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1.0 Introduction 

Database management systems based on the CODASYL DBTG 
recommendations have become a de facto industry standard, and are available on the 
machines of most major manufacturers. These systems augment a higher level 
language such as COBOL, Fortran or PL/I with data manipulation commands, and 
hence using them requires programming an application in one of the host languages. 
This interface is at too low a level for the casual user. Many potential users are 
reluctant to make the initial heavy learning and programming investment required to 
use these systems effectively. In addition, the effort required after this initial 
investment, in programming each additional query, is considerable. 

The situation would be vastly improved if the interface presented to the user 
was at a much higher level. The relational model, where the user views the data as a 
number of large tables, is one candidate for providing such a higher level interface. 

In this paper, after giving a brief description of the relational model, I describe 
some currently implemented relational database management systems. Secondly, I 
describe the prototype implementation of a relational language, ALF, designed to act 
as a front end to a CODASYL database. ALF has been implemented as an interactive 
system at the CSIRO Canberra installation. It produces output in a language called 
CODE-A, and examples of the output may be found in Appendix E. This 
implementation involved setting up a mapping between the relational model and the 
CODASYL (network) model, and, from this mapping, deriving algorithms to translate 
commands in the relational language ALF into efficient programs suitable for 
execution on network databases. 

The ALF translator may be regarded as a special purpose optimising compiler, 
as much attention has been paid to generating efficient code. The benefits of spending 
time on optimisation are even more clear cut with a database access language than 
with an ordinary programming language, as the programs being optimised are 
typically only a few lines long, and the extra time spent in translation can save many 
accesses to disc at execution time, in addition to saving central processor time. 

As implemented at present, ALF does not contain any update commands, 
however their introduction would be straightfonvard, and the underlying algorithms 
would still be used if they were introduced. 

The approach described in this paper has several novel features. 

1) Many current relati .. mal database system implementations store all 
relation attributes, including foreign key attributes, explicitly in relation 
tuples. Join operations are performed by actual matching of the key 
values in the relations to be joined. ALF is implemented as a front-end 
to a CODASYL database system, and because of the use made of the 
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CODASYL set structure in implementing foreign keys, these keys are 
not explicitly stored . This would significantly increase retrieva l 
efficiency, as well as introducing an important integrity constraint. 

2) Implementing a relational interface to an existing database system 
allows the implementor to avoid most of the work which other 
relational system implementors have had to face, for example fil e and 
index structures, concurrent access, etc. 

3) Although the network-relational correspondences have been pointed 
out or alluded to on previous occasions, for example, in (Nijssen 1974), 
(Olle 1975), (Sibley 1974), translation algorithms developed from them 
have not been previously published, to my knowledge. 

4) The translation process generates an intermediate language which 
may either be interpreted directly or translated into any (reasonable) 
target language. Whether the command is to be interpreted or compiled, 
and what the target language 1s to be, 1s determined by the 
interchangeable final pass plugged onto the translator. This feature 
allows the possibi lity of having a common interface to different 
CODASYL Database Systems, perhaps running on different machines. 
The final pass currently included in ALF generates code in a language 
called CODE-A, which is described in Appendix C. 

5) Unlike other relational systems, execution of a program generated by 
ALF does not involve the generation of any intermediate files: This 
contributes to increased retrieval efficiency. 

The reader who simply wants some idea of the work described in this paper 
can read the sections 2 and 4, on "The Relational Model" and "Sample ALF queries'·. 
These two sections are self contained. The section on "Formal D efinition of ALF" 
contains some material oriented towards understanding the sections which follow on 
the translation algorithms. 

This project would not have been· completed, or indeed started, without the 
encouragement and assistance of Dr J. L. Smith. 

. - -· .. ·------_ ----_- _-_--_--·------ ----·----------·-- -· ----·-------··-
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2.0 The Relational I\lodcl • 

There have been a great many articles published on Relational Database 
systems, thus only a brief and incomplete survey will be presented here. In particular, 

· the important topics of functional dependency and normalisation will not be covered. 

The relational model of data was first proposed in (Codd 1970), a paper which, 
together with (Codd 1971a,1971b) produced a flood of research into Relational theory 
and practice. The Relational model used in this paper is the one described in Codd's 
early work; recent extensions, for example those described in (Codd 1979), are not ,., 
included. 

Basically, the relational model describes a way in which a database user views 
the data in a database. There is no requirement that this view shall correspond to the 
way in which the data is stored. The data may be considered as being arranged in a 
number of tables or matrices, each one called a relation and given a name. Each . table 
or relation contains a number of named columns, where the data in each column is of 
a type selected from some homogeneous underlying domain. The name of each 
column is called an attribute or attribute name of the relation. Each row of the 
relation is. called an n-tuple or simply tuple. An example of a relation representing 
Departments is shown in Figure 2.1. 

"' 
· _Department . 0# Otoe Dname 

123 ACT CSIRO . 
124 

! 
ACT Treasury . 

125 ACT Health 

126 ACT Defence 

127 Melbourne Telecom 

Fig. 2.1 

One central assumption of relational theory is that in each relation, there is a 
. subset of the attributes of the relation whose values uniquely identify the relation tuple 

in which they occur; that is, by appealing to the semantics of the system being 
modelled by tlie rclation:11 database system, it is known that two tuples may not haYe 
the same values of these identifying attributes. This constraint is assumed to be 
enforced by those programs which maintain the database. In addition, this subset is 
minimal, that is by removing an attribute from the subset, one destroys this 
uniqueness property. Such a subset of the attributes of a relation is called a candidate 
key. A candidate key which never has any of its component attributes undefined is 
selected and called the primary key. 
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Fur a p:1rtil·t:l.1r :1ppliL":11i1i11. thL· 1t1t:tli1y of rcl:1ti1i11s :ind :1ttrih111L's c:111 he 
considered to modd tht.! application. This model is calkd a t\_•/otion ci l schema. 

A relation 111 a relational database may represent a cbss of objects (in the 
widest sense) in the real system being modelled by the database system. Two objects 
in the system may be related in some way. One way that relational database systems 
represent this is to have the identifying attributes (that is, the primary key or one of 
the other candidate-keys) of one rdation occurring in another. Wht.:n this occurs the 
attributes in the second relation arc known as a foreign-key. The foreign key would 
not in general be a candidate key of this second relation. Two relations may also be 
related using non candidate key attributes. 

As an example, assume a relational database contains two relations representing 
companies and departments, where each of the departments belongs to one of the 
compani~s. This situation could be presented in the way shown in Figure 2.2. 

Comp 

-
Dept 

Fig. 2.2 

If C# 1s the pnmary key of the Company relation, the situation where .a 
particular departm ent belongs to a particular company could be represented by the 
C# attribute of the tuple representing that particular department in the Department 
relation being equal to the C# attribute in the appropriate tuple of the Company 
relation. In this case, C# is a foreign key in the Department relation. C# could also 
be part of the pnmary key of Deparlment (for example, if the primary key was 
[C#,D#]), but need not be (for example, if the primary key of Department was 

.· [D# ]). It should be emphasised that, in representing some relationship between two 
objects in this way, there is no requirement for tl~e foreign key attributes to have the 
same names as the primary key attributes, although this is very often the case. 

\ 

• 

' 

..• 
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3. Other Relational Database System Implementations 

This section first gives a classification of the types of language that have been 
proposed for manipulating data stored using the Relational Model, and secondly fits 
the methods used in the ALF implementation into context by describing some other 
Relational Database System Implementations. There have been many such 
implementations, and this report will mention only three of them, viz PRTV, 
System-R, and INGRES. The selection has been based on the fact that the systems 
described do not implement the operators specified in the relational language in a 
brute force, straightforward way, but make significant transformations and 
optimisations in translating from the operations at the logical level of the Relational 
language to the physical level at which the data is actually stored. 

Languages for accessing data stored using the Relational Model have been 
classified in (Chamberlin 1976) under the following headings : 

Relational Calculus Oriented Languages 

Relational Algebra Oriented Languages 

Mapping Oriented Languages 

Graphics Oriented Languages 

Natural English query langu?.ges could be added to this classification. 

In Calculus oriented languages each relation may be thought of as a predicate 
in a first order predicate calculus, and each tuple may be thought of as a ground 
instance of such a predicate. A statement in a calculus oriented language contains a 
qualification which selects a subset of the tuples in the database. A targetlist selects 
attributes from the retrieved tuples, and a command operates on the selected values, 
outputting them or performing some other computation. The qualification is a 
formula in a first order predicate calculus, and may contain universal and existential 
quantifiers in some languages (Codd 1971 b ). 

In Algebra Oriented languages a number of unary or binary operators are 
defined on relations, and produce new relations. These operators include Projection, 
Restriction (Filter, or Selection), Join, Division and the set operators Union, 
Intersection and Difference. There is an assignment operator, used to assign the result 
of a relational algebraic expres:;ion to an intermediate result relation, which may, in 
turn, be used in other expressions. Relational Algebra has been discussed in detail 
elsewhere, for example in (Codd 1972b), and will not be treated here. 

Algebra and Calculus based languages are equivalent in the sense that that an 
expression 111 a Calculus based language may be transformed into a statement in 
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Relational Algebra. An algorithm for this transformation is given in (Codd 1972b). 
The aloo rithm " ·as c!c ,·clopcd with the aim of demonstrating the equivalence, 
independent of any implementation. The effi ciency questions raised by this algorithm 
were adcJ rcsscd in (Palermo 1972). 

Mapping Oriented languages are languages such as SEQUEL (Chamberlin 
1974). They comprise nested mappings ; a mapping being a block of code which maps 
a known attribute or set of attributes into a desired attribute or set of attributes. The 
result of one such mapping may be used in specifying another mapping. 

Graphics Oriented languages, of which Query-By-Example (QBE), (Zloof 
1975, 1977), is the best known, operate by having the user fill in blank spaces in a 
predefined form, or blank relation. It is claimed in (Thomas 1975), that this approach 
facilitates learning to use a relational language. This assertion is less obviously true for 
more complex operations than for the simpler ones. In other ways graphics oriented, 
or tabular languages appear to be equivalent to relational calculus based languages, 
and translatable to thrm in a straightforward manner. 

3.1 PRTV 

PRTV, (Peterlee Relational Test Vehicle) is described in the series of papers by 
Hall and Todd, as well as in (Verhofstad 1976) and (Owlett 1976). It is a system 
developed at the IBM UK Scientific Centre at Peterlee, and has been used for some 
large applications. Its user interface, ISBL, (Information System Base Language), is 
based on Relational Algebra. 

The underlying relational database files, called bricks, are stored sorted by 
leading attributes, common leading attributes being suppressed, and other attributes 
being compressed. Text values are stored in an area separate from the relation tuples 
themselves. 

The algebraic operators union, intersection, difference, select, join and project 
are implemented at the ISBL level, and are specified in infix notation. There is an 
assignment operator. The ISBL expression is transformed to a language called CJL, 
(Common Intermediate Language). In this form the expression is called a cilstring, 
and is essentially the ISBL expression tree in a linearised, prefix notation. 

The ISBL user may supply a numbe·r of assignment statements, any one of 
which may use the result of a previous statement. Relation names may be used as 
variable identifiers, or new variable identifiers may be introduced as a result of an 
assignment statement. Each time: an identifier is used, it is bound either by value or by 
name. If value binding 1s used, the current relation value 1s inserted into the 
expression. This is presumably done by copying the whole relation. If name binding is 
used, the relation name is inserted, and the relation tup es are materi alised at the time 
the expres ion is evaluated. Name bind in g enables any changes to the database to be 
reflected in the answers to queries, and hence is used to define different views of the 

-------------·---·-----------------------------------------
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da ta. Then.: is another, less frequently used binding type, called binding by expression, 
which is described in (Owlett 1976). 

The Algebraic operations in eayh statement are not carried out at the time that 
the statement is input, but are deferred until one of the following occurs. 

a) The user lists a result relation. 

b) The user asks the cardinality of a result relation. 

c) The user requests that the result relation be explicitly materialised, 
and stored as a brick. 

d) The user converts the result relation to a relational file . Relational 
files allow a users program to access the relation as a sequential file, one 
tuple at a time. 

When one of these op~rations occurs, the expression tree is optimised, and 
evaluated to produce the result tuples. The latest published status of the optimisation 
stage is given in (Verhofstad 1976). Verhofstad distinguishes two types of optimisation; 
global and local. Global optimisation deals with issues of database organisation, such 
as what indexes to maintain, and tuple placement control. These issues are discussed 
in (Hall 1975a). 

Local optimisation is furthur divided into algebraic opttm1sations, which use 
relational algebraic identities to transform the query tree into an equivalent one, and 
non-algebraic optimisations, which transform the tree using such performance 
improving measures as file inversion. Local optimisation is discussed in (Hall 1975) 
and (Verhofstad 1976). 

tree. 
Local optimisation performs the following sorts of transformations on the query 

• Filters (that is, selectors) are moved as far down the tree as possible. 
This causes them to be executed as early as possible, reducing the sizes 
of the relations that have to be handled. 

* Multiple adjacent projections are merged into one projection. 

• Projections which remove leading attributes, on which relations are 
sorted, require that the result be resorted, and are moved towards the 
leaves of the tree for earliest possible execution. This reduces the 
amount of data in each tuple that must be handled. 

• Common subexpressions are identified, transforming the tree into a 
lattice. Each common subexpression need only be evaluated once, 
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transformed to a brick, and reaccessed when necessary. 

* The most effic ient implementation of the relational operators, 
particularly join, is estimated in a particular case. Indexes are used 
where possible. 

* Idempotency laws for relational and boolean algebra are applied to 
simplify the expression. 

* Various more complicated tree transformations, particularly involving 
the use of indexes, are applied. (see Verhofstad 1976) 

Tree transformations similar to those used in PR TV are also discussed m 
(Smith 1975), in reference to the Relational Algebraic .system SQUIRAL. 

After the tree is transformed, a process is associated with each relational 
operator, or internal node. Full materialisation, or realisation of intermediate files is 
avoided as much as possible. Each process on an internal node makes calls to the 
processes on the children of that _node to materialise a single result tuple. This tree of 
processes is similar to the List Set Generator method used in (Mackenzie 1977c). 
Realisation is necessary for some projections, where a file must be sorted to remove 
duplicates, and resorted using leading attributes as sortkeys. A node where a full 
realisation is necessary is called a break point . 

3.2 System-R 

System-R 1s one of the better known and most well developed Relational 
Database Systems. Its user interface language 1s SEQUEL (Chamberlin 1974). 
System-R consists of a Relational Storage System (RSS), whose Interface language is 
the Relational Storage Interface (RSI). The RSS is concerned with managing devices, 
space allocation and paging, locking, deadlock detection and backout, recovery, and 
with maintaining images and links, which are described later in this section. 

On top of the RSS, and interfacing to it is a Relational Data System (RDS), 
which is accessed via au interface called the ReJ.ational Data Interface (RDI). RDI 
provides facilities closely parallel to those in SEQUEL, although it will also support 
other systems such as QBE (Zloof 1975, 1977). A programming language is interfaced 
to the RDS using a cursor, which identifies a set of tuples called the active set of the 
cursor. One can associate a SEQUEL statement with a cursor, and retrieve tuples 
satisfying the statement into locations in the user program using a FETCH cal l. 

The RDS contains an optimiser which chooses an algorithm to satisfy the 
query from the acce s methods supported by the RSS. It is this optimiser which is of 
most interest in this report. 

-----------·-----------------------·-- --··-----------
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Relation tuples are stored in segments; and one segment may contain tuples 
from a single relation or from more th:rn one relation. 

Each tuple in a relation is identified by a tuple identifier , or TID. A TID 
corresponds closely to a Database-key of CODASYL, being an efficient, 
hardware-address oriented pointer to individual tuples. 

The RSS makes explicit use of two structures, images and links. 

An image is a B-tree index structure containing non-truncated keys. It provides 
fast access on a single attribute of a whole relation, and as the whole key is 
maintained in the index, can be used in retrieval without accessing the tuples 
themselves. 

Leaf pages of an image are linked together in a doubly linked list. 

Images may be clustering, in which case the tuples are maintained physically 
sorted according to the image key, or nonclustering. It follows that there may be only 
one clustering image for each relation. 

An image resembles a SORTED, INDEXED, PRIOR PROCESSABLE set 
with OWNER SYSTEM, in CODASYL terminology. A clustering image corresponds 
to the case where the record (relation) on which the image is defined has LOCATION 
MODE VIA the SET corresponding to the image. 

A link is a mechanism for connecting tuples, and may be unary or binary. A 
unary link is a logical ordering on a· single relation, and resembles a SOR TED SET 
with OWNER SYSTEM, in CODASYL terminology. A binary link connects a single 
tuple in one relation with all the tuples in another relation, such that the values of a 
particular attribute in the first, or parent, tuple equal the values of a particular 
attribute in the second, or child, set of tuples. A tuple participating in a link is joined, 

· using TID pointers, to its prior and next twins in the link. Tuples must be inserted 
into a link individually at the RSS level. A link therefore resembles a MANUAL , 
non information bearing SET, where the SET membership is defined on the equality 
of certain data items in the owner and member records. Both types of link are PRIOR 
PROCESSABLE, in CODASYL terminology, as link members are connected with 
next and prior pointers. 

Links and images may be created or destroyed at any time. The pointers which 
implement images and l"inks are TIDs and are stored as an affix to the tuple data. 
This affix may be expanded and contracted as images and links are created and 
destroyed. 

The RDS may provide the RSS with clustering hints based on value ordering 
or on grouping associated tuples in a binary link. 
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In summary, the storage structures used in System-R closely resemble a subset 
of those available in CODASYL systems, with the difference that in most CODASYL 
systems these structures cannot be created and destroyed. 

The optimiser in the RDS begins by classifying the SEQUEL statement into 
one of several classes. The first class contains statements operating on a single 
relation, the second contains those containing a join term, and a third contains those 
which, in addition, use the GROUP BY option. Secondly, the optimiser examines the 
system tables to find images and links which could assist in executing the statement. 
Thirdly, a set of reasonable methods for executing the statement is derived, and lastly, 
cost estimates for each method are computed, and the method with minimum cost 
executed to produce a result. 

For each relation, the system tables contain the following information. 

R: The Relation cardinality. 

D: The Number of data pages the relation occupies. 

T: The average number of tuples per page (RID) 

For each image, I, the image cardinality, (The number of distinct field values 
in the image), is maintained. 

· A coefficient H, the number of tuple compansons equivalent to one page 
access, is estimated and stored. 

Consider the case where there is a single relation query with a predicate 
containing a conjunctive term of the form (attribute) (relational-operator) (value). A 
number of cases arise. There may be no image, a clustering image, or a nonclustering 
image defined for the attribute. The relational operator may be "=" or not. The 
relation may occupy a file by itself, or there may be other relations in the file as well. 
To execute the query, either the whole relation may be scanned, or the image may be 
used. The properties of the predicate, together with the relation properties maintained 
in the system tables, are used to estimate the cost for one of eight methods for 
executing this type of query and to select one of them. 

Consider a two relation query whose predicate contains a join term and a 
restriction on each relation in the query. There are a number of possible methods for 
evaluating such a query, usmg clustered or unclustered images on one or both 
relations, binary links between the relations, and whole relation scanning, possibly 
sorting the relations. A method is chosen which depends on the access paths actually 
available, and on whether the parts of the predicate involving one relation only are 
expected to be highly selective or not. 

When a method for executing a query ts chosen, it 1s compiled into an 
optimised package, or OP. This OP is bound to the cursor defined in the program 
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making calls to the RDS, and a result tuple produced incrementally wlh:ncvcr a 
FETC! I is done using that cursor. This avoids the generation of intermediate files. 

3.3 INGRES 

ING RES (Integrated Graphics and Retrieval System) was developed by 
Stonebraker and others at the University of California, Berkeley. It runs under the 
UNIX operating system on PDP 11 machines (model 34 or higher). The system is 
described in (Stonebraker 1976). 

The user interface is via an interactive language, QUEL, which is calculus 
based, and allows aggregate functions to appear in the qualification. There is a version 
of QUEL callable from a higher level language. This version, called EQUEL, or 
Embedded QUEL, allows piped mode or tuple at a time retrieval into variables in a 
users program. 

INGRES has an underlying storage structure which is paged, and in which 
each tuple has a TID similar to the TID in System-R, and similar to the CODASYL 
database-key. Five file structures are used. They are sequential or heap, hashed, 
compressed hashed, ISAM and compressed ISAM. Secondary indexes may be specified 
for any file. Each relation is stored as one such file, and there are no explicit links 
between files, except for those implied by the equality of attributes in different 
relations. 

The hashed access methods provide retrieval given an exact value for the key 
attribute; ISAM in addition provides retrieval over a range of key item values. 

The access methods all have a common interface, so that details of the access 
method's implementation is hidden from the higher level query execution processes. 
Adding a new access method is therefore straightforward, provided that it conforms to 
the existing interface conventions. 

QUEL supports both retrieval and update, however only retrieval shall be 
explicitly considered here. 

The query optimisation algorithms in INGRES operate by decomposing a 
query into a number of single variable queries. These queries are executed using a 
process called the OVQP (One Variable Query Processor). The reduced ranges are 
used in evaluating the residue of the query using tuple substitution. This process is 
similar to the process of pushing projections and restrictions back through joins in 
PRTV or in SQUIRAL (Smith 1975). 

The OVQP uses the file access method or an available index to materialise a 
set of tuples satisfying a one variable query (from a single relation), to project the 
tuples onto that subset of the attributes needed for later processing, and to format 
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them as a file indexed on a key to be used later in processing the residual query. 

After having evaluated those single variable queries that can be dctatched, the 
results of the eval uations are used to substitute attribute values in the residual query, 
creating a series of simpler queries. This process is equivalent to materialising the 
cartesian product of the reduced -ranges of the relations processed by the OVQP, and 
evaluating the residue of the qualification. 

A more sophisticated decomposition algorithm is given in (Wong 1976), which 
gives an algorithm to be implemented in a later version of INGRES. 

- - ------ --------------- -------
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4.0 Sample ALF statements 

In this section I will show the capabilities of the calculus based relational 
language ALF which is the main topic of this paper. This will be done here using a 
set of example retrieval statements designed to demonstrate the language; A more 
formal definition will follow in Section 5. A larger set of example queries which were 
translated using the ALF translator, together with the output produced, is given in 
Appendix E. Syntactically the features of ALF are simil~r to, and to some extent 
modelled on, those of QUEL, although the underlying implementation, storage 
structures, and execution strategy is totally different. 

4.1 Examples 

Fig. 4.1 

The system being modelled by this schema contains a set of Companies, 
represented by the COMP relation which has primary key C # . Each Company has a 
number of Departments, repre~ented by the DEPT rela tion, with primary key (C#, 
D#) and each Department has Employees, represented by EMP with primary key 
(C#, D#, E#). 

There arc Projects, represented by PROJ ECT with primary key PROJ #. Each 
Department may be associated with a number of Project s, and each Project with a 

, , 
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number of Departments. The assoc1at1on of a particular Project with a particular 
Department 1s represented by a tuple of the PROJDEPT relation . PROJDEPT 
contains two foreign keys, (D#, C#) indicating the Department participating in the 
association, and PROJ # indicating the Project. In addition there is a SUPPLIER 
relation with primary key S#, a PART relation with primary key P#, and a 
SUPPLY relation. The SUPPLY relation contains S# and P # as foreign keys. Each 
tuple in the SUPPLY relation represents the fact that Supplier S# supplies Part P # . 

Each of these sample retrieval commands will consist of a command, following 
by a target/isl of attribute values to be retrieved and operated on by the command, 
and a logical condition following the word "WHERE". This logical condition, or 
qualification, restricts the set of values returned in the target list. 

4.1.1 Retrieval using one relation only. 

Give the name and address of all employees who are over 60. 

OUTPUT EMP.NAME, EMP.ADDRESS WHERE EMP.AGE GT 60 

In this query, the command 1s OUTPUT, the targetlist 1s EMP.NAME, 
_ EMP.ADDRESS, and the qualification is EMP.AGE GT 60. The attribute names 

NAME, ADDRESS and AGE are qualified in this query by EMP, which is the 
relation that they come from. 

In general however, attribute names m the target list are qualified by a 
variable, or relation variable, which may be thought of as ranging over all the tuples 
of a particular relation. Conceptually, the variable takes each tuple of the relation in 
turn as its value. In ALF, relation names do double duty as relation variables 
referring as variables to the corresponding relation. When a relation variable which is 
not a relation name is used, it must be declared in a RANGE statement before being 
used. Thus an equivalent way to express the previous query is 

RANGE OF XIS El\1P. 
OUTPUT X.NAME, X.ADDRESS WHERE X.AGE GT 60. 

The relation variables take all the tuples in their range as value, and for each 
combination of tuples, the qualification is evaluated. If the qualification is true, the 
targetlist is accepted. The targetlist is in some respects like a virtual relation, to be 
operated on by the statement command, except that there is not necessarily a primary 
key, and duplicate tuples are not removed. 

n 
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4.1.2 Retrieval using a join hetween two relation '>. 

Give the name and address of employees who work for companies located in 
the ACT. 

OUTPUT EMP.NAME, EMP.ADDRESS 
WHERE COMP.CLOC EQ "ACT" 
AND COMP.C# EQ EMP.C# . 

In this case the qualification reads " .. the company's location is "ACT" and the 
company's company number is the same as the employee's company number". The 
latter conjunct in the qualification is called a join term. Recall that the presence of 
the foreign key C# in EMP indicates the company to which each particular EMP 
tuple belongs (C# being the primary key of COMP). 

4.1.3 Use of disjunction 

Give the name and address of employees who work for companies which are 
either located in the ACT or which have budgets greater than ten million dollars. 

OUTPUT EMP.NAME, EMP.ADDRESS 
WHERE COMP.C# EQ EMP.C# 
AND [COMP .CLOC EQ "ACT" OR COMP .BUDGET GT 10000000]. 

4.1.4 Use of expressions in qualification 

Give the department names of departments whose budgets are more than 20% 
of their companies budgets. 

OUTPUT DEPT.NAME 
WHERE DEPT.BUDGET GT 0.2 * COMP.BUDGET AND 
DEPT.C# EQ COMP.C# . 

4.1.5 Multiple joins 

Give the name and address of liaison people whose projects are not complete 
after the first of May, 1979, and who work for company XYZ, department ABC. 

OUTPUT EMP.NAME, EMP.ADDRESS WHERE 
EMP.C# EQ "XYZ" AND EMP.D# EQ "ABC" 
AND PROJECT.FINISH-DATE LT 790501 
AND PROJECf.COl\'IPLETE EQ "NO" 
AND PROJECT.PROJ # EQ PROJDEPT.PROJ # 
AND PROJDEPT.LIASON-PERSON EQ EMP.E# 
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AND PROJDEPT.D# EQ E1"IP.D# 
AND PROJDEPT.C# EQ EMP.C# . . 

4.1. 6 Introduction of aggregate functions in qualification 

Find all departments whose budgets are greater than the average departmental 
budget (that is, the average for all companies). 

RANGE OF Dl, D2 IS DEPT. 
OUTPUT D1.D# WHERE 
Dl.BUDGET GT A VG(D2.BUDGET) . 

4.1. 7 Another example using an aggregate function 

' 
Find all departments whose budgets are greater than the· average departmental 

budget for their own companies. 

RANGE OF D1,D2 IS DEPT. 
OUTPUT Dl.D# WHERE 

I 

DI.BUDGET GT AVG(D2.BUDGET WHERE D2.C# EQ· Dl.C#) . 

In example 4.1.6, D2 ranges over all tuples m the DEPT relation, and 
computes the average budget. D 1 ranges over all tuples of the DEPT relation a 
second time, accepting those tuples which satisfy the qualification, that is whose 
budgets are greater than the previously computed average. 

In example 4.1.7, Dl ranges over all the tuples of the DEPT relation, and for 
each tuple, the average is computed by D2 ranging over all the DEPT tuples which 
have the same C# as the Dl tuple. There is scope for optimisation here, but this 
optimisation is not the concern of the ALF user. 

It is important to note that the text which follows the aggregate function 
A VG, is merely another query in the form 

targetlist WHERE qualification 

This query is evaluated, and the aggregate function applied to the collection of 
tuples which result from the evaluation. The number of items in the targetlist must 
equal the number of arguments expected by the aggregate function . Aggregate 
functions currently available in ALF are MEAN, A VG, MAX, MIN, RANGE, 
COUNT, TOT AL, SSQ, EXISTS, ALL. 

These last two functions provide facilities equivalent to existential and universal 
quantificat ion 111 the query qualification, and greatly extend the power of ALF 
retrieval statements. For a fuller description of these see Section 5.3, and the examples 

------------------------- ------ - --

I 
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4.1.8 Use of two aggregates in retrie}·al statement 

Find companies which have average departmental budgets less than 30000 or a 
maximum departmental budget greater than 100000. 

RANGE OF Dl,D2 IS DEPT. 
OUTPUT COI\tlP.C# ·wHERE 
MAX(Dl.IlUDGET \VHERE Dl.C# EQ COMP.C#) GT 10000000 
OR AVG(D2.IlUDGET \VHERE D2.C# EQ COMP.C#) LT 30000. 

In this example, the variable COMP ranges over the tuples of the COMP 
relation, and for each tuple, Dl and D2 individually range over all the DEPT tuples 
to compute the MAX and A VG aggregate functions . There is scope here for 
optimgation of the execution of this query, but again, this is not the concern of the 
ALF user . 

. 
4.1. 9 The Homogeneous Hierarchy example. 

Augment the database schema of Figure 4.1 with the relation COMPREL, 
shown in Figure 4.2. 

I 
Fig. 4.2 

As before, each tuple of the COMP relation repre.sents a company. Each tuple in the 
COMPREL relation represents the fact that the company with Company Number 
PARENT# has a subsidiary with Company Number SUB#, and that the parent 
holds NUMSHS shares in the subsidiary. 

Example .a) 
Find all the subsidiaries of company "XYZ", and the number of shares company 

"XYZ" holds in each. 

OUTPUT COJ\IPREL.SUil#, COi\-lPREL.NUMSHS 
WHERE COI\tlPREL.PARENT#="XYZ" ·. 
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Example b) · 
Find the names and locations of subsidiaries of companies located in the ACT where 
th e subsidiary's budget is greater than ¥i of the parent's budget, 

RANGE OF SUB,PARENT IS COMP. 
OUTPUT SUB.CNAl\lE, SUB.CLOC WHERE 
PARENT.CLOC EQ "ACT" AND 
SUB.BUDGET GT 0.75 * PARENT.BUDGET AND 
COMPREL.PARENT# = PARENT.C# AND 
COMPREL.SUB# = SUB.C#. 

This process can be continued for as many levels as needed, however it does 
illustrate a deficiency of ALF as currently implemented. The number of levels is 
always fi xed in the query, that is, there is no transitive closure operation as described 
in (Zloof 1976). This means that there is no mechanism for issuing a query such as 
"Find all the subsidiaries of company XYZ, and all their subsidiaries, and so on ... " 

4.1.10 Ex istential Quantification . 

Output companies which have at least one department located in the ACT. 

OUTPUT COMP.C# WHERE 
EXISTS(DEPT.D# WHERE DEPT.DLOC="ACT" AND 
DEPT.C# =COMP.C#) IS TRUE. 

4.1.11 Universal Quantification 

Output companies, all of whose departments are in the ACT. 

OUTPUT COMP.C# WHERE -
ALL(DEPT.D# WHERE DEPT.C# =COMP.C# IMPLIES 
DEPT.DLOC="ACT") IS TRUE. 

For all department tuples in the DEPT relation, if the department belongs to 
the company being tested, it must be in the ACT. If it does not, the implication is 
trivially satisfied, as the antecedent is false. 

The EXISTS and ALL functions are really predicates over one or more 
relations, rather than functions over attributes selected from relations. Only the 
variables in the targetlist are significant, not the attributes. EXISTS is true if there is 
a combination of the targetlist variables which satisfies the qualification. ALL is true 

· if the qualification is satisfied for all possible targetlist variable combinations. 

- -~- --- .,. 

' 
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5.0 Formal Specification of ALF 

The ALF language as currently implemented was designed to assist in the 
development of the algorithms which translate it into operations on a CODASYL 
database. As it stands it contains a statement for retrieval only. To be a generally 
useful stand alone language it would have to be augmented with update commands, 
with extra options on the retrieval command (for example, to perform report 
generation and sorting) and with an interactive capability. The introduction of any of 
these would not invalidate the translation algorithms which are the subject of this 
paper. 

Nor would these algorithms be invalidated by the choice of a different input 
language; although ALF is based on the relational calculus, it would be possible for a 
language based on relational algebra or a language such as Query by Example to serve 
as an input to this ~ranS'la t1on process. 

5.1 ALF Syntax 

ALF is parsed by recursive descent. The grammar is shown in the following set 
of syntax diagrams. There is one · diagram for each nonterminal symbol in the 
grammar. The name of each nonterminal symbol appears on the top left of each 
syntax diagram, and legal constructs in the language are constructed by following the 
flow lines in the diagram from left to _ right. The flow lines may loop back to indicate 
repetition; this is indicated by appropriately pointing arrows. Terminal or nonterminal 
symbols may appear in the diagram. 

An ALF retrieval statement consists of one of the comma,nds OUTPUT or 
PRINT followed by a query, which consists of a targetlist followed by a query, which 
in turn consists of a targetli~t followed by a qualification clause. Using the previously 
described conventions, the syntax of the first part of retrieval statement is illustrated 
in the following way 

retrieval statement 

+-OUTPUT-+ 
--+ +----

+-PRINT--+ 

The full syntax follows 

query-----. 

. 
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stat ement 

+----
1 

range statement - ---+ 
I 

-----+ +---- ------- ----
I 
+--

1 
retrieval statement--+ 

range statement 

-- RANGE -- OF -- variable list - IS - relation list 

retrieval statement 

+-OUTPUT-+ 
--+ +---- query----- . 

+-PRINT--+ 

query 

-targetlist-qualification clause-----­

targetlist 

+------ ------+ 
t . I 

----------expression-------------

qualification clause 

------WHERE----- boolex ----­

boolex 

+----- IMPLIES ----+ 

t 
implicand 

I 
impl icand 

+-----OR-----+ 

________ ±_ disjunct ___ l ______ _ 
disjunct 

+--NOT--+ 
I I 
+---------+----AND-----+ 

1 I 
--------conjunct--------------

conjunct 
+------ [ bool ex ] -----+ 

I I 
- - -------------- term-----------

r, 

u 
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term 

expression 

aterm 

afactor 

aprimary 

expression 
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+------ EQ ------+ 
I I +------ NE ------+ 
I I +------ GT ------+ 
I I 
+------ GE ------+ 
I I 

---------- LT ---------expression --
1 I 
+------LE------+ 
I I 
+------IS------+ 
I I 
+----EQUALS----+ 
I I +------ = ------+ 
I I 
+------ < ------+ 
I I 
+------ > ------+ 

+---- + ----+ 
I I 
+---- - ----+ 

t I 
------- aterm 

+---- * ----+ 
I 
+---- I 

I 
----+ 

t 
afactor 

I 

+---- ** ----+ 
' I 

V 
---------- aprimary 

I 

----------------- item -------
I · f · 1 · I +-- ar1th- unction - (-arg 1st-)---+ 
I I +------ subquery -------------------+ 
I I +------ numeric constant-----------+ 
I I +------ logical constant-----------+ 
I I +------ string constant----------+ 
I . I +--- ( --- expression --- ) --------+ 

·, · 

' 
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subquery 

aggregate-function - ( -- query -- ) 

agregate-function 

• 

item 

arglist 

------AVG-------------
+- MAX -+ 
+- MIN -+ 
+- MEAN-+ 
+-TOTAL -+ 
+-RANGE-+ 
+- SUM -+ 
+- SSQ -+ 
+-EXIITTS--+ 
+- ALL -+ 
+- SUM -+ 
+- SSQ -+ 
+- SD -+ 

-relation variable . attribute name -

+------ ------+ 
t . I 

---------expression------------

arith-function 

-----+- SIN -+----­
+- cos -+ 
+- TAN -+ 
+- -+ 

Informally, the target list consists of expressions built up from items, which are 
dotted pairs consisting of a relation variable and an attribute name. The relation 
variable must either be a relation name or must have been previously declared in a 
RANGE statement. The relation referred to by a particu ar relation variable is called 
the range of that variable. Each relation variable may be thought of as taking a tuple 
from it's relation as it's value. The attribute name must be an attribute name in the 
relation referred to by the relation variable. The item pair selects the attribute value 
from the relation tuple which is the current variabl~ value. 

The qualification consists of a logical expression built up by using the logical 
operators AND, OR, AND NOT and IMPLIES. The precedence implied by the 
syntax diagrams may be altered by use of brackets in the usual way. 

Terms consist of ex pressions connected by relational operators. Terms of the 
form R l.D l relational operator R2.D2 are called join terms; and those join terms 
where the relational operator is EQ play a special role in that they are (usually) used 
to connect one relation with another, and may allow one of the relations to be 
accessed from the other using a CODASYL set. 
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Expressions are composed of items of th e form relarion variable . attribure 
name, linked in the usual way using arithmetic operators and arithmetic functions. 
The variable in an item is said to qualify the attribute. The value of an item is the 
value of the named attribute in the relation tuple which is the current value . of the 
variable. 

-- . 
Each term may be thoughtof as a function of the relation variables in it, taking 

the values true or false. 

5.2 Evaluation 

The evaluation of an ALF command may be visualised in a number of ways. 
The following way, taken from (Codd 1972b) but omitting the steps concerned with 
universal and existential quantification, will be used in this paper. 

1) Take the cartesian product of the ranges of all the relational variables 
which occur in the query. ·rr two or more variables range over the same 
relation, then that relation will occur in a cartesian product with itself 
in the final product. The cartesian product, sometimes called full 
quadratic join, is as defined in (Codd 1972b ). 

2) Reject those tuples in the cartesian product for which the 
qualification is false. If the qualification contained subqueries it would 
be necessary to invoke this evaluation process recursively to evaluate the 
query contained in the subquery, and hence to evaluate the qualification. 

3) Project the result of 2) onto those items which occur in the target 
list. This projection does not eliminate duplicate tuples, but removes 
those items not specified in the target list. 

4) Compute any expressions in the target list for each remaining tuple. 

5.3 Aggregate Functions 

In general, a command may contain Aggregate Functions, which operate over 
the tuples retrieved by the associated query. Duplicate tuples are not removed before 
evaluation of the aggregate function, unlike some other relational languages. 

The Aggregate Functions currently included in ALF are given below. 
Additional function s, including user-defined functions, could be added without 
difficulty. 
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1) MEAN, AVG 
Compute the mean of the values of the targetlist expression. 

2) MAX, MIN 
Compute the maximum or minimum of the values of the expression in 
the targetlist. 

3) RANGE 
Compute the difference between the maximum and minimum values for 
the expression in the targetlist. 

4) TOT AL, COUNT 
Compute the total number of tuples returned as a result of the following 
query. 

5) SUM 
Compute the sum of the values of the targetlist expression. 

6) SSQ 
Compute the sum of the squares of values of the targetlist expression. 

7) SD 
Compute the standard deviation of the values of the targetlist 
expression. 

8) EXISTS 
This function returns the bool.~an constant TRUE if there are any tuples 
satisfying the qualification of the query governed by the EXISTS 
function. If no tuples satisfy the qualification, FALSE is returned. 

9) ALL 
The ALL function has a single argument. Let the argument be the item 
RV.DI, and let the range of RV be R. The function returns TRUE if all 
the tuples in the R relation satisfy the qualification, otherwise it returns 
FALSE. For example, the following would be TRUE if all employees in 
the database were under 50 years old. 

ALL(E1VIP.E# WHERE EMP.AGE LT 50) 

5.4 Nesting of queries 

The qualification of the subquery may itself contain other subqueries, and so 
on, although more than two levels would be unusual. This leads to a hierarchy of 
queries in a statement, which may be represented graphically as in Figure 5.1. 

r"" , __ 
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Fig. 5.1 

I 

This graph is called the Q-graph for the ALF statement. The query at the 
topmost level of the Q-graph is called the root query of the command. Each other Q; 
represents a query m a subquery, that is, a query operated on by an aggregate 
function. 

Variables which occur in a query may also occur in subordinate queries, that is 
queries further towards the leaves of the Q-graph. These variables are c:1lled global 
variables in the subordinate query, and, as assigning values to those glo'.)al variables 
assigns a value to the subquery, the subquery may be thought of as a function of the 
global variables. 

Variables occurring in a que1y which are not propagated from a higher query 
in the Q-graph are said to be , focal to the subquery. Thus example 4.1.7 contains a 
query Q 1 and a subquery Q2, and has the structure 

OUTPUT QI 
where Ql is Dl.D# WHERE Di.BUDGET GT SQ2(Dl.C#) 
and in which SQ2 has the structure AVG(Q2) 
and where Q2 has the structure 
D2.BUDGET WHERE D2.C# EQ Dl.C# 

D 1 is global to Q2 and local to Q 1, and D2 is local to Q2. 

The subquery may also be thought of as a function of those items occurring in 
the targetlist or qualification which have any of the global variables of the subquery as 
the relation variable. 

A variable may only be local to a single query. It would be possible to 
introduce an Algol-like name scoping n1le so that the same name used in queries at 
the same level in th e Q-graph would refer to a diITcrent variable. This is not done in 
ALF. If a name is used in this way, a generated name is used instead, and an 
informative diagnostic issued. 

,.., ... 



I -

--
\ 

' 

... 
/..,,, 



27 

6.0 The I\1apping Ilctwcen the Relational and Network Data J\fodels 

The first step in defining this mapping is. to set up a .correspondence between a 
relational and a network schema which may be used to derive an equivalent network 
schema from a relational schema, and vice versa. Such a correspondence is suggested 
in (Olle 1975). A starting point is to set up the following fairly obvious 
correspondence between CODASYL Records and Relations, and CODASYL Data 
Items and Relation Attributes. 

Network Term Relational Term 

-t· .................................................. + 
Record Type 
Record Instance 
Data item in record 

Relation name 
tuple of relation 
Attribute in relation 

+ .................................................. + 

Before defining the correspondence, note that the word coset is used 
throughout the rest of this paper to mean set in the CODASYL sense, following 
(Nijssen 1975). 

A relational schema may be derived from a network schema by applying the 
following two steps. 

1) Starting at the top of each hierarchy (at each record which is not a 
member of a non SYSTEM owned coset), propagate the primary key of 
each record down through the coset making it a data item of the 
member record of the coset. If data items propagated in this way are 
actually stored in t.he member record, the coset is said to be non 
information bearing (Metaxides 1975). If the data items are not stored 
in the record, but are implicitly defined by the coset, the coset is said to 
be information bearing, and the data items .are called 1•irtual data items. 
This propagation may be continued dov,in a hierarchy of cosets if 
necessary, virtual attributes being used as source attributes. This is done 
for each· hierarchical path in the network schema. 

2) Define a relation corresponding to each record type, and define 
attributes of the relation corresponding to the data items of the record. 
Virtual data items in the network schema become attributes in the 
rclation:.il schema. They arc called virtual allributes. The user at the 
relational level need not be aware that the virtual attributes arc not 
actually stored in the database . 
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In thi s paper, all coscts arc information Gearing. If a cosct i~ 11011 informatio,i 
bearing in the original network schema, that is, data items exist in the owner and 
member records whose equality defin es the cosct occu·rrence in the schema, then those 
data items mu st become virtual items in the member record. 

The correspondence between a coset in a network schema and the equality 
between a primary key and a foreign key in a relational schema is the lynchpin of the 
whole translation process used in ALF. 

The reverse transformation from a relational schema to a network schema may 
be carried out by iden tifying forei gn keys in rela tions and defining a coset between 
that record as member, and the record containing the forei gn key as its primary key 
as owner. Foreign key names need not be the same as the names of the corresponding 
primary keys, although, conventionally, they often are. Foreign keys must be chosen 
with the semantics of the underlying data in mind. 

Comp Fig. 6.1 
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Each chosen fo reign key becomes a virtual data item 111 the member record of 
the derived coset. 

A graphical notation introduced in (Bachman 1969) is often used to represent 
the cosct intercon nections in a net work schema. This nota tion, called a Bachman 
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Diagram, is called th e C-graph of the network schema in thi s paper. The C-gr:1ph for 
the database used in the Ex·amplcs in Section 4 is r, iven in Figure 6.1, gi,·cn that tl10,e 
data items with the same names as primary keys of other records were chosen :1'i the 
fo_rcign keys. 

The network entity which corresponds most closely to the relational variable in 
ALF is a variable which takes a database key as its value. A database key docs in fact 
identify a network record occurrence, corresponding to a relation tuple, at least inside 
a single run-unit. The database key variable must be constrained to refer to one type 
of record only. 

Thus, three extra correspondences are added to the table given earlier in this 
section 

Network Term Relational Term 
+ ....................................... ...... .......... + 

Coset 

Database key 
variable 

Primary key - foreign key 
correspondence 
Relation va1iable. 

virtual data item Foreign key or 

virtual attribute 
+ ........................... -.";·.,· . . . . . . . . . . . . . . . . . . . . . . . . . + 

In the following sections the terms that have been defined as being in 
correspondence will be used somewhat interchangeably; the meaning will be obvious 
from the context. 

' • 
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7.0 Transforming the ALF Statement 

7.1 Overview of Section 7 

The following section will describe the translation algorithms and demonstrate 
their validity. First the model for query evaluation in ALF initially given in Section 
5.2 will be specified. Secondly a model for network databases using an equivalent 
structure called a D-graph will be described. Thirdly a graphical pattern, called a 
V-graph, after a similar structure defined in (Palermo 1974), will be derived from each 
query, and matching this pattern against the database D-graph will be shown to be 
equivalent to the original model for query evaluation. Fourthly, transformations will 
be defined on the V-graph, and it will be shown that each transformation produces a 
V-graph equivalent to the previous one in the sense that the set of answer tuples 
produced by matching it against the D-graph is unchanged by the transformation. 
Lastly it will be shown that the pattern matching process corresponds to CODASYL 
network traversing algorithms. 

The translation algorithm may be divided into the following steps: 

1) Input and preprocess the ALF statement. 

2) Remove virtual attributes from each query. 

3) Coalesce equivalent V-graph nodes. 

4) Amalgamate equivalent queries. 

5) Process each V-graph, starting at the V-graph corresponding to the 
root query of the Q-graph. 

6) Optimise the generated code. 

7) Either interpret the optimised code, or use it to generate statements 
in the required target language. 

In step 1, the ALF statement is parsed and put into an internal form. Before 
the main part of the statement translation, two preprocessing steps are done. 

The first of these converts each occurrence of the aggregate function ALL into 
an occurrence of the EXISTS function. This is done by applying the identity 

ALL X WHERE B(X, .. ) < = > NOT EXISTS X WHERE NOT BC', .. ) 

, · 

. .. 
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to each subquery acted on by an ALL function. 

The second preprocessing step removes references to virtual relations, or views. 
(See Section 9 .4) 

Step 5, processing the query, is carried out for each subquery as well. This step 
may be divided as follows: 

Sa) Find a starting node in the V-graph and an initial access method. 

Sb) Determine node accessing order and access methods for each node. 

Sc) Generate intermediate code for the query (This step will involve the 
processing of subqueries) 

If the V-graph is disconnected, steps 5a and Sb will be repeated for each 
disconnected subgraph. 

7 .2 Query Evaluation Model 

As described in Section 5, a query in ALF is an object of the form 

targetlist WHERE qualification 

Evaluation of a query is a process which produces a set of targetlist tuples. If 
the query is part of a subquery, then these tuples will be operated on by a aggregate 
function to produce a scalar value, and if it is part of a command, they will be 
operated on by the command to produce some sort of output. 

As described in Section 5, an ALF query may be thought of as being evaluated 
by a four stage process. 

1) If LV1, ••. ,LVn are the local variables in a query, and R
1
, •••• ~ are 

their respective ranges, take the cartesian product of the relations R
1 

••• 

R 0 • If there are global variables GV1, ••• ,GV m in the same query, then 
each time the query is executed, each global variable will have as value 
a tuple Trom a relation in a higher level query. These tuples TGV

1 
TGV m are concatenated to each tuple of the cartesian product. 

Thus, the cartesian product has the following form: 
LV 1 LV

2 
+---------+ +---------+ 

Ri[ 1] Rd 1] 
R1 [2) X R2 [2] X 
Ri[ 3 J R2 [ 3] 

GV 1 
+---------+ 

TGV 1 
X 
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As the cartesian product contains every possible combination of tu ples 
from its component local variable relations, the cardinality of the 
cartesian product will be the product of the cardinalities of each local 
variable relation. Materialising such a huge relation is out of the 
question, for efficiency reasons. 

2) The query qualification is evaluated using attribute values from each 
tuple in the cartesian product. As the qualification is a boolean 
expression of terms containing items of the form variable.attribute, each 
column in the cartesian product must be labelled implicitly with the 
attribute name and the relation variable from which it was derived. All 
tuples for which the qualification is false are rejected, and all for which 
the qualificiation is true are retained. 

3) The remaining tuples are projected onto those items which occur in 
the query targetlist, that is, items not participating in the targetlist are 
ignored. 

4) The targetlist expressions are computed from the items in the tuples 
that remain. 

5) If the query occurs as part of a subquery, the aggregate function of 
the subquery is applied to the resulting tuples, and if the query occurs 
as part of a retrieval statement, the statement command is applied to 
the resulting tuples. 

There are several noteworthy features of this algorithm. 

The first is that the process contained no operation occuring between tuples of 
the cartesian product, and so if each tuple of the cartesian product could be 
materialised one at a time, the qualification could be evaluated and that tuple accepted 
or rejected before materialising the next tuple. 

The second is that if the cartesian product tuples could be produced 
incrementally in the sense that only one extra relation was multiplied into the 
cartesian product at once, and if the qualification could be factored into conjuncts of 
the form Q = factor AND residue, where factor contained items from those parts of 
the tuple already materialised, then further relations need only be multipled into the 
cartesian product if the part so far materialised satisfied the boolean expression factor. 

The most obvious case of this is where tuples from a single relation would not 
enter the cartesian product if they did not satisfy a conjunct in the qualification 
referring only to a relation variable with that relation as range. 

. .. 
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7.3 D-graph 

The underlying network database corresponds structurally to a graph in which 
record instances are represented as nodes, and the fact that record instance RM is a 
member of the coset SI whose owner record instance is the record RO is represented 
by an arc, labelled with the coset name, pointing from RO to RM. As each coset 
instance is an instance of an owner record, associated with a set (in the set theoretic, 
rather than CODASYL sense) of member records, each coset occurrence corresponds 
structurally to a graph in the form shown in Figure 7.1. 

• • o • 

Fig. 7.1 A coset Instance 

The coset members may be considered as being ordered from left to right. This 
ordering may be arbitrary, or may correspond to the ordering defined in the 
CODASYL schema specification. The whole database viewed in this way will be 
called the D-graph of the database. This D-graph structure in no way implies any 
particular physical implementation. 

Operations on this graph corresponding to CODASYL DML operations may 
be readily defined assuming a coset ordering in the D-graph; in particular finding the 
first record in a coset occurrence is equivalent to finding the leftmost member node in 
the coset occurrence in the D-graph, finding the next record in a set occurrence is 
equivalent to moving from the current member to the one on its right in the D-graph, 
and finding the owner is equivalent to following the arrow representing the coset 
backward from a member to the owner in the D-graph. 
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7.4 Pattern i\htching 

Pattern Matchin g is J process which arises in a wide variety of situations 
throughout computing. Problems m syn tax analysis, text processing, higher level 
language control structures, and picture processing can all be formula ted using the 
pattern matching paradigm. There are numerous discussions of different aspects of the 
pattern matching process in the literature, for example Vol I of (Aho 1972), Chapter 8 
of (Waite 1973), (Sussman 1970), (Gimpel 1973), (Griswold 1968), (Miller 1968), 
(Bobrow 1974), (Hewitt 1972) and (Rulifson 1972). A general formulation is to regard 
it as a process with the following properties: 

1) There is a structure of some sort called the pattern, containing 
constant parts and nonconstant parts, or unbound variables. 

2) There is a structure of a similar sort containing constant parts only. 
This will be called the subject of the pattern matching process. 

3) Values must be assigned to the unbound variables of the pattern so as 
to make it equivalent in some way to a part of the subject. In the case 
where there are no variables in the pattern, the pattern must itself be 
equivalent to part of the subject (for example searching for a substring 
in a longer string of text in a text editor). Equivalence in pattern 
matching may be more than simple equality; m addition to ~ome 
structural equivalence between the pattern and the subject part, there 
may be some other condition which must also be satisfied for the match 
to succeed. This other condition may be specified procedurally, or as a 
formula in a logical calculus. 

In a practical implementation of a pattern matching algorithm, the pattern is 
not matched with the subject in one hit, but is matched incrementally. A fragment of 
the pattern is selected and a fragment of the subject matching that fragment is found. 
A pattern cursor is moved onto a further fragment of the pattern, a corresponding 
data cursor moved onto the next appropriate fragment of the subject, and that 
fragment tested against the fragment of the subject. If these fragments matched, then 
the process continues until the pattern had been completely used. If these fragments 
did not match, the match would fail and fall back to the previous stage, where the 
pattern fragment would be tried against a further fragment of the subject. For 
example, in matching a short text string against a longer subject string in the most 
obvious (although not the most efficient) way, the first character of the pattern is 
tested against successive characters of the subject string until equality is found. Then 
the next character of the pattern is tested against the next character of the subject. If 
it is equal, the process continues, if not, then another attempt is made to match the 
first character. 

This process could be compiled into a procedure consisting of a set of nested 
loops, in . which each loop was responsible for all the matchings of a single unbound 
pattern variable. The outermost loop would generate all the matches for the initially 

'• -
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selected pattern variable; the next loop in the nest would generate all matches for its 
pattern variable given the constraints imposed by the binding of the initially selected 
variable; the next loop would generate all matches for its pattern variable given the 
bindings for the variables in the outer loops, and so on. The complete matching would 
be obtained inside the innermost loop. The loops would have the following structure : 

7.5 V-graph 

WHILE furthur bindings for v; are available DO 
assign a furthur binding for V1 

IF binding for i1; is OK THEN 
WHILE furthur bindings for Vi are available DO 
assign a furthur binding for V2 

IF binding for JI; is OK THEN 
WHILE ... 

ENDWHILE 
ENDIF 
END'NHILE 
ENDIF 
ENDWHILE 

Keeping this general pattern matching process in mind, the initial V-graph of 
each query is defined as being a set of nodes labelled with the local variables of the 
query. The graph at this stage contains no arcs. It will play the role of a pattern in a 
pattern matching process similar to that described above, the nodes playing the role of 
the unbound variables of the V-graph pattern. The cartesian product generation 
involved in the model for query evaluation described in 7.2, involves generating every 
combination of tuples for the local variable relations. This product could be generated 
by matching the V-graph in every possible way against the database D-graph, so that 
each V-graph node matches a D-graph node in the range of the variable represented 
by the node. (For brevity, the terms node and variable will be used somewhat 
interchangeably where no confusion arises, and the range of the variable represented 
by a V-graph node will be called the range of the node). 

In each match of the V-graph against the D-graph, each node variable is 
instantiated with the tuple from the matched record (that is, the D-graph node), and 
the query qualification evaluated. If the qualification was true, the answer tuple 
represented by the match would be accepted, and either used in the computation of an 
aggregate function, or output. 
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7.6 V-graph transformations 

Matching the initial V-graph against the D-graph materialises all tuples in the 
cartesian product without taking into accou nt any of the constraints which are implied 
by join terms in the query qualification. The initial V-graph may be transformed to 
take these constraints into account. The qualification will itself be transformed in the 
process. The V-graph obtained by the processes described in this section will be more 
suitable for the generation of network accessing programs, in that it will inhibit the 
generation of cartesian product tuples which cannot appear in the result. 

7. 6.1 Remove Virtual Attributes 

In general the qualification will contain virtual attributes, which must be 
materialised before the qualification can be evaluated. They are materialised as 
described m section 6, by usmg a coset instance and obtaining the data item 
corresponding to the source attribute .from the owner record instance of the coset. 

When the source attribute is itself virtual, this process must be repeated. This 
process may continue up a hierarchy until an actual source attribute is reached. 

This materialisation, which corresponds to step 2 in the translation process, is 
made explicit in the V-graph by repeating the following procedure un til no more 
virtual attributes occur in the query. 

For each query, the following process is performed. 

For each virtual attribute in the form R.DV where R is locai in the current 
query, and R.DV is either present in the targetlist or the qualification or is an 
argument of a lower order query, create a new node in the V-graph of the current 
query. This node will be labelled with a new relation variable, say NEWV, whose 
range is the relation containing the source attribute for the virtual attribute R.DV. An 
arc, labelled with the coset used to materialise the virtual data item, is created and 
points from node NEWV to node R. All occurrences of the virtual item R.DV in the 
qualification and targetlist of the query, and in subqueries containing R.DV as an 
argument should be changed to NEWV.DS, where DS is the source attribute. 

As a simple example, assume a schema as shown in Figure 7.2. In this schema, 
relation EMP contains a virtual attribute D#, which is materialised from the DEPT 
relation using the coset ESET. 

•, -
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0# 
Dept · 

-
ESET 

~ , 
E# 

EMP Narre,Address 
Sal -

A trivial ALF query using this schema follows: 

OUTPUT EMP.NAME, EMP.ADDRESS 
WHERE EMP.D# EQ "ABC". 

Fig. 7.2 Network Schema 

The initial V-graph would consist of the single node EMP (Figure 7.3) 

Fig. 7.3 Initial V-graph 
) _, 

The only virtual item in the query is EMP.D# as D# is a virtual attribute of 
EMP. After removal of this virtual item, the query graph would have the form shown 
in Figure 7 .4. 

~-------------- --
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Fig. 7.4 V-graph after virtual item removal 

The transformed query would look like this 

OUTPUT EMP.NAMEJEMP.ADDRESS WHERE NEWV.D# EQ 
"ABC". 

Thus the V-graph represents the coset connections to be used in making all the 
virtual attributes explicit. 

Another more complicated example may help make this process clearer. 

Using the same schema, consider the statements 

RANGE OF EMPl IS EMP. 
OUTPUT EMP.NAME, EMP.ADDRESS WHERE 
EMP.SAL GT AVG (EMPl.SAL WHERE EMPl.D# EQ EMP.D#). 

that is, Give names and addresses for all employees who earn more than the average 
salary for their department. 

The Q-graph for this retrieval statement has two nodes (Figure 7.5) 

Fig. 7.5 Q-graph for sample query 

····· ""' 

··~· -
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Ql is the main query and Q2 is the query acted upon by the aggregate function 
A VG .. As the arguments of a subquery are those items used in the subquery ,vhich are 
qualified by global variables, the (single) argument of Q2 is EMP.D# . In this case 
EMP is the only global variable in Q2. 

The initial V-graph for Q 1 is as shown in Figure 7.6. 

01 

Fig. 7.6 Initial V-graph for 01 

This is transformed into the structure shown in Figure 7.7 wheH the virtual 
data item EMP.D # is removed. 

-----

. ESET ' 

Fig. 7.7 After removal of EMP. D # 

At this stage, the ALF command has been transformed in the follo wing way. 

OUTPUT El\lP.NAl\.1E, El\,tP.ADDRESS WHERE 
EMP.SAL GT AVG(EMPl.SAL \VHERE EMPl.D# EQ NVl.D#). 

---~----~ ------ - -· -- --- -
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The actual item NVl.D :;..;: has been sub:-.titukd in the :-.t:1lclllL'llt for c:1d1 
OL'ClllTL'Jli.:1: of the virtual item f~'.\lP.D.:;;:, and the initial \'-graph has bcL'll augme11tcu 
to show this comtraint. Implicitly, the range com111a11d 

RANGE OF NVl IS DEPT. 
has been issued. 

This virtual attribute removal algorithm is performed on each query in the 
Q-graph, starting at the root node of the Q-graph and being applied in a recursive 
fashion to the other queries in the Q-graph. The result of applying it to Q2 is shown 
in Figure 7.8. 

02 

'. Fig. 7.8 Remove EMPI. D# in 02 
ESET 

The query at this stage is 

OUTPUT EMP.NAI\1E, EMP.ADDRESS WHERE El\,IP.SAL GT 
AVG(EMPl.SAL \VHERE NV2.D# EQ NVl.D#). 

The source attribute introduced during this removal process may itself be a 
virtual attribute. If it is, the process is repeated until the final source attribure is 
non-virtual, that is, actually stored in the relation. In the example of 4.1.3, removal of 
references to EMP.C# would involve two levels in the hierarchy. 

Each query has now been split into two parts; one part cons1stmg of the 
original query with actual attributes substituted for the original virtual attributes, and 
the other part consisting of a graphical representation of the access paths used for 
obtaining th ese actual data items. In queries where each rebtion is represented by at 
most one relation variable, the V-graph will be topologically a subset of the C-graph 
(that ·is, Bachn1an Diagram) for the schema, but in queries where a relation is ranged 
over by more than one variable, such as the parts explosion example, this will not be 
the case. 

The V-graph with virtual items removed may be thought of as a pattern, with 
the labelled arcs, represen ting cosets, bei ng constant, and may be matched against the 
D-graph in a similar way to the initial V-graph. V-graph nodes in the pattern must be 
mat ched with D-graph nodes of records in their range, and in addition arcs in the 
V-graph must ma tch arc in the D-graph. From the definition of the way in which 

.... -
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virtual attributes are matcrialsied, it is evident that this matching -will produce the 
same set of tuples as produced by the original matching follo wed by materialisation of 
virtual att ri bu tes. 

7. 6.2 Coalesce equivalent nodes 

A further set of transformations may be applied to the V-graph. For each 
matching of the V-graph with the D-graph, it may be shown that certain pairs of 
nodes in the V-graph will always match the same node in the D-graph. These pairs of 
equivalent nodes may be coalesced, thus simplifying the V-graph. This procedure 
corresponds to step 3 of7. l. The following two steps (*. 1 and *.2) are performed until 
no more nodes may be coalesced: 

*.1 Select a pair of equivalent nodes to be coalesced from the local 
variable nodes of the query. Let them be RI and RJ. RI and RJ are 
equivalent if : 

* .1.1 They both range over fue same relation, say R, 
and 

* .1.2 One of the following three conditions holds 
(*.1.2.1 to *.1.2.3): 

*.1.2.1 For some candidate key of R, say D 1, ... ,D
0

, and 
a logical expression of the form 

RI.DI = RJ.D1 
AND RI.D2 = RJ.D2 

AND RI.On = RJ.Dn 

can be factored out of the query qualification. That is, 
,the qualification specifies that the candidate key be 
equal in the tuples matched by RI and RJ. 

*.1.2.2 The structure shown in Figure 7.9(a) occurs in 
the the V -graph. 

* .1.2.3 The structure shown in Figure 7. 9(b) occurs in 
the V-graph, and the qualificat ion specifies that for 
some candidate key of the relation ranged over by RI, 
the attributes cf the candidate key not virtually 
materialised using cosct S 1 are equal in RI and RJ. 
Equality means that the same factorisation done in 
* .1.2.1 can be done here. 
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(b) 

Fig. 7.9 

In the case *.1.2. I, for each matching of the V-graph, RI and RJ will 
always match the same record in the D-graph, as the candidate key 
uniquely identifies the tuple (record) and it 1s specified as being equal 
for RI and RJ. 

In case *.1.2.2, matching this substructure of the query graph against 
the D-grnph would involve matching RK with some D-graph node. The 
node matching RK would be an instance of a member record of coset 
SI. Nodes RI and RJ would then necessa rily both match the owner 
instance of that instance of SI, as a coset instance has only one owner 
record. 

Case *.l.2.3 is really a special case of *. l.2.1, in which equality of 
candidate keys occurs. Equ:1lity of the components of the c:rndidate keys 
virtually materialised throu /j h SI occurs because RI and RJ both obtain 

- ---- ·------.....:___. _____ _ 

. .. -



{. 

v 

44 

those attributes from the tuple matched by RK, the owner of~ l ~ 
Condition * .1.2.3 specifies equality on the remainder of the .candidate 
key attributes. 

* .2 Coalesce the nodes 

Pick one of the nodes. The other will be coalesced with it, then deleted. 
It does not matter which one is picked, however, the algorithm used in 
ALF is to take the node corresponding to a user-defined variable if one 
is user-defined and the other was introduced in the removal of virtual 
data items, and to take the node with the alphabetically lowest name 
otherwise. The nodes are coalesced by overlaying them and removing 
repeated arcs which come from the same node. This is illustrated in \ 
Figure 7.10. 

Coalesced with 
gives 

Fig. 7.10 

If node RJ ts coalesced with RI, delete the node RJ and all arcs 
entering or leaving it. 

As the last step in coalescing two nodes (* .2), substitute RI for all occurrences 
of RJ in the query being processed, and in all subqueries of that query which have RJ 
as a global variable. 

RI will then be a global variable of each such subquery. So far, nodes which 
have been coalesced have both been members of the same V-graph. 

The value of a subquery is determined by the values of the global variables 
when the subquery is evaluated. Values of these global variables are fixed during an 
evalu ation of the subquery. A local variable in a subquery may be equivalen t to a 
global variable by *.1. 2.1, (equality of candidate keys). In thi s case, that local variable 
would be fixed during the evaluation of the subquery. This leads to th following 
additional process. 

- -
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Fnr cad, qt1l ' J"\" , rt·p,·: ,t th ,_· pn1 , ·1 ' v , ()fen.ii .. ,,·i11 i: equivalent nodes desc ribed in 
~ .1 . • 111d ··.2, 1L' :,., t11 1; t l1c cqui,·:1kncc or c;1d1 ~Ju l ,:ii \'ari :1hk nnde in the query with 
each of the local \'ari ;1ble nodes in the quay. If a global variable is equivalent to a 
local variable node, create a copy of tl1e global variable node and coalesce the local 
node with it. 

For an example of this type of node coalescing, see 7.6.2.4. 

Example 7.6.2.1 

Using the schema shown in Figure 4.1, the following query asks for the names 
of all employees who work for company ABC. The initial V-graph is the single node 
EMP. 

OUTPUT El\1P.NAM E 
WHERE El\,1P.C#="ABC". 

The V-graph after the removal of virtual attributes is shown in Fig 7.11. 

Fig. 7.11 · 

The range of Rl 1s DEPT and of R2, COMP. No nodes can be coalesced 111 

this query. 
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Example 7.6.2.2 

The following query, which also uses the schema of Figure 4.1, asks for 
departments of companies whose headquarters are in the ACT. 

OUTPUT DEPT.NAME WHERE 
DEPT.C# = COMP.C# AND COMP.CLOC = "ACT". 

8 I 
I 
I 
I 
I 
I 
I 

, I 
I 
I 
I 

Fig. 7.12 Coalesce R1 and Comp (Equal Primc:ry Key~) 
...- I 

The left hand graph in Figure 7.12 represents the situation after removal of the 
virtual attribute DEPT.C#. At this stage the query contains a conjunctive term 
Rl.C# = COMP.C#. As the variables RI and COMP have the same range, (the 
COMP relation), and as these variables have equal primary keys (condition *.1.2.1) 
they may be coalesced as shown on the right. 

Example 7.6.2.3 

Output the names of employees of the Sales Department of Company ABC. 

OUTPUT EMP.NAME 
WHERE EMP.C# = "ABC11 AND EMP.D# = "~ALES11

• 

The virtual items arc EMP.C# and EMP.D#. After removal of these, the 
situation on the left of Figure 7.13 exists. 



Fig. 7.13. Coalesce R1 and R2 

R 1 and R2 are coalesced as condition * .1.2.2 is satisfied. 

Example 7.6.2.4 

This ALF statement asks for departments whose budget is greater than the 
average budget for departments in the same company. 

RANGE OF DEPTl IS DEPT. 
OUTPUT DEPT.C#, DEPT.D# 'rVHERE 
DEPT.IlUDGET GT AVG(DEPTl.BUDGET \VHERE 
DEPT.C# =DEPTl.C#). 

Fig 7.14 shows the V-graph for the root qtiery after removal of the virtual data 
item DEPT.C# (which occurs inside the subqucry). 

·, ..... 

... .. -
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01 

.... 

Fig. 7.14 

Figure 7.15 (left side) shows the V-graph for Q2, the query acted on by the aggregate 
function AVG. 

Fig. 7.15 

In this case, R2 in the V-graph for Q2 is coalesced with a copy of RI which is 
inherited from the hi gher level query Ql. This is shown on the right of 7.15. 

s 



OUTPUT E~dP.NA\1E, DEPT.:\:\\lE 

\YIIERE DEPT.D# = El\lP.D.:;¢ AND DEPT.DLOC = "ACT", 

This query is some,vhat deceptive at first sight. It asks for employee and 
department names, for departments in the ACT, and employees in departments with 
the same number as those (ACT) departments. However the whole primary key of the 
department relation is not defined, so this statement docs not imply that the retrieved 
employees shall belong to departments in the ACT, but only that the number of their 
department is the same as the number of a possibly different department which 
happens to be in the ACT. The department that the retrieved employees do belong to 
need not be in the ACT, and need not be in the same company as the department 
whose name is retrieved. 

The initial V-graph consists of the two nodes EMP and DEPT. The virtual 
attribute EMP.D# is removed by introducing an additional node NVl, as in FIG 
7.16. 

~ig. 7.16 

After removal of the virtual attributes, the command has the form 

OUTPUT El\1P.NA.l\,1E,DEPT.NA1\'1E \VI-JERE DEPT.D# -
NVl.D# AND DEPT.DLOC = "ACT". 

This docs not allow nodes DEPT and NV I to be coalesced, as equality has not 
been specified on the whole of the primary key of the DEPT relation. The query, as it 
stands, will be processed correctly. 

·.,,, .... .. 
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7 .7 Use of V-graph 

Sections 7.4 and 7.5 described a general pattern matching model, and 
introduced the idea that the V-graph should be used as a pattern and matched against 
the database, thought of as a D-graph. A procedure, analogous to the one in 7.4, 
containing code to navigate over a network database using DML commands, 1s 
generated by the ALF translator. 

A node in the V-graph is selected as a start node. This node is matched with a 
D-graph node in its range. Then an arc to or from that V-grarph node is matched with 
a corresponding D-graph arc, and the cursor of the matching process passes to the 
node on the end of that pattern arc. The subpattem following that arc must be 
matched against the D-graph before the matching control returns to the originally 
matched node to match the parts of the pattern starting with the other arcs coming 
from that node. After all parts of a pattern or subpattern have been matched, the 
process fails back to the last decision point to take the next alternative, thus finding 
all matches. For any V-graph, a procedure implementing this process may be 
generated. This procedure corresponds to a CODASYL network traversal procedure. 

The procedure is generated by traversing the V-graph, and generating code to 
access a particular record type when a node corresponding to that record type is 
visited. If the node was reached using an arc, representing a coset, then that coset is 
used to access the record. 

The pattern matching process corresponding to traversing a V-graph arc 
against the direction of the arrow (from member to owner record type) corresponds to 
a FIND OWNER RECORD OF cosetname SET, in CODASYL DML. The process 
corresponding to traversing an arc in the direction of a coset arrow (from owner to 
member) corresponds to the FIND FIRST and FIND NEXT RECORD IN 
cosetname SET commands in CODASYL DML. 

7.8 Amalgamation of Equivalent Queries 

In ALF commands containing two or more aggregate functions, it may be 
possible to compute more than one of the aggregates with a single pass through the 
relevant records. This is in fact the case in the example in 4.1.8. ALF detects such 
cases where two or more quenes are structurally similar. Two queries may be 
amalgamated to be evaluated together if they satisfy the following two conditions. 

1) The V-graphs must be able to be unified. 
Unification can be thought of as two-sided pattern matching, in which 
there are two pattern data structures, each containing unbound 
variables. Values must be assigned to the unbound variables so that the 
two patterns are equal. In the case of two V-graphs the role of unbound 
variables is played by local variable nodes in each graph. The two 
graphs are unifiable if the nodes in each graph may be paired in such a 
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way that the nodes m each palf are t: qui va knt with . respect to 
unification. Two nodes are equivalent with respect to unification if 
either they both represent the same global vari able, in which case they 
must be paired in the unification, or they have the same range, identical 
sets of inpointing and outpointing arcs, and equivalent nodes at the ends 
of the arcs. 

Informally, the two graphs are unifiable if one may be laid completely 
across the top of the other so that the arcs and global variable nodes of 
one are matched by global variable nodes of the other, the remainder of 
nodes put into correspondence have the same ranges, and all arcs in 
each graph match in name and direction. 

2) The qualifications of the queries associated with each V-graph must 
be equivalent (that is, identical up to associativity), after the nodes in 
the first have been substituted for the equivalent nodes in the second. 

As one example of this process, let us modify the statement of 4.1.8 as follows 
- "Find companies who have a department in the ACT with a budget of less than 
30000 or who have a department in the ACT with a budget greater than 10000000." 
(This statement could be expressed more efficiently using the EXISTS function, but 
this is not the issue here). 

RANGE OF D,Dl,D2 IS DEPT. 
OUTPUT D.C# WHERE 
MAX(Dl.BUDGET WHERE Dl.DLOC = "ACT" AND Dl.C# -
D.C#) GT 10000000 AND 
MIN(D2.BUDGET WHERE D2.DLOC = "ACT" AND D2.C# = 
D.C#) LT 30000. 

Say the whole query is QI, the query operated on by the aggregate MAX is 
Q2, and the query operated on by the aggregate MIN is Q3. The final state of each of 
the graphs after virtual attribute removal and coalescing equivalent nodes is shown in 
Figure 7.17. 

.... -
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Fig. 7.17 

Rl, R2 and R3 have COMP as range 

Queries Ql, Q2 and Q3 have the following form at this stage: 

Ql: Rl.C# WHERE MAX(Q2(Rl.C#) GT 10000000 AND 
MIN(Q3(Rl.C#)) LT 30000. 

Q2: DI.BUDGET WHERE Dl.DLOC="ACT" AND R2.C# =Rl.C# 

Q3: DZ.BUDGET WHERE D2.DLOC="ACT" AND R3.C# =Rl.C# 

Each of the three V-graphs can be unified with any other, however the 
qualification of QI is not equivalent to either of the other two qualifications after 
substitution of equivalent nodes. In Q2 and Q3, equivalent node pairs are (R2,R3) and 
(Dl,D2). Equivalent expressions are obtained when R2 and Dl from query Q2 are 
substituted for R3 and D2 in query Q3. Thus the graphs for Q2 and Q3 may be 
unified, and the aggregates which operate on Q2 and Q3, MAX and MIN, may be 
evaluated together. 

What this condition really says is that a sufficient condition for two ·aggregate 
functions to be evaluated together is that the same path through the network is 
traversed by both, and that exactly the same set of tuples is retrieved by both. that the 
same path i travcrsc<l is implied by the identical structure of the V-graphs, and that 
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the same se t of tuples would be, retri eved while trave rsin g each path is impli ed by th e 
equivalence of the two qualifications. In fact both these co11<.litions are far too harsh. 
Provided that a reasonable amount of the path through the CODASYL network is 
common to both queries, it should be possible to process that part of them together. 
Also even if the tuples retrieved by both queries, as determined by their respective 
qualifications, are not the same it still should be possible to process them together. 
This sort of optimisation has not been pursued in the current ALF system. 

An additional sort of optimisation which has not been pursued in the current 
ALF system is to take into consideration the wider context in which an aggregate 
function occurs, so that a complete iteration through all the tuples in the targetlist of 
the subquery might be avoided. 

As an example, take the case where SUM( ... ) GT 10000 occurs conjunctively in 
a qualification. The computation of the query operated on by SUM could be 
terminated as soon as the sum became greater than 10000 by moving the test inside 
the subquery computation. COUNT, MAX and MIN are other candidates for this 
treatment, although A VG and SD must necessaily process all the tuples. 

A subquery containing the aggregate function EXISTS must not be coalesced 
with any other subquery. This is because the EXISTS function ceases iteration as soon 
as one tuple is found. (See Section 7.1) 
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8.0 Code Generation 

This section describes the generation of intermediate code from the transformed 
V-graph, targetlist and qualification, and the use to which the intermediate code is 
put. The intermediate code is described in Appendix B. 

In the following sections, some knowledge of the CODASYL specifications as 
described in (Codasyl 1971) will be assumed. In particular the various forms of the 
Data Manipulation Language (DML) FIND statement will be referred to. 

8.1 Efficiency Considerations 

In the Introduction it was stated that the goal of the ALF translator was to 
produce programs that were efficient. I will make this more explicit now by stating 
the following aims which contribute to that efficiency. 

8.1.1 Whenever possible, the access paths provided by the existence of 
cosets should be exploited. The generation of the V-graph, and the 
transformations on it have been directed to this end. 

8.1.2 In traversing these cosets, use should be made if possible of any 
indexes or search keys defined on the coset. 

8.1.3 When appropriate, use should be made of CALC keys and 
SYSTEM owned cosets. 

8.1.4 Unnecessary CODASYL DML operations should be avoided. (see 
8.5) 

8.1.5 The targetlist tuples should be materialised incrementally, without 
the use of intermediate files. 

8.1.6 Tests to reject potential targetlist tuples should be performed as 
early as possible, before all the targetlist values have been retrieved. 
Many tuples could then be rejected with a single test. 

8.1.7 Unnecessary iteration should not be performed. 

8.1. 7 .1 For example, if the values of a candidate key of a relation are 
specified (explicitly or implicity) in a query, and a tuple is found 
containing these values, then the relation need not be scanned further 
for an additional tuple with the same values. 

r--__ __,_ ____ ___________ _ ______ ___________ _ _ _ ___ . 
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8.1.7.2 As a further example, if a sorted coset is being traversed (sorted 
m ascending order, without loss of generality), and the qualification 
implicity or explicitly specifies upper limits for the sortkey attributes, 
then the coset should not be traversed any further than necessary, that 
is beyond a record with sortkey values greater than the specified upper 
limits. 

8.1.8 Terms m the qualification which involve subqueries are much 
more expensive to evaluate than others, as each subquery itself involves 
iteration through relations and accesses to secondary storage. In testing 
the qualification, the evaluation of subqueries should if possible, be 
avoided. This goal gives rise to two sorts of optimisation. 

8.1.8.1 If a test occurs inside an inner loop, and the test contains one or 
more subqueries, evaluation of the subqueries should be moved out of 
the loop if the subquery is loop invariant. Examples 4.1.6 and 4.1. 7 
show cases where this is done. Thus a subquery should be evaluated as 
soon as all its arguments are defined properly. 

8.1.8.2 In the case where the subquery 1s not loop invariant, 
optimisation may still be possible. For example, consider the following 
ALF statement, assuming that the. schema of Figure 4.1 applies. 

OUTPUT COMP.C# WHERE 
COMP.CLOC EQ "ACT" .... ·............. . .. . . (1) 
AND 
A VG(DEPT.BUDGET WHERE 
DEPT.C# =COMP.C# ) GT 500000. . . . . . . . . . . . . . (2) 

The statement asks for companies m the ACT with an average 
departmental budget greater than 500000. If a tuple of the COMP 
relation failed test (1), that is the company was not in the ACT, then 
test (2) would not need to be performed. 
Similarly, if the logical operator had been OR instead of AND, the 
success of test (1) would also make test (2) unncessary. The treatment of 
cases such as this, together with more complex ones, is described in 8.4. 

8.2 First pass 

The intermediate code is produced in two passes over the V-graph. The first 
pass, described here, finds an initial entry node and access method to the graph and 
devises a path through the graph, working out the access methods for each coset in 
the path. The second pass, desc1ibed in 8.3, actually produces the code. 

The V-graph may not necessarily be connected. It would consist of a number 
of unconnected subgraphs if the original query contained join terms which did not 
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form part of a coset definition, either because they were not equi-joins, or because 
primary keys were not fully specified in the joins. When there is more than one 
subgraph, the most suitable start node for the whole V-graph is found using 8.2. l and 
the path through that subgraph found using 8.2.2. Then a start node is chosen from 
one of the other disconnected subgraphs (using 8.2.1) and .8.2.2 applied again. This 
process IS repeated until a path has been derived which visits every node in the 
V-graph. 

Before describing the first pass, several preliminary concepts must be 
introduced. 

If a number of terms occurring in a boolean expression are singled out, the 
expression may in general be conjunctively factorised into a factor and a residue, that 
IS, 

expression = factor AND residue 

in such a way that the boolean expression factor contains only the terms which 
were previously singled out. The boolean expression residue may also contain those 
terms, as well as other terms. 

The algorithm which performs this factorisation is described in (Hall 1974) and 
is used in many places in the ALF translator. If the factorisation is not possible, factor 
will equal the boolean constant TRUE, and residue will equal expression. 

I will now define the local condition of a node. This is a function of those 
V-graph nodes which are already processed (that is matched with the D-graph in the 
query evaluation model). It is also a function of the qualification. Terms defined using 
processed variables (nodes) only may be identified m the qualification, and the 
previously mentioned factorisation process carried out, with the following results. 

qualification = local condition AND residue 

The boolean expression factored out of the qualification in this process is called 
the local condition of the node, and must be true for the node currently being 
matched to be accepted as part of the current matching. 

A term of the form RI.DI = EXP, where EXP is a constant or a function of 
processed nodes only, is said to define a value of RI.DI. If such a term occurs as a 
conjunctive factor in a factori sation of the query qualification, then it may be possible 
to use this value to improve the search efficiency. 

--- ... 
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8.2.1 Finding Start Node and Initial Access A1ethod 

Recall that the model for this query evaluation process is the matching of a 
V-graph against the database D-graph. The first V-graph node to be matched is the 
initial entry into the database for a particular query. This node, SN, called the start 
node of the V-graph, is chosen using the following heuristics. 

1) SN should be a global node in the V-graph of the query. If there are 
no global nodes in the V-graph, one of the local nodes is chosen using 
the following conditions. 

2) There should be no inpointing arcs to SN in the V-graph. This means 
that SN is either an isolated node or is at the top of a hierarchy. 

3) There should be a local condition specified for that node. For the 
initial entry into the V-graph, no other nodes will have been processed, 
and hence the factorisation producing the local condition will use terms 
containing the prospective start node only. This heuristic merely says 
that there should be some possibility of not having to scan every record 
corresponding to the start node as variable. 

4) One of the following conditions should occur. These all specify search 
methods built into CODASYL-like systems which allow the number of 
records retrieved to be reduced. These conditions are designed to exploit 
primary access methods, which are usually used on the initial entry to 
the database. Condition 4a) allows the exploitation of CALC keys, and 
conditions 4b) to 4e) allow va!"ious properties of SYSTEM owned cosets 
to be exploited. 

a) The local condition defines values or ranges of values 
for all the CALC keys, if the location mode of the 
record is CALC. 

b) If the record is in a SYSTEM owned coset, the local 
condition defines values for SOR TED INDEXED keys 
or for SORT KEYS , if the coset is SOR TED 
INDEXED or SORTED. 

c) The local condition defines values for one of the sets 
of SEARCH KEYS which are defined on a SYSTEM 
owned coset. 

d) The local condition defines equalities on any items in 
a record participating in a SYSTEM owned coset. This 
would enable a format 6 CODASYL FIND command 
to be used to scan the coset even though no indexes 
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would bl' ;naitiblc to ;1<;<, is t the scan. 

e) The record is a member of a SYSTEM owned coset. 
In this case, even though the coset would have to be 
scanned record by record with a format 3 CODASYL 
FIND command, use of the coset would still probably 
make this faster than scanning the whole area in which 
the record resides, especially if the area contained more 
than one type of record. 

If there are V-graph nodes satifying I), or 2) and 3), but not satisfying 4a) -
4c ), then select one of those nodes as the start node. 

If there are no V-graph nodes satisfying conditions 1 ), 2) or 3), then all nodes 
in the graph are tested against the conditions in 4). 

If all of these heuristics fail, pick any node as the start-node. 

In selecting the start node, the initial access method will also be found. If 
condition 4a) is satisfied, the terms defining the CALC keys are factored out of the 
local condition, and the residue of that factorisation becomes the local condition. The 
keys and their values are stored, and the initial access method used will be a format 5 
CODASYL FIND command. 

If conditions 4b) - 4d) are satisfied, the terms defining the key equalities are 
factored out of the local condition in the same way as for CALC keys, and the initial 
access method becomes a format 6 CODASYL FIND command on the SYSTEM 

owned coset. 

If condition 4e) is satisfied then no terms defining key equalities may be 
factored out of the local condition and a format 3 CODASYL FIND command on 
the SYSTEM owned coset is used. 

If no assistance is provided in finding the record using either CALC keys or 
SYSTEM owned cosets, then the generated program must iterate through the area 
using a format 3 CODASYL FIND command on the area. 

8.2.2 Subgraph ·Traversal and Access Method Extraction 

This section describes a procedure which traverses the V-graph, extracting 
information needed by the code generation pass. All the nodes of the V-graph are 
visited in the order which will eventually correspond to the nesting order of the 
iterative loops of the generated program. This node order is returned by the 
procedure, and input to the second pass. 

.... -
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The start node of each subgraph in a V-graph is the first pattern node to be 
applied to the D-graph. An order must be selected for the other nodes in the 
subgraph. Initially, call the start .node the current node. The cursor of the pattern 
matching process will point to the current node. 

The arcs into the current node, representing cosets for which the range of the 
node is a coset member, and the outpointing arcs, representing cosets for which the 
range is the coset owner, are sorted into a processing order. The ordering of the arcs 
determines where the pattern matching cursor will be moved next, or in CODASYL 
terms, which coset will be traversed next and which record will be accessed next. In 
the current version of ALF, this ordering merely puts inpointing arcs before 
outpointing arcs. This means that the cosets for which the node is a member will be 
traversed (using FIND OWNER commands), before the cosets for which the node is 

a member. 

The local condition of the current node is computed from the query 
qualification and the list of already processed (matched) nodes. 

The residue after factorising out the local condition becomes the query 
qualification. In this way, the qualification is eroded away as the graph traversal 
(pattern matching) process proceeds. The residue erodes to nothing (that is, TRUE) 
after the last node is processed, as at that stage, with all variables defined, all 
remaining terms may participate in the factorisation. 

For each arc, an access method for the coset it represents is determined, using 
similar criteria to those used for SYSTEM owned cosets when finding the start node. 

If the arc is an inpointing arc, only one access method, a format 4 FIND 
command "FIND OWNER ... " is available. For outpointing arcs, the following 
possibilities exist. 

1) The local condition defines values for SORTED INDEXED or 
SORT keys, if the coset is SORTED INDEXED or SORTED. 

2) The local condition defines values for one of the sets of SEARCH 
KEYS defined on the coset. 

3) The local condition defines equalities on any other (unindexed) data 
items in the coset member record. 

If any of these possibilities occurs, a format 6 FIND command may be used. 
The terms defining the relevant data items are factored out of the local condition, and 
the residue of that factorisation becomes the local condition for the node. In this case 
the values of the data items are saved, to be set in the user working area, ( UWA, see 
(Codasyl 1971 )) before execution of the FIND command. Note that the values of data 
items to be used in Format 6 FIND commands may be constants, or may be 
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expressions using data it ems from previously found records. 

In addition, if the coset is sorted, and upper limits on the sortkeys can be 
conjunctively factored ou t of the local condition, these upper limits are saved and used 
in pass 2 to exit from the coset iteration loop as soon as the corresponding item values 
from the record exceed them. The residue of this factorisation becomes the local 
condition for the node. For example if "RI.DI LT value" is a conjunctive term in the 
local condition, and DI is the leading sortkey of the coset, the coset iteration may be 
exited as soon as a record with DI greater than or equal to value is encountered. 

If none of the above possibilities occurs, iteration through the coset must be 
done using a format 3 FIND statement, one record at a time. 

The access methods for the arcs are determined in the previously calculated arc 
order. After determining the access method for a particular arc, the procedure just 
described is applied in a recursive manner to the node at the end of that arc. This is 
done for all arcs except for the one used to access the node initially. 

In this way, a path through the whole graph, together with the access methods 
used for each arc on the path, is determined. 

8.3 Second Pass 

The second pass of the code generation algorithm takes the path through the 
V-graph, produced in the first pass, and generates intermediate code from it. Code for 
the highest level query in the Q-graph is generated first. 

8.3.1 Graph Traversal: Code Generation and Subquery Compilation 

For each query, the code generated has the following form : 

1) Code to initialise query processing. 

2) Nested loops to materialise a targetlist tuple. 

3) Code. to finalise query processing. 

If the query was a root query, operated on by one of the top level ALF 
commands, code inside the innermost loop, (which is executed after a complete 
targetlist tuple has been materialised), is generated to carry out the command. The 
initialisation and fi nalisation code carries out any functions ancilliary to this, for 
example opening and closing fil es. 

If the query was one operated on by an aggregate function, the initialisation 
code assigns ini tial values to the variables used in computing the aggregate function. 

. -~ .. -
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Code in the innermost loop, executed when all targetlist items for a single tuple of the 
query targetlist had been materialised, accumulate the quantities used in computing 
the aggregate function value, and th e finalisation code actually computes the function. 
For example, in the case where the aggregate function was A VG, the initialisation 
code sets a counter and a sum variable to zero; the innermost loop code increments 
the counter and accumulate the value of the targetlist item being averaged in the sum 
variable; and the fin alisation code divides the sum by the counter. 

If this query had been amalgamated with others using the procedures described 
in 7 .8, initialisation, accumulation and finalisation for more than one aggregate 
function would be generated for a single set of nested loops. 

There is special treatment for the aggregate function EXISTS. A logical 
variable representing the value of the EXISTS function is set to FALSE in the query 
initialisation code. The code generated for the innermost loop, executed when the first 
tuple satisfying the query has been materialised, consists of setting this logical variable 
to TRUE, followed by an EXITWHILE out of the outermost WHILE loop of the 
query. Thus if any tuple satisfies the query, the value of the EXISTS function will be 
TRUE and no furthur iteration will be performed. If no tuple satisfies the query, the 
innermost loop code will not be executed and the EXISTS value will remain FALSE. 
For examples of this, see Appendix E. 

The path through the V -graph returned by the first pass is in the form of a list 
of nodes, and the procedure generated by the second pass is similar to the pattern 
matching procedure described in 7.6. As previously stated, this procedure contains a 
set of nested loops, one loop for each node in the V-graph. When the access method 
for a node is a format 4 DML statement, "FIND OWNER RECORD OF .. . ", the 
loop in the procedure is degenerate. As each coset instance has only one owner 
record, there will be no looping generated in this case. 

When looping does occur, the loop generated has the following form : 

1) Find the first record using the access method determined in pass 1. 

2) Repeatedly execute steps 3) - 6) while the value of the DML status 
(Codasyl 1971) remains zero. 

3) GET the data items used in the targetlist and qualification from the 
record. 

4) If the local condition for this loop is not satisfied, transfer to step 6. 

5) If this is the innermost loop, then process the targctlist, or perform 
the aggregate function processing, otherwise fall through to the loop 
inside the current one. 
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6) Find the next record for the loop, usmg the access method 
determined in pass 1. 

This nested structure sugges ts that each loop be generated with a recursive 
procedure, and this is in fact done. 

Before step 1, the whole procedure for processing queries is recursively invoked 
for any subqueries which have not already been processed, and whose arguments are 
fully defined at that point. The subquery may be actually used inside a more deeply 
nested loop. A basic heuristic in code optimisation, however, is that loop invariant 
code should be moved outside loops where possible. Using this criterion to process the 
query has this effect. If a query has no arguments, as in 4.1.6, this heuristic will also 
have the effect of generating code to evaluate that query before evaluating any other 
query. 

Two cases arise when a query to be processed has a V-graph containing nodes 
which are global to that query. 

The first case is where only one node in the query is global, as depicted in 
Figure 7.15. This global node corresponds to a value which is fixed for a single 
evaluation of the query. No looping code will be generated for this node, which will 
be the start node of the query, by 8.2.1 . 

The second case arises where more than one node in the V-graph is global. 
One of the global nodes will become the start node of the query. For the other global 
nodes, tests must be included in the code to reject a candidate record if its database 
key does not equal the relation variable database key for the global node. This global 
node database key will have been determined in a higher level query. 

In both cases, the V-graph containing the global nodes may be regarded as 
having to be matched against the D-graph in all possible ways, with the V-graph 
nodes corresponding to global variables always matching previously fixed D-graph 
nodes. 

8.3.2 Currency and UWA Usage 

Generation of code for a particular loop is done without the procedure 
generating the ·code knowing anything about the other loops in the query, let alone 
loops in different queries. These other loops may affect processing in two ways. 
Firstly, an inner loop in this query or in another query might disturb currency 
information (Codasyl 1971) needed in finding subsequent records in the loop (Step 6 
in 8.3.1). Secondly, if the range of the variable for such an inner loop is the same as 
the range of the current loop variable, the possibility exists that user working area 
locations stored into by the GET DML statement of the current loop, might be 
overwritten by the inner loop before any use could be made of them. 

- .. . -. 
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The currency information can be guaranteed correct by saving it before 
processing inner loops and restoring it afterwards. The saving may be done by storing 
the run-unit currency (Codasyl 1971) in a program variable (which has the same name 
as the relation variable for that loop). This must be done before step 5 of the loop 
procedure. The restoration may be done by including a format 1 FIND statement just 
before finding the next record in step 6. This would produce correct code, but would 
introduce an extra DML statement into each loop, which would often be unnecessary. 
Two steps may be taken to reduce the necessity for this format 1 FIND. 

Firstly, at the cost of some slight complication, the loop generation process 
returns a list of the currencies changed by its loop and any inner loops, including 
those in other queries. If the format 1 FIND statement is not necessary to restore the 
currencies, it is not generated. 

Secondly, a flag in the translator may be set to cause each FIND DML 
statement to suppress all coset and area currencies that are not going to be needed in 
following any path from the current node. This makes it less likely that any format 1 
FIND statements will need to be generated. 

It is possible to circumvent the problem of overwriting the user working area 
by following the GET DML statement of each loop by a set of statements to save 
those user working area locations just set by the GET statement. These save locations 
have names manufactured from the loop variable and the attribute name. In effect the 
user working area locations used in a particular loop are duplicated, and the duplicate 
locations used in subsequent tests and targetlist manipulations. The program is correct 
with these assignments included, although most of them are usually unnecessary. 
Methods for the removal of the unnecessary ones will be discussed in 8.5 . 

8.4 Boolean test generation in the presence of subqueries 

There is a lot of scope for optimisation in the translation of the tests on 
boolean expressions that are performed as part of the V-graph traversal. Tests should 
be translated firstly so that parts of the boolean expression that cannot affect the 
result are not evaluated, and secondly so that terms which are expensive to evaluate 
(containing subqueries) are not evaluated unless necessary. 

8.4.1 Standard Boolean Test Generation 

Begin by considering the translation of a boolean expression without 
subqueries. This problem has t een addressed in (Arden 1962), (Bottenbruch 1962), 
and (Gries 1971 ), and indeed by numerous compiler writers. The following 
formulation is included not because it is original, but because to my knowledge it has 
not been published in this form before. 

------·---··. --- -- -- - - ·---·------- -----
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The proced ure BTG (boolean tes t generation), has three parameters. The first 
is a boolean cxprcs-,i on in the form of a tree whose internal nodes are the logical 
operators AND and OR, and whose leaves are terms. The second and third 
parameters are labels to be transferred to when the expression is true or false 
respectively. One of these label parameters may be the constant "FALLTHRU", 
indicating that control will fall through to the next statement in sequence rather than 
transferring to a label when the corresponding result of the expression is obtained. 

It is assumed that, if the expression is not a term, the root of the expression 
tree is "AND" or "OR", and may be tested, and that each branch of the expression 
tree may be obtained and passed to a procedure. The procedure NEGATE inverts the 
expression tree using DeMorgan's laws, applied recursively. The parameterless 
function NEWLABEL generates a new label which may be used in the generated 
code. The syntax of the language used in describing this algorithm is straightforward, 
and similar to CODE-A. 

PROCEDURE BTG( expression, truelabel,falselabel) 
declare Li as a variable of type label 
IF expression is a term THEN 
BEGINIF 

IF truelabel = "FALLTHRU" THEN 
BEGINIF 
expression <- NEGATE(expression) 
truelabel <-> falselabel < swap the labels > 
ENDIF 
GENERATE("IF" expression "THEN GOTO" truelabel); 
IF falselabel NE "FALLTHRU" 
THEN GENERATE("GOTO" falselabel); 

ELSE 
CASE root of expression OF 
"AND": 

"OR": 

IF falselabel = "FALLTHRU" 
THEN Ll <- NEWLABELQ 
ELSE Ll <- falselabel ; 
FOR B IN branches of expression tree DO 
BTG(NEGATE(B),Ll,"FALLTHRU"); 
IF truelabel NE "FALLTHRU" 
THEN GENERA TE("GOTO" truelabel); 
IF falselabel = "FALLTHRU" 
THEN GENERATE(Ll ":"); 

IF truelabel = "FALLTHRU" 
THEN Ll <- NEWLABELQ 
ELSE Ll <- truelabel ; 
FOR B IN brnnches of expression tree DO 
BTG(B,Ll,"FALLT HRU"); 
IF falselabel NE "FALLTHRU" 
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THEN GENERA TE("GOTO" fal selabel); 
IF truelabel = "FALLTHRU" 
THEN GENERATE(Ll ":"); 

ENDCASE 
ENDIF 

One of the decisions made in designing the intermediate language for ALF was 
that control structures, including IF statements, should be nested in a last in first out 
fashion. This nesting requirement requires that the following code shall be produced 
for the conjunctive expression Tl AND T2 AND ... Tn. 

IF Tl THEN 
BEGINIF 
IF T2 THEN 
BEGINIF 

IF Tn THEN 
BEGINIF 

code to be evaluated when expression .is true 
ENDIF 

ENDIF 

If the conditional statement containing the conjunctive expression contained an 
ELSE branch, that is, code to be executed when the conjunctive expression was false, 
then a supplementary boolean variable would have to be set to false before testing Tl 
and set to true inside the innermost IF test. This flag would then be tested after the 
ENDIF corresponding to the outermost IF loop. 

The use of a supplementary boolean variable is also necessary for a nested 
testing of the disjunctive expression Tl OR T2 OR ... Tn. 

Bl <- true 
IF NOT Tl THEN 
BEGINIF 

IF NOT Tn THEN 
BEGINIF 
none of the Ti are true 
B 1 <- false 
ENDJF 

ENDIF 
IF B 1 = true THEN 
BEGINIF 
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the di!>juni::tive expression is true 
ELSE 
the disjunctive expression is false 
ENDIF 

The procedure to generate the boolean tests in this· nested form follows the 
same general pattern as the previous algorithm, and it will not be repeated here. 

The first sort of generated code contains control structure spaghetti in the form 
of labels and goto statements, whilst the structured code contains extraneous boolean 
variables and many levels of nesting. It is uncertain which is more difficult for a 
human to read. 

It is worth noting that different code would be generated if the boolean 
expression tree was given in a structurally different, but logically equivalent form. 

8.4.2 Introduction of Subqueries 

In this section I shall be concerned with showing how one of the techniques for 
generating code to evaluate a boolean test, described in 8.4.1, may be applied in ALF 
to a boolean test containing subqueries. These techniques could be applied in any 
situation where there were differing evaluation costs for the primitive terms in the 

boolean expression. 

The factorisation algorithm of Hall and Todd (Hall 1974), is extensively used 
in ALF. It factorises a boolean expression into two conjuncts, one containing only 
nominated terms. Boolean expressions in ALF are built up using terms and the logical 
operators AND and OR. This system of boolean expressions constitutes a boolean 
algebra (Gilbert 1976), and one may appeal to the duality properties of boolean 
algebras to transform the factorisation algorithm into a dual algorithm. This is done 
by exchanging occurrences of AND and OR, and occurrences of the constants TRUE 
and FALSE, in the original algorithm. The new algorithm, called factorise-dual, splits 
a boolean expression into two disjuncts, one containing only previously nominated 
terms. As in the original algorithm, the expression containing the nominated terms 

only is maximal. 

In the evaluation process, a tree is generated called the derived tree of the 
boolean expression. In this tree each internal node is AND or OR, the branches under 
each node are ordered left to right, and a boolean expression is attached to each leaf 
node. The derived tree is equivalent to the original boolean expression, considering the 
leaf expression as being substituted for the leaf node. In addition, each leaf node is 
tagged with the queries which have to be processed before all the terms in the leaf 

node expression may be evaluated. 

The ordering on the branches in the derived tree is such as to postpone 
evaluation of subqueries as long as possible when the derived tree is used as input to 
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one of the code generation algorithms of 8.4. l. 

1) All the queries in the boolean expression are ranked in estimated 
order of cost of evaluation. Currently this ranking is based only on the 
number of levels of subquery in each query, those containing fewest 
levels having the least cost. Other estimators, such as the size of the 
V-graph for each subquery, would give a more realistic estimate of the 

evaluation cost. 

2) The terms containing queries for which code has not been generated 
are categorised as hard, and the rest are categorised as easy. Some 
terms containing queries may be easy at this stage, as the query may 
have been processed already either by being moved out of the current 
loop as described in 8.3.1, or by being amalgamated with another, 
already processed, query, as described in 7.7. 

3) Try a conjunctive factorisation, to extract the maximal conjunct 
containing only easy terms. If this fails, try a disjunctive factorisation 
(factorise-dual), to extract the maximal disjunct containing only easy 
terms. If this fails also, the terms which would be able to be evaluated 
by processing the next easiest query are categorised as easy, and the 
factorisations are attempted again. If either of the factorisations 
succeeds, the boolean expression tree is split into a (conjunctive or 
disjunctive) factor and a residue. The factorisations are attempted again 
on the residue, using the dual type of factorisation first. Each time a 
factorisation is successful, a new part of the derived tree is created. The 
factor becomes a leaf of the derived tree, and is tagged with the 
expression it represents, and the queries which would have to be 
evaluated to evaluate all the terms in that expression. This process 
terminates, as, if the factorisation continually failed, all the subqueries in 
the expression would eventually be marked as processed, at which stage 
all the terms would be easy, and the factorisation would succeed 

(trivially). 

4) The derived query tree is used as input to a code generation 
algorithm similar to those of 8.4.1, except -that when a node for which 
queries have to be processed is encountered, the procedure to generate 
code to _process the query is called before the test involving that query is 

generated. 

As an example, consider the expression 

Tl(Q) AND (T2 OR T3). 

The easy terms are T2 and T3. The hard term, which involves query Q, is Tl. 
Conjunctive factorisation gives (T2 OR T3) as the factor, and Tl(Q) as the residue. 
Both types of factorisation make no impression on the single hard term, so Tl is made 
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cw ,y by considering Q as processed. The derived tree is Xl AND X2, where (T2 OR 
T3) is attached to X 1 and T 1 is attached to X2. Also attached to X2 is the fact that 
Q must be processed before Tl could be evaluated. For this example, the following 
code would be generated. The code is in CODE-A. 

IF T2 OR T3 THEN 
BEGINIF 
compute the que,y Q 
IF Tl THEN 
BEGINIF 

ENDIF 
ENDIF 

There is a choice as to whether the expressions on a leaf node of the derived 
tree have code generated for them at the most primitive level, that is allowing only 
terms, with no logical operators, to appear in IF statements, or whether composite 
boolean expressions are to be allowed, as in the above code fragment. As ALF is 
currently used to generate a higher level language, CODE-A, the latter course has 
been chosen for reasons of readability. If assembly language were being generated, it 
would probably be necessary to generate tests on component terms. This involves 
trivial changes to the test generation algorithm. 

8.5 Code Optimisation 

The intermediate language generated by ALF is fully described in Appendix B. 
It has been designed so that each statement can be considered to be free of side 
effects. The program variables which may be changed by intermediate language 
statements consist of user working area variables, the relation variables, the variables 
introduced by combining the relation variables with the names of the associated 
retrieved attributes, the special variables STATUS and CURRENT, the variables 
introduced as intermediate and result variables in aggregate function evaluation, and 
the currency status variables. 

There is a currency status variable for each coset and for each area in the 
schema. Record currency (Codasyl 1971) plays no part in the intermediate language, 
and hence no variables for it are included. 

Each DML FIND statement is translated into a number of assignment 

statements of the form 

currency mriable <- expression 

The particular FIND command involved is treated as a side effect free operator in the 
same way as the arithmetic operators + and -. It has as operands the coset or area 

....... 
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currency, or CURRENT, the run unit currency, and the area, coset, record and data 
item names concerned. There is one assignment statement generated for each currency 
variable altered by the FIND statement, and one for the variable STATUS, and the 
alteration of these variables is considered to be the only effect of the FIND statement. 
The currencies altered are those of a11 the cosets in which the record participates, and 
the area, excluding those whose updates have been inhibited with a SUPPRESS 
clause. For a discussion of where the SUPPRESS clause is used, see 8.3.2. 

Similarly each D ML GET statement appears as a number of assignment 
statements of the form: 

user working area location <- expression 

There is one such assignment statement for each data item retrieved with the GET 
statement. The expression uses GET as a side effect free operator, with CURRENT, 
the record name, and the data item name as operands. 

Viewing each D ML statement as a series of assignment statements allows 
standard compiler optimisation techniques to be used. Removing a single assignment 
statement by code optimisation modifies the DML statement, but the whole DML 
statement is not removed until all the assignments comprising it are removed. 

The intermediate code output from pass 2 will usually co:1tain some 
unnecessary assignment statements in addition to those which are components of 
DML statements. The reason for their presence is discussed fully in 8.3.2. Basically, to 
keep the complexity of the code generation passes to a manageable level, fail-safe code 
is generated in pass 2. This code may be improved at a later stage. The assignments 
which may not be necessary follow each DML GET statement, where the user 
working area items stored into by the GET are moved into another set of variables. 
There is one such set of variables for each loop containing a GET statement. These 
variables correspond to the items of the original query, and their contents are used in 
subsequent tests and in the targetlist. If the user working area variable from which a 
save variable is derived is not subsequently changed by another GET statement, then 
the user working area variable may itself be used in subsequent tests and in the 
targetlist, and the assignment statement eliminated. This may be done using standard 
methods for the optimisation of algebraic languages, for example those described in 
Chapter 6 of (Cocke 1970), or in Vol II of (Aho 1973). 

The intermediate language generated by ALF has been structured to assist this 
optimisation pass. Simpler analysis than that given in the above references is possible 
when all control st ructures are fu1ly nested, as in the intermediate language of ALF. 
Whilst the generated programs would be more aesthetically pleasing if the unnecessary 
assignments were removed, the improvement in execution performance would probably 
not be great. The methods used m (Zelkowitz 1973), and m (Hecht 1977) are 
applicable here. 
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9.0 Extensions and Problems 

In this section I will consider some possible extensions and improvements to 
the techniques described in this paper. 

9.1 Updates 

No update commands are currently included in ALF, although their inclusion 
would not be difficult. An update command would have to have at least the ability to 
create a tuple in a relation, and the ability for changing attribute values in an already 
existing tuple, or set of tuples. 

In creating a tuple, values wou~d have to be specified at least for the primary 
key attributes. For the relations implemented as records which are members of non 
SYSTEM owned cosets, some of these primary key attributes might be virtual, coset 
defining attributes. Values of these attributes specify coset occurrences into which the 
record representing the tuple must be stored. The 1nost convenient way to do this is to 
use the set occurrence selection facilities in the DDL (Codasyl 1971). These facilities 
allow selection of a coset occurrence by setting identifying user working area data 
items along a path between the coset owner and a root record. The values of these 
data items allow the system to determine particular record, and hence coset 
occurrences along the path. 

Consider the schema of fig 4.1, and assume that an EMP tuple is being stored. 
To do this, values must be supplied for the virtual attributes C# and D# in EMP, as 
well as the other attribute in the primary key, E#. If the DDL schema specification 
contained a declaration of the form 

SET OCCURRENCE SELECTION IS THRU 
LOCATION MODE OF O\VNER USING D# 

for the coset with EMP as member, and a declaration of the form 

SET OCCURRENCE SELECTION IS THRU 
I;,OCATION MODE OF OWNER USING C# 

for the coset with DEPT as member, then the (actual) user working area items 
DEPT.D# and COMP.C# could be set to the supplied values, and a STORE DML 
command issued. If no COMP tuple contained the supplied value of C#, or if no 
DEPT tuple in the coset defined by that COMP tuple contained the supplied value of 
D#, then the STORE command would not succeed. This rejection implements an 
important integrity constraint. 

' ... -
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In altering an already existing tuple, two cases arise. 

The first is where primary key attributes are altered, if this is to be allowed at 
all. In this case, the same strategy as before could be used. The record to be altered 
would be found, the new values of the key attributes set in the user working area, and 
a DML MODIFY command (Codasyl 1971), issued. This would move th e record into 
different coset occurrences, reflecting the altered values of the virtual attributes. Errors 
would occur, as before, if owner records containing the modified values were not 
present in the database. 

The second case is where non primary key attributes are altered. This is done 
in a straightforward way, by finding the record to be modified, setting the user 
working area locations corresponding to the attributes to be modified, and issuing a 
DML MODIFY command. 

This allows the new values in a tuple to be functions of the previous values in 
the tuple. Thus one could say, in a notation similar to INGRES (Stonebraker 1976), 

REPLACE EMP.SAL = EMP.SAL + 500 
WHERE EMP.E# = 123. 

to mean "Increase the salary of the employee whose number is 123 by $500". 

Updates could also be performed on all members of a set of tuples, for 
example, "Increase the salaries of all employees in department ABC of company XYZ, 
who are below grade 2, by ten percent". 

REPLACE EMP.SAL = 1.1 *EMP.SAL 
WHERE 
EMP.D# = "ABC" 
AND EMP.C# = "XYZ" 
AND EMP.GRADE LT 2. 

A different strategy could be adopted when storing a new tuple, or modifying 
the primary key attributes of an existing tuple, where some of the primary key 
attributes are virtual. Whenever a virtual attribute value could not be materialised, 
due to the absence of the record containing the corresponding actual attribute, new 
owner records containing the actual attributes could be stored and linked into the 
appropriate coset occurrences. 

Tuple deletion falls into two classes. The first is where the primary key of the 
relation fro m which the tuple is to be deleted is not a foreign key in any other 
relation; that is, in the network model, the record is not the owner of any cosets. In 
this ca e, the record may be deleted, and integrity will be preserved. 

The second case occurs when the primary key of the tuple to be deleted is a 
foreign key in another relat ion. In the network model, this means that the re<.:ord 

I 
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in st ance being deleted is the owner of a coset. Several courses of action may be taken. 

l) The deletion may cause an error if any of the cosets that the record 
owns is non-empty. 

2) All the coset members may be deleted. 

3) The record may be deleted, and all the members unlinked from each 
coset that the record owns. For this to be possible, membership of each 
coset involved would have to be OPTIONAL. 

All the machinery so far developed for selecting records, including aggregate 
functions, could be used in implementing update commands similar to those sketched 
out here. 

9.2 Security and Integrity 

The approach to security taken in (Stonebraker 1974b) and (Stonebraker 1975) 
1s to conjoin a condition to the qualification part of each retrieval or update 
statement. There may be one such condition for each user, and one for each type of 
access (update or retrieval). No measures of this sort are currently included in ALF. 
The condition which is added to the qualification does not cause any rejection visible 
to the user, but merely makes tuples not satisfying the condition invisible to the user. 
This approach has the very obvious advantages of being easy to implement, as it uses 
the already ex1smg machinery for handling qualifications on commands, and m 
incurring a very low overhead. Whether it solves all integrity problems for all 
applications is not clear, (for example it may be desirable to report on attempted 
security violations), nevertheless the other security provisions provided by Codasyl 
systems are also available, provided methods of using them can be built into higher 
level, ALF like languages. 

9.3 More General Joins 

The ALF implementation concentrates on the efficient processing of joins in 
which a coset may be used, that is, joins in which a candidate key of one relation is 
specified as equal to the corresponding fo reign key in another. Some different types of 
join are handled efficiently, others are not. 

An example of a non-coset join is where the primary key in one relation is 
specified equal to an expression involving att ri butes of other relations. In this case, 
ALF would generate code to find the tuples in the other relations first, compute the 
primary key using att ribute values from those other tuples, and use the key to find a 
admissable tuple in the first relation. 

~ ,, -
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Joins ,vhich are not equi-joins are not processed efficiently. For each tuple of 
the first relat ion in the join, all tuples in the second relation will be scanned, and the 
join condition tested. The number of tuples scanned may be reduced using other 
conjuncts in the qual ification. 

Equi-joins which do not specify candidate keys and the corresponding foreign 
keys must usually be processed by the brute force approach used for non equi-joins. 
However, if it were considered justifi ed by the Database Administrator, extra 
structures could be included in the network schema to assist in processing this sort of 
J0111. 

Consider two different relations containing a similar non-key attribute, say 
colour. The processing of an equi-join on that attribute would be improved if an extra 
record and two extra cosets were defined. The extra, introduced record would be the 
owner of both cosets, and the records containing the non-key attribute would each be 
a member of one of the cosets. Each coset instance would group all tuples in one of 
the records with identical values of the non-key attribute. For example, all the green 
records of one type would be grouped by one of the cosets under one owner instance, 
and all the green records of the other type would be grouped under the same owner 
instance, in the other coset. Call such a structure a coupling. There is no reason why 
more than two records could not participate in a coupling, nor is there any reason 
why there should not be more than one attribute in each relation involved. 

If an equi-join term using the coupling attributes could be factored out of the 
qualification of the ALF statement, then an extra node, ranging over the coupling 
record, and two arcs representing each of the coupling cosets could be added to the 
V-graph of the query. This would cause the coupling to be exploited when evaluating 
the join. 

9.4 Views 

A view is a way of modifying the way that a user sees the data in a Database. 
In this sense, the mapping used in this paper defines a relational view of the network 
data. Furthur levels of view could be defined on top of this relational view in the 
following way. 

1) A restriction could be applied to the tuples of a single relation. 

2) A composite rel ation, made up from several other relations usmg 
joins of various sorts could be defined. 

3) Steps 1) and 2) could be combined. 

A mechanism for defin ing and using views ha been specified and implemented 
in ALF. Each view may be thought of as a virtual relation, and may be used in the 

--------------------------------- -- 1--. 
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f 
e s:1mr way ;_1-; ,lll actual relation. 

r 
As an example, consider the schema of Figure 4.1, and assume that a view 

relation , called PD, is to be defined using the base rdations PROJECT. DEPT, and 
. 

n PROJDEPT. Furthur, assume that the view relation is to have attributes D#, C#, 

~- PROJ #, DBUDGET and PBUDGET, the last two being the department and project 

a budgets respectively. The user of the view is not to see departments outside the ACT, 
or projects with budgets greater than 1000000. Using the view syntax implemented in . 

f 
ALF, the view would be defined as follows: 

' .. -

DEFINE VIE\V PD ~·. ,' . 
~ FROM D RANGE DEPT, P RANGE PROJECT, RR RANGE a 

PROJDEPT , -e 
USING D.D#, D.C#, P.PROJ#, D.BUDGET RENAMED e 
DBUDGET, P.BUDGET RENAMED PBUDGET -of 

n WHERE D.D#=RR.D# AND D.C#=RR.C# AND 
-

> P.PROJ#=RR.PROJ# AND P.BUDGET LT 1000000 AND 
' D.DLOC="ACT". r 

y 
The user could then declare relation variables with range PD and retrieve from . .. 

n 
the view as if it were a single relation. A user need not know anything about joins in 
accessing the data, nor need he know anything about tuples that have been masked 
out of the view. 

e . 

g 
The problems involved in updating views have been touched on in 9.1. More . '• -

e 
work needs to be done to define update operations on views, in those cases where g 
updates are possible. 

. 

The following steps are taken in implementing views in ALF. For each variable 
in an ALF statement which ranged over a view, new relation variables corresponding -
to the dummy variables specified in the FROM clause of the view definition are 
created. These are substituted for the dummy variables in the qualification in the -

I> 
I-• 

WHERE clause of the view definition. Thus each instance of the view has it's own set k -
of variables, and the user may reuse those variables used in defining the view. 

e 
,,.,. ,•, -

This transformed qualification is conjoined to the ALF statement qualification, 
and each item using a view variable is changed to it's source item from the view -

definition. The ALF statement is then processed as before. 

This method of view implementation is similar to macro substitution prior to 
translation, and does not affect the translation process itself in any way. 

Views may be defined using other views as well as base relations, and may 

d 
contain subqueries in the qualification of the view. Some view binding time convention 
must be adopted; that is a choice has to be made between binding the definition of a -e 
view defin ed in terms of other views at definition time or binding at usage time. At 
present, binding is done at usage time, but a separate command allows the user to 

1 
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define views in terms of actual relations. Use of thi s command allows redefinition of 
views without affecting other views defined in terms of the redefined view. 

··--· -------------,, l--
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10. Conclusion 

the ALF translator has been implemented as an interactive system running on 
the CSIRO CYBER 76 computer. It has been implemented to demonstrate the 
feasibility of compiling efficient object code from higher level query commands. 

ALF approaches Relational Database Implementation from a different direction 
to other systems implemented so far. Building a Relational System on top of an 
underlying network system allows a relational interface to be implemented with a 
fraction of the effort needed to build such a system from the ground up. 

The mapping between network and relational schemata, and the translation 
techniques employed, allow programs to be generated which exploit the available 
access methods at least as efficiently as the average programmer. 

The translation model 1s sufficiently flexible to allow extensions such as 
updates, integrity and security measures, joins not defined by cosets, and views, to be 
implemented in a straightforward manner. 
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Appendix A - Implementation Language 

ALF is implemented using an extended version of UT LISP, which runs on 
CDC CYBER computers. UT LISP is documented in (Texas 1975). The xtcnsions 
are a group of macros which enable some constructs similar to those found in other 
modern higher level languages to be used. LISP programmers commonly spend quite 
a bit of time making sure that the many parenthesis required by the language are 
correctly nested; the macro constructs described here reduce the number of level of 
nesting as well as providing program text which is more natural for the programmer 
not raised on LISP to read. 

The reasons for choosing LISP to implement this prototype system are many. 
For a general overview of them, the reader should consult (Engleman 1975). There 
were not, in fact, many alternatives, however even if the choice had not been 
constrained by what was available on the CYBER 76, the only other candidates that I 
would have considered suitable would have been more modern versions of LISP. 
Features which influenced the selection of LISP are given below. 

1) Ease of representation and manipulation of symbolic data objects, the 
representation usually being changeable with only local effects. 

2) Recursion 

3) Automatic storage management 

4) The existence of a graph processing package, GRASPE (Friedman 
1974) 

5) Good diagnostic and debugging facilities. 

6) Uniform treatment of procedure and data. 
This has two important consequences. The first is that a rigorous 
definition of the language may be formulated, and the second is that 
procedures may be synthesised and then executed using the standard 
evaluation mechanism. 

7) The· availability of an interactive envoronment for program 
development, in which programs and data can be defined, examined and 
altered on line, during execution. 

The rest of this Appendix describes the language extensions. In d scribing the 
following language extensions, I have assumed a knowledge of LISP on the part of the 
reader; there arc numerous introductory texts available, for example (Siklossy 1975), 
(Weissman 1967). 
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The extensions are : 

1. IF Statement 

(IF expression THEN expression-list 

ELSEIF expression THEN expression-list 

ELSE expression-list) 

This statement is expanded into a "COND". The expression following the IF is 
evaluated, and if it is true (that is, not NIL), each expression in the expression-list 
following the first THEN will be evaluated. There may be any number of ELSEIF 
clauses, and an optional final ELSE clause. If the first expression is false (that is, 
NIL) then the expression following the next ELSEIF is evaluated, and if true the 
expressions in the corresponding expression list are evaluated. If the expression is 
false, the process continues. If no expression is true, the expressions in the expression 
list following the final THEN are evaluated. The value of the whole statement is the 
value of the last expression evaluated. 

2. FOR Statement 

(FOR atom IN list Du expression list) 

(FOR atom IN list DO function ) 

This statement is expanded into a MAPCAR. In the first version, the elements 
of list are successively bound to atom (that is atom successively takes the values of 
the elements of list) and the expression in expression list evaluated in the presence 
(environment) of this binding. 

In the second version, function may be an atom which is the name of a 
function, (that' is, an atom with an appropriate EXPR or FEXPR property) or a 
lambda expression. function must be a function of one argument. The effect is the 
same as in the first version, the function being applied to successive elements of list. 

The value of this statement is a list comprising the values of each of the results 
of the function application. 

---------------''--. ---------· -------
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3. CASE Statement 

(CASE expression OF 
label-list: expression-list; 

ELSE expression list) 

95 

This statement expands into a SELECT. The expression following CASE is 
evaluated, and its value compared with each of the labels in the first label-list which 
of course may contain only one label. label list is merely a list of expressions, so this 
statement 1s considerably more general than the case statements found m other 
programming languages. When a match is found, the expressions in the expression list 
to the right of the colon are evaluated. If no match is found in any of the label lists, 
the expressions following the ELSE are evaluated. 

The value of this statement is the value of the last expression executed. If there 
is no match on any of the expressions in any of the label-lists and there is no ELSE 
clause, -then the value is NIL. 

4. WHILE Statement 

(WHILE expression DO expression /isl) 

If expression evaluates to true (not NIL), then the expressions in expression list 
are evaluated. This process then repeats itself until expression becomes false. 

5. REPEAT Statement 

(REPEAT expression list UNTIL expression) 

The expressions m expression list are evaluated, and then expression 1s 
evaluated. If expression 1s false the process repeats itself. This is similar to the 
WHILE statement, except that the test is performed at the end of the loop, and 
control stays i~ the loop if the test expression is false, not true as with WHILE. 
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6. ALL Statement 

(ALL atom IN list SATISFIES function) 

(ALL atom IN list SATISFIES expression-list, 

As in the FOR statement, function is an atom which has been defined as a 
function, or a lambda expression. function is successively applied to each element of 
list. The value of the expression is false if one of these applications returns false, and 
succeeding ones are not done. If they all return true, the value is the value of the last 
one. 

In the second version, successive elements of list are bound to atom and the 
expressions in expression list evaluated. 

7. SOME Statement 

(SOME atom IN list SATISFIES fu nction) 

(SOME atom IN list SATISFIES expression-lisi) 

This statement is very similar to the ALL statement except that if any of the 
function applications returns true, then that is the value of the statement and no 
further function applications are done. If they are all false, the statement value is 
false. 

8. NO Statement 

(NO atom IN list SATISFIES Junction) 

(NO atom IN list SATISFIES expression-lisi) 

This statement is true if none of the list elements satisfies the function or 
expression list, in the same sense as in 6. or- 7. It is false if any list element does, and 
no furthur evaluation is done. 

---------------., ---------- --------- -- --------·- ------ ::--
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Appendix B - The Intermediate language 

The intermediate language generated by the ALF transator is designed to be 
translatable without undue difficulty into other high level languages, and also to be 
efficiently interpretable. It is represented as a list of quadruples, or quads, in the form 

(operator result operands DML-atom ) 

The language does not contain labels or a GOTO statement, and all control 
structures are nested in a last in first out fashion. This was not done for aesthetic 
reasons, but to make it possible to implement the code optimisation and interpretation 
procedures in a recursive manner. 

For code optimisation purposes _again, each DML statement is viewed as being 
equivalent to a number of assignment statements. These assignment statements are 
grouped together by having the same atomic list item DML-atom, which has 
properties describing the DML statement. 

The different non-DML operators which can occur are 

1. ASSIGN 
The value of the expression in the operands position is assigned to the 
variable in result . 

2. WHILE 
result is a boolean expression in prefix form; operands is an atomic 
identifier for the statement. The quads between the WHILE and the 
corresponding ENDWHILE quad are obeyed until the WHILE 
condition (result ) becomes false. 

3. ENDWHILE 
Terminates the scope of a WHILE loop, result is the atomic identifier 
for the WHILE loop. 

4. IF 
result is a boolean expression, operands an atomic identifier for the IF 
stateme~t. If the boolean expression is true, the following code down to 
a corresponding ENDIF or ELSE is executed. If false, then the code 
between the corresponding ELSE and the ENDIF is executed if there is 
an ELSE, otherwise control is transferred to the statement following the 
ENDIF. 

5. ENDIF, ELSE 
result is an atomic identifier corresponding to the same identifier in the 
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corresponding previous IF quad. 

6. COMMENT 
result contains commenting text, and the effect is purely documentary. 

7. EXITWHILE 
result is the identifier for a WHILE quad. This quad indicates that 
control should be transferred to th e statement following the 
corresponding ENDWHILE statement. 

If the atom DML-atom is non-NIL, then the quad represents one of the 
assignment statements comprising a DML statement. DML-atom has properties which 
enable the DML statement to be generated (or interpreted). 

These properties are 

1. DMLVERB 
The DML verb in the DML statement. It may be one of GET, FIND1, 
FIND3, FIND4, FINDS, FIND6, FIND7, indicating the GET 
statement and the various forms of the FIND statement. (Codasyl 1971) 

2. SETAR 
The coset or area name involved. 

3. DILIST 
A list of the record data items involved. 

4. FNEXT 
The literal FIRST or NEXT, used with FIND3. 

5. VAR 
The name of database key variable, used with a FIND 1. 

6. SUPPRESS 
A list of cosets to have currency updates suppressed. 
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Appendix C - CODE-A, a sample target language 

The intermediate code generated by the ALF translator is designed to be either 
interpreted or translated into a higher level language. For pedagogic purposes only, 
this intermediate code, described m appendix B, 1s translated into an invented 
language called CODE-A. Real languages have features such as data item modes, data 
declarations, restrictions on the use of text strings, restricted control structures, and 
output formatting specifications. While the problems raised by these features would 
have to be faced in implementing a working relational system based on ALF, they are 
not the concern of this paper. 

CODE-A is a language which exposes the structure of the generated programs 
in an easily understandable way, but which allows the inconvenient features of real 
languages to be ignored. It is essentially a reformatting of the intermediate code to 
make it more readable. Arithmetic and boolean expressions are in infix rather than 
prefix notation, and DML statements are as specified in (Codasyl 1971), rather than 
being specified as a set of assignment statements. User working area locations are 
specified m the form record name__attribute name. When they are required, the 
additional locations needed for queries where more than one variable ranges over the 
same location are specified in the form relation variable__attribute name. 

Assignment statements are specified in the form 

variable < - expression 

There are two special variables, ST A TUS and CURRENT. ST A TUS 1s 
nonzero if the last DML command encountered either an error or some termination 
condition. CURRENT is the database key of the record found as a result of the last 
DML FIND command. Both these variables correspond to variables in the system 
communication locations defined in (Codasyl 1971). 

There are two control structures in CODE-A, a WHILE loop and an IF 
statement. 

The WHILE loop has the following form: 

WHILE boolean expression DO 
BEG INWHILE while loop id 

EXITWHILE while loop id 

ENDWHILE while loop id 
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The statements between the DEGINWHILE and the ENDWHILE are 
executed repeatedly until boolean expression becomes false. 

There need not be an EXITWHILE in the loop, but if there is and it is 
executed, it causes control to be transferred to the statement following the 
END WHILE. 

The IF statement has the following form : 

IF boolean expression THEN 
BEGINIF if statement id 

ELSE 

ENDIF if statement id 

If boolean expression is true, the statements following the BEGINIF down to 
the optional ELSE or the ENDIF are executed. If it is false, then control passes to 
the statement following ELSE if ELSE is present, otherwise it passes to the. statement 
following the ENDIF. 

There are two statements, OUTPUT and PRINT, which correspond to ALF 
commands of the same name. They have the format: 

· OUTPUT expression[ , ... ] and 
PRINT expression[ , ... ] 

The expressions which appear in these statements have values corresponding to the 
targetlist values in the original ALF expression. 
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Appendix D - Schema Specification 

The sub-language used for specifying data structure to the ALF translator 
mixes the functions of specifying the Internal and External schemata of (ANSI 1975). 
A full scale implementation of an ALF like language might well separate these 
functions. 

In the following sub-language, first the relations, their attributes and their 
properties are defined, and then the cosets and their properties are defined. In defining 
the relations and attributes, virtual attributes are declared together with the coset used 
to materialise them. 

The statements describing relations are: 

relation-name (list of attribute names) 

This is followed by a number of declarations chosen from the following 

1. PRIMARY-KEY (primary key attributes) 

2. CANDIDATE-KEYS ((attributes for candidate key-1) ... 

3. CALC-KEY (attributes on which record is accessed using the CALC 
function) 

4. INAREA area-name The area that the record is in. 

5. SYSTEM-SET (system-coset-1 system-coset-2 ... 
A list of the SYSTEM owned cosets the record is in. 

6. VIRTUAL ((virtual-attribute-I coset source-attribute-I) 
(virtual-attribute-2 coset source-attribute-2) 
A number of triples specifying each virtual data attribute in the relation 
and its source attribute. 

These relation declarations are followed by the word "COSET­
DECLARATIONS". 

Each coset is declared in the following way 

coset-name (owner member 
(list of owner attributes) 
(list of member attributes)) 
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The owner and member record types are followed by the attribute in the owner 
and the corresponding (virtual) attributes in the mell).ber. Equality of values of these 
attributes in th e relational model indicates coset membership in the corresponding 
network model. 

A number of declarations may follow for each coset. The attributes appearing 
in the following declarations must be non-virtual attributes occurring in the member 
record of the coset being described. 

1) SORTED (sort-attributes) 

2) SORTED-INDEXED (attributes which are sorted and indexed) 

3) SEARCH-KEYS ((attributes comprising search-key 1) 
(attributes comprising search-key 2) 

The cos et declar a tions terminate with the word 
"END-COSET-DECLARATIONS" . 

----------
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This Appendix shows the CODE-A generated for number of sample ALF 
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