo g  t )^(X ^oClog T r V / T ) / / 2 7  .

Hence

(6.10) = o(max[<p(A 1l) , (log t )//F]) . 
v

(iv) -(log t )2 < y < 0 : By methods similar to those of (iii),

(6.10) = 0 (max[cp(X 16t) , (log t )//t])

for any 6 < 1 . □

It would interesting to know if the (log t )//t term in (6.9) can be 

replaced by 1//F . Applying our result to the GI/G/°° queue, we obtain 

(see Problem 6.3.5)

COROLLARY 2 0 6 1. 1 2  0 If the inter-arrival times and the service times of 

the GI/G/°° queue have finite third moments, then

fT J n <J>(ö)d8-mE {® }t V t >2/a/F — - - - *■ N

at rate 0(x_1//3) . □

As remarked earlier, the metric used up till now is not continuous 

under Holder continuous or Lipschitz mappings (Whitt (1974b)). Two suitable 

metrics are the Prohorov metric p and the dual bounded Lipschitz metric 3 

(see (5.4) and (5.8) of Chapter l). Our theorems (except possibly Lemma 

2.6.11 and Corollary 2.6.12) hold with these metrics if we prove

LLMMA 206.13,, Suppose ß (Y , Y) < i|j(t) [p(Y^, y ) < iJj(t )] , and

ß(ZT, z) < <p(t) [p(ZT, z) < <p(t)] . Then if is a sequence of positive 

random variables such that + -h» in probability, and {(^T , Z^)} is 

independent of {Y^} , then
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(a) ß[(y . z j .  (Z, Z)] s  4>(t ) + <\>(x)dPr{N < a:} ,
T  ̂0

and3 if in addition3

ip ( t ) = (log j y > 0 j 6 > 0  and

lim sup E\N -hit | 1+^/t < 00 for some constant m then 
n-*>0

(b) p[ps , Zt), a, Z)] = 0[maxp(T), i|»(t))] .
T

Proof. (a) Let f denote an arbitrary bounded real-valued Lipschitz
2function on R with norm 5 1  ; i.e.,

r r 2 9-îi 9l l / l l  = sup [\f(x)-f(y)\) / Z fav-i/y) + sup{|/(x)|, x (i? ( 5 1 .
xjy li-1

[x %y Cff2)

Then the functions g^(x) = /(x, , ^ 2 fixed, and

g0(x) = /(x^, x) , x^ fixed, are clearly bounded real-valued Lipschitz

r+°°
will meanfunctions on R^ with norm 5 1 , and hence ( 

f(y, z)Pr{[YN , ZT) € (dy, dz)}

[/(y, s)Pr{Y7 € dy}]Pr{z tdz,N £ dl]
Is T T

ty{l)Pv{N 6 dl\ + f(y, z)IJr{Zt € ds} Pr{Y € eh/}

P E

5 P{̂ (/l/T)} + cp(t ) + f(y, s)Pr{(Y, Z) € (<2y» £ps)} 

A similar inequality may be found in the other direction.
9

(b) Let F be any closed set in B (P ) . Then

{x̂  : (x̂ , xj € P} is a closed set in B(P) , and hence
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Pr{ [yn , ZT) € f}
T

r00 

' o
P r {Y t  f F j P r { Z T i  d x ,  € <«}

rOO
\p(l )Pr{N £ d l }

J 0 T
PWY 6 F Pr{z^ € da;, »x e dZ} (6 .1 5 )

f
Let 0 < 1 ; th e n  s p l i t t i n g  th e

fCO
in  th e  second te rm  o f  ( 6 . l 5 )  i n t o

J 0
and we o b ta in  an upper bound f o r  i t  o f

• ' ( O , m 0 T ]  • ' ( wOt , 00)

Pr{iVT < w0x} + P r j  (Y, ZT) 6

< ^ 19/ t6 + P r | ( y f zT) 6 p^(m0T)|

< j4Xy ( lo g  t )Y/ t6 -»■ cp(x) + P r { ( Y , Z) €

5 /3i g i|;(T) + cpCx) + P r{ (Y , Z) S f 2^ ( w6t )+(p ( t ) j

(6 .1 6 )

u s in g  C hebyshev 's  i n e q u a l i t y  f o r  th e  f i r s t  te rm  in  ( 6 .1 6 ) .  For our ip(T) , 

\p(r/i6r) = 0(ip(t )) , and th e  f i r s t  te rm  in  (6 .1 5 )  i s  5  ^ 2Q^ ( t ) , by Lemma

2 . 6 . 6 ,  so  t h a t  th e  c o n c lu s io n  f o l lo w s .  □

As u s u a l ,  in  t h i s  theorem  i t  has  been t a c i t l y  u n d e rs to o d  t h a t  Y ,

and Z^ a r e  a l l  on th e  same Space > P r^)  and Y and Z a r e  on a

p o s s ib ly  d i f f e r e n t  space P r^)  • In  ( 6 . 1 6 ) ,  we have assumed Y

and Zt on th e  same sp ace :  t o  be r i g o r o u s ,  one sho u ld  work th e  p ro o f

th rough  on th e  p ro d u c t  space  w ith  measure P r^ x Pr^  . However, we s t i l l

need n o t  demand t h a t  th e  l i m i t  v a r i a b l e s  be on th e  same space as th e  o th e r s  

in  th e  f i n a l  a n a l y s i s .

2.7. Rates of functional convergence

Id eas  r e l a t e d  to  speeds  o f  convergence have r e c e iv e d  a b o o s t  s in c e  

Rosencrantz* i l l u m i n a t i n g  p a p e r  in  1968. The r e s u l t s  o f  t h i s  s e c t i o n
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represent a generalisation of Section 3 of Kennedy (1972b), which is partly 

based on Rosencrantz* work. According to the usual procedure (and 

Kennedy’s), our random functions will take values in the space Dl0, 1] of 

right-continuous functions on [0, 1] with left-hand limits. We will 

consider rates of convergence in terms of the metric

where p(a?, y) = sup |x(t)-y(t) | , xt y € Z)[0, 1] . Note that this 
0<t<l

definition is only meaningful if X and Y are on the same space 

(ft, F, Pr) , say, a fact which we will assume from now on. a corresponds 

to convergence in probability (Section 1.5) in the uniform metric on 

Z?[0, 1] (see Problem 6.3.6). Observe that if Dl0, 1] is endowed only 

with the Skorokhod topology (Billingsley (1968), p. Ill), it is easy to 

prove (p(Y, Y) > e) € F , or, more generally, that p(J, Y) is a random 

variable on (ft, F) . Hence, the difficulty referred to in Section 2 of 

Whitt (1974b) of D being non-separable with the uniform topology 

(Billingsley (1968), p. 150) is avoided.

In this section we will regard the arrival process as a point process 

p and the service times as a sequence {f^} of non-negative random

variables on (ft, F, Pr) , and also suppose that standard Brownian motions 

and are defined on ft , such that (p, and ({f^}, Ŵ ) are

independent. We will require the following random functions in £>[0, 1] :

a(Y, Y) = inf{e > 0 : Pr{p(X, Y) > e} < e} , (7.1)

A (£) = (p(0, nt~\-rmt) / (a Jn\ , (7.2)

SJt) = S [v.-v) /{oJn) ,
W. =  1 '

(7.3)
^  = 1

for some appropriate constants m, y, and , and

(P(0 ,nt] ^
£ F.-mynt /(o/n) 

t i=l ^
(7.4)

, 2 2 2 2 where ö = y 0  ̂+ mô  .
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We f i r s t  r e q u i r e  a  random change o f  t im e  lemma.

LEMMA 2 07 c l 0 I f  fo r  the G/G/°° queue,  a  (/I , W ) 5 tp(w) ccnd
Yl

a (5 , P/ ) < \{j(n) j then

a ( #  , f/) 5 C'1 max[(p(n), tyin), ( l o g  n ) 3//4/n^] ( 7 . 5 )

/ o r  some oonstccnt , where W(») = * )+cr2^2^w* )) /0  i s  aZ-so a

stan dard  Brownian motion.

Remark. We w i l l  c hoose  a  s c a l e  such  t h a t  m < 1 . F o r  a n o th e r  rem ark  

s e e  P rob lem  6 . 3 . 7 .

P r o o f .  L e t  y^ be a s e q u e n c e  1 0 (n -* 00) , and s e t  

C2 = max[2wa2/ ö } 16a /a ]  . Then

M p f e n . *0  -  C 2 Yn ^

< P r  j p  (An , f / J  > ^ o f r a ^ }  + P r j p ^ m * ) ,  ^ ( m * )) > %c'2a a 11Yw|  ( 7 . 6 )

f r n ( o , n t ]  >1
+ P rjp j^  £  ( ^ - y j / a ^ ,  S ^O nO l > ^ a a ^ j  . ( 7 . 7 )

C l e a r l y ,  f o r  6 1 0  (n -+ <*>) . and p r o v id e d  £ = 6  + n Y 5 1 -  mn ^ n n

( t r u e  f o r  n > some rc, )

( 7 . 7 )  < Pr-j sup
0 < £ < 1

n ( 0  ] -  m i >  6

+ Pri sup
s - t I<e

[ n i ]  ^
S  p . - y )  / ( a / n )

^i = [ n s ] + l  ^ J 1
4 y

= M p O4 *,» ° )  -  ^ 6 n / a 2 } + ( e J  -  4 x J5  1 nJ

-  M p (^> w±) -  + M p K >  0) > /n6J2o0)n 2 n' 2-

+ M p (s „ .  W2) > Yn } + u  U )  2  Y„} ( 7 . 8 )

w here

( 5 . 1 4 )

w ( • )  i s  t h e  modulus o f  c o n t i n u i t y ,  and we have  u se d  i n e q u a l i t y

o f  C h a p te r  1 . We c hoose  6 202 lo g  n /fn  . Then by e q u a t i o n
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( 2 .4 )  o f  Kennedy (1 9 7 2 b ) ,  th e  second te rm  o f  ( 7 .8 )  has  an upper  bound o f  

4 / ( tw  ̂ lo g  . But n 26^ 00 (^ -*■ 00) , and h e n c e ,  f o r  some n^ , th e

f i r s t  te rm  o f  ( 7 .8 )  has an upper bound o f  cp(n) , n > • The f i n a l  te rm

o f  ( 7 .8 )  h a s ,  by Lemma 2 .4  o f  Kennedy (19 7 2 b ) ,  an upper bound o f

2 4 ( 2 T t ) ' \ ‘ 1 e x p |-Y ^ / ( l8 E n )

f o r  n > some . Take y > 6620 (> / l 8 e 20 f o r  ft > some ft. J f o r3 n n n v n n  4 '

some 0^ . Then th e  upper bound becomes (go back to  (7 .8 )  and re a p p ly

Kennedy’s Lemma 2 .4 )  4TT 2 e x p | - 0 ^ | / e ^ 0 ^  . Hence we ta k e  0^ = ( lo g  n)^ ,

and o b ta in  ( 4 / / ü ' ) ( l o g  n) ^ f o r  t h i s  r a t e ,  b u t  on ly  i f

y > 6 /2 o 0( lo g  n ) ^ ^ / n 4 . Hence i f  n 2

o  /  n
y^ = max[<P(w), lp(ft), 6 /2 a 2( lo g  n) / n 4] , 

we o b ta in  an upper bound f o r  ( 7 .6 )  and ( 7 .7 )  o f

2 (q>(rc)+iKw)) + CgClog n ) 3^ / n *

f o r  some c o n s ta n t  C , p ro v id ed  n > max[n. , n , « , n ] . ( 7 .5 )  th en
O J- O H

fo l lo w s ,  where th e  c o n s ta n t  C^ may p o s s ib ly  need to  be in c re a s e d  to

accoun t f o r  th e  i n i t i a l  te rm s .  □

For ou r  main r e s u l t  we need t o  d e f in e  a random fu n c t io n  d e r iv e d  from 

th e  number o f  s e r v e r s  p r o c e s s .  L et

mt
M i t )  = n mis)ds-m]int / i o / n ) ( 7 .9 )

2 2 2 2where mis)  i s  d e f in e d  in  S e c t io n  2 .2 ,  and a = y + mo  ̂ .

We w i l l  a l s o  e x p l i c i t l y  make th e  assum ption  now t h a t  th e  s e r v i c e  tim es  

a re  s t a t i o n a r y  (b u t  see  Problem 6 .3 .4 )  so t h a t  y = EV\ , b u t  we w i l l  n o t

assume th e  a r r i v a l  p ro c e s s  i s  s t a t i o n a r y .  Now we can prove
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THEOREM 2o7o2. If for the G/G/°° queue a [A , < <p(n) andYl 1

2Po)oi(<Ŝ , ^2) - 'K7'*) * and tn addition Et\(-u 9 u) = O(u) and E 

(p2 > l) , then

N r -feV1)/(2Po+1) q/u ±
ol[m  , < C max <p(n), ipCn), n , (log n) 1 /n4

where W is as defined in Lemma 2.7.1.
Proof. Clearly, for ^  I 0 , and Ĉ  = max[2C^, 64, 8/a] ,

Pr{p{Mn, W) 2 C5yn] < Pr{p(Wn , <?„) 2 2} + Pr{p(fJn> W) > 2}

< 00

r rnv \
< Prjp m(s)ds - £ , 0 > C^ay^i/n^yV v J o i-1 ' '

+ (7 max[cp(rc), \p(n), (log n)3^4/n4] 

r 3/4 kprovided y^ > max[4>(n), ip(n), (log n) In J . Now the first term has an 

upper bound (for some o t 00 (n -*■ °°) ) of 

Pr{Mr(n) > kC^ay^/n} + Pr{M^(n) > C^ay^fn/Q}

+ Pr\ p
ri(0>̂ t]Z V . / o S Z , 0'•i=n (o,n*-cn]+l

(7.10)

- ^ s V 8' (7*11}

in the notation of (2.5) and (2.6). If E < 00 , then the first term of

(7.10) is 0[n 4) if n 4 = 0 (y ) (c/. Lemma 2.6.7), which we require.

Also,
(7.11) < Pr{u (p/n) > C y„/16} + Pr\c jfii > C&Y /16}

< Pr{p(«n, q  2 Y„} + Prl^^/n) > Yn} (7.12)

provided y^ > o^/Jn . By Chebyshev’s inequality, the second term of (7.10) 

has an upper bound of

% -1 Ccn y  6 'n lcLF(l) , (7.13)
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where F i s  the d is tr ib u t io n  fu n ctio n  o f  the s e r v ic e  t im es . Hence, fo r  th is

term to  have an upper bound o f  , we req u ire

lim  sup 
rr*» »V  E IdF( l )  < oo ,

a s u f f i c i e n t  co n d itio n  fo r  which i s

i * 3 / 2 - 2lim  sup n onrt**>
IdFU)  < «> .

I f  c = n , some a > 0 s t h is  occurs i f  En
( 3 / 2 a ) - i

l  *

V -(p 2- l ) / ( 2 p  +1)
° n = n , i . e .,  we req u ire  y n -  n . F in a l ly ,

< 00 , and hence 

- 0  - l ) / ( 2 p  t l )

th e  second term in  (7 .1 2 )  has an upper bound o f  C-nc^ exp {-c^ /18} »

u sin g  Lemma 2 .4  o f  Kennedy (1 9 7 2 b ), which converges to  zero a t a ra te  much

f a s t e r  than / /n  and hence y . □n n

Applying th e se  r e s u lt  to  the GI/G/°° queue, we ob ta in  

COROLLARY 2 .7 o 3 . I f  the a r r iv a l  p rocess to  the G/G/°° queue i s

,2P i1renewal w ith  E < 00 j where IK i s  an in te r - a r r iv a l  tim e, and the

*• 2
s e r v ic e  tim es are i . i . d . w ith  E[v ) < °° (p , p > l)  , then i f  

p = min (p1 , p2) ,

^ ^8{ ( lo g  n )p>/n m n (p "1 ,p /2 ') } ('2p+1) = p) .

P roof. Heyde (1969) e s ta b lis h e s  \p(n) - o [ g [ n 9 p and Kennedy

(1 9 7 2 b ), Lemma 3 .4 ,  th a t 4>(n) = 0 [ g [ n 9 p j )  . □

Note th a t by u sin g  Lemmas 2 .2  and 2 .3  o f  Kennedy (1972b ), and employing  

the tech n iq u es o f  h is  Lemmas 3 .1  and 3 .4  and proceeding as in  ( 7 . 8 )  h e r e , we 

can e s ta b l is h  g [n , pjJ as th e r e le v a n t r a te  o f  convergence fo r  the a r r iv a l

p rocess w ithout recourse to  Kennedy’s Skorokhod re p r e se n ta tio n s :  we only
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require the Skorokhod representation to give us the rate for
O t ]  2
V ( (where X = £7{ll.} , a = Var{n.} } as per Heyde (1969). 

i-1  ̂ ^

This is a conceptually simpler approach.
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CHAPTER 3

FUNCTIONAL LIMIT LAWS FOR CLUSTER POINT PROCESSES 

3olo Introduction

The cluster process has appeared extensively in the literature, a 

tribute to its practical interest as well as its theoretical accessibility.

It has modelled many processes with some sort of regular "triggering" 

mechanism: early examples are contagion problems in ecology (Thompson

(1955)), and the spatial distribution of galaxies (Neyman and Scott (1952), 

(1958)), followed by failure patterns in computers (Lewis (1964a), (1964b)), 

and the occurrence times and energies of earthquakes and aftershocks (Vere- 

Jones (1970)). It has also been used to investigate "bunching" in traffic 

flow (Bartlett (1963)). Recently, Hawkes and Oakes (1974) have demonstrated 

its close alliance to the Hawkes process. Finally, Matthes and others (e.g. 

Matthes (1963b), Kerstan, Matthes and Mecke (1974)), Goldman (1967) and Lee 
(1967), (1968) have studied these processes in relation to infinitely 

divisible point processes, since Poisson cluster processes are equivalent to 

regular infinitely divisible point processes. Closely related models also 

exist, such as Neyman and Scott’s (1964) branching type model for 

epidemics. As can be seen, multidimensional cluster processes (e.g. 

galaxies, epidemics) are clearly important, but in this thesis we confine 

ourselves to one dimension.
This chapter is concerned with functional limit laws for stationary 

cluster processes. Weak convergence has come into vogue particularly since

the publication of Billingsley’s (1968) text on the subject, although the 
theory in its present form has been available since 1956 (Prohorov (1956), 

Skorokhod (1956)). Applications of the theory of weak convergence have been 

too diverse to detail - for a review and references, see Iglehart (1974).

We mention only that Jagers (1974) has a theory of weak convergence of
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random measures and point processes on Polish spaces. The equivalence of 
functional central limit theorems for counting processes and the partial 
sum processes derived from inter-event times has been established in 
Iglehart and Whitt (1971) and Verwaat (1972). A summary of the theory of 

superpositions of point processes, including weak convergence problems, is 
given in Cinlar (1972). Whitt (1973) investigates rates of convergence of 
superposed processes to a Poisson process. Thinning of point processes is 
the subject of a paper by Jagers and Lindvall (1974) and also more generally 
in Kallenberg (1974). In these latter contexts (superpositions, thinning) 
in which a sequence of point processes converge to a point process, weak 
convergence and convergence of finite-dimensional distributions coincide, as 

was first pointed out by Straf (1972) and more generally by Whitt (1975). 
This equivalence has been generalized by Saunders (1975) to the space M of 
finite non-negative measures on a complete Q-compact metric space, where M 

is endowed with the topology of weak convergence.
The functional version of the law of the iterated logarithm for i.i.d. 

random variables was presented by Strassen in his famous paper in 1964. It 
has since been extended in various directions, for example in Heyde and 
Scott (1973) and Wichura (1973), and references there. Functional strong 
laws were introduced by Iglehart (1971b),

Section 2 of this chapter defines and examines existence of cluster 

processes with dependent clusters, as well as establishing notation needed 
to prove the limit theorems of Sections 3, 4 and 5. As with G/G/°° queue, 

we ask for limit theorems for the cluster process in terms of the same 
properties holding for the components. Also in Section 5, we investigate 

two processes related to cluster processes, by way of looking at limit laws 

for doubly stochastic Poisson processes, and the law of the iterated 

logarithm for the G/G/°° queue.



3o2o Definition and existence of cluster processes

A c l u s t e r  p o i n t  p r o c e s s  p* (com pare Daley (1 9 7 2 ))  i s  g e n e r a te d  by 

two in d e p e n d e n t  com ponen ts ,  t h e  c e n t r e  p r o c e s s  p c o n s i s t i n g  o f  p o i n t s

( j  = 0 ,  ±1 , , . o) , s a y ,  each  o f  w hich  i n i t i a t e s  a s u b s i d i a r y  p r o c e s s

p .  w hich i s  a . s .  f i n i t e  and in d e p e n d e n t  o f  p . The f u l l  p r o c e s s  c o n s i s t s  
11

o f  t h e  s u p e r p o s i t i o n  o f  t h e  p . ' s  , i 0e . ,

ri*(.4) = Y  r i - p - t . )  , bounded A  £ B(J?) . ( 2 . 1 )
a l l  j  3 0

However, as  i n  t h e  a r r i v a l  p r o c e s s  f o r  t h e  G / G / 00 q u e u e ,  we m a in ly

r e f e r  t o  t h e  c e n t r e  p r o c e s s  as  a  p r o b a b i l i t y  m easure  P^ on (W, a(N) )  .

The s u b s i d i a r y  p r o c e s s e s  may be c o n s id e r e d  a p r o b a b i l i t y  m easure  P^ on

z z
[hJ , o ( h l )  } , so  t h a t  a g a in  assum ing  t h a t  t h e  c e n t r e  p r o c e s s  and p r o c e s s  o f

s u b s i d i a r i e s  a r e  in d e p e n d e n t  we form  t h e  p r o b a b i l i t y  t r i p l e

Mx MZ t o ( N ) x o ( N ) Z ,  P  x p  .
* J

L e t h i d e n o te  t h e  s e t  o f  a l l  n o n - n e g a t iv e  i n t e g e r  o r  i n f i n i t e  v a lu e d  

m easu res  on R  w i th  a - f i e l d  g e n e r a te d  by t h e  s e t s  { N  € : N ( A )  5 m } ,

A  € B(P) , rn € Z+ u {°°} . T h is  i s  t h e  s m a l l e s t  a - f i e l d  such  t h a t  t h e  

m appings <J> : hl^ -* [ 0 ,  °°] d e f i n e d  by <J>̂ (tf) = N ( A )  a r e  m e a s u r a b le ,  a l l

>1 € B ( R )  .

We w i l l  d e f i n e  o u r  c l u s t e r  p r o c e s s  v i a  th e  mapping p = V V  h
from hi x hi -> hi d e f i n e d  bynr»

1( U Z ^1 „ Z  w U Z ^ 2  UZ ^3 l( hi x hi ----- ► R x hi ----- ► hi ----- ► hi ( 2 . 2 )

(l) (Ä, N) I—U N)
J
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<t>o +“
( 3 )  [M } I------► £  M ,

3 J=-<“ J

where t h e  p r o d u c t  s p a c e s  i n  ( 2 . 2 )  a r e  e q u ip p e d  w i th  t h e  p r o d u c t  a - f i e l d s ,

and [ t  .} a r e  d e f i n e d  as  i n  ( 2 . 1 )  o f  C h a p te r  1 . I t  s h o u ld  be  c l e a r  t h a t  
0

( 2 . 2 )  p e r fo rm s  t h e  same f u n c t i o n  as ( 2 . 1 ) ,  nam ely ,  sums t h e  c o n t r i b u t i o n s  o f

each  s u b s i d i a r y  p r o c e s s  N . c e n t r e d  a t  t  . t o  any B o re l  s e t  A t o  g iv e
J J

t h e  number o f  c l u s t e r  p o i n t s  i n  A .

I f  t\g i s  m e a s u r a b le ,  we can d e f i n e  a p r o b a b i l i t y  m easure  P on

(N„. a < N j )  by

p c = ( v p 2K  • ( 2 . 3 )

I f  P ( W) = 1 , th e n  P^  i s  r e f e r r e d  t o  a s  t h e  c l u s t e r  p o i n t  p r o c e s s .

S in c e  p r o v in g  m e a s u r a b i l i t y  o f  seems t o  be  s u r p r i s i n g l y  d i f f i c u l t ,  we

g iv e  a co m p le te  p r o o f  o f

THEOREM 3 . 2 ol 0 (a) The mapping r\ d efin ed  around ( 2 . 2 )  i s

m easurable .

( h )  o(W ) n M = a(M) .
00

P r o o f .  (a) M e a s u r a b i l i t y  o f  <j) f o l l o w s  from  t h a t  o f  t h e  se q u en c e  o f

maps N i—+ t  .(N) , j  € Z , w hich  i n  t u r n  f o l lo w s  from ( 2 .2 )  o f  C h a p te r  1 .
J

L e t  <J> : -*■ [ 0 ,  00 ] be  d e f i n e d  by <j) (.AO = tfOO , 4 € B(i?) . To p roveri

<j> i s  m e a s u ra b le  we have  t o  show t h a t  <p o (p  i s  m e a s u ra b le  f o r  e ach  B o re l  3 /I o

s e t  A . We a l s o  have t h e  f a c t o r i z a t i o n  <J>. o <J> = o where

1— * • i -e -> : w *  Co> ” ] •

Ip
h - t - — ►

J

+oo

I  B,- i . e . ,  ip : [ 0 ,  °°] -► [ 0 ,  °°] .
J=-c

We p ro v e  t h a t  b o th  ij; and \p  ̂ a r e  m e a s u r a b le .  [ 0 ,  00] t a k e s  t h e  

p r o d u c t  a - f i e l d ,  so  t h a t  m e a s u r a b i l i t y  o f  ^  f o l lo w s  im m e d ia te ly  from
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measurability of the map M.
3

M M )3 from W to [0, 00] . Since

^({3 -} V 7) = lim Z  s and each of the maps {3 -} »—  ̂ V  3 . is
J J |jTsn J J |/T<n J

2
continuous (when [0, °°] is given the product topology) and the product 

cr-field is precisely the Borel cr-field induced by the product topology, 

measurability follows.

Measurability of ^  will follow from measurability of the coordinate

maP ({3 •} » {ft •}) ^ .(*-3 •) j and since this map only depends on
3 3 3 3

(3*» Nj) J from the measurability of (3, N) 7\7(• —3 ) , or from the (joint)
d d

measurability of (3» N) 1— + N(A-B) for any A € B(i?) . For this purpose, 

define

g( 3 , N) h(x-$)dlKx) ,

where h(x) € , the class of continuous functions with compact support.

Without loss of generality M may be endowed with the vague topology (see 

(5.9) and (5.10) of Chapter 1). Now, for any e > 0 , there exists a 6 

such that \h(x-$)-h(^-30)| < £ for |3~3Q | < 6 . Let

K = : \x-y\ < 6, y € (supp A)+3q } • Then clearly

\h(x-$)-h (ä -3q) I < for |3-3q | < 6 . So on the neighbourhood

{N : N(K) < N (K)+l\ of N ,

[h(x-&)-h (x-3Q)]/Vr((ix) < eN(K) < e[^ (/O+l] .

yV : h[x-&^\N(dx) - h[x-$Q)NQ(dx) < ejAlso, as 3q is fixed, j/V : v— , j ^q^'O

neighbourhood of N in the vague topology on M . Thus

< £ r is a

b(6, ")-S (B0, N 0 ) \ S e[ff0(X)t2]

on the intersection of these two neighbourhoods x{3 : |3~3q | < . Thus

g($, N) is a jointly continuous function of (3S N) . According to 

Proposition 1.1 of Jagers (1974), g (W) = 8(iJ) , the Borel G-field generated
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by t h e  open s e t s  o f  t h e  vague to p o lo g y .  S in c e  t h e  p r o d u c t  ö - f i e l d  on 

B x N i s  t h e  B o re l  a - f i e l d  g e n e r a t e d  by t h e  p r o d u c t  to p o lo g y  

( ( u s u a l  to p o lo g y  on B)  x (vague  to p o lo g y  on W)) , i t  f o l lo w s  t h a t  g i s  

a l s o  ( j o i n t l y )  m e a s u ra b le  i n  t h i s  p r o d u c t  a - f i e l d .

L e t  G be t h e  c l a s s  o f  bounded m e a s u ra b le  f u n c t i o n s  g : B -*■ B f o r

w hich f ( x - $ ) g ( x - & ) d N ( x )  i s  a  j o i n t l y  m e a s u ra b le  f u n c t i o n  o f  ( 3 ,  N)  f o r

e v e ry  f  € Cv • Then e v e ry  bounded c o n t in u o u s  f u n c t i o n  i s  i n  G , s i n c e  
K

f (x-&)g(x-$)  i s  th e n  c o n t in u o u s  and has  s u p p o r t  a c lo s e d  s u b s e t  o f  a 

compact s e t ,  i . e .  , compact s u p p o r t ,  and  G i s  c lo s e d  u n d e r  u n i fo rm ly  

bounded p o i n tw is e  l i m i t s .  Hence G c o n ta i n s  a l l  bounded B o re l  m e a s u ra b le  

f u n c t i o n s ,  a n d ,  i n  p a r t i c u l a r ,  1 f o r  e v e ry  B o re l  s e t  A . Thus

/(:c-3)"l a ( x - 3 )dN{x) i s  m e a s u r a b le .  T ak ing  f  (x -3 )  i  1 , we o b t a i n  by t h e
/ i  Yl

monotone c o n v e rg en ce  th eo re m  t h a t "I (#-3)flK d x )  -  F{A-$)  i s  m e a s u r a b le .

(b)  f o l l o w s  from  Halmos ( 1950) ,  Theorem E , p .  2 5 . □

The e x i s t e n c e  o f  t h e  c l u s t e r  p r o c e s s  ( i . e . ,  t h e  c o n d i t i o n  P^(W) = 1 )

i s  a v i t a l  q u e s t i o n ,  b u t  a  n o n - s t o c h a s t i c  s u f f i c i e n t  c o n d i t i o n  may be g iv e n  

as  f o l l o w s :

THEOREM 3 o 2 0 2 0 I f  the su b s id ia ry  p ro cesses o f  a c lu s te r  process are 

uniform ly bounded in  the sense  { N : A M D  > o }  <  F ( J )  { a l l  i  6 Z ^

bounded in te r v a ls  I  ) fo r  some s e t  fu n c tio n  F 3 then the c lu s te r  process  

e x i s t s  i f

F { I - v ) d M 1 M  < 00 ( 2 . 4 )

fo r  a l l  bounded in te r v a ls  I  3 p rovided  the cen tre  process has f i n i t e  f i r s t

1  *
moment measure M.
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Proof„

P {N : Nil) < °°} = 1 o

p J n : y N ,{l-t XID) < <°\PAdAI) = 1 , 
N  ̂ 3 3  1

by (203) and Fubini's Theorem,

4"  X. V'-V '-} ■1 •
P {N : N.{l-t.) > 0 i.o.} = 0 , P.

- a.s.

- a.s.

since ^(i?) < 00 , P̂  ~ a.s.,

- I p 2lN : N.{l -t.) 0} < « , - a.s.,
£  =-°o

X  F[I~tA  < 00 > p i - a.s. ,

by the Borel-Cantelli Lemma,

(2.5)
£ = -

F(I-v)dNiv) < 00 , P - a.s

-+O0

F(I-v)dM (v) < 00 . □

It is clear that the reverse implications at (2.5) and the preceding 

step are also necessary if the clusters are ioi.d. (see also Westcott (1971); 

in fact the condition immediately following (2.5) was already familiar to 

the German school (see e.g. Kestan, Matthes and Mecke (1974), Chapters 5 and 

6 and references there): their derivation was via the Borel-Cantelli Lemma).

In fact, (2.4) is known to be necessary for a stationary Poisson cluster 

process with i.i.d. clusters (Matthes (1963b), V/estcott (1971)). Westcott's 

techniques and Matthes' formulation do not seem to readily extend to non- 

independent subsidiaries.

Let us say that the subsidiary processes are stationary if with 

sk : NZ -+ NZ defined by sk{Fj} = {Nj+k) *



ADDENDUM (at examiner's request)

We will follow Daley (1972) in employing the decomposition of 

q into a 'coherent' mapping q+ with remainder terms q and

q . Specifically, we write

q (0, x] = q( 0, x~\ + q~(0, x~\

- q+( 0, x~\ t q~(0, x] - q“(0, x] (2.7)

where

71
q +( 0 ,  a;] =

/ (O .x ]
i
3 = 1 V Ä) ■

77(0,x]ini—
i

ov_^
?s=r I

<7=1 v - v  x - h -

0 00ii
0 V* 1 

_1
III z I

.<7=-°° j=N(0 ,x~\+±j

77(0,0;]
7 7 . f i ? \ ( - t . ,  x 

0

hii—
i

01CT I
j =i

( 2 . 8 )

N.(-t., x-t.-\ , 
C J 5 <7
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S7 1ck = P2iC) (2.6)

IP

fiV

for any C € o(M) , all H Z ,  Then just as in Theorem 2.3.1 (aJ, we can 

prove

THEOREM 3o2o30 If the centre process and process of subsidiaries of a 

cluster process are both stationary 3 then the cluster process itself is 

stationary. □

In the remainder of this chapter, we will require, for notational 

convenience, that the centre process be stationary with finite intensity 

m , and the process of subsidiaries be stationary with finite first moment, 

i.e. , y E } < 00 . Under these circumstances it is easy to prove,

as in Daley (1972), equation (26), that E Ni 0, x] = \JJ7ix . We will write

- ]im . Also it is clear that the cluster process exists in the sense of

Theorem 3.2.2.

We will follow Daley (1972) in employing the decompositions into a 

'coherent* mapping q+ :

n (o, a?] = n(o, x] + n”(o, , n(o, x] = n+(o, x] - n (o, x] (2.7)

where

L
N( 0 t ~\

n(o, *] = Z »•(-*•» «-*,•] , n+(o, x] = Z uXR) . (2.8)
3=1 J 3 J 3=1 0

Again the device due to Iglehart and Kennedy (1970) will be very

useful. Let c t 00 (n ■+ °°) : then, as in (2.4) of Chapter 2,n

sup n (0, nf] 
0 <t<s

N(0 ,ns] N(0 ,ws]
2 £  “) + £  -*•] + sup n , nt] . (2.9)

Similarly,

J v n J=1 05t5s
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sup ri (0 ,  nt~\ 
0<t<s

<

3c3. A functional central limit theorem for cluster point processes

In  t h e i r  summary o f  t h e  t h e o r y  o f  p o i n t  p r o c e s s e s ,  D aley and V e re -J o n e s  

(1972) a sk  f o r  a  f u n c t i o n a l  c e n t r a l  l i m i t  th eo rem  f o r  c l u s t e r  p o i n t  p r o c e s s e s .  

We show i n  C h a p te r  4 t h a t  (J)-mixing th e o r e m s , and some s t r o n g  m ix ing  theo rem s 

a re  i n a p p l i c a b l e  i n  t h i s  c o n t e x t ,  b u t  i n  t h i s  s e c t i o n  we d e m o n s t ra te  t h a t  a 

d i f f e r e n t  p r o o f  may be r e a d i l y  a sse m b le d  from known s o u r c e s .  The p r o o f  

fo l lo w s  m ain ly  from  t e c h n i q u e s  employed by I g l e h a r t  and Kennedy ( 1 9 7 0 ) ,  and 

by m o d ify in g  D a le y 's  (1972) p r o o f  f o r  one d im e n s io n .  In  t h e  p r o c e s s  we 

remove a se co n d  moment c o n d i t i o n  on t h e  c e n t r e  p r o c e s s , and f i n d  an 

a l t e r n a t i v e  t o  a f i r s t  moment c o n d i t i o n  on th e  s u b s i d i a r i e s ,  b u t  in v o k e  one 

e x t r a  c o n s t r a i n t  n o t  r e q u i r e d  i n  Daley ( 1 9 7 2 ) ,  namely t h a t  th e  weak l i m i t  o f  

t h e  normed c e n t r e  p r o c e s s  s h o u ld  have  a . s .  c o n t in u o u s  sam ple p a th s  ( i . e . ,  

i s  i n  C [0 ,  00) ; s e e  W h it t  ( 1 9 7 0 ) ) .  We s h a l l  u se  ^  t o  d e n o te  weak 

c onve rgence  i n  £>[0, 00) , t h e  s p a c e  o f  f u n c t i o n s  on [ 0 ,  00) w hich a r e  r i g h t  

c o n t in u o u s  w i th  l e f t - h a n d  l i m i t s .  The t e c h n iq u e  i s  t o  p ro v e  th e  weak 

co n v e rg en ce  th eo rem  on D[_0 , s ]  , each  s > 0 , and th u s  on D{_0 , 00)

( L i n d v a l l  ( 1 9 7 3 ) ,  W h it t  ( 1 9 7 1 ) ) .

B e fo re  em bark ing  on t h e  main theo rem  i t s e l f ,  we w i l l  p rove  th e  f o l l o w in g  

lemma, w hich i s  o f  in d e p e n d e n t  i n t e r e s t 0 L e t

L i t )  = P 2{/f1 ( - » ,  i ]  > 0} , R i t )  = P 2{i» ( t ,  » ) > 0} . (3 .1 )

LEMMA 30 3olo I f  the cen tre  process P o f  f i n i t e  in te n s i ty  m and

process o f  su b s id ia r ie s  P are both  s ta t io n a r y 3

OO

L( -u)du < 00 => Y, N * (-00> •]
3=1 0 3

<  « > a . s
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f00 0
R(u)du  < 00 =* T  N . (- t  «h < co P x p  -  a „ s .

J 0 j t - 0 0  0 ^  0 1 1 2

P r o o f o The p r o o f  seems more n a t u r a l  In  t h e  r e v e r s e  d i r e c t i o n .  (=* i n  

t h i s  p r o o f  means ' i m p l i e s ' 0)

0
I  » • ( - * • »  ")  < “  . P1 x P o -  a -s -

J  — —00 V  V

<=> P {n : N . [ - t  . 9 °°) > 0 i . O o  , j  < 0 } = 0 , P -  a . s .
^ «7 J  1

0
*■ E  p , “ ) > 0 } < “  , P -  a . s . ,

J  — —OO tl tl ±

by th e  B o r e l - C a n t e l l i  Lemma, 

00) > o}dA/(y) < 00 , P -  a . s .

R(v)dv < 00

where we have t a k e n  e x p e c t a t i o n s  i n  t h e  l a s t  s t e p ,  and e f f e c t e d  t h e  change 

o f  v a r i a b l e  v ’ -  -V . The o t h e r  h a l f  o f  t h e  p r o o f  i s  s i m i l a r .  □

We aim f o r  weak c o n v e rg e n c e  t o  t h e  W iener p r o c e s s  W( • )  o f  t h e  p r o c e s s

Zn ( t )  E (n ( 0 ,  n f ] - m j i t ]  i f n  ( 3 . 2 )

f o r  t  € [ 0 ,  a») . We a l s o  r e q u i r e  t h e  p r o c e s s e s  : hi -*■ P [ 0 ,  00) ,

7
Y : N -> P [ 0 ,  00) d e f i n e d  by n

X ^ ( t )  e (71/(0, n t ] - r o i t ) / v ^  , ( 3 . 3 )

[ n t ]
Y ( t )  = £  p  .(Ä)-vi)/ /n . (3 .4 )

n J=1 J

THEOREM 3o3o20 I f  the cen tre  process P i s  s ta t io n a r y , and

P X- 1  => Pr.lT1 . ( 3 . 5 )q n

where Pr{X( • ) e P [ o ,  °°)} = 1 j and t/ie process o f  s u b s id ia r ie s  P i s  

s ta t io n a ry  w ith  the fu n c t io n s  (3 .1 )  s a t i s f y i n g
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n {L(-n)+R(n)}  0 (n -*• 00) ( 3 . 6 )

and

P J  1 => PrY 1 
2 n ( 3 . 7 )

tl>en, w r i t i n g  Z( t )  -  \ iX(t)  + Y(mt)  ,

[p x p )z 
 ̂ 1 2 '  n

-1 PrZ -1 ( 3 . 8 )

and X and Y are  independent .

Remark. We choose  a  s c a l e  such  t h a t  m < 1 .

P r o o f .  We u s e  t h e  d e c o m p o s i t i o n s  ( 2 . 8 ) ,  ( 2 . 9 )  and ( 2 . 1 0 ) .  For  random

f u n c t i o n s  0 ^ ,  0 , we w i l l  a b b r e v i a t e  ( ? 1 x 0n 1 => PrQ 1 a s  0 =* 0 .
1 2 J n n

Then

( V ( 0 ,  nt~\-m nt]  / y/n ^  y J ( t )  + Y{mt) ( 3 . 9 )

i n  t h e  Skorokhod t o p o l o g y  on D\_0 ,  s ]  , by Lemma 1 o f  I g l e h a r t  and Kennedy 

( 1 9 7 0 ) .  Le t  p and d  r e s p e c t i v e l y  d e n o te  t h e  u n i fo rm  and Skorokhod3 S

m e t r i c s  f o r  P [ 0 ,  s ]  ( o f .  ( 5 . 1 1 )  and ( 5 . 1 2 )  o f  C h a p t e r  1 ) .  To p ro v e  t h a t  

t h e  l i m i t  ( 3 . 8 )  o c c u r s ,  i t  i s  s u f f i c i e n t  t o  show t h a t

p ( ( 0  ( 0 ,  n*]+n  ( 0 ,  n « ] ) / / n 5 0) =* 0 by Theorem 4 . 1  o f  B i l l i n g s l e y  ( 1 9 6 8 ) ,  
s

s i n c e  p > d  . P r o v i d e d  0  -  o (y/n) (n -* 00) , t h e n

sup n [n t - e  , nt+o  ] =* 0 
0 <t<s

by Lemma 2 o f  I g l e h a r t  and Kennedy ( 1 9 7 0 ) .  A l s o ,  f o r  any e > 0 ,

( 3 . 1 0 )

P.
P(Q}fts]  /-  ̂ _

l xiVl t,NA ~ ° n ' cn\ - e/n
1

( 3 . 1 1 )

*(0’ ns]P2{h(t-cn ’ ° J ° }  > °}dp: (N)

S ns{L[-cUR[o )} = 8 no-p o ‘ {L(-cJ+*p„)}

so t h a t  i f  a  s e quenc e  d i  °° (n -* 00) e x i s t s  such  t h a t  ^nmn ® (n  -»- 00) 

2
where 27?  ̂ E n {L( - n ) + P ( n ) }  , t h e n  ( 3 . 1 1 )  -> 0 (ft -> <») . C l e a r l y  0

-P
(n ->■ 00) i s  n e c e s s a r y  f o r  t h i s .  Tak ing  d  = m 2 shows t h a t  i t  i s  a l s on n
s u f f i c i e n t .
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Consider

ri (0, ns] 5 Y  °°) + V  ns-t .] .
jt-oo 3 0 j=tf(0,ns]+l J J

But by stationarity of P. x P^ with respect to the transformation T'1 2 tt.
defined analogously to (3.4) of Chapter 2,

X  ns-t] and £  -*•]
j=A7(0,ns]+l J

(3.12)
J=1

have the same distribution„ Also, the middle term of (2.9) has an upper 
00

bound of Y, N -t .] , so that, since the conditions of Lemma 3.3.1 are
3=1 0 1

satisfied, dividing by fn means that it converges P^ x P^ - a.s. to zero

as n -+ 0° . Similarly r) (0, ns~\ converges to zero in P^xP^-probability

Unfortunately the above argument contains one step which depends 

critically upon stationarity (see Problem 6„4.1). If the clusters are only 

right-handed, this is unimportant, but a more robust technique is of course 

to estimate the small probabilities by Chebyshev's inequality. This yields 

COROLLARY 3<,3o3. Replacing (3.6) in Theorem 3.3.2 by the pair of 
conditions

nE {N ((-n> n]C)} ->-0 (n -► °°)

1
fn

P 2{^i((~^ u f ^ d u  - 0 {n *) (3.13)

yields the same conclusions under the same conditions. □
The conditions (3.13) are predictably more severe than those of Daley 

(1972) for ordinary convergence, who used this technique. It should be 

clear though that we can find a weaker version of Theorem 3.3.2 for ordinary 

convergence.

COROLLARY 3.3o40 If the centre process P^ is stationary, and

X (1) -- ► X(l) ,n
(3.14)
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and th e  p r o c e s s  o f  s u b s i d i a r i e s  P i s  s t a t i o n a r y  w i th  t h e  f u n c t i o n s  ( 3 .1 )  

s a t i s f y i n g

{ L ( - u ) +R( u ) } d u  < 00 ( 3 .1 5 )

and

Y (1 )  — ^  Y ( l )  n ( 3 .1 6 )

t h e n  Y ( l )  and Y ( l )  a r e  in d e p e n d e n t  and

V xV
Z (1 )  —--------* Z ( l )  . □n

In  Theorem 3 .3 .2  and i t s  C o r o l l a r i e s  we have  a v o id e d  t h e  q u e s t i o n  o f

norm ing . Denote t h e  no rm ing  c o n s t a n t s  f o r  Y ^ ( * ) ,  Y^(*) and Z^(*) by

2 2 2 2i , Oy and a  r e s p e c t i v e l y ;  t h e n  c l e a r l y  o = y ö ^  + möy  . I f t h e

c e n t r e  p r o c e s s  i s ,  s a y ,  (J)--mixing w i th  f i n i t e  f i r s t  and se co n d  moments and 

t o t a l l y  f i n i t e  r e d u c e d  c o v a r i a n c e  m easure  C( • )  ( s e e  S e c t i o n  1 03 ) ,  th e n

’
C( d u ) (> 0 ,  su p p o sed  > 0 )  and Y(*) = *) > where W^( m) i s  a

s t a n d a r d  Brownian m o tio n .  I t  i s  n o t  d i f f i c u l t  t o  p r o v e ,  v i a  e q u a t i o n  A1 o f

V e re -J o n e s  (A ppendix  t o  Daley (1 9 7 1 ) )  t h a t  l im  V a r ( q ( 0 ,  u ] ) / u  = C
ur**3 ' R

( du )

f o r  any s u i t a b l e  w eak ly  s t a t i o n a r y  p o i n t  p r o c e s s  q . I f ,  a l s o ,  t h e

2
c l u s t e r s  a r e  i 0i . d .  w i th  = ' < °° 5 'then G^ y2-y , and

Y(»)  = a vW ( • )  f o r  a s t a n d a r d  Brownian m otion  W ( • )  . Then Z ( t )  ** W( t )  

f o r  a  s t a n d a r d  Brownian m otion  £/(•) by Theorem 3 . 3 . 2 ,  and a l s o  q ( • )  

has  t o t a l l y  f i n i t e  r e d u c e d  c o v a r i a n c e  m easure  C ( • )  s a t i s f y i n g

C ( du)  = ö (Theorem 4 o f  Daley ( 1 9 7 2 ) ) .  o
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3o4o The law o f  the i t e r a t e d  logar i thm  f o r  c l u s t e r  p o in t  pr o c e ss e s

3 . 4 . 1 .  SOME D E F I N I T I O N S  AND LEMMAS

The law o f  t h e  i t e r a t e d  l o g a r i t h m  (LIL) has  been  s t u d i e d  e x t e n s i v e l y  

f o r  many y e a r s .  In  t h e  c o n te x t  o f  p o i n t  p r o c e s s e s ,  t h e  law h as  been  

d e m o n s t ra te d  f o r  t h e  s p l i t  t im e s  o f  b r a n c h in g  p r o c e s s e s  by A th re y a  and 

K a r l i n  ( 1 9 6 7 ) ,  and i n  q u e u e in g  s i t u a t i o n s  by I g l e h a r t  ( 1 9 7 1 a ) .  The 

e q u iv a l e n c e  o f  t h e  LIL f o r  t h e  c o u n t in g  p r o c e s s  and t h e  p r o c e s s  o f  i n t e r 

epoch t im e s  has  been  d e m o n s t ra te d  by Verwaat ( 1 9 7 2 ) ,  from w hich r e s u l t s  f o r  

many p o i n t  p r o c e s s e s  a r e  im m ed ia te .

F i r s t l y  we r e q u i r e  some lemmas w hich a r e  m o s t ly  known. Denote by

£ ^ [ 0 ,  °°) [_ 0 ,  s ] )  t h e  j - f o l d  p r o d u c t  s p a c e  o f  Dl 0 ,  °°) (z?[0, s ] j  .

These s p a c e s  w i l l  be  endowed w i th  t h e  p r o d u c t  Skorokhod to p o lo g y  (W h i t t  

( 1 9 7 1 ) ) .  G e n e r a l i z i n g  S t r a s s e n  ( 1 9 6 4 ) ,  we b e g in  w i th

DEFINITION 3o4.1o L et K? (K d e n o te  t h e  s e t  o f  a b s o l u t e l y

c o n t in u o u s  f u n c t i o n s  x i n DCl 0 ,  oo) [iP  [ 0 ,

l°°

s ]) such  t h a t  

’s
;c(0) = 0 and x ( t )  d t  < 1

Jo ^
x ( t )  d t  < 1

o J
( 4 . 1 . 1 )

where x  d e n o te s  t h e  d e r i v a t i v e  o f  x  d e te rm in e d  a lm o s t  everyw here  w i th  

r e s p e c t  t o  Lebesgue m e a s u re ,  and t h e  s q u a re  i s  t o  be i n t e r p r e t e d  as i n n e r  

p r o d u c t . □

I t  f o l lo w s  im m e d ia te ly  from  t h e  Schwarz i n e q u a l i t y  t h a t  f o r  x  6 Pp 

and 0 < a S b ,

\ x ( b ) - x ( a ) \  S (b - a )* . ( 4 . 1 . 2 )

In  t h e  n e x t  d e f i n i t i o n  we s t a t e  f o rm a l ly  t h e  m eaning o f  a  f u n c t i o n a l  

law o f  t h e  i t e r a t e d  l o g a r i t h m  (F L IL ) .

DEFINITION 3 U4 02 .  A p r o c e s s  {X ( t ) }  d e f i n e d  on a p r o b a b i l i t y

sp a ce  (ft ,  F , Pr)  , whose sam ple  p a th s  l i e  Pr  -  a , s 4 i n  jß  0 ,  °°)



70

( £ ^ [ 0 ,  s  ]) s a t i s f i e s  a FLIL i f  i t  i s  a . s .  r e l a t i v e l y  compact i n  iP i 0 ,  <»)

[lP [ 0 ,  s ] )  and h a s  Xp [xP'] as i t s  s e t  o f  l i m i t  p o i n t s .  □s

L e t  (f)(n) = (2n lo g  lo g  n) 2 . I f  \x^ } i s  a  se q u en c e  o f  z e ro  mean,

u n i t  v a r i a n c e  i . i . d .  random v a r i a b l e s , t h e n  S t r a s s e n ’s (1964) p r o o f  i s  e a s i l y

[rct]
a d a p te d  t o  show t h a t  5 ( t )  = £  X./cj)(n) s a t i s f i e s  a FLIL in  £>[0, s ]  ,

n i = l  ^

any s  > 0 . Now we q u o te  t h e  c o n t in u o u s  mapping th eo rem  f o r  t h e  FLIL 

( S t r a s s e n  ( 1 9 6 4 ) ,  W ichura (1 9 7 3 ) )  i n  t h e  form we r e q u i r e .

LEMMA 3o403o Let ( ft ,  F, Pr) be a p r o b a b il i ty  space and S , S ' 

m etric  spaces w ith  K a compact su b se t o f  S . Let f  : ft -* S be

mappings such th a t  { /  (w)} 3 a> € ft i s  a . s .  r e la t iv e ly  compact in  S and

has X as i t s  s e t  o f  l im i t  p o in ts . L et S S ' be a continuous

mapping;  then a . s . the sequence $ ( /  (w)) i s  r e la t iv e ly  compact in  S '

and i t s  s e t  o f  l im it  p o in ts  i s  <KiO . □

We w ish  t o  r e l a t e  t h e  FLIL on £>^[0, 00) and £>^[0, s ]  , s  > 0 , t o  

each  o t h e r .  T h is  can be done i n  t h e  same way as W hit t  (1971) f o r  weak

c o n v e rg e n c e .  L e t  t h e  c o n t in u o u s  mapping r  : iP \_ 0 ,  °°) -*• Z? [ 0 ,  s ]  ,s

s > 0 , be  d e f i n e d  by r  (x ) ( t ) = x ( t )  , 0 < t  < s  , f o r  a r b i t r a r ys

x € £>^[0, 00) . Then we o b t a i n

LEMMA 3 04 . 4 U 4 random v e c to r  { x^i t ) }  in  iP {_0 ,  00) s a t i s f i e s  a FLIL 

i f  and only i f  the random sequences { r  [X ) ( £ ) }  in  £ ^ [ 0 ,  s ]  s a t i s f y  a
S Yl

FLIL fo r  each s > 0 .

P r o o f .  The fo rw a rd  d i r e c t i o n  f o l lo w s  im m e d ia te ly  from  Lemma 3 . 4 . 3  and

o b s e r v in g  t h a t  r  [xP'] - Xp . C o n v e r s e ly ,  t h e  r e l a t i v e  com pac tness  o f  s s

\x  ( t ) }  f o l lo w s  from t h a t  o f  \ r  fx l ( t ) }  , a l l  s  > 0 , by an e a sy  1 n 1 s v nJ
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e x t e n s i o n  o f  Theorem 2 .3  o f  W h it t  (1971) t o  [_ 0 ,  °°) 0 T ha t  t h e  d e r iv e d

s e t  i s  K? e n s u e s  e a s i l y  from  th e  form  o f  , □

We r e q u i r e  t h e  f o l l o w in g  s im p le  r e s u l t  i n  S e c t i o n  3 . 4 . 2 .  Let

2 2
0 < A < 1 , a  > 0 , 3 2 : 0 ,  Aot + 3 = 1 and d e f in e

g : £ 2 [ 0 , s ] + Z7 [ 0 , s ]  by

g(y> z )  = ay(A«) + 3 s (* )  . ( 4 . 1 . 3 )

LEMMA 3 „ 4 o 5 „  g(K2) = K1 .SJ s

P r o o f .  L e t  x  € , and d e f i n e  z ( t )  € D[ 0 ,  s ]  by s ( t )  = 3x ( t )  .
s

A lso  d e f i n e  y ( t )  € £>[0, s ]  by

y ( t )  = aXx( t / X)  , 0 < t  < As

= aXx(s)  , As < t  < s .

Then c l e a r l y  ( y ( 0 ) ,  s ( 0 ) )  = ( 0 ,  0) , and ( y ,  2 ) a r e  a b s o l u t e l y  

c o n t in u o u s  w i th  r e s p e c t  t o  L ebesgue m easu re .  A lso

\y(  t ) 2+ z ( t ) 2] d t  =
0

r ac> 2 , 2a  A dx(u)
du d t  + 3 ' x ( t ) zd t

x ( t )  d t  < 1

where we have  made th e  change o f  v a r i a b l e  t '  = t / X  i n  t h e  f i n a l  s t e p .

2 1 2
S in c e  x { t )  ~ ay( Xt )  + 3 s ( t )  , ( y , z )  € K , K a  g[K ] .

5  S ' S

2 -j 2
Now t o  p ro v e  <7 (x ) cz K . L e t  (y^ z )  £ K . C l e a r l y  ^ ( y ,  s ) ( 0 )  = 0 , 

s J s s

and g ( y , 2 ) i s  a b s o l u t e l y  c o n t in u o u s  w i th  r e s p e c t  t o  Lebesgue m ea su re .
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S r dy{Xt) n*, , 2 7,
(X  ~*~77—  + 3 z ( t ) \  dt

0 ' d t

(a2+ß2A X) t  (Aa2+ß2) a ( t ) 2 - j a A a ( t )  -  ßA * dt

5 (a2+ß2A 1) A
rXs

y( t )  dt  + z ( t )  dt

[y( t )^+z( t )^)dt  < 1 . □

For x f y € Dl0 ,  s ]  , s > 0 , d e f in e  th e  supremum m e t r i c  by

p U ,  y )  = sup Ijc( t ) - z / ( t )  I ( 4 . 1 . 4 )
0<t<s

and th e  modulus o f  c o n t i n u i t y  o f  x by

w (tf, 6) E sup |a( t)-a r(M) I . ( 4 . 1 . 5 )
0< t ,u < s  
I t -w I<6

In Lemma 3 . 4 . 7  and Theorem 3 . 4 .8  we w i l l  need

LEMMA 3o4o60 I f  a process  [Xn ( t ) } on D[o,  °°) s a t i s f i e s  a FLILj 

then fo r  any s > 0 3

(a) ps ^ n »  ^  0 a *S* ^  00> *

l im  l im  sup w ( j  , 6} = 0 a . s .
640 n-*°° S n

Proof .  (a) S ince  K1 i s  t h e  d e r iv e d  s e t  in  t h e  Skorokhod topologys
(m e t r ic  d ) on Z)[0, s ]  , d [x , £"*") -> 0 a 0s .  Hence f o r  each u) € ß ,

S S Yl S

£ > 0 , t h e r e  e x i s t s  an w (w, £) such t h a t  f o r  each n > n ^ ( 0), e)  t h e r e

i s  z (u), e )  £ K1 s a t i s f y i n g  
?2 3

d , 2  ) < e . ( 4 . 1 . 6 )s K n nJ

Now i f  A i s  t h e  s e t  o f  i n c r e a s i n g  i n v e r t i b l e  maps [ 0 ,  s ]  -► [ 0 ,  s ]  s

\Xn ( t ) -Zn (-t ) \-  IVt)-an(X»(t)h +
1 ^

f o r  any X € A . S ince  s ( X , 12  ( a ) - s  (b) \  < ( a - b ) 2 , and byJ n n s ' n n 1 *
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( 4 . 1 . 6 ) ,  sup IA ( t ) - t  I < e f o r  some X . Hence p j l  , X1) < £ + £ 2 , v n n s Yi s

i . e .  , (a)  h o l d s .

(b)  can th e n  be p ro v e d  as i n  I g l e h a r t  ( 1 9 7 1 a ) ,  Theorem 3 .3  ( s e e  Problem  

6 . 4 . 2 ) .  For  c o m p le te n e s s ,  we g iv e  i t  h e r e .  C l e a r l y  f o r  2 € ,

w ( 2 , 6 ) < 6 2 . But f o r  e > 0 ,  w € ft , n > n^(w , e )  , t h e r e  e x i s t s  ( a s  
3 0

i n  f a ) )  a  z  ( ^  su c h  t h a t  n s

Us (Xn> 6) 5 “JV  5) + 2ps K >  Zr) ~ + 26
u s in g  ( 5 .1 3 )  o f  C h a p te r  1 ,  and t h e  c o n c lu s io n  f o l l o w s .  □

T h is  p r o o f  depends s t r o n g l y  on t h e  p r o p e r t i e s  o f  K I t  i s  n o t  s im p lys

a r e s u l t  o f  t h e  r e l a t i v e  com pac tness  o f  p r o c e s s e s  s a t i s f y i n g  t h e  FLIL ( i . e . ,  

o f  t h e  A r z e l a - A s c o l i  Theorem ( B i l l i n g s l e y  ( 1 9 6 8 ) ,  p 0 2 1 1 ) ) ,  a l t h o u g h  f o r  

p r o c e s s e s  ' s u f f i c i e n t l y  l i k e  t h o s e  i n  C [0 ,  s ]  ' i t  i s  ( s i n c e  t h e  Skorokhod 

to p o lo g y  r e l a t i v i z e d  t o  C c o in c i d e s  w i th  t h e  u n i fo rm  to p o lo g y  t h e r e ) .  For

[nt]
i n s t a n c e  i f  S ( t ) = £  X . / o$(n)  s a t i s f i e s  a  FLIL, where {^ .}  i s

n 0 0

s t a t i o n a r y ,  E X = 0 and a  i s  some p o s i t i v e  c o n s t a n t ,  and i f  we

a s s o c i a t e  w i th  <S ( • )  i t s  l i n e a r  a p p ro x im a t io n

S ' ( t )n

-Cnt]
Y X .+ ( n t - k ) Xk+1 /ocj)(n) ks  < nt  < fcs+l , 0 < k < n s - 1 ,

th e n  p (s 9 5 ' )  < max |X. |/a<j>(w) . ( 4 . 1 . 7 )
s "  n I<ksns

C l e a r l y  t h e  RHS o f  ( 4 . 1 . 7 )  -> 0 a . s .  i f  \X \ / § ( n)  -* 0 a . s .  w hich

2
f o l lo w s  from th e  B o r e l - C a n t e l l i  Lemma i f  E X ^ < 00 ( s e e  P roblem  6 . 4 . 3 ) .

T h is  ty p e  o f  a rgum ent may a l s o  be a p p l i e d  t o  = (19( 0 , nt~\-rrmt] / o$(n)

f o r  a  s u i t a b l e  p o i n t  p r o c e s s  19 . The p o i n t  i s ,  t h o u g h ,  t h a t  i f  t h e  d e r iv e d  

s e t  i s  n o t  K1 ( e . g . ,  Theorem 4 .2  o f  I g l e h a r t  ( 1 9 7 1 a ) )  f o r  some p r o c e s s  

X ( t )  w hich  i s  r e l a t i v e l y  compact i n  D , and X  ̂ i s  n o t  ’ s u f f i c i e n t l y  l i k e
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a p r o c e s s  i n  C [0 ,  s ] f , Lemma 3 .4 .6  w i l l  have  t o  be r e p r o v e d  b e f o r e  i t  can 

be u s e d .

F i n a l l y  we r e q u i r e  a ’random change o f  t i m e ’ lemma: t h i s  r e s u l t  h a s

been  o b s e rv e d  b e f o r e  by Freedman (1967) and I g l e h a r t  ( 1 9 7 1 b ) ,  a l th o u g h  n o t  

q u i t e  i n  t h i s  s e t t i n g .

LEMMA 3 04u7o L e t {x (£ )}  and {/!/,} ( t  > 0) be processesn n— 3 t

d e f in e d  on a space  (ft ,  F, Pr) such th a t  iV > 0 3 N f  00 ( t  •+ 00) and 

N / t  0 < m < 1 a . s .  ( t  +  °°) ;  i f  {J  ( • ) }  s a t i s f i e s  a FLIL; then
~D Yl

upon s e t t i n g

$ (£ )  = N J n  3 ( 4 . 1 . 8 )n n t  J

Xn (<m' ) '} *  0 a *S *9 eaoh S >  °  *

Remarko T h is  o f  c o u rs e  means t h a t  X f $  ( • ) ]  and X (nr)  obey th en v n J n J

same FLIL on Z)[0, s ]  , any s > 0 , and hence  on £>[0, °°) by Lemma 3 . 4 . 4 .

P roo fc  The p r o c e s s  N_̂  obeys a f u n c t i o n a l  s t r o n g  law o f  l a r g e  numbers 

( a s  p e r  I g l e h a r t  ( 1 9 7 1 b ) ,  Theorem 3 01 ) ;  h e n c e ,  a . s .  f o r  each  U) € ft ,

6 > 0 , t h e r e  e x i s t s  an = n Q(w, 6) such  t h a t  f o r  n > ,

ps (*„(•), H  s &

H ence , c h o o s in g  6 < s ( l -m )  , f o r  n > n^ ,

ps 4 „ ( V - > ) ,  y »•)) 6)

and t h e  c o n c lu s io n  f o l lo w s  from  Lemma 3 .4 .6  (b ) „ □

3 04 o 2 0 THE LIL FOR PROCESSES WITH RIGHT HAND CLUSTERS

We a r e  now i n  a p o s i t i o n  t o  p ro v e  o u r  th eo re m  f o r  c l u s t e r  p r o c e s s e s  wit. 

r i g h t - h a n d  c l u s t e r s .  We must sup p o se  t h e  c e n t r e  p r o c e s s  and p r o c e s s  o f  

s u b s i d i a r i e s  t o  be d e f i n e d  on t h e  same sp a ce  M x N“ .

Once a g a in  we su p p o se  o u r  p r o c e s s e s  s t a t i o n a r y 0 L e t  

Z ( t )  = (W(0, nt~\~rmt) /o^fyin) , ( 4 . 2 . 1 )
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[ n t ]
Y ^ t )  E S  .U ? ) - l i ) / o 2<J>(n) ( 4 . 2 . 2 )

J=1

f o r  some a p p r o p r i a t e  c o n s t a n t s  ö 1 : where <f)(n) = (2n lo g  l o g  n ) %

2 2 2 2Then s e t t i n g  o = p + mo  ̂ , we d e f i n e

Z ( t )  = (n ( 0 ,  n t ] - m  wt) /a<J>(w) . ( 4 . 2 . 3 )

THEOREM 3 . 4 . 8 .  1 /  Y ) j o i n t l y  s a t i s f y  a FLILi i . e . 3 i f

(Z^, Y^J i s  r e l a t i v e l y  compact in  D [ o ,  00) x -  a . s .  and /zas Z 

a s  i t s  s e t  a /  l i m i t  p o i n t s 3 and i f  e i t h e r

E^{N (u 9 00)} /  ( l o g  lo g  u)^du < 00 ( 4 . 2 . 4 )

or3 i f 3 in  the no ta t ion  o f  ( 3 .1 ) . ,

fOO

uR(u)du < 00 ( 4 . 2 . 5 )
'  0

then x ?2 -  a . s .  Ẑ  i s  r e l a t i v e l y  compact in  D\_0 ,  °°) u£t?z l i m i t

s e t  K1 .

Remarks.  The c o n d i t i o n  on [x , Y ) and ( 4 . 2 . 4 )  and ( 4 . 2 . 5 )  w i l l  be
 ̂ n nJ

d i s c u s s e d  i n  S e c t i o n  3 . 4 . 3 .  We w i l l  t a k e  m < 1 , a c o n d i t i o n  e a s i l y  

a c h i e v e d  by s c a l i n g  ( s e e  Problem 6 . 4 . 4 ) .

P r o o f .  C l e a r l y  ( r e c a l l i n g  t h a t  mQ - p m  ) ,

Zn ( t )  = a 1ya1Z^(t) + a ^o^Yn [N{0 9 nt~\/n)

2
D ef ine  a  c o n t i n u o u s  mapping g : D [ 0 ,  s ]  D [ 0 ,  s ]  bys

9S(X > y)  = (cTjTkK* )+a22/(w )) /a .

E x p r e s s i n g  t h e  f i r s t  two t e r m s  o f  ( 4 . 2 . 6 )  i n  t e r m s  o f  g , we f i n ds

( 4 . 2 . 6 )

( 4 . 2 . 7 )
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pa ^ 8 ^ n ( , ) * y n ^ ( 0 > 9e ixn > yn ) )

= c,*"l a 2ps 4 n (^ (°  > » * ] / « ) ,  * , ( ”>•)) -*- 0 , PL * ? 2 -  a . s .

b y  Lemma 3 . 4 07 0 H e n c e  t h e  FLIL f o r  t h e  f i r s t  t w o  t e r m s  o f  ( 4 . 2 . 6 )  i s  t h e  

sa me  a s  f o r  g q [X̂ , Y ) , w h i c h ,  b y  Lemma 3 . 4 03 ,  i s  r e l a t i v e l y  c o m p a c t  i n

DL0 ,  s ]  a n d  h a s  g {K ] -  K (Lemma 3 . 4 . 5 )  a s  i t s  s e t  o f  l i m i t  p o i n t s „
S  S '  S

T h e n ,  d e f i n i n g  g : £ 2 [ 0 ,  °°) ■> h>[0,  «>) a s  i n  ( 4 . 2 . 7 ) ,  g[x , Y ) i s  a l m o s ty K n nJ

s u r e l y  r e l a t i v e l y  c o m p a c t  i n  Z?[0,  00) w i t h  l i m i t  s e t  K1 (Lemma 3 . 4 . 4 ) .

We now p r o v e  t h a t  t h e  c o n d i t i o n  ( 4 . 2 . 4 )  g u a r a n t e e s  t h a t  t h e  r e m a i n d e r

t e r m s  i n  ( 4 . 2 . 6 )  c o n v e r g e  a l m o s t  s u r e l y  ( i . e . , p ( r e m a i n d e r  t e r m s ,  0 )  +  0 ,s

x _ a » s . )  t o  z e r o .

F o r  a n y  a r b i t r a r y  f i x e d  s > 0 , d e f i n e  r a n d o m  f u n c t i o n s  i n  £ [ 0 ,  s ]  by

Yw( £ )  = ( n + ( 0 ,  nt~\-mjit) /ocp(n)

N(0 , n t ]
0 ( t )  = t  N . ( c  , ~)/(|)(n) , n • J   ̂ rrms J r  9

«7=1

w h e r e  t  00 ( n  ->■ 00) . N o t e  t h a t  y ' ( • )  r e p r e s e n t s  t h e  f i r s t  t w o  t e r m s

o f  ( 4 . 2  o6 ) .  Now 

r^(0 . n t ]
£  °°) / (p(n) , 0

«7 = 1

0 (e) + p (n+ (n£-c , n t]  o )
r ?  .<? ^  ^  runs9 * '

< 0 ( s )  + op (y (£)» Y ( t - c  /n ) )  + pc /cj)(n) . ( 4 . 2 . 8 )s K n rrms rrms

We t a k e  o -  o(cj)(w))  , s o  t h a t  t h e  f i n a l  t e r m  o f  ( 4 . 2 . 8 )  c o n v e r g e s  t o

z e r o .  The  s e c o n d  t e r m  o f  ( 4 . 2 . 8 )  h a s  a n  u p p e r  b o u n d  o f  <jw (y , a / n1 ,
s u n rrms J

w h i c h ,  b y  Lemma 3 . 4 . 6 ,  c o n v e r g e s  t o  z e r o  a l m o s t  s u r e l y  s i n c e  we h a v e  p r o v e d

Y i t )  s a t i s f i e s  a  F L I L .  We now t a c k l e  t h e  f i r s t  t e r m .  T h i s  t e r m  c a n  b e  n

h a n d l e d  u s i n g  a  g e o m e t r i c  s u b s e q u e n c e  a r g u m e n t ,  b u t  i t  s e e m s  w o r t h w h i l e  t o
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record the following alternative argument, which yields exactly the same 
condition. Let

[m t ]

5 £  V em S > “ )'+<"> •

Since X  satisfies a FLIL, there exists, for any 6 > 0 and for each

N t hi (P^ - a.s.) , a n Q^ s  5) such that for n > n^(N, 6) ,

[w (ot£-6)] 5 iV(o, nt] 5 [n(wf+6)] , 0 < t < s .

Hence, for n > n ^(N, 6) ,

PA ’ ^  S U8(0n> 6) 5 2Ps(0n’ °) = 20P S>
and 0 (s) -> 0 a.s. if 0'(s) -► 0 a.s. But n n

-[ms]
I

j =i
and the RHS of (4.2.9) converges to zero if the first factor converges to

([ms] n
0'(s) < \ £  N.[o., <»)/(j)([ms]) |.{(f)([ms])/(J)(n)} (4.2.9)n  l -7=1 J  3  J

zero, i.e., if N .(c a.s. by Kronecker’s Lemma. But by• -> J J«7=1
monotonicity, we only require a subsequence to converge, i.e.,

N(0,n]Z °°) /<Kj ) -> x P0 - a.s.
«7=1

(4.2.10)

We require c . = 0(<j>(j)) , so we take <?. = rn %(j log log log j)% ;J J
sincethe LHS of (4.2.10) will converge if it has an asymptotic upper bound wh

converges, and since t ./j + w_1 a.s. (of. Proof of Theorem 2.4.1 (b)),
0

we require only the convergence of

tf(0,n]
I  “ IM * ,-)  •J=1 J 3

(4.2.11)

By the sub-martingale convergence theorem (Breiman (1968), p. 89), a 

sufficient condition is

lim sup 
rr*»

E 2{Nj (.̂ u 9 °°)}/(w log log u)^du < 00 .
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Changing variables u' = fü gives (4.2.4). Note that a finer condition can 
be obtained by refining the ft factor in (4.2.11), but since the resultant 
expression is untidy, and there is a grosser approximation in the argument 
(see Problem 6.4.5), we have not given it.

The final term of (4.2.6) may be dealt with by a standard geometric 
sybsequence argument, which we will not elaborate on. It yields the 

condition (use Chebyshev’s inequality, the Borel-Cantelli Lemma, bound sums 
by integrals, exchange integrals of. proof of Theorem 2.4.1 (b))

E^{N^(u 9 °°)}/fü du < 00

which is weaker than (4.2.4).

To obtain the condition (4.2.5), we now employ a geometric subsequence

r 2&iargument on 0 (s) • Let a > 1 , and consider = [a J , H  Z+ .

For an arbitrary fixed £ > 0 , writing din) = o , definemns

N[0,r t]

Bk = ( Z  > “) > • Then Clearly
J-l

P  ̂x P^{0^(s) > etyin) i.o.} 5 P^ x P2{b  ̂ i.o.}, since, if for some l ,

6 (l) > £({)(Z) , then, setting 2\(Z-) to be the next term in the geometric yi k.

subsequence greater than l , B^(Z) holds (in an obvious notation). We

require P x P^{ b ^ i.o.} to be zero, which occurs if £ P^xp^jp^} < oo by

the Borel-Cantelli Lemma. Arguing as in (3.11), and choosing din) = /n 

[we require din) = o(c|)(n)) , and choosing finer din)’s leads to intractab

expressions], this occurs if

E r /cÄ4fe-i) sk= 3 K K
20Dr 6-3̂  a R [ ol Ja0

< (a /log a] uRiu)du < oo ,

0—3where we change variables u - a in the last step.
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The f i n a l  te rm  o f  ( 4 . 2 . 6 )  c o n v e rg e s  t o  z e ro  a . s .  u n d e r  t h e  c o n d i t i o n  

( 4 . 2 . 5 )  by Lemma 3 . 3 . 1 .  □

COROLLARY 3 . 4 . 9  (O r d in a r y  Law o f  t h e  I t e r a t e d  L o g a r i th m ) .  Under the

con d ition s  o f  Theorem 3 .4 .8 . ,

l im  sup Z (1 )  = +1 , l im  i n f  Z (1 )  = -1  n n

P r o o f .  As i n d i c a t e d  by S t r a s s e n  ( 1 9 6 4 ) .  □

3 . 4 . 3 .  COMMENTS

(a) The LIL f o r  p r o c e s s e s  w i th  d o u b l e - s id e d  c l u s t e r s

I f  t h e  c l u s t e r s  can  o c c u r  on t h e  l e f t - h a n d  s i d e  o f  t h e i r  i n i t i a t i n g  

p o i n t s ,  we o b t a i n  more r e m a in d e r  te rm s  which we must p ro v e  c o n v e rg e  t o  z e ro  

a lm o s t  s u r e l y .  Most o f  t h e s e  can be h a n d le d  a s  b e f o r e ,  b u t

00

Z  N A - t . ,  n - t .] /<f>(n) ( 4 . 3 . 1 )
j=N(o , n ] + l  J J J

p ro v e s  d i f f i c u l t .  I f  t h e  l e f t - h a n d  c l u s t e r s  have bound d  , t h e n  °° in  

( 4 . 3 . 1 )  may be r e p l a c e d  by N( 0 ,  n+d~\ , and t h i s  c o n v e rg e s  t o  z e ro  a . s .  a s  

d o e s  y (£ )  i n  ( 4 . 2 . 8 ) .  In  t h e  g e n e r a l  c a s e ,  i f  we r e p l a c e  il/(0, n ]  + 1

in  ( 4 . 3 . 1 )  by o? ri\ + 1 f o r  some a  > 1 , t h e n  we can p ro v e  c o n v e rg en ce

u s in g  t h e  s t a n d a r d  g e o m e t r i c  su b seq u en ce  a rgum en t and C h eb y sh ev ’s i n e q u a l i t y  

u n d e r  t h e  c o n d i t i o n

.00

E {N ( - 00, -u~\}//ü du < 00 .
J 1 1 1

C o n d i t io n s  e n s u r i n g  t h a t  t h e  r e m a in d e r  [ th e  sum from  N(0,  n~\ + 1 t o  

2
N[o9 a  rij ) co n v e rg e  t o  z e ro  a . s .  seem e l u s i v e .  The r e a s o n i n g  a ro u n d  ( 3 . 1 2 )  

has  a l s o  d e f i e d  e x t e n s i o n  t o  t h e  a . s .  co n v e rg e n c e  c a s e .

(b) The c o n d i t i o n s  in  Theorem 3 . 4 . 8 .

I t  i s  c l e a r  t h a t  i f  t h e  c l u s t e r s  have  o n ly  one member e a c h ,  t h e n  

( 4 . 2 . 4 )  i s  much weaker t h a n  ( 4 . 2 . 5 ) .  On t h e  o t h e r  h a n d ,  i t  i s  e a s y  t o  

c o n s t r u c t  exam ples  i n  w hich  ( 4 . 2 . 5 )  i s  s a t i s f i e d  b u t  ( 4 . 2 . 4 )  n o t ,  b u t  m o s t ly



80

t h e s e  in v o lv e  N (R) n o t  h a v in g  a f i r s t  moment. The f o l l o w i n g  example

i n d i c a t e s  t h a t  u n d e r  f a i r l y  r e a s o n a b l e  c i r c u m s ta n c e s  ( 4 . 2 . 4 )  may be much 

w eak e r .  A g e n e r a l  co m p a r iso n  does  n o t  seem f e a s i b l e .

The c l u s t e r  members o f  a  B a r t l e t t - L e w i s  p r o c e s s  form  a f i n i t e  

r e n e w a l  p r o c e s s  o f  l e n g t h  S , where t h e  i n t e r - p o i n t  t im e s  a r e  i . i . d .  w i th  

common d i s t r i b u t i o n  F and in d e p e n d e n t  o f  S . Let

CO

R ( r )  = £  Pr{S  = j )  . T hen , u s in g  Lawrance ( 1 9 7 2 ) ,  E q u a t io n  ( 4 . 3 . 7 ) ,
j = r + l

( 4 . 2 . 4 )  becomes

r°° ° °

Y, R ( i )  ( w)) /  ( l o g  lo g  < »  . ( 4 . 3 . 2 )
J e  i = 0 S

S u ppose ,  f o r  e x am p le ,  t h a t  F h a s  r e g u l a r l y  v a r y i n g  t a i l s  w i th  exponenl 

a  > 0 ( s e e  F e l l e r  ( 1 9 6 6 ) ,  p .  2 6 8 ) ,  i . e . ,  a s  u ■+ °° ,

1 -  F(u)  ~  u ^ L i u )
A

where L( s )  -  0 i s  o f  s low  v a r i a t i o n .  T hen , u s in g  th e  C o r o l l a r y ,  p .  272 o f

F e l l e r  ( 1 9 6 6 ) ,  and p r o v id e d  < 00 > ( 4 . 3 . 2 )  r e d u c e s  t o

c°°

L ( u ) / [ u a ( l o g  l o g  u)^)du  < 00 ,
e

so t h a t  even i f  L(u)  i s  bou n d ed ,  we s t i l l  r e q u i r e  a  > 1 , a r a t h e r  s t r o n g

OO

c o n d i t i o n .  However, R(u)  = £  P r i S - j }  ( l - i ^  (w))  , so t h a t  ( 4 . 2 . 5 )  w i l l
«7=0

r e q u i r e  a  > 2 , a  much s t r o n g e r  c o n d i t i o n .

The a s su m p t io n  t h a t  X and 7 j o i n t l y  s a t i s f y  a  FLIL w a r r a n t s  some
n n

a t t e n t i o n .  C e r t a i n l y  t h i s  i s  t r u e  i f  t h e  c e n t r e  p r o c e s s  i s  a s t a t i o n a r y  

r e n e w a l  p r o c e s s  ( o r  t h e  s u p e r p o s i t i o n  o f  s t a t i o n a r y  re n e w a l  p r o c e s s e s )  whose 

second  moment e x i s t s ,  and t h e  c l u s t e r s  a r e  i . i . d . :  f o r ,  i f  and

a r e  in d e p e n d e n t  Brownian m o tio n s  on a common space  ft , and we r e d e f i n e  X

and Y a l s o  t o  be on ^  we can show p (x , W ) 0 a . s .  ( I g l e h a r tn s  n n
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(1971a), Section 2) and P( y , Wn n̂ -+ 0 a.s. (Strassen (1964)), where

i- . 2W (t) = W.(nt)/§(n) , %  -  1 , 2 . Hence if p , is the product supremum
Yl is S

2 2metric for 6' [0, s] or Z? [0, s] ,

0 , Y ) ,  ̂n 5 nJ ’ {71, f/2n n ^ 0  a.s. (4.3.3)

The result then follows from Strassen (1964), Theorem 1, who employed the 

Skorokhod representation theorem approach. Alternatively, if the centre 

process T\ and process of subsidiaries T) possess some form of asymptotic 

independence, say (j)-mixing, and given this, satisfy the conditions of 

Corollary 3 of Heyde and Scott (1973), then again the above Skorokhod type 

approach, as used by Heyde and Scott, will prove that the joint FLIL follows 

merely from the individual FLIL’s and the independence of X^ and X .

Alternatively, for n and ri 4)-mixing or strongly mixing, we may possibly 

use Chover’s (1967) approach as applied by Oodaira and Yoshihara (1971a, b) 

to demonstrate this. It is intuitively clear, however, that the joint FLIL 

will not necessarily follow from merely the individual FLIL’s and independenc 

we need some statement such as (4.3.3) on the ’density’ of subsequences 

converging to particular points in the limit set. Indeed, in order to 

satisfactorily achieve this, we may need to define the LIL for processes via 

an appropriate generalization of (4.3.3).

3.5. Related topics

3.5.1. FUNCTIONAL STRONG LAWS FOR CLUSTER POINT PROCESSES
The strong law of large numbers for cluster processes has been 

investigated by Daley (1972). Here we strengthen his theorem, as well as 

generalize it to the functional case.

Let T : N -> N , S-, : -> NZ and T' : W x NZ N x W2 be defined
y K- y

analogously to (3.1), (3.2) and (3.4) of Chapter 2, and let , T a n d  T
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denote their respective invariant cr-fields. We will assume and P1 2

stationary (Theorem 3.2.3).

THEOREM 3.5.1. If the centre process P i s  stationary with 

p y n o ,  1] < 00 , and the process of subsidiaries P is stationary with 

V l (Ä) < 00 j then

lim n (0, n\/n -  E x E {n (0, 1]|T} , . P x p -  a.s.3 
G L i e  1 2

where x #  ) r ^ ( ° 9 1] = E {N(09 1 ] }P {il7 (Ä )} < 00  ̂ and

E1 X E2(nc( o, 1] |T} = q(ff(0, 13 |T1 }£’2 {W1 (i?) |T2} . (5.1)

Remark. The LHS and RHS of (5.1) are random variables on H x W 

(see Problem 6.4.6).

Proof. Omitted. Similar to the proofs of Theorem 5, Daley (1972) and 

Theorem 2.4.1 (a). □

COROLLARY 3.5.2. If the conditions of Theorem 3.5.1 are satisfied3 ana 

{N(0, n~\ : n >  1} and [N^(R) : i > l} both satisfy the strong law of

large numbers P^ - a.s. and P2 - a.s. respectively3 then as n -+ 00 ,

nc(05 n V n  + E^NiO, l ^ E ^ N ^ R ) } < « , p x P^ - a.s. □

COROLLARY 3.5.3. Let LQ(t) = E±{N(0, 1] | | T2}t 3

t 6 [0, s] . Then if p is the supremum metric on P[0, s] , and thes

conditions of Theorem 3.5.1 are satisfied3
ps (nc(°, n«]/n, Ls) -* 0 ,, P± x P2 " a,St

Proof. Repeat the argument in Iglehart (1971b), Theorem 3.1, for each 

2
(N, N) € M x SI for which convergence of n (0, n~\!n holds. □

c

3.5.2. THE LAW OF THE ITERATED LOGARITHM FOR THE G/G/°° QUEUE

The LIL for the "number of servers process" of the q /£/°° queue may be 

proved using similar techniques to those for cluster processes (note that
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here we only have right-hand 

Let the arrival process r|

’clusters'). Hence we will give no proofs.
and the process of service times {7.} be definec

0

on a common probability space (fi, F, Pr) (we need this formulation in 

Corollary 3.5.5). Let
A (£) = (n(0, nt~\-mnt) /o^>(n)

Oi]
sAt) = Y. [ v ^ i v ^ / o M n )  

i-1

for some appropriate constants G^, G^ , w = E q(0, 1] < 00 , where

hc|>(w) = (2n log log n)
TH EO R E M  3.5.4. Suppose q and {7.} are stationary with finite

d

second moments, and (4 , S^) jointly obey a FLIP; then the process

m(s)ds-mE[v^)nt /o<p(n)

O s  0 0 0
obeys a FLIL, where a = (EV ) a + m o . □

Once again we require m < 1 . A similar theorem holds if q is 

replaced by q° , the arrival process corresponding to P^ (see Section

2.4). The proof again consists of approximating by a coherent mapping, and 
showing various remainder terms converge a.s. to zero. Geometric subsequence 
arguments suffice for this latter half of the proof, indeed, seem necessary

for the q° case, but in the q case neater proofs can be devised via 

Kronecker’s Lemma and monotonicity.
We will say that a process X(t) , t >  0 , obeys the ordinary law of 

the iterated logarithm (OLIL) if, with W(t) , t > 0 , a Brownian motion 
defined on the same space (ß, F, Pr) ,

\x(t)-<b(t) 1W(t) I + 0 a.s.

The techniques of the proof of Theorem 3.5.4 reveal
COROLLARY 3 05 05 (see Problem 6.4.7). If the arrival process is
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stationary with m < 00 3 and A (1) obeys an OLIL3 and the service times 

are i.i.d. with finite second moment, then

Note that the FLIL has been proved under weaker moment conditions than 

the functional central limit theorem. Also, if a non-stationary arrival 

process n (with appropriate centring and norming) satisfies the OLIL, and

process.

3.5.3. LIMIT LAWS FOR THE DOUBLY STOCHASTIC POISSON PROCESS

Kingman (1964) has shown that a doubly stochastic Poisson process may 

be represented as a random time transformation of a stationary Poisson 

process of unit parameter. Hence it is unnecessary to prove functional 

limit laws for these processes, as they will follow from e.g. Section 17 of 

Billingsley (1968), or Lemma 3.4.7 here. Ordinary central limit theorems 

can be deduced from Lemma 2.501, rendering unnecessary the characteristic 

function techniques of Grandell (1971), at least in his cases 0 < k < 00

0
obeys the OLIL. □

(see Problem 6.4.8).
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CHAPTER 4

ASYMPTOTIC INDEPENDENCE OF POINT PROCESSES, PARTICULARLY CLUSTER PROCESSES 

4 0lo Introduction

The concept of asymptotic independence arose simultaneously with 

ergodic theory, and its suitability, in the form of strong mixing and 
0-mixing, as a sufficient condition for central limit theorems has been 
known since the papers of Rosenblatt (1956), Billingsley ((1956), (1962)) 
and Ibragimov (1962). Important recent developments are due to Oodaira and 
Yoshihara ((1971a), (1971b), (1972)) and Heyde (1974). Stronger mixing 

conditions have also been studied e.g. Philipp (1969).

Our original motivation for considering 0-mixing of point processes 
was the hope that it would be preserved under the clustering operation 
(independent subsidiaries), and hence give a simple avenue to functional 
limit theorems for cluster point processes (Daley and Vere-Jones (1972), 
Theorem 8.6). In fact, Westcott (1973), (Concluding remarks), suggests that 

limit laws obtained by more direct methods (as in Chapter 3) should be 
weakened in the presence of a mixing condition. However, our investigations 

suggest that, unlike weaker forms of asymptotic independence (Westcott 
(1971), (1972)), 0-mixing and strong mixing are only maintained under extra 

conditions, which are quite severe (bounded clusters) in the case of 

0-mixing.
Our basic definitions conclude this section, and in Section 4.2 we give 

two examples of point processes which are not 0-mixing; the first of these 

examples illustrates, in Section 4.3, the problem of characterizing complete 
0- and strong mixing, and that complete mixing (or 0-mixing) on a 

determining class is not always sufficient to establish complete mixing 

(respectively 0-mixing). Section 4.4 investigates the preservation of 
various modes of mixing under clustering, and Section 4.5 contains concludir
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remarks.

We will need the following definitions: let

o[N(B)) E a {{N(A) = k}9 A 6 S(i?) n B, k 6 Z } , 5 € B(i?) ,gen .

i.e., the smallest ö-field such that the maps N •— *■ N(A) (for any 

A ( S(i?) n ß ] from W R are measurable.

We shall introduce the term 'complete mixing' for a stationary point 

process P satisfying, for a given function y(*) ,

\P{C n D)-P(C)P(D)\ 5 y(T)P(C)P(D) (1.1)

whenever C € a(W(-°°, £]) , D € a(W(£+x, °°)) , t £ R , x > 0 . Here 

Y : [0, °°) -> [0 9 1] is a monotone decreasing function satisfying 

lim y(i) = 0 • This type of mixing appears in at least one paper of Philipp

(1969). As a non-trivial example (not a point process), consider a process 

that is defined as a real-valued function on the state space of a discrete 

time aperiodic irreducible stationary Markov chain on some finite state 

space. Such a process is completely mixing (for proof, see Billingsley 

(1968), pp. 167-8, where the example is used to illustrate the weaker concept 

of <j)-mixing).

A stationary point process P is ^-mixing for a given function 4>( •) 

if

IP(C n D)-P(C)P(D) I 5 (P(t )P(C) , (1.2)

and strong mixing for a given function a(*) if

\P(C n D)-P(C)P(D)\ < a(x) , (1.3)

where C and D are as before, and <J>(x) and a(x) have the same 

properties as y (t ) (see Problem 6.5.13).

In the following we will assume, as usual, that the centre process is 

stationary, and that the process of subsidiaries is stationary as well as 

being independent of the centre process0 Also, we will take it for granted 

that our cluster processes exist (in the sense of Theorem 3.2.2), and the

subsidiaries are a.s. finite.
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4o2u Two examples of point processes which are not ^-mixing

It is well-known that the output of a stationary M/G/°° queue is a 

stationary Poisson process, being equivalent to the random translations of 
points of the original (input) process (see, e.g. , Daley (1975) for 
references).

Let Gß (6 > 0) denote a distribution function satisfying

Ĝ (x) = 0  , x < 6 ,

= G(x-S) , x > 6 , (2.1)
where G(x) is any arbitrary distribution function on [0, 00) . The 

following is true:
THEOREM 4o2010 Superposing the input and output of a M/G/°° queue 

for whioh G(x) < 1 for all finite x results in a stationary point process 
which is not <J>-mixing.

Remark. In this example, and the next, we will take our processes on 

an arbitrary probability space (ft, F, Pr) , although we could equally as
2well work from M x R+ .

Proof (see also Problem 6.5.2). We will only consider the case where 

G(x) = F̂ (x) , some 6 > 0 , and some F . The stronger result can be

proved using the techniques of Example 4U2.2, but the F̂  case is neater.

Let X be the common parameter of the input and output

processes. The superposed input and output process is denoted by

n (= nx + n2) •

Let h satisfy exp(-2 \h) > % ,  0 < / z < 6 .  Then q̂ (-/z, 0] and

r\̂ (-h, 0] are independent Poisson variables, and hence, for all k € Z+ ,

Pr{n(-fe, 0] = k] = . (2.2)
Now using Milne (1970), Theorem 2, or from first principles,
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P r { r ) ( - h 9 0] = k , ti(t » t+h]  = 0} = exp (-4X/zt2A/zp(T)) [2Xh (l-p(i))) ̂//c! , (2.3) 
0

[F5(T+^-y)-F (T-y)] dv/2h .
-h

where p(t ) = |

Thus from (2.2) and (2.3), we have that

PHn(T j T+fr] = o|n(-/z, 0] = k} - PHn(t, T+ft] = 0}

= exp(-2X/z). [exp (2XPp(T)] (l-p(T)j ̂ -l] . (2.4)

For all finite x , F ̂(x) < 1 , so for any given finite T we can

find t * > T such that p(t*) > 0 , and hence 1 - p(t*) < 1  0 Thus 

sup^|Pr{r|(T*, t*+/z] = 0|r\(-h, 0] = k}  - P H p (t*, t*+/z] = 0} |

= exp(-2Xh) > % .

Let P^ = Prr\  ̂ be the probability measure on (W, a(W)) corresponding

to q . Clearly,

0( T ) = sup IP (J)/C)-P (P)| > 4>(t *) > % ,
C,D n n

where the supremum is taken over C C a(W(-°°, t]) , D € o(N(t+T, 00)) .

Hence 0(t ) 0 (t -+• °°) , which shows that the process is not 0-mixing. ^

Unbounded translations of a 0-mixing point process do not necessarily 

result in a 0-mixing point process. Counter-examples can be difficult to 

establish however, since, as remarked before, it is well-known that Poisson 

processes are invariant under translation, and the '’counting’1 behaviour of 

non-Poisson centre processes after translation is in general algebraically 

intractable (or well-nigh so), with the exception of the translation of 

compound Poisson processes, as in the following example.

EXAMPLE 4„202. Consider a centre process of Poisson doublets (i.e., a 

stationary Poisson process with each point doubled) with rate 1 , and i.i.d. 

translations X such that Pv{x > t] = e . Hence if q is the cluster 

process (see the remark at the end of this section), then by standard

techniques we can prove

r T](-/l,0]i r 2 ^E\z ) - exp [-o+ap+s vj (2.5)
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-h  -h
where p = 2 ( l - e  ) , V = h -  [ l - e  ) and G = p + v . ( T h i s  i s  t h e  

p r o b a b i l i t y  g e n e r a t i n g  f u n c t i o n  o f  t h e  s o - c a l l e d  H erm i te  d i s t r i b u t i o n  (Kemp 

and Kemp ( 1 9 6 5 ) ) . )

S i m i l a r l y  we can p ro v e

E{3, ’( ' ?i,O\ ( T , T +M = 0 } }  = e x p C - Y + ^ v )  ( 2 . 6 )

where 6 = p -  ( l - e  2e T , and y = 2ö -  [ l - e  2e T and  l^(u))  » w € ft ,

i s  t h e  i n d i c a t o r  f u n c t i o n  o f  t h e  s e t  A .

n . .
Le t  d  ( a ,  3) = Y  ^ /  [ ( n - j )  l ( 2 j )  \ ) f o r  any a ,  3 - 0  . From

<7 = 0

( 2 . 5 )  and ( 2 . 6 ) ,

P r ( n ( T ,  t +/z] = o I n ( - h ,  o]  = 2 k}  = exp ( a -  [ l - e  2e T) . d k ( v ,  6 ) / ^ ( v ,  p) .

We a s s e r t  t h a t  l im  d ^ ( \ ) 9 6 ) / d ^ ( v ,  p) = 0 . To p rove  t h i s ,  choose  
&-*»

e > 0 and J  such t h a t  62^ 5 e p 2^ f o r  j  > J  . Then f o r  k > J

r J
d k ( v ,  &) / dk ( v ,  p) < e +

C/ I s  * *

I  V '762 j / ( ( f e - j ) ! ( 2 17')!) 
L<7 = 0

/ d , ( v ,  p) . ( 2 . 7 )

Le t  £ be any f i x e d  i n t e g e r ,  0 S l  < J  . Then

[vk  l 62 l ) / { ( k - l ) ' . ( . 2 l ) ' . d k (.\>, p)) = (62 / v ) i / ( ( 2 Z ) ! 0 . )2 , s i

K .  9  •

where Dv -  Y ( k - l ) ' . [ S  / v ) J / [ ( k - j )! ( 2 j  ) l) .
<7 = 0

9 7+1
But t h e  ( Z + l ) t h  t e r m  o f  Dk  i s  (7c-Z)(6 /v )  / (2 Z + 2 ) !  . Hence

P,  •+■ 00 a s  7< -> 00 , and a l l  t h e  t e r m s  i n  t h e  f i x e d  sum o f  ( 2 . 7 )  have  l i m i t
k

0 . Hence f o r  £7 € g (N(-°°, £])  , D £ o[M(t+ T,  °°)) ,

sup  |P  ( P | P ) - P  (P)  | > exp( -G )  ,
C,P n n

where P^ i s  t h e  p r o b a b i l i t y  measure  c o r r e s p o n d i n g  t o  p , so  t h a t  p i s

n o t  (j)-mixing.
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Note that the point process in this last example is the same as an 

elementary Neyman-Scott cluster process with Poisson centres, and in which 
each subsidiary consists of 2 points whose positive distances D ^ 9 D

from the centre have independent exponential distributions with parameter
1 .

4 0 30 On characterisations of complete, <p- and strong mixing

Westcott (1971) has given a neat characterisation of mixing in terms of 
the probability generating functional (p.g.fl.) (see also Westcott (1972)). 

This is very useful for cluster point processes, since,if £_̂ [£] is the

p.g.fl. of the centre process, and G (£|t) is the p.g.fl. of a subsidiary

given its centre is at t (we are considering independent subsidiaries here) 
then the p.g.fl. £[£] of the cluster point process is given by

G[?] = G1[G2(C| *>] .

(Our definition of p.g.fls. is over a suitable class V of real-valued 
measurable functions £ for which 1 - £ has bounded support, i.e.,

£(£) = 1 for t outside some bounded set.) Let Vj c V denote those 

functions £ in V for which 1 - £ vanishes outside I . Then we can 
prove the following

THEOREM 4 03ol0 Let € v(_oo t~\ * ^  ^ V(t «>) * t̂ lus

= E,(u-t ) £ 7 ( £ + t  oo) , t  > o . If a stationary point process with 

p.g.fl. G is

(a) completely mixing with rate y ( i) , then

I G & 1sx52]-G[51]S[e2]| s T(t)C[yc[52] i (3.1)

(b) ^-mixing3 then

|c [5/tS2]-g [Ci]g [52]| < 2<Kt )G[5i] . □ (3.2)

The proof of (a) is almost immediate. For a proof of (b), see Theorem 

4.3.3, in which similar, but slightly more complex techniques are used (see
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Prob lem  6 . 5 . 7 ) .

The c o n v e rs e s  t o  Theorem 4 . 3 . 1  do n o t  h o l d .  I t  i s  e a sy  t o  d e m o n s t ra te  

t h a t  t h e  p . g . f l .  o f  t h e  s u p e rp o s e d  i n p u t  and o u tp u t  o f  t h e  M/M/00 queue 

s a t i s f i e s  ( 3 .1 )  (and t h u s  a l s o  ( 3 . 2 ) ) ,  w i th

GlO
, + 0 0

K ( t )

and

y ( x )  = m i n ( l 9 exp [Ay ^e ^ T] - l )  ( 3 .3 )

w here A i s  t h e  a r r i v a l  r a t e ,  and  y t h e  s e r v i c e  t im e  p a r a m e te r  ( s e e  

P rob lem  6 „ 5 . 4 ) .

F o r  o r d e r l y  p o i n t  p r o c e s s e s  P , m ix in g  can be c h a r a c t e r i z e d  u s in g  th e  

z e ro  p r o b a b i l i t y  f u n c t i o n

(f)(B) = P{N(B) = 0} , B € B(f?) . ( 3 . 4 )

K u r tz  (1974) h a s  s t a t e d  w i t h o u t  p r o o f  s i m i l a r  c h a r a c t e r i s a t i o n s  o f  

s t a t i o n a r i t y  and e r g o d i c i t y .

THEOREM 4 o 3 02o I f ,  f o r  an o rd er ly  p o in t  process P ,

l im  4>(51 n (S2+t ) )  = 4 (£•]_) 4>(s 2) ( 3 .5 )
X-K»

fo r  any B , B £ R(J) , the r ing  o f  f i n i t e  unions o f  in t e r v a l s ,  then P i s  

mixing .

P r o o f .  F i r s t l y  n o t e  t h a t  S E { { # (3 )  = 0 } ,  B £ /? ( ! )}  i s  c lo s e d  u n d e r

i n t e r s e c t i o n s ,  and t h a t  O (S) = a(W) ( K a l l e n b e r g  ( 1 9 7 3 ) ) .  T hen , f o r  an
gen .

f i x e d  A  ̂ € 5 ,

V = y  : l i ra  p U  n T a ) = p {a ) p (,4 )}

i s  a  Dynkin sy s te m  (Ash ( 1 9 7 2 ) ,  p .  168) and hence  by th e  Dynkin sy s te m

th e o re m ,  V 3 o (S) . S i m i l a r l y ,  f o r  any f i x e d  $ cr(N) ,5 1 gen . 1

V = {A: l im  p [an T A ) = p {a
X-x»

i s  a  Dynkin sy s te m  so  t h a t  V 3 O (S) . □2 gen .

The e q u a t i o n s  f o r  c o m p le te  m ix in g  and <t>-mixing a n a lo g o u s  t o  ( 3 . 5 )
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f o l lo w  from  ( 3 .1 )  and ( 3 .2 )  by t a k i n g  £ ' s  o f  t h e  form  1 -  1^(£)  . Hence ,

s i m i l a r  c h a r a c t e r i s a t i o n s  do n o t  h o ld  f o r  com p le te  m ix ing  and ^ - m i x in g 0 I f  

th e y  d i d ,  t h e  c o n v e rs e s  t o  Theorem 4 . 3 . 1  would be  t r u e  f o r  o r d e r l y  p o i n t  

p r o c e s s e s .

We t u r n  now t o  c h a r a c t e r i s a t i o n s  o f  s t r o n g  m ix in g ,  a im in g  a t  an

a n a lo g u e  o f  Theorem 4 . 3 . 1 .  F i r s t l y  we n o te  t h a t  we can e x te n d  t h e  domain o f

th e  p r o b a b i l i t y  g e n e r a t i n g  f u n c t i o n a l s  t o  i n c l u d e  c o m p le x -v a lu e d ,  m e a su ra b le

f u n c t i o n s  <j) € $ w i t h  cp(x) = 1 on th e  complement o f  a  bounded s e t ,  and

s a t i s f y i n g  sup  14>( ĉ) [ = 1 ( s e e ,  e . g .  , F i s h e r  ( 1 9 7 2 ) ) .  T h i s ,  b e c a u s e  we 
x€R

a n t i c i p a t e  t h a t  t h e  RHS o f  ( 3 . 2 )  w i l l  no l o n g e r  c o n t a i n  (?[£ ] , and t h e

modulus on t h e  LHS can be i n t e r p r e t e d  more l i b e r a l l y .  I f ,  how ever ,  we 

i n t r o d u c e  t h e  c h a r a c t e r i s t i c  f u n c t i o n a l  ( c h . f l . )

C [0 ]  = G[exp £ 0 ( £ ) ]  ( 3 . 6 )

w here 0 ( t )  has  bounded s u p p o r t  ( i . e . , 6 € V ) ,  and d e f i n e

$ (£  £+x] = (<J) € $ : 1—cf) has  s u p p o r t  w i t h i n  ( t ,  t+a:]}

we can e a s i l y  show, v i a  t h e  m u l t i d i m e n s i o n a l  maximum modulus p r i n c i p l e  

( e . g . ,  Gunning and R o s s i  ( 1 9 6 5 ) ,  p 0 7) t h a t

- lc[ei+sx62bct6J c[e2]l (3-7)

w here ^  6 , *2 € i € V ~ , t ]  ’ ®2 6 h * . - )  ’ HenC6

t h e  c h . f l .  i s  ( p o t e n t i a l l y )  more u s e f u l  th a n  t h e  p . g . f l .  i n  c h a r a c t e r i s i n g  

s t r o n g  m ix in g .

THEOREM 4 . 3 o 3 0 I f  a s ta t io n a ry  p o in t  process P i s  s tro n g ly  mixing 

with  ra te  a ( t )  ,  then i t s  c h , f l . s a t i s f i e s

I c [ e 1+ s Te 2] - c f e j c [ e 2] | < 4c*(t ) ( 3 . 8 )

where ^  '  ®2 * K( t , - )  '

P r o o f .  L e t  J  , 0 0 . ,  € B(i?) n ( t + T ,  00) , and

J  , . . .  , J -  € 8 ( Ä )  n ( - 00, t ]  . Denote [ i  , . » . ,  I A  by I and
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(«7 , o . . ,  J by J . A lso ,  p u t  

P = P ( I , n ; J , m)

5 P l f f p J  = nvN[lk) = nk■ = m v  n{j^ =

-  p M q )  = n 1 > • • • > A C-Pfe) = « k J p M y J  = m1 > • • • »  N iJ i)  = mj l  •

Then

|P (nr ns exp i [ 0 / ( l j t ^ i v p s ) ] )  -  E(nr  exP [ i e / ( l r ) ] )E (n s e x p p e / p j ] )  I

= I Ens mp ( I * n ; J > m )exp[i(0 .n+ lj; .m )] | ( 3 .9 )

where 9 = (0 , 0^) , ^ E (ij; , if^) . Now s e t  y = 0 .n  + \JMT1 and

d e f in e  D = {n, m : P cos y > 0} , D - {n, m : P s i n  y > 0} , and l e t
-L O

D2 » D^ be t h e i r  r e s p e c t iv e  complements. C le a r ly

( 3 .9 )  5 m ax( |£n P cos y | ,  |Z P cos y | ]
1 2

+ max(|Z P s i n  y | , |Z P s in  y | )  . (3 .1 0 )
3 ^4

Now l e t  2? = {n ,  m : cos y > 0} , = (n , m : s i n  y > 0} and E ^

t h e i r  r e s p e c t iv e  complements. Then

\ZD P cos yI < |Z^ ^  P cos y | + |Z^ ^  P cos y | < 2a (x) , (3 .1 1 )

and s i m i l a r l y  f o r  th e  o th e r  e x p re s s io n s  in  th e  r ig h t - h a n d  s id e  o f  ( 3 .1 0 ) .  

Hence ( 3 .9 )  < 4a(x )  . I f  we d e f in e

6 i (w) = I
^ = l  ^

(u ) , 0o (w) = y  0 j  T (u )
2 ä i  1 V T

th e n  we have

| c [ 0 1+5Te 2] - C [ 0 1]C '[02] I < 4 a (x )  . ( 3 . 1 2 )

A m easurab le  f u n c t io n  0 ( F can be approx im ated  p o in tw ise  by a 

sequence o f  s im ple  fu n c t io n s  w i th in  th e  same c l a s s ,  s o ,  s in c e  C[0] i s  

con t in u o u s  f o r  0 € 7 Cof. W es tco tt  (1 9 7 2 ) ) ,  ( 3 .8 )  f o l lo w s .  □

Examples o f  d i s j o i n t  d i s t r i b u t i o n s  w ith  u n ifo rm ly  c lo s e  c h a r a c t e r i s t i c  

f u n c t io n s  a re  w e l l  known in  F o u r ie r  s e r i e s  th e o ry  ( f o r  p r o b a b i l i s t i c
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examples, see Chung1 (1968), Ex. 6.3.12, or Dudley (1968), Section 4), so 

that a converse to Theorem 4.3.3 would clearly require extra conditions. 

According to Prohorov and Rozanov ((1969), p. 162), convergence "in variation 
(which we require) cannot adequately be expressed in terms of characteristic 
functions, so we abandon this approach in favour of more direct techniques0 

Finally, for reference, we quote a known theorem which characterizes 

complete, (f>- and strong mixing in terms of rings of events R (W(J)) 
generating the G-algebras a(W(J)) used in the definitions.

THEOREM 4.3.4. A stationary point process P is

(a) complete mixing if and only if

IP(C n D)-P(C)P{D) I 1 y (t )P(C)P(D)
(b) 4)-mixing if and only if

IP(C n D)-P(C)P(D) I < <J>(t )P(C)

(c) strong mixing if and only if

IP(C n D)-P{C)P{D)I < a(x)
for all C 6 R(N(-°°, £]) , D £ R[M(t+t , »)) , t € R , t > 0 j where 
Y, <|># a : [0, °°) - [0, 1] are monotone decreasing functions satisfying 

lim y (t ) = lim (J)(t ) = lim a(t) = 0 .
-[■-»OO j->oo

Proof. (b) is proved on p. 167 of Billingsley (1968), and (a) and (c) 

are proved similarly. □
As far as we know, Theorem 4.3.4 cannot usefully be weakened. For 

example, R(W(-°°, £]) may, in (o) 9 be replaced by a class S such that

R(N(-0°, £]) = u (c° : C i , and similarly for R(W(t+T, °°)) , but we

know of no stronger reduction.
The characterization Theorem 4.3.4 is as it stands not particularly 

useful to us. It needs to be supplemented in particular cases by 
characterizations of the sets in the classes R[W(-°°, £]) and R[W(t+i, co)] 

so that complete, <J>- , or strong mixing can be proved on these classes.

1 I thank Dr C.C. Heyde for this reference.
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Examples occu r  in  th e  n ex t  s e c t i o n .

404o Strong mixing of cluster processes

In  t h i s  s e c t i o n  we develop  a te c h n iq u e  which a l low s us dec ide  w hether  a 

c l u s t e r  p ro c e s s  i s  m ixing in  some sen se  i f  i t s  c e n t r e  p ro c e ss  and th e  p ro cess  

o f  s u b s i d i a r i e s  a re  mixing in  th e  same s e n s e „ The most i n t e r e s t i n g  r e s u l t s  

o ccu r  in  th e  case  in  which th e  c e n t r e  p ro c e ss  i s  s t r o n g ly  m ix ing , and hence 

we w i l l  in t ro d u c e  th e  id e a s  in  t h a t  s e t t i n g .

L et th e  c e n t r e  p ro c e s s  o f  a c l u s t e r  p ro c e ss  be a measure P on

[hi, o(hl)) and th e  p ro c e s s  o f  c l u s t e r s  be a measure P on o(W)^) .

Here o(hl)^ f o r  any g iven  A € B(fi) i s  a p ro d u c t  o - f i e l d  on , i . e . ,

R kth e  s m a l l e s t  o - f i e l d  such t h a t  th e  maps hl -> R (k € Z+ ) d e f in e d  by 

R , }  -  [N ( s j  . • • •  » ff , K ) )  ’ B €  ß(Ä) • y„- € A , 1 2 i  < k , a reVt kJJ ’ i i1 *  k

m easu rab le .  Also we w i l l  denote  members o f  by N .

L et h i be th e  s e t  o f  n o n -n e g a t iv e  i n t e g e r  o r  i n f i n i t e  va lued  

m easures on R which may be i n f i n i t e  on bounded B ore l s e t s .  Define

: (I x N® -*• N by

>T >> N ( • -v)dN(v)v
( 4 o 1 )

Throughout th e  fo l lo w in g ,  we w i l l  assume t h a t  n  ̂ W , x P^ -

a . s . , and a l s o  t h a t  i s  m easurab le  w i th  r e s p e c t  to  th e  p ro d u c t  o - f i e l d

Ro(W) x o(N) ( s e e  Problem 6 . 5 .1 0 ) .  We d e f in e  th e  c l u s t e r  p ro cess  v i a  ( 4 .1 )

[ i . e . ,  as P -  [P xP )q   ̂ ) ,  r a t h e r  th a n  as in  C hap te r  3, to  avoid1 2J o

s u b s t a n t i a l  in d e x in g  p rob lem s. Note t h a t  ou r  p ro c e ss  t h e r e f o r e  d i f f e r s  from

th e  u s u a l  model, in  t h a t  i f  th e  c e n t r e  p ro c e ss  has  a m u l t ip le  even t o f  s i z e

n a t  x  , then  th e  c o n t r i b u t i o n  to  th e  RHS o f  ( 4 .1 )  i s  riR ( m- x)  , r a t h e rcc
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th a n  th e  sum o f  n d i f f e r e n t  s u b s i d i a r i e s  a l l  hav ing  th e  same o r i g i n .  Our 

model and th e  u s u a l  co rrespond  i f  th e  c e n t r e  p ro c e ss  i s  o r d e r ly .  We p o in t  

ou t t h a t  i f  th e  s u b s i d i a r i e s  a re  i . i . d . ,  th e  theorems o f  t h i s  s e c t i o n  may be 

proved  f o r  n o n -o rd e r ly  c e n t r e  p ro c e s s e s  in  th e  manner o f  K e r s ta n ,  M atthes 

and Mecke (1 9 7 4 ) ,  p. 326. We p r e f e r  th e  s i m p l i c i t y  o f  ou r  fo rm u la t io n  ( 4 .1 ) .

As u s u a l ,  we r e q u i r e  t h a t  P^ be s t a t i o n a r y  w ith  r e s p e c t  to

T : N N d e f in e d  by T N(*)  = N(*+y)  and a ls o  we w i l l  ta k e  P_
y  y  2

s t a t i o n a r y  w ith  r e s p e c t  t o  5 : -► d e f in e d  by S' 1/1/ } = {/V } .
J  /y% J  I  L 7 5 4 »  f f *  J

Hence l e t  T x S : N x N x by s p e c i f i e d  by
Id Id

T x S ( N , N) = (r N,  S  N) o Then c l e a r l y  P^ x P i s  s t a t i o n a r y  w ith  
Id *d "id Id

r e s p e c t  t o  T x S  . and . f o r  C ( o(N) .
y y

Pc [TyC) =  P± x P 2 | ( i V ,  N )  : j  Nv i ' - v ) d N { v )  €  T^Cj

P± x P2{ (N,  N) :

P 1  x  P2{ ( t f ,  N )  :

P y (  •  -v+y )dlHv)  e  s j

N ^ ( • - v )dN(v+y)  £ C

Pl  x W y  * Sy K  e Cb

= V c) .

so t h a t  P i s  a l s o  s t a t i o n a r y .

Our most r e l e v a n t  r e s u l t s  w i l l  o ccu r  i n  th e  case  o f  P hav ing

independen t in c re m e n ts ,  i . e . ,  i f  C ( o ( f j d  , D 6 o(N)^ , P ,  J  i n t e r v a l s ,  

I  n J  = 0  , th e n  P ^ C  n D)  =  P ^ O P ^ D )  .

F i n a l l y ,  b e fo r e  p ro v in g  ou r  theorem , we d e f in e  an even t G! in

a(N)  x <j(N) as fo l lo w s :  f o r  an a r b i t r a r y  f ix e d  t  £ R

t+2tr r v +-z t

G = Uil/, N) : Wy (t+3r-y ,  °°)dN(v) t
t  l  J -OO « t +T

N ( - 0 0 ,  t - y W ( y )  = o y  .  ( 4 . 2 )  v
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This event imposes restrictions on the extent of interactions of the 

subsidiary processes. Its occurrence is sufficient to allow the properties 

of the centre process to dominate, since it effectively means that events of 

the cluster process within (-00, t) and (£+3t , 00) only interact via the 

centre process if P^ has independent increments (see Problem 6.5.1).

THEOREM 404 01 o If P^ is strongly mixing with rate a(x) , ,  P^ has 

independent increments, and P^ x P ^ G  ) -*■ 1 (t -* 00) , then P^ is

strongly mixing with rate a(|x) + 6P 
Proof (see Problem 6„5.13). Let t be an arbitrary but fixed number

t 00in R . We will denote by o ^ and a t h e  product a-field

a (W( J)) x o(N)1 for I = (-00, t] and I - (t 9 °°) respectively. We will 

say that p x is strongly mixing if there exists ip : [0 ,<»)-> [0 , 1] 

such that lim ip(t) = 0 , and

IP  X P2(C n D)-P1 X P2(C)P1 x P2(0)| < ip(t ) (4.3)

if c € a and P £ o-<» t+T
first prove that P^ x P^ is strongly mixing with rate a(x) .

Consider the class of sets in a of the form C - 7 C^.xC.m u \'i 2^ *i=l

li € o (N(-°°9 t~]) , € a(W^ °°5̂ ) and n € Z+ , where {P^.} are2i-

disjoint. Then this class forms a ring, for if F = Y F . x F . , then
J=1 J J

C u P = I  
i=1 h i x • A  ^

m
+ i«7=1

P. . xL . - u cl 2J i=l 2 i
n m
l I
i-1 j=l+ I I [(̂  u x (̂2i ° F2ĵ  *



98

n m n m
C - F -  I I  [CH H C 2i-F )] + E E [{ClirF )*[C n F )]

^ = l  J = 1  ' ^ = 1  J = 1  ^

CO
are in the same class. The same of course holds for sets in ox . Byt+T J

Theorem 4.3.4 (whicn holds more generally than for point processes), we only 

need prove P^ x P^ strongly mixing for sets in these classes. Hence, with

_ OO
C as above, and D - > 1  . x ]} ( a, ,2j t+X

IP x P (G n P)-P x P (OP x P (P)|

n /??
E E CUhi "£=1 j=l

< a(x) . (4.4)

r IFor any set P € o(W) , let P E -m 6 Pf € G . Hence if J r| 1 a J -00
C € g ( (-00, £]) , then

G n G = UP, N) : n T 9 P (--v)dil(v) £ C\ n GV T

r t + T

(P, N) : Nv(>-v)dN(v) € C\ n Gt

G' n G , n t

say, where G r € G^+T . Correspondingly, for D € o(P(t+3x, °°)) ,

D n G = D1 n G , where P  ( an t n t 5 n t+2x Thus
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f C  n  D ) . - P c ( O P c (: z » |

X

iH
0j_ll

p 2 ^ n  "
D  )

i r - p l x p 2 { c t) p 1  x p 2 K , ) !

X

1—
1 

cuVI P j C  n D
n

n  G )■
TJ

CN
P-iX

i—
1

ftl n  G )P x  p  [d  
t j 1  2  ̂ n n  Gx ) |  i • 3 ? !  x  P 2 { ( p ]

X

1—
1 

ftII

P 2 K  n
D '

n
n G )■- p i x p 2 ( p - n  C T ) P 1  x  P 2 ( p . n  ö T )  1 1~ 3 Px *  P2 ( < )

X
 1—

1

VI

P 2 K  0
D ’ )r \J - p i x P 2 ^ P 1  X p2 (pn)l

+ V < P
2

^ D ' l  u  G 1 +  P X p i c 1 u  C 
1  2   ̂ r)

7 )  +  P ,
T ; 1 *  p 2 Ku gt )

-  3P1 x P 2 (Gt ) + 3P 1 x P 2 (g^)

< a ( t )  + 6P x p [g° 1 . □1 2 ^

I t  i s  c le a r  th a t  th e  same te c h n iq u e s  w i l l  y i e l d

COROLLARY 4 04 ü20 ( i )  I f  i s  ergodio  and P2 weakly m ining, then

Pg i s  ergod io . S im ila r ly 3 i f  P  ̂ i s  weakly m ixing and P  ̂ evgodie3 P 

i s  e rg o d io .

( ü j  P i s  weakly m ixing i f  bo th  P and P are.

( H i )  P^ i s  m ixing i f  bo th  P  ̂ and P2 are.

( i v )  I f  P  ̂ i s  s tro n g ly  m ixing w ith  ra te  a ( t )  and P i s  com pletely

m ixing  w ith  ra te  y(x) and P x P (ff ) + l  ( t 3 then P i s
1  Z T

s tro n g ly  m ixing w ith  ra te

a ( i T) + Y(1 T) + 6P1 x P2 ( G p  .

The same conclusion  holds i f  P i s  com plete ly  m ixing w ith  ra te  a ( t )  and 

P2 i s  s tro n g ly  m ixing w ith  ra te  y ( t )  .

(v) I f  P i s  <J>-mixing and P2 com plete ly  m ixing w ith  ra te  y(x) 3 

and the  su b s id ia ry  p ro cesses  are P -  a . s .  bounded [ i . e .  3

? 2 {N : = o }  = 1  fo r  some bounded in te r v a l  K : \ k \ = 6 then P^
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is fy^-mixing, where} for t > 0 3

4> (t) = 4>(t—6) + y (t-6) > t > 6 j

= 1 3 T < 6 .

Alternatively3 if P , is completely mixing [rate y (t ) ) and ^2 ^s

^-mixing and the subsidiaries are bounded as above} then P is § -mixing.c o

(vi) If P^ is completely mixing with rate y (t) and the subsidiary 

processes are completely mixing with rate Y9(t) and are P - a.s. 

bounded as in (v)3 then Pq is completely mixing with rate y (t) 3 where

Yc(t) = Y1(t-6) + y2(t-5) , t > 6 ,

= 1 3 T < 6 .
Proof (see Problem 6.5.8). We prove only the first half of (iv) , the 

rest being similar. Clearly all that is needed is an extension of the 
argument at (4.4). So

|P1 X p y c  n D)-P±x P2(C)P1 X PyD)\

X i Pb Cli " D^ - PI Cl i P l K ^ F2̂ C2i n D2ß^ »J

+ X- [P2(C2i " D2ö)-PA C7i)P2̂ 20
i,J

<  a(t) + y (t) • ^
Unfortunately the strong mixing rate in Theorem 4.4.1 involves 

P^ x f 2 (Ĝ ) , a quantity which is very difficult to calculate without further

knowledge of the structure of the process. Of course, Chebyshev's inequality 
yields the crude upper bound for P  ̂x Pr̂[(f̂ J of (with rn = E^N(09 1] < °°)

I” {£>2̂ 1<‘-0°’ ~u +̂E2^i('Ui °°̂ \du >

but by arguing more precisely we can discover a finer condition involving 

only the component processes which guarantees x p^ [g ]̂ -*■ 1 (l 00) .

Define
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£(x)  = P2{N : x ]  > o} , fi(x) = P2{N : N A x ,  ■») > 0 } . (4 .5 )

Note t h a t  cou ld  be re p la c e d  by any N b eca u se  o f  th e  s t a t i o n a r i t y  o f

f o r  a t  l e a s t  one a £ R . I f  P  ̂ has Independent I n c r e m e n t s a n d  there Is

a uniform hound on the m u l t i p l i c i t y  o f  events  o f  the centre  p r o c e s s t h e n  

t h i s  condi t ion  i s  a lso  necessary .

Remark. T h is r e s u l t  o v e r la p s  w ith  Lemma 3 .3 .1 ,  b u t f o r  c l a r i t y ,  we 

g iv e  a l l  d e t a i l s .

P ro o f . In  ( 4 . 2 ) ,  we may w r i te  n G , where

LEMMA 4 04 03. A s u f f i c i e n t  s to c h a s t i c  condi t ion  fo r  P x p (g ) p 

( t + ») i s

L(a-v)dN(v) + R (a -v )dH v)  < oo t p _ a#s . ( 4 . 6 )

I t  i s  n e c e s sa ry  and s u f f i c i e n t  f o r  P^ x P^ [g ) 1 (t + °°) t h a t

P 1 * P2^Gl i  1 and P 1 * M S t * ^  1 (t -  “ > • L et

By s t a t i o n a r i t y ,  P1 x P 2 (c p .)  = P±x ( p . )  . So l e t  t  ( R , T > 0 be

a r b i t r a r y  and f ix e d .  Then n o te  t h a t ,  f o r  g iv en  N € W ,

N : N ^ ( t -v ,  o°)N(dv)

( 4 . 7 )

and t h i s  l i m i t  i s  monotone f  . H ence, w r i t in g  F(v)  = {N : N^ia-V, °°) > o}
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R(a-v)N(dv) < 00 P^ - a.s. for any fixed a i R

t-T.
R(t-v)N{dv) < 00 P^ - a.s.

I p2{^(^}} < 00 -a.s.
t.msb-t . 1t 1

P 2{^(^) i.o. , < t-T^J = 0  ' P - a.s. (4.8)

by the Borel-Cantelli Lemma,

P2lN :
,*-Tl

J —00
N (f-y, °°)N(dv) < <»> = 1 P, - a.s., V 1

since the N ’s are a.s. finite, v s

(4.9)

P 2{n : j N^(t-V9 °°)N{dv) = o| ■* 1 (t ->■ 00) ?1 - prob., (4.10)

by (4.7),

P1 x P2|gv, N) : f N ^ ( t - v 9 <*>)N(dv) = o| 1 (t «>) , (4.11)

by dominated convergence,

P1 X P2^1t  ̂^ 1 (t -̂ °°) .

In the forward direction, we have (4.9) =* (4.10) by (4.7), but in the 

reverse direction we are using the fact that if random variables X X

a.s., and X̂  ■+ Y in probability, then X - Y a.s.. Also (4.11) =* (4.10)

because in (4.11) we have convergence in first mean. Finally, observe that 

if the centre process is orderly, and P^ has independent increments, then

the reverse implication in (4.8) is immediate, since are then

independent events. If the centre process is non-orderly (see Problem 6.5.1 

then we can find a subsequence {t^} of { }  such that tl ± t\ 9 i ± j

by counting multiple events as one. If there is an upper bound M on the
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multiplicity of centre points, then

M 1 P2{F(t!)} > £  P {F ( t ] } = ~ ,
t!<t-T, 2 1 t.<t-T,  ̂ *^ 1  ̂ 1

so that the Borel-Cantelli Lemma still applies to give P {p(t!) i.o.} = 1
Is

and hence P^{F[t^] i.o.} = 1 .

In a similar manner we can handle the other half of (4.6). O 

COROLLARY 4O404,. A sufficient condition for P  ̂x  ̂ ^s

(4.12){U-t)+R(t))dt < ~

if the centre process has m - £^(0, 1] < 00 .

Proof. One proof is to take expectations in (4.6), but a more 
instructive proof is as follows: clearly

p n x P2[(fT) £ p n X P , ( C ' 3  + P, X p J ^ J  ,2 ̂ lT' 1 2^ 2t-

p i * p2(G3 - JM p2{t ̂_ T

r r^"T
W ' -00

P 0{pc (y)}60/(y)dP Gv)

E(.v)dv

Similarly for P^ x P^ (C^) * ^

It would appear from Lemma 4.4.3 and Corollary 4.4.4 that (4.12) is a 

fairly fine condition for P^ x P^ (g )̂ -► 1 . This is confirmed in the next

result, in which we interpret (4.12) in special cases (see Lawrance (1972)). 

LEMMA 4 04 05. (a) If the centre process P i s  Poissont and P2 has

independent increments(4.12) is also necessary.
(b) If the subsidiary structure is Neyman-Scott with F denoting the 

distribution of each point from the centre and S the number of points per



104

su b s id ia ry 3 (4 .1 2 )  becomes

X Pr{S  = k } [ l - F ( t ) K] d t  < oo .
k=0 J 0

(4 .1 3 )

(c) I f  the su b s id ia ry  s tru c tu re  i s  B a r tle tt-L e w is  w ith  in ter-ep o ch  

d is tr ib u t io n  F and S p o in ts  p er su b s id ia ry 3 (4 .1 2 )  becomes

i t *
E Pr{S = fc) [ l - P  ( < co .

k - 0 •’ o

P ro o f .  We prove on ly  (a)* The random p ro c e ss  {7 } in  i P 

s p e c i f i e d  by V = i n f { t  : N ( £ ,  00) = o} c l e a r l y  has independen tCC

in c re m e n ts .  Note t h a t

(4 .1 4 )

G!I t

t - T
N ( t - x ,  co)dN(x) = 0 x

= ( I J  = ° )

t-T

V  > t-x \m x )  = 0 * ( 4 -15)

so t h a t  c a l c u l a t i n g  P^ x P^ (g ) becomes e q u iv a le n t  to  d e te rm in in g  th e

p r o b a b i l i t y  o f  (4 .1 5 )  f o r  a P o isso n  p ro cess  ( o f  r a t e  X , say)  s u b je c te d  to  

i . i . d .  t r a n s l a t i o n s  V . This  i s  e a s i l y  c a l c u l a t e d  u s in g  th e  te c h n iq u e s  o f  

Milne (1970) t o  be

P x p [q ) = 
t 2^ I t '

exp -A R{ t ) d t (4 .1 6 )

S i m i l a r l y ,  we may c a l c u l a t e

P1

t
= exp -X L ( - t ) d t

W 1 T '
□ (4 .1 7 )

4o50 Conclusions

Since  a P o isson  p ro c e s s  s u b je c t e d  to  i . i . d .  t r a n s l a t i o n s  i s  a l s o  

P o is s o n ,  th e  c o n d i t io n s  o f  bounded s u b s i d i a r i e s  f o r  ^ -m ix ing  and com plete
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m ixing and o f  P^ x P^ [d̂ _] + 1 f o r  s t r o n g  mixing a re  n o t  a l s o  n e c e s s a ry  f o r

p r e s e r v a t i o n  o f  th e  mixing p ro p e r ty .  However, th e  coun te r-exam ples  

c o n ta in e d  in  S e c t io n  4 .2  su g g e s t  t h a t  th e  c l u s t e r i n g  o p e ra t io n  may n o t  

p r e s e rv e  c})-mixing under f a i r l y  wide c i rc u m s ta n c e s .  The c o n d i t io n in g  even t 

{N( - h ,  0] = n} im p l ie s  f o r  l a r g e  n t h a t  t h e r e  a re  a l a r g e  number o f  

c e n t r e s  in  th e  neighbourhood o f  (-A , 0] and hence t h a t  0l7(x, t+A] = 0} 

w i l l  have a reduced  p r o b a b i l i t y  o f  o c c u r re n c e .  Hence we may c o n je c tu r e  t h a t  

th e  c o n d i t io n s  R(x)  > 0 f o r  a l l  f i n i t e  x  , and Po {/i/^[0, °°) > l} > 0 may

be s u f f i c i e n t  f o r  a c l u s t e r  p ro c e s s  n o t  to  be ^ -m ix ing .

We sho u ld  a l s o  remark on th e  a p p l i c a b i l i t y  o f  Theorem 4 .4 .1  t o  l i m i t  

law s. A l l  such theorem s (O odaira  and Y osh ihara  (1971a , b ) ,  (1 9 7 2 ) ,  Heyde 

and S c o t t  (1 9 7 3 ) ,  Heyde (1974))  seem to  impose on th e  s t r o n g  mixing r a t e  

a ' ( t )  th e  c o n d i t io n

f° °
a ' ( t ) d T  < oo s ( 5 .1 )

J 0

i f  n o t  th e  s t r o n g e r  c o n d i t io n  in  which th e  in te g ra n d  i s  r a i s e d  to  th e  power 

[5 /(2+ 6)]  , f o r  some 6 > 0 . As in  th e  p ro o f  o f  C o ro l la ry  4 . 4 . 4 ,  we have 

th e  fo l lo w in g  upper bound f o r  th e  s t r o n g  mixing r a t e  a ^ t )  o f  th e  c l u s t e r

p r o c e s s :

a^(3T) < a ( t )  + m J [ I ( - fc )+ P ( t )  ~]dt . ( 5 .2 )
' T

[Write a ( t ) f o r  th e  second te rm  in  th e  RHS o f  ( 5 . 2 ) .  I f  th e  c e n t r e  

p ro c e ss  i s  P o is s o n ,  a ( t )  = 0 , and a  (3 t ) = 0 [ a ( t )] , b u t  ^ c [ a ( x ) ]  ,

when th e  s u b s i d i a r i e s  a r e  i . i . d . ,  by (4 .1 6 )  and ( 4 .1 7 ) . ]  Thus, ( 5 .1 )  

becomes

fOO

{a( t ) + t  \_L(-t )+i?( t )  ~\}dt < «  , ( 5 .3 )
* 0

which i s  s t r o n g e r  th a n  ( 3 .6 )  o r  ( f o r  p ro c e s s e s  w ith  r ig h t - h a n d  c l u s t e r s )  

( 4 .2 . 5 )  o f  C hap ter  3, so t h a t  i t  does n o t  appear p rom is ing  to  prove l i m i t
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laws for cluster processes via strong mixing theorems. However, we point 

out that strong mixing theorems are potentially able to provide lav/s of the 

iterated logarithm for unbounded double-sided clusters, which Theorem 3.4.8

was unable to do.
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CHAPTER 5

RENEWAL CHARACTERIZATIONS OF POINT PROCESSES 

5.1 o Introduction

Problems of characterization of point process systems arise, amongst 
other reasons, from the fact that very few classes of point processes can be 

handled reasonably; renewal processes, after Poisson processes, are prime 

examples of those which are tractable. Consequently it is pertinent to 
study characterizations via renewal processes. It should be pointed out, 
though, that such characterizations are not particularly useful unless 

complemented by some idea of "robustness”. For example, it is known that 
the superposition of n i.i.d. stationary point processes is approximately 
Poisson for large n , and it is believed (Conjecture 5.3.1 below) that the 

superposition of n i.i.d. stationary point processes is a renewal process 
if and only if all processes are Poisson. Thus, although characterization 
problems are of mathematical interest, they are not necessarily of such 
practical importance. A suitable definition of "robustness" (see Problem 

6.6.1) may be difficult to come by, however. A possibility is to replace 

the renewal characterizations here by processes with uncorrelated inter-epoch 
times (Problems 6.6.2, 6.6.4). Alternatively, we may ask for the Prohorov 
distance ((5.4) of Chapter 1) between the point process in question and a 
renewal (or Poisson) process of the same intensity. The context will 

probably decide the appropriateness or otherwise of any particular concept.
In this chapter we tackle two characterization problems: the first in

a queueing situation, and the second an example concerning superpositions of 

point processes.



108

5 . 2 o  Characterizing the f i n i t e  capacity G J/A //1  queue with renewal output 

5 .2 .1 ,  INTRODUCTION AND SUMMARY

In tandem queueing  system s in  w hich th e  o u tp u t o f  one queue becomes th e  

in p u t o f  th e  n e x t ,  i t  i s  c o m p u ta tio n a lly  c o n v e n ie n t to  know when t h i s  o u tp u t 

i s  a  renew al p ro c e s s .  The problem  o f  c h a r a c te r i z in g  o u tp u ts  o f  queueing  

system s has been o f  i n t e r e s t  s in c e  Burke (1956) p roved  t h a t  th e  s t a t io n a r y  

M/M/8 queue has P o isso n  o u tp u t ;  a summary o f  some o f  th e  work in  th e  

problem  i s  a v a i la b le  in  D aley (1 9 7 5 ). The o b je c t  o f  t h i s  s e c t io n  i s  to  

com plete th e  p ro o f  o f  th e  fo llo w in g  r e s u l t s  f o r  c e r t a in  s in g le - s e r v e r  

queueing  system s w ith  w a it in g  room c a p a c i ty  N , i . e . ,  f o r  c e r t a in  GI / G/ l / N  

s y s te m s .

THEOREM 5 . 2 . 1 .  The only s ta tio n a ry  GI/M/ l /N  ( 0  5  N < 00) queueing

s y s t ems  with renewal output are the M/M/1/0 and s ta b le  ( t r a f f ic  in te n s ity  

< 1 ) M/M/1 /°°  system s . □

THEOREM 5 o2 02o The only s ta tio n a ry  GI /M/ l /N  ( 0  5  N 5  00) queueing

systems with adjacent departure in te rv a ls  independent are the M/M/1/0 and 

8 tab le  M/M/1 /° °  system s . □

Theorem 5 .2 .2  i s ,  o f  c o u rs e ,  s t r o n g e r  th a n  Theorem 5 .2 .1 ,  w h ich , 

how ever, i s  o f  more i n t e r e s t  to  u s ,  in  t h a t  i t  d e m o n stra te s  th e  non

c o n se rv a tio n  o f  a lo c a l  p ro p e r ty  ( t h a t  o f  b e in g  ren ew al) o f  a p o in t  p ro c e s s  

when s u b je c te d  to  a s u f f i c i e n t l y  rough tr a n s fo rm a t io n .

Daley ( (1 9 6 8 ) ,  (1 9 7 4 )) has co m p le te ly  c h a r a c te r iz e d  th e  s t a t io n a r y  

GI/G/1/0  and GI/M/l /°°  system s w ith  ren ew al o u tp u t ;  o u r p ro o f  o f  Theorem 

5 .2 .1  h a n d le s  on ly  th e  in te rm e d ia te  s i t u a t i o n s  (1  5 N < 00) . Complete 

ren ew al c h a r a c te r i z a t i o n  r e s u l t s  have now been o b ta in e d  f o r  th e  s t a t io n a r y  

M/G/ l /N  (0 5 N < 00) (D isney  e t  a l . (1 9 7 3 )) and GI/M/ l /N  sy s te m s ; th e  

s o lu t io n  te c h n iq u e s  in v o lv e  u s in g  th e  imbedded Markov c h a in  o f  queue le n g th s  

a t  s e rv ic e  co m p le tio n s  o r  a t  a r r i v a l s .  The g e n e ra l  problem  o f  

c h a r a c te r i z in g  th e  GI /G/ l / N  queue w ith  ren ew al d e p a r tu re  p ro c e s s  (Problem
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6.6.3) seems very difficult (but see Daley (1975)).
The point of Theorem 5.2.2 is the contrast with the M/G/l/N 

(1 5 N < 00) situation, in which Daley and Shanbhag (1975) show that there 

are service time distribution functions G for which adjacent departure 

intervals are independent, although the output is not renewal. We will only 

prove Theorem 5.2.2 for 1 < N < 00 ; Daley (1974) handles the GI/G/1/0 

situation (see the analysis prior to his Theorem 1): adjacent departure
intervals are independent if and only if the output is renewal.

Throughout this section we will assume without further comment that our 
random variables are all defined on a common probability space (ft, F, Pr) .

Consider a single server queueing system with independent service times

{H . = } , Pr{IK 5 x) = A(x) , 4(0+) = 0 . An arrival finding a

queue with N customers waiting does not enter the system, and is not 
considered here as part of the output (compare Boes, (1969)). The nth

{Sn \ , (n = ... -1, 0, 1, ...) , where Pr{sn - = #(*) = 1 - e ,

x > 0 and y > 0 . Potential customers arrive at successive epochs

(... $ t(| = 0 < ^  5 of a renewal process, with inter-epoch times

served arrival finds Q customers in the system (queue and service), waits

for a time w until service, and is served for a time S .n n

arrival epoch , and WU ) the waiting time of the arrival at tr. if

q. < N . If v(n) is defined to be the index of the nth served arrival, thei

v(n) = inf{i > v(n-l) : < #} , n > 0 ,

v(n) = sup{i < v(n+l) : < n ] 9 n < 0 .

Observe that v(n+l) = v(n) + 1  if Q < N , while when Qn - N
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where S^ ^ is the time elapsing from the v(n)th arrival epoch to the

completion of servicing of the customer being serviced. Since the service
time distribution function £(•) is exponential, B(•) is also the
distribution function of S'.,n-N

Denote the stationary state probabilities of the number of customers in 
the system the instant before an arrival occurs by {tt.} , 0 5 J S Wtl ,

i.e., tt . = Pr{q. - j} . These probabilities are known to exist (e.g.,J
Keilson (1966)). Clearly

= 3} = y K  + •••+ \) = y h - v n )  . 0 5 j s * ■ (2.1.1)
and

Q *
Pr{Wn < x} = B n (x) , x > 0 , (2.1.2)

where

5 (a?) = 1 if x > 0 ,
= 0  if x < 0 ,

and bP (x ) is the ,7-fold convolution of B with itself.
Always, then, the time between arrivals of the nth and (n+l)th 

customers to be served is

Ti' = n , x .. + ... + n , .tv . n v(n)+l v(n+l) (2.1.3)

I . = maxfo, n f-W -S 1 n+1  ̂ n n nJ (2.1.4)

denote the idle time for the server between the completion of the nth 
service and the beginning of the (n+l)th service. We define the output 

process of the queueing system via the sequence of inter-departure

times, these being almost surely positive random variables given by
D = S + I n n n (2.1.5)

where S and I are independent, since the arrival process and service
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times are independent.

5.2.2. THE DISTRIBUTION OF INTER-DEPARTURE TIMES 
From the definitions, it is easily seen that

N

^ " V l ^ n + l  5 ^  = £„ Pr^n+1 s y I Qn = *«7=0 *

After some algebra, we find

Pr{Jn+1 < y I = j] = f  4(u+j,)dS(,7’+1),,(w) , 0 < j < N-l

Pr{l„+1 <y ! « „ = » }

(2.2.1)

(2.2.2)

fOO «00

dB(u) j Pr{IF < z/+w+u | ^ - u}dBN (v)

dBiu) dBN\v )
0 J 0

ry+u+V
[l-Aiy+u+v-W) IdlUw) (2.2.3)

where

//(a:) = Y, A +
£=1

A(x-u)dll(u) (2.2.4)

is the renewal function of the arrival process. By interchanging the order 
of integration in (2.2.3), we can replace the renewal function by the 
Laplace-Stieltjes transform- a(y) where

a(e) e e^dA(t) , 7?e(ö) > 0 . (2.2.5)

Thus

Pr{ln+1 < y I Qn = W} = Cl-ot(y)]-1 A(u+y)dB('i'1' ̂  (u)-u(y)
Lj 0

(2.2.6)

Putting
TT f. = TT . ,J J

"if = V Cl-a(lj)] = "w + Vi
0 < j < TV-1

(2.2.7)

we obtain, for y > 0 ,
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^ “V t l ^ ^ n + l  ~ ^  = ?  71 j  I”  ^Cw+^)dS(j*+ 1 ) \ w )  -  i^ a ( y )  . ( 2 . 2 . 8 )
N
X

j = 0  ü J 0

U sing  s i m i l a r  t e c h n i q u e s ,  we can o b t a i n  t h e  j o i n t  d i s t r i b u t i o n  o f

[D , I  , 1 . I f  $ > 0 , t h e n  I  = 0 , s i n c e  5  n h a s  n o t  y e t  been  v n* n+ l J n n 9 n- 1 y

c o m p le te d ,  and by ( 2 . 1 . 2 ) ,  ( 2 . 1 . 3 ) ,  ( 2 . 1 . 4 )  and ( 2 . 1 . 5 )  we can  d i s c u s s  t h e

j o i n t  d i s t r i b u t i o n  o f  [pn9 i n  t erms o f  "the a r r i v a l  o f  t h e  n t h  s e r v e d

c u s to m e r .  O th e rw is e  we have  t o  c o n s i d e r  t h e  ( n - l ) t h  s e r v e d  a r r i v a l .  For 

x  > 0 , y > 0 ,

( 1- V l ) P r i fln  -  * •  J n +1 5  »)

I  * M d < * .  J n+1 s  v I e n = i )
«7=1

+ I * M Dr,5 Jn+1 2 y ,  = 0 I e„.i = j}
-7=0 J n - 1

Z  *'• ,J= 1  3

A A
dB3 (w) i4(w+y+27 )dBiv)  -  i r^a( y ) ß ( x )

N
+ I  ,

«7=0 J  J

(-7+1)* rW+X(m )
ru + x -r

dA(y) 4 (w ty )d ö (w )  . ( 2 . 2 . 9 )

5 . 2 . 3 .  PROOFS OF THE THEOREMS

A n e c e s s a r y  c o n d i t i o n  f o r  t h e  o u tp u t  t o  be  r e n e w a l  i s  t h a t  

Pr{D„ 5 x ,  Dn+1 < y }  = Pr{l?„ < x}Pr{Pv? + 1 < z/} , f o r  a l l  x t y . byn+1

r e c o g n i s i n g  t h a t  (z? # J  J  i s  j o i n t l y  in d e p e n d e n t  o f  ( , and t a k i n g

L a p l a c e - S t i e l t j e s  t r a n s f o r m s ,  t h i s  n e c e s s a r y  c o n d i t i o n  r e d u c e s  t o  

Pr{Dn < * } P r{ ln+1 < » } =  Pr{Dn < * ,  i „ +1 £ J/} •

In  p a r t i c u l a r ,  f o r  a l l  y > 0 , 4> > - y  ,

r00
e "^dP r^Z ? < j :} (4l+y)ä/<äPr{Jn+1 5 j/}

( 2 . 3 . 1 )

r -■>
e d  P r{ p  5 ar, I

0+ x  2/ 1 n n+1
( 2 . 3 . 2 )
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W rite ( 2 .3 .2 )  as L(4>, y) = i?(<(>, y )  sa y . Let P^(4>, y)

(n = 1 , 2 , 3 , 4) denote fu n ctio n s  o f  <J> and y th a t are in  fa c t  

polynom ials o f  degree N in  ((> . Then (we omit some a lg e b r a ic  d e t a i l ;  see  

S ectio n  5 . 2 . 4 )  L and R are e x p r e s s ib le  in  the form

(1-7Ttf+l) (~<P)N+1£(<P, y) = a(<|>+y)P1(<J>, y) + P2(<f>, y )  , ( 2 .3 . 3 )

and

(i-T T ^i) (<J>-y)(-4>)^i?(<t), y ) = a((J)+y)P3(cj), y ) + P4 (4>, y) . ( 2 . 3 . 4 )

The c o e f f i c ie n t s  o f  (j) (0 5 i  < N) in  each o f  the polynom ials

P̂ (<J>, y ) (1  < n  < 4) s im p lify  con sid erab ly  u sin g  the p r o p e r tie s  o f  the

imbedded Markov chain o f  queue len g th s  ju s t  p r io r  to  a r r iv a l .  S o lv in g  the  

equation  L((f>, y ) = P((J), y ) then lea d s to  the fo llo w in g  ex p ressio n  for  

a(<j)+y) , v a lid  fo r  c|> > -y  , y > 0 , (J>  ̂ y ,

N- 1

a (<|>+y)

- y ^ t / +1+ E  ( “^)iV”,7*yt7+1[ y ^ +2 (1 "^) " Y ^ ^ +1]t(-(J ))/1/‘,1 C( y )
.7=0
N - l

J 'tlJ
( 2 . 3 . 5 )

-y\|m 'y/'/+1+ £  ( -c}))/'/"J'yJ*+1 [yn ' (l-ij;)-y^7T'.]+(-()))/1/+1Z;(y)
j= 0   ̂ J

where

-yD
■ifj = ip(y) = n ) ( 2 . 3 . 6 )

and C( •)  and ZK •)  are independent o f  (p ; we need note only the  form o f  

£>(•) , namely

z?(y) = - y ^  + (l-7TiV+1) [(y+y)i|j-yP r{l = 0 }] . ( 2 . 3 . 7 )

We se e  im m ediately th a t  C(y) = 0 , s in c e  a(4>+y) -► 0 as (j) 00 , b u t

s in c e  t h is  y ie ld s  a com plicated  fu n c tio n a l equation  f o r  a , we pass i t  by.  

In ste a d , observe th a t the term independent o f  (f> in  th e  denominato r  o f  

( 2 . 3 . 5 )  cannot van ish  fo r  a l l  y , and th a t  th ere fo re  th e  denominato r  cannot  

vanish  id e n t ic a l ly  in  (j) .

From ( 2 . 2 . 8 )  we observe th a t

Pr{ ln = 0} = 1 - V ( i - V l) " ( 2 . 3 . 8 )
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We require a(0) = 1 , which from (2.3.5) is possible only if

iK y ) = m/(m+y) (2.3.9)

where (using (2.3.8))

m = vtl-^/Cl-lTg-lT^J] . (2.3.10)

Taking Laplace-Stieltjes transforms in (2.1.5), and employing (2.3.9), we 

find

pHJn =  o f  = m/\i (2.3.11)

and (2.3.7) vanishes identically.

Thus, substituting (2.3.9) into (2.3.5), we obtain, for (p > -y ,

N-l
-mTrff+1/ +1+ £

a((^+y)
J+2 J+1J

N-l
-nrnJJyff+1+ X C-*)ff_,7V +:L[pir'. -mw'.]

j=0 3 3

Again we set a(0) = 1 , and (2.3.12) yields

m/y = 'tt1/7T0 .

Substituting (2.3.13) into (2.3.12), we deduce that

m/\x - > 0 < i S N 0

(2.3.12)

(2.3.13)

(2.3.14)

It follows that, for 4> > -y ,

a(<J>+y). = m7T̂ +1/(W7T̂ +(t)7T̂ +1) » (2.3.15)

—fflXThus AXx) - 1 - e , a: > 0 , i.e. , the system has a Poisson arrival 

process.

Finally, we appeal to a known result (Finch (1959)) that the M/M/l/N 
queueing system (1 < N < 00) never has renewal output, which proves Theorem

5.2.1.

If N < 00 , then Theorem 5.2.2 follows immediately from (2.3,15) and 

Daley and Shanbhag (1975), but Daley (1968) asks for £> , D 0 to be

independent in the GI/M/l/00 situation. However, a similar analysis to the 

above yields instead of (2.3.5),
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I  (-y/(J))J+1[y'iTj.+2(i-^)-Y^.+1]+c,(y)
a(<J>+y) = ^ ----------------------------------  , (2.3.16)

£  (-y/4))J + 1[li7T. (1-ip)-y ^tt .] +D(y)
«7 = 0 J J

valid for (J> = -y , (J) > y , y > y , where

D{ y) = -y7TQiJj + [(y+y)i|j-yPr{l^ = o}] . (2.3.17)

The same procedure gives rise to iK y ) = m/(m+y) , (y > y) , and also 

m/\i = TT̂ +j_/7T̂  > t > 0 . However, (2.3.16) is now unhelpful, in that the

RHS gives 0/0 ; similarly for the identity C(y) = 0 . However, it is not 

difficult to establish (Daley (1968), Theorem 3) that

iKy) = y(y+Y)"1[öy-y(l-ö)a(y)][y-y(l-6)]"1 ,

where 6 is the unique root in 0 < 6 < 1  of 6 =  a(y(l-6)) . Solving for 

a(y) , we obtain

a(y) = [y2(w-yö)-my2(l-6)] . [-y2(m+y)(i-d)] 1 

and hence m - y6 , since a(y) ->0 as y + 00 . Thus a(y) = m/im+y) ,

(y > y) which establishes M * )  uniquely (Feller (1966), p. 410) and thus 

the input process must be Poisson. □

5.2.4. SUPPLEMENTS TO SECTION 5.2.3

For reasons of clarity, we outline the transition from (2.3.2) to 

(2o3.5) in this section, since the steps are purely manipulative. Straight

forwardly, for (J) > -y , y > 0 ,  4> ^ y ,

Y )
N

e ^ uF ( u , y ) dA ( u ) + £ (_y/Y)
«7=1

- (4>-y ) I 
j = i

(-y/y)c?+17T
«7-1I
k =o

(-y)k+1(-<t>)N~k 1 , (2.4.1)

where we have used only

F ( u , y)
N
l

J=0
eywJB(j+L)

*
M (2.4.2)

and the trivial identity
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[ e a ?  ! dx = 1 - e ^  Z ( \ x t ) ^ / k l  .
J o k=o

Expanding the final term in (2.4.1) gives

J=1 0

so that (2.4.1) simplifies to

„ f°°

-y Z (-y/Y)J*TT'.(-4>)̂  + Z
«7=1 «7+1

P 3(<P, Y> = -yC-c|>>

«7=1 fc=o

(2.4.3)

(2.4.4)

^UF(u, y)dA(u) - Z  ŷ *+1'n'f-(-(J))̂  ^ . (2.4.5)
«7=1 J

A similar surprising simplification occurs in P̂ (<p9 y) 9 

P̂ (<pt y) = -a(y+y) {first term of (2.4.1)}

♦ (o-Y) z (W+V. ¥  (-Y)fe+1 f I <-*)»+l-*-V/iO<ttCt>
1 = 0

(2.4.6)

and expanding the second term of (2.4.6) we obtain

-(4>/Y ) fc(y, y) + ^(y, 4>)
where

.( .x v ^V1 ’̂+1 rr A\N + k ~J ^  7z(y, (()) = Z Z y
j =1 /c=0 J

! yt(tfc/fe!)dA(t) . (2.4.7)

Denote the transition probabilities of the imbedded Markov chain of the 

number of people in the queue the instant before arrivals occur by . .

Clearly

= j e y^(y£)^ ^+1/(£-j+l)! dA(t) , 0 < £ < /V , 1 < j < £+1 ,

£0 {l-i4(t)}dB (£+1) (*) , 0 <£</!/ ,

Pff+1„7 , o < j < 0+1 .

Looking at the coefficient of (-$) , ! < £ < / ! / ,  in (2.4.7) we

obtain
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(-(to"-'1 £ TT'V+1 f e'ut P'Mj-i)! d A U ) (-<|>)if' V +1 £ TT'p.
jti 3 Jn J J>*-+1I

J=£
/ . JV-£ £+1(-4.) V . (2.4.8)

Hence (2.4.6) becomes

(cj), y) = -a(y+y) {first term of (2.4.1)}

- (-$)N Z y ^ \ .  ,{(-y)~^-(-<f>) b] . (2.4.9)
£=1 t+1

With reference to (2.4.5) and (2.4.9) (compare (2.3.7)) note that

e YWF(m , y )dA(u) = J tt'. e "̂ dA(u) [ (w)
j=0 C J0 Jo

rOO
h ’W  < u}n+1

-yP
(^ ) E ( e  - 0} . (2.4.10)

-y U
Straightforward manipulation also yields (put ip(y) = E‘[e n ) )

N
P1((j), y) = ip(y) £  7r'.yJ+1(-<j>) J

«7=0

.«7+1/ AJV-JP (4>, y) = -iKy) Z  ^ (-<!>)
J=0 J+1

arguing as in (2C408). Substituting (2.4.10) and the above expressions for 

P (<J>, y) into (2.3.3) and (2.3.4) then gives (2.3» 5), with

C(y) = -a(y+y){first term of (2.4.1)} - y Z  . - y ^ y ) ^  .
J=1 0

The expression C(y) = 0 only readily yields information on 

a(y+y) for y > 0 .

It is interesting to note that equation (2,3.6; has its LHS independent 

of y , but not its RHS. We have exploited this fact only peripherally in 

our analysis. A more direct argument is as follows:

There are two possibilities to consider:
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(a )  th e  c o e f f i c i e n t  o f  4> in  th e  n um era to r o f  ( 2 .3 .5 )  v an ish es  

i d e n t i c a l l y ,  from which we e a s i l y  deduce

\p(y) = m/ (m+y) , m -

and th e  a n a ly s is  p ro ceed s  as from ( 2 .3 .1 2 ) ;

(b ) th e  c o e f f i c i e n t  o f  <j) in  th e  num era to r does n o t v an ish  

i d e n t i c a l l y ,  and n e i th e r  th e r e f o r e  can D(y)  . In  t h i s  c a s e ,  s in c e  th e  LHS 

o f  ( 2 .3 .5 )  i s  in d ep en d en t o f  y  , so i s  th e  RHS, and so th e  r a t i o  o f  th e

Nc o e f f i c i e n t  o f  0 in  th e  num era to r to  D(y)  must be in d ep en d en t o f  y  , 

e q u a l to  some c o n s ta n t  K , s a y . T his le a d s  to

ipCy) = m' /Cm' +y) (2 .4 .1 1 )

where m’ = [yn2+uK (l-irff+1) P r { ln = o}] /  [tt ( l -n ff+1) d  .

But i f  ( 2 .4 .1 1 )  i s  t r u e ,  th e n  from ( 2 .1 .5 )  and ( 2„2 . 8 )  we f in d

P r{l„  = 0} = m’/v  = l- i r0/(l-T rff+1)

and D(y)  v a n ish e s  i d e n t i c a l l y .  Thus case  (b ) i s  im p o ss ib le .

5o30 Point processes whose superposition is  a renewal process

In  t h i s  s e c t io n  we so lv e  a problem  in  su p p o rt o f  th e  fo llo w in g  

CONJECTURE 503 o l 0 n independent and id e n t ic a l ly  d is tr ib u te d  

s ta tio n a ry  p o in t  p ro cesses  r\^ (1 < i  < n) superpose to  an o rd er ly

s ta tio n a r y  renewal process r\ i f  and only i f  a l l  p ro cesses are P o isson . □

Daley (1 9 7 3 a , b) found co u n te r-ex am p les  to  th e  c o rre sp o n d in g  c o n je c tu re  

in  th e  n o n - id e n t ic a l ly  d i s t r i b u t e d  c a s e ,  b u t now c o n je c tu re s  ( p r iv a te  

com m unication) only  t h a t  a t  l e a s t  one o f  th e  su p erp o sed  p ro c e s se s  must be 

P o isso n  (s e e  Problem  6 . 6 05) .  The above c o n je c tu r e ,  which he p roves (1973a) 

when th e  summands a re  ren ew al ( s e e  a ls o  S torn ier (1 9 6 9 )) i s  th e r e f o r e  a 

s p e c ia l  case  o f  h i s .  We prove h e re  on ly  t h a t  h is  coun te r-ex am p le  (1973a) 

does n o t app ly  to  th e  above c o n je c tu r e ,  and we su sp e c t t h i s  n o n -e x te n s io n  

anyway s in c e  th e  argum ent f o r  h is  Theorem 1 does n o t re p ro d u c e 0 S ince  th e
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p r o o f  o f  h i s  Theorem 2 and o u r  th eo re m  a r e  v i r t u a l l y  i d e n t i c a l ,  we s k e tc h  

o n ly  enough t o  p o i n t  o u t  t h e  d i f f e r e n c e s ,  and assume co m p le te  f a m i l i a r i t y  

w i th  D a le y ’s p a p e r .

T H E O R E M  5 o 3 o 2 0 n i . i , d .  s ta t io n a ry  a l te rn a t in g  renewal p rocesses  r\̂

superpose to  an o rder ly  s ta t io n a ry  renewal process  p i f  and only i f  a l l  

processes  are Poisson .

P r o o f .  As i n  D aley ( 1 9 7 3 a ) ,  c o n s i d e r

G(x)  E p [ r ) ( 0 ,  x~\-mx I n ( {0}) > o]

G(x 9 y)  E # [ (n [ -3 5 ,  0 ) -m r} { r) (0 ,  yl-m y}  | p ({ o } )  > o] 

w here m = Er\( 0 ,  1 ]  . D e f in e  Gh ( • )  , Gf.(*, *) f o r  (1  < i  < w)

s i m i l a r l y .  I t  i s  e a s i l y  deduced  from  (9 )  o f  D aley  ( i b i d . )  t h a t

G(x ,  2 / ) y )  + tt?(l-n
*y

[gA xtu)-G  (u)'] du ,
J 0 1 1

( 3 .1 )

and im m e d ia te ly  i t  f o l lo w s  t h a t

-1 f tm[l-n  ) [g (x+u ) - G , ( ui] du = K(x)K(y)
J 0 1 1

f o r  some f u n c t i o n  %(•)  . Hence D a l e y 's  S e c t i o n s  1 ,  2 ,  3 and 5 im m ed ia te ly  

c a r r y  o v e r .  Thus i f  t h e  l i f e t i m e  d i s t r i b u t i o n s  o f  t h e  a l t e r n a t i n g  re n e w a l  

p r o c e s s e s  a r e  F, , P0 r e s p e c t i v e l y ,  t h e n  w i th  Q. ( x ) E l -  F. (x)  ,

i  = 1 ,  2 ,

- c ' x  -c'.'x
( i )  ^ ( x )  = A^e 1 + 1 , 0 < < o'! ,

0 < ^  < o£7 ( a £ - c ! )  , /K # 1 .

- c  .a;
( i i )  QÄx)  = t  9 0 < ^  < cr. , ( 3 . 2 )

w here Q̂  c a n n o t  b o th  be  o f  t h e  form  ( i i ) ,  n o r  b o th  o f  t h e  form  ( i )  i f

> ° , = °2  < ° ±  ~ °2 * I f  We d e f i n e

R(x) = P r { n ( 0 ,  j ]  = 0 I n ( ( 0 } )  > 0} ( 3 .3 )

R(x 3 y)  - P r { n [ - a : ,  0) = 0 ,  p ( 0 ,  y~\ = 0 | n ({0}) > 0} , ( 3 . 4 )
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t h e n  s i n c e  r| i s  s t a t i o n a r y  r e n e w a l ,

i ? 0 ,  y)  - R ( x ) R ( y ) .

Hence, i f  • )  a r e  d e f i n e d  s i m i l a r l y ,

( 3 . 5 )

a? ' h

^ ( w ,  y ) i? (w)Ä?
n -1

dudv

( n - 1  . n+l> = [m /n  J R^(u)du R^(v)dv ( 3 . 6 )

where 2 ^  (a:) = Q±(x) + Q ^ x )  , and 2R ^ x ,  y ) = ^ ( x ) ^ ! / )  + ^ ( a O ^ Q / )  .

I f  Q2 i s  o f  t h e  form ( i i ) ,  and $ o f  ( i ) ,  t h e n  t h e  RHS o f  ( 3 . 6 )  c o n t a i n s

a te rm  in  ( x y ) , w hereas  t h e  LHS does  n o t .  I f  and Q a r e  b o th  o f

t h e  form  ( i ) ,  t h e n  t h e  LHS c o n s i s t s  o f  sums o f  te rm s  o f  t h e  form  

n-1
exp -  V o . ( 3 * y ) - c  . x -o . y  

l - l  Kl  ^ ^
, where o . i s  o ’ o r  c ” , and c . i s  o '^ 1 1 ,7 2

o r  c "  , and i s  any o f  <3 ,̂ <3 Y , and t h e  RHS i s  a  sum o f  te rm s  o f  t h e

r n
form exp -  I  « I * -  Y. °v v

l - l  K l  S = 1  S
. But t h e r e  e x i s t s  a  s m a l l e s t  ( o r  l a r g e s t )

e x p o n e n t i a l  c o n s t a n t  o , s a y ,  w i th  c o e f f i c i e n t  A , s a y .  Then th e

c o e f f i c i e n t  o f  exp (-nc( xRy) ) on t h e  RHS i s  (A/2o)^n. [mn ^ / nn+^) , b u t  

z e ro  on t h e  LHS. S in c e  o i s  t h e  l a r g e s t  o r  s m a l l e s t  e x p o n e n t i a l  c o n s t a n t ,  

no o t h e r  sum o f  n e x p o n e n t i a l  c o n s t a n t s  can c o n t r i b u t e  t o  

exp [~no( xRy) ) . E
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CHAPTER 6

UNSOLVED PROBLEMS AND GENERALIZATIONS

6.1. Introduction

In this final chapter we collect together, for easy reference (rather 
than having them scattered randomly throughout the thesis) some unsolved 

problems and possible generalizations which relate to the ideas presented in 
the body of the thesis. Of course, there are many more unsolved problems
than there were solved, but only few of those we suggest will fall into that
elusive class "interesting and (possibly) resolvable". Some of the rest 
(probably) defy currently available techniques, while others may be of only 
borderline interest. The problems from each chapter will be listed 
approximately in order of occurrence with miscellaneous problems last.
Reference to its source will be given at the beginning of any problem whose 
origin is not specified in its statement. If the formulation is due to
another person, then he will be appropriately accredited. We will not
attempt to impose our own bias by indicating those we regard as most 
important. Some partial solutions will be provided.

Before embarking on this project, however, we will present in the 
next section a problem which is solved, but not in the sense of this thesis, 
and hence is included in this chapter.

6.2. Identifiability of the cluster structure of a stationary Poisson 
cluster process

6.2.1. INTRODUCTION

Suppose we know that the centre process of a cluster process is 
stationary Poisson with finite intensity; can we deduce from a complete 
record of the cluster process alone the structure of the subsidiary processes? 

The answer to this question is in the negative when each subsidiary is of unit
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size, because Poisson processes subjected to independent random translations 

are themselves Poisson. Milne (1970), Brown (1970) and Ross (1970) have all 
shown that the service time distribution of the M/G/°° queue can be 
identified from a complete input-output record. We answer affirmatively the 

corresponding question for Poisson cluster processes here, that is, we prove 
that the structure of a subsidiary process can be identified given 

realizations of a cluster process and of the Poisson process from which it 

is derived, without any information being given on the linkage between the 
two processes. Bendrath (1974) uses completely different techniques (no 

probability generating function(al)s) in a generalization of Milne's 
(1970) result. I thank Dr R.K. Milne for pointing out the existence of this 
alternative generalization and Dr D.J. Daley for finding the reference.

6.2.2. 1DHNTIFIABILITY WITH GENERAL CLUSTER STRUCTURE

Our solution will be in the spirit of Milne (1970). We shall assume 
throughout that the subsidiaries are i.i.d., and employ the notation of 
Section 4.4.

To identify the cluster structure, it is sufficient to specify
P2{N : ^ ( a J  = w1# = mk} (2.2.1)

for A^, ..., A^ left-open, right-closed adjacent intervals with rational 

endpoints, and k9 ..., each within Z+ (Theorem 1.2.2). We need

to define a mapping [i, n ) : N x /  -► N x (compare (4.1) of Chapter 4)

by

[i, nj(ff. N)
C/

=
r

N,
■ , 
N A ’-v)dN(v)l  J R V J

(2.2.2)

and define a measure P (with expectation denoted by E ) on

(WxWa>, a(N)xa(Noo)) by P = (p^xp ) [i, n ) 1 . We will let Nq stand for a

typical member of . Note that here we are assuming (i, r| ) is
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measurable with respect to o(SJ) * o(SJ) (which will follow from the 
measurability of r\ defined at (4.1) of Chapter 4). We will also assume

that [ i , P,J £ SJ^ , x ^ 2  - a.s. If : SJ -+ SI is defined as usual 

by T  N ( » ) = N ( * + y ) , then it is easy to verify that P  is stationary with 

respect to T  x T  , and that the ergodicity of P  will follow immediately 

from the ergodicity of P^ * P^ , which in turn follows from P^ being 

ergodic, and P^ weakly mixing ( of. Theorem 4.4.1).

Let A E (0, r] for a given rational r  > 0 , and = [r^ , rP\ ,

rQ E o , 2?̂  rational, 1 5 i < k . • Setting P = max(r, , we define

2the sets P?* € a(N) for i € Z+ by

D{ =  {(ff, / V j  : =  m, No{A^iR) =  ( 1  <  l 2  fc)} =  ,

where m, (1 5 I 5 fe) are each within Z + . Clearly

: SI -> {o, l) satisfies E\ 1 ̂  | < °° # and hence by the pointwise
i

ergodic theorem,

-1 fc-1
P - a . s .-1  V " = P(ZV ’t=0 t. o

Hence for z ,  z ^ 9 ..., z ^ rational, we have identified

(2.2.3)

9 z 2_5 • • • »  ^
M A ) Nc(Ai) W i... z (2.2.4)

By continuity, we have identified M [ z  9 z ^ 9 ..., a^) for all

(a, 3 1# ..., z £ [0, 1]^+1 . In particular, we have also identified 

log M(a, z ± , ..., z^j .

Now, it is known for the Poisson cluster process that, for £, £

within appropriate function classes (see Westcott (1971), Milne (1971),
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p. 49), the probability generating functional of P is

ft00ofc. y = eexp {log Z(t)dN(t) t log t)dN̂ (t)}

= exp -X
r + c

[i-5(t)c2(eo |t)]dt (2.2.5)

where X is the rate of the Poisson centre process, and G [E, \t) is the

probability generating functional of a subsidiary process whose centre is at 

t , defined by

ft00
y y * )  =

N*
exp log £ (u+t)dN (u) a 1 dP2(N) .

If, in particular, we set £(£) = 1 - (l-2 )l^(t) , and

£ (m ) = 1 - Y (l-s.)l. (u) , we find that log M[z, z , ..., z/] is a C t=l I K

function linear in z , so differentiating we have identified

f+°° / n f ̂ l(Al“*)1 (t)E2 (2.2.6)

Now X can be identified as lim W(0, n~\/n , - a.s. Since
7T*°°

(2.2.6) is clearly an absolutely convergent power series in ..., ,

we can equate coefficients to obtain

Fir) = P2{iy1(i41-t) = mv  . (2.2.7)

It is not difficult to show that the integrand in Fir) is a continuous 

function of t • To prove this, let us write

P2(A, t, v) = P2{ff1 [ b i-t) n(/U-u)] = mi ( l s i s * : ) } .

Then for any e > 0 , there exists by consistency condition (v) of 

Theorem 1.2.l a  6^ > 0 such that for \v-t\ < ^

|P2(A, t* t)-P2(A, t, y)| 5 e/2 ,

and, similarly, a 62 > 0 such that for \v-t\ < <$2 »
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|P2(A, t, v)-P2(A, v 9 v)\ < e/2 .

Hence, for \v-t\ < min(6^, 6 ) ,

|P2(A, t, t)-P2(A, i>, v)\ < e ,

which we require. Thus, evaluating the limit

[P(r+an)-f(r)]/Aw

for a sequence of rationals L 0 (n -*- °°) , we obtain

q I V V d  = V •••’ M 'V d  = ^

and thus (2.2.1).

We state this result as

THEOREM 6.2.1. The cluster structure of a stationary Poisson cluster 

process with i.i.d. subsidiaries is identifiable with probability one from a 

complete centre process-subsidiary process record. □

6.2.3. SPECIAL CLUSTER PROCESSES

In both special processes below (see e.g. Lawrance (1972), Section 4, 

for definitions), we first wish to identify the distribution of N^(R) .

Note that { N ^ - k i  k) < l) T {^(P) < l) (k -*■ «>) , l Z Z + , and hence the

distribution of P^(P) is identified.

(a) The Bartlett-Lewis process 
By standard results

p 2{p 1(o , *] = o} = i - p 2{p 1(p ) > 0}p(t) ,

so F is identified.

(b) The Neyman-Scott process
Again, looking at the same event,

OO

P = 0} = £  = n] [1-FC4) ]n
n=0

for any A £ B(P) » so that F once again is uniquely specified.



126

6.2.4. CONCLUDING REMARKS

There are several unanswered questions associated with this problem.

In particular, we point out that identifiability should be a robust 
property, and hence we should only need to assume P ergodic0 Note that 
this means that P1 must be weakly mixing and P ̂ ergodic or vice versa.

One way to tackle the general problem in the case of ?2 having independent

increments would be to expand the p.g.fl. of P (of. Brillinger (1974)). 
However, we consider that a more aesthetic technique should be available.

Secondly, Milne (1970) has shown that if we are given a realization 

which is in fact the superposition of a Poisson process and an i.i.d. 
translation of it (i.e., each point of the Poisson process is independently 
subjected to a translation with d.f. G say) then, provided G is either 

symmetric or concentrated on a half-line [0, 00) or (-00, 0] , G is still 
identifiable. We pose the corresponding problem for Poisson centres and 

right-hand clusters.
Finally, we remark that our formulation gives no idea of the robustness 

of identifiability of the cluster structure, i.e., given only finite 
realizations of our processes, can we identify the alternative possible 
cluster structures and do they differ substantially (in a way that will have 

to be defined)?

6.3.  Problems concerning Chapter 2

P.6.3.1 (REMARKS FOLLOWING THEOREM 2.3.1). Define the service process 

instead as a probability measure P 2 on . Then we can replace $ by

<f>' : N x ■+ defined as

4>'(P, X)(i) '[y,v+xv)(t ) d N ( v) .

With this new model we can weaken Theorem 2.3.1 (b). But one pays a
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price - it is harder to prove measurability of <J>' , and (more significantly) 
the model only corresponds with the usual one (i.i.d. service times) if P^

is a.s. orderly. We think lack of orderliness more important than the 

weakening, and so have retained the other model.

P.6.3.2 (THEOREM 2.4.1). Weaken the condition in Theorem 2.4.1 (b) 

to E [ xi} < °°. Possibly the proof there is insufficient, in that the

argument used is not via the ergodic theorem, unlike part ( a). However, if 

we disregard the contribution from < 0 , E Ax < « is sufficient.

P.6.3.3 (LEMMA 2.5.4). Virtually unexplored is the question of 

replacing /n and /F in (5.2) and (5.3) of Chapter 2 by

Varp -I Y, an^ Varp ^(0» t ] . Initial probings reveal difficulties,
Vi=i Z} 1

which may, however, disappear under closer scrutiny.

P.6.3.4 (END OF SECTION 2.5). Suppose we have a general non-stationary 

arrival process P with first moment measure M(A) = EN(A) . We would like

rTthe central limit theorem for 4)(s)ds asking only (in addition to the
J 0

components satisfying a central limit theorem and possessing suitable 

moments) that MC0, a:] = 0 ( x ) (x -*■ «>) ( c f . Iglehart and Kennedy (1970)). 

Then, as in Lemma 2.5.2,

P1 * P2{T" S (T) - e} - x ^2^1^T^ ^ GT<
r T

d F U ) (u+1-t)cIM(u)/e t c

d F U ) ( u+ l - j ) dM( u)/ex0 .
T-l

Now the first term is < M(0 I d F i D / e 9 and so is easily

handled. The second term has an upper bound of
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lM(i-l, t]dF(Z)/ex .
J0

If P is stationary, then M(t-1, t ] = ml , or if P corresponds to a 
Palm measure then we can use (405) of Chapter 2. However, if we have no 

information such as M(I) - Af(|j|) , \l\ -► 00 , i.e., no information on how

nicely segments I (intervals) of our process are behaving (of, functional 
convergence), then it seems difficult to handle this-term.

The stationarity of the process of service times can also be removed if 
again one imposes a condition ensuring that no one service time contributes 
too much to the central limit theorem (of, uniform asymptotic negligibility). 
For example, suppose that there exists a distribution function F such that

F.(x) = pA x , < x} > F(x) ,«7  ̂ J

so that, in a sense, the random variable corresponding to F is dominating 
the service times. Then, after some algebra,

0
* S2{$2} = E I

J=-

and, similarly,

= [ dF(l) 
J 0

r0
min(Z+w, i)dM(u)

^ 1  X  ^ 2 ^ 1 ^  ~
min(l, r-u)dF(l)

J0

so that the analysis'may be carried out as before.

Po603o5 (COROLLARY 2.6.12). Our feeling is that this result is 

suboptimal. It would be interesting to compare this approach to one using 

characteristic functions and an inequality due to Esseen (Lemma 2, Chung 
(1968), p. 20 8) on the stationary M/G/°° queue (°f* Rao (1966)).

Pe6o3.6 (BEGINNING OF SECTION 2.7). The results of Section 2.7 are
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therefore not really an extension of those of Section 2.6. An examination 
of other rates of functional convergence theorems reveals that they too are 

often expressible in terms of the metric of convergence in probability. This 
seems strange: one should attempt to obtain rates of functional convergence 

results asking only that the arrival process and service time process 
converge to the Wiener process at rates in terms of the Prohorov or dual 
bounded Lipschitz metrics, although for the GI/G/°° queue the stronger 
result is available. Dudley’s (1972) comment that rates of functional 
convergence are better expressed via the Prohorov metric therefore seems 

open to dispute, although his comparison was with Lipschitz functional 
formulations. The clue to changing the metric from p to d in (7.1) of 

Chapter 2 is given in Billingsley (1968), p. 112, line 15.
P.6.3.7 (LEMMA 2.7.1). Rates of convergence results are prime examples 

for improvement by fine arguments in unexpected directions. It is by no

means clear that the (log n) / /n4 term is optimal; in particular, the 

logarithmic factor.

6.4. Problems concerning Chapter 3

P.6.4.1 (THEOREM 3.3.2). The tail sums could hopefully be dealt with 
as in Barbour (1974), although here we have triangular arrays of convergent 

series rather than a straight sequence.
P.6.4.2 (LEMMA 3.4.6 (b)). Note that Iglehart (1971a), Theorem 3.3 

does not need (directly) the properties of K in his proof. In his

notation, p S'7, a.z n q n -* 0 a.s. has already been proved, where

£ (£) = E(nt) /<b(n) for £ a standard Brownian motion. His result thus n

follows from inequality (5.13) of Chapter 1, the relative compactness of £

(Strassen (1964)) and the Arzelä-Ascoli theorem.
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P.6.4.3 (AFTER LEMMA 3.4.6), Of course, these remarks are vacuous if 

a process X is defined to obey a FLIL as in Problem 6.4.2 above, i.e.,

pfj , £ ) -* 0 a.s. for £ defined there. y n nJ n

In (4.1.7) of Chapter 3 note that if

An = |e2(j)(n)2 5 J2 < e2(j)(n+l)2| ,

00 00 00

Ex'2 = X X2dPr > 2e2 £ nPr{A } = 2e2 £ Pr
n=l *A n-1 n n=ln

provide the intermediate steps. The ideas succeeding (4.1.7) of Chapter 3 
are probably well known - for an instance without details see Heyde and 
Scott (1973).

P.6.4.4. Removing the condition m  < 1 , which is not a logical 
requirement, but apparently a technical one, in SECTIONS 2.7, 3.3 AND 3.4 

seems difficult.
P.6.4.5 (THEOREM 3.4.8). The RHS of (4.2.9) of Chapter 3 is a 

significant overestimate of the LHS. Using the current arguments, weakening 
the condition (4.2.4) of Chapter 3 means decreasing in some manageable way 
the RHS of (4.2.9) of Chapter 3, or estimating tail probabilities in the 
geometric subsequence argument by something other than Chebyshev's inequality.

P.6.4.6 (THEOREM 3.5.1). A direct proof of the relationship (5.1) of 
Chapter 3 is not known (to me).

P.6.4.7 (COROLLARY 3.5.5). We seem to require that the service time 

process obeys a FLIL; the problem is achieving a result parallel to Lemma 

3.4.7 for the OLIL.
P.6.4.8 (SECTION 3.5.3). It is by no means clear whether infinite 

divisibility is a global property. Dr M. Westcott (private communication) 

has informed me that a student of Matthes is working on the problem: "a

doubly stochastic Poisson process is infinitely divisible if and only if its 
stochastic intensity is infinitely divisible". We pose the question more 
generally in the light of Kingman's (1964) characterization (not his renewal
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c h a r a c te r i z a t i o n  -  see  S e c tio n  3 .5 .3 ) :  " i f  a p o in t  p ro c e s s  i s  s u b je c te d  to

a random change o f  tim e  in d ependen t o f  th e  o r i g i n a l  p ro c e s s ,  th e n  th e  

r e s u l t a n t  p o in t  p ro c e s s  i s  i n f i n i t e l y  d i v i s i b l e  i f  and o n ly  i f  th e  o r ig i n a l  

and tim e  tr a n s fo rm a tio n  p ro c e s s e s  a r e " .

P.6 .4.9 .  An open q u e s tio n  i s  th e  g e n e r a l iz a t io n  o f  Theorem 4 o f  Daley 

(1972) to  a s t a t io n a r y  p ro c e s s  o f  s u b s i d i a r i e s ,  in  th e  s t y l e  o f  Lemma 2 .5 .4  

f o r  th e  G/G/°° queue. I t  i s  c l e a r  t h a t  t h i s  g e n e r a l iz a t io n  goes th ro u g h  i f  

we assume th a t  th e  p ro c e s s  o f  s u b s i d ia r i e s  i s  s a y , s tro n g  m ix in g , w ith  an 

a p p r o p r ia te  c o n d it io n  on th e  r a t e  o f  m ix ing . We would a n t i c ip a t e  t h a t  we 

need  o n ly  assume

OO

«7=0 J

w here y = 2?{7V0(7?)} < 00 (com pare Lemma 3 o f  B i l l in g s l e y  (1 9 6 8 ) , p . 1 7 2 ).

However, th e  problem  th e n  seems to  in v o lv e  j u s t i f y i n g  exchanging  th e  o rd e r  

o f  some l i m i t s  and i n t e g r a l s .

P.6.4.10 (LEMMA 4 , W estco tt (1 9 7 2 )) . I t  would be i n t e r e s t i n g  to  know 

w h eth er th e re  e x i s t s  a sm a ll c la s s  o f  fu n c tio n s  £ w ith  n ic e  p r o p e r t i e s  such 

t h a t  th e  convergence o f  th e  p . g . f l s .

G [£ ]  +  G[£], n

g u a ra n te e s  weak convergence fo r  th e  c o rre sp o n d in g  p o in t  p ro c e s se s  ( o f .  th e  

d u a l bounded L ip s c h i tz  m e tr ic  f o r  weak convergence (S e c tio n  1 . 5 ) ) .

P.6 .4.11 (WEAK CONTINUITY OF CLUSTER PROCESSES). Kennedy (1972a) and 

W hitt (1974a) have d em o n stra ted  weak c o n t in u i ty  f o r  q u eu es . Such an id ea  

sh o u ld  ex ten d  to  c l u s t e r  p ro c e s s e s ,  b u t t h e i r  p ro o fs  r e l y  h e a v i ly  on th e  

queues b e g in n in g  a t  t  -  0 , and th e  s e rv ic e  tim e s  b e in g  n o n -n e g a tiv e . 

However, in  th e  fo llo w in g , we w i l l  d em o n stra te  t h a t  weak c o n t in u i ty  fo r  

c l u s t e r  p ro c e s s e s  i s  a v a l id  c o n c e p t. The p ro o f  i s  v ia  th e  p . g . f l . ,  and 

hence we have n o t s t r iv e n  f o r  th e  f i n e s t  p o s s ib le  c o n d it io n s  v ia  t h i s  

te c h n iq u e ,  w hich demands ( u n n e c e s s a r i ly ,  we su rm ise ) t h a t  th e  c e n tre  p ro c e ss
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and process of subsidiaries be independent, and the subsidiaries themselves 

be i.i.d. We use the model (2.2) of Chapter 3, but now write

P0 = X P0 • , where P . is a probability- measure on
-7 = - 0 0

P . = P f for some generic point process P f for which

(N, q (W)) , and set 

P'{N(R) < oo} = l .

PROPOSITION 6.4.1. If P1 and sequence {P^ } stationary

centre processes with finite intensities m 3 and satisfy

P. P. and m < 00 3 lim sup m < 00 (4.1)in i nn-*x>

and £/ P' and sequence {P^} a/ subsidiaries have first moment

measures M ' (•)3 {M^(•)} satisfying

P' P f and M'(R) < 00 3 lim sup M'(R) < 00 (4.2)n _  nn-x»

tfen t?ze sequence of corresponding cluster processes satisfy

P * P . an a

Proof. By Lemma 4 of Westcott (1972) and equation (15) of Vere-Jones 

(1968), we must prove that the corresponding p.g.fls. satisfy

- ffi lG’a\t)-](4.3)

for £ (: 7 (recall that weak convergence and convergence of finite 

dimensional distributions correspond for a sequence of point processes 

converging to a point process).

We prove (4.3) in two parts. Firstly, by an inequality in the proof of 

Theorem 2 of Westcott (1972),

<4 -4>

< mn
f+ 0 0

J — 00
\ G ^ \ t ) - G ,̂ \t)\dt (4.5)

[l-G^E,\t)]dt +
.-(-oo 

J —oo
[l-G1 (4.6)

By some easy inequalities, (4.6) has an upper bound of
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mn {M^(R)+M’(R)} I supp.[log £]|

and hence by (4.1), (4.2) and the dominated convergence theorem, (4.5) -*■ 0 

(n -* ») .
For the second half, let ^ € V be a sequence of functions

i (this is always possible since our functions take values in

[0, 1] ). Then

|Gln[G'(5|t)]-C1CC'(5|t)]| (4.7)

< (mn+m) }̂ ° um-c'(5i«i dt ♦ ifflntg-c1[ g I •
• _oo

Hence, by Lemma 4 of Westcott (1972),
r+°°

lim sup (4.7) < K 
TT*°°

\zm-G'a\t)\dt (4.8)

for some constant K . But the RHS of (4.8) has a uniform upper bound of
►t°0

2k ( [i-G'(£|*)]dt
j —OO

which we have already shown to be finite. Hence, by dominated convergence 
the RHS of (4.8) -*■ 0 (m + °°) , and thus we have proved (4.3). Ü

Hopefully, a more direct analysis will yield a stronger result. We 

remark, though, that continuity in itself is not really what we are looking 
for: instead (in an obvious phraseology) we require 'rate of continuity’.

6.5. Problems concerning Chapter 4

P.6.5.1 (THEOREM 4.4.1). It was pointed out in Section 4.5 that the 

condition P  ̂x P^ (G ) -*■ 1 (t -► 00) is not a necessary condition for strong

mixing of cluster processes to occur. In fact, we know of no example of a 

cluster process with strong mixing centre which is not strong mixing. But 
consider the Neyman-Scott process (Poisson centres) with two points per 
cluster. Then this process always exists (Westcott (1971)), but if F , the
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distribution of each point of a cluster from its centre, does not have 
finite mean, then (4.13) of Chapter 4 fails. We have no suggestions, however, 
as to the relevant events to consider for the potential counter-example.

P.6.5.2 (THEOREM 4.2.1) (D.J. Daley - solved problem). We point out

that a continuous time Markov chain need not be (j)-mixing. Let Q(t) be the 
size of a classical immigration-death process; it is well-known that this is 
a Markov chain. Note that the classical immigration-death process 
corresponds to the queue, and Q(t) to the number of servers. Again

Pr{QXi) - 0 I £?(0) = n] can be made arbitrarily small by taking n large 
enough, so that counter-examples of the style of Section 4.2 follow (compare 

Bloomfield (1973)).
P.6.5.3. Given a point process which is ^-mixing, and 

<{)1 : [0, oo) [0, 1] satisfying ^ ( t ) T O  (t -+ °o) and <|> (t ) > cJ)(t )

(all t € P+) , construct a process which is (^-mixing but not ^-mixing

(P.A.P. Moran).
If we subject the original process to random deletions via an 

independent process which is -mixing, then by Corollary 4.4.2 (v) , the

new process is ({^-mixing. It is at least intuitively clear that the

derived process will not be ^-mixing.

P.6.5.4 (THEOREMS 4.3.1, 4.3.3). We suspect that the following is 
true: if the centre process of a cluster process with i.i.d. clusters is

complete, <£- or strong mixing, and its p.g.fl. G  ̂ satisfies (3.1), (3.2)

or the p.g.fl. equivalent to (3.8) of Chapter 4 respectively, then so does 

the p.g.fl. G of the cluster process.

P.6.5.5 (D.J. Daley), ^-mixing point processes P may be represented 

as satisfying, for C € o(SI(-°°, £]) and p € o(N(t+T, °°)) ,

|P(P|C)-P(P)| < cj)(i) .
Taking C - {N(t-h, t] > 0} and letting h \ 0 suggests that cjj-mixing
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processes may have nice properties for Palm-Khinchin measures.
P.6.5.6 (D.J. Daley). A more general question is the possibility of a

p.g.fl. formulation for the Palm-Khinchin equations, i.e., to relate the 
p.g.fl. G(•) of a stationary point process to the "conditional p.g.fl.
G (•) , the p.g.fl. for the process given a point at zero".

P.6.5.7 (THEOREM 4.3.1) (P.A.P. Moran). Define and study the

properties of the "conditional characteristic functional". This remark arose 
in relation to the inequality (3.2) of Chapter 4. A relevant reference is 

Bartlett (1938).
P.6.5.8 (COROLLARY 4.4.2). Let (X, Y) = {(*., Y .)} be a double

V tJ

sequence of stationary random variables, where X and Y are independent.

If X is strong mixing, Y is strong mixing, is (X, Y) strong mixing?
Professor E.J. Hannan (private communication) conjectures that this is not
so, but knows of no counter-example. Presuming he is correct, then, comparing
(X, Y) to P x P and thus P in Theorem 4.4.1, we conclude (tentatively) z o

that Corollary 4.4.2 (iv) (and (v)) are optimal. If X is ergodic and Y 
is ergodic then (X, Y) is not necessarily: for a counter-example, see

Hannan (1973), p. 163, or Breiman (1968), pp. 100 and 113.
P.6.5.9. Of the same ilk as Problem 8 is the question of superpositions. 

The techniques of Theorem 4.4.1 yield: independently superposing a completely

mixing point process with a strong mixing point process results in a strong 
mixing point process. Characteristic functional arguments (Theorem 4.3.3) 
suggest the stronger conjecture: independently superposing a strong mixing

(rate a^) process with a strong mixing (rate a^) process yields a strong

mixing (rate a^+a^) process. We do not believe the stronger statement.

P.6.5.10 (SECTION 4.4). Find conditions on T) which guarantees its

measurability. They will probably include the measurability of v t—* N (A)

from R -+ Z for any given for which N (R) < 00 (all v € R )
T V V
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and any given A 6 B(P) .

P.6.5.11. In LEMMA 4.4.3 we conjecture that if P^ has independent

increments, the necessity of (4.6) of Chapter 4 holds in general. The 

problem is to find a path proving

I = 00 - a.s.

* p2{Fttd i*°”  ti - t_Tl̂  = 1 P1 " a*s‘

by exploiting the independence of subsidiaries located at different points.
P.6.5.12. THEOPvEM 4.4.1 should generalize to multivariate point 

processes. However, a problem of definition is encountered in the 
generalization to multidimensional point processes: what is meant, for

example, by strong mixing of a point process on the plane?
P.6.5.13 (SECTION 4.1). We have not attempted to indicate when a 

point process is complete, <t>- or strong mixing. Many point processes are 
specified by their inter-epoch times. Therefore a relevant question is: 
if the inter-epoch times of a point process are complete, or strong
mixing, does the point process itself have the same property?

6.6. Problems concerning Chapter 5

P.6.6.1 (SECTION 5.1). Robustness of characterizations of queueing 

systems is very closely allied to the idea of continuity of queues (Kennedy 

(1972a), Whitt (1974a)). We discuss this idea further in Problem 6.4.11.

Dr D.J. Daley has suggested the following metric of robustness:

W p’F) E —Qu fV(0’u]W/(0,u])
where |s| < 1 , E is the expectation with respect to the Palm measure of 

a given point process P , and 2? the expectation of a renewal process P^

with lifetime distribution F . This metric suffers from the defect
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(possibly) that it is zero when 3 = 1 ,  but could easily be modified. The 
point is, though, that (P, F )

(a) plays down the importance of what happens for large u ;

(b) is small when N(0, u~\ is large,

i.e., it emphasizes local behaviour, (a) and (b) seem to be desirable 

properties of any ’robustness’ metric.
P.6.6.2 (SECTION 5.1) (D.J. Daley). Characterize stationary

GI/M/i/N (1 < N < 00) queueing systems with uncorrelated output. Daley 

(1968) has characterized GI/M/±/°° and M/G/l/°° systems with uncorrelated 
output, while Daley (1974) and Vlach (1971) have characterized GI/M/1/0 

systems with such an output. King (1971) has answered the M/G/l/1 case, 

and has given an expression for the covariance in the M/G/l/N situation. 

Preliminary investigations suggest that the techniques of these papers do 

not assist us here.
P.6.6.3 (SECTION 5.2.1) (D.J. Daley). Characterize stationary

GI/D/l/N (0 5 IV 5 °°) queueing systems with renewal output. It is known 
(Daley (1974)) that no restrictions on the inter-arrival distribution are 
required if N = 0 , and that the output is renewal for N = 1 if the input 
is Poisson (King (1971)). We conjecture that no other non-degenerate 
situations (i.e., for which Pr{arrival time > service time} < 1 ) give rise 
to renewal output.

P.6.6.4 (SECTION 5.1) (D.J. Daley). For a pure loss GI/G/1 queue
(i.e., GI/G/1/0 ) find

U(x) = E{number of departures in (0, a?] | departure at 0} , 
and ask when is U{x) - \x for some constant X (i.e., when do departures 
look like a Poisson process as far as second order properties go)? We 

could also investigate when U(x) is a renewal function. This may not be a 
tractable problem, although Laplace transforms may be of assistance.

P.6.6.5 (SECTION 5.3) (D.J. Daley). Let q = + n2 be a renewal
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process which is the superposition of independent alternating renewal 

processes. Prove that either r\̂  or r\ is Poisson. (If Daley's (1973a)

technique is to be used, it may be necessary to assume that is derived

from the jump epochs of a Markov chain, i.e., the lifetime distributions are 

exponential, with rates a and ß (a ± ß) ).

P.6.6.6 (D.J. Daley). Let SM denote a point process derived from

the jump epochs of a stationary irreducible semi-Markov process.

Characterize those <SM processes for which

P + SM = R (6.1)

(P is Poisson, R renewal ). In particular, it is of interest to know 

whether any two state semi-Markov process with

• = ^{transition i -*■ Q | lifetime of type t just ended) , £, J = 1, 2

and with ^ 0 can satisfy (6.1). (This is to be compared with Daley's

(1973a) counter-example.)

P.6.6.7 (D.J. Daley). Let MC denote a point process derived from

the jump epochs of a stationary irreducible continuous time Markov chain on 

a countable state space. Daley (1973b) has obtained necessary and 

sufficient conditions on MC to guarantee

P + MC = R .

What is the distribution function F  (or its Laplace Transform) of the 

renewal lifetimes in R ? Daley (private communication) anticipates that

1/ e"0tdF(t) X + 0 +
(0,»]

(l-< -0 A  ,

for some measure y , because the problem seems to be linked with continuous 

time regenerative phenomena. Note that this would mean that R is also a 

doubly stochastic Poisson process (e.g., Kingman, discussion to Bartlett

(1963)).

P.6.6.8 (D.J. Daley). Let q(*) be a stationary renewal process, and

let
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= 1 if r\{nh, (n+l)h] > 0 ,
= 0 otherwise.

CHARACTERIZATION CONJECTURE, {x^} is a discrete time stationary
renewal process for every h > 0 if and only if n(*) is Poisson, If so3 

oan the conclusion hold if h is restricted to an interval. □
P.6.6.9 (D.J. Daley). Let n(*) be a non-arithmetic renewal process

with lifetime distribution F having finite mean X  ̂ , and set

H(x) = Y, ^  (#) > where (x) denotes the j-fold convolution of F . 
n-1

Can skeleton arguments (Kingman (1972), p. 34) be used to show
H(x+h) - H(x) -*■ Xh (x + 00)

for every h > 0 ? (That is, can the Blackwell renewal theorem be deduced 
from the Erdös-Feller-Pollard theorem?)

P.6.6.10 (D.J. Daley). Let a stationary, orderly point process h(*)
with finite rate X be mixing in some appropriate sense. Does this imply a 
quasi-Blackwell renewal theorem? That is, does the expectation function 
U(x) = £’ ( f |(  0 , #] I n ( { 0 > )  > o) satisfy

U(x+h) - U(x) Xh (x -*■ oo) ?
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