AN APPROACH TO

IMPLEMENTING A

RELATIONAL DATABASE SYSTEM

H. G. Mackenzie

(September 1979)

I certify that, except where acknowledged in the text,

the research contained in this report is entirely my

own work.

by

26 November 1979 Hugh MacKenzie

‘“t A_Uu :'—Vni.‘ LLE 2N

i
&£ LIBRARY
9, A)
DMy gyyers

CONTENTS
1. Introduction
2. The Relational Model
3. Other Relational Database System Implementations
3.2 PRTV
3.2 System R
3.3 INGRES
4. Sample ALF queries
5. Formal Specifications of ALF
5.1 ALF Syntax
5.2 Evaluation
5.3 Aggregate Functions
5.4 Nesting of queries
6. The Mapping between the Relational and Network Data Models
7. Transforming an ALF statement
7.1 Overview of Section 7

7.2 Query evaluation model

7.3 D-graph

7.4 Pattern Matching
7.5 V-graph
7.6 V-graph transformation

7.6.1 Remove virtual attributes

7.6.2 Coalesce equivalent nodes

7.7 Use of V-graph in code generation)
7.8 Amalgamation of Equivalent Queries ' /
8. Code generation)

8.1 Efficiency considerations
8.2 First pass

8.2.1 Finding Start Node and Initial Access Method

S@bﬁ/\ 8.2.2 Subgraph Traversal and Access Method Extraction
j- 4’ 8.3 Second pass
/e 5 o
8.3.1 Graph Traversal: Code Genération and Subquery Comipilation

8.3.2 Currency and UWA usage

8.4 Boolean Test Generation in the presence of Subqueries

8.4.1 Standard Boolean Test Generation
8.4.2 Introduction of | Subqueries
8.5 Code optimisation
8.6 Final output
9. Extensions and Problems
9.1 Updates
9.2 Security and Integrity
9.3 More General Joins
9.4 Views
10. Conclusion

Bibliography

Appendix A - Implementation Language

Appendix B - The Intermediate language
Appendix C - CODE-A, a sample target language

Appendix D - Schema Specification

Appendix E - Sample Computer Output

1.0 Introduction

Database management systems based on the CODASYL DBTG
recommendations have become a de facto industry standard, and are available on the
machines of most major manufacturers. These systems augment a higher level
language such as COBOL, Fortran or PL/I with data manipulation commands, and
hence using them requires programming an application in one of the host languages.
This interface is at too low a level for the casual user. Many potential users are
reluctant to make the initial heavy learning and programming investment required to
use these systems effectively. In addition, the effort required after this initial
investment, in programming each additional query, is considerable.

The situation would be vastly improved if the interface presented to the user
was at a much higher level. The relational model, where the user views the data as a
number of large tables, is one candidate for providing such a higher level interface.

In this paper, after giving a brief description of the relational model, I describe
some currently implemented relational database management systems. Secondly, I
describe the prototype implementation of a relational language, ALF, designed to act
as a front end to a CODASYL database. ALF has been implemented as an interactive
system at the CSIRO Canberra installation. It produces output in a language called
CODE-A, and examples of the output may be found in Appendix E. This
implementation involved setting up a mapping between the relational model and the
CODASYL (network) model, and, from this mapping, deriving algorithms to translate
commands in the relational language ALF into efficient programs suitable for
execution on network databases.

The ALF translator may be regarded as a special purpose optimising compiler,
as much attention has been paid to generating efficient code. The benefits of spending
time on optimisation are even more clear cut with a database access language than
with an ordinary programming language, as the programs being optimised are
typically only a few lines long, and the extra time spent in translation can save many
accesses to disc at execution time, in addition to saving central processor time.

As implemented at present, ALF does not contain any update commands,
however their introduction would be straightforward, and the underiying algorithms

would still be used if they were introduced.

The approach described in this paper has several novel features.

1) Many current relational database system implementations store all
relation attributes, including foreign key attributes, explicitly in relation
tuples. Join operations are performed by actual matching of the key
values in the relations to be joined. ALF is implemented as a front-end
to a CODASYL database system, and because of the use made of the

CODASYL set structure in implementing foreign keys, these keys are
not explicitly stored. This would significantly increase retrieval
efficiency, as well as introducing an important integrity constraint. 2.0

2) Implementing a relational interface to an existing database system
allows the implementor to avoid most of the work which other sys
relational system implementors have had to face, for example file and - the
index structures, concurrent access, etc.

3) Although the network-relational correspondences have been pointed

out or alluded to on previous occasions, for example, in (Nijssen 1974), ;?]gd
(Olle 1975), (Sibley 1974), translation algorithms developed from them
have not been previously published, to my knowledge. f::J
M 4) The translation process generates an intermediate language which
may either be interpreted directly or translated into any (reasonable)
j 7 target language. Whether the command is to be interpreted or compiled, the
/)w and what the target language is to be, is determined by the waj
interchangeable final pass plugged onto the translator. This feature pu
allows the possibility of having a common interface to different o
CODASYL Database Systems, perhaps running on different machines. g2 t
The final pass currently included in ALF generates code in a language . col
called CODE-A, which is described in Appendix C. g]
. De
5) Unlike other relational systems, execution of a program generated by
ALF does not involve the generation of any intermediate files. This
contributes to increased retrieval efficiency. ¥
The reader who simply wants some idea of the work described in this paper
can read the sections 2 and 4, on "The Relational Model" and "Sample ALF queries".
These two sections are self contained. The section on "Formal Definition of ALF"
contains some material oriented towards understanding the sections which follow on
the translation algorithms.
This project would not have been completed, or indeed started, without the
encouragement and assistance of Dr J. L. Smith.
. Subs
B in
moc
the
enfo
min
unic
key.

sele

2.0 The Relational Model

There have been a great many articles published on Relational Database
systems, thus only a bricf and incomplete survey will be presented here. In particular,
the important topics of functional dependency and normalisation will not be covered.

The relational model of data was first proposed in (Codd 1970), a paper which,
together with (Codd 1971a,1971b) produced a flood of research into Relational theory
and practice. The Relational model used in this paper is the one described in Codd's
early work; recent extensions, for example those described in (Codd 1979), are not
included.

Basically, the relational model describes a way in which a database user views
the data in a database. There is no requirement that this view shall correspond to the
way in which the data is stored. The data may be considered as being arranged in a
number of tables or matrices, each one called a relation and given a name. Each table
or relation contains a number of named columns, where the data in each column is of
a type sclected from some homogeneous underlying domain. The name of each
column is called an attribute or attribute name of the relation. Each row of the
relation is called an n-tuple or simply tuple. An cxample of a relation representing

_ Departments 1s shown in Figure 2.1.

Department D T e T
: 123 ACT CSIRO
124 ACT Treasury
125 ABT s Health
129 - ACT Defence E
2T 4 Melbourne Telecom E

Fig. 2.1

One central assumption of relational theory is that in each relation, there is a

. subset of the attributes of the relation whose values uniquely identify the relation tuple

in which they occur; that is, by appealing to the semantics of the system being
modelled by the relational database system, it is known that two tuples may not have
the same values of these identifying attributes. This constraint is assumed to be
enforced by those programs which maintain the database. In addition, this subset is
minimal, that is by removing an attribute from the subset, one dcstroys this
uniqueness property. Such a subset of the attributes of a relation is called a candidate
key. A candidate key which necver has any of its component attributes undefined is
selected and called the primary key.

oA 4‘

]

For a particelar application, the totality of relations and attributes can be
considered to model the application. This model is called a relational schema.

A rclation in a relational database may represent a class of objects (in the
widest sense) in the real system being modelled by the database system. Two objects
in the system may be related in some way. One way that relational database systems
represent this is to have the identifying attributes (that is, the primary key or one of
the other candidate-keys) of one relation occurring in another. When this occurs the
attributes in the second relation are known as a foreign-key. The forcign key would
not in genecral be a candidate key of this second relation. Two relations may also be
related using non candidate key attributes.

As an example, assume a relational database contains two relations representing
companies and departments, where each of the departments belongs to one of the
companies. This situation could be presented in the way shown in Figure 2.2.

-

Comp CHE ™ Cloe Cname

148 Priied PP R oo 4 A S T AT 7 e

Fig: 2.2 s e :

If C# is the primary key of the Company relation, the situation where .a
particular department belongs to a particular company could be represented by the
CHt attribute of the tuple representing that particular department in the Department
relation being equal to the C# attribute in the appropriate tuple of the Company
relation. In this case, C# is a foreign key in the Department relation. C# could also
be part of the primary key of Department (for example, if the primary key was
[CH#,D#]), but need not be (for example, if the primary key of Department was
[D4£]). It should be emphasised that, in representing some relationship between two
objects in this way, there is no requirement for the foreign key attributes to have the
same names as the primary key attributes, although this is very often the case.

3. Other Relational Database System Implementations

This section first gives a classification of the types of language that have been
proposed for manipulating data stored using the Relational Model, and secondly fits
the methods used in the ALF implementation into context by describing some other
Relational Database System Implementations. There have been many such
implementations, and this report will mention only three of them, viz PRTV,
System-R, and INGRES. The selection has been based on the fact that the systems
described do not implement the operators specified in the relational language in a
brute force, straightforward way, but make significant transformations and
optimisations in translating from the operations at the logical level of the Relational
language to the physical level at which the data is actually stored.

Languages for accessing data stored using the Relational Model have been
classified in (Chamberlin 1976) under the following headings :

Relational Calculus Oriented Languages

Relational Algebra Oriented Languages

Mapping Oriented Languages

Graphics Oriented Languages

Natural English query languages could be added to this classification.

In Calculus oriented languages each relation may be thought of as a predicate
in a first order predicate calculus, and each tuple may be thought of as a ground
instance of such a predicate. A statement in a calculus oriented language contains a
qualification which selects a subset of the tuples in the database. A trargetlist selects
attributes from the retrieved tuples, and a command operates on the selected values,
outputting them or performing some other computation. The gqualification is a
formula in a first order predicate calculus, and may contain universal and existential
quantifiers in some languages (Codd 1971b).

In Algebra Oriented languages a number of unary or binary operators are
defined on relations, and produce new relations. These operators include Projection,
Restriction (Filter, or Selection), Join, Division and the set operators Union,
Intersection and Difference. There is an assignment operator, used to assign the result
of a relational algebraic expression to an intermediate result relation, which may, in
turn, be used in other expressions. Relational Algebra has been discussed in detail
elsewhere, for example in (Codd 1972b), and will not be treated here.

Algebra and Calculus based languages are equivalent in the sense that that an
expression in a Calculus based language may be transformed into a statement in

St

Relational Algebra. An algorithm for this transformation is given in (Codd 1972b).
The algorithm was developed with the aim of demonstrating the equivalence,
independent of any implementation. The efficiency questions raised by this algorithm
were addressed in (Palermo 1972).

Mapping Oriented languages are languages such as SEQUEL (Chamberlin
1974). They comprise nested mappings ; a mapping being a block of code which maps
a known attribute or set of attributes into a desired attribute or set of attributes. The
result of one such mapping may be used in specifying another mapping.

Graphics Oriented languages, of which Query-By-Example (QBE), (Zloof
1975,1977), is the best known, operate by having the user fill in blank spaces in a
predefined form, or blank relation. It is claimed in (Thomas 1975), that this approach
facilitates learning to use a relational language. This assertion is less obviously true for
more complex operations than for the simpler ones. In other ways graphics criented,
or tabular languages appear to be equivalent to relational calculus based languages,
and translatable to them in a straightforward manner.

3.1 PRTV

PRTYV, (Peterlee Relational Test Vehicle) is described in the series of papers by
Hall and Todd, as well as in (Verhofstad 1976) and (Owlett 1976). It is a system
developed at the IBM UK Scientific Centre at Peterlee, and has been used for some
large applications. Its user interface, ISBL, (Information System Base Language), is
based on Relational Algebra.

The underlying relational database files, called bricks, are stored sorted by
leading attributes, common leading attributes being suppressed, and other attributes
being compressed. Text values are stored in an area separate from the relation tuples
themselves.

The algebraic operators union, intersection, difference, select, join and project
are implemented at the ISBL level, and are specified in infix notation. There is an
assignment operator. The ISBL expression is transformed to a language called CIL,
(Common Intermediate Language). In this form the expression is called a cilstring,
and is essentially the ISBL expression tree in a linearised, prefix notation.

The ISBL user may supply a number of assignment statements, any one of
which may use the result of a previous statement. Relation names may be used as
variable identifiers, or new variable identifiers may be introduced as a result of an
assignment statement. Each time an identifier is used, it is bound either by value or by
name. If value binding is used, the current relation value is inserted into the
expression. This is presumably done by copying the whole relation. If name binding is
used, the relation name is inserted, and the relation tuples are materialised at the time
the expression is evaluated. Name binding enables any changes to the database to be
reflected in the answers to queries, and hence is used to define different views of the

B SRS A b L MR, o e ons s I Tl e S S T T L gl M i s

data. There is another, less frequently used binding type, called binding by expression,
which is described in (Owlett 1976).

The Algebraic operations in each statement are not carried out at the time that
the statement is input, but are deferred until one of the following occurs.

a) The user lists a result relation.
b) The user asks the cardinality of a result relation.

c) The user requests that the result relation be explicitly materialised,
and stored as a brick.

d) The user converts the result relation to a relational file . Relational
files allow a users program to access the relation as a sequential file, one
tuple at a time.

When one of these operations occurs, the expression tree is optimised, and
evaluated to produce the result tuples. The latest published status of the optimisation
stage is given in (Verhofstad 1976). Verhofstad distinguishes two types of optimisation;
global and local. Global optimisation deals with issues of database organisation, such
as what indexes to maintain, and tuple placement control. These issues are discussed
in (Hall 1975a).

Local optimisation is furthur divided into algebraic optimisations, which use
relational algebraic identities to transform the query tree into an equivalent one, and
non-algebraic optimisations, which transform the tree using such performance
improving measures as file inversion. Local optimisation is discussed in (Hall 1975)
and (Verhofstad 1976).

Local optimisation performs the following sorts of transformations on the query
tree.

* Filters (that is, selectors) are moved as far down the tree as possible.
This causes them to be executed as early as possible, reducing the sizes
of the relations that have to be handled.

* Multiple adjacent projections are merged into one projection.

* Projections which remove leading attributes, on which relations are
sorted, require that the result be resorted, and are moved towards the
leaves of the tree for earliest possible execution. This reduces the
amount of data in each tuple that must be handled.

* Common subexpressions are identified, transforming the tree into a
lattice. Each common subexpression need only be evaluated once,

transformed to a brick, and reaccessed when necessary.

* The most efficient implementation of the relational operators,
particularly join, is estimated in a particular case. Indexes are used
where possible.

* Idempotency laws for relational and boolean algebra are applied to
simplify the expression.

* Various more complicated tree transformations, particularly involving
the use of indexes, are applied. (see Verhofstad 1976)

Tree transformations similar to those used in PRTV are also discussed in
(Smith 1975), in reference to the Relational Algebraic system SQUIRAL.

After the tree is transformed, a process is associated with each relational
operator, or internal node. Full materialisation, or realisation of intermediate files is
avoided as much as possible. Each process on an internal node makes calls to the
processes on the children of that node to materialise a single result tuple. This tree of
processes is similar to the List Set Generator method used in (Mackenzie 1977c).
Realisation is necessary for some projections, where a file must be sorted to remove
duplicates, and resorted using leading attributes as sortkeys. A node where a full
realisation is necessary is called a break point .

3.2 System-R

System-R is one of the better known and most well developed Relational
Database Systems. Its user interface language is SEQUEL (Chamberlin 1974).
System-R consists of a Relational Storage System (RSS), whose Interface language is
the Relational Storage Interface (RSI). The RSS is concerned with managing devices,
space allocation and paging, locking, deadlock detection and backout, recovery, and
with maintaining images and links, which are described later in this section.

On top of the RSS, and interfacing to it is a Relational Data System (RDS),
which is accessed via an interface called the Relational Data Interface (RDI). RDI
provides facilities closely parallel to those in SEQUEL, although it will also support
other systems such as QBE (Zloof 1975,1977). A programming language is interfaced
to the RDS using a cursor, which identifies a set of tuples called the active set of the
cursor. One can associate a SEQUEL statement with a cursor, and retrieve tuples
satisfying the statement into locations in the user program using a FETCH call.

The RDS contains an optimiser which chooses an algorithm to satisfy the
query from the access methods supported by the RSS. It is this optimiser which is of
most interest in this report.

Relation tuples are stored in segments; and one segment may contain tuples
from a single relation or from more than one relation.

Each tuple in a relation is identified by a tuple identifier , or TID. A TID
corresponds closely to a Database-key of CODASYL, being an efficient,
hardware-address oriented pointer to individual tuples.

The RSS makes explicit use of two structures, images and links.

An image is a B-tree index structure containing non-truncated keys. It provides
fast access on a single attribute of a whole relation, and as the whole key is
maintained in the index, can be used in retrieval without accessing the tuples
themselves.

Leaf pages of an image are linked together in a doubly linked list.

Images may be clustering, in which case the tuples are maintained physically
sorted according to the image key, or nonclustering. It follows that there may be only
one clustering image for each relation.

An image resembles a SORTED, INDEXED, PRIOR PROCESSABLE set
with OWNER SYSTEM, in CODASYL terminology. A clustering image corresponds
to the case where the record (relation) on which the image is defined has LOCATION
MODE VIA the SET corresponding to the image.

A link is a mechanism for connecting tuples, and may be wunary or binary. A
unary link is a logical ordering on a single relation, and resembles a SORTED SET
with OWNER SYSTEM, in CODASYL terminology. A binary link connects a single
tuple in one relation with all the tuples in another relation, such that the values of a
particular attribute in the first, or parent, tuple equal the values of a particular
attribute in the second, or child, set of tuples. A tuple participating in a link is joined,

-using TID pointers, to its prior and next twins in the link. Tuples must be inserted

into a link individually at the RSS level. A link therefore resembles a MANUAL |,
non information bearing SET, where the SET membership is defined on the equality
of certain data items in the owner and member records. Both types of link are PRIOR
PROCESSABLE, in CODASYL terminology, as link members are connected with
next and prior pointers.

Links and images may be created or destroyed at any time. The pointers which
implement images and links are TIDs and are stored as an affix to the tuple data.
This affix may be expanded and contracted as images and links are created and
destroyed.

The RDS may provide the RSS with clustering hints based on value ordering
or on grouping associated tuples in a binary link.

10

In summary, the storage structures used in System-R closely resemble a subset
of those available in CODASYL systems, with the difference that in most CODASYL
systems these structures cannot be created and destroyed.

The optimiser in the RDS begins by classifying the SEQUEL statement into
one of several classes. The first class contains statements operating on a single
relation, the second contains those containing a join term, and a third contains those
which, in addition, use the GROUP BY option. Secondly, the optimiser examines the
system tables to find images and links which could assist in executing the statement.
Thirdly, a set of reasonable methods for executing the statement is derived, and lastly,
cost estimates for each method are computed, and the method with minimum cost
executed to produce a result.

For each relation, the system tables contain the following information.
R: The Relation cardinality.

D: The Number of data pages the relation occupies.

T: The average number of tuples per page (R/D)

For each image, I, the image cardinality, (The number of distinct field values
in the image), is maintained.

- A coefficient H, the number of tuple comparisons equivalent to one page
access, is estimated and stored.

Consider the case where there is a single relation query with a predicate
containing a conjunctive term of the form (artribute) (relational-operator) (value). A
number of cases arise. There may be no image, a clustering image, or a nonclustering
image defined for the attribute. The relational operator may be "=" or not. The
relation may occupy a file by itself, or there may be other relations in the file as well.
To execute the query, either the whole relation may be scanned, or the image may be
used. The properties of the predicate, together with the relation properties maintained
in the system tables, are used to estimate the cost for one of eight methods for
executing this type of query and to select one of them.

Consider a two relation query whose predicate contains a join term and a
restriction on each relation in the query. There are a number of possible methods for
evaluating such a query, using clustered or unclustered images on one or both
relations, binary links between the relations, and whole relation scanning, possibly
sorting the relations. A method is chosen which depends on the access paths actually
available, and on whether the parts of the predicate involving one relation only are
expected to be highly selective or not.

When a method for executing a query is chosen, it is compiled into an
optimised package, or OP. This OP is bound to the cursor defined in the program

11

making calls to the RDS, and a result tuple produced incrementally whenever a
FETCIL is done using that cursor. This avoids the generation of intermediate files.

3.3 INGRES

INGRES (Integrated Graphics and Retrieval System) was developed by
Stonebraker and others at the University of California, Berkeley. It runs under the
UNIX operating system on PDP 11 machines (model 34 or higher). The system is
described in (Stonebraker 1976).

The user interface is via an interactive language, QUEL, which is calculus
based, and allows aggregate functions to appear in the qualification. There is a version
of QUEL callable from a higher level language. This version, called EQUEL, or
Embedded QUEL, allows piped mode or tuple at a time retrieval into variables in a
users program.

INGRES has an underlying storage structure which is paged, and in which
each tuple has a TID similar to the TID in System-R, and similar to the CODASYL
database-key. Five file structures are used. They are sequential or heap, hashed,
compressed hashed, ISAM and compressed ISAM. Secondary indexes may be specified
for any file. Each relation is stored as one such file, and there are no explicit links
between files, except for those implied by the equality of attributes in different
relations.

The hashed access methods provide retrieval given an exact value for the key
attribute; ISAM in addition provides retrieval over a range of key item values.

The access methods all have a common interface, so that details of the access
method’s implementation is hidden from the higher level query execution processes.
Adding a new access method is therefore straightforward, provided that it conforms to
the existing interface conventions.

QUEL supports both retrieval and update, however only retrieval shall be
explicitly considered here.

The query optimisation algorithms in INGRES operate by decomposing a
query into a number of single variable queries. These queries are executed using a
process called the OVQP (One Variable Query Processor). The reduced ranges are
used in evaluating the residue of the query using tuple substitution. This process is
similar to the process of pushing projections and restrictions back through joins in
PRTYV or in SQUIRAL (Smith 1975).

The OVQP uses the file access method or an available index to materialise a
set of tuples satisfying a one variable query (from a single relation), to project the
tuples onto that subset of the attributes needed for later processing, and to format

12

them as a file indexed on a key to be used later in processing the residual query.

After having evaluated those single variable queries that can be detatched, the
results of the evaluations are used to substitute attribute values in the residual query,
creating a series of simpler queries. This process is equivalent to materialising the
cartesian product of the reduced -ranges of the relations processed by the OovQP, and
evaluating the residue of the qualification.

A more sophisticated decomposition algorithm is given in (Wong 1976), which
gives an algorithm to be implemented in a later version of INGRES.

13

4.0 Sample ALT statements

In this section I will show the capabilities of the calculus based relational
language ALF which is the main topic of this paper. This will be done here using a
set of example retrieval statements designed to demonstrate the language; A more
formal definition will follow in Section 5. A larger set of example queries which were
translated using the ALF translator, together with the output produced, is given in
Appendix E. Syntactically the features of ALF are similfr to, and to some extent
modelled on, those of QUEL, although the underlying" implementation, storage
structures, and execution strategy is totally different.

4.1 Examples

The relational schema to be used is illustrated in Figure 4.1. .

Comp g C# Cloc Budget \

Dept C# D3 Dloc Budget

Emp C# D# Ezx Name Address Age

Project Proj# Finish-Date Complete

Projdept . | Proj# C3 D3 Liason-person

A RALS

* Comprel ‘Parent# Subz Numshs

~ Fig. 4.1

;

The system being modelled by this schema contains a set of Companies,
represented by the COMP relation which has primary key C#. Each Company has a
number of Departments, represented by the DEPT relation, with primary key (C#,
D#) and each Department has Employces, represented by EMP with primary key

(CH#, D#, E#).

There are Projects, represented by PROJECT with primary key PROJ#. Each
Department may be associated with a number of Projects, and each Project with a

14

number of Departments. The association of a particular Project with a particular
Department is represented by a tuple of the PROJDEPT relation. PROJDEPT
contains two foreign keys, (D#, C#) indicating the Department participating in the
association, and PROJ# indicating the Project. In addition there is a SUPPLIER
relation with primary key S#, a PART relation with primary key P#, and a
SUPPLY relation. The SUPPLY relation contains S# and P# as foreign keys. Each
tuple in the SUPPLY relation represents the fact that Supplier S# supplies Part P#.

Each of these sample retrieval commands will consist of a command, following
by a targetlist of attribute values to be retrieved and operated on by the command,
and a logical condition following the word "WHERE". This logical condition, or
qualification, restricts the set of values returned in the target list.

4.1.1 Retrieval using one relation only.
Give the name and address of all employees who are over 60.

OUTPUT EMP.NAME, EMP.ADDRESS WHERE EMP.AGE GT 60

In this query, the command is OUTPUT, the targetlist is EMP.NAME,
EMP.ADDRESS, and the qualification is EMP.AGE GT 60. The attribute names
NAME, ADDRESS and AGE are qualified in this query by EMP, which is the
relation that they come from.

In general however, attribute names in the target list are qualified by a
variable, or relation variable, which may be thought of as ranging over all the tuples
of a particular relation. Conceptually, the variable takes each tuple of the relation in
turn as its value. In ALF, relation names do double duty as relation variables
referring as variables to the corresponding relation. When a relation variable which is
not a relation name is used, it must be declared in a RANGE statement before being
used. Thus an equivalent way to express the previous query is

RANGE OF X IS EMP. :
OUTPUT X.NAME, X.ADDRESS WHERE X.AGE GT 60.

The relation variables take all the tuples in their range as value, and for each
combination of tuples, the qualification is evaluated. If the qualification is true, the
targetlist is accepted. The targetlist is in some respects like a virtual relation, to be
operated on by the statement command, except that there is not necessarily a primary
key, and duplicate tuples are not removed.

15

4.1.2 Retrieval using a join between two relations.

Give the name and address of employees who work for companies located in
the ACT.

OUTPUT EMP.NAME, EMP.ADDRESS
WHERE COMP.CLOC EQ "ACT"
AND COMP.C# EQ EMP.C# .

In this case the qualification reads "..the company’s location is "ACT" and the
company’s company number is the same as the employee’s company number". The
latter conjunct in the qualification is called a join term. Recall that the presence of
the foreign key C# in EMP indicates the company to which each particular EMP
tuple belongs (C# being the primary key of COMP).

4.1.3 Use of disjunction

Give the name and address of employees who work for companies which are
either located in the ACT or which have budgets greater than ten million dollars.

OUTPUT EMP.NAME, EMP.ADDRESS
WHERE COMP.C# EQ EMP.C#
AND [COMP.CLOC EQ "ACT" OR COMP.BUDGET GT 10000000].

4.1.4 Use of expressions in qualification

Give the department names of departments whose budgets are more than 20%
of their companies budgets.

OUTPUT DEPT.NAME
WHERE DEPT.BUDGET GT 0.2 * COMP.BUDGET AND
DEPT.C# EQ COMP.C# .

4.1.5 Multiple joins

Give the name and address of liaison people whose projects are not complete
after the first of May, 1979, and who work for company XYZ, department ABC.

OUTPUT EMP.NAME, EMP.ADDRESS WHERE
EMP.C# EQ "XYZ" AND EMP.D# EQ "ABC"
AND PROJECT.FINISH-DATE LT 790501

AND PROJECT.COMPLETE EQ "NO"

AND PROJECT.PROJ# EQ PROJDEPT.PROJ#
AND PROJDEPT.LIASON-PERSON EQ EMP.E#

16

AND PROJDEPT.D# EQ EMP.D#
AND PROJDEPT.C# EQ EMP.C#..

4.1.6 Introduction of aggregate functions in qualification

Find all departments whose budgets are greater than the average departmental
budget (that is, the average for all companies).

RANGE OF D1, D2 IS DEPT.

OUTPUT D1.D# WHERE
D1.BUDGET GT AVG(D2.BUDGET) .

4.1.7 Another example using an aggregate function
'

Find all departments whose budgets are greater than the-average departmental
budget for their own companies.

RANGE OF D1,D2 IS DEPT.
OUTPUT D1.D# WHERE '
D1.BUDGET GT AVG(D2.BUDGET WHERE D2.C# EQ D1.C#) .

In example 4.1.6, D2 ranges over all tuples in the DEPT relation, and
computes the average budget. D1 ranges over all tuples of the DEPT relation a
second time, accepting those tuples which satisfy the qualification, that is whose
budgets are greater than the previously computed average.

In example 4.1.7, D1 ranges over all the tuples of the DEPT relation, and for
each tuple, the average is computed by D2 ranging over all the DEPT tuples which
have the same C# as the D1 tuple. There is scope for optimisation here, but this
optimisation is not the concern of the ALF user.

It is important to note that the text which follows the aggregate function
AVG, is merely another query in the form

targetlist WHERE qualification

This query is evaluated, and the aggregate function applied to the collection of
tuples which result from the evaluation. The number of items in the targetlist must
equal the number of arguments expected by the aggregate function. Aggregate
functions currently available in ALF are MEAN, AVG, MAX, MIN, RANGE,
COUNT, TOTAL, SSQ, EXISTS, ALL.

These last tivo functions provide facilitics equivalent to existential and universal
quantification in the query qualification, and greatly extend the power of ALF
retrieval statements. For a fuller description of these see Section 5.3, and the examples

in Appendix E.

4.1.8 Use of two aggregates in retrieval statement

Find companies which have average departmental budgets less than 30000 or a
maximum departmental budget greater than 100000.

RANGE OF D1,D2 IS DEPT.

OUTPUT COMP.C# WHERE

MAX(D1.BUDGET WHERE D1.C# EQ COMP.C#) GT 10000000
OR AVG(D2.BUDGET WHERE D2.C# EQ COMP.C#) LT 30000.

In this example, the variable COMP ranges over the tuples of the COMP
relation, and for each tuple, D1 and D2 individually range over all the DEPT tuples
to compute the MAX and AVG aggregate functions. There is scope here for
optimidation of the execution of this query, but again, this is not the concern of the
ALF user. &

4.1.9 The 'Homogeneous Hierarchy exampl?.

Augment the database schema of Figure 4.1 with the relation COMPREL,
shown in Figure 4.2.

Comprel ' Parent# Subi Numshs

Fig. 4.2

As before, each tuple of the COMP relation represents a company. Each fuple in the
COMPREL relation represents the fact that the company with Company Number
PARENT# has a subsidiary with Company Number SUB3, and that the parent
holds NUMSHS shares in the subsidiary.

Example a)
Find all the subsidiarics of company "XYZ", and the number of shares company
"XYZ" holds in cach.

OUTPUT COMPREL.SUB#, COMPREL.NUMSHS
WHERE COMPREL.PARENT # ="XYZ" .

o

18

Example b)
Find the names and locations of subsidiaries of companies located in the ACT where
the subsidiary’s budget is greater than 34 of the parent’s budget,

RANGE OF SUB,PARENT IS COMP.

OUTPUT SUB.CNAME, SUB.CLOC WHERE
PARENT.CLOC EQ "ACT" AND

SUB.BUDGET GT 0.75 * PARENT.BUDGET AND
COMPREL.PARENT# = PARENT.C# AND
COMPREL.SUB# = SUB.C# .

This process can be continued for as many levels as needed, however it does
illustrate a deficiency of ALF as currently implemented. The number of levels is
always fixed in the query, that is, there is no transitive closure operation as described
in (Zloof 1976). This means that there is no mechanism for issuing a query such as
"Find all the subsidiaries of company XYZ, and all their subsidiaries, and so on..."

4.1.10 Existential Quantification

Output companies which have at least one department located in the ACT. ' &

OUTPUT COMP.C# WHERE
EXISTS(DEPT.D# WHERE DEPT.DLOC="ACT" AND
DEPT.C#=COMP.C#) IS TRUE.

4.1.11 Universal Quantification

Output companies, all of whose departments are in the ACT.

OUTPUT COMP.C# WHERE *
ALL(MMEPT.D# WHERE DEPT.C#=COMP.C# IMPLIES
DEPT.DLOC="ACT") IS TRUE.

For all department tuples in the DEPT relation, if the department belongs to
the company being tested, it must be in the ACT. If it does not, the implication is
trivially satisfied, as the antecedent is false.

The EXISTS and ALL functions are really predicates over one or more
relations, rather than functions over attributes selected from relations. Only th.e
variables in the targetlist are significant, not the attributes. EXISTS is true if there is
a combination of the targetlist variables which satisfies the qualification. ALL is true
if the qualification is satisfied for all possible targetlist variable combinations.

Rl i -

5.0 Formal Specification of ALF

The ALF language as currently implemented was designed to assist in the
development of the algorithms which translate it into operations on a CODASYL
database. As it stands it contains a statement for retrieval only. To be a generally
useful stand alone language it would have to be augmented with update commands,
with extra options on the retrieval command (for example, to perform report
generation and sorting) and with an interactive capability. The introduction of any of
these would not invalidate the translation algorithms which are the subject of this

paper.

Nor would these algorithms be invalidated by the choice of a different input
language; although ALF is based on the relational calculus, it would be possible for a
language based on relational algebra or a language such as Query by Example to serve
as an input to this transiation process.

5.1 ALF Syntax

ALF is parsed by recursive descent. The grammar is shown in the following set
of syntax diagrams. There is one diagram for each nonterminal symbol in the
grammar. The name of each nonterminal symbol appears on the top left of each
syntax diagram, and legal constructs in the language are constructed by following the
flow lines in the diagram from left to right. The flow lines may loop back to indicate
repetition; this is indicated by appropriately pointing arrows. Terminal or nonterminal
symbols may appear in the diagram.

An ALF retrieval statement consists of one of the commands OUTPUT or
PRINT followed by a query, which consists of a targetlist followed by a query, which
in turn consists of a targetlist followed by a qualification clause. Using the previously
described conventions, the syntax of the first part of retrieval statement is illustrated
in the following way

retrieval statement
=S OUTPUT =+

—_—— +———
t= PRINT —=+

The full syntax follows

e

statement

+--—- range statement —-—-—-+
_____ + +_-.._.._...._
+-—- retrieval statement ——+

range statement
—— RANGE -- OF —- variable 1list - 1S -
retrieval statement

EEOUTRUR S=—-+

-t F=—=SWRaUERY T
+— PRINT ——+

query
—targetlist—-qualification clause
targetlist
o , —————— +
|
A%
—————————— expression: —~=rsrrasnT s

qualification clause

—————— WHERE i——+— boolex S+

SRR R R = +
|
\
—————————— QisJuneL 45Tt —=
disjunct
+—— NOT --+
| I
'T ————————— +-——— AND --———- +
v |
———————— coRjuIct ot
conjunct
Wi | bapilex '] iee— +

relation 1ist

——=——. expression expression —--

expression

aprimary

item

+—— arith-function - (-arglist-) ———+

subquery

numeric constant
logical constant
string constant

-— expression ——-—

T

22
subquery
~== gggregate-function - (-y QuUery —=) ~—=
agregate-function
—————— AVG —————————————
+- MAX -+
+- MIN -+
+- MEAN -+
+- TOTAL -+
+= RANGE: =%
4. IS =
+- SSQ -+
+—EX1STS——+
+- ALL -+
F= BN =+
=S ok
i e SD -+
item
—-relation variable . attribute name -
arglist
- , —————— +
I
\%
————————— expression —————g——————

Informally, the target list consists of expressions built up from items, which are
dotted pairs consisting of a relation variable and an attribute name. The relation
variable must either be a relation name or must have been previously declared in a
RANGE statement. The relation referred to by a particular relation variable is called
the range of that variable. Each relation variable may be thought of as taking a tuple
from it’s relation as it’s value. The attribute name must be an attribute name in the
relation referred to by the relation variable. The item pair selects the attribute value
from the relation tuple which is the current variable value.

The qualification consists of a logical expression built up by using the logical
operators AND, OR, AND NOT and IMPLIES. The precedence implied by the
syntax diagrams may be altered by use of brackets in the usual way.

Terms consist of expressions connected by relational operators. Terms of the
form R1.D1 relational operator R2.D2 are called join terms; and those join terms
where the relational operator is EQ play a special role in that they are (usually) used
to connect one relation with another, and may allow one of the relations to be
accessed from the other using a CODASYL set.

i ST M e . s b M

23

Expressions are composed of items of the form relation variable . attribute
name, linked in the usual way using arithmetic operators and arithmetic functions.
The variable in an item is said to qualify the attribute. The value of an item is the
value of the named attribute in the relation tuple which is the current value of the
variable.

Each term may be thdughtof as a function of the relation variables in it, taking

the values true or false.
‘&.

5.2 Evaluation

The evaluation of an ALF command may be visualised in a number of ways.
The following way, taken from (Codd 1972b) but omitting the steps concerned with
universal and existential quantification, will be used in this paper.

1) Take the cartesian product of the ranges of all the relational variables
which occur in the query. If two or more variables range over the same
relation, then that relation will occur in a cartesian product with itself
in the final product. The cartesian product, sometimes called full
quadratic join, is as defined in (Codd 1972b).

2) Reject those tuples in the cartesian product for whick the
qualification is false. If the qualification contained subqueries it v.ould
be necessary to invoke this evaluation process recursively to evaluate the
query contained in the subquery, and hence to evaluate the qualification.

3) Project the result of 2) onto those items which occur in the target
list. This projection does not eliminate duplicate tuples, but removes

those items not specified in the target list.

4) Compute any expressions in the target list for each remaining tuple.

5.3 Aggregate Functions

In general, a command may contain Aggregate Functions, which operate over
the tuples retrieved by the associated query. Duplicate tuples are not removed before
evaluation of the aggregate function, unlike some other relational languages.

The Aggregate Functions currently included in ALF are given below.
Additional functions, including user-defined functions, could be added without
difficulty.

24

1) MEAN, AVG : ‘
Compute the mean of the values of the targetlist expression.

2) MAX, MIN
Compute the maximum or minimum of the values of the expression in
the targetlist.

3) RANGE
Compute the difference between the maximum and minimum values for
the expression in the targetlist.

4) TOTAL, COUNT
Compute the total number of tuples returned as a result of the following

query.

(R SR

5) SUM
Compute the sum of the values of the targetlist expression.

i N

6) SSQ
Compute the sum of the squares of values of the targetlist expression.

7) SD
Compute the standard deviation of the values of the targetlist
expression.

8) EXISTS

This function returns the boolean constant TRUE if there are any tuples
satisfying the qualification of the query governed by the EXISTS
function. If no tuples satisfy the qualification, FALSE is returned.

9) ALL |
The ALL function has a single argument. Let the argument be the item 4
RV.DI, and let the range of RV be R. The function returns TRUE if all '
the tuples in the R relation satisfy the qualification, otherwise it returns

FALSE. For example, the following would be TRUE if all employees in

the database were under 50 years old.

ALL(EMP.E# WHERE EMP.AGE LT 50)

5.4 Nesting of queries

B e ot

The qualification of the subquery may itself contain other subqueries, and so
on, although more than two levels would be unusual. This leads to a hierarchy of
queries in a statement, which may be represented graphically as in Figure 5.1.

el 2R,

G

§

This graph is called the Q-graph for the ALF statement. The query at the
topmost level of the Q graph is called the root query of the command. Each other Q,
. represents a query in a subquery, that is, a query operated on by an aggregate
function.

Variables which occur in a query may also occur in subordinate queries, that is
queries further towards the leaves of the Q-graph. These variables are called global
variables in the subordinate query, and, as assigning values to those global variables
assigns a value to the subquery, the subquery may be thought of as a function of the
global variables.

Variables occurring in a query which are not propagated from a higher query
in the Q-graph are said to be -/ocal to the subquery. Thus example 4.1.7 contains a
query QI and a subquery Q2, and has the structure

OUTPUT QI

where Q1 is D1.D# WHERE D1.BUDGET GT SQ2(D1.C#)
and in which SQ2 has the structure AVG(Q2)

and where Q2 has the structure

D2.BUDGET WHERE D2.C# EQ DI1.C#

D1 is global to Q2 and local to Q1, and D2 is local to Q2.

The subquery may also be thought of as a function of those items occurring in
the targetlist or qualification which have any of the global variables of the subquery as
the relation variable.

A variable may only be local to a single query. It would be possible to
introduce an Algol-like name scoping rule so that the same name used in queries at
the same level in the Q-graph would refer to a different variable. This is not done in
ALF. If a name is used in this way, a gcncratcd name is used instead, and an

informative diagnostic issued.

6.0 The Mapping Between the Relational and Network Data Models

The first step in defining this mapping is to set up a correspondence between a
relational and a network schema which may be used to derive an equivalent network
schema from a relational schema, and vice versa. Such a correspondence is suggested
in (Olle 1975). A starting point is to set up the following fairly obvious
correspondence between CODASYL Records and Relations, and CODASYL Data
Items and Relation Attributes.

Network Term Relational Term

Record Type Relation name
Record Instance tuple of relation
Data item in record Attribute in relation

Before defining the correspondence, note that the word coset is used
throughout the rest of this paper to mean set in the CODASYL sense, following
(Nijssen 1975).

A relational schema may be derived from a network schema by applying the
following two steps.

1) Starting at the top of each hierarchy (at each record which is not a
member of a non SYSTEM owned coset), propagate the primary key of
each record down through the coset making it a data item of the
member record of the coset. If data items propagated in this way are
actually stored in the member record, the coset is said to be non
information bearing (Metaxides 1975). If the data items are not stored
in the record, but are implicitly defined by the coset, the coset is said to
be information bearing, and the data items are called virtual data items.
This propagation may be continued down a hierarchy of cosets if
necessary, virtual attributes being used as source attributes. This is done
for each: hierarchical path in the network schema.

2) Define a relation corresponding to each record type, and define
attributes of the relation corresponding to the data items of the record.
Virtual data items in the network schema become attributes in the
relational schema. They are called virtual attributes. The user at the
relational level need not be aware that the virtual attributes are not
actually stored in the database .

<a &

28

In this paper, all cosets are information bearing. If a coset i§ non information
bearing in the original network schema, that is, data items exist in the owner and
member records whose equality defines the coset occurrence in the schema, then those
data items must become virtual items in the member record.

The correspondence between a coset in a network schema and the equality
between a primary key and a foreign key in a rclational schema is the lynchpin of the
whole translation process used in ALF.

The reverse transformation from a relational schema to a network schema may
be carried out by identifying foreign keys in rclations and defining a coset between
that record as member, and the rccord containing the forcign key as its primary key
as owner. Foreign key names need not be the same as the names of the corresponding
primary keys, although, conventionally, they often are. Foreign keys must be chosen
with the semantics of the underlying data in mind.

Comp R o1 T

SN LWL ATETN TG "*‘r;}

b o o e il

C;F b

J
1

25 i Ao

2
1]
L R TSNP A .

"z

Dept |S1 Y $S2
7 N7 7 Project

rea e Xr:;:::;r:j ”"\'I"‘.&W,S&“: sy cossct iy
{{C#) D 1 ; é P.oj #t i
im“'“rxm TR ﬁ::ﬁ,mm

]
s2 s3 1

EMP (7 ProjDept

T L T TR DL o ARSI AN D8

{ (CH# D-rr)E-r~ H {(C#D"LPIOJ.,,-)

| i P i

3

]
Cr—tan w-—muu«,.“—“‘.‘—,- iw - ‘j
“01'.) A o ST B
LV R AR S TR

WAl LA A e L e

Each chosen foreign key becomes a virtual data item in the member record of
the derived coset.

A graphical notation introduced in (Bachman 1969) is often used to represent
the coset interconnections in a network schema. This notation, called a Bachman

Diagram, is called the C-graph of the network schema in this paper. The C-graph for
the database used in the Examples i Section 4 is given in Figure 6.1, given that (hose
data items with the same names as primary keys of other records were chosen as the
forcign keys.

The network entity which corresponds most closely to the relational variable in
ALF is a variable which takes a database key as its value. A database key does in fact
identify a network record occurrence, corresponding to a relation tuple, at least inside

a single run-unit. The database key variable must be constrained to refer to one type
of record only.

Thus, three extra correspondences are added to the table given earlier in this

section

Network Term Relational Term

Primary key - foreign key
correspondence
Database key Relation variable.
variable
virtual data item Foreign key or
\g(irtual attribute

«s F

In the following sections the terms that have been defined as being in
correspondence will be used somewhat interchangeably; the meaning will be obvious
from the context. :

7.0 Transforming the ALF Statement

7.1 Overview of Section 7

The following section will describe the translation algorithms and demonstrate
their validity. First the model for query evaluation in ALF initially given in Section
5.2 will be specified. Secondly a model for network databases using an equivalent
structure called a D-graph will be described. Thirdly a graphical pattern, called a
V-graph, after a similar structure defined in (Palermo 1974), will be derived from each
query, and matching this pattern against the database D-graph will be shown to be
equivalent to the original model for query evaluation. Fourthly, transformations will
be defined on the V-graph, and it will be shown that each transformation produces a
V-graph equivalent to the previous one in the sense that the set of answer tuples
produced by matching it against the D-graph is unchanged by the transformation.
Lastly it will be shown that the pattern matching process corresponds to CODASYL
network traversing algorithms.

The translation algorithm may be divided into the following steps:
1) Input and preprocess the ALF statement.

2) Remove virtual attributes from each query.

3) Coalesce equivalent V-graph ﬁodes.

4) Amalgamate equivalent queries.

5) Process each V-graph, starting at the V-graph corresponding to the
root query of the Q-graph.

6) Optimise the generated code.

7) Either interpret the optimised code, or use it to generate statements
in the required target language.

In step 1, the ALF statement is parsed and put into an internal form. Before
the main part of the statement translation, two preprocessing steps are done.

The first of these converts each occurrence of the aggregate function ALL into
an occurrence of the EXISTS function. This is done by applying the identity

ALL X WHERE B(X,.) <=> NOT EXISTS X WHERE NOT BiX;,:',)

32

to each subquery acted on by an ALL function.

The second preprocessing step removes references to virtual relations, or views.
(See Section 9.4)

Step 5, processing the query, is carried out for each subquery as well. This step
may be divided as follows:

5a) Find a starting node in the V-graph and an initial access method.
5b) Determine node accessing order and access methods for each node.

5¢) Generate intermediate code for the query (This step will involve the
processing of subqueries)

If the V-graph is disconnected, steps 5a and 5b will be repeated for each
disconnected subgraph.

7.2 Query Evaluation Model

As described in Section 5, a query in ALF is an object of the form
targetlist WHERE qualification

Evaluation of a query is a process which produces a set of targetlist tuples. If
the query is part of a subquery, then these tuples will be operated on by a aggregate
function to produce a scalar value, and if it is part of a command, they will be
operated on by the command to produce some sort of output.

As described in Section 5, an ALF query may be thought of as being evaluated
by a four stage process.

1) If LV,, ... ,LV, are the local variables in a query, and R, ... ,R_ are
their respective ranges, take the cartesian product of the relations R, ...
R,. If there are global variables GV,,GV, in the same query, then
each time the query is executed, each global variable will have as value
a tuple from a relation in a higher level query. These tuples TGV, ...
TGV, are concatenated to each tuple of the cartesian product.

Thus, the cartesian product has the following form:

33

As the cartesian product contains every possible combination of tuples
from its component local variable relations, the cardinality of the
cartesian product will be the product of the cardinalities of each local
variable relation. Materialising such a huge relation is out of the
question, for efficiency reasons.

2) The query qualification is evaluated using attribute values from each
tuple in the cartesian product. As the qualification is a boolean
expression of terms containing items of the form variable.attribute, each
column in the cartesian product must be labelled implicitly with the
attribute name and the relation variable from which it was derived. All
tuples for which the qualification is false are rejected, and all for which
the qualificiation is true are retained.

3) The remaining tuples are projected onto those items which occur in
the query targetlist, that is, items not participating in the targetlist are
ignored.

4) The targetlist expressions are computed from the items in the tuples
that remain.

5) If the query occurs as part of a subquery, the aggregate function of
the subquery is applied to the resulting tuples, and if the query occurs
as part of a retrieval statement, the statement command is applied to
the resulting tuples.

There are several noteworthy features of this algorithm.

The first is that the process contained no operation occuring between tuples of
the cartesian product, and so if each tuple of the cartesian product could be
materialised one at a time, the qualification could be evaluated and that tuple accepted
or rejected before materialising the next tuple.

The second is that if the cartesian product tuples could be produced
incrementally in the sense that only one extra relation was multiplied into the
cartesian product at once, and if the qualification could be factored into conjuncts of
the form Q = factor AND residue, where factor contained items from those parts of
the tuple already materialised, then further relations need only be multipled into the
cartesian product if the part so far materialised satisfied the boolean expression factor.

The most obvious case of this is where tuples from a single relation would not
enter the cartesian product if they did not satisfy a conjunct in the qualification
referring only to a relation variable with that relation as range.

oo Y

34

7.3 D-graph

The underlying network database corresponds structurally to a graph in which
record instances are represented as nodes, and the fact that record instance RM is a
member of the coset SI whose owner record instance is the record RO is represented
by an arc, labelled with the coset name, pointing from RO to RM. As each coset
instance is an instance of an owner record, associated with a set (in the set theoretic,
rather than CODASYL sense) of member records, each coset occurrence corresponds
structurally to a graph in the form shown in Figure 7.1. .

Fig. 7.1 A coset Instance

The coset members may be considered as being ordered from left to right. This
ordering may be arbitrary, or may correspond to the ordering defined in the
CODASYL schema specification. The whole database viewed in this way will be
called the D-graph of the database. This D-graph structure in no way implies any
particular physical implementation.

Operations on this graph corresponding to CODASYL DML operations may
be readily defined assuming a coset ordering in the D-graph; in particular finding the
first record in a coset occurrence is equivalent to finding the leftmost member node in
the coset occurrence in the D-graph, finding the next record in a set occurrence is
equivalent to moving from the current member to the one on its right in the D-graph,
and finding the owner is equivalent to following the arrow representing the coset
backwards from a member to the owner in the D-graph.

e e e e

3
&l
1

P P

R

¢ TP Ty

-

=,

35

7.4 Pattern Matching

Pattern Matching is a process which arises in a wide variety of situations
throughout computing. Problems in syntax analysis, text processing, higher level
language control structures, and picture processing can all be formulated using the
pattern matching paradigm. There are numerous discussions of different aspects of the
pattern matching process in the literature, for example Vol I of (Aho 1972), Chapter 8
of (Waite 1973), (Sussman 1970), (Gimpel 1973), (Griswold 1968), (Miller 1968),
(Bobrow 1974), (Hewitt 1972) and (Rulifson 1972). A general formulation is to regard
it as a process with the following properties:

1) There is a structure of some sort called the pattern, containing
constant parts and nonconstant parts, or unbound variables.

2) There is a structure of a similar sort containing constant parts only.
This will be called the subject of the pattern matching process.

3) Values must be assigned to the unbound variables of the pattern so as
to make it equivalent in some way to a part of the subject. In the case
where there are no variables in the pattern, the pattern must itself be
equivalent to part of the subject (for example searching for a substring
in a longer string of text in a text editor). Egquivalence in pattern
matching may be more than simple equality; in addition to some
structural equivalence between the pattern and the subject part, there
may be some other condition which must also be satisfied for the match
to succeed. This other condition may be specified procedurally, or as a
formula in a logical calculus.

In a practical implementation of a pattern matching algorithm, the pattern is
not matched with the subject in one hit, but is matched incrementally. A fragment of
the pattern is selected and a fragment of the subject matching that fragment is found.
A pattern cursor is moved onto a further fragment of the pattern, a corresponding
data cursor moved onto the next appropriate fragment of the subject, and that
fragment tested against the fragment of the subject. If these fragments matched, then
the process continues until the pattern had been completely used. If these fragments
did not match, the match would fail and fall back to the previous stage, where the
pattern fragment would be tried against a further fragment of the subject. For
example, in matching a short text string against a longer subject string in the most
obvious (although not the most efficient) way, the first character of the pattern is
tested against successive characters of the subject string until equality is found. Then
the next character of the pattern is tested against the next character of the subject. If
it is equal, the process continues, if not, then another attempt is made to match the
first character. }

This process could be compiled into a procedure consisting of a set of nested
loops, in which each loop was responsible for all the matchings of a single unbound
pattern variable. The outermost loop would generate all the matches for the initially

36

selected pattern variable; the next loop in the nest would generate all matches for its
pattern variable given the constraints imposed by the binding of the initially selected
variable; the next loop would generate all matches for its pattern variable given the
bindings for the variables in the outer loops, and so on. The complete matching would
be obtained inside the innermost loop. The loops would have the following structure :

WHILE furthur bindings for V; are available DO
assign a furthur binding for V,

IF binding for V, is OK THEN

WHILE furthur bindings for V, are available DO
assign a furthur binding for V,

IF binding for V, is OK THEN

WHILE ...

ENDWHILE
ENDIF
ENDWHILE
ENDIF
ENDWHILE

7.5 V-graph

Keeping this general pattern matching process in mind, the initial V-graph of
each query is defined as being a set of nodes labelled with the local variables of the
query. The graph at this stage contains no arcs. It will play the role of a pattern in a
pattern matching process similar to that described above, the nodes playing the role of
the unbound variables of the V-graph pattern. The cartesian product generation
involved in the model for query evaluation described in 7.2, involves generating every
combination of tuples for the local variable relations. This product could be generated
by matching the V-graph in every possible way against the database D-graph, so that
each V-graph node matches a D-graph node in the range of the variable represented
by the node. (For brevity, the terms node and variable will be used somewhat
interchangeably where no confusion arises, and the range of the variable represented
by a V-graph node will be called the range of the node).

In each match of the V-graph against the D-graph, each node variable is
instantiated with the tuple from the matched record (that is, the D-graph node), and
the query qualification evaluated. If the qualification was true, the answer tuple
represented by the match would be accepted, and either used in the computation of an
aggregate function, or output.

7.6 V-graph transformations

Matching the initial V-graph against the D-graph materialises all tuples in the
cartesian product without taking into account any' of the constraints which are implied
by join terms in the query qualification. The initial V-graph may be transformed to
take these constraints into account. The qualification will itself be transformed in the
process. The V-graph obtained by the processes described in this section will be more
suitable for the generation of network accessing programs, in that it will inhibit the
generation of cartesian product tuples which cannot appear in the result.

7.6.1 Remove Virtual Attributes

In general the qualification will contain virtual attributes, which must be
materialised before the qualification can be evaluated. They are materialised as
described in section 6, by using a coset instance and obtaining the data item
corresponding to the source attribute from the owner record instance of the coset.

When the source attribute is itself virtual, this process must be repeated. This
process may continue up a hierarchy until an actual source attribute is reached.

This materialisation, which corresponds to step 2 in the translation process, is
made explicit in the V-graph by repeating the following procedure uniil no more
virtual attributes occur in the query.

For each query, the following process is performed.

For each virtual attribute in the form R.DV where R is local in the current
query, and R.DV is either present in the targetlist or the qualification or is an
argument of a lower order query, create a new node in the V-graph of the current
query. This node will be labelled with a new relation variable, say NEWYV, whose
range is the relation containing the source attribute for the virtual attribute R.DV. An
arc, labelled with the coset used to materialise the virtual data item, is created and
points from node NEWYV to node R. All occurrences of the virtual item R.DV in the
qualification and targetlist of the query, and in subqueries containing R.DV as an
argument should be changed to NEWV.DS, where DS is the source attribute.

As a simple example, assume a schema as shown in Figure 7.2. In this schema,
relation EMP contains a virtual attribute D#, which is materialised from the DEPT
relation using the coset ESET.

Fig. 7.2 Network Schema

A trivial ALF query using this schema follows:

OUTPUT EMP.NAME, EMP.ADDRESS
WHERE EMP.D# EQ "ABC".

The initial V-graph would consist of the single node EMP (Figure 7.3)

Fig. 7.3 Initial V-graph

The only virtual item in the query is EMP.D# as D# is a virtual attribute of

EMP. After removal of this virtual item, the query graph would have the form shown
in Figure 7.4.

Fig. 7.4 V-graph after virtual item removal

The transformed query would look like this

OUTPUT EMP.NAME,EMP.ADDRESS WHERE NEWV.D# EQ
"ABC",

Thus the V-graph represents the coset connections to be used in making all the
virtual attributes explicit. -

Another more complicated example may help make this process clearer.
Using the same schema, consider the statements
RANGE OF EMP1 IS EMP.
OUTPUT EMP.NAME, EMP.ADDRESS WHERE
EMP.SAL GT AVG (EMP1.SAL WHERE EMP1.D# EQ EMP.D #).

that is, Give names and addresses for all employees who earn more than the average
salary for their department.

The Q-graph for this retrieval statement has two nodes (Figure 7.5)

Fig. 7.5 Q-graph for sample query

40

QI is the main query and Q2 is the query acted upon by the aggregate function
AVG, As the arguments of a subquery are those items used in the subquery which are
qualified by global variables, the (single) argument of Q2 is EMP.D#. In this case
EMP is the only global variable in Q2.

The initial V-graph for Q1 is as shown in Figure 7.6.

Fig. 7.6 Initial V-graph for Q1 °

This is transformed into the structure shown in Figure 7.7 when the virtual
data item EMP.D# is removed.

Fig. 7.7 After removal of EMP. D %
At this stage, the ALF command has been transformed in the following way.

OUTPUT EMP.NAME, EMP.ADDRESS WHERE
EMP.SAL GT AVG(EMP1.SAL WHERE EMP1.D# EQ NV1.D#).

41

The actual item NVLD:: has been substituted in the statement for each
oceurrence of the virtual item EMP.Dzz, and the initial V-graph has been augmented
to show this constraint. Implicitly, the range command

RANGE OF NV1 IS DEPT.,
has been issued.

This virtual attribute removal algorithm is performed on each query in the
Q-graph, starting at the root node of the Q-graph and being applied in a recursive
fashion to the other queries in the Q-graph. The result of applying it to Q2 is shown
in Figure 7.8.

' Fig.> 7.8 Remove EMPI. D# in Q2

The query at this stage is

OUTPUT EMP.NAME, EMP.ADDRESS WHERE EMP.SAL GT
AVG(EMPLSAL WHERE NV2.D# EQ NV1.D#).

The source attribute introduced during this removal process may itself be a
virtual attribute. If it is, the process is repeated until the final source attribure is
non-virtual, that is, actually stored in the relation. In the example of 4.1.3, removal of
references to EMP.C# would involve two levels in the hierarchy.

Each query has now been split into two parts; one part consisting of the
original query with actual attributes substituted for the original virtual attributes, and
the other part consisting of a graphical representation of the access paths used for
obtaining these actual data items. In queries where each relation is represented by at
most one relation variable, the V-graph will be topologically a subset of the C-graph
(that is, Bachman Diagram) for the schema, but in queries where a relation is ranged
over by more than one variable, such as the parts explosion example, this will not be
the case.

The V-graph with virtual items removed may be thought of as a pattern, with
the labelled arcs, representing coscts, being constant, and may be matched against the
D-graph in a similar way to the initial V-graph. V-graph nodes in the pattern must be
matched with D-graph nodes of records in their range, and in addition arcs in the
V-graph must match arc$ in the D-graph. From the definition of the way in which

virtual attributes are materialsied, it is evident that this matching will produce the
same sct of tuples as produced by the original matching followed by materialisation of
virtual attributes.

7.6.2 Coalesce equivalent nodes

A further set of transformations may be applied to the V-graph. For each
matching of the V-graph with the D-graph, it may be shown that certain pairs of
nodes in the V-graph will always match the same node in the D-graph. These pairs of
equivalent nodes may be coalesced, thus simplifying the V-graph. This procedure
corresponds to step 3 of 7.1. The following two steps (*.1 and *.2) are performed until
no more nodes may be coalesced:

*.1 Select a pair of equivalent nodes to be coalesced from the local
variable nodes of the query. Let them be RI and RJ. RI and RJ are
equivalent if :

*.1.1 They both range over the same relation, say R,
and

*.1.2 One of the following three conditions holds |
(%1271 1o . 1:2.3):

*.1.2.1 For some candidate key of R, say D,,...,.D,, and
a logical expression of the form

RLD, = RI.D,

AND RI.D, = RJ.D,

AND RLD, = RI.D,

can be factored out of the query qualification. That is,
+he qualification specifies that the candidate key be
equal in the tuples matched by RI and RJ.

*.1.2.2 The structure shown in Figure 7.9(a) occurs in
the the V-graph.

*.1.2.3 The structure shown in Figure 7.9(b) occurs in
the V-graph, and the qualification specifies that for
some candidate key of the relation ranged over by RI,
the attributes cf the candidate key not virtually
materialised using coset S1 are equal in RI and RJ.
Equality means that the same factorisation done in
*.1.2.1 can be done here.

Fig. 7.9 ¢

In the case *.1.2.1, for each matching of the V-graph, RI and RJ will
always match the same record in the D-graph, as the candidate key
uniquely identifies the tuple (record) and it is specified as being equal
for RI and RJ.)

In case *.1.2.2, matching this substructure of the query graph against
" the D-graph would involve matching RK with some D-graph node. The
node matching RK would be an instance of a member record of coset
S1. Nodes RI and RJ would then necessarily both match the owner
instance of that instance of S1, as a coset instance has only one owner
record.

Case *.1.2.3 is really a special case of *.1.2.1, in which equality of
candidate keys occurs. Equality of the components of the candidate keys
virtually materialised through S1 occurs because RI and RJ both obtain

Ml b

5

25

t

. -l ‘a

those attributes from the tuple matched by RK, the owner of §1, %‘

Condition *.1.2.3 specifies equality on the remainder of the candidate !

key attributes. ' .'

S *.2 Coalesce the nodes H

Pick one of the nodes. The other will be coalesced with it, then deleted.
It does not matter which one is picked, however, the algorithm used in
ALF is to take the node corresponding to a user-defined variable if one
is user-defined and the other was introduced in the removal of virtual
data items, and to take the node with the alphabetically lowest name
otherwise. The nodes are coalesced by overlaying them and removing ,
repeated arcs which come from the same node. This is illustrated in
Figure 7.10.

Sl

33
St
S1 o
| S3 S1
Coalesced with gives
S2
sS4 S2

Fig. 7.10

If node RJ is coalesced with RI, delete the node RJ and all arcs
entering or leaving it.

As the last step in coalescing two nodes (*.2), substitute RI for all occurrences
of RJ in the query being processed, and in all subqueries of that query which have RJ
as a global variable.

RI will then be a global variable of each such subquery. So far, nodes which
have been coalesced have both been members of the same V-graph.

The value of a subquery is determined by the values of the global variables
when the subquery is evaluated. Values of these global variables are fixed during an
evaluation of the subquery. A local variable in a subquery may be equivalent to a
global variable by *.1.2.1, (equality of candidate keys). In this case, that local variable
would be fixed during the evaluation of the subquery. This leads to the following
additional process.

For cach query, repeat the process of coulineine cquivalent nodes described in
hoand %2, testing the equivalence of cach global variable node in the query with
cach of the local variable nodes in the query. If a global variable is equivalent to a
local variable node, create a copy of the global variable node and coalesce the local
node with it.

For an example of this type of node coalescing, see 7.6.2.4.

Example 7.6.2.1

Using the schema shown in Figure 4.1, the following query asks for the names
of all employees who work for company ABC. The initial V-graph is the single node
EMP.

OUTPUT EMP.NAME
WHERE EMP.C# ="ABC",

The V-graph after the removal of virtual attributes is shown in Fig 7.1L

The range of R1 is DEPT and of R2, COMP. No nodes can be coalesced in
this query.

Example 7.6.2.2 : 5

The following query, which also uses the schema of Figure 4.1, asks for)
departments of companies whose headquarters are in the ACT. '

OUTPUT DEPT.NAME WHERE
DEPT.C# = COMP.C# AND COMP.CLOC = "ACT".

' Comp

| Fig.‘7.12 Coalesce R1 and Comp (Equal Primary Keys)

The left hand graph in Figure 7.12 represents the situation after removal of the %
virtual attribute DEPT.C#. At this stage the query contains a conjunctive term
R1.CH# = COMP.C#. As the variables R1 and COMP have the same range, (the 5
COMP relation), and as these variables have equal primary keys (condition *.1.2.1)
they may be coalesced as shown on the right.

Example 7.6.2.3

Output the names of employees of the Sales Department of Company ABC.

OUTPUT EMP.NAME i
WHERE EMP.C# = "ABC" AND EMP.D# = "SALES". ‘

The virtual items are EMP.C# and EMP.D#. After removal of these, the
situation on the left of Figure 7.13 exists.

| Fig. 7.13 Coalesce R1 and R2

R1 and R2 are coalesced as condition *.1.2.2 is satisfied.

Example 7.6.2.4

This ALF statement asks for departments whose budget is greater than the
average budget for departments in the same company.

RANGE OF DEPT1 IS DEPT.

OUTPUT DEPT.C#, DEPT.D# WHERE
DEPT.BUDGET GT AVG(DEPT1.BUDGET WHERE
DEPT.C# =DEPT1.C#). -

Fig 7.14 shows the V-graph for the root query after removal of the virtual data
item DEPT.C# (which occurs inside the subquery).

Figure 7.15 (left side) shows the V-graph for Q2, the query acted on by the aggregate
function AVG.

ye)
-

Fig. 7.15

In this case, R2 in the V-graph for Q2 is coalesced with a copy of R1 which is
inherited from the higher level query Q1. This is shown on the right of 7.15.

e 7.6.2.5
OUTPUT EMP.NANE, DEPT.NAME
WHERE DEPL.D3# = EMP.D# AND DEPT.DLOC — "ACT",

This query is somewhat deceptive at first sight. It asks for employee and
department names, for departments in the ACT, and employees in departments with
the same number as those (ACT) departments. However the whole primary key of the
department relation is not defined, so this statement does not imply that the retrieved
employees shall belong to departments in the ACT, but only that the number of their
department is the same as the number of a possibly different department which
happens to be in the ACT. The department that the retrieved employees do belong to
need not be in the ACT, and need not be in the same company as the department
whose name is retrieved.

The initial V-graph consists of the two nodes EMP and DEPT. The virtual

attribute EMP.D# is removed by introducing an additional node NVI, as in FIG
7.16.

Fig. 7.16

After removal of the virtual attributes, the command has the form

OUTPUT EMP.NAME,DEPT.NAME WHERE DEPT.D# =
NV1.D# AND DEPT.DLOC = "ACT",

This does not allow nodes DEPT and NV1 to be coalesced, as equality has not
been specified on the whole of the primary key of the DEPT relation. The query, as it
stands, will be processed correctly.

O |

7.7 Use of V-graph

Sections 7.4 and 7.5 described a general pattern matching model, and
introduced the idea that the V-graph should be used as a pattern and matched against
the database, thought of as a D-graph. A procedure, analogous to the one in 7.4,
containing code to navigate over a network database using DML commands, is
generated by the ALF translator.

A node in the V-graph is selected as a start node. This node is matched with a
D-graph node in its range. Then an arc to or from that V-graph node is matched with
a corresponding D-graph arc, and the cursor of the matching process passes to the
node on the end of that pattern arc. The subpattern following that arc must be
matched against the D-graph before the matching control returns to the originally
matched node to match the parts of the pattern starting with the other arcs coming
from that node. After all parts of a pattern or subpattern have been matched, the
process fails back to the last decision point to take the next alternative, thus finding
all matches. For any V-graph, a procedure implementing this process may be
generated. This procedure corresponds to a CODASYL network traversal procedure.

The procedure is generated by traversing the V-graph, and generating code to
access a particular record type when a node corresponding to that record type is
visited. If the node was reached using an arc, representing a coset, then that coset is
used to access the record.

The pattern matching process corresponding to traversing a V-graph arc
against the direction of the arrow (from member to owner record type) corresponds to
a FIND OWNER RECORD OF cosetname SET, in CODASYL DML. The process
corresponding to traversing an arc in the direction of a coset arrow (from owner to
member) corresponds to the FIND FIRST and FIND NEXT RECORD IN
cosetname SET commands in CODASYL DML.

7.8 Amalgamation of Equivalent Queries

In ALF commands containing two or more aggregate functions, it may be
possible to compute more than one of the aggregates with a single pass through the
relevant records. This is in fact the case in the example in 4.1.8. ALF detects such
cases where two or more queries are structurally similar. Two queries may be
amalgamated to be evaluated together if they satisfy the following two conditions.

1) The V-graphs must be able to be unified.

Unification can be thought of as two-sided pattern matching, in which
there are two pattern data structures, each containing unbound
variables. Values must be assigned to the unbound variables so that the
two patterns are equal. In the case of two V-graphs the role of unbound
variables is played by local variable nodes in each graph. The two
graphs are unifiable if the nodes in each graph may be paired in such a

way that the nodes in each pair are equivalent with respect to
unification. Two nodes are equivalent with respect to unification if
either they both represent the same global variable, in which case they
must be paired in the unification, or they have the same range, identical
sets of inpointing and outpointing arcs, and equivalent nodes at the ends
of the arcs.

Informally, the two graphs are unifiable if one may be laid completely
across the top of the other so that the arcs and global variable nodes of
one are matched by global variable nodes of the other, the remainder of
nodes put into correspondence have the same ranges, and all arcs in
each graph match in name and direction.

2) The qualifications of the queries associated with each V-graph must
be equivalent (that is, identical up to associativity), after the nodes in
the first have been substituted for the equivalent nodes in the second.

As one example of this process, let us modify the statement of 4.1.8 as follows
- "Find companies who have a department in the ACT with a budget of less than
30000 or who have a department in the ACT with a budget greater than 10000000."
(This statement could be expressed more efficiently using the EXISTS function, but
this is not the issue here).

RANGE OF D,D1,D2 IS DEPT.

OUTPUT D.C# WHERE

MAX(D1.BUDGET WHERE D1.DLOC = "ACT" AND D1.C# =
D.C#) GT 10000000 AND

MIN(D2.BUDGET WHERE D2.DLOC = "ACT" AND D2.C# =
D.C#) LT 30000.

Say the whole query is QI, the query operated on by the aggregate MAX is
Q2, and the query operated on by the aggregate MIN is Q3. The final state of each of
the graphs after virtual attribute removal and coalescing equivalent nodes is shown in
Figure 7.17. '

R1, R2 and R3 have COMP as range
Queries Q1, Q2 and Q3 have the following form at this stage:

Q1: R1.CH# WHERE MAX(Q2(R1.C#) GT 10000000 AND
MIN(Q3(R1.C#)) LT 30000.

Q2: D1.BUDGET WHERE D1.DLOC="ACT" AND R2.C#=R1.C#
Q3: D2.BUDGET WHERE D2.DLOC="ACT" AND R3.C#=R1.C#

Each of the three V-graphs can be unified with any other, however the
qualification of Q1 is not equivalent to either of the other two qualifications after
substitution of equivalent nodes. In Q2 and Q3, equivalent node pairs are (R2,R3) and
(D1,D2). Equivalent expressions are obtained when R2 and D1 from query Q2 are
substituted for R3 and D2 in query Q3. Thus the graphs for Q2 and Q3 may be

unified, and the aggregates which operate on Q2 and Q3, MAX and MIN, may be
evaluated together.

What this condition really says is that a sufficient condition for two ‘aggregate
functions to be evaluated together is that the same path through the network is
traversed by both, and that exactly the same set of tuples is retrieved by both. that the
same path is traversed is implied by the identical structure of the V-graphs, and that

33

the same set of tuples would be retrieved while traversing each path is implied by the
equivalence of the two qualifications. In fact both these conditions are far too harsh.
Provided that a reasonable amount of the path through the CODASYL network is
common to both queries, it should be possible to process that part of them together.
Also even if the tuples retrieved by both queries, as determined by their respective
qualifications, are not the same it still should be possible to process them together.
This sort of optimisation has not been pursued in the current ALF system.

An additional sort of optimisation which has not been pursued in the current
ALF system is to take into consideration the wider context in which an aggregate
function occurs, so that a complete iteration through all the tuples in the targetlist of
the subquery might be avoided.

As an example, take the case where SUM(...) GT 10000 occurs conjunctively in
a qualification. The computation of the query operated on by SUM could be
terminated as soon as the sum became greater than 10000 by moving the test inside
the subquery computation. COUNT, MAX and MIN are other candidates for this
treatment, although AVG and SD must necessaily process all the tuples.

A subquery containing the aggregate function EXISTS must not be coalesced
with any other subquery. This is because the EXISTS function ceases iteration as soon
as one tuple is found. (See Section 7.1)

8.0 Code Generation

This section describes the generation of intermediate code from the transformed
V-graph, targetlist and qualification, and the use to which the intermediate code is
put. The intermediate code is described in Appendix B.

In the following sections, some knowledge of the CODASYL specifications as
described in (Codasyl 1971) will be assumed. In particular the various forms of the
Data Manipulation Language (DML) FIND statement will be referred to.

8.1 Efficiency Considerations

In the Introduction it was stated that the goal of the ALF translator was to
produce programs that were efficient. I will make this more explicit now by stating
the following aims which contribute to that efficiency.

8.1.1 Whenever possible, the access paths provided by the existence of
cosets should be exploited. The generation of the V-graph, and the
transformations on it have been directed to this end.

8.1.2 In traversing these cosets, use should be made if possible of any
indexes or search keys defined on the coset.

8.1.3 When appropriate, use should be made of CALC keys and
SYSTEM owned cosets.

8.1.4 Unnecessary CODASYL DML operations should be avoided. (see
8.5)

8.1.5 The targetlist tuples should be materialised incrementally, without
the use of intermediate files.

8.1.6 Tests to reject potential targetlist tuples should be performed as
early as possible, before all the targetlist values have been retrieved.
Many tuples could then be rejected with a single test.

8.1.7 Unnecessary iteration should not be performed.

8.1.7.1 For example, if the values of a candidate key of a relation are
specified (explicitly or implicity) in a query, and a tuple is found
containing these values, then the relation need not be scanned further
for an additional tuple with the same values.

56

8.1.7.2 As a further example, if a sorted coset is being traversed (sorted
in ascending order, without loss of generality), and the qualification
implicity or explicitly specifies upper limits for the sortkey attributes,
then the coset should not be traversed any further than necessary, that
is beyond a record with sortkey values greater than the specified upper
limits.

8.1.8 Terms in the qualification which involve subqueries are much
more expensive to evaluate than others, as each subquery itself involves
iteration through relations and accesses to secondary storage. In testing
the qualification, the evaluation of subqueries should if possible, be
avoided. This goal gives rise to two sorts of optimisation.

8.1.8.1 If a test occurs inside an inner loop, and the test contains one or
more subqueries, evaluation of the subqueries should be moved out of
the loop if the subquery is loop invariant. Examples 4.1.6 and 4.1.7
show cases where this is done. Thus a subquery should be evaluated as
soon as all its arguments are defined properly.

8.1.8.2 In the case where the subquery is not loop invariant,
optimisation may still be possible. For example, consider the following
ALF statement, assuming that the. schema of Figure 4.1 applies.

OUTPUT COMP.C# WHERE
COMP.CLOC EQ "ACT"

AND

AVG(DEPT.BUDGET WHERE
DEPT.C# =COMP.C#) GT 500000

The statement asks for companies in the ACT with an average
departmental budget greater than 500000. If a tuple of the COMP
relation failed test (1), that is the company was not in the ACT, then
test (2) would not need to be performed.

Similarly, if the logical operator had been OR instead of AND, the
success of test (1) would also make test (2) unncessary. The treatment of
cases such as this, together with more complex ones, is described in 8.4.

8.2 First pass

The intermediate code is produced in two passes over the V-graph. The first
pass, described here, finds an initial entry node and access method to the graph and
devises a path through the graph, working out the access methods for each coset in
the path. The second pass, described in 8.3, actually produces the code.

The V-graph may not necessarily be connected. It would consist of a number
of unconnected subgraphs if the original query contained join terms which did not

37

form part of a coset definition, either because they were not equi-joins, or because
primary keys were not fully specified in the Joins. When there is more than one
subgraph, the most suitable start node for the whole V-graph is found using 8.2.1 and
the path through that subgraph found using 8.2.2. Then a start node is chosen from
one of the other disconnected subgraphs (using 8.2.1) and 8.2.2 applied again. This
process is repeated until a path has been derived which visits every node in the
V-graph.

Before describing the first pass, several preliminary concepts must be
introduced.

If a number of terms occurring in a boolean expression are singled out, the
expression may in general be conjunctively factorised into a Jactor and a residue, that
is,

expression = factor AND residue

in such a way that the boolean expression factor contains only the terms which
were previously singled out. The boolean expression residue may also contain those
terms, as well as other terms.

The algorithm which performs this factorisation is described in (Hall 1974) and
is used in many places in the ALF translator. If the factorisation is not possible, factor
will equal the boolean constant TRUE, and residue will equal expression.

I will now define the local condition of a node. This is a function of those
V-graph nodes which are already processed (that is matched with the D-graph in the
query evaluation model). It is also a function of the qualification. Terms defined using
processed variables (nodes) only may be identified in the qualification, and the
previously mentioned factorisation process carried out, with the following results.

qualification = local condition AND residue

The boolean expression factored out of the qualification in this process is called
the local condition of the node, and must be true for the node currently being
matched to be accepted as part of the current matching.

A term of the form RI.DI = EXP, where EXP is a constant or a function of
processed nodes only, is said to define a value of RI.DI. If such a term occurs as a
conjunctive factor in a factorisation of the query qualification, then it may be possible
to use this value to improve the search efficiency.

58

8.2.1 Finding Start Node and Initial Access Method

Recall that the model for this query evaluation process is the matching of a
V-graph against the database D-graph. The first V-graph node to be matched 1s the
initial entry into the database for a particular query. This node, SN, called the suart
node of the V-graph, is chosen using the following heuristics.

1) SN should be a global node in the V-graph of the query. If there are
no global nodes in the V-graph, one of the local nodes is chosen using
the following conditions.

2) There should be no inpointing arcs to SN in the V-graph. This means
that SN is either an isolated node or is at the top of a hierarchy.

3) There should be a local condition specified for that node. For the
initial entry into the V-graph, no other nodes will have been processed,
and hence the factorisation producing the local condition will use terms
containing the prospective start node only. This heuristic merely says
that there should be some possibility of not having to scan every record
corresponding to the start node as variable.

4) One of the following conditions should occur. These all specify search
methods built into CODASYL-like systems which allow the number of
records retrieved to be reduced. These conditions are designed to exploit
primary access methods, which are usually used on the initial entry to
the database. Condition 4a) allows the exploitation of CALC keys, and
conditions 4b) to 4e) allow various properties of SYSTEM owned cosets
to be exploited.

a) The local condition defines values or ranges of values
for all the CALC keys, if the location mode of the
record is CALC.

b) If the record is in a SYSTEM owned coset, the local
condition defines values for SORTED INDEXED keys
or for SORT KEYS, if the coset is SORTED
INDEXED or SORTED.

¢) The local condition defines values for one of the sets
of SEARCH KEYS which are defined on a SYSTEM
owned coset.

d) The local condition defines equalities on any items in
a record participating in a SYSTEM owned coset. This
would enable a format 6 CODASYL FIND command
to be used to scan the coset even though no indexes

59

would be available to assist the scan.

e) The record is a member of a SYSTEM owned coset.
In this case, even though the coset would have to be
scanned record by record with a format 3 CODASYL
FIND command, use of the coset would still probably
make this faster than scanning the whole area in which
the record resides, especially if the area contained more
than one type of record.

If there are V-graph nodes satifying 1), or 2) and 3), but not satisfying 4a) -
4c), then select one of those nodes as the start node.

If there are no V-graph nodes satisfying conditions 1), 2) or 3), then all nodes
in the graph are tested against the conditions in 4).

If all of these heuristics fail, pick any node as the start-node.

In selecting the start node, the initial access method will also be found. If
condition 4a) is satisfied, the terms defining the CALC keys are factored out of the
local condition, and the residue of that factorisation becomes the local condition. The
keys and their values are stored, and the initial access method used will be a format 5
CODASYL FIND command.

If conditions 4b) - 4d) are satisfied, the terms defining the key equalities are
factored out of the local condition in the same way as for CALC keys, and the initial
access method becomes a format 6 CODASYL FIND command on the SYSTEM

owned coset.

If condition 4e) is satisfied then no terms defining key equalities may be
factored out of the local condition and a format 3 CODASYL FIND command on

the SYSTEM owned coset is used.

If no assistance is provided in finding the record using either CALC keys or
SYSTEM owned cosets, then the generated program must iterate through the area
using a format 3 CODASYL FIND command on the area.

8.2.2 Subgraph Traversal and Access Method Extraction

This section describes a procedure which traverses the V-graph, extracting
information needed by the code generation pass. All the nodes of the V-graph are
visited in the order which will eventually correspond to the nesting order of the
iterative loops of the generated program. This node order is returned by the

procedure, and input to the second pass.

60

The start node of each subgraph in a V-graph is the first pattern node to be
applied to the D-graph. An order must be selected for the other nodes in the
subgraph. Initially, call the start node the current node. The cursor of the pattern
matching process will point to the current node.

The arcs into the current node, representing cosets for which the range of the
node is a coset member, and the outpointing arcs, representing cosets for which the
range is the coset owner, are sorted into a processing order. The ordering of the arcs
determines where the pattern matching cursor will be moved next, or in CODASYL
terms, which coset will be traversed next and which record will be accessed next. In
the current version of ALF, this ordering merely puts inpointing arcs before
outpointing arcs. This means that the cosets for which the node is a member will be
traversed (using FIND OWNER commands), before the cosets for which the node is
a member.

The local condition of the current node is computed from the query
qualification and the list of already processed (matched) nodes.

The residue after factorising out the local condition becomes the query
qualification. In this way, the qualification is eroded away as the graph traversal
(pattern matching) process proceeds. The residue erodes to nothing (that is, TRUE)
after the last node is processed, as at that stage, with all variables defined, all
remaining terms may participate in the factorisation.

For each arc, an access method for the coset it represents is determined, using
similar criteria to those used for SYSTEM owned cosets when finding the start node.

If the arc is an inpointing arc, only one access method, a format 4 FIND
command "FIND OWNER .." is available. For outpointing arcs, the following
possibilities exist.

1) The local condition defines values for SORTED INDEXED or
SORT keys, if the coset is SORTED INDEXED or SORTED.

2) The local condition defines values for one of the sets of SEARCH
KEYS defined on the coset. :

3) The local condition defines equalities on any other (unindexed) data
items in the coset member record.

If any of these possibilities occurs, a format 6 FIND command may be used.
The terms defining the relevant data items are factored out of the local condition, and
the residue of that factorisation becomes the local condition for the node. In this case
the values of the data items are saved, to be set in the wuser working area, (UWA, see
(Codasyl 1971)) before execution of the FIND command. Note that the values of data
items to be used in Format 6 FIND commands may be constants, or may be

61

expressions using data items from previously found records.

In addition, if the coset is sorted, and upper limits on the sortkeys can be
conjunctively factored out of the local condition, these upper limits are saved and used
in pass 2 to exit from the coset iteration loop as soon as the corresponding item values
from the record exceed them. The residue of this factorisation becomes the local
condition for the node. For example if "RL.DI LT value" is a conjunctive term in the
local condition, and DI is the leading sortkey of the coset, the coset iteration may be
exited as soon as a record with DI greater than or equal to value is encountered.

If none of the above possibilities occurs, iteration through the coset must be
done using a format 3 FIND statement, one record at a time.

The access methods for the arcs are determined in the previously calculated arc
order. After determining the access method for a particular arc, the procedure just
described is applied in a recursive manner to the node at the end of that arc. This is
done for all arcs except for the one used to access the node initially.

In this way, a path through the whole graph, together with the access methods
used for each arc on the path, is determined.

8.3 Second Pass

The second pass of the code generation algorithm takes the path through the
V-graph, produced in the first pass, and generates intermediate code from it. Code for
the highest level query in the Q-graph is generated first.
8.3.1 Graph Traversal: Code Generation and Subquery Compilation

For each query, the code generated has the following form :

1) Code to initialise query processing.

2) Nested loops to materialise a targetlist tuple.

3) Code. to finalise query processing.

If the query was a root query, operated on by one of the top level ALF
commands, code inside the innermost loop, (which is executed after a complete
targetlist tuple has been materialised), is generated to carry out the command. The
initialisation and finalisation code carries out any functions ancilliary to this, for
example opening and closing files.

If the query was one operated on by an aggregate function, the initialisation
code assigns initial values to the variables used in computing the aggregate function.

62

Code in the innermost loop, executed when all targetlist items for a single tuple of the
query targetlist had been materialised, accumulate the quantities used in computing
the aggregate function value, and the finalisation code actually computes the function.
For example, in the case where the aggregate function was AVG, the initialisation
code sets a counter and a sum variable to zero; the innermost loop code increments
the counter and accumulate the value of the targetlist item being averaged in the sum
variable; and the finalisation code divides the sum by the counter.

If this query had been amalgamated with others using the procedures described
in 7.8, initialisation, accumulation and finalisation for more than one aggregate
function would be generated for a single set of nested loops.

There is special treatment for the aggregate function EXISTS. A logical
variable representing the value of the EXISTS function is set to FALSE in the query
initialisation code. The code generated for the innermost loop, executed when the first
tuple satisfying the query has been materialised, consists of setting this logical variable
to TRUE, followed by an EXITWHILE out of the outermost WHILE loop of the
query. Thus if any tuple satisfies the query, the value of the EXISTS function will be
TRUE and no furthur iteration will be performed. If no tuple satisfies the query, the
innermost loop code will not be executed and the EXISTS value will remain FALSE.
For examples of this, see Appendix E.

The path through the V-graph returned by the first pass is in the form of a list
of nodes, and the procedure generated by the second pass is similar to the pattern
matching procedure described in 7.6. As previously stated, this procedure contains a
set of nested loops, one loop for each node in the V-graph. When the access method
for a node is a format 4 DML statement, "FIND OWNER RECORD OF ... ", the
loop in the procedure is degenerate. As each coset instance has only one owner
record, there will be no looping generated in this case.

When looping does occur, the loop generated has the following form :

1) Find the first record using the access method determined in pass 1.

2) Repeatedly execute steps 3) - 6) while the value of the DML status
(Codasyl 1971) remains zero. -

3) GET the data items used in the targetlist and qualification from the
record.

4) If the local condition for this loop is not satisfied, transfer to step 6.
5) If this is the innermost loop, then process the targetlist, or perform

the aggregate function processing, otherwise fall through to the loop
inside the current one.

63

6) Find the next record for the loop, using the access method
determined in pass 1.

This nested structure suggests that each loop be generated with a recursive
procedure, and this is in fact done.

Before step 1, the whole procedure for processing queries is recursively invoked
for any subqueries which have not already been processed, and whose arguments are
fully defined at that point. The subquery may be actually used inside a more deeply
nested loop. A basic heuristic in code optimisation, however, is that loop invariant
code should be moved outside loops where possible. Using this criterion to process the
query has this effect. If a query has no arguments, as in 4.1.6, this heuristic will also
have the effect of generating code to evaluate that query before evaluating any other

query.

Two cases arise when a query to be processed has a V-graph containing nodes
which are global to that query.

The first case is where only one node in the query is global, as depicted in
Figure 7.15. This global node corresponds to a value which is fixed for a single
evaluation of the query. No looping code will be generated for this node, which will
be the start node of the query, by 8.2.1 .

The second case arises where more than one node in the V-graph is global.
One of the global nodes will become the start node of the query. For the other global
nodes, tests must be included in the code to reject a candidate record if its database
key does not equal the relation variable database key for the global node. This global
node database key will have been determined in a higher level query.

In both cases, the V-graph containing the global nodes may be regarded as
having to be matched against the D-graph in all possible ways, with the V-graph
nodes corresponding to global variables always matching previously fixed D-graph
nodes.

8.3.2 Currency and UWA Usage

Generation of code for a particular loop is done without the procedure
generating the code knowing anything about the other loops in the query, let alone
loops in different queries. These other loops may affect processing in two ways.
Firstly, an inner loop in this query or in another query might disturb currency
information (Codasyl 1971) needed in finding subsequent records in the loop (Step 6
in 8.3.1). Secondly, if the range of the variable for such an inner loop is the same as
the range of the current loop variable, the possibility exists that user working area
locations stored into by the GET DML statement of the current loop, might be
overwritten by the inner loop before any use could be made of them.

64

The currency information can be guaranteed correct by saving it before
processing inner loops and restoring it afterwards. The saving may be done by storing
the run-unit currency (Codasyl 1971) in a program variable (which has the same name
as the relation variable for that loop). This must be done before step 5 of the loop £
procedure. The restoration may be done by including a format 1 FIND statement just '
before finding the next record in step 6. This would produce correct code, but would &
introduce an extra DML statement into each loop, which would often be unnecessary.
Two steps may be taken to reduce the necessity for this format 1 FIND.

L ST L T TR, SR, T R

Firstly, at the cost of some slight complication, the loop generation process
returns a list of the currencies changed by its loop and any inner loops, including
those in other queries. If the format 1 FIND statement is not necessary to restore the
currencies, it is not generated.

S€ Secondly, a flag in the translator may be set to cause each FIND DML
statement to suppress all coset and area currencies that are not going to be needed in
following any path from the current node. This makes it less likely that any format 1 {
FIND statements will need to be generated.

o

[4
Y

It is possible to circumvent the problem of overwriting the user working area
by following the GET DML statement of each loop by a set of statements to save
those user working area locations just set by the GET statement. These save locations
have names manufactured from the loop variable and the attribute name. In effect the
user working area locations used in a particular loop are duplicated, and the duplicate K
locations used in subsequent tests and targetlist manipulations. The program is correct E
with these assignments included, although most of them are usually unnecessary.
Methods for the removal of the unnecessary ones will be discussed in 8.5 .

8.4 Boolean test generation in the presence of subqueries

There is a lot of scope for optimisation in the translation of the tests on ‘
boolean expressions that are performed as part of the V-graph traversal. Tests should q
be translated firstly so that parts of the boolean expression that cannot affect the ‘
result are not evaluated, and secondly so that terms which are expensive to evaluate
(containing subqueries) are not evaluated unless necessary.

8.4.1 Standard Boolean Test Generation

Begin by considering the translation of a boolean expression without
subqueries. This problem has been addressed in (Arden 1962), (Bottenbruch 1962), !
and (Gries 1971), and indeed by numerous compiler writers. The following
formulation is included not because it is original, but because to my knowledge it has
not been published in this form before.

VU

o o

l"i

65

The procedure BTG (boolean test generation), has three parameters. The first
is a boolean expression in the form of a tree whose internal nodes are the logical
operators AND and OR, and whose leaves are terms. The second and third
parameters are labels to be transferred to when the expression is true or false
respectively. One of these label parameters may be the constant "FALLTHRU",
indicating that control will fall through to the next statement in sequence rather than
transferring to a label when the corresponding result of the expression is obtained.

It is assumed that, if the expression is not a term, the root of the expression
tree is "AND" or "OR", and may be tested, and that each branch of the expression
tree may be obtained and passed to a procedure. The procedure NEGATE inverts the
expression tree using DeMorgan’s laws, applied recursively. The parameterless
function NEWLABEL generates a new label which may be used in the generated
code. The syntax of the language used in describing this algorithm is straightforward,
and similar to CODE-A.

PROCEDURE BTG(expression,truelabel,falselabel)
declare L1 as a variable of type label
IF expression is a term THEN
BEGINIF
IF truelabel = "FALLTHRU" THEN
BEGINIF
expression <- NEGATE(expression)
truelabel <-> falselabel < swap the labels >
ENDIF
GENERATE("IF" expression "THEN GOTO" truelabel);
IF falselabel NE "FALLTHRU"
THEN GENERATE("GOTO " falselabel);
ELSE
CASE root of expression OF
"AND" :
IF falselabel = "FALLTHRU"
THEN L1 <- NEWLABEL()
ELSE L1 <- falselabel ;
FOR B IN branches of expression tree DO
BTG(NEGATE(B),L1,"FALLTHRU");
IF truelabel NE "FALLTHRU"
THEN GENERATE("GOTO" truelabel);
IF falselabel = "FALLTHRU"
THEN GENERATE(L1 ":");
OR"
IF truelabel = "FALLTHRU"
THEN L1 <- NEWLABEL()
ELSE L1 <- truelabel ;
FOR B IN branches of expression tree DO
BTG(B,L1,"FALLTHRU");
IF falselabel NE "FALLTHRU"

[4

One of the decisions made in designing the intermediate language for ALF was
that control structures, including IF statements, should be nested in a last in first out
fashion. This nesting requirement requires that the following code shall be produced

66

THEN GENERATE("GOTO" falselabel);

IF truelabel = "FALLTHRU"
THEN GENERATE(L1 ":");
ENDCASE
ENDIF

for the conjunctive expression T1 AND T2 AND ... Tn.

If the conditional statement containing the conjunctive expression contained an
ELSE branch, that is, code to be executed when the conjunctive expression was false,
then a supplementary boolean variable would have to be set to false before testing T1
and set to true inside the innermost IF test. This flag would then be tested after the

IF T1 THEN
BEGINIF
IF T2 THEN
BEGINIF

IF Tn THEN
BEGINIF

code to be evaluated when expression is true

ENDIF

ENDIF

ENDIF corresponding to the outermost IF loop.

The use of a supplementary boolean variable is also necessary for a nested

testing of the disjunctive expression T1 OR T2 OR ... Tn.

Bl <- true
IF NOT T1 THEN
BEGINIF

IF NOT Tn THEN
BEGINIF

none of the Ti are true
B1 <- false

ENDIF

ENDIF
IF Bl = true THEN
BEGINIF

67

the disjunctive expression is true
ELSE

the disjunctive expression is false
ENDIF

The procedure to generate the boolean tests in this nested form follows the
same general pattern as the previous algorithm, and it will not be repeated here.

The first sort of generated code contains control structure spaghetti in the form
of labels and goto statements, whilst the structured code contains extraneous boolean
variables and many levels of nesting. It is uncertain which is more difficult for a
human to read.

It is worth noting that different code would be generated if the boolean
expression tree was given in a structurally different, but logically equivalent form.

8.4.2 Introduction of Subqueries

In this section I shall be concerned with showing how one of the techniques for
generating code to evaluate a boolean test, described in 8.4.1, may be applied in ALF
to a boolean test containing subqueries. These techniques could be applied in any
situation where there were differing evaluation costs for the primitive terms in the
boolean expression.

The factorisation algorithm of Hall and Todd (Hall 1974), is extensively used
in ALF. It factorises a boolean expression into two conjuncts, one containing only
nominated terms. Boolean expressions in ALF are built up using terms and the logical
operators AND and OR. This system of boolean expressions constitutes a boolean
algebra (Gilbert 1976), and one may appeal to the duality properties of boolean
algebras to transform the factorisation algorithm into a dual algorithm. This is done
by exchanging occurrences of AND and OR, and occurrences of the constants TRUE
and FALSE, in the original algorithm. The new algorithm, called factorise-dual, splits
a boolean expression into two disjuncts, one containing only previously nominated
terms. As in the original algorithm, the expression containing the nominated terms
only is maximal.

In the evaluation process, a tree is generated called the derived tree of the
boolean expression. In this tree each internal node is AND or OR, the branches under
each node are ordered left to right, and a boolean expression is attached to each leaf
node. The derived tree is equivalent to the original boolean expression, considering the
leaf expression as being substituted for the leaf node. In addition, each leaf node is
tagged with the queries which have to be processed before all the terms in the leaf

node expression may be evaluated.

The ordering on the branches in the derived tree is such as to postpone
evaluation of subqueries as long as possible when the derived tree is used as input to

68

one of the code generation algorithms of 8.4.1.

1) All the queries in the boolean expression are ranked in estimated
order of cost of evaluation. Currently this ranking is based only on the
number of levels of subquery in each query, those containing fewest
levels having the least cost. Other estimators, such as the size of the
V-graph for each subquery, would give a more realistic estimate of the
evaluation cost.

2) The terms containing queries for which code has not been generated
are categorised as hard, and the rest are categorised as easy. Some
terms containing queries may be easy at this stage, as the query may
have been processed already either by being moved out of the current
loop as described in 8.3.1, or by being amalgamated with another,
already processed, query, as described in 7.7.

3) Try a conjunctive factorisation, to extract the maximal conjunct
containing only easy terms. If this fails, try a disjunctive factorisation
(factorise-dual), to extract the maximal disjunct containing only easy
terms. If this fails also, the terms which would be able to be evaluated
by processing the next easiest query are categorised as easy, and the
factorisations are attempted again. If either of the factorisations
succeeds, the boolean expression tree is split into a (conjunctive or
disjunctive) factor and a residue. The factorisations are attempted again
on the residue, using the dual type of factorisation first. Each time a
factorisation is successful, a new part of the derived tree is created. The
factor becomes a leaf of the derived tree, and is tagged with the
expression it represents, and the queries which would have to be
evaluated to evaluate all the terms in that expression. This process
terminates, as, if the factorisation continually failed, all the subqueries in
the expression would eventually be marked as processed, at which stage
all the terms would be easy, and the factorisation would succeed
(trivially).

4) The derived query tree is used as input to a code generation
algorithm similar to those of 8.4.1, except that when a node for which
queries have to be processed is encountered, the procedure to generate
code to process the query is called before the test involving that query is
generated.

As an example, consider the expression

T1(Q) AND (T2 OR T3).

The easy terms are T2 and T3. The hard term, which involves query Q, is TL
Conjunctive factorisation gives (T2 OR T3) as the factor, and T1(Q) as the residue.
Both types of factorisation make no impression on the single hard term, so T1 is made

69

casy by considering Q as processed. The derived tree is X1 AND X2, where (T2 OR
T3) is attached to X1 and T1 is attached to X2. Also attached to X2 is the fact that

Q must be processed before T1 could be evaluated. For this example, the following
code would be generated. The code is in CODE-A.

IF T2'OR T3 THEN
BEGINIF

compute the query Q
IF TI"THEN
BEGINIF

ENDIF
ENDIF

There is a choice as to whether the expressions on a leaf node of the derived
tree have code generated for them at the most primitive level, that is allowing only
terms, with no logical operators, to appear in IF statements, or whether composite
boolean expressions are to be allowed, as in the above code fragment. As ALF is
currently used to generate a higher level language, CODE-A, the latter course has
been chosen for reasons of readability. If assembly language were being generated, it
would probably be necessary to generate tests on component terms. This involves
trivial changes to the test generation algorithm.

8.5 Code Optimisation

The intermediate language generated by ALF is fully described in Appendix B.
It has been designed so that each statement can be considered to be free of side
effects. The program variables which may be changed by intermediate language
statements consist of user working area variables, the relation variables, the variables
introduced by combining the relation variables with the names of the associated
retrieved attributes, the special variables STATUS and CURRENT, the variables
introduced as intermediate and result variables in aggregate function evaluation, and

the currency status variables.

There is a currency status variable for each coset and for each area in the
schema. Record currency (Codasyl 1971) plays no part in the intermediate language,
and hence no variables for it are included.

Each DML FIND statement is translated into a number of assignment
statements of the form

currency variable <- expression

The particular FIND command involved is treated as a side effect free operator in the
same way as the arithmetic operators + and -. It has as operands the coset or area

o |

70

currency, or CURRENT, the run unit currency, and the area, coset, record and data
item names concerned. There is one assignment statement generated for each currency
variable altered by the FIND statement, and one for the variable STATUS, and the
alteration of these variables is considered to be the only effect of the FIND statement.
The currencies altered are those of all the cosets in which the record participates, and
the area, excluding those whose updates have been inhibited with a SUPPRESS
clause. For a discussion of where the SUPPRESS clause is used, see 8.3.2.

Similarly each DML GET statement appears as a number of assignment
statements of the form:

user working area location <- expression

There is one such assignment statement for each data item retrieved with the GET
statement. The expression uses GET as a side effect free operator, with CURRENT,
the record name, and the data item name as operands.

Viewing each DML statement as a series of assignment statements allows
standard compiler optimisation techniques to be used. Removing a single assignment
statement by code optimisation modifies the DML statement, but the whole DML
statement is not removed until all the assignments comprising it are removed.

The intermediate code output from pass 2 will usually coatain some
unnecessary assignment statements in addition to those which are components of
DML statements. The reason for their presence is discussed fully in 8.3.2. Basically, to
keep the complexity of the code generation passes to a manageable level, fail-safe code
is generated in pass 2. This code may be improved at a later stage. The assignments
which may not be necessary follow each DML GET statement, where the user
working area items stored into by the GET are moved into another set of variables.
There is one such set of variables for each loop containing a GET statement. These
variables correspond to the items of the original query, and their contents are used in
subsequent tests and in the targetlist. If the user working area variable from which a
save variable is derived is not subsequently changed by another GET statement, then
the user working area variable may itself be used in subsequent tests and in the
targetlist, and the assignment statement eliminated. This may be done using standard
methods for the optimisation of algebraic languages, for example those described in
Chapter 6 of (Cocke 1970), or in Vol II of (Aho 1973).

The intermediate language generated by ALF has been structured to assist this
optimisation pass. Simpler analysis than that given in the above references is possible
when all control structures are fully nested, as in the intermediate language of ALF.
Whilst the generated programs would be more aesthetically pleasing if the unnecessary
assignments were removed, the improvement in execution performance would probably
not be great. The methods used in (Zelkowitz 1973), and in (Hecht 1977) are
applicable here.

ALF.

71

This optimisation pass has not been implemented in the current version of

9.0 Extensions and Problems

In this section I will consider some possible extensions and improvements to
the techniques described in this paper.

9.1 Updates

No update commands are currently included in ALF, although their inclusion
would not be difficult. An update command would have to have at least the ability to
create a tuple in a relation, and the ability for changing attribute values in an already
existing tuple, or set of tuples.

In creating a tuple, values would have to be specified at least for the primary
key attributes. For the relations implemented as records which are members of non
SYSTEM owned cosets, some of these primary key attributes might be virtual, coset
defining attributes. Values of these attributes specify coset occurrences into which the
record representing the tuple must be stored. The most convenient way to do this is to
use the ser occurrence selection facilities in the DDL (Codasyl 1971). These facilities
allow selection of a coset occurrence by setting identifying user working area data
items along a path between the coset owner and a root record. The values of these
data items allow the system to determine particular record, and hence coset
occurrences along the path.

Consider the schema of fig 4.1, and assume that an EMP tuple is being stored.
To do this, values must be supplied for the virtual attributes C# and D# in EMP, as
well as the other attribute in the primary key, E#f. If the DDL schema specification
contained a declaration of the form

SET OCCURRENCE SELECTION IS THRU
LOCATION MODE OF OWNER USING D#

for the coset with EMP as member, and a declaration of the form

SET OCCURRENCE SELECTION IS THRU
LOCATION MODE OF OWNER USING C#

for the coset with DEPT as member, then the (actual) user working area items
DEPT.D# and COMP.C# could be set to the supplied values, and a STORE DML
command issued. If no COMP tuple contained the supplied value of C#, or if no
DEPT tuple in the coset defined by that COMP tuple contained the supplied value of
D4, then the STORE command would not succeed. This rejection implements an
important integrity constraint.

74

In altering an already existing tuple, two cases arise.

The first is where primary key attributes are altered, if this is to be allowed at
all. In this case, the same strategy as before could be used. The record to be altered
would be found, the new values of the key attributes set in the user working area, and
a DML MODIFY command (Codasyl 1971), issued. This would move the record into
different coset occurrences, reflecting the altered values of the virtual attributes. Errors
wouid occur, as before, if owner records containing the modified values were not
present in the database.

The second case is where non primary key attributes are altered. This is done
in a straightforward way, by finding the record to be modified, setting the user
working area locations corresponding to the attributes to be modified, and issuing a
DML MODIFY command.

This allows the new values in a tuple to be functions of the previous values in
the tuple. Thus one could say, in a notation similar to INGRES (Stonebraker 1976),

REPLACE EMP.SAL = EMP.SAL + 500
WHERE EMP.E# = 123.

to mean "Increase the salary of the employee whose number is 123 by $500".

Updates could also be performed on all members of a set of tuples, for
example, "Increase the salaries of all employees in department ABC of company XYZ,
who are below grade 2, by ten percent".

REPLACE EMP.SAL = 1.1*EMP.SAL
WHERE

EMP.D# = "ABC"

AND EMP.C# = "XYZ"

AND EMP.GRADE LT 2.

A different strategy could be adopted when storing a new tuple, or modifying
the primary key attributes of an existing tuple, where some of the primary key
attributes are virtual. Whenever a virtual attribute value could not be materialised,
due to the absence of the record containing the corresponding actual attribute, new
owner records containing the actual attributes could be stored and linked into the
appropriate coset occurrences.

Tuple deletion falls into two classes. The first is where the primary key of the
relation from which the tuple is to be deleted is not a foreign key in any other
relation; that is, in the network model, the record is not the owner of any cosets. In
this case, the record may be deleted, and integrity will be preserved.

The second case occurs when the primary key of the tuple to be deleted is a
foreign key in another relation. In the network model, this means that the record

75

instance being deleted is the owner of a coset. Several courses of action may be taken.

1) The dcletion may cause an error if any of the cosets that the record
owns is non-empty.

2) All the coset members may be deleted.

3) The record may be deleted, and all the members unlinked from each
coset that the record owns. For this to be possible, membership of each
coset involved would have to be OPTIONAL.

All the machinery so far developed for selecting records, including aggregate
functions, could be used in implementing update commands similar to those sketched
out here.

9.2 Security and Integrity

The approach to security taken in (Stonebraker 1974b) and (Stonebraker 1975)
is to conjoin a condition to the qualification part of each retrieval or update
statement. There may be one such condition for each user, and one for each type of
access (update or retrieval). No measures of this sort are currently included in ALF.
The condition which is added to the qualification does not cause any rejection visible
to the user, but merely makes tuples not satisfying the condition invisible to the user.
This approach has the very obvious advantages of being easy to implement, as it uses
the already exising machinery for handling qualifications on commands, and in
incurring a very low overhead. Whether it solves all integrity problems for all
applications is not clear, (for example it may be desirable to report on attempted
security violations), nevertheless the other security provisions provided by Codasyl
systems are also available, provided methods of using them can be built into higher
level, ALF like languages.

9.3 More General Joins

The ALF implementation concentrates on the efficient processing of joins in
which a coset may be used, that is, joins in which a candidate key of one relation is
specified as equal to the corresponding foreign key in another. Some different types of
join are handled efficiently, others are not.

An example of a non-coset join is where the primary key in one relation is
specified equal to an expression involving attributes of other relations. In this case,
ALF would generate code to find the tuples in the other relations first, compute the
primary key using attribute values from those other tuples, and use the key to find a

admissable tuple in the first relation.

|

76

Joins which are not equi-joins are not processed efficiently. For each tuple of
the first relation in the join, all tuples in the second relation will be scanned, and the
join condition tested. The number of tuples scanned may be reduced using other
conjuncts in the qualification. .

Equi-joins which do not specify candidate keys and the corresponding foreign
keys must usually be processed by the brute force approach used for non equi-joins.
However, if it were considered justified by the Database Administrator, extra
structures could be included in the network schema to assist in processing this sort of
join.

Consider two different relations containing a similar non-key attribute, say
colour. The processing of an equi-join on that attribute would be improved if an extra
record and two extra cosets were defined. The extra, introduced record would be the
owner of both cosets, and the records containing the non-key attribute would each be
a member of one of the cosets. Each coset instance would group all tuples in one of
the records with identical values of the non-key attribute. For example, all the green
records of one type would be grouped by one of the cosets under one owner instance,
and all the green records of the other type would be grouped under the same owner
instance, in the other coset. Call such a structure a coupling. There is no reason why
more than two records could not participate in a coupling, nor is there any reason
why there should not be more than one attribute in each relation involved.

If an equi-join term using the coupling attributes could be factored out of the
qualification of the ALF statement, then an extra node, ranging over the coupling
record, and two arcs representing each of the coupling cosets could be added to the
V-graph of the query. This would cause the coupling to be exploited when evaluating
the join.

9.4 Views

A view is a way of modifying the way that a user sees the data in a Database.
In this sense, the mapping used in this paper defines a relational view of the network
data. Furthur levels of view could be defined on top of this relational view in the
following way.

1) A restriction could be applied to the tuples of a single relation.

2) A composite relation, made up from several other relations using
joins of various sorts could be defined.

3) Steps 1) and 2) could be combined.

A mechanism for defining and using views has been specified and implemented
in ALF. Each view may be thought of as a virtual relation, and may be used in the

same way as an actual relation.

As an example, consider the schema of Figure 4.1, and assume that a view
relation, called PD, is to be defined using the basce relations PROJECT, DEPT, and
PROJDEPT. Furthur, assume that the view relation is to have attributes Dt 4
PROJ#, DBUDGET and PBUDGET, the last two being the department and project
budgets respectively. The user of the view is not to see departments outside the ACT,
or projects with budgets greater than 1000000. Using the view syntax implemented in
ALF, the view would be defined as follows:

DEFINE VIEW PD

FROM D RANGE DEPT, P RANGE PROJECT, RR RANGE
PROJDEPT

USING D.D#, D.C#, P.PROJ#, D.BUDGET RENAMED
DBUDGET, P.BUDGET RENAMED PBUDGET

WHERE D.D# =RR.D# AND D.C#=RR.C# AND
P.PRGJ# =RR.PROJ# AND P.BUDGET LT 1000000 AND
D.DLOC="ACT",

The user could then declare relation variables with range PD and retrieve from
the view as if it were a single relation. A user need not know anything about joins in
accessing the data, nor need he know anything about tuples that have been masked
out of the view.

The problems involved in updating views have been touched on in 9.1. More
work needs to be done to define update operations on views, in those cases where
updates are possible.

The following steps are taken in implementing views in ALF. For each variable
in an ALF statement which ranged over a view, new relation variables corresponding
to the dummy variables specified in the FROM clause of the view definition are
created. These are substituted for the dummy variables in the qualification in the
WHERE clause of the view definition. Thus each instance of the view has it’s own set
of variables, and the user may reuse those variables used in defining the view.

This transformed qualification is conjoined to the ALF statement qualification,
and each item using a view variable is changed to it’s source item from the view
definition. The ALF statement is then processed as before.

This method of view implementation is similar to macro substitution prior to
translation, and does not affect the translation process itself in any way.

Views may be defined using other views as well as base relations, and may
contain subqueries in the qualification of the view. Some view binding time convention
must be adopted; that is a choice has to be made between binding the definition of a
view defined in terms of other views at definition time or binding at usage time. At
present, binding is done at usage time, but a separate command allows the user to

78

define views in terms of actual relations. Use of this command allows redefinition of
views without affecting other views defined in terms of the redefined view.

|

10. Conclusion

the ALF translator has been implemented as an interactive system running on
the CSIRO CYBER 76 computer. It has been implemented to demonstrate the
feasibility of compiling efficient object code from higher level query commands.

ALF approaches Relational Database Implementation from a different direction
to other systems implemented so far. Building a Relational System on top of an
underlying network system allows a relational interface to be implemented with a
fraction of the effort needed to build such a system from the ground up.

The mapping between network and relational schemata, and the translation
techniques employed, allow programs to be generated which exploit the available
access methods at least as efficiently as the average programmer.

The translation model is sufficiently flexible to allow extensions such as
updates, integrity and security measures, joins not defined by cosets, and views, to be
implemented in a straightforward manner.

:

Bibliography and References

The references which follow are arranged in alphabetical order of first author,
and are referred to in the text in the form (Author year). If two or more references by
a particular first author are published in one year, a lower case alphabetic index is
used to differentiate them. Not all the entries in this Bibliography are referenced in
the text; some have been included because of their relevance to the subject matter of
this report.

In this bibliography, JACM refers to the Journal of the ACM, CACM to the
Communications of the ACM, TODS to the ACM Transactions on Database Systems,
and UKSC to publications of the IBM United Kingdom Scientific Centre, Peterlee,
Durham.

(Aho 1972)
Aho, A. V. and Ullman, J. D.
“The Theory of Parsing, Translation, and Compiling"
Vol I, Parsing, Vol II, Compiling.
Prentice-Hall, 1972

(ANSI 1975)
"ANSI/X3/SPARC Study Group on Data Base Managemert Systems -
Interim Report"
SIGMOD FDT 7 2 1975

(Arden 1962)
Arden, B. W., Galler, B. A. and Graham, R. M.
"An Algorithm for translating Boolean Expressions"
JACM Vol 9 (1962) pp222-239

(Astrahan 1975)
Astrahan, M. M. and Chamberlin, D. D.
"Implementation of a Structured English Query Language" CACM 18
10, (Oct 1975) pp580-588

(Astrahan 1976)
Astrahan, M. M. et al
"System R : A Relational Approach to Database Management".
TODS Vol 1 No 2 (June 1976)

(Bachman 1969)
Bachman, C. W.
"Data Structure Diagrams"
SIGBDP : Database 1 2 (1969)

(Bobrow 1974)
Bobrow, D. G. and Raphael, B.
"New Programming Languages for Artificial Intelligence Research”
ACM Computing Surveys 6 3 (Sept 1974) pp 155-174

(Bottenbruch 1962)
Bottenbruch, H. H. and Grau, A. A.

"On Translation of Boolean Expressions”
CACM Vol 5 (1962)

(Boyce 1974)
Boyce, R. F., Chamberlin, D. D., King, W. F. and Hammer, M. M.
"Specifyimg Queries as Relational Expressions”
in (Klimbie 1974) pp169-178

(Chamberlin 1974)
Chamberlin, D. D. and Boyce, R. F.
"SEQUEL, A Structured English Query Language"
Proc. ACM SIGFIDET Workshop on Data Description, Access, and
Control, May 1974.

(Chamberlin 1976)
"Relational Data Base Management Systems"
in (Sibley 1976)

(Cocke 1970)
Cocke, J. and Schwartz, J.
"Programming Languages and their Compilers"
Lecture notes, State University of New York, 1970.

(Codasyl 1971)
Codasyl Data Base Task Group
"April 1971 Report"
Available from ACM.

(Codd 1970)
Codd, E. F.
"A Relational Model for Large Shared Data Banks"
CACM 13 6 (June 1970)

(Codd 1971a)
Codd, E. F.
"Normalised Data Base Structure - A brief Tutorial"
Proc 1971 ACM SIGFIDET Workshop.

(Codd 1971b)
Codd, E. F.

83

"A Database Sublanguage founded on the Relational Calculus"
Proc 1971 ACM SIGFIDET Workshop.

(Codd 1972a)
Codd, E. F.
"Furthur Normalisation of the Data Base Relational Model"
In (Rustin 1972)

(Codd 1972b)
Codd, E. F.
"Relational Completeness of Data Base Sublanguages"
in (Rustin 1972)

(Codd 1975a)
Codd, E. F.
"Implementation of Relational Database Management Systems"
ACM SIGMOD Bulletin 7, 3 and 4, 1975.

(Codd 1975b)
Codd, E. F.
"Understanding Relations" ACM SIGMOD Bulletin 7, Nos 1 to 4, 1975

(Codd 1979)
Codd,E. F.
"Extending the Data Base Relational Model to Capture More Meaning"
Proc. Australian Computer Science Conference, Hobart, Feb 1-2 1979.

(Date 1975)
Date, C. J.
"An Introduction to Database Systems"
Reading: Addison Wesley, 1975

(Douque 1975)
Douque, B. C. M. and Nijssen, G. M. (eds)
"Data Base Description"
IFIP Special Working Conference on Data Description languages : An
In-depth Technical Evaluation of the Codasyl DDL. 13-17 Jan 1975
North-Holland 1975

(Engleman 1975)
Engleman, C.
"Engineering of Quality Software Systems - Towards an Analysis of the
LISP Programming Language"
Mitre Corp. Jan 1975 AD-A007 769

(Friedman 1969)
Friedman, D. P., Dickson, D. C., Fraser, J. J., and Pratt, T. W.

o |

<~

84

"GRASPE 1.5 - A Graph Processor and its Application" j
University of Houston, 1969 ;]

(Gilbert 1976) .1
Gilbert, W. J.]
"Modern Algebra with Applications" J
Wiley 1976 ‘

(Gimpel 1973)
Gimpel, J. F.
"A Theory of Discrete Patterns and their Implementation in SNOBOL4"
CACM 16 2 (Feb 1973) pp 91-100

(Gries 1971)
Gries, D.
"Compiler Construction for Digital Computers"
Wiley 1971

(Gudes 1973)
Gudes, E. and Reiter, A.
"On Evaluating Boolean Expressions"
Software Practice and Experience, Vol 3 (1973) pp 345-350

(Hall 1974a)
Hall, P. A. V. and Todd, S. J. P.
"Factorisation of Algebraic Expressions"
IBM UKSC Report UKSC 0055, April 1974, :

(Hall 1974b)
"Common Subexpression Identification in General Algebraic Systems"
IBM UKSC Report UKSC 0074, November 1974.
Hall, P. A. V. and Todd, S. J. P.

(Hall 1974c¢)
"User Functions and Data Bases"
IBM UKSC TN 01, May 1974

(Hall 1975a)
Hall, P. A. V.
"Optimisation of a Single Relational Expression in a Relational Database
System" :
IBM UKSC Report UKSC 0076, June 1975.

(Hall 1975b)
Hall, P. A. V. and Todd, S. J. P.
"Database Administrator Facilities in PRTV"
IBM UKSC TN 22

(Hecht 1977)
Hecht, M.
"Flow Analysis of Computer Programs”
North Holland 1977

(Hewitt 1972)
Hewitt, C.
"Description and Theoretical Analysis of PLANNER"
MIT AI TR-258 (April 1972)

(Hitchcock 1975)
Hitchcock, P.
"User Extensions to the Peterlee Relational Test Vehicle"
IBM UKSC TN 33 December 1975

(Kalinichenko 1976)
Kalinichenko, L. A.
"Relational-Network Data Structure Mapping"
in (Nijssen 1976) pp 303-310

(Kay 1975)
Kay, M. H.
"An Assessment of the Codasyl DDL for use with a Relational

Subschema"
in (Douque 1975) pp199-214

(Kerr 1975)
Kerr, D. S. (ed)
"Very Large Data Bases"
Proc. International Conference on Very Large Data Bases, Sept 1975
Available from ACM

(Klimbie 1974) _
Klimbie, J. W. and Koffman, K. L. (eds)
"Data Base Management"
Proceedings of the IFIP working conference on Database Management
held at Cargese, Corsica, 1-5 April 1974
North-Holland 1974

(Lorie 1979)
Lorie, R. A. and Nilsson, J. F.
"An Access Specification Language for a Relational Data Base System"
IBM Journal of Res. and Develop., 23 3 (May 1979), p286

(Mackenzie 1974)
Mackenzie, H. G. and Smith, J. L.
"Fordata Reference Manual"

86

CSIRO Division of Computing Research (August 1974) (Revised 1977).

(Mackenzie 1977a)
Mackenzie, H. G. and Smith, J. L.

"The Implementation of a Database Management System"
Australian Comp. J. 9 4 (Nov 1977)

(Mackenzie 1977b)
Mackenzie, H. G.
"Codasyl Database Management Systems"
in "Database Management Systems", ed. Wolfendale, G. L.
ANU Press, Canberra 1977

(Mackenzie 1977c¢)
Mackenzie, H.G. and Kelly, G.
"A Query/Update Package for Library or Personal Reference Use"
Australian Computer Journal, November 1977, (pp 155-158)

(McGee 1974)
McGee, W. M.
"A Contribution to the Study of Data Equivalence"
in (Klimbie 1974) pp123-148

(Martin 1975)
Martin, J.
"Computer Data Base Organisation"
Prentice Hall 1975

(Metaxides 1975)
Metaxides, A.

"Information Bearing and Non Information Bearing Sets" in (Douque
1975) pp363-368

(Miller 1968)
Miller, W. F. and Shaw, A. C.

"Linguistic Methods in Picture Processing : - A Survey"
Proc AFIPS FICC 33,

Thompson, Washington pp279-290

(Nijssen 1974)
Nijssen, G. M.

"Data Structuring in the DDL and Relational Data Model"
in (Klimbie 1974)

(Nijssen 1975)
Nijssen, G. M.
“Set and Codasy! Set or Coset"

in (Douque 1975) ppl1-72

(Nijssen 1976)
Nijssen, G. M. (ed)
"Modelling in Data Base Management Systems"
Proc. IFIP Working Conference on Modelling in Data Base
Management Systems, Freudenstadt, Germany, 5-8 Jan, 1976

(Olle 1975)
Olle, T. W.
"A Practitioners view of Relational Data Base Theory"
SIGFDT Bulletin Vol 7 Nos 3 and 4, 1975

(Owlett 1976)
Owlett, J.
"Deferring and Defining in Databases"
IBM UKSC TN 35, Revised Nov 1976

(Palermo 1974)
Palermo, F. P.
"A Data Base Search Problem"
in "Information Systems - COINS IV", ed Tou, J., Plenum 1974

(Pecherer 1976)
Pecherer, R. M.
"Efficient Exploration of Product Spaces"
Proc. 1976 SIGMOD Conference on Management of Data

(Rothnie 1975)
Rothnie, J. B. Jr.
"Evaluating Inter-Entry Retrieval Expressions in a Relational Data Base
Management System"
Proc 1975 NCC, pp417-422

(Rulifson 1972)
Rulifson, J. F., Derksen, J. A. and Waldinger, R. J.
"QA4: A Procedural Calculus for Intuitive Reasoning"
Stanford AI Centre Technical Note 73 (November 1972)

(Rustin 1972)
Rustin, R. (ed)
"Data Base Systems"
Courant Computer Science Symposium 6
Prentice-Hall 1972

(Rustin 1974)
Rustin, R. (ed)

88

"ACM SIGMOD Workshop on Data Description, Access and Control"
May 1-3 1974 Vols I and II.

(Sandewall 1978)
Sandewall, E.
"Programming in an interactive environment : The LISP Experience"
Computing Surveys 10 1 (March 1978)

(Sibley 1974)
Sibley, E. H.
"On the equivalence of Data Base Systems'
in (Rustin 1974) Vol II.

(Sibley 1976)
Sibley, E. H. (ed)
"Data Base Management Systems"
Special Issue, TODS 8 1 (March 1976)

(Siklossy 1975)
Siklossy, L.
"Let’s. Talk . LISP”
Prentice-Hall, Englewood Cliffs, N.J. 1975

(Smith 1975)
Smith, J. M. and Yen-Tan Chang, P.

~ "Optimising the Performance of a Relational Database Interface"
CACM 18 10, (Oct 1975) pp568-579

(Stonebraker 1974a)
Stonebraker, M.
"A Functional View of Data Independence" Proc 1974 ACM
SIGFIDET Workshop on Data Access and Control, May 1974

(Stonebraker 1974b)
Stonebraker, M. and Wong, E.
"Access Control in a Relational Data Base System by Query
Modification" Proc 1974 ACM National Conference, Nov 1974

(Stonebraker 1975)
Stonebraker, M. ,
Implementation of Views and Integrity Constraints in Relational Data
Base Systems by Query Modification" Proc 1975 SIGMOD Workshop
on Management of Data, May 1975

(Stonebraker 1976)
Stonebraker, M. et al
"The design and implementation of INGRES"

TODS 1 3 (Sept 1976)

(Symonds 1970)
Symonds, A.J. and Lorie, R. A.
"A Scheme for describing a Relational Data Base"
Proc. ACM SIGFIDET Workshop on Data Description and Access,
November, 1970

(Taylor 1976)
Taylor, R. W. and Frank, R. L.
"Codasyl Database Management Systems"
in (Sibley 1976)

(Texas 1975)
University of Texas Computation Centre
"LISP Reference Manual - CDC 6000"
University of Texas, Dec 1975

(Thomas 1975)
Thomas, J. C. and Gold, J. D.
"A Psychological Study of Query-by-Example"
Proc. AFIPS NCC, Vol 44, 1975, p 439

(Todd 1974)
Todd, 8. 3. P.
"Implementation of Join Operator in Relational Data Bases"
IBM UKSC TN 15, November 1974

(Todd 1975a)
Todd, S 1 P.
"PRTV, An Efficient Implementation for Large Relational Data Bases"

in (Kerr 1975) p 554

1975b)

Todd, S. J. P.

"PRTV A Technical Overview"
IBM UKSC 0075, May 1975

1976a)
Todd, S. J. P.
"The Peterlee Relational Test Vehicle - A System Overview"

IBM Systems Journal, 4 1976 pp285-308

1976b)

Toddi* 8y, I,
"Integrated Architecture for Transaction Specification and Optimisation

in Relational Data Base Systems"

IBM UKSC Report UKSC 0085, November 1976

(Todd 1976¢)
Todd, S. J. P.
"Automatic Constraint Maintenance and Updating Defined Relations"
IBM UKSC TN 44, November 1976

(Tsichritzis 1975)
Tsichritzis, D.
"A Network Framework for Relation Implementation"
in (Douque 1975) pp269-282

(Verhofstad 1976)
Verhofstad, J. S. M.
“The PRTV Optimiser : The Current State"
IBM UKSC Report UKSC 0083, May 1976

(Waite 1973)
Waite, W.M.
"Implementing Software for Non-Numeric Applications”
Prentice-Hall 1973

(Weissman 1967)
Weissman, C.
"LISP 1.5 Primer"
Dickenson, Belmont, Calif. 1967

(Wong 1976)
Wong, E. and Youseffi, K.

"Decomposition - A Strategy for Query Processing"
TODS 1 3 (Sept 1976)

(Yao 1979)
Yao, S. B.
Optimisation of Query Evaluation Algorithms"
TODS 4 3, (June 1979) pp133-155

(Zelkowitz 1973)
Zelkowitz, M. V., and Bail, W. G.
"Optimisation of Structured Programs"
Software Practice and Experience, Vol 4 No 1, Jan-March 1974

(Zimmerman 1975)
Zimmerman, K.
"Different Views of a Data Base: Coexistence Between Network Model
and Relational Model" in (Kerr 1975) p 535

(Zloof 1975)
Zloof, M. M.
"Query-by-Example"
Proc. AfIPS NCC, Vol 44, 1975, p 431.

(Zloof 1976)
Zloof, M. M.

"Query-by-Example : Operations on the Transitive closure"
RC 5526 (Revised)

IBM T.J. Watson Research Centre, Yorktown Heights, N.Y.

(Zloof 1977)
Zloof, M. M.

"Query-by-Example : A Data Base Language"
IBM Systems Journal 16 4 (1977)

|

Appendix A - Implementation Language

ALF is implemented using an extended version of UT LISP, which runs on
CDC CYBER computers. UT LISP is documented in (Texas 1975). The extensions
are a group of macros which enable some constructs similar to those found in other
modern higher level languages to be used. LISP programmers commonly spend quite
a bit of time making sure that the many parenthesis required by the language are
correctly nested; the macro constructs described here reduce the number of levels of
nesting as well as providing program text which is more natural for the programmer
not raised on LISP to read.

The reasons for choosing LISP to implement this prototype system are many.
For a general overview of them, the reader should consult (Engleman 1975). There
were not, in fact, many alternatives, however even if the choice had not been
constrained by what was available on the CYBER 76, the only other candidates that I
would have considered suitable would have been more modern versions of LISP.
Features which influenced the selection of LISP are given below.

1) Ease of representation and manipulation of symbolic data objects, the
representation usually being changeable with only local effects.

2) Recursion
3) Automatic storage management

4) The existence of a graph processing package, GRASPE (Friedman
1974)

5) Good diagnostic and debugging facilities.

6) Uniform treatment of procedure and data.

This has two important consequences. The first is that a rigorous
definition of the language may be formulated, and the second is that
procedures may be synthesised and then executed using the standard
evaluation mechanism.

7) The availability of an interactive envoronment for program
development, in which programs and data can be defined, examined and
altered on line, during execution.

The rest of this Appendix describes the language extensions. In describing the
following language extensions, I have assumed a knowledge of LISP on the part of the
reader; there are numerous introductory texts available, for example (Siklossy 1975),
(Weissman 1967).

94

The extensions are :

1. IF Statement
(IF expression THEN expression-list

ELSEIF expression THEN expression-list
ELSE expression-list)

This statement is expanded into a "COND". The expression following the IF is
evaluated, and if it is true (that is, not NIL), each expression in the expression-list
following the first THEN will be evaluated. There may be any number of ELSEIF
clauses, and an optional final ELSE clause. If the first expression is false (that is,
NIL) then the expression following the next ELSEIF is evaluated, and if true the
expressions in the corresponding expression list are evaluated. If the expression is
false, the process continues. If no expression is true, the expressions in the expression
list following the final THEN are evaluated. The value of the whole statement is the
value of the last expression evaluated.

o |

-~

2. FOR Statement
(FOR atom IN list DO expression list)

(FOR atom IN list DO function)

This statement is expanded into a MAPCAR. In the first version, the elements
of list are successively bound to atom (that is atom successively takes the values of
the elements of /isf) and the expression in expression list evaluated in the presence
(environment) of this binding.

In the second version, function may be an atom which is the name of a
function, (that is, an atom with an appropriate EXPR or FEXPR property) or a
lambda expression. function must be a function of one argument. The effect is the
-3 same as in the first version, the function being applied to successive elements of /ist.

The value of this statement is a list comprising the values of each of the results
of the function application.

3. CASE Statement

(CASE expression OF
label-list : expression-list ;

ELSE expression lis)

This statement expands into a SELECT. The expression following CASE is
evaluated, and its value compared with each of the labels in the first label-list which
of course may contain only one label. /abel list is merely a list of expressions, so this
statement is considerably more general than the case statements found in other
programming languages. When a match is found, the expressions in the expression list
to the right of the colon are evaluated. If no match is found in any of the label lists,
the expressions following the ELSE are evaluated.

The value of this statement is the value of the last expression executed. If there

is no match on any of the expressions in any of the label-lists and there is no ELSE
clause, -then the value is NIL.

4. WHILE Statement
(WHILE expression DO expression lis)
If expression evaluates to true (not NIL), then the expressions in expression list
are evaluated. This process then repeats itself until expression becomes false.
5. REPEAT Statement
(REPEAT expression list UNTIL expression)
The expressions in expression list are evaluated, and then expression is
evaluated. If expression is false the process repeats itself. This is similar to the

WHILE statement, except that the test is performed at the end of the loop, and
control stays in the loop if the test expression is false, not true as with WHILE.

6. ALL Statement
(ALL atom IN list SATISFIES function)
(ALL atom IN list SATISFIES expression-lis)

As in the FOR statement, function is an atom which has been defined as a
function, or a lambda expression. function is successively applied to each element of
list. The value of the expression is false if one of these applications returns false, and
succeeding ones are not done. If they all return true, the value is the value of the last

one.

In the second version, successive elements of /ist are bound to atom and the
expressions in expression list evaluated. ;

7. SOME Statement
(SOME atom IN list SATISFIES function)
(SOME atom IN list SATISFIES expression-lis)

This statement is very similar to the ALL statement except that if any of the

function applications returns true, then that is the value of the statement and no
further function applications are done. If they are all false, the statement value is
false.

8. NO Statement
(NO arom IN list SATISFIES function)
(NO atom IN list SATISFIES expression-lis)
This statement is true if none of the list elements satisfies the function or

expression list, in the same sense as in 6. or 7. It is false if any list element does, and
no furthur evaluation is done.

Appendix B - The Intermediate language

The intermediate language generated by the ALF transator is designed to be
translatable without undue difficulty into other high level languages, and also to be
efficiently interpretable. It is represented as a list of quadruples, or guads, in the form

(operator result operands DML-atom)

The language does not contain labels or a GOTO statement, and all control
structures are nested in a last in first out fashion. This was not done for aesthetic
reasons, but to make it possible to implement the code optimisation and interpretation
procedures in a recursive manner.

For code optimisation purposes again, each DML statement is viewed as being
equivalent to a number of assignment statements. These assignment statements are
grouped together by having the same atomic list item DML-atom, which has
properties describing the DML statement.

The different non-DML operators which can occur are

1. ASSIGN
The value of the expression in the operands position is assigned 1o the
variable in result .

2. WHILE
result is a boolean expression in prefix form; operands is an atomic
identifier for the statement. The quads between the WHILE and the
corresponding ENDWHILE quad are obeyed until the WHILE
condition (result) becomes false.

3. ENDWHILE
Terminates the scope of a WHILE loop, result is the atomic identifier

for the WHILE loop.

4. IF
result is a boolean expression, operands an atomic identifier for the IF

statement. If the boolean expression is true, the following code down to
a corresponding ENDIF or ELSE is executed. If false, then the code
between the corresponding ELSE and the ENDIF is executed if there is
an ELSE, otherwise control is transferred to the statement following the

ENDIF.

5. ENDIF, ELSE
result is an atomic identifier corresponding to the same identifier in the

,ASmI

98

corresponding previous IF quad.

6. COMMENT
result contains commenting text, and the effect is purely documentary.

7. EXITWHILE

result is the identifier for a WHILE quad. This quad indicates that
control should be transferred to the statement following the
corresponding ENDWHILE statement.

If the atom DML-atom is non-NIL, then the quad represents one of the
assignment statements comprising a DML statement. DML-atom has properties which
enable the DML statement to be generated (or interpreted).

These properties are

1. DMLVERB

The DML verb in the DML statement. It may be one of GET, FINDI,
FIND3, FIND4, FINDS, FIND6, FIND7, indicating the GET
statement and the various forms of the FIND statement. (Codasyl 1971)

2. SETAR
The coset or area name involved.

3. DILIST
A list of the record data items involved.

4. FNEXT
The literal FIRST or NEXT, used with FIND?3.

5. VAR
The name of database key variable, used with a FINDI.

6. SUPPRESS
A list of cosets to have currency updates suppressed.

Appendix C - CODE-A, a sample target language

The intermediate code generated by the ALF translator is designed to be either
interpreted or translated into a higher level language. For pedagogic purposes only,
this intermediate code, described in appendix B, is translated into an invented
language called CODE-A. Real languages have features such as data item modes, data
declarations, restrictions on the use of text strings, restricted control structures, and
output formatting specifications. While the problems raised by these features would
have to be faced in implementing a working relational system based on ALF, they are
not the concern of this paper.

CODE-A is a language which exposes the structure of the generated programs
in an easily understandable way, but which allows the inconvenient features of real
languages to be ignored. It is essentially a reformatting of the intermediate code to
make it more readable. Arithmetic and boolean expressions are in infix rather than
prefix notation, and DML statements are as specified in (Codasyl 1971), rather than
being specified as a set of assignment statements. User working area locations are
specified in the form record name_attribute name. When they are required, the
additional locations needed for queries where more than one variable ranges over the
same location are specified in the form relation variable_attribute name.

Assignment statements are specified in the form
variable <- expression

There are two special variables, STATUS and CURRENT. STATUS is
nonzero if the last DML command encountered either an error or some termination
condition. CURRENT is the database key of the record found as a result of the last
DML FIND command. Both these variables correspond to variables in the system
communication locations defined in (Codasyl 1971).

There are two control structures in CODE-A, a WHILE loop and an IF
statement.

The WHILE loop has the following form:

WHILE boolean expression DO
BEGINWHILE while loop id

EXITWHILE while loop id

iENDWHILE while loop id

100

The statements between the BEGINWHILE and the ENDWHILE are
executed repeatedly until boolean expression becomes false.

There need not be an EXITWHILE in the loop, but if there is and it is
executed, it causes control to be transferred to the statement following the
ENDWHILE.

The IF statement has the following form :

IF boolean expression THEN
BEGINIF if statement id

ELSE

ENDIF if statement id

If boolean expression is true, the statements following the BEGINIF down to
the optional ELSE or the ENDIF are executed. If it is false, then control passes to
the statement following ELSE if ELSE is present, otherwise it passes to the statement
following the ENDIF.

There are two statements, OUTPUT and PRINT, which correspond to ALF
commands of the same name. They have the format:
' OUTPUT expression[, ...] and
PRINT expression][, ...]
The expressions which appear in these statements have values corresponding to the
targetlist values in the original ALF expression.

Appendix D - Schema Specification

The sub-language used for specifying data structure to the ALF translator
mixes the functions of specifying the Internal and External schemata of (ANSI 1975).
A full scale implementation of an ALF like language might well separate these
functions.

In the following sub-language, first the relations, their attributes and their
properties are defined, and then the cosets and their properties are defined. In defining
the relations and attributes, virtual attributes are declared together with the coset used
to materialise them.

The statements describing relations are:

relation-name (list of attribute names)

This is followed by a number of declarations chosen from the following

1. PRIMARY-KEY (primary key attributes)

2. CANDIDATE-KEYS ((attributes for candidate key-1) ...

3. CALC-KEY (attributes on which record is accessed using the CALC
function)

4. INAREA area-name The area that the record is in.

5. SYSTEM-SET (system-coset-1 system-coset-2 ...
A list of the SYSTEM owned cosets the record is in.

6. VIRTUAL ((virtual-attribute-1 coset source-attribute-1)
(virtual-attribute-2 coset source-attribute-2)

A number of triples specifying each virtual data attribute in the relation
and its source attribute. |

These relation declarations are followed by the word "COSET-
DECLARATIONS".

Each coset is declared in the following way
coset-name (owner member

(list of owner attributes)
(list of member attributes))

102

The owner and member record types are followed by the attribute in the owner
and the corresponding (virtual) attributes in the member. Equality of values of these
attributes in the relational model indicates coset membership in the corresponding

network model.

A number of declarations may follow for each coset. The attributes appearing
in the following declarations must be non-virtual attributes occurring in the member

record of the coset being described.
1) SORTED (sort-attributes)

2) SORTED-INDEXED (attributes which are sorted and indexed)

3) SEARCH-KEYS ((attributes comprising search-key 1)
(attributes comprising search-key 2)

The coset declarations terminate with the word
"END-COSET-DECLARATIONS".

Appendix E - Sample Computer Output

This Appendix shows the CODE-A generated for a number of sample ALF
statements. The schema used is that defined in Section 4 of this report.

COMME T
CUOMME ™'

R R F R S SRS 2222 I

COMMEN'L
COMMENT

COMMENT

PRAFECAFKFARXFANNHAEE QPPE X F YAFAKF AR AR AR AF AR AR A A FH A F
AEAERF A 5K R F AR AN A AR RS I A F AT AN A ARSI A F SR AR SRR RS R kA ko % 4 4 &
~_ THE FGLLOWING EXAFPLES ILLUSTRATE THE CAPABILITIES OF ALE.

COMMENT

CCMMENT

CUOMMENT AX AR AR R AR A A A N IR A R AR A AR AR AR R KA RN AR K AR A A b AN d A 2 % %
CONMENT TIMING INFORMATION, B FE
COMMENT THE FIRST TIME PFIATED 1S THE TIME TO GENERATE THE

COFMENT INTERRAL CODE FKCIH THE QUEKY, THE SECUNMD 1S THE FIRSI]

"COMMENT

. 1_7{‘1{ g E‘.I.EUSf _,'U‘_E 1 Jl’!_' _'7177(,'} -:J_i.J"l_I{«ili'Ihifh)ﬁ!g,"(j’_l:_lzh::_ﬁ\ & _,(_?_"},"E Q}GF L lj_{.!,'t_‘(.' T I({:“is
ARE INCLUDED 1IN 1bkSE TI1'ES. GARBAGE COLLECTIUNS COULD BF
RERDUCED BY ALLOQA}ING MOKE MEMORY,

o

COMMENT
COMMENT

RETRIEVAL OW THE PFIMAEY KEY OF THE COMP RELATION,

COMWMENT
CQUTFUT

MO LOUPING CODE IS GENERATED,
(.'U.'\iP.Cﬁ,C(J‘-aP.CFvAP;F,Q[i'ﬂ_F.Cl:'lC WHERE CUMP.C#=123L

226
START O

MIL

LISECCNDS i

"COFMENT
COMMENT

START OF 01 CODE

TURLES COUNT FOR- @1

Nl <=
COGMP.C#
~ FIRDTCU
SS581,552

EEGINIE

0

<= - 123
MP VIA CURRERT OF CCFPSET USTHG
¢eS1,COMPAREA CURRENCY UPDATES

THEN

COMP_Ct# SUPPRESS

Ll

CUFP <=
CET Ccav

CURRENT
Pt CEMPSCiH, COMPLCNAME , CANMPLCLOC

Nl <= Nl %l
GUTPUT COMP.C# ,COMP_CNAME ,COMP.CLOC
ENDIF T1

COMMENT ENL CE QL COLE

283 MILLISECGHDS

1NPUT ALF STATEMENT
COMMENT
COMMENT A SIMPLE RETRIEVAL USING THE EMP RELATION OBLY,
COMMEI]
OUTEUT EIP.kk WHERE EHP.AGE GT 65 OR EME,SAL < 8000 ,

158 MILL1SECUNDS T PO R A
START. OF COPE=A_
COMMENT START OF Q2 CODE ¥4 P i o0
CONMMENT TUBLE COUNT FOR Q2 1
N2 €=) §
FIND FIRST EVP PECORD OF EVPEREA AREA SUPPKRESS £2 CURRENCY
"UPDATES . i - S .
COMMENT STAEFT OF ENP (EVME) LDOP
WHILE STATUS EQ 0 DO
BEGINWHILE w1
. EMP <= CURRENT

CET EMP : EMP_E#,EVP_SAL,EVP_AGE

IF (LMP_SAL LT 8000 OR ENP_AGE GT 65)) THEN

BEGINIF 12

NP oy L e

OUTPUT FEMP_E#

ENDILIF JZ

FIND NEXT EMP RECORD CF EMPAFEA AREA SUPPRESS S2

ENCWEILE wl _ A
COMMENT END OF Q2 CUDE
233 MILLISECCONDS

.

INEFUT ALF STATLMENT

COMMENT

CUMME NT USE OF VIRTUAL ATTrRIBUTES 1N THE EMP KRELATION,
CUFMENT %

T RU T MP RS WHERE ERE DY = "PERSONMELY AR PR SNl € BRGOG o
262 MILLISECOLDS ’ 0 G LR B o S D R e GRS
START UF CUDE=4
COMVENT S1ART P U3 CULE
CUMNENT TUPLE CUUNT FUR ‘;13

M3 U

__FIND FIRST DFFT RECORD OF CEPAREA AKEA SUPPEESS 83,51
CURFENCY UPDATES . BT e T TR U = O < et R
COFMENT START OF R1 (DFPT) LGOP

WHILE STATUS 1Q 0 DO
BEGCGINWHILE w2

R S s TR I
GET DEPTS S5 TEPTIDE

RI_D# <= DEPT_DNF
1IF R1_D# EQ "PERSONNEL"™ THEN

BEGINIF 13
FIND FIKST EMP PECOKD CF S$2 SET SUPPFESS EMPAREA

CURRENCY UPDATES .
COMMENT START OF EMP (EMP) LOOP

WL LGE: STP DS QL 0F DD
REGINWHILE W3

FvP <= CURRENT
GET EMP 8 EMPLEY EYEPLUSAL

IF' EFPLUSAL LT 8000 THE N
BEGINIF I4

N3 K= N3 + 1
QUTRPUT EMP_E#

ENDIF I4
FIND NEXT EMP RECORD OF S2 SET SUPPRESS EMPAREA

'CURRERCY UFDATES .
ENDWHILE w3

ENDIE T3 NG
F1LD HEXT DEPT KECORD CF DEPAREA AREA SUPPRESS S3,S81

~ CUFRENCY UFDATES .
ENDWHILE @2

COMMENT END OF Q3 CODE
488 MILLISECOWNDS

I, L S aal O N S el L S SRsl A iRl N AP === e

INPUT ALEF STATEMENT
COMMENT

CONMMENT IHIS QUERY ASKE FOR
CEMWMERT gL RS WS E DERRRIS RN TS ARE VL EHE 0T -
CONVEI

AR .f it

CUTPUT E%P k8, DEPT LA whERE DEPT CHA=EFPJC# AUD ki
AND 'UFP1JDLGE="ACT",

X Ui Pl .l #

454 #ILLISECCLDS
STAET UF COLDF=A

COFEBEET START "OF 04 CODE
CLIMERT TUFLE COUNI FUK 04

N4 <= O :
_FI1ND FIRST CC#P RECOKD OF ((UKPSET SET SUPPRESS $51,5S52,

COFPAKEA CURREUCY UPDATES .,
CHOFMFENRT START OF R4 (CNMP) LOOP

WHILE STATUS EG 0 L
BEGINVHILE w4

R4 <= CURRENT
REPTLDLGC &= SACTH A

F1ND DrP1T VIA CURRENT CF S1 USING DEPTI_DLUC SUPPFESS
S3,DEPAREA CURREANCY UPDATES .

COMMENT START OF DEPT (DEPT) LOCOP
WHILE STATUS EQ 0 D0

BEGINWHILE W5
DEPT <= CURKFENT

GET CDEPT : DEPT_-DY%,UEPT_-DLOC
FIMD FIRST EMP RFCCRD CF S22 SET SUPPRESS EMPRAREA

CHREENCY UPRARES
COMMENT START QF ENP (EMP) LOOP

WHILE STATUS EQ 0 DU
BEGINWHILE 46

EMP <= CURKRENT
CET EMP 5 ‘ENPOE#

NG <= N4 + 1}
QUTPUT EMP_E#,CEFET.DH#

FIND KEXT EMP RECORD OF S2 SET SUPPRESS
EMPAREA CURRENCY UPLDATES .

ENRDWHILE w6
FIND NEXT"DUPLICATE WITHIN &1 SET USING CERT_DLOC

SUPPRESS S3,DEPAREA CURRENCY UPDATES .
ENDWHILE W5

FIND NEXT COMP RECORD CF COMPSET SET SUPPERESS SS1,5S52,
COMPARFA CURRENCY UPLA1ES .

"ENDWHILE w4
COMMENT END CF Q04 COLE

700 MILLISECUONDS

INPUT ALF STATEMENT
COMMENT

COMMENT THIS QUERY DOES NOT ASK FOR
C‘”I*fl EMPLUYERS wHOSE LFEPARTAENTS ARE 16 'THE ACT.
COFMENT

"CUTHPUT E Pt ,DFPT.LH vwHEKE DEPT, ga-b.P .Ch AND DEPT.DLOC="ACIL",
348 MILLISECU DS
'ailrl GF CUPE=A
CUFHMENT START OF 05 COLE

COrMENT TORLEF COULT FOR 05

NS <= 0

EIGD FIRET CCnPT PECURD OF CCHPSET SLT SUPPRESS S81.882,
COVMPAREA CURFEICY JPDATES .

COUMMENT STAPT OF R7T (COMP) LOOP
WHILE STATUS EQ O RU

BEGINWHILE 7
TR R7 <= (UUHEQ{¥

IPEFISDLOC "R~ "ACT"
FLEND DERE SVIA CHRRERT CF S1 USING DEPT_DLOC SUPPRESS

S2,S3,DEPAFREA CURRENCY UEDATES
COMPENT STAKT OF DEPT (CEPI1) LOOP

WHIDE "STATUS RO O RO

PEGINAHILE WRH
DEFPT <= CUPREUT
GET BRERPL v DEPToEH,,DERT. LLIC .
FIRD PIRST DEPT RECORD OF "ST SET" SUPPRESS 53,
DEPAREA CUKRRENCY UFLATES .

COMMENT START OF Re (C DEPT) LOOP
RHTLE STATUS EQ © Do
BEGINWIILE W9 Oy
R6 <= CURKENT
FIND FIRST EMP BECORD OF S2 SET SUPFRESS
EMPAREA CURRENCY UFPDATES ,
COMMENT START CF EMP (EMP) LOOP
WHILESS TATUS G 08 B
PEGINWHILE wi0
ENP <= CIFEFll
GET E'P @ EMP_ER
NS L= G5+ 1
OUTPUT EAP.L#,DEPI_D7R
FIND NEXT EmMP RECORD OF S2 SET SUPPRESS
~MPAREA CURREWCY UFDATES ,
ENDWHILE w10

S IR NEXT DERPT REGCURDGEF S SET SHUPPRESS 3,
CEPAREA CURRENCY UPDATES .
ENDVHILE JU
FIND DEPT USING DEPT JUPPR&SS.SZ,S3,DEPAPtA

CURRENCY nrnu1rs
FIND NEXT LUPLICA]L WITHIN 81 SET USING CEPT.DLOC
T SUPPRESS 52,53,0DEPAKEA CURRERCY UPUATES
ENDWHILF &8
FIND TEXT COUNDP RECOURD CF CU'FPSET SET SUPPKRESS So51,552,
COVMPAREA CURRENCY UPDATES .
T ENDWRILE @7 - g v
COVMENT END CF Q5 COPE
~ 648 WMITGISECONDS

INFUT ALF STATEMENT

COMMENT

CEMMERIT THES QUERY DOES OT ASK EUR

COFHET EokLUYEES WHESESUERARTRENTSZARE S THED ACT,

CONMENT

RANGE OF D IS DEPT.
__ INPUT ALF STATEMENT et
UUTPUT EVP. b8, ENP ELANE alERE DL UR=E"P . D# AND D.DLUC="ACT".

375 MILLI1SECONDS

START OF CODE=A
COVMMENT START OF Q6 CULE

" COFMMEMNT TUPLE COUNT FUR Q6
N6 <= 0

“FIND FIRST DEPT RECURD GF LEFAKEA AKEA SUPPRESS 52,53,51
CURRENRCY MIPDATEG v

G BN TESTART UE DaC BERPT) LO0P
WHILE STATUS EQ 0 DO

BEGINWHILE wll
D <= CURRENT

GET REPERDEREC DS SDERT D EEC
DD <=0 DERPTLDE

DEDIIGE: <e= ¥ UEPY JDLEC
L DN RGO T S THE R

- BHGTINEETLA
FIND FIRST DEPT RECURL OF CEPAREA AREA SUPPRESS S3,S1

CURRENCY
COVHMENT START OF R9 (LEPT) LOOP

— = Gl UPDATES .

WHILDE SSTAT S OO [
BEGINWBILE W12

R9 <= CURRENT
GETT DEET DR T

RO <~ DEPT D H#
ITFD2DH EQ RI9_DH THEN

BEGINIF 10 _
FIND FIRST EMP KECCFD CF 82 SET SUPPRESS EMPARER

CURFENCY UPDATES .
COMMENT START OF ENP (EMP) LCOP

WHILE STATUS EQ 0 DO
BEGINAHILE w13

EMP <= CURRENT
GET EMP : EMP_E#,EMPLENANE

NG <= pNe + 1
QUTPUT EMP_E#,EMP_ENAME

FIND NMEXT EMP RECURD OF S2 SET SUPPRESS
FAPAREA CURRENCY UPDATES .

ENDWHILE wl3
ENDIF L6

T ~ FIND WEXT DEPT RECCRD OF DEPAREA AREA SUPPRESS S3,
3 S1 CURFENCY UPLATES .

~ ENDWHILE wi2
ENDIF 15

FIND DEPT USINHG D SUPPRESS 52,53,51 CURRENCY UPDATES .
FIND NEXT DEPT RECORL CF DEPAREA AREA SUPPRESE §2,53,

A

$1 CURRENCY UPDATES .
__ENDWHILE w11

"COFMENT END OF Q6 CODE
661 MILLISECOKDS

IHPUT ALEF STATEMENT
COMMENT
CCNMMENT DEPARTMENTS WHOSE BUDGET S GREATER THAN 'THE AVERAGE

CCMMENT DEPARTMENT BUDGLET. (IE FOR ALL COMPANIES)
COMMENT e

FANGE OF D1,02 1€ DEET,
INPUL ALF STATEMENT

GUTPUT D1.DK WHEFE
Pl JBUDGETEEGT AVGIED2 . BUDGE T)

210 "'MILLISECGNRDS
START OF CODE=A

CONFENT START OF 07 COCE -
COMMENT TUPLE COUNT FOR Q7

N7 <= O
COMMENT STAKT OF 08 CODE

COMMENT TUFLE COUNT FGR (8
NB <= 0

08 <= 0
FIND FIRST DEFT RECORD OF CEPAREA AREA SUPPRESS §2,53,S1

CURRENCY UFDATES .
COMMENT START OF D2 (DERT) LOOP

WHILLES STTARIS SEO Q- 0
HFE}N%HILE w14

B2 <= CURRENT
GET DEPRT & DEPT-BUDGET

C2_BUDGET <= DEPT_BULCET
N <= NE + 1 ;

D15 G =Rl e AT R D G T
FIND NEXT DEPT RECOGRD OF DEPAREA AREA SUPPRESS 52,53,

S1 CURRENCY "UPDATES ..
ENDWHILE wl4

IFENETNE poa RN
BEGINTIF I7

Qi ime " O R NS
ENDIE 17

COFFMENT END CF Q8 COTCE
FIND FIRST DEPT RECORD OF DEPAREA AREA SUPPRESS 82,53451

- CURRENCY UFDATES .
COMMENT START OF DI ¢ DEPT) LOOP

WHILE sSTATIS B0 DU
-BEGINWHILE W15

D= ¢ ICURRENT ;
GET DEPT : DEPT.D#,DEFTI.BUDGET

BIoDh <= & iDEETZ DY
DI1_BUDGET <= DEPT_BULCCET

TEF DT oBUDGE TG 8 THEN
BEGINTIF I8

T NI <% Wrwa
CUTPUT D1.D#

"ENDIF 18
FIND NEXT DEPT RECOFD CF DEPAREA AREA SUPPRESS S2,S3,

£1 CURRENCY UPDATES .
ENDWHILE W15

TCUFWENT END CF Q7 COCE
472 VILLISECURDS

INFUT ALF STATEMENT
COMMENT
CCMMENT DEFARTMENTS WHOSE BUDGET. IS GREATER THAN THE AVERAGE

e

COMPMENT DEFPARTMENTAL BUDCET FOR THEIR CUMPANY,
CONMMENT

OUTPUT D1.D# WHERE
D1.BUDGET GT AVG(DL2.BUDGET WHERE D1,C#=D2.CH).

331 MILLISECONDS
START OF CUDF=A

COMMENT STAKT OF Q9 CODE
COMMENT TUPLE COUNT FOR Q9

N9 <= 0
FIND FIRST CCMP RECORD OF COVMPSET SET SUPPRESS SS81,S5S2,

~ COFPAREA CURRENCY UPDATES .
COMMENT START OF R10 (COME) LOOP

CWHEEESSTAGES S EGS0 DR
BEGINWHILL Wlo

R10 <= CURKENT
COMMENT START OF Q10 CCODE

COMMENT TUPLE COUNT FCE 010 \
NIO €= O
010 <= 0

FIND FIKST DEPT RECORD OF S1 SET SUPPRESS §2,S3,
~ DEPAREA CURRENCY UPDATES ., :
COMMENT START 0OF D2 (LEPT) LGOP

WHILE STA1US EQ 0 DO
BEGINWHILE w17

D2 <= CURRENT
GET EEFT : BERBI_BULGET

D2_BUDGET <= DEPT-BUDGET
N10 <= N10 4 1

U0 <=0 00T+ DTS IDGET
ELND NEXP-DEPT RECCRECQPF S SET SUPPRESS 82,83,

DEPAREA CURRENCY UEDATES .
ENCWHILE w17

IF N10 NE 0 THEN
BEGINIF 19

010 <= 010"/ NiQ
ENCIF -19

COMMENT EwnD OF Q10 CODE
FIND FIRST DEPT RECORD OF S1 SET SUPPRESS 52,53,

"DEFAREA CURRENCY UPDATES .
COFMMENT START OF D1 (CEPT) LOOP

WHILE STATUS EQ 0 (O
BEGINWHITE W13

D1 <= CURRENT ;
GEL B ERTE DEP]-E#lkaT_HUDGFT

DI_D# <= DEPT.D#
D1.BUDGET <= DEFT.BUDGET

~ IF DI_BUDGET GI Q10 THEI
BEGINIF 110

NG <= N9 + 1
QUTPUT D1..D#

~ ENDIF I10
FIND NEXT DEPT RFCCRC OF S1 SET SUPPRESS $2,53,

“DEPAREA CURRENCY UFDATES .
ENEWHILE WIS

FIND LEXT CUMP RECURD CF CONPSET SET SUPPRESS 551,552,
COMPAREA CURRENCY UPLATES o
ENDWHILE w16
—_COMMENT END OF 09 CODE

632

MILLISECON

DS

INPUT ALF STATEMENT
COMMENT ;
COVMMENT THE FOLLOWING FOUR QUERIES StiOYW BOOLEAN TEST OPTIMISATLION,

CONMMENT
CuTPuUT COMP.C#,COWP,CLOC WHERE CONP.CLOC="ACT"
AND COMP.Cs NE 123 AND e
RVC(LEPT .BUDGET whHERE LEPT.CH#=CONMP.C#) GT 50000 .

371 MILLLISECOKDS
START OF COUPE=A

CONMP_CLOC <= "ACT"

COFMMENT START OF 011 CODE
_CUWMENT TUPLE COUHT FOR Q11

N1l €=. 0§

FIND COMP VIA CURRENT OF CCMPSET USING COMP_CLOC SUPPRESS
$51,582,81,CO0MPAREA CURRENCY UPDATES .

COMMENT “START GF COMP- - (COMP) LOOP
_WHILE STATUS FQO 0 DO
BEGINWHILE w19
CONP <= CURRENT
GET CONP : C0MP_C#,COMP_CLOC
IF COMP_C# UWNE 123 THEN

BEGINTF T11
COMMENT START QF Q12 CCDE

COMMENT TUPLE COUNT FOR Q12
N12 <= O
R Z T =710
FIED FIRST DEPT RECORD OF S1 SET SUPPRESS S2,S3,

DEPAREACURREHCY UPDATES .
COMMENT START SOFSRPERT: (SEEPT) LOUP

WhiLE STATUS EQ O DO
BEGIKWHILE 20

DEPT <= CURRENT
GET CEFT : DEPT_BULGET

WERLCs SANL 2 T Y
Q12 €= 012+ CEPT-.BUDGE1
FIND NEXT DEPT PECCRD OF S1 SET SUPPRESS S2,53,
DEPAKEA CURRERCY UFDATES .
~ ENDWHILE w20
IF N12 NE O THEN
BEGINIF 112
012 =t 813 /7 Ni12
"ENDIF 112
COMMENT FND OF Q12 CODE
TIF 012 GT 50000 1HEN
BREGINIF I13
Nl] {= Hll + 1
QUTPUT CCMP.C#,COMP.CLCC
RS v 117 Y RETR S
ENDIF I11 Al oA PO S D il
T FIND NEXT DUPLICATE WITHIN COWMPSET SET USING COMP-CLGC
SUPPRESS 881,582,581 ,COMPAREA CURRENCY UPDATES .
ENCWHILE w19
__COMMENT END CF Qi1 CODE
641 MILLISECUNDS

INFUY "ALF STATEMENT
guTPuUT COMP.,C#,COMP,CLOC WHERE COMP,CLOC="ACT"
AND COMP.Ce NE 123 (K

AVG(DEPT, BUDGET WHERE DEPT.C§=COMP.CE) GT 50000 ',
439 MILLISECONDS
BEANT . OF s PIE=A, . 3 2
CUMMENT START OF Q13 CODE
COMMENT TUPLE CUULT FOR Q13
N13 <= 0

FIND FIRST CCGHMP RECORD OF COMPSET SET SUPPRESS S51,852,51,
COV¥PPREA CURERLCY UPLCATES .

~ COMWUENT STAR1T UF CUMP (COMP) LUUP
WHILE STATUS EO 0 DO

BEGIWWHILE w21
COMP <= CURRENT

GET CUtiP 2 COMPZCH#,CUME_CLOC
Bl <= " "TRUE

IF (CUHMP_C# EQ 123 OR COWP_CLOC NE "ACT™)) THEN
BEGINIF 114
COMMENT START OF 014 CCDE 4
CUOMMENT TUPLE COUNT FGR Q14
14 <= 0
014 <= 0O
~ FIND FIRST DEPT RECORD OF 81 SET SUPPRESS 52,53, 1
CEPAREA CURREHNCY UPDATES . i

COMMENT START OF DEPT (DEPT) LOOP
WHILE S5TATUS EQ 0 DO

FEGINWHILE W22 E
DEPT <= CURRENT

GET DEPT ¢ DEPT_BUEGET
N14 €= "N14 '+ 1
014 <= 014 + DEPTI_BUDGET
FIND NEXT DEBRT RECCRE (QF St SET" "SUPERESS 82,53,
DEPAREA CURRENCY UFDATES .

ENDWHILE w22

IF N14 NE 0O THER

BEGINIFP T15

B 014 <= Q014 /7 #Hid

ENETE T1S

COMBERNT EAD OF Q14 CODE

1E “Old "hE 50000 THREN

" BEGINEE IT6

Bl <= FJMLSE

ENDIF I16

TIE Bl EGeTRUE" " THEN

BEGINIF 117

N3 <= i3 ¥ 1
QUTPUT CCMP-C#,COMP_CLCC

ENRLIF A 15
FIND MEXT COMP RECORD CF COMPSET SET SUPPRESS S51,582,
S1,CUNPAREA CURRENCY UFDALES .

ENCWEILE W21
 COFVENT END UF Q13 CODE

719 MILLISECGKDS

INPUT ALF STATEMENT
CUTPUT COUXP.C#,CCHP.CLCC WHERE COMP.CLCC NE "ACT"
AND cOmMP.C# NI 123 AND

f\'v'G(f‘i‘}—I ‘”H'-.?LT WHERECDERPT CH=COUPICH) GT. 50000

" START L;!' (L;LJF-A
__COMMENT START OF 015 CODE .

(‘DVI'}‘TJI _rUlJ[:L (,‘”” [I‘UR Q;lb
“15 = \)

FIND F1R5T COMP RECORD GF CGMPSET SET SUPPRESS 851,552,561,
SQEEAF%AWCHBPEIKYAUEDAT*“ e L -~

COMMENT START OF COMP (COMP) LOOP
WHILE STATUS EQ 0 DO

BEGINWHILE w23
COMP <= CURRENT

GET CUMP : COMP.C#,COMP_CLOC
1F (CUMP..CLOC gg_jggj" AND COMP_C# NE 123)) THEN
EEGINIF 118 e :

COMMENT START OF 016 CCDE

COMMENT TUPLE COUNT FOEK Q16
Ni6 <= 0
OirG €=
FIND FIRST DEPT RECORD CF 31 SET SUPPRESS S$2,S53,
CEPAREA CURRENCY UPDATES .
COMMENT START OF DEPT (DEPT) LOOP
L WHILE $IATUS Eb G Do
BEGINWHILE ™24
DEPT <= CURRENT
GET DEPT : DEPT_BULGET
NG <= Nio + 1
016 <= 016 + DEPI_BUDGET
FIND NEXT DEPT RECCKL OF S1 SET SUPPRESS 52,53,
DEPAREA CURRENCY UPDATES .
E N D W “ l LE [d ’;
1F N16 NE 0O THEN
BEGIWIF 119
016 <= Q16 / N16
ENCIF I19
COMMENT END OF Q16 COLE
IF Q16 GT 50000 THEN
BEGLUIF 120
NIS <= N15 + 1
CUTPUT COMP-C#,COMP.CLCC
ENDIF 120 ;
ENDIF 118
FIND NEX1 CUMP RECORD CF COMPGEI1 SET SUEPFESS SS1,582,
> S1,COMPAREA CURRENCY UPDATES .
ENCWEILE R23 0 7 h Foh s
__CUMMENT END CF Q15 CODE

641 MILLTISECOKNDS

INPUT RKLF STATEMENT
CUTPUT COMP,.C#,COMP.CLCC WHERE COMP.CLCC NE "“"ACT™
AND COMP.CH# NE 123 OR

AVG(DEFT.BUDGET WHERE DEPT.C#=COMP.CH#) G1 50000 .,

414 MILLISECORDS
— ETERT OF CODE~K ' '
CUOMMENT START OF Q17 CODE

“COFFENT TUPLE COUIT FOR 17
N17 <= 0

FIND FIRST COMP RECORD OF COMPSET SET SUPPRESS S5S51,SS2,51,
COFMPAREA CURRENCY UPDATES .

~COMMENT START OF COMP (COVP) LOGP
WHILE STATUS EQ 0 DG

BEGINWHILE w25
COMP <= CURRENWNT

CETSCAOMPLsSCOMP _CH, CANPZCEBC
‘H2 <= TRUE

JECCCONE_C8f E0 123 OF COVP.CLDC "EQ "ACT ")) ' BPBEN

BEGINIF 121

COMAENT START OF Q18 CCDE
COMMENT TUPLE COUNT FOR 018

Nig <='"40
(o) i <L S D

3 FINDFTRST DEPTHRECORDT UF =51 'SET ™ SUPPRESS 852,53 7
DEPAREA CURRENCY UPDATES .

COMBENT START OF DEPT (CEPT) LOOP
. WHILE STATUS EQ 0 DO

BEGLUwHILE W20
DEPT <= CURRENT

GET LEEFT z DERTZBULCGET
NiB <= HNI18 + 1

gfd <= 018 + L[CEPT.BUDGET
FINDNEXT DERPT RECCRD OF Si1 SET SUPPRESS $2,;S3,

DEFAREA CURRENCY UEDATES .
ENDWHILE W26

IF NI8 KE O "THEN
BEGINIF I22

Q1 <= C18 /7 NIB
BNDLE Ted

COMMENT EnD OF QI8 COLE
IE OiiE s BE ST 0SS THEN

s BEGENTFEZSE ra
B2 <= PALSE

EREANEE N S
ENDTE SE21

Y BZs U LRITE (e
BEGINIF 7124

o LRI ESSUNTTEE
OUTPUT CCMP.C#H,COMP_CLOC

T ENRT R e
FIND NEXT COMP RECORD CF COMPSET SET SUPPRESS 851,552,

51 ,CCWPAREN CURRENCY UFDATES .
ENDWHILE W25

 CUMMENT END OF QI7 CODE
695 MILLISECONDS

INPUT ALF STATEMENT
CUNMMENT
COMMENT TWO AGGREGATE FUNCT104S, WHICH WILL BE COMPUTED TOGETHER.

COMMENT
COMMENT Yﬂlui”UrPY ASKE FOF DEPARTMENTS IN COMPANIES

COFMENT WHERE THE MAKLiUM CEPARTMENTAL BUDGET OF ACT
LUT‘F“T UPP\I[‘F‘F” 19_&} 40(09,0 AND WHERE THE AVERAGE

CONMMENT DEPARTHENTAL BUDGE1 OF ACT DEPARTHENTS IS LT 2006000
COMMENT

ouTPUT DEPT.D# WHERE
LEPT.C# EQ CO:P.CH# AND

AVG(D1.BUDGET ®WHERE C1.C# FQ COMP.CH Rices
AND Di.DLOC EQ "ACT") GT 2000000

AND
MAX(DZ2.BUDGET WHFRE D2.C% EQ COMP,.CH#

ANDEDA SREERE RO A CTEE AP A OGO G0

183 NIILluL(U DS
START hF CODE=A

COMMENT START OF Q19 CODE
COMMENT TUPLE COUNT FOR 019 /

NAL9 =110
FIND FIRST CCMP RECURD OF)COMPSET SET SUPRRESS SS1,552,

COMPAREA CURRENCY UPDATES .
COMMENT START OF COMP (CC¥P) LOOP

WHILE STATUS EQ 0 DO
BEGINWHILE %27

COMP <= CURRENT
COMMENT BTART OF Q21 CGDE

COMMENT TUPLE COUNT FOR @21
N20Q0 <= 0

021 <= LOW=VALUES

020 <= ©

D) S R GRS R A)
EIRD PEPT VIA CURRENT CE S1 USING DEPT.DLOC SUPPRESS

S2,S3,DEPAPEA CURRENCY UPDATES .
COMMENT START OF D2 (DEET) LOOP

WHILE STATUS EQ O DO
FEGINWHILE w28

D2 eSS CURIDENT
GET CEPT 3 DEFT_PULGET,DEPT.CLOC

D2_RUDGET <= DLEPT_BUDGET
D2_DLOC <= DEPT_LLCC

N20 <= N20 % '1
021 <= MAXIMUM(Q21,C2_BUDGET)

QRET &= ORI DT DG ET :
FIND NEXT DUPLICATE WITHIN S1 SET USING CEPT.DLOC

SUPPRESS $2,53,DEPAREA CURRENCY UPDATES .
ENDWHILE w28

T 1IF N2 NE O THEN
BEGINIF 125

Q20 €= SO0 / N2U
ENDEE Sl

— COMMENT END OF Q21 CODE
1) R i e 4UOOOOU IH!P

— EEGINIF SEOT SRS S

1
I2
1IF 020 GT
BEGILMIEF I
FIND FIPS
nrpAhLA (Hlﬁl UFPDATES .

COVMENT START_ HI DEPT ¢ CEPT) LOOP

guonono THEN
21 :
T nrp htLHHP OF S1 SET SUPPRESS §2,53,

WHILES STATUS "EQS0 R
BEGINWHILE W29
DEPT <= CURRENT
GEI REEY s DERTJE

19 €= ANt9 % 1 s
QUTPUT DEPT_D#
B . wIPIBD TREXT (DERT MECORD UE 51 SEL SUPPRESS 872,53, .
CEPAREA CURRENCY UFDATES .
ENDWHILE %29
ENDIF 127
ENDIF 176
FIND NEXT COMP RECORD OF CUMPSET SET SUEPRESS S&1,882,

~ CU¥PAREA CURRENCY UPDATES .
ENDWHILE w27

COMMENT EiWD OF Q19 CODE
1008 MILLISECONDS

INPUT ALF STATEMENT
COMMENT
COMMENT SUPRL1IFRS WHO SUPFLY NO PARTS

COMMENT
_RANGE _OF 5,P,5P IS SUPPLIER,PART,SUPPLY ,

STATEMENT
_OUTPUT S.5# WHFRE

~ INPUT ALF ST

ALL(SP.S# “HERE SP.S# NE S.S#)=TRUE,
354 MILLISECONDS

START OF CUDE=A
COMMENT START UF 022 CODE

T CONMERT TUPLE COUNT FOR 22
N2 ="

FIND FIRST SUPPLIER RECORD CF SUPPLIER=SET SET SUPPRESS
SUPPLTES,SUPPARFEA CURRENCY UPDATES .

COFMMENT STAKI UF S§ (SUPPLIER) LOGP
WHILE STATUS EQ 0 DO

BEGINWHILE w30
S <= CUREENT

GET SUFPLIER : SUPFLIEF_S#
S_SH# <= SUPPLIER_SH

COMMENT START OF Q23 CCDE
COMMENT TUPLE COUNT FCR 023

NZ22 <= 0
023 <= FALSE

_FIND FIKST SUPPLY RECCRD OF SUPPLIES SFT SUPPKESS
1S~SUPPLIFD=RY,PARTAREA CURRENCY UPDATES .

COMMENT STRRITHESSPR (N SUPRPENSDE L UER
WHTLESSTATUST EON 08 Di)

BEGINANHILE w31
SP <= CURRENT

NZ22" ¢=i NS R 4
023 <= TRIE

EXITWHILE W31
FIND NEXT SUPPLY RECORD OF SUPPLIES SET SUPPRESS

15=-SUPPLIED=EY,PARTAREA CURRENCY UPDATES .
ENDWHILE w31

COMMENT END OF 023 CODE
IF 023 NE TRUE THEN

BREGINIF 128
NZ21 S='THeEl #72

OUTPUT S_.S¥%
ENDIF I28

vl FIND NEX1 SUPPLIER RECCRD OF SUPPLIER=SET SET SUPPRESS
SUPPLIES, SUPPAREA CURRENCY UPDATES..
ENDWHILE w30
_ .COMMENT END OF 022 CODE
486 MILLLSECONDS

INPUT ALF STATEMENT
CONMMENT
CUMMENT SUPPLTERS WHO SUFFLY ALL PARTS
COVPMENT
OUTPUT S.S# WHERE
A e ML TR L PR HERE .
EXISTS(SP,.S5# WHFRE
SP.S#=5.5F AND SP.P# =F.P#
) IS8 TRUE
Y. LS TRIE S
560 MILLISECOHDS !
" START UF CGLE=A <3 B
COFMENT START OF 024 CODE
CCMMENT TUPLE COUNT FOR C24
N23 <= 0
FIND FIRST SUPPLIER RECORLD (F SUPPLIER=SET SET SUPPRESS
SUPPLIES,SUPPAREA CURRENCY UPDATES .

" .COFMENT START OF S (SUPPLIER) LOOP
WHILE STATUS EQ 0 DO
BEGINWHILE w32

S <= CURRENT
GET SUPFLIER : SUPPLIER_S#
S_SH <= SUPPLIER_SH
— ®UFNENYT START UOF 025 CCDE
COMMENT TUPLE COUNT FOR (25
NZ2d <= 0 K
025 <= FALSE
FIFD FIRST PBRET RFCOKRD OF PARTSET SET SUPPRESS
18=SUPPLIED=BY,PARTAREA CURRENCY UPDATES .
COFFMENT START OF P (PART) LOUP
WHILE STATUS EQ 0 DO
BEGINWHRILE w33
P <= CURRENT
GET EART : PARI_EF
P.P#f <= PART_Pt#

COVHUTNT START OF 026 CGDE

COMMENT TUPLE COUNT FOR Q26

N2 <= 0 g

026 <= FALSE

FIND FTRST SUPPLY FECURD OF IS-SUPPLIED=UY SET

SUPPRESS PARTAREA CURRENCY UPDATES .

CONNMENT START UF SF (SUPPLY) LUUP

WHILE STATUS EQ 0 DO

BEGINWHILE W34
SP <= CURRENT
TIWD TwER RECCUCFD CF SUPPLIES SET SUPPRESS
SUPPLIER=SET,SUPPAREA CURRENCY UPDATES .

T . O FF CURRENT EG 5 THER

BEGINIF 129

NZ5 <~ K25 ¢ 1

026 <= TRUE

EXITw HILE w34

ENDLIF 129

—————————FTIND NERT SUPPLY RECURD UF IS-SUPPLIED=BY SET

SUPPRESS PARTAREA CURRENCY UPDATES .

e e R R R T R e e

COMMENT END OF 026 CODE

TF 026 RE TRUE TBER

BEGINIF T30

R2d <= N2a + &1

Q25 <= TRUE

{0 NEXT PART RECCRD OF PARTSET SET SUPPRESS
S=SUPPLIED=BY,PARTAKEA CURRENCY UEDATES
ENDWHILE W33
_COMMENT END UF 025 CODE

IF Q2% NE TRUE. THEN. o
BEGINIF 131
NZ3 - Commrei PR Fprp -],
QUTPUT S_St¢
FNDLF 131
__ FIND NEXT SUPPLIER RECCRD OF SUPPLIER=SET SET SUPPRESS

SUPPLIES,SUPPAREA CURRENCY UEDATES .

__ENDWHILE W32 2

COMMENT END OF Q24 CODE

888 MILLISECONDS

INPIT ALF STATEMENT

CULIERT

COMMERT SUEPLIERS witD SUEPLY A GREEN PAKI (IE Al. LEAST UMNE)

COVMIF LT

PUTFUT S.88 WHERE

T EXTSTS R Y wHERE

F.COLLUUR="GREEN" AND

EXLSTS (AP . B8 LWHERE SP,.St=S.5# AND SP.Pi=pP.P4) 18 TRUE

) IS TRUE, »

510 MILLISECOLDS 3 ol
START UF CULE=A :

~ CUVKERT STAKT OF 027
COMMENT TUPLK COUNT

“CODE
FOR 027

N26 <= 0
FIND FIRST SUPPLIER RECURD OF SUPPLIER=SET SET SUPPRESS
SUPPLIES, SUPPARFA CURKLEICY UFDATES .
CUMMENT START OF S (SUPPLIER) LOOP
WHILE STATUS EQO 0 DO]
BEGINWHILE w35
S <= CURRENT
CET SUPPI1ER 3 SUPPLIELR_S#
S_S# <= SUPPLIER_S#
COMMENT START OF Q28 CCDE
COMMENT TUPLE COUNT FCOR Q283
N27 &= O
028 <= FALSE
PART_COLCUR <= “GREEN"
FIND PART VIA CURRENT CF PARISET USING PART_COLOUR
SUPPRESS IS=SUPPLIED=RY,PARTAREA CURRENCY UPDATES .
COMFENT START OF P (PART) LOOP B
WHILE STATUS EQ 0 DO
BEGINWHILE w3o
P <= CURRENT
GELT PART : PARI-P#,PARI-COLOUR
P_B# <= PART_PF#
P_COLUUR <= PART_CCOLUUR
COMMENT START OF €29 CODE
COANENT TUPLE COUNT FOR Q29
128 <= ¢
O/.g <™= FHTJS,"
FIND FIRST SUPPLY RECORD OF I1S8=SUPPLIEL=BY SET
SUPPKESS PARTAREA CURRENCY UPDATES .
COMMFLT START COF SF (SUPPLY) LOOP
WHILE STATUS EQ 0 DO
BEGINWHILE w37
SP <= CURREWI :
FIND OWNER RECCRD CF SUPPLIES SET SUPPKESS

3 FE SUPPLILER=SET,SUPPAREA CURRENCY UPDATES .

IF CURRENT EQ S THER

] LTode €08 0 gl e T SR R
28 <= N28 + 1
02Y <= TRUE
EXTTWHILE w37

B O A) e (0 IS

F1IWD NEXT SUPFLY RECCORD UF IS=SUPPLIED=-BY SET

—SUPPRESS PARTAREA CURRERCY UPDATES .
ENDWHILE W37

CONPETT END OF 029 CODE

IF ¢29 EQ TRUE THEN

o i T T R e e e e SR i L e
N27 <= N27 + 1

D28 <= TRUE
EX I Witk W30
ENDEF 133

EIND NMEXT BUPLICALE WITHIN PARTSET SkT USIKG

PARTCULUT K SUPFRESS IS=6UPPLIEL=BY,PARPTALEA

e & AR RC Y YU BHATEE R e
ENDRHILE #36
_CurtENT kLD OF Q28 CUDE

1F 028 EQ TRUE THE I
EEGTIE 1314
N26 <= N2 4+ 1
o WE TR P I SRS L AT A T 3 i it s

ENDLF I34

SUFPLLES,SUPPAREA CURRELCY UPDATES .
EMDWEILE w35

FIND NEXT SUPPLIER RFECCED OF SUPPLIER=SET SET

SUPPRESS

COMMENT RRD OF 027 CODE
851 MILLISECONDS

— £ " f

INPUT ALE STATEMEMT
COMMENT
COMMENT ANOUTHER VERSION, WITH EXISTENTIAL QUANTIKFIERS COMBINED,

COVINE K
OUTPUT S.S¢ WHERE

EXTSTS(P.Pk,SP.P# WHERE
P.COLOUR="GREEN" AND

SP.S5SH#=S.5f AND SP.UPr=P.D#
TSR

409 MILLISECONDS
START OF CODE=A

~ COEMENT START OF Q30 CODE
COMMENT JUPLE COUNT FOR 030

NZCSRC=E 0
FIND FIRST SUPPLIER RECORD OF SUPPLIER=SET SET SUPPRESS

SUPPLIES,SUPPAREA CURRENCY UFDATES .
COMMENT START OF 8§ (SUPPLIER) LOQOP
WHILE STATUS EQ (¢ DO ~g
BEGINWHILE W38

S <= CUERRENT

GET SUPPLIER & SUPPLIER_SH

Seof <= SUPPLIER_.S#
COMMENT START OF 031 CODhE
e RGO MEN T T URPEE RO a3
N3O <= 0
031 <= FALSE
FIMD ETRST SUPPLY RECGRD OF SUPPLIES SET SUPBPRESS

FARTAKREARA CURRENCY UPDATES .
COMMENT START OF sSSP (SUPPLY) LOOP
NRTLE S TATUS SRR 08 10
BEGINWHILE W39
5P <= CURRENT
FIND OWNER RECORD OF I1S=SUPPLIED=BY SET SUPPRESS
PARTSET ,PARTAREA CURRENCY UPDATES .
P <= CURRENT
GET FART : PARI_F#,PART.COLOUR
P_P§ <= PART_P#
P_.CUOLOUR <= PARTLCULDOUR
IF P_COLQUR EQ “GREENY THEN
BECINIE 135
N3O <= N30 + 1
g%1 <= LRUES
ENDTE T35 -
FIND NEXT SUPPLY RECORD OF SUPPLIES SET SUPPRESS
PARTEREA CURRENCY UFLATES .
ENDWHILE w39
R] T B 0 ¢ B T PR 6 R R
' IF 031 EQ TRUE THEN
T REGINIE L3E
N29 <= HN29 + 1|
OUTPUT S_S7
ENDIF 136
—FIND WEXT SUPPLIER RECCRD OF SUPPLIER=SET SET SUFPRE
SUPPL1KS,SUPPARFEA CUKRENCY UPDATES . '
ENDWHILE w38 ik e TS
COMMENT END OF 030 COUDE
67 MILLISECORDS

W
wy

INPUT ALF STATEMENT
COVMENT
COMMERT SUPPLIERS WHO SUPPLY ONLY GREEN PARTS

b

COFMENT
OUTPUT S.S5# WHERE

ALL B BE =
EXISTS(SP.P# :

SP.S#=5,5#%# AND SP.P#=P.P#) IS TRUE INPLIES P.COLCUR =
Y=TRUE . A A

PGREE V"

616 MILLISECCHDS
START OF CODE=A

COMMENT START OF Q32 CODE
COMMENT TUPLE COUNT FOR Q32

N31 <= O
FIND FIRST SUPPLIFR RECORD QOF SUPPLIER=SET SET SUPPRESS

oUPRPLIES ,SUPPRAEENY CURRENCY UBRDATES .
COMRENT START U 5 (. SUPPLIER) LOOP

WHILE STATUS EQ 0 DO
BEGINWHILE W40

S &= CUORRENT
GET SUPFLIER : SUPPLIER.St#

ot (<= SURRPLIER_S#
COMMENT START OF 033 CODE

COMMENT TUPLE COUNT FCR Q33
N3Z s 0

- ¢33 <= FALSE
FIND FIRST PART RECORD OF PARTSET SET SUPPRESS

I1S=SUPFPLIEC=EY,PARTAREA CURRENCY UPDATES .
COMMIENT STRRT G PO BART) LOGOR

WHILE STATUS EQO O DO
BEGINWHILE w41

PG SRR NI
GET PART = PART_P#,PART_COLOUR

PLP# <= PARI_Pi
P_COLOUR <= PART_CCLOUR

IF P_COLOUR NE "GREEN" THEN
BEGINIF 137

COMMENT START OF Q34 CODE
COMMENT TUPLE COUNT FOR Q34

N33 <= 0
034 <= FALSE

FIND FLRST SUPFLY RECORD OF IS=-SUPFPLIED=FY SET
SUPPRESS PARTAREA CURRENCY UPDATES .

COMMENT START CF SF (SUPPLY) LOUP
WHILE STATUS EQ 0 DO :

BEGINKHILE w42
SP <= CURRENT

FIND NWNER RECCRD CF SUPPLIES SET SUFPRESS
SUPPLIER=SET,SUPPAREA CURRENCY UPDATES .

IF CURRENT EQ § THEHN
BEGINIF 138

N33 = NIJF L
034 <= TRUE

EXITWHILE W42
ENDIF 138

FIND HEXT SUPFLY RECORD OF IS=SUPPLIED-BY SET
SUPPRESS PARTAREA CURRENCY UPDATES .

ENDwHILE wil2
COMMENT END OF Q34

IF 034 EQ TRUE THE
BEGINIF 139 | :

CODE
i

e T O R S
33 <= TRUE
EXITWHILE w41
ENDTIF 139

ENDEE 37

ENDWHILE wdl

FIuD NEXT PART KECCRD OF PARTSET SET SUE
[5=SUPPLIKU=RY ,PAKTAREA CURRENCY UEDATES .

SUPPRESS

COFMMENT END Or 033 CODE
IF Q331 NE TRUE

BEGINIF 140
N31 <= “13l~+ 1

CUTPUT S.8#
ENDLIF T40

FIND mNEXT SUPPLIER RECCFD OF SUPPLIER=SEIT

SUPPLTES,SUPPAREA CURKENCY UPDATES

L

SUPPKESS

n
(&4
w3 |

A

ENDWHILE w40
COMMENT END OF 032 CUDE

€58 MILLISECONDS

INPUT ALF
COFMMENT

STATEMENT

COMMENT SUPPLIERS “WHO SUPPLY ALL THE GREEH PARTS
CONMMEN'T
o wnwrpng
ALLCR.P# .2 SREBRE T TN
LOwN (e LlliULG:.¢uﬁu:”" IMPLIES
rAlhib(nP 25 S[’.uf‘—).o“ AtiD SP.P# = [).[.);;) 18 lF‘.'I‘_, DU
)
IS TRUE,
497 wll.[ISECCHNDS
START OF CODE=~A !
COHM(:L_§1A51¢p[ﬂQ35 CODE
CONMMENT TUPLE COUNT FQOR Q35 = #]
N34 <= 0 :
FIND FIRST SUPPLIER RECORD OF SUPPLIER=SET SET SUPPRESS
SUPPLIES,SUPPAFEA CURRENCY UPDATES
COMMENT START OF S8 (SUPPLIER) LOOP i
WHILE STATUS EQ O DO
BEGINWHILE W43
S <= CURRENT
GET. SUPPLIER : SUPPLIER_S#
S_SH# <= SUPPLIER_SH
~ COMMERT START OF Q36 CCDE
COMMENT TUPLE COUNT FCR Q36
N3S <= 0
036 <= FALSE
PART_CULOUR <=~ "GREEN"
FIAD PART VIA CURKENT CF PARTSET USING PART_COLOUR

SUPPRESS 1S=-SUPPLIED=BY,PARTAREA CURPPN(Y UPDATES .
(PALT) LOOP

CUKMBENT STTART OF B

WHILE STATUS EQ 0
BEGIN#HILE W44

DO

P <= CURRENT
GET EART :

PART_F#,PART_COLOUR

RPURPH <= PART_FH#
P_.COLOUR <= PARTLCOLOUR

COHMENT START OF (37 CODE

COMMENT TUPLE COUNT FOR 037
N3G =it
037 <= FALSE
FIGD FIRST SUPPLY RECORD OF IS~SUPPLIED=BY SET
SUPPRESS PARTAREA CURRENCY UPDATES .
COMMENT START GF SP (SUPPLY) LOOP
WHILF STATUS EQ 0 DO
BEGIN#KHILE wab
SP <= CURRENT
FIND OWNER RECGRD OF SUPPLIES SET SUPPRESS
SUPPLIER=SET,SUPPAREA CURRENCY UFDATES .
IF CURRENT EQ & THEN i
IFGLINIF 141
N3O <= N3E + 1
QRT Ke ARUE
) FXITWHILE wdb
ENDIF 141 s s BB
F 1 J"“Jkl SUPPLY RECORD OF IS=SUFPLIED=-BY SET
SUPPRESS PARTAFEA CUPRENCY UPDATES .
ENDWHILE #4dh
CUMMENT fHF>|1P ()37 CADE 3 Pai TN
IF 037 NE TRUE THEN
BEGINIF 142 ST

N35 <= N35 + 1
Q36 <= TRUE
EXITWHILE w44
ENDIF 142

FIND WEAT DUPLICAIE WITHIN PARISET SET USING
PARKT_COLOUR SUPPFESS IS=SUPPLIED=BY,PARTAREA
CURRENCY UPDATES . RS A N AN AN SRR 7.~ i e

ENDWHILE w44

COMMENT END (SHATERE

JF 036 CODE
IF 036 NF TRUE

THEN

BEGINIF 143

N34 <= N34 + 1
~ CUTPUT S-S5

ERDIF 143

FIND NREXT SUPPLIEKR RECCORD OF SUPPLIER=SET SET SUPPRESS
SUPPLIES,SUPPAREA CURRENCY UFDATES .

ENCWHILE w43
COMMENT END OF 035 CODE
838 MILLISECONDS

e

INPUT 2LF STATEMERNT
COMMENT
COVMFRT DEFINE A VIEW CONTAINING THE COUEANIES WITH AVERAGE

COMMENT DEPARTMENTAL BUDGETS GREATER THAN 100000,
COMMENT

USING C.C#,C.CHNANE,C,CLOC

WHERE AVG(D.BUDGET : C.Ci#=D.C#) GT 160000,
INPUT PLF STATEMENT

CUMMENT

COMMENT DEFLNE A VIEW IN TEKMS OF THE VIEW BIGC,
COMMENT CONTAINING ALL THE BIGC TUPLES 1IN THE ACT.
COMMENT

DEFINE VIEW BIGACT FROM Z RANGE BIGC USING Z.C#,Z2.CNAUE
WHERE Z.CLOC="RCT",

INPUT ALF STATEMENT
COVMENT

COMMENT DO A RETRIEVAIL ON THE VIEW (VIRTUAL RELATIGN) BIGACT
CONMENT

RANGE OF X 1S BIGACT,
INPUT ALF STATEMENT

COMMENT
QI PLT X eCH, X CNAME. WHERE "X.C8 NE 123,

482 MILLISECCNDS
START1 OF CUDE=A

~ COMMENT START OF Q41 CODE
COVMMEMT TUPLE COUNT FOR Q41

N37 <= O
COVMP_CLOC <= "“ACT"
FIND CONnP VIA CURRENT OF CCHPSET USING COMP_CLOC SUPPRESS
SS1,852,81,COMPAREA CURRENCY UPDATES .
COMPENT STARI OF NEWV7 (CCHP) LOOP
WHILE STATUS EQ O DO
BEGINMNWHILE Wdo
NEWV7 <= CURRENT
GET COMP : COMP..CH#,COMP.CHAME,COMP.CLOC
NEWV7_C# <= COMP_CH
NEWV/_CHAME <= COMP_CNANME
NEWV7_CLOC <= CUME_CLCC
IF BEWVI_C# NE 123 THEN
BEGINIF 144
COMMENT START UF NEWQ3 CODE
COVBENT TUPLE COUNT FOR NEWQ3
N34 <= O]
NEWOQ3 <= 0
FIND FIRST DEPT RECODRD OF S1I SET SUPPRESS 52,53,
CEPARFEA CURRENCY UPDATES .
~ COMMENT START UF NEwVY (DEPT) LUOP
WHILE STATUS EQ O DO
"BEGINWHILE wa7
NEWVY <= CURRENT
GET DEPT 3 DEPT_BULGET
NMEWVIBUDGET <= DEPT_BULGET
N38 <= N3B + 1
NEWQ3 <= WNEWQ3 + NEWV9_RUDGET o
FIND NEXT DEPT RECCRD OF S1 SET SUPPRESS S2,53,
DEPAFEA CURRENCY UFDATES .
ENDWHILE W47 _
IF N38 NE O THEN .
BEGINIF 145
NEWQ3 <= NEWQ3 / N3B8 g

ENDIF 145
CONMENT FND OF HEWQ3 CCDF
1% G X i U R o (O (5 ¢) A TG THE
BEGLieIE Lio
RV Cmmsidl + ok
OUTPUT kwNTC# , VT CHAME
——_-—_-E']Llf_l F -l~4 f}“ AR O R | O L e T L T T TR e bt B R (W
ERDTT I el :
— Vhuh EAT HIPLICATE wltHLd COMPSET SET UBING COMP.CLOC
SUEPRLSS 5S1,582,81,COPPAFEA CURRENCY UPDATES .,
ENDWRILE 4o i
CONMMENT END CF Q41 CODE
Bbd KIGhIERCOnBES =5 . : % S

INPUT ALF STATEMENT
COMMENT
COMMENT ANOTHER

VIEW DEFINITION

CONMENT
DEFTINE VIEW DP

USING U,D#,0.,C4,F.PROJ#,D.BUDGET RENAMED DBUDGET,

FROM D RANGE DEPT,P RANGE PRUJECT,RR RANGE PROJDEPT

P.PUDGET RENAMED PBUDGET

WHERE
DelDf = RR,DH
AND L,Ce=RR,Ct#

P.PEOJA=PR,PROJ
P.BUDGET LT 100000

AND
AND

D.DLOC ="ACT".
STATEMENT

 AND
INPUT ALF

COMMENT
RANGE OF X IS DP,

INPUT ALF STATEMENT

CUTPUT X.C#,X.D#,X.PBUDGET WHERE X.,DBUDGET GT 100000,

754 MILLISECONDS
START OF CODE=-A

COMMENT START OF 043 COUDE
COVMMENT TUPLE COUNT FCR Q43

N39 <= ©

FIND FIRST CCMP RECORD OF iCOMPSET SET SUPPRESS 5S§1,582,

COMPAREA CURRENCY UPDATES .

COMMENT START OF R32 (COMP) LOOP

WHILE -STATUS @80 O =D
BEGINWHILE w48 j

R32 <= CURRENT
GET COMP : COMP.CH#

R32.C# <= COMPCH
DERTSDLOC g=~ RGN

ETNDT DERT VIAT CURRENT S OF ST USINGIDERPTIDEGC SUFPRESS
§2,DEPAREA CUKRRENCY UPDATES .
COMMENT START OF NEWV1T (DEPT) LOOP

WHILE STATUS EQ (D

BEGINWHILE w49

NEWV17 <= CURRERNT

GET TRDERTE
NEWV1IT7.D§ <=

DEPT.D# ,DEPT_DLOC ,DEPT.BUDGET
DEPT.D#

DERPT_DLOC
CEPT. BERGET

NEWV1I7_DLOC <-
NEWV]17_BUDGET <=

IF NEWVIJ_BUDGET GTI 100000 THEN

BEGINIF 147]
FIND FIRST PROJDEEI RECORD UF S3 SET SUPPRESS |
PARTAREA CURRENCY UPLATES .
COMPMENT START Or WMEwV1B (PROJDEPT) LOOP
WHILE STATUS EQ 0 DO »
BEGINWHILE w50 b
NEwV1I8 <= CURRENT
FIND OWNER RECCKD OF S4 SET SUPFPRESS PAKTAREA
CURRENCY UPDATES .
NEwvle <= CURRENT
GET PROJECT : PROJECI_BUDGET 3
NEWVIO_DUDGET <= PROJECTLBUDGET 4
IF NEWV16_BUDGET LI 100000 1THEN
REGIWIF 148 &
N39 <= N39 + | {5 b

CUTPUT R32_CH ,NEWVLT_D#,NENVI6RUDGET
FNDIF 148

FIND HEXT PROJDEPT RECORD OF S3 SET SUPPRESS
FARTAREA CURRENCY UPDATES .

ENDWHILE 50 '

ENDIF 147

FIHD NEXT DUPLICATE wWITHIN 51 SET USING DEPI_DLOC
SUPPFESS S52,DEPAREA CUPRENCY UPDATES .

EnDwHILE W49
FIND NSEXT COMP RECORD CF COMPSET SET SUPPRESS 551,552,

~ COVMPAREA CURREGCY UPDATLS .)
ENDVWHBILE W48

COMMENT END CF Q43 CODE
$56 MILLISECUNDS

—a e S DI o i P SN) Al Lo L £l - i

INPUT ALE

STATEMENT
| CUIT

e

7727772 KILLED: GODDBYE

~ GARBAGE COLLECTIONS: 20 3 s

Q171 LR TUZn CCSXHH , 2

	00001
	00002-B
	00003-B
	00004-B
	00005-A
	00005-B
	00006-B
	00007-A
	00007-B
	00008-A
	00008-B
	00009-A
	00009-B
	00010-A
	00010-B
	00011-A
	00011-B
	00012-A
	00012-B
	00013-A
	00013-B
	00014-A
	00014-B
	00015-A
	00015-B
	00016-A
	00016-B
	00017-A
	00017-B
	00018-A
	00018-B
	00019-A
	00019-B
	00020-A
	00020-B
	00021-A
	00021-B
	00022-A
	00022-B
	00023-A
	00023-B
	00024-A
	00024-B
	00025-A
	00025-B
	00026-A
	00026-B
	00027-A
	00027-B
	00028-A
	00028-B
	00029-A
	00029-B
	00030-A
	00030-B
	00031-A
	00031-B
	00032-A
	00032-B
	00033-A
	00033-B
	00034-A
	00034-B
	00035-A
	00035-B
	00036-A
	00036-B
	00037-A
	00037-B
	00038-A
	00038-B
	00039-A
	00039-B
	00040-A
	00040-B
	00041-A
	00041-B
	00042-A
	00042-B
	00043-A
	00043-B
	00044-A
	00044-B
	00045-A
	00045-B
	00046-A
	00046-B
	00047-A
	00047-B
	00048-A
	00048-B
	00049-A
	00049-B
	00050-A
	00050-B
	00051-A
	00051-B
	00052-A
	00052-B
	00053-A
	00053-B
	00054-A
	00054-B
	00055-A
	00055-B
	00056-A
	00056-B
	00057-A
	00057-B
	00058-B
	00059-B
	00060-B
	00061-B
	00062-B
	00063-B
	00064-B
	00065-B
	00066-B
	00067-B
	00068-B
	00069-B
	00070-B
	00071-B
	00072-B
	00073-B
	00074-B
	00075-B
	00076-B
	00077-B
	00078-B
	00079-B
	00080-B
	00081-B
	00082-B
	00083-B
	00084-B
	00085-B
	00086-B
	00087-B
	00088

