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Abstract

An investigation is made of the nonlinear behaviour of the resistive tearing
instability which is a limiting factor in the performance of fusion oriented plasmas as well
as being highly significant in asfrophysical plasmas.

The thesis is divided into two main parts. The first represents an attempt to resolve
the general properties of the magnetic islands produced by a tearing mode on a current
sheet, while the second is more concerned with relating the properties of the instability td
the Mimov oscilation activity observed in tokamak plasmas such as LT-4.

Using a time evolution code with periodic boundary conditions, the visco-resistive
magnetohydrodynamic equations describing an (initially) almost planar current sheet have
been evolved for times long enough to reach steady state. Using the periodicity length as a
control parameter two new bifurcations have been found,‘in addition to the standard one
occurring at the minimum unstable tearing mode wavelength : A symmetry breaking
bifurcation to a left or right going asymmetric travelling island chain; and a period
doubling bifurcation to a state with alternating large and small islands. The complex
transient behaviour leading to these stétes, which involves a competition between
secondary current sheet instability and coalescence, is described in detail. This includes a
parameter study of the dependence of these phenomena on the resistivity, viscosity, wall
separation and periodicity length.

A quasi-linear delta-prime theory, in »cylindrical geometry, has been used to
calculate the amplitude of the poloidal magnetic field oscillations produced by a rotating,
saturated, m=2/n=1 magnetic island. Using radial safety factor profiles inferred from -
experimental electron temperature data from LT-4, amplitudes have been calculated in
good agreement iwith observed MHD activity although occurring over a broader range of
values of the safety factor at the edge of the plasma. it was found that this discrepancy
could be reduced by invoking a mechanism of mode-locking onto an external field

perturbation such as would be produced by the limiter or LT-4's single-armed iron core.
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Corrugated conducting wall boundary conditions and a finite plasma drift have also
been implemented in the evolution code to investigate the formétion of magnetic islands
via forced reconnection in a flowing plasma. It has been found, that, for high enough
flow velocities, the plasma will transform from a state in which the flow is diverted
around the island to one in which the island is reduced in width to a thin filament with the
flow uniformly distributed across the whole plasma — the transition velocity being
critically dependent on the viscosity and conductivity of the plasma.

Preliminary simulations in tearing unstable plasmas with flow have also
demonstrated instances of full and partial modé—locking of tearing mode magnetic islands
to the static corrugation in a manner which may explain the stop-start nature of the MHD

activity observed on the LT-4 tokamak.



CONTENTS :

Page
TITLE : 1
ABSTRACT 2
CONTENTS 4
ACKNOWLEDGEMENTS | 6
FIGURE CAPTIONS 7
PART I-1 REVIEW _
I-1.1 Introduction to the Resistive Tearing Instability 13
I-1.2 Review of Nonlinear Behaviour : 22

PART 1-2 MODELLING TEARING MODES ON A CURRENT SHEET

1-2.1 Mathematical Model | 26
I-2.2 Numerical Scheme | 37
I-2.3 Convergence 50
I-2.4 Numerical Stability 53

PART 1-3 RESULTS

I-3.1 Simple Nonlinear Tearing Mode Evolution 58

1-3.2 Saturated Behaviour - Evidénce of a 'Preferred' Island Length 63
I-3.3 Secondary Island Generation 67
1-3.4 Coalescence : 75
I-3.5 Long Time Behaviour with Symmetry Breaking and Period
Doubling Bifurcations | 80
1-3.6 Reconnection Rates 91
1-3.7 Summary and Conclusions 97

4



PART II-1 TEARING MODES AND MHD ACTIVITY
I-1.1 Introduction : Tearing Modes, MHD Activity and Mode-
Locking.

PART [I-2 QUASLLINEAR DELTA-PRIME THEORY

I-2.1 A Quasi-Linear Delta-Prime Model for Poloidal Magnetic
Field Oscilations

II-2.2 Results : Comparison with LT-4 MHD Activity

II-2.3 Discussion of Results and Conclusions

PART [I-3 TEARING MODES AND FORCED RECONNECTION
IN A FLOWING PLASMA

II-3.1 Corrugated Conducting Wall Boundary Conditions

I-3.2 Forced Reconnection in a Flowing Plasma

I-3.3 Mode Locking : Preliminary Simulations

I-3.4 Final Remarks

REFERENCES

-

103

111
117
122

127
133
141
145

146



Acknowledgements

I wish to thank my supervisor Dr. R.L. DeWar for his guidance and patient support
during the course of my thesis and for always being happy to give generously of his time
and knowledge. Much of the research for this thesis has benefited from his direction and
invaluable insight, and it is through his encouragement and constructive criticism of my
efforts that I have been able to bring this work to fruition. I have also greatly enjoyed his
pleasant company during lunchtime runs beside the lake, as well as Friday afternoons at
the pub, and will always value his friendship.

I am grateful to Prof. S.M. Hamberger for his advice and encouragement, and to
Dr. A.D. Cheetham, Dr. H. Kuwahara, Dr. L.E. Sharp, Mr. R. Nazikian and other
members of the Plasma Physics Laboratory for valuable technical discussions and for
making available to me data and results from the LT-4 experiment.

Thanks must also go to Prof. K.J. Le Couteur for giving me the opportunity to
come and work in the Department of Theoretical Physics, R.S. Phys. S., to Dr. B.A.
Robson for his continual support and encouragement, to Dr. W.N-C. Sy for useful
discussions and to the other members of the department for providing a friendly and
stimulating environment in which to work. I have also benefited from discussions with
visitors to the department, especially with Prof. F. Troyon and Dr. J.A. Wesson.

Most of the simulation work was performed on the Cyber-205 super-computer,
which was made available for this project under the CSIRO Computing Grants Scheme.
For this I am truly grateful and to the Technical Support Group at CSIRONET. Without
access to this machine very little of the work would have been possible.

My thanks also extend io the staff of the School Computer Unit, and in particular to
Julie Dalco for cheerfully looking after all my peripheral computing needs. Her friendship
and pleasant company during weekly swims and par coursing with Bob and myself will
always be,ren‘lembercd fondly.

Last but not least, I would like to express my deepest appreciation to my parents for
providing moral support and encouragement, especially during the writing up stage and
for always being there when I needed them.

This work wés supported by a Commonwealth Postgraduate Research Award.

6



Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

Figure Captions :

The topology of the magnetic flux surfaces, as seen in cross-section, after an
m=2/n=1 magnetic island has formed as a result of a tearing mode instability.

Schematic diagram showing the topology of (a) the type of secondary island
found by Steinolfson and Van Hoven and here and (b) the type of secondary
island found by Biskamp in between two coalescing islands.

Schematic diagram of the plasma slab model.

Ratio of the cpu time per timestep for the Vax-11/780 to that for the Cyber-
205 versus the number of grid points for runs with 5 and 8 Fourier modes.

The relative amplitudes of the Fourier modes of (a) v, (b) ¢, (c) J, and (d) {
on the neutral line at saturation showing the dominance of low order modes.

The number of Fourier modes, M, required for convergence of the vorticity
as a function of the viscosity, v, for several values of the wall separation, X,

The reconnected flux, AW, and its corresponding exponential growth rate,y,
versus time (in units of V, ) showing the growth and saturation of a tearing

mode for a sim ulation made with K, =0.35, X,, =4.0, v=0.01 and § =200

Contour plots of (a) the magnetic flux function, y, (b) the z-component of the
current density, J, , (c) the magnetic field magnitude, B, (d) the velocity

stream function, ¢, (¢) the z-component of the vorticity, {, and (f) the velocity
magnitude, V, at saturation for the simulation of fig.7.

A series of 3-D perspective plots of the z-current density at several points '
during the growth of the tearing mode for a simulation made with : K, =0.35

X, =2.5,v=0.01 and S = 10,000

A series of schematic diagrams describing the mechanism leading to the
formation of tearing mode magnetic islands : - (a) shows the neutral line
between two oppositely directed field components which (b) are perturbed

so that the field lines are pinched together at regular intervals along the neutral
line causing (c) reconnection of the field lines into localized elongated loops
due to the intense dissipation there. The tension in the lines of force pulls, (d)
and (e), the loop into a more nearly circular form. The plasma flows in from
either side of the x-point, out along the neutral line and around to form a
vortical plasma motion.

A series of contour plots of (a) y and (b) J, for increasing values of the

periodicity length, L, = 21/K,, showing the invariance of the aspect ratio of
the inner reconnected field loops and the increase in length of the x-point
current sheets in proportion to L, as L, is increased beyond Ly,
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Fig.12

Fig.13

Fig.14

Fig.15

Fig.16

Fig.17

Fig.18

Fig.19

Fig.20

Fig.21

Fig.22

Variation of the saturated island width with (a) periodicity length, L, and
(b) periodicity wave number, K, = 27/L;, , for several values of the wall
separation ( X,, = 2.5, 4.0, 8.7, 12.0) and the viscosity (v'! = 100, 600 ).

Variation of the saturated reconnected flux with (a) L, and (b) K, for
X, =2.5,4.0, 8.7 and 12.0 and v'! = 100 and 600.

Variation of (a) the reconnected flux, (b) the island width, (c) the number of
Fourier modes required for convergence, (d) the linear growth rate and in (e)

and (f) the first four Fourier modes of y on the neutral line versus the half
wall separation, X,,, for Kp = 0.4 and 0.27 at saturation showing the absence
of wall effects for X, > 10.

Variation of the saturated reconnected flux with L, and K, for several values
of the Lundquist number ( S = 200., 1000., 2000.) showing : the periodicity
length corresponding to the preferred island length, L,¢, marked by 1 ; the
critical periodicity length, L, for secondary tearing mode stability which
also defines the transition to the asymmetric travelling wave solutions, marked
by [ ; and the second critical periodicity length, L) , for the transition to
the double island states marked by the discontinuous jump in AP.

Variation of the saturated island width with Lp, Kp for several values of S
similar to that shown in fig.15 for AY.

(a) Plot of L and Ly, versus S. (b) Plot of Ly, versus S including data
from Steinolfson and Van Hovens simulations.

Evolution of a simulation made with Kp =0.263, S =200.,v=0.01 and
X, = 2.5 including a secondary island generation as described by : (a) the
reconnected flux, (b) its corresponding exponential growth rate, (c) the
position of the x and o points on the neutral line and (d) the amplitude of the

first four fourier modes of y also on the neutral line.

An isolated instance of secondary island generation during a simulation made
with Kp =0.23, S =200., v =0.01 and X,, = 2.5 described by the evolution
of (a) the reconnected flux, (b) the exponential growth rate, (c) the first four
Fourier amplitudes of Y on the neutral line, (d) the position of the x and

o points on the neutral line and (e) the magnetic island width.

Contour plots of , ¢ and J, at several points during the secondary island
generation described in fig.19. ‘

3-D perspective plots of J, at several points during the secondary island
generation described in fig.19.

The (a) length, A, (b) width, , and (c) aspect ratio, A, of the x-point current
sheet as a function of the Lundquist number showing the following scalings:
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Fig.23

Fig.24

Fig.25

Fig.26
Fig.27
Fig.28

Fig.29

Fig.30

Fig.31

Fig.32

Fig.33

A~S'0'34,5~S'0'25,A~S'0'095.

The maximum flow velocity, V., reached along the x-point current sheet as
a function of Lundquist number showing that V., ~ S~ 0.73,

The (a) length, A, (b) width, 3, and (c) aspect ratio, A, of the x-point current
sheet versus the periodicity length for several values of the Lundquist no.,

S =200, 1000, 2000. The small horizontal lines mark the length, width and

aspect ratio at which the current sheets break up due to the secondary

tearing instabilities.

An isolated instance of coalescence during a simulation made with K, =023,

S =200., v =0.01 and X,, = 2.5 described by the evolution of (a) the
reconnected flux, (b) the exponential growth rate, (c) the first 4 Fourier

modes of y on the neutral line, (d) the position of the x and o points on the
neutral line and (e) the magnetic island width.

Contour plots of y, ¢ and J, at several points during phase I or the
Preparation phase of the coalescence process described in fig. 25.

Contour plots of y, ¢ and J, at several points during phase II or the
Reconnection phase of the coalescence process described in fig. 25.

Contour plots of y, ¢ and J, at several points during phase III or the
Relaxation phase of the coalescence process described in fig. 25.

3-D perspective plots of J, at a dozen points during the coalescence process
described in fig. 25.

The variation of (a) the reconnected flux, (b) the exponential growth rate,

(c) the maximum island width, (d) the first four fourier modes of y on the
neutral line and (e) the positions of the x and o points on the neutral line over
the entire evolution of a simulation made with K, = 0.25, S =200.,v=0.01,
and X,, = 2.5, complete to saturation.

Contour plots of y at several points during a section of evolution in which the
coalescence and secondary island generation partially overlap to produce a
peristaltic like squashing and stretching motion of the magnetic islands.

Contour plots of v showing the three types of saturated configurations that
have so far been found as a function of L, i.e. (I) the stationary symmetric

islands that exist for L, < Ly, (IT) the asymmetric travelling wave solutions

that exist for Log, < L < Ligiyg) and (II) the stationary modulated double
island states that exist for Lcrit(2) < I.4p < Lcril(3)?°

(a) The phase velocity of the islands as a function of L, showing the parabolic
bifurcation to the asymmetric travelling island solutions at L, = Ly, the
period doubling bifurcation of the symmetric solution at L, = Lpp and the
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Fig.34
Fig.35

Fig.36

Fig.37

Fig.38
Fig.39

Fig.40

_ Fig.4l

Fig.42

Fig.43

Fig.44

Fig.45

interchange of stability back to the zero phase velocity double island
solution at L), (b) Schematic drawings of three types of bifurcation.

Contour plots of J, corresponding to the same values of L, as in fig.32 show-
ing clearly the increasing length and asymmetry of the current sheets with L,
and the transition to the double island state above L2y

3-D perspective plots of J, for K, = 0.25 and 0.12 showing the similarity in

shape but difference in orientation of the asymmetric current sheets in each
case.

Plots of (a) the first 4 Fourier modes of y on the neutral line as a function of

wavenumber and (b) the first 9 Fourier modes of W over a smaller range of

wavenumber showing the nature of the discontinuous transition from the
single to the double island state.

As per fig.36 (a) and (b) but as a function of wavelength instead.

Contour plots of , J,, ¢, andy V for a simulation made with Kp = 0.05 show-
ing an island state with four modulated islands per periodicity length.

Schematic diagrams showing (a) the Petschek reconnection model and (b) the
Sweet-Parker model where the shaded region represents the diffusion layer.

Plots of (a) the measured local reconnection rate, M, the local Sweet-Parker

rate, Mspgoc) = Sioc 05 and the local Petschek rate Mp(1oc) = (8 InSyc) ~ 1
versus Sy, , (b) the same as in (a) but with S, replaced with Sy, = B,.S

so that the diffusion length is kept constant and (c) the same as in (a) but with
Sioc replaced with the asymptotic Lundquist number S.

The measured local reconnection rate plotted against the different versions of
the Sweet-Parker rate, i.e. (a) My, versus S~ %3, (b) M, versus S, "% =

(B1ocS)” 05 and (c) M, versus Sy 05 - (B1ocSAM o) 05 to show that
good agreement can be obtained as long as the diffusion length is constant.

The local inflow velocity incident to the curent sheet, Vi, plotted against the
three versions of the Lundquist number showing that Vo, ~ S %73,
Viee ~ B1ocS)” 09 and Vioc ~ Sioc 163

The local magnetic field, Boe, (=1ocal Alfven velocity ) at the edge of the
current sheet plotted against the three versions of the Lunquist number show-
ing that Bioe ~ S~ 0'21’ Bioc ~ (BiocS)” 026 and Bioc ~ Sioc” 0'46'

'fhe linear growth rate of the reconnected flux as a function of K, for
- Xy =25,4.0, 8.7 and 12.0.

Plan view of the LT-4 tokamak, taken form reference [71], showing in
particular the single armed iron core as well as the toroidal field coils,
restraint frame and vacuum chamber.
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Fig.46

Fig.47

Fig.48

Fig.49
Fig.50

Fig.51

Fig.52

Fig.53

Fig.54

The maximum amplitude of the poloidal magnetic field oscilations versus
q(a), taken from ref. [18], showing four different regimes of MHD activity.
The lower scale was calculated from Bg and By, using the cylindrical

approximation to the safety factor whereas the upper scale includes toroidal
corrections to this. '

Schematic diagram, taken from reference [14], showing the two different
routes to disruptions as observed on LT-4 : Type A is the Bg' and soft x-ray

signal for the regular activity and type B is the same for the irregular activity
that occurs when the density falls during regime III.

Examples of the regular and irregular MHD activity on the Mirnov coils not
leading to disruption and a section of irregular activity which does, ref.[18].

Magnetic and soft x-ray signals during the transition from regime II to m.l8!

(a) Geometry for the description of a toroidal plasma configuration such as a
tokamak. (b) Cylindrical geometry configuration used for approximating a
toroidal plasma with a large aspect ratio. The helical ribbon defined by the

magnetic axis and the helix of constant m6 + kz and r is such that at the
mode rational surface the magnetic field is tangent to the ribbon.

The magnetic structure of an m=2/n=1 resistive tearing mode.

(a) Data points corresponding to the radial electron temperature profile
obtained from Thompson scattering measurements on the LT-4 tokamak.

Through them are drawn three fits : ————— fit(1), ...c....... fit(2),

------- fit(3) corresponding to the parameter values listed in table 4.
(b) The toroidal current density profiles corresponding to the same three

fits in (a) using J, o< Tem. Crosses mark the radial position of the m=2/n=1
rational surface in each case.

(a) The saturated island width versus q(a) for several different values of the
parameter ), in the parameterization of the safety factor profile where A,=1.5,
q(0) = 0.9 and A, = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.5 and 4.0.

(b) The same as in (a) but for different values of the parameter A, with

Ao = 0.8, q(a) = 0.9 and A, = 0.5, 1.0, 1.3, 1.5, 2.0, 4.0, 6.0, 8.0, 10.0.
(c) The value of g(a) corresponding to the lower limit of the m=2/n=1 mode
activity plotted separately as a function of Ay and A, showing that the peak

of activity is shifted more effectively by changing Aq.

(a) The saturated magnetic island width versus q(a) for fit(2). The dotted line
shows how mode locking for W, below 1.05a would restrict the observable

range of Bg;/Bgg oscilations to that shown in (b) between the vertical dotted
lines - this being close to the experimentally observed range plotted in (c)

which shows : —————— Bg,/Bg, amplitude versus q(a) measured on
LT4, _ _ ___ __ Bg1/Bgg versus q(a) for fit(2) and ............... Bg1/Bgo
versus q(a) for fit(3).
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Fig.55

Fig.56

Fig.57

Fig.58

Fig.59

Fig.60

Fig.61

Fig.62

Fig.63

Schematic diagram of plasma slab model with corrugated perturbation of
conducting walls.

A series of contour plots of y, J, and ¢ referred to a plot of the saturated re-
connected flux versus V,o/V 5 showing the variation of the magnetic island

state produced by a corrugated boundary perturbation of amplitude, AW =

0.02, with S = 10%, v = 0.01 as the zero order flow velocity, Vyos is varied
between 0 and Va.

A set of plots of (a) the saturated reconnected flux, (b) the saturated island
width and (c) the phase shift ( in radians ) of the o-point of the islands

produced by a corrugated boundary perturbation with AW =0.02 as a
function of Vy¢/V,4 for S = 10° and 10* and v = 0.01 and 0.0001.

Contour plots of y, ¢ and J, for the case with S = 104, v = 0.0001, AW =
0.02 and Vy = 0.01 showing a forced magnetic reconnected island state in

which the zero order flow is shown to be excluded from within the island
region defined by the separatrix. This is more clearly shown in the four cross-
section plots of the y-component of the fluid velocity taken at equal intervals
along the island length.

A set of 3-D perspective plots and contour plots of the z-current density for
various force reconnected magnetic island states of interest showing the

significant changes that can occur to the current as a function of v, Vg and S.

Time evolution of (a) the positions of the x and o points ; (b) the variation in
Y-y, at x=0,y=0 and (c) the reconnected flux showing the mode locking of a
tearing mode magnetic island by a corrugated boundary perturbation for the
case with AW = 0.05, V=001, S = 10%, v =0.01, K, =0.35, X, = 2.5.

As per fig.60 but showing the partial modelocking of a tearing mode magnetic
island for the case with perturbation amplitude reduced to AW = 0.01.

Contour plots of J,, W, ¢ and cross-section plots of V, at two times during

the partial mode locking process corresponding to (a) when the island is
temporarily locked and (b) just after it has become unlocked.

A series of weather maps showing a high pressure vortex (or anti-cyclone)
getting temporarily locked in the Great Australian Bight for almost a week
before squeezing out past the south eastern tip of the mainland to continue
its journey eastwards.
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I-1.1 Introduction : Brief Review of the Resistive Tearing Mode

In order to achieve the high densities and temperatures required for a successful
thermonuclear reactor, a plasma must be confined by a magnetic field for a sufficiently
long time. In the attempts to achieve this confinement, the problem of stability has
emerged as one of the most important. A plasma confined by a magnetic field is
potentially able to break out of the confinement system by a large variety of instabilities,
the most serious of which can be described by the magnetohydrodynanﬁc (MHD)
modell!) in which the plasma is assumed to behave as a conductin g fluid.

In fact many of these instabilities can be adequately described by the more basic
model of ideal MHD >34 which essentially describes how magnetic, inertial and
pressure forces interact within a perfectly conducting plasma of arbitrary geometry.
Because of the assumption of perfect conductivity it is possible to interpret the plasma
motion as one in which both the plasma and magnetic flux move together. This has
important implications for plasma stability, in that the magnetic field line topology is
constrained to remain unchanged during any motion occurring on the hydromagnetic of
Alfvén timescale. The success of ideal MHD in describing those instabilities that can
grossly deform the plasma on the Alfvén timescale has made it the main consideration in
the design of magnetic configurations for use in possible fusion reactors. But while
favourable ideal MHD properties are necessary in a reactor, they may not be sufficient.

The inclusion of a finite but small amount of resistivity in the MHD equations
relaxes the topological constraints imposed upon the plasma and allows the otherwise
'frozen in' magnetic field and fluid to decouple. This makes it possible, under certain
circumstances which depend upon the initial configuration, for the plasma to relax to a
state of lower magnetic energy. Such a state is topologically inaccessible in the ideal case.

The release of the free energy drives certain resistive instabilities [45.6.7] which can
be classified into three main types : (1) the rippling mode, which is a short wavelength

mode driven by a gradient in the resistivity, is usually not important except maybe in the
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edge region of a plasma ; (2) the gravitational mode (or g-mode) which is the resistive
analogue of the well known Rayleigh-Taylor interchange instability (4] als0 occurs at short
wavelength and is stabilized by good field curvature and the effect of shear ; and (3) the
tearing mode, which is the subject of this thesis, is the resistive equivalent of the ideal
kink mode ! and is driven essentially by gradients in the current density. It differs from
the previous instabilities in that it is a long wavelength mode and causes a gross
deformation of the magnetic field topology. It is this fact which makes it the most
important in terms of its effect on the evolution of the plasma in magnetic devices such as
the tokamak which rely on strong internal currents to achieve confinement.

Instabilities due to finite resistivity are also of considerable interest in astrophysics,
where they find application, for example, in the study of solar flares, geomagnetic
phenomena and in star formation theory. However it is the connection between these
modes and the plasma processes leading to the disruption of tokamak plasma discharges
which provides the main motivation for this study of the nonlinear behaviour of the
resistive tearing mode. Nevertheless some of the bifurcation behaviour we have found
may have astrophysical implications. Before discussing this further let us consider how
the tearing mode arises.

Consider an ideal tokémak plasma equilibrium, in which the external currenf coils
and transformer fields are so arranged as to produce a magnetic configuration in which the
magnetic field lines are constrained to wind helically around the torus on nested toroidal
flux surfaces with an average pitch or rotational transform varying from one surface to the
next. A cross-section of the surfaces would thus appear as nested rings. Because of the
localization of charged particles around rhagnetic field lines, the existence of such surfaces
forms the basis of the confinement system - the sheared rotational transform being
necessary to avoid certain ideal instabilities.

It is not immediately obvious how the inclusion of finite resistivity can change the
topblogy of the configuration. One might expect that the only effect would be to cause the

magnetic field to slowly decay away through the dissipation of the electrical currents.
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However, it was shown ©°! that though the field does diffuse across the entire plasma
cross-section, the diffusion has a dominant effect at only a finite number of surfaces
within the plasma where the pitch or helicity of the equilibrium field lines matches that of
an instability. For there to exist a coherent wave structure such surfaces are such that the
rotational transform is a rational fraction of the toroidal and poloidal winding numbers,
i.e. where the field lines wind back upon themselves in a finite number of circuits of the
torus. Such surfaces are therefore known as 'rational surfaces' or 'mode rational surfaces'
when they are the source of an instability.

At these rational surfaces the plasma is locally able to move without causing the
field lines to bend and the resistive diffusion changing the field is of a comparable
magnitude to the changes caused by advection. This allows the fluid to decouple from the
field so that they can diffuse with respect to each other to alter the topology of the field
lines. To see this more clearly consider the induction equation :

%?-:Vx(VxB)+lV23 ¢))

0

which can be derived from the resistive MHD equations listed in section I-2.1 by
combining Ohm's law, (13), with the three pre-Maxwell equations : (14), (15) and (16)
where B is the magnetic field, V is the fluid velocity and 1 is the resistivity. The first term

on the right hand side of (1) represents the coupling of the field to the plasma while the

second term gives the diffusion of the field.

Diffusion over a distance, a, has a characteristic timescale of Tg = |1, a%/n while
ideal MHD instabilities have a growth time characterized by the Alfvén velocity, i.e. T =
a/Vy=a(yp) V2/B where p is the mass density and B is the magnitude of the magnetic
field. A comparison of the size of the terms in the induction equation can be made by
normalizing with the characteristic quantities : a, T4, T, and By. The dimensionless form

of the induction equation becomes :

9B o Ux(VxB) + LV @)
ot S ‘
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where the ratio, S = T/T, , is known as the Lundquist number. Inserting values of the

parameters found in contemporary tokamaks gives S ~ 10* to 108, the latter figure being
appropriate to a reactor plasma. Thus the timescale for diffusion in such devices is many
orders of magnitude greater than that for the ideal hydromagnetic instabilities.

Consider a simple case in slab geometry of a plasma with a straight unidirectional
field B, that varies across the slab like : By = By (x/a) &, so that it has a neutral line at
x=0. Consider, also, perturbations to the magnetic field and velocity flow accross the slab

of the form :

B (xy.20) = By (0 exp( ik x +iky +71) ©

and insert this into the linearized form of the induction equation, (2), to give :

2
1 anl 2

YB, = i(kB)V, + 3| =~ K By @
9x

where K> = K + K> .
X y

Since S is large, flux freezing characterized by 9B,;/dt~i (k-Bg) V,; will hold to a

good approximation everywhere except in the neighborhood of the resonant ( or mode

rational ) surface where k-By ~ 0 . Near this surface the term i (k-Bg) Vy; is small and

all three terms in (4) will be comparable in magnitude. Since S >> 1, this implies that

V2Bx1 and hence E)ZB,‘I/BX2 must become locaily very large in a narrow resistive layer
about the plane where k-B = 0. The problem is then a boundary layer type problem for
which a solution away from where k-B,, = 0 may be adequately described by the infinite
conductivity limit with resistive effects being taken into consideration only in a narrow
boundary or tearing layer about k-By =0 . Of course in order to obtain a solution
another relationship between the linear variables B, and V, is required and this is obtained
from the linearized version of the momentum equation, (10) of section I-2.1.

Without going into any detail the division of the problem into two parts defined by

the regions inside and outside the boundary lends itself to the techniques of asymptotic
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matching. For the exterior solution the scale is such that the perturbed field B,; will

appear to have a discontinuity in its first derivative across the surface at x=0 given by :

+

0

©

A B ,(0) - B (0D | 2 B_)
B,(0) o

o

The linear growth rate of the resistive mode is then determined by requiring that the

solution in the resistive layer around k-By = 0 match the discontinuity, A'.,,, in the

outer solution, i.e. the growth rate, v, is found from the eigenvalue equation :
Al ¥) = Ay ©)

For the slab configuration discussed the eigenvalue equation has an analytical solution
[5:61 of the form :

vy~ (Aa )4/5 TR— 3/5 1A— 225 0

Using (7), an estimate (61 of the size of the tearing layer & over which the resistive
diffusion term in (4) is comparable in magnitude to the ideal MHD term shows that 6
scales as § ~ §%° Using an energy principle analysis [6] | it can also be shown that the
tearing mode is unstable if A'> 0.

Detailed simulations have been made *! of the linear resistive tearing mode in a slab
plasma showing the variation of the linear profile and growth rate with Lundquist number
and periodicity length of the system. Despite the usefulness of such information, the linear
stability theory of the tearing mode gives only an incomplete description of the behaviour
of the mode, since in most laboratory plasmas nonlinear effects become important in the
very early stages of development of the mode. Equation (7) shows that the linear growth
rate lies between the resistive and the hydromagnetic timescales and in tokamak plasmas
such as LT-4 the growth time would be typically of the order of a millisecond, which is a
small fraction of the total discharge time of about 100 milliseconds. For this reason it is

important to investigate the nonlinear behaviour of the tearing mode, especially since it is

17



after entering this stage that the topological changes to the magnetic field configuration,
resulting from the reconnection in the diffusion layer, become evident.

The magnetic field tends to break up into a number of thin filaments which when
viewed in cross section appear as magnetic islands joined end to end and separated by a
separatrix, as shown in fig.(1). The x and o points of the island correspond to invariant

rational field lines along which the island structure threads its way through the plasma.

Fig.1

As the islands grow, flux surfaces are pulled in from above and below to weld
together at the x-points and then tear apart to form the closed surfaces within the island.
Broadly speaking the process is driven by the need to reduce the magnetic energy in the
regions away from the islands.

There are essentially two separate nonlinear stages. The first, investigated by
Rutherford ), occurs when the magnetic island width exceeds the width of the tearing
layer. At this point nonlinear eddy currents become large enough to significantly oppose
the flow pattern so as to replace the inertia as the force opposing the growth of the mode.
The result is a transition from an exponential to a slower algebraic growth with the island
width, W, increasing linearly with time. More specifically the early nonlinear growth of
an island in this 'Rutherford regime' is given approximately by (o1,

%"! = 1.66n@) [ AW) = aW ] ®)
t
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where nN(r;) is the resistivity at the rational surface and A'(W) is the logarithmic derivative
across an island not much bigger than the diffusion layer. The second term on the right
hand side of (8) was introduced by White et al.l1) by extending the work of Rutherford
to include self-consistent changes in the resistivity due to the island. However the
coefficient, @, is practically negligible if the resistivity profile increases radially with the
scale length of the minor radius.

The second stage occurs when the island size becomes comparable to the shear
length associated with the initial field. During this stage, the behaviour of the mode is
dominated by the gross geometry of the plasma, which may eventually lead to the
saturation of the mode if a minimum magnetic energy state exists for a finite island width.

By extending the interpretation of (8) to include islands much greater than the
diffusion layer and neglecting the term involving o, an approximate condition for the

saturation of the islands becomes :

A(W) =20 )

This criterion has been used in quasi-linear delta-prime calculations (10,111 ¢ predict
saturated magnetic island widths covering a sizeable fraction of the minor radius.
Saturation of magnetic islands has also been demonstrated via fully nonlinear simulations
in cylindrical geometry [12] a5 well as in slab geometry in this thesis. Given that the
appropriate mode rational surfaces all lie within the plasma it is also possible for several
island structures of different helicities to form simultaneously (131 Such helical island
structures represent a significant distortion to the original equilibrium and in fact it is
generally believed that they are the cause of the periodic fluctuations in the poloidal
magnetic field, known as Mirnov oscillations, which are detected on magnetic pickup
coils at the edge of the plasma. The oscillation in the field apparently results from a
toroidal rotation of the helical island structures around the torus.

Under conservative operating conditions the resonant tearing modes will saturate at

a small enough amplitude not to seriously upset the evolution of the discharge, although,
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because of the unconstrained motion of charged particles along magnetic field lines, the
change in topology does increase the transport across the plasma and so degrades the
particle and energy confinement. However usually as a consequence of trying to improve
the performance of the tokamak discharge, by increasing the density, temperature or
current in the plasma the MHD activity will behave more erratically perhaps stopping and
restarting suddenly, disappearing altogether or undergoing sudden bursts of growth
which can lead to a sudden termination of the discharge known as a major disruption [4.6]
Considerable damage to the device can occur during a disruption as the high energy
plasma is quenched on the limiter or vessel wall. For this reason and because it is
relatively unpredictable the disruptive instability is considered to be the most dangerous
instability occurring in tokamak plasmas and presently represents, perhaps, the major
obstacle for tokamaks to reach the conditions necessary for a fusion reactor.

Not much is known for certain about the dynamics of the major disruption but
because it is nearly always preceded by certain MHD activity (usually by a fast growing
m=2 mode, although this is not as apparent in the LT—4 tokamak (14! ) the inference is that
it is closely tied up with the nonlinear behaviour of the saturated tearing mode magnetic
islands. The imperative is therefore to understand the saturated behaviour of the tearing
mode sufficiently to be able to exﬁlain the nature of the activity that precedes a disruption
so that, hopefully, means can be developed to avoid such a distructive termination of the
plasma discharge.

Several scenarios have been proposed for the plasma disruption, including ones
involving the interaction of islands of different helicities (13.15.16] The interaction of
neighbouring island chains is believed to induce the disruption by causing ergodic
wandering of the magnetic field lines 131 The disruption could also be due to the
interaction of magnetic islands with the limiter or wall or more simply just due to the
current profile adiabatically changing to a form which causes an island to rapidly grow too
large for the plasma to be sustained. None of the proposed models, however, gives a

complete description of the final stages of the disruption so that it is uncertain how such
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processes actually destroy the confinement. It is also difficult see how they would account
for the range of precursor MHD activity seen on the LT-4 tokamak (14.17,18,19,20} g hich
is not always the same as elsewhere. The evidence so far suggests that there are many
different forms of disruption, involving some combination of these or other processes.
Given the present uncertainty it is probably worthwhile to return to a more general
investigation of the nonlinear resistive tearing mode as means of uncovering further
properties which may help in the resolution of the problem. It is this possibility which has
provided the main motivation for the work in this thesis, especially in the first half which
describes a detailed numerical study of the basic nonlinear evolution of the tearing mbdc
on a current sheet. As well as tidying up sbh;e previous résults, two new bifurcations
have been found in addition to the standard one occuring at the minimum unstable tearing
mode wavelcnéth which are found to be approached via the processes of coalescence and
secondary island generation, althougﬁ it is not certain whether such behaviour would
occur in tokamak plasmas. The second half represents a more direct attempt at using
tearing mode theory to explain the varied MHD activity observed on the LT-4 tokamak.
This includes using a quasi-linear delta-prime analysis to model the amplitude of MHD
activity in the LT-4 tokamak on the basis of an m=2/n=1 magnetic island. A mechanism of
mode locking is invoked as a means of explaining the difference in the range of activity
predicted by the theory as compared with experimental 'observation. This is followed by a
numericél study of forced feconnectio’n in a flowing plasma and finally a preliminary
nonlinear numerical investigation of the dynamics of mode locking of tearing mode

magnetic islands onto an external field perturbation.
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I-1.2 Review of Nonlinear Behaviour.

Many investigations, usually numerical, have been made to establish the nonlinear
behaviour of the tearing mode in various geometries but because of the complex nature of
the problem, the results have fallen short of producing a systematic and conclusive
picture. In particular many papers have been written on the tendency of magnetic islands
to coalesce. The idea that this produces a state of lower energy was originally speculated
by Furth, Rutherford and Selberg (21], Following this, the existence of the linear ideal
instability was proved by Finn and Kaw (221 by considering perturbations on a chain of
magnetic islands in a 2-D plane slab plasma using the energy principle of ideal MHD
while the linear dynamics of the instability and the nonlinear process of merging of two
islands in the presence of resistivity was demonstrated by Pritchett and Wu (23], Biskamp
and Welter ?*! then studied the process numerically over a wider range of values of the
resistivity to determine scaling relations for various parameters including the reconnection
rate during coalescence which, in general, favoured the Sweet-Parker model over that due
to Petschek. The energy principle analysis was re-examined by Bondeson (25 to show
that for small values of the island width, W, the growth rate scales as W32 and therefore
that there is no threshold island size for the coalescence instability. Bhattacharjee, Brunel
and Tajima (261 then made a more detailed numerical study of the coalescence process by
including the effects of compressibility and the magnitude of the toroidal field on the rate
of reconnection during coalescence.

The significance of these results is diminished somewhat by the fact that in all these
papers the exact island equilibrium due to Fadeefr, Kvartshava and Komorov 271 was
bused as the initial equilibrium. The advantages of starting with a ready made magnetic
island configuration are obvious but unfortunately, as will be shown later, it is not a state
accessible via the resistive tearing mode and hence it is less certain that a physicai tearing
mode will behave in the same way. The reality of this is made apparent by comparing the

corresponding current distributions, The exact island equilibrium has a simple current
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distribution peaked at each o-point to form a line of parallel current channels which allows
the origin of the coalescence instability to be easily understood in terms of the tendency of
parallel current filaments to attract each other. In contrast, for a magnetic island
configuration generated by a tearing mode the current distribution is much more complex
and as shown by Hayashi (281 jt can have, at least temporarily, almost the opposite
distribution with peaks at the x-points and troughs at the o-points during its evolution.
Hayashi uses this observation to explain the absence of spontaneous coalescence in his
simulation but incorrécﬂy generalized this to conclude that the coalescence instability does
not take place for magnetic islands generated by a tearing instability. It will be
demonstrated here that for appropriate parameter values the tearing mode magnetic island
will develop to a stage, much further on in the evolution than in Hayashi's simulations,
where conditions are such that coalescence does indeed occur spontaneously.

It has generally been believed that a magnetic island chain will continue to coalesce
until it reaches a state where further coalescence is restricted only by the finite plasma size
or in the case of say a tokamak plasma, by the minimum mode numbers commensurate
with the g-value on the particular rational surface on which it forms. In contrast nonlinear
simulations of the tearing mode made by Steinolfson and Van Hoven 291 in slab geometry
have shown the emergence of secondary magnetic islands between each of the primary

magnetic islands, see fig.2(a), a process which would seem to be the opposite to

| <=
(a) (b)
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To make the situation even more confusing Biskamp % has also shown the formation of
a different kind of secondary island, see fig.2(b), in the neutral layer between two
coalescing islands oriented perpendicular to the original neutral line, although their
existence is questioned by Bhattacharjee, Brunel and Tajima 26] 35 being a consequence
of the symmetry constraints imposed on his numerical scheme. Even so, the results of
Steinolfson and Van Hoven and Hayashi certainly place a question mark over the actual
tendencies of the nonlinear tearing mode magnetic islands and at least indicate that
transformations of the magnetic islands other than coalescence can occur.

An alternative approach considered by Matthaeus and Lamkin 312 is to excite a
broad band of fluctuations on a sheet pinch to investigate turbulent reconnection
behaviour. This produces small and large scale magnetic islands which undergo a much
more exotic variety of motions including internal pulsations of the larger islands and
asymmetric coalescing of the small islands or bubbles. The motivation for this approach
comes from the expectation that turbulent reconnection would occur in real plasmas
because of their high Reynolds and Magnetic Reynolds numbers. High level turbulence
would certainly be expected to dominate the ramp up phase of a plasma discharge but as it
settles into a steady regime of operation the experimental evidence 331 is for a small
number of tearing modes to rise above the noise and dominate the further evolution of the
plasma. Studies of turbulence are notoriously demanding of computer time so rather than
exciting a large number of modes and waiting for the dominant modes to emerge we shall
content ourselves here with a smoother start up by initially exciting only the lowest order
mode and allow higher order modes to be excited through the nonlinear coupling as
required.

This first part of the thesis, comprising sections I-2.1 to I-3.7, is devoted to a
systematic numerical study of the nonlinear behaviour of the resistive tearing mode on a
linear current sheet in a plane slab plasma. In section I-2.1 is given a description of the
equations and other detaiis of the model including a discussion of the boundary conditions

while section I-2.2 provides the details of the actual numerical scheme employed to solve
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the equations. The limitations of the technique are made evident in section I-2.3 through a
discussion of its convergence properties in various regimes of operation and in section I-
2.4 which describes the numerical stability of the scheme. This includes a brief review of
a novel alternative semi-implicit method 4! for temporally advancing the MHD equations
which when applied to the reduced resistive MHD equations is shown to be equivalent to
the addition of a viscous damping term. The results of the numerical simulations are given
in section I-3, which begins in section I-3.1 with a description of the type of simple
tearing mode evolution typically observed in previous numerical studies. All simulations
are taken to saturation and in section I-3.2 an investigation is made of the variation of the
saturated tearing mode states as a function of the various plasma parameters. This reveals
evidence of a preferred island length, L.s, which in section I-3.3 is shown to lead to the
formation of unstable x point current sheets which résult in the generation of sccohdary
magnetic islands when the periodicity length, L, exceeds a critical length, L. This is
contrasted in section I-3.4 with a simulation of the coalescence of tearing mode magnetic
islands for which a detailed description of the process clearly identifies three dynamical
stages. In section I-3.5 it is shown how the competition between thesel two mechanisms,
when L; > Ly, leads to a transition to more complex island structures with asymmetric
current sheets and non-zero phase velocities. Two new bifurcations are distiguished as a
function of L;;: a symmetry breaking bifurcation and a period doubling bifurcation. A
study of the individual Fourier modes at saturation reveals a system to these transitions
that indicates the likelyhood of further such transitions at even higher values of the
periodicity length. The steady state nature of the reconnection that persists after saturation.
defines a rcconnectihg system suitable for comparison with the two steady state
reconnection models due to Sweet-Parker >3] and Petschek (7). This forms the topic
of investigati&i in section I-3.6. Finally a summary. of the results is given in section I—3;7

in which some conlusions and implications for further studies are made.

25



1-2.1 Mathematical Model

The equations appropriate for the déscription of the low frequency long-wavelength
phenomena, such as that produced by the resistive tearing mode, in a fluid of finite
electrical conductivity and finite viscosity, are the visco-resistive magnetohydrodynamic

(MHD) equations. These are given by:

v
pom+ VIV = I xB - Vp + VIV 4 V%V(V'V) (10)

P L vov =0 11

ot v (1

4 ol =s 12

E + VxB =nJ a3)
JB

VXE = - — (14)
ot

VxB =p,J (15)

VB =0 . (16)

and relate the electric and magnetic fields E and B to the fluid velocity V and the

thermodynamic variables of pressure p and mass density p . The transport coefficients
of the dissipative terms in equations (10) and (13) are the bulk viscosity v and the
electrical resistivity 1 while the source term on the right hand side of equation (12)
corresponds to the energy dissipated by them. The equations are essentially the equations
of fluid mechanics and electromagnetism (pre-Maxwell) joined together through Ohm's
law. Equations (10) to (13), which are respectively : the equation of motion, the mass
continuity equation, the adiabatic equation of state and the generalized Ohm's law, can be

derived from the moments of the Boltzman equation (23] for each species of particles.
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This is done by assuming the hydrodynamic or continuum approximation and combining
them into a single fluid model in which ions and electrons are treated as a single
electrically conducting fluid.

To study the nonlinear behaviour of the resistive tearing mode using these equations
it is necessary to resort to numerical techniques as the complex reconnection activity
described in the previous section makes it difficult to choose appropriate approximations
to make the problem tractable analytically and still retain the essential properties. In fact
even when using a numerical approach it is necessary to reduce the problem to its simplest
possible form and operate close to numerical stability limits to bring the calculation within
the range of available computational resources.

Since we are only interested in the qualitative behaviour of the tearing mode we will
consider a 2-D plane slab plasma with 9/dz =0 . Previous studies of the nonlinear
tearing mode (26.38] have shown the effects of compressibility to be small in the limit of a
large B, field. In ’effect the large magnetic field strength makes the plasma behave
incompressibly because of the increased tension it creates in the plasma. Tokamak
plasmas tend to behave in a similar fashion because of their large toroidal field. We shall,
therefore, also consider an incompressible plasma with uniform density especially since it

allows greater simplification of the governing equations. Equation (11) then reduces to:
Vv =0 . an

so that the second viscosity term in equation (10) vanishes. Equations (16) and (17) now
allow us to express the fluid velocity and magnetic field in terms of a velocity stream

function ¢ and a magnetic flux function Wy respectively by:

B =¢xVy+Be | (18)

<
Il

& xVo+ V& . C9)
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which makes it possible to reduce the visco-resistive MHD equations down to a set of
coupled PDE's in terms of only two dependent variables,y and ¢, known as the reduced
resistive MHD equations. We shall bricfly show how they are derived.

Operating on eqn.(14) with &, X , integrating and using eqn.(18) we obtain:
E, =¥+ E" 20)
ot
where E,*'is an externally imposed constant electric field in the z-direction. Substituting
this into the z-component of eqn.(13) ( Ohm's law ) we then get:

%ML +V-Vy =17, - E" . Q1)
t

Substituting eqn.(18) into z-component of eqn.(15) we get:

I = —Viy . 22)

Operating on eqn.(10) (the equation of motion) with &,V X and substituting in eqns.(18)

and (19) we obtain an equation for V2¢:
%% + VG = $&(Vyx Vi) + hvaZQ 23)
where
{=¢VxV =V 24)

is the z-component of the vorticity.

Equations (21) and (23) in conjunction with equations (22) and (24) are
independent of p, V, and B, and form a closed system which with boundary conditions
and an equation for M constitute the reduced equatibns in slab geometry. They describe
the field and flow behaviour in the x-y plane in terms of the two stream functions ¢ and
y, from which B,, By, V, and V,, can be obtained by substitution into egns. (18) and

(19).
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Although the complete nonlinear dynamics is given by these equations it is also
possible to derive the evolution equations for V, and B, which depend on ¢ and y. But
since these would add unnecessarily to the cpu time we will not do this here. It is
however necessary to evolve the z-component if it is desired to know how the total energy

is partitioned but it was considered better to sacrifice this information for the sake of

greater computational speed.
In any case, a previous numerical investigation (29 that included the evolution of Vv,
and B, showed that in most cases only a small fraction of the available energy appears as

kinetic energy, with the majority being converted to either perturbed magnetic or thermal

energy during the evolution of the tearing mode.
A dimensionless version of the reduced equations is obtained by normalizing:

lengths with the current channel half width, a ; fields with By, the value of the initial
equilibrium field at the plasma edge; times with the Alfvén or hydromagnetic time T, =
a(uop)“z/BO and the remaining dimensional terms gathered to form the Lundquist number

S =g/t Where g = azp.omo is the resistive diffusion time, Ny being the minimum value

of 1. These are:
2 - 4,41+ L(AT, - £ (25)
at A
%§=[g,$] w151+ 9 V2L (26)
t
Io= Vi @7)
P = 9% | (28)

where with further manipulation we have expressed some terms of the dimensionless
equations in terms of a Poisson bracket defined by:

of 0 of o
[fg] = ——-8 228 (29)



and where:

¥ = v/@By V=vipayty) % =x/a
$=0/@7t)  A=mn/n, §=yla
§=1,¢ " = EXU(n,Bfapy) t=th,
A 2 2
5, = 1 /Byupy V=4 (30)
ox oy
Initial Conditions:
We consider an initial flowless equilibrium of the form:
B(t=0) = Bytanh(x/a) &
V(t=0) =0 31)

which has a line of field reversal at x = 0 along which a tearing mode can generate a chain
of magnetic islands.

The current channel associated with this equilibrium through 3 0= V x ﬁo
= sech?(x) is maintained by the uniform z-directed electric field l’::.ze"“in conjunction with
a non-uniform resistivity profile evaluated from Ohm's law to give:

Aext
E

AR = EX/T,, &) = cosh™®) (32)

This is a frequently used technique [16,39,40411 5 allow the tearing mode to proceed to
saturation by preventing the resistive decay of the equilibrium on which it grows while
still allowing for self-consistent nonlinear changes to the background field produced by
the tearing mode itself. Note that ﬁ has been normalized so that ﬁ(O) = 1. Hence ﬁze"‘ is
not a free parameter, but is in fact given by ﬁz"’“ = 1. The only explicit free dimensionless
parameters are S and \7 Also note that we are assuming the applied electric field and.
resistivity to be constant in time, but not the total current. However by éveraging equation

(25) over the cross sectional area of the plasma it can be shown that (nJ,) is conserved. -
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The resistivity depends only on the electron temperature which tends to equalize on
surfaces of constant flux so it would probably be more realistic to set 1 = n(y). The

functional form could still be obtained from the initial current profile to give:

A = 2¥V&Y (33)

Unfortunately the spectral technique used in the éode would make it difficult to update the
mode profiles of 1 each timestep without incurring a prohibitive increase in cpu time due
to the Fourier transforming that would be necessary to compute the exponential
dependence of 1 on Y(x,y).It is possible that 'fast Fourier transform' techniques could be
used to remedie this problem, but the success of the simpler method in obtaining saturated
tearing mode states motivated us to follow suit, although in hindsight we are not so certain
that this hasn't played a significant role in determining the new behaviour observed in our
simulations.
B nditions:

The system is isolated between two parallel, frictionless, impenetrable, perfectly
conducting walls at x = £ X, and all quantities are assumed to be periodic in the
y—direction with a periodicity length given by L, = 21/K,,, see fig.3. The dimensionless

*‘f | A

—— g— p—.. ... —— o — . ——

8
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periodicity length L, = L/a makes the third and final free dimensionless parameter of the

resistive slab equations. More precisely we have the following conditions on ¢ and y :
Impenetrability: V_=0 atx =%X

B

x=%X

w

= dx=%X) = ¢X(t)
(34)

Perfect conductivity : B =0 at x = £X

H

x=1X,

= yx=tX) = yt)

We shall henceforth take ¢, v, as constant with respect to t. In fact for simplicity we
will set ¢,,F = 0 =y, for all cases in part I although a more complex set of conditions

will be implemented in part II of this thesis.
Let us consider further the implications of these boundary conditions. First we note
that the form invariance of the reduced equations under the following Galilean

transformation:

Y(x,y,t) = y(x,y-Vtt)
o(x,y,t) = O(x,y-Vt,t) + Vx (35)

shows that without loss of generality we can always choose a frame in which Oy = 0,
although the same is not true for ,,* and . No change of frame can make " and y,,”

equal if not originally so. The equations are also invariant under addition of arbitrary

constants to ¢ and  so we can also take ¢y, = ¢, = 0. We justify having Y, =y, =0
by ensuring that the initial equilibrium satisfies this condition.

It can also be shown that the value of b, — 0, is closely related to the electric potential.
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‘ From the x-component of equation (13) (ochm's law) we have
Ex=-(VxB)x+an . (36)
From eqns.(18) and (19) we have
VxB =& VoxVyé +B Vo -V Vy 37
and from eqn.(15) we have
od = Viyé, -& x VB, . (38)
Substituting the x-components of equations (37) and (38) into (36) yields

dB_ .
E-yv¥ _ g 0%
x z 9x Zox W, dy

(39)

Thus if V, and B, are constant with respect to x and y then the potential difference

between the walls is given by:
‘ X,
av = [Bax = V,(v) -¥,) -B,(8, =6,) . ()
X

Taking the frame in which V, = 0 (assuming V, is independent of t) we then have

X,
Ad, = 0. - =—1—-J-E dx = — AV (41)
w w w Bz_)(w X Bz
or
1
Aq)w = B—AV .

z
Thus the difference in wall values of the velocity stream function in this special case is
proportional to the potential difference so the assumption that ¢,* = ¢, = 0 corresponds
to the short-circuiting of the walls. By the same token when the walls are held at different
potentials, that is when ¢,,™ # ¢,,, the resultant electric field E, combined with the B,

field produces an E x B drift in the y-direction.
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By integrating the y-component of eqn.(19) across the plasma we find
X,
+ -
o =0, = ny dx 42)
X

so a uniform flow in the y-direction of magnitude V can be maintained by a difference in

the velocity stream function of:

o, =0, =2X, V. (43)
This technique is used in part II to study the effect of external perturbations on tearing
modes in a flowing plasma.
The validity of the assumptions: V, =0, B, = const. for the above special case will

now be given. Consider the conservation form of the equation of motion:

B’ i
2 (pV) + V| pVV + [P+ ——|I - —BB - vWV | = 0 . (44)
ot

21, Ho

By taking the z-component of this we obtain an equation for V,, :

v, .
p|—=+ V.VV_|-vVV = _—B.VB_ . 45)
ot uo

To obtain an equation for B, we take the z-component of Faraday's law, equation (14),

giving:

B

*+ V(Ex&)=0 (46)
ot
for which the right-hand term can be derived from Ohm's law, equation (13), to give:

\ S \ 1-vB
V(Ex¢&) =¢&-(V¢xVB) - &, (VyxVv) - V-( ™ z) .(47)

Combining this with equation (46) we have
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0B,
ot

o n o
=& VB xV¢ + V-( E;VBZ) - &-VV_x Vy (48)
V., =0, B, = const. is a solution to equations (45) and (48) thus verifying the assumptions

made in the special case.

The method used to solve the system of equations (25) to (28) requires a boundary
condition to also be specified for the vorticity, {. This is provided by the condition that

no vorticity be generated at the wall, i.e.:
nx(VxV) =0 atthewall (49)

which for this set-up reduces to:

{(x=%xX) =0 (50)

Further insight into the significance of these conditions is gained from looking at

momentum conservation. Integrating equation (44) over the plasma we have:

2
B
9 | pvd n- | pVV + (P "‘"‘)I -LBB -vVV =
pVdt + |n- | p 5 ds=0 (51)
atJ J Ho Ho
the y-component of which reduces to:
ok r [fav, av,
% J J.dypV _vjdy E . (52
Xy +X, Xy
Using equation (19) we have:
%L Yo
J‘de.dypit J-dy le (53)
at ox 0x
X, 0 0 X,
which reduces to:
L o1
- 0
—a—(pL(q):,"q)w)):dey—% . (54)
ot P ox
0 X



This implies that a boundary layer will form if the potential difference is varied in time.
Also the faster the changes are the steeper will be the flow gradients in the boundary layer.

Note that the impenetrability condition :

means that

so equation (54) becomes

%(pr(cb;—%)) vfe(w-g) . 55

0
The boundary condition of vanishing vorticity at the walls is therefore consistent with the
time independence of ¢,,* and ¢, for the purpose of conserving the momentum.
In summary the boundary conditions used in part I are :
6=0
y=0) atx = X (56)
£=0

Note that the method of solution does not require the specification of a boundary condition

for the current.
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1-2.2  Numerical Scheme

The normalized equations, (25) to (28) are Fourier expanded in the y-direction and
descretized in the x-direction to form the equations for a hybrid spectral/finite difference
code which uses a two step semi-implicit timestepping scheme to evolve the four
dependent variables v, ¢, J, and { in time. The approach is not new [*? and has been
employed in 3-D calculations in cylindrical geometry (1643461 Other techniques have
been employed to solve these equations including an ADI (Alternating Direction Implicit)
Scheme!7! for evolving the full set of resistive MHD equations. Such methods have good
numerical stability properties but are usually considerably more expensive with cpu time.

The success of the semi-implicit method used here relies on two basic premises:
firstly that the type of solutions expected are more naturally represented in a semi-spectral
form and hence only require a small finite number of Fourier modes for. convergence. And
secondly, that the cpu intensive matrix inversions and iterations of fully implicit
techniques are avoided by explicitly timestepping the nonlinear terms while maintaining
numerical stability through the much simpler implicit timestepping of the linear dissipative
terms. A discussion of how well these premises are upheld will be given in the next
section.

In this section we shall, for completeness, describe how we have implemented the
technique in slab geometry. Each of the field quantities in equations (25) to (28), (ie. v,
¢, J, and &, the A being implicit from hérc on ) is expanded using a truncated Fourier
series given by:

M
WOy = VS0 + X [ W00 costle,y) + W00 sink, )| G5)

m=1

where M is the total number of modes, ky =2nm L, and L, is the periodicity length in

the y-direction.
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The range of modes selected (0 <m <M ) is based on the expectation that the long
wavelength nature of the tearing mode will cause the solution to be dominated by a low
order Fourier mode such that the rnagnitudes of the amplitudes drop off rapidly with m.

Each equation is then multiplied by cos(k_y) or sin(k,y) and integrated with
respect to y to project out the equations governing the evolution of each individual
Fourier mode. For each mode number, p, there are four evolution equations: two
corresponding to the cos and sin components of  and two corresponding to the cos and

sin components of . These are:

[

oy 1 .
Sresrr(nh,- ) £
oy, 1
-5—": Sets N4, (59)
t
a C
acp = S5, +V VL (60)
t
a S
acp = Sy, +v Vf,c; (61)
t
where
. 2 whenp=0
ext _ i 62
EZP 0 otherwise (62)
2
V;“, = -3—2 —k:; : (63)
ox
a2“15,(:
R B o
X
. aZ¢s,c
G =T ST (65)
X
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C

andS1 ,
P

S S . .
Slp, S, iy S2p are non-linear source terms given by :

5o =-lo.v], - 222 Apmn 0],

n=1m=1

zz Pm,n |:¢ ? W]:n

n=1m=1

s, = 2o, vl + ZZZCPM o vl

n=1m=1

22 2 pmn[q) ’W]:n

n=1m=1

55, = _é( ENINSIRAN )

Op

S5 al il [y
n=1lm=1 nm
SR A

. I] )

Op

co oo 1 [ ]cc cc
+22 2 CP.m.n 9.5 nm [W ’ Jz]
n=1m=1 nm
22 ( [ ]SS SS
¢ > C am - [W ’ Jz]
n=1m=1 2 p e nm
where the scripted Poisson brackets are defined by :
of° og’
ki g]cs =2k g -—2k
mn ax n*n ax nn
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(67)
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and where A, 10, Bomn » Coma and Dy o, are elements of sparse matrices defined by:

Apma = Somm ¥ Somn ¥ Sonm (71)
Bomn = “Oomm * Soma * Spnm (72)
Comn = %mm ¥ Spmn ~Spnm (73)
Dp.m,n = 8p,m+n - 8p.m-n + 5p,n.m (74)

for which the Kronecker deltas are defined by :
1 wheni=j
S.. = .
Y 0 otherwise
The evaluation of the convolutions in the source terms is the most time consuming part of
the calculation and since they involve a double summation for each mode at each point on
the grid one could naively consider the cpu time for each convolution to be proportional to
M3J where M is the number of modes and J is the number of grid points. However, by

taking advantage of the sparse matrix nature of the coefficients defined by (71),(72),(73)

and (74) this is reduced to proportional to LJ where :
M
L= (M-1)(M-2) + D,m
m=1
by re-ordering the arrays so that operations are only performed on non-zero elements.

Equations (58) to (65) are then temporally discretized using the following two step second

order accurate scheme :

At/2 1 1 1 t+AY/2 ext

\v:; = W:n + EAtS;m + —Z-AIE(ngm —Ezm) (75)
tHAL2 ¢ 1 t 1 2 t+At/2
G =g v gaes, o+ sav(vi) (76)

continued overleaf...

40



where each equation really represents 2M equations corresponding to the cos and sin
components of each Fourier mode. Equations (75) and (76) determine the semi-implicit
advance of the cos and sin components of each Fourier mode of v and { by half a

timestep. From these are evaluated the new half timestep values of J, and ¢ using

equations (64) and (65) and then all the nonlinear source functions using equations (66) to
(69) which are then used in equations (77) and (78) to explicitly advance, to second order
in At, the Fourier modes of ¥ and { over a full timestep. The timestep is completed by
then reapplying equations (64) and (65) to evaluate the Fourier components of J, and { at
the new timestep.
The Grid :

The spatial discretisation in the x-direction was performed using a non-uniform grid
with the density of grid points increased around x=0 to allow adequate resolution of the
resistive diffusion layer. Two types of non-uniform grid were tried. The first, which is

similar to that used by Steinolfson and Van Hoven 8] i given by :

5

AX  nin <]
AXJ = XJ .-Xj-l = max Axmax J<Mm 79
AXmax JZJM
with the constraint that :
I
X, -ZIAXJ. =0 (80)
J:."
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This was ensured by specifying X,,, AX i, J and Jyy and determining AX ., to a
desired accuracy by finding the root of equation (80) using the Newton Raphson
method*®). This produced a grid with grid spacing increasing in size to a maximum at
j = I and then maintained constant over the remaining grid points. It was noticed that
the sharp transition between the two sections of grid caused a small spike to form in the
mode profiles at this point due to the discontinuity in the derivative that this creates.

Althou\gh this appeared to be mostly transitory a second smoother-joining grid was

constructed with :

1 ]
AX .+ (A.Xrnax _AXmin)‘Z' 1 —cos{(']';) n:] ) forj<Jy

AX. =
i

AX . forj>Jy

(81)

and with the constraint, equation (80), enforced by specifying X,, AX in, JM and J and
evaluating AX_ ., from :
1
X, -—Z-(JM + 1)AX

AX_ = ~ (82)
J —-i-(JM + 1)

Symmetry Qonditioﬁs :

For the assumed geometry and initial equilibrium the equations are symmetric in x
so the solution need only be computed for region 0 < x <X, . More precisely the
symmetry properties are : Y(X,y) = W(-x,y) and ¢(x,y) = — 0(=x,y). It is also common
practice to reduce the size of the calculation further by assuming the same symmetry in the
y-direction, ie. Y(X,y) = ¥(x,~y), 0(X,y) = — ¢(x,~y) but this is only true for stationary
solutions. To implement this in a spectral code it is only necessary to suppress. the
evolution of the sin components of y and J, and the cos components of ¢ and {. However

with both the cos and sin components of the variables computed cases were found for
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which the y-symmetry was not maintained even when started with a stationary initial
equilibrium. These cases are illustrated in section I-3. They show that it is possible to
simulate coalescence and secondary regeneration of magnetic islands separately, with both
symmetry constraints imposed. When, however, as in the cases described in section I-
3.5, coalescence follows regeneration in the same run, the position of the x-points after
regeneration are such that the coalesced state must form a quarter of a wavelength further
along, thus breaking the y-symmetry condition. Section I-3.5 also shows that this
sequence of events often leads to a non-stationary state by the excitation of a travelling
wave, which more clearly fails to satisfy the y-symmetry condition. No examples of x-
symmetry breaking were observed when the grid was expanded to cover the full distance
between the walls so this symmetry constraint was retained.
Difference Method :

Having defined the grid it is now possible to define the difference form of the

differential operators, using a Taylor expansion truncated to first order in Ax, by:

(%1) Y~ Vi for 1<j<J-1 (83)
X j X = X

Vi Y ‘~l’- - ‘Vj-
2
(Q_llzf_) - T 5 XTX
)
. i —( +1 J~1)

Atx=0(ie.j=0):

for 1<j<J-1 (84)

v 0 ify iseven
( ax) =AY ity isodd (85)
0 X
20y, = ¥p)
Q.Z_M ——\i—jl—i—-wl if yis even
2 T X, (86)
0 0 if v is odd
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while atx =X, (ie.j=7J):

ERCR T R A

J ]2 J-1

az
and similarly for ( 3 2)
X

]

These finite difference forms of the differential operators are employed directly in equation
(64) to solve for the current. This tends to be the least accurate part of the calculation and
can cause rounding error problems when too small a precision is used. To solve equation
(65) for ¢ is obviously not as simple and at first glance appears to require an expensive
matrix inversion. This is similarly the case for equations (75) and (76) which, because of
the implicit nature of their dissipative terms, form simple elliptic differential equations for
W92 and {**4Y2 similar to ¢ in equation (65). However because all three equations can

be expressed in the form :

—Aj Uj+1 + Bj Uj - Cj Uj_1 = Dj (88)
where for equation (65) :
U, - ¢3“A‘ (89)
1
A - A = (90)
j -
U5 ) (K x)
. ,
C.-»>C = 1)
: ? %( X0 = %51 ) (% %)
2
B. B =A +C +k 92
i7 Pem T T T e T m ©2)
ct ct
D¢jm - -ij
DJ. - 93)
DS 't - Cst
ojm jm
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and for equation (75) :

t+At/2
UJ. = Vo
1
A. A = =
J_> Vi A¢jnJS
C.->C =C.v
J vj ¢
B. - B . =A_+C.+k21~|__1_+
i vjm vj Vi m 38
D’ = S‘;iu + i\y'.” ext
vim j At 3 zm
Dj -
D' =8} —z-qfni
yjm J At J
and for equation (76) :
U. - Z;t.mm
j j
A - A =VA
J &} o
C.-C_=vC
g o
B. - B, =A,+C_+k2v+—2-

ct ct 2 et
Pim = Soim + = Cim

)
I

st 2 st
= Spim * —Gim
At

(94)

(95)

(96)

N

(9%)

99)

(100)

(101)

(102)

(103)

they can be solved numerically using the well known algorithm for tridiagonal

systems[49'50'5” .Let:
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Substituting this algorithm evaluated for U; ; into equation (88) yields :

U - }U {DJ’ i~ Fj“} (105)
Lo — . + | —— ]_

- ‘ 1 -

B,-CE,| " |B-CE

J

and comparison with equation (104) shows that E; and F; are determined from the

recurrence relations :
Aj
f=s-CE, (190
j j i1
DJ. + Cj Fj_1
fi*BTCE, 4o
j j i1

The computational procedure involves two sweeps across the grid, sweeping first through

the grid from x=0 to x=X,, to calculate Ej and F; using (106) and (107), then a sweep
back through the grid from x=X; to x=0 to calculate U; using equation (104).

Boundary Conditions :

This requires boundary conditions to be specified for E; and F; at x=0 as well as
those for Uy at x=X,. To do this we make use of the symmetry conditions which apply at
x=0. When U; corresponds to an odd function, like ¢ or €, then the condition is simply
Uy = 0 which from equation (104) implies that Eg = 0 and F; = 0. However, it is not so
easy to determine an accurate boundary condition when U; corresponds to an even
function like y since Uy is then not necessarily a fixed value. We could use the condition
on its derivative :

U,
ie. — =0

ox
x=0

to provide the approximate condition : y; =, which from equation (104) implies Eq =1
and Fy = 0. However it is possible to avoid the error that this introduces by instead

temporarily expanding the grid out to the second wall at x=—X,, just for the calculation of
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V so that the exact boundary condition y_j = O can be used to give E ;= 0, F_;y = 0. This
doubles the cpu time for calculating ;;, but because this method takes advantage of the
tridiagonal nature of equation (75) to avdid expensive matrix inversions, it only varies as
MJ, making it insignificant in comparison to the time required to calculate the

convolutions in the source functions which vary roughly as M2, In summary the

boundary conditions in difference form are :

W.]':W-I:F .—_E =O

v-J] v-J
9 =0 =F, =E, =0
G =l =F, =E, =0 (108)

The Initial Equilibrium :

The initial equilibrium given in equation (31) of the previous section becomes :
. cosh(xj)
Vin = 2ln cosh(X )

S

W, =0 (109)

The Initial Perturbation :

To begin the calculation an initial perturbation must be applied to one of the
dependent variables. The precise choice of perturbation should not be important in
determining the final nonlinear state as long as the perturbation is small and all the Fourier
modes are excited. For most runs this was achieved by triggering the fundamental sine

Fourier mode of ¢ with a profile closely approximating its linear shape given by :
-C - 10! %; -10X
¢ = e Oxj(e |‘ ] —e w) (110)

- The corresponding cosine Fourier mode, ¢le , was also initialized with a much smaller

uniform amplitude in order to break the symmetry to allow for the possibility of

asymmetric nonlinear behaviour.
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Diagnostics :
The progress of the instability was followed to saturation by monitoring the value of

several diagnostic quantities. The reconnected flux across the tearing or neutral line

defined by :

Lp
a¥ = [|B,0y0| oy (11D
0

and its corresponding exponential growth rate :

A¥Y ot

were used to provide a measure of the overall nonlinear reconnective processes occurring
during a simulation while the spatial behaviour of the resultant magnetic islands was
determined through the evaluation of the position of the x and o-points along the tearing

axis by :

Y. = Y{ V=0 )
Y, = ¥ Vp®=0) ) (113)

and the maximum island half-width by :
W = 2x(w=w(0,Yx),Yo ) (114)

The spectral behaviour was also monitored by recording the amplitudes of the first four
Fourier modes of y on the neutral line while a general data dump of all the Fourier modes
of y, ¢, J, and { over the whole grid was made periodically throughout each run to
provide a more detailed picture as well as for check pointing the calculation. The
simulation could then be restarted near an interesting stage of development to obtain a

more detailed description of the event.
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Performance :

The code was written on a Vax 11/780 and then adapted to run on a Cyber-205
super-computer where full use was made of its vector capability. The faster clock on the
Cyber-205 already provided an increase in speed over the Vax 11/780 of roughly 20 times
when operated in scalar mode. With most of the inner grid loops vectorized, and some of
the Fourier mode loops vectorized, an increase in excess of 400 times the speed of a Vax
11/780 was acheived for runs with 100 grid points and 30 Fourier modes, corresponding
to a 20 fold improvement due to vectorization. This was possible despite several loops
being recursive, and hence unvectorizable, as most of the time is spent evaluating the
convolutions, for which the large inner grid loop is vectorizable, although the higher level
loops are not because of their sparse matrix nature. The plot below shows the ratio of the
cpu time per timestep for the Vax-11/780 to that for the Cyber-205 versus the number of
grid points, corresponding to some early runs made with only 5 and 8 Fourier modes.
Automatic mode adjustment, see section I-2.3, was introduced to streamline the Fourier
mode usage so that the number of modes varied considerably during each run depending
on S, v, X, and L,. The time taken to reach saturation also depended on these

parameters, especially S, so that actual run times varied from 5 minutes to over an hour.

Ratlo of CPU time per timestep of Vax-11/780 to Cyber-205 vs. no. grid points
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I-2.3  Convergence

The x-dependence of the dependent variables v, ¢, J, and { is discretely sampled on
a non-uniform grid using the linear profiles of ¢ as a guide (8! to the optimal size to make
the grid spacings; which must be small enough to resolve the resistive diffusion layer but
large enough to avoid unnecessary CFL restrictions on the timestep (see sec.I-2.4). On
the other hand, the y-dependence, which is parallel to the neutral line, is sampled through
a finite number, M, of Fourier modes to take advantage of the assumption that only a few
of them are necessary for the tearing mode solutions to be well approximated. This
assumption was expected to make the calculation much cheaper than using a 2-D grid
finitely differenced in both directions.

In practice the assumption holds very well for y as can be seen in fig.4(a) showing
the relative amplitudes of the Fourier modes at saturation for a typical run. However, for
the other three dependent variables : ¢, J, and { many more modes are required with the
vorticity always requiring the most for convergence, see figs.4(b),(c) and (d). The main
problem, however, arises from the fact that, in the absence of significant dissipation,
convergence of the vorticity is extremely slow, requiring an impractically large number of
modes for convergence. This is particularly seriéﬁs given that the cpu time increases
roughly with the square of the total number of modes. By including significant viscous
damping, however, convergence can be attained within a reasonable number of modes,.
see fig.5, and is the main reason for including the viscosity term in the equations.

The amount of viscosity required ( v ~ 0.01 ) is much larger than would exist in
most magnetically confined plasmas of interest but this is justified by the observation that,
even in the absence of the usual viscous forces, there appears to be a damping affect
produced by a micro-turbulent viscosity mechanism associated with high order mode
activity. In short it was found that in an unconverged simulation deficient of high order

modes, with negligible viscosity ( v = 0.0001 ), anomalous secondary island activity was
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observed which did not occur when either the viscosity was increased (which reduced the
number of modes required for convergence) or more interestingly when the number of
Fourier modes was increased even though still not sufficient for convergence. The extra
high order modes seem to damp out the anomalous behaviour, and the affect is probably
related to the hyper-resistivity effect discussed by Strauss (521, Fig.5 shows also that the
required number of Fourier modes increases with the conducting wall separation
indicating that the turbulent high order mode activity is also reduced by physically
constraining the plasma.

During a simulation run the number of Fourier modes needed for convergence can
vary quite a lot depending on what is happening and will obviously increase when
spatially complex transformations are occurring. To minimize the mode usage during a
run a routine was included in the code which dynamically adjusted the number of modes,
up or down, to just maintain convergence of the vorticity - this being the slowest variable
to converge. Convergence was tested by comparing the amplitudes of the Mth and (M-

1)th Fourier modes with the dominant mode with m = L as follows :

T el
t o, =
N
| & |
d =
e

then the convergence is tested every couple of timesteps with the conditions for adjusting

the number of modes defined as follows :

If oy, > Cp thennotconvergedso M . =M + 1

oy < G .
If o, > C, then just convergedso M_ = M

continued overleaf...

51



Oy < CF
If then over convergedso M =M -1
aM_l < CF new

where Cg is the convergence factor usually set as Cg = 0.01 . This simple method for
adjusting the timestep worked quite well when the dominant mode was L=1 and still
worked well even when L increased to a higher value later in the simulation. External
adjustment was, however, required when the initial value of L was greater than 1 since
then oy could be < Cg with oy, > Cg. The situation was remedied by including more
modes in the comparison. Using this technique the mode usage could be tracked
throughout a simulation to expose the mode intensive stages. In general, with v = 0.01, as
few as two modes were utilized during the linear stage while up to 30 modes were
required during a particularly active nonlinear stage and often half this number at
saturation.

The coalescence of magnetic islands is the most mode intensive part of the
simulation for the obvious reason that many Fourier modes are required to resolve the
temporary neutral layer that forms between the islands with an orientation perpendicular to
the original neutral line. The non-uniform grid is of no help here since the high velocity
gradients are now in the y-direction. The semi-spectral code is designed to be most
effective for cases with boundary layers forming along the y-axis and so is clearly not
suited to a study of coalescence, especially at high Lundquist numbers where the
boundary layers are even narrower. For this reason we have restricted our study of
coalescence to the case with S = 200, which is low enough to allow the coalescence-

neutral layer to be resolved with an acceptable number of modes.
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I-2.4  Numerical Stability
For a completely explicit time advance the condition on numerical stability is given
by the Courant-Friedrichs-Lewy (CFL) condition 15051531 which essentially requires the
grid velocity, defined by Ax/At, to be greater than the fastest propagation velocity, V..,
allowed by the equations.

Ax
Vv

max

ie. At £

(115)

The problem with using an explicit technique for solving the resistive MHD equations

arises from the presence of widely disparate time scales :

ie. vFast Magnetosonic >> VShear Alfven =~ VResistive
Our interest is in the evolution of disturbances occurring on the slow resistive time scale,
but the size of the timestep in the full MHD equations would be determined through the
CFL conditions by the fast compressional (magnetosonic) motion. The restriction is not
as severe for the reduced equations since the incompressibility condition removes the fast
compressional motion leaving the slower Shear Alfvén motion to determine the timestep.
Fully implicit techniques which allow a disturbance to traverse the whole grid within one
timestep do not suffer from the CFL constraint but are usually much more complicated to
solve. The semi-implicit approach used here is a compromise designed to take advantage
of the best attributes of both techniques. The explicit time advance of the nonlinear terms
makes it as fast as completely explicit methods while the implicit time advance of the linear
dissipative terms provides the expectation for improved numerical stability. The
expectation is justified by the absence of any grid spacing dependence in the stability

condition given by:

At S —— < (116)

which was derived for the semi-implicit scheme of equations (75) to (78) using the

standard von Neumann numerical stability analysis as in references [54] and [53].
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This stability criterion really only applies to the linear part of the evolution and in
practice the stability was found to vary as a function of the regime of operation. In the
linear and weakly non-linear stages the numerical integrity was upheld for quite large
timesteps ( At ~ 2. ) but during the fully non-linear stage the calculation was found to
suffer from a weaker but temperamental form of the CFL condition. The dependence of
numerical stability on the number of modes, M, was not observed, but instead, all
instances of numerical instability were removed by either reducing the timestep or by
increasing the size of the minimum grid spacing. The major consequence of this was that
simulations were limited to cases with low Lundquist number. The reasons are twofold.
Firstly, since the width of the resistive diffusion layer increases with resistivity, an
increase in the Lundquist number will make it narrower and hence smaller grid spacings
will be required in that section of the grid to resolve it. Because of the nonlinear CFL
condition this also means using a smaller timestep to maintain stability. Secondly the

growth rate of the tearing mode decreases with Lundquist number so that longer runs are

ngeded to reach saturation. Since

Tsat
t

where N is the number of timesteps, At the timestep and T, the physical time required to
reach saturation, the combined effect is to increase the total number of timesteps and hence
the cpu time. This means there is an upper limit on the Lundquist number beyond which
the calculation becomes prohibitively expensive and where a fully implicit approach would
probably be more economical. Given this constraint, runs were made for values of the
Lundquist number ranging from S = 10%to S = 10,

Initially an attempt was made to include automatic timestep adjustment in order to
work as closely as possible to the stability threshold and hence maximize the timestep.
The timestep was adjusted up or down on the basis of keeping the incrementation of the
highest Fourier mode of the current constant each timestep. This allowed larger timesteps

to be used in the early stages but during active periods'of the nonlinear stage the timestep
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was forced down to unreasonably small values ( At £ 0.01 ). It was found to be more
efficient to operate further away from the stability threshold by using a constant, more
conservative value for the timestep ( At ~ 0.2 ) and so the automatic timestep adjuster was
scrapped.

Harned and Kerner ®* have since developed an alternative semi-implicit method for
advancing the full set of MHD equations by adding a new term implicitly and then
subtracting it explicitly from the equations to obtain numerical stability. Two semi-implicit
terms of this type are included to remove both the fast magnetosonic and the shear Alfvén
restrictions but since the first mode is already removed from the reduced equation we shall
only consider the latter.

To derive the functional form of the semi-implicit term for the elimination of the
Shear Alfven timescale they linearize the incompressible MHD equations assuming
uniform magnetic field, density and pressure to obtain :

v

az:z[VxVx(Vwa]xBo (118)
t

The term on the right hand side of the equation is then considered to be the appropriate
form for the semi-implicit term with B, replaced by a vector quantity with constant
coefficients :

ie. CO=Cé +Cé +C.é (119)
to give:
[VxVx(VxCM]xCO (120)

The term is then added implicitly and then subtracted explicitly from the equation for the
velocity time advance. This was shown, using a stability analysis, to provide

| unconditional stability if C;2 By, Cy 2 B, and if terms of the form C;C; with i # j are

eliminated. With appropriate values of C, and C, the numerical stability is maintained for

timesteps as large as as At = 200 but, since the implicit and explicit parts of the new term
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only exactly cancel in the limit that At — 0, the accuracy becomes the limiting factor in
the timestep. Unfortunately it was found that poor accuracy occurred for timesteps not
much larger than that allowed by the Shear Alfvén CFL condition ( At ~ 0.24 ) although it
was suggested that this could be remedied by using a 2nd or higher order accurate
timestepping scheme. The technique also introduces damping of the fluid motion which
increases with the value of the timestep. Despite this we shall consider how it could be
implemented here. To apply this technique to the reduced equations the semi-implicit term
must be modified to fit into the equation for the time advance of the vorticity of equation

(26). To do this we operate on equation (118) with &,V X to obtain:

2
.Z.é.:ez-Vx[VxVx(VxBo)]xBo (121)

So the new semi implicit term takes the form :

8,V x[ VxVx(VxCy) |xC, (122)

To simplify this we substitute in the equation (19) for V in terms of ¢ and V, and separate

out there dependence into two seperate terms given by :

6.V x(cox[v XV x(Cox(ézx.V¢)):)

+éz‘vX(COX[VXVX(VZ(COXéZ))j) (123)

After some algebra the term involving V, vanishes while the other reduces to :

c, v(vic, Vo)) - c e v(Vic, vy ) 29
or more simply :

2 3° v 32 w2
Cx—2V¢)+Cny Vo

ox 0xdy
2 92 w2 32 2

+ 22 v+ c c V% (125)
y ax2 y ayax
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Removing terms of the form C;C; where i # j and noting that { = V2, (125) becomes :

G L FR 126

ad oy

and if we then set
c.-c, -
this then becomes

vV (127)

which means that the Harned-Kemner semi-implicit term for the reduced equations is
essentially equivalent to the viscosity term of equation (26). This would perhaps explain
the damping effect that they observed when the timestep was increased since at large
timesteps the cancellation of the semi-implicit terms would be less complete, allowing
their viscous nature to be felt more strongly. In any case, since a viscosity term was
already included in our equations semi-implicitly, we considered it redundant to apply it

again in the manner suggested by Harned and Kerner, especially since the accuracy of the

method was still in question.
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I-3.1 Simple Nonlinear Tearing Mode Evolution

In this numerical investigation it will become apparent that the non-linear behaviour
of the tearing mode on a current sheet can vary greatly from one region of parameter space
to another. For the region of parameter space investigated, the most striking changes were
observed to occur as a function of the periodicity length, L,, while only relatively
cosmetic changes were evident for variations in S, v, and X,,. In this section we will
briefly describe the simple or classical tearing mode evolution that occurs for small Loand

progress, in later sections, to the more complex behaviour that occurs for larger values.

A typical simple tearing mode evolution complete to saturation is recorded in fig.7
by the time evolution of the reconnected flux and its corresponding growth rate for the
case with K, = 0.35 (L; = 21/0.35 ), S =200.0, v = 0.01 and X, = 4.0. It shows : a
distinct linear phase marked by a steady exponential growth rate; a relatively sharp
transition tb the slower algebraic growth of the non-linear phase and a rounding off with

an overshoot of the reconnected flux-as the mode saturates into the simple magnetic island

state shown in fig.8(a).

The linear growth rate is slightly lower than that computed by Steinolfson and Van
Hoven ¥ because of the relatively large value of the viscosity and the closeness of the
conducting walls which tend to reduce the rate of reconnection.

For much of the nonlinear phase the reconnected flux can be seen to increase almost
linearly with time, although during the early nonlinear or weakly nonlinear stage the
growth appears to have the t* variation predicted by Rutherford 1 Rutherford's analysis
applies only to constant - y modes but the behaviour shown above was qualitatively the
same in all simulations irrespective of what type of linear mode they arrose from and
includes simulations made with S and K, in the ranges : 10%< S < 10* and 0.75 <K, <
0.1 . In fact, despite the short wavelength, the low value of S in the above example makes

it a nonconstant - Yy mode. It has been noted (81 however, that the effect of having the
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conducting walls close together is to make nonconstant - y modes look like constant - y
modes so it could be argued that this is the case here since the half wall separation is only
X = 2.5 . Even so, simulations made with X, = 12.0 which, as shown in the next
section, is large enough for wall effects to be negligible, only increases the magnitude of

the growth rate and the amplitude reached at saturation without changing the qualitative

variation of the reconnected flux with time.

In these simulations the initial equilibrium is maintained by an applied electric field
and nonuniform resistivity whereas Steinolfson and Van Hoven [29] impose a constant
background field and allow zero order variations around it. Although quite different, both
schemes should allow saturation of the tearing mode and so the absence of saturation in
their simulations is most likely due to not running them long enough. To see this, note
that for a run made with S=200 it took roughly t = 1000 T, to reach saturation whereas
their simulation, close to this value of S, was only run for t = 600 T, . The reconnection
rate is slower at higher S so that for S = 10* it took t = 40,000 t, whereas their run time
at this higher value of S was only t = 3000 t,. The difference cannot be accounted for by
the smaller growth rate in our runs resulting from the finite values of v and X,,.

The size of the overshoot during the saturation phase of the evolution depends
upon how constrained the plasma is, since it can be made smaller by decreasing the
dimensions of the system through L, and Xy, or by increasing the viscous damping
through v . A very similar evolution of the reconnected flux was calculated analytically by
Kulsrud and Hahm 3% for a simple model of forced reconnection using a boundary
layer analysis. The bulk of the variation was calculated using the constant - y

approximation which predicts an overshoot and saturation remarkably similar to that

shown here.
The other contour plots in fig.8 show the conesponding spatial variations of 9, J,,
G IB | and |V | at saturation. Fig.8(d) shows that the vortical flow associated with the

reconnection process still persists after saturation, although with a smaller velocity
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gradient near the x-points. This is, perhaps, not surprising given that thé applied electric
field and non-uniform resistivity were only set up to support the original current sheet.
The difference between the magnetic island configuration and the original equilibrium
therefore requires continued reconnection to balance the flux losses due to resistive decay.
The process would be indirectly driven by the z-electric field through its maintenance of
the bulk current channel. On the other hand one might ask whether the finite vortical flows
at saturation could be avoided with a more judicious arrangement of the equilibrium
quantities. For example since the resistivity is dependent only on the electron temperature,
which tends to equilibrate on constant flux surfaces, it would be more realistic to setn =
N(y) rather than 1 =1N(x). Both cases would be identical for the initial equilibrium but
only for the former case is it possible to obtain a flowless eqilibrium. To see this set d/0t

=0, ¢ =0 and { = 0 so that equation (23) reduces to :
éz~(VJZxV\y) =0 (128)
which implies that J, = J,(y), while equation (21) becomes :
n = E"/T, (129)

Equations (128) and (129) can then only be satisfied if 1 =n(y) Therefore if we were

only interested in flowless saturated island states we need only consider solutions of the

equation :
Viy = ——= (130)

and not trouble with the full set of reduced equations. If we then use the resistivity

variation suggested in section 1-2.1, equation (32), this reduces to a Liouville type

equation 571 given by :

) Viy = e (131)

which is similar to the equation satisfied by the flowless exact island equilibrium given by:

Viy = (1-€2)e™?¥ (132)
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where € is a dimensionless parameter related to the island width and defined by equation
(133). Unfortunately, this class of island equilibria is restricted to a single periodicity
length, i.e. K, = 1, which, as shown in section I-3.4 is too large for the state to be
reachable via the tearing mode and so is of less relevance here.

As a matter of interest it may be possible to solve equation (132) analytically with
X,, = oo using Backlund Transformations ], although ultimately it would be useful to
redo the simulations using a more general form of N = n(y) with say an ADI type code
[47) to determine the reality of the finite vortical flow. The numerically difficulties of
setting M = MN(Vy), discussed in section I-2.1 prevent us from trying this here. It is,
however, by no means certain that it would result in a flowless island equilibrium at
saturation anyway. In fact Hesse and Schindler P8 found, using bifurcation theory
techniques, that island solutions of (132) are unstable and therefore would not evolve
from the time dependent equations.

Moving on to fig.8(b) we see that the saturated current distribution has sharp peaks
over the x-points as well as the broader ones over the o-points. This can be seen more
clearly in fig.9 which displays a 3-D perspective of the current distribution at several
different times during the growth of the tearing mode for the case with K, = 0.35, S=

10,000, X, = 5.0 and v = 0.01. These show that the shape of the current distribution is

not always the same during the non-linear development of the tearing mode. Initially the
current sheet peaks at the x-points and broadens around the o-points. During the early
stages there is actually a trough in the current at the o-points which only develops into a
broad peak as the tearing mode approaches saturation. The significance of these
observations will be made apparent later, but it should be pointed out that since flowless
island equilibria must have J, = I, () they would not have the Xx-point current spikes
shown here.

This description of a tearing mode evolution is characteristic of all simulations made

with a short periodicity length (K, 2 0.265 for S = 200. ) so the changes in magnitude of
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v, 9, J, and  due to variations in S, X, ,v and L, are best dicussed in terms of their

value at saturation after all the transitory behaviour has disappeared. This will form the

topic of the next section.
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I-3.2 Saturated Behaviour - Evidence of a Preferred Island Length.

Through a study of the tearing mode at saturation, evidence will be presented for the
existence of a preferred island length. What is meant by 'preferred’ will become obvious
as we proceed. However before doing this we will first consider some ideas about the
mechanism that drives the tearing mode, and how it saturates, in order to put the
observations in some perspective. This will follow a line of reasoning given by
E.N.Parker 1,

The resistive tearing mode involves the breakup of the field lines in the
neighborhood of the neutral layer between two regions with oppositely directed field
components. The original straight, parallel lines of opposite field reconnect into a number
of neutral points ( x-points ) and magnetic islands in the manner illustrated in fig.8 of
section I-3.1. The instability arises from‘the fact that the dissipation is very intense in the
thin neutral layer where the field can decouple from the fluid. Suppose that the system is
perturbed slightly so that the fields are pinched a little more closely at regular intervals
along the neutral line, see fig.10(b). The diffusion and reconnection proceed more rapidly
where the fields are pinched together, cutting the lines of force and rejoining them into
localized elongated loops, see fig.10(c). Once an elongated loop is formed, the tension in
the lines of force tends to pull the loop into a more nearly circular form, see fig.10(d,e).
The affect then, is to pull the field and plasma away from the vicinity of each neutral
point, sucking more field in from either side and further enhancing the reconnection there.

As the reconnected field loops expand out beyond the neutral layer into regions éf
greater field strength they find it increasingly more difficult to distort the unreconnected
field lines which are maintained by the applied electric field and non-uniform resistivity.
The tension in the unreconnected field lines opposes the distortion and hence provides a
squeezing force on the reconnected field loops which eventually leads to the saturation of

the tearing mode.
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The series of contour plots of W in fig.11(a) show the cross-section of flux
surfaces of the saturated magnetic island states for increasing values of the periodicity
length, L,. In the absence of a B, component (which decouples from the evolution
equations) these can be considered as magnetic field lines. The scale in the direction
across the island has been expanded for clarity and is the same in each plot. By displaying
them in this fashion it is clearly seen that the balance of forces at saturation results in the
inner or central field loops having the same aspect ratio irrespective of the wavelength of
the island. At small values of the periodicity length the invariance of this preferred aspect
ratio means that the width of the island increases roughly in proportion to its length, with
a corresponding steady increase in the amount of reconnected flux as shown in figs.12
and 13 respectively.

The threshold for tearing mode stabilization could thus be considered to occur when
the wavelength of the initial perturbation is so small that the corresponding width of the
field loop allowed by the preferred aspect ratio is too narrow to induce any further
reconnection. For the cases shown in figs.12 and 13 the stability threshold occurs at K, =
0.75 when X, = 2.5 and K, = 0.8 when X, =4.0, 8.7 and 12.0.

The saturated island width does not continue to increase with L, because eventually
the compression of the field lines reaches a limit that prevents any further lateral extension
of the island. This limit will, of course, depend on the wall separation but it will still occur
even when the walls are infinitely far apart. The value of L, at which this limit is just
reached defines, in effect, a preferred island length, Ly, since, having reached the
maximum island width, further increases in L, would tend to induce the reconnected field
loops to exceed their preferred aspect ratio. In practice, as L, is increased, the inner
reconnected field loops maintain a constant aspect ratio while those closer to the separatrix
are forced to stretch out to form thin neck regions near the x-points with the length of

these thin neck regions increasing with L, see fig.11(a). A similar sort of behaviour is

shown by the corresponding contour plots of the current density in fig.11(b). Like the
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inner reconnected field loops the contours which form the o-point current peak maintain a
constant aspect ratio independent of L. The size of the o-point current peak consequently
increases with L, up to Ly and then sté.ys reasonably constant thereafter. The x-point
current peaks, on the other hand, stretch out to form current sheets to fill the remaining
space, especially for L,> Lorer Where, like the thin neck regions of the y contours, they
increase in length with L, .

The plots in figs.12 and 13 show that L,.¢ corresponds to a peak value of both the
reconnected flux, A¥, and the island width, W, to provide an alternative more precise
definition of the preferred island length. The fall in these quantities for L, > L ¢ could be
due to the extra compressional force created by the stretching of the reconnected field
loops close to the separatrix. Most of the other graphs in figs.12 and 13 correspond to
simulations made with larger wall separations. When the walls are close together ( e.g.
when X, = 2.5 ) the spatial restriction opposes the distortion of the field lines and
consequently provides an extra stabilizing efféct on the tearing mode. When the wall
separation is increased, as shown for the cases with X, = 4.0, 8.7 and 12.0, the effect is

to reduce the compression on the reconnected field loops allowing them to expand out to a
greater width. This occurs without any significant change in their length so that although

their preferred aspect ratio is reduced, the value of L¢ remains practically unchanged.
This is evident from the fact that the peaks in A and W occur at the same value of L;, for
each valué of X,, .The plots in fig.14 of A¥Y, W and several other quantities at saturation
versus X, show that the effect of the walls is significant out to X, = 9.0. Beyond this

value the saturation is produced solely by the natural tension in the field lines which is
also evident from figs.12 and 13 from the fact that the variations of the A¥Y and W with
L,, are almost identical for the cases with X, = 8.7 and X, =12.0.

The effect of including finite viscosity in the calculation is to damp down the fluid
motion and reduce the high order mode activity during the evolution, making the

simulations more efficient, see fig.6. However because of the vortical fluid motion that
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persists after saturation it also affects the properties of the final magnetic island
equilibrium. The direct affect of the finite viscosity is to reduce the magnitude and
gradient of the fluid velocity in the saturated island and, through the coupling of the field
to the fluid, it also indirectly alters the field quantities as well. For instance figs.12 and 13
show from the variation of AY¥ and W with L for v =1/100 and v = 1/600, that the
viscosity reduces the reconnected flux and island width at saturation but does so without
changing the value of L, at which they peak. Therefore, although the size of the island is
changed, Ly is still preserved at least for v <0.01. It will be shown later that other
critical quantities also remain invariant to changes in the viscosity.

In contrast, a definite shift of the peak, and hence L., towards larger L, does
occur when the the Lundquist number, S, is increased, see figs.15 and 16, and seems to
correspond to an overall increase in physical size of the saturated island. Fig.17(a) shows
this shift in Ly, .¢ with S ( and hence N!) to be roughly linear in the range : 100 < S <
2500. This variation with 1} shows that the reconnection region, where the effect of
resistivity is dominant, still influences the properties of the magnetic islands after

saturation, most likely through the mechanism of continued reconnection that persists to

balance the diffusive decay.
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I-3.3 Secondary Island Generation

As the periodicity length is increased beyond L., a value, L, is reached above
which the plasma no longer saturates in the simple tearing mode island state with its
wavelength equal to the periodicity length but instead undergoes a change in topology to a
state with smaller islands.

To see this consider fig.18(a) showing the variation in the reconnected flux for part
of the time evolution of a run made with periodicity length just greater than L, ( K =
0.263 ). The first part of the run is just the same as for L, < L.y, with the tearing mode
almost saturating into a single island state, i.e. with one island per periodicity length. But
instead of reaching steady state the reconnected flux suddenly increases again and begins
to settle at a higher level. From frames 1, 2 and 3 in fig.20(a) of time lapsed contour
plots of y, during the same phase for the case with K, = 0.23, it can be seen that this
corresponds to the emergence of a secondary island between each primary island just like
in Steinolfson and Van Hoven's simulations ?*! although here frames 4, 5 and 6 show
that the secondary islands continue to grow and equalize with the primary ones. The
spatial behaviour of this transformation is neatly summarized in fig.18(c) which shows
the splitting of the x-point into two new x-points and an o-point. The evolution of the first
four Fourier modes on the neutral line in fig.18(d) shows that this corresponds to a
complete transfer of amplitude from the odd to the even modes, especially from Wy to y,,
while the almost doubling of the reconnected flux is consistant with doubling of the
number of islands per periodicity length.

A more detailed study of the process in isolation was made for the case occurring
during the evolution of a run made with K, = 0.23, shown in figs.19,20 and 21 for
which the behaviour of the magnetic flux function contours has already been discussed.
The evolution of the current distribution provides the best insight into the origin of the

transformation, which is most clearly illustrated in the 3-D perspective plots of fig.21.
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These show the current distribution at regular time intervals before and during the
formation of a secondary island in reference to the variation in the reconnected flux. The
first two frames show the relaxation towards the 'preferred' configuration with the
contraction of the o-point current peaks and the consequent lengthening of the x-point
current sheets that occurs because the wavelength of the island, A = L, is greater than
Lores: IfA< Lcm the relaxation would eventually stop when the 'preferred' size was
reached leaving a final equilibrium state with finite length x-point current sheets like those
in fig.8(b). However because, in this case, A > L, , the current sheets get so long they
become unstable to a secondary resistive tearing mode. This is made most evident by
comparing the break up of the x-point current sheet shown in the remaining frames of
fig.21 with the similar behaviour produced by the tearing mode on the original current
sheet in fig.9.

The onset of the secondary tearing instability is clearly marked by a sharp upturn in
the growth rate, see fig.19(b), and also by the instant at which the x-points first split in
two and separate to form the x-points of the new island, see fig.19(d). From these plots it
is even possible to distinguish the usual stages of development of the tearing mode
although the linear stage is more clearly shown in fig.18 for the case with K,=0.263. This
is because it is much closer to K;; than the case with K, = 0.23 so that the primary
tearing mode almost completely saturates before the x-point current sheets get long
enough to go unstable. Consequently the variation in the diagnostic quantities in fig.18 is
then almost totally derived from the activity of the secondary tearing mode. This makes
the linear stage more eaSily discernible as the short period after the splitting of the x-
points when the mode amplitudes remain constant and the secondary island width is still
negligible. The longer wavelength of the primary island for the K, = 0.23 case means that
the x-point current sheets go unstable well before the primary island gets close to its

'preferred' configuration. As a result the linear stage of the secondary tearing mode is
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partially obscured by the continued variation in the mode amplitudes associated with the

incomplete saturation of the primary tearing mode.
The linear stage merges into the wéakly nonlinear stage as W, (the double island
mode) takes over from y; (the single island mode) as the dominant Fourier mode. It is at

this stage that a narrow island emerges and by the time the growth rate has reached a
maximum the x-points of the new island have also reached their maximum separation.
According to figs.20(a) and (b) the emergence of the secondary island appears to precede
the emergence of the secondary flow vortices but the simulations made by Steinolfson and

[291 ;

Van Hoven ! indicate that the secondary flow vortices exist much earlier although too

small to be seen other than on a log scale.

The point at which the exponential growth rate of the reconnected flux begins to fall
signifies the transition to the algebraic growth of the nonlinear stage when most of the
reconnection occurs. During this stage the secondary island width approaches that of the
primary islands; the usual broad current peak forms over the new o-point and the set of
secondary flow vortices clustered around the new o-point expand out to equalize with the
contracting vortices of the primary islands. The result is a new island chain with half the
wavelength of the original and with much shorter X-point current sheets, fig.20(c). This
does not, however, represent the final equilibrium state of the system. Further
transformations are to follow but these are best discussed in later sections.

So far it has been implicitly assumed that the length or aspect ratio of the current
sheet is the critical factor in determining its stability to the tearing mode. The assumption
seems reasonable given that the original current sheet, which can be considered as a finite
aspect ratio current sheet minus end effects, is stable to the tearing mode when L, <
2m/0.8 . The periodicity length L, is normalized with a length comparable with the half
width of the original current sheet so the critical aspect ratio could be roughly given by :
A = Ly(threshold)/2. = ©/0.8 = 4.0. By this criterion, therefore, the x-point current

sheet could be expected to become unstable to the tearing mode roughly when its aspect
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ratio exceeded 4. To test this we need to obtain the aspect ratio of the x-point current sheet
just before it goes unstable. Frame 1 of fig.20(c) shows a contour plot of J, at a point in
time close enough to the onset of the secondary tearing mode to obtain an estimate of A,
from the contours that form the current sheet. Because the current sheet is tapered it is not
immediately obvious which contour should be used but this turns out not to be so serious
as the aspect ratio does not change much from contour to contour. The contour marked K
near the base of the current sheet has a length, 2A = 13.24 and a width, 23 = 0.62, to
give an aspect ratio, A, = 21. which is much larger than the value for A, calculated
from the original current sheet. In other words the x-point current sheets are stable up to a
larger aspect ratio than the original current sheet.

There is, however, a significant difference between these two types of current
sheets which explains why. Along the x-point current sheet there is a stabilizing sheared
flow, see fig.20(b), which is associated with the fluid dynamics of the primary island
while the plasma in the original current sheet is completely stationary.

The stability of finite aspect ratio current sheets with sheared flow has previously
been investigated by Biskamp 130.60) for the case of a different kind of secondary island
formation in the neutral layer between two coalescing islands and in a study of forced
reconnection via current sheets. In these he takes into account the stabilizing affect of this
sheared flow to develop an approximate stability criterion for the current sheet in terms of
its aspect ratio, A = A / 8. The stability criterion is obtained from the condition that during
a growth time v! (yis the linear growth rate of the tearing mode) the distortion caused by
the flow over a wavelength A = 2w/k should exceed a characteristic fraction, k!, of the
wavelength. More simply this is k Av >y where Av = v(y + A) - v(y) is the change in
velocity over the wavelength. Since the flow speed increases along the edge of the sheet
roughly linearly from zero near the x-point to the local Alfven velocity V4 at the end of

the sheet then v = V 5,y y / A and so the stabilty condition becomes 2TV o 1ocy/A > Y

where Y, is the maximum linear tearing mode growth rate in the static current sheet. This
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is taken to be Y, = 0.6 V 5(10cy/(S 8%)]1'2 in the limit that S Vagoc) 8 >> 1, see ref. [5],

hence the condition for stability is approximately : A < 4.8 ( Mgpoc) )R where Mspaoc)
=(Vagoe) S A Y2 =1y Sioc ? is the locél Sweet-Parker Reconnection rate ¥ and S,
is the local value of the Lundquist number, for which the difusion length is taken to be
half the length of the current sheet. For the purposes of measurement this is taken to be
the distance between the x-point and the point where the velocity along the sheet is
maximal and corresponds well with the length of contour K which gave 2A = 13.2,28 =
0.62 and A, = 21. With the normalizing factors used here the local Alfven velocity at the
side edge of the current sheet is given by V) =|Bjye| = 0.2 so that S, = 264. ,

Mspoc) = 0.062 and hence the condition for stability of the current sheet becomes A <
- 31. Given the courseness of the approximation this is remarkably close the measured
value of A, = 21. There are certain aspects of the approximation which could perhaps be
improved upon but not enough to make the condition significantly more accurate. For our
purposes it is sufficient that it provides a reasonable explanation of why the x-point
current sheets are stable for a greater aspect ratio than the flowless origirlal current sheet.

There is, however, the question of applicability, since the stability condition does
not take into account the effects of viscosity and finite wall separation which are
significant here. These tends to reduce the flow velocity and gradient in the current sheet
so that, with ¥ = 0.01 and X, = 2.5, the plasma flow along the side edge of the current
sheet is accelerated only up to about a tenth of the local Alfven velocity, an order of
magnitude less than that assumed in the stability condition.

Inspite of this, the critical periodicity length, L, , above which secondary island
generation occurs, was found to be independent of the viscosity and the wall separation,
at least for the values tested. This can be seen in fig.13 showing the reconnected flux at
saturation versus L, for X, = 2.5, 4.0, 8.7 and 12.0 and for y = 0.01, 0.00167 and

similarly for the saturated island width, fig.12. For L; > L, the values of the

reconnected flux and magnetic island width shown in some of these plots do not actually
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correspond to the double island states discussed in this section since, as has already been
pointed out, these are a transient phase in the evolution. Nevertheless they do eventually
reach a final equilibrium, to be discussed later, for which L, = Ly is marked by a kink in
the variation at saturation of A¥ and W as shown.

To investigate this further, measurements were taken of the dimensions of the x-
point current sheet from contour plots of the current density at saturation for simulations
made with L, <L;,. In Table 1 are the results of these measurements for several values

of v and X, with K, =0.35 and S = 200.

Table 1,
0.02 2.5 0.62 6.75 10.88
0.005 2.5 0.47 4.61 9.81
0.00167 2.5 0.38 3.70 9.74
0.00067 2.5 0.36 3.53 9.81
0.005 2.5 0.47 4.61 9.81
0.005 4.0 0.58 5.59 9.64
0.005 8.7 0.73 7.05 9.66

These show that increasing the viscosity widens the current sheet but also lengthens it so
that its aspect ratio remains reasonably constant. Similarly bringing the walls in closer
together reduces the width of the current sheet but also reduces its length so that again the

aspect ratio remains unchanged. The implication is therefore that A, will also be

invariant and, on the assumption that the aspect ratio is the critical factor in determining
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the stability of the current sheet, this would explain why L, is independent of the value
of v and X,,. The fact that L.¢ and Ly, are indepent of v and X, is important also
because it means that by operating with 5. finite wall separation and significant viscosity
we have been able to minimize the run time without altering the essential features of the
tearing mode equilibrium.

Frpm the plots of W,,"and A¥,, versus L, for different values of the Lundquist
number, S, in figs.15 and 16 it can be seen that, like Lo¢, Loy, also increases with S.
The variation, shown in fig.17(a), appeais to be almost linear for S < 2000 although it
shows signs of rounding off at large S, which it must, otherwise at much higher values of
S (S =10% 10°%) it would be much larger than the value of L at which Steinolfson and

[29]

Van Hoven '“”* observed the emergence of secondary islands. The range of values of L ;,

measured here is too small to determine the global variation of L ; with S, however, in
fig.17(b) the data is replotted on a log-log plot including values of L, and S
corresponding to three of the simulations made by Steinolfson and Van Hoven at high S,

for which two underwent secondary island generation. Although the extra data does not
necessarily correspond to values of L, close to Ly, they do show that a variation of the
form Ly, o S %2 is reasonably consistant with both sets of data.

Increasing S seems to increase the overall size of the saturated island so that the
‘'preferred’ island length is achieved at a larger value of L, and appears to be why L
increases with S. It also means the O-point current peaks are broader, leaving less room
for the x-point current sheets which are consequently shorter at higher S, as shown in
figs.22(a). As a result a larger value of L is required for the x-point current sheet to reach
the critical aspect ratio for tearing mode stability. Figs.22(a),(b) and (c) also show that J,
A and A have a simple inverse power dependence on S of the form: 8o S~ 025 |
Aoc §-034 104 A oc §-0095

Another way of looking at this is to note that because 1 = S ! the width of the

reconnection layer in which resistivity is important decreases with S like S~ 04 ' see ref.
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[6]. The width of the x-point current sheet which is related to the reconnection layer
therefore also decreases with S albeit at a slower rate. The narrower reconnection layer
also reduces the rate of reconnection (which persists at saturation to balance difusion
losses) so that the flow velocity reached at the end of the current sheet decreases with S
like S “%73, as shown in fig.23, and perhaps causes the reduction in the length of the
current sheet in the manner shown.This is in contrast with the changes in the flow velocity
that occur when v or X, are changed which alter the length and width of the current
sheet without changing A and hence A_;,. The situation is still unclear and is an area
marked for further investigation.

Measurements of the current sheet dimensions were also made as a function of the
periodicity length right up to L, = L, for several values of S as shown in figs.24(a),(b)
and_(c). These verify the observations made in the previous section that the length of the x-
point current sheet does not change much for L, < L. but starts increasing uniformly
with L, when L, > Lp',ef. In contrast the width of the current sheet rounds off to a
maximum value so that the aspect ratio also increases uniformly with L,,. The increase in
the width and the small increase in the len gth.with L, that do occur for L, < L can be
attributed to the general increase in size of the magnetic island that occurs in this range of
L. These plots verify that at a higher value of S a larger value of L is required to obtain
the same length current sheet as for a smaller value of S. They indicate, however, that this
is not the only reason for L, increasing with S since they show A, also increasing with
S. The increase of A with S is not totally unexpected since it is predicted by Biskamp's
approximate stability condition and hence is most likely due to the change in fluid flow

along the current sheet that occurs when S is varied, as indicated in fig.23.
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1-3.4 Coalescence

In this section we shall consider the very different topological process known as
coalescence which involves the merging of adjacent magnetic islands to form larger
islands. As mentioned earlier, many studies have been made which simulate the

coalescence instability but only successfully using the exact island equilibrium of Fadeev,

Kvartshava and Komorov ('] given by :

v = In (cosh (kpx) + gcos (k py) ) (133)

When € =0and K, =1, it reduces to the well known B, = tanh(x) equilibrium used here
as the initial state because of it; well known instability to the tearing mode. Without loss
of generalization we can set k;, = 1 in equation (133) so that the asymptotic behaviour of
J,as | x| — o is the same in both cases. For the case of infinite wall separation there is

an analytical linear tearing mode solution 61 éorresponding to the initial equilibrium of the

form :
;k X
Y& =c P [1 * tanh(x)/kp] (134)

valid for the region external to the tearing layer, which has a discontinuous derivative at

x =0. and hence a delta prime of the form:

(135)

, YOY-y 0 T,
A= =2 ¢ p

2| &— -k
‘!/1(0) P

Evaluation of this by matching with an approximate solution for the inner tearing layer

region gives the dependence of the linear growth rate in terms of A as :
Yo< (M) (136)

which indicates that the tanh(x) equilibrium is linearly stable to the tearing mode for

k,21.0. Furthermore our simulations show that the stability threshold actually occurs

at a longer periodicity length, around k;, = 0.8, see fig.12 or 13, so the exact island
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equilibrium which has k; fixed at k; = 1.0 is clearly not accessible via a tearing mode
since for this value of k; the initial equilibrium is stable or at best neutrally stable to the
tearing mode. The inaccessibility of the e)iact island equilibrium via a tearing mode means
it is a less physical solution and so is of diminished significance to real plasma discharges.
For instance, the traditional explanation for the onset of coalescence has been solely in
terms of the attraction between parallel current channels that pass through the o-points of

adjacent islands. This is fine for explaining coalescence in the exact island equilibrium

since it has a simple current distribution given by
I=(1-e)e™ (137)

which forms a simple peak in the current over each o-point. This is evident from the fact
that since J, = J,(y) it must have the same topology as , which is only peaked over the o-
points. But as was pointed out in the section I-3.1, see fig.9, the simulated tearing mode
magnetic islands also have current peaks over the x-points which stretch into current
sheets when A > L.¢ . In fact, in section I-3.3 we found that when A> L;m , far from
coalescing to form larger islands, the island chain transformed via the breakup of the x-
point current sheets to one with smaller islands. Therefore the idea that magnetic islands
always tend to coalesce is clearly shown to be false, at least for finite S.

The existence of the 'preferred’ island length discussed m section I-3.2 seems to
play a major role in determining the evolution of the tearing mode. When the island
wavelength, A, is less than L. there is still a tendency for a larger island to form and so
coalescence would be expected to occur. By the same token when A > L¢ the tendency
to coalesce could be diminished by the fact that the island is already longer than the
'preferred’ island length. |

Relating these considerations back to the current distribution it could be concluded
that coalescence is certain to occur when the x-point current peaks are small (or non-
existent as in the case of the exact island equilibrium) ; less likely when they lengthen into

current sheets and absent when the sheets are long enough to be tearing mode unstable.
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Note that the periodicity length must be at least double the island length to allow room for
the coalescence to proceed.

Another consideration is at what stage during the growth of an island chain will the
islands tend to coalesce. Fig.9 shows that although the x-point current peaks form almost
immediately, the o-point current peaks do not form until much later and only reach full
size as they approach saturation. Given the absence of a distinct current channel through
the o-points of the islands during the early stage it is, perhaps, understandable that the
short simmulations of Hayashi (28] (t = 160 t, ) failed to produce spontaneous
coalescence. Had he run his simulation considerably longer to allow the o-point current
peaks to form he would indeed have observed spontaneous coalescence like that shown in
the contour plots of figs.26, 27 and 28, for the case with an initial island length of
A =2m/0.43 and periodicity length of L, = 27/0.23.

Coalescence of tearing mode magnetic islands is observed to occur in three distinct
stages which appear to correspond to the three stages distinguished by Bhattacharjee,
Brunel and Tajima (281 for coalescence of m;agnetic islands in the exact island equilibrium.
It will be shown here, by relating the spatial behaviour of vy, ¢ and J, in figs.26 to 29 to
the time dependence of AY, v, W, I\Um(x=0) | and the x and o-point positions in fig.25,
that the 3 stages can be characterized as : (I) a preparation phase, (II) a reconnection phase
and (III) a relaxation phase.

Phase Preparation :

Initially the merging of the magnetic islands is very slow as the sections of plasma
within each island gradually gain momentum towards each other. In effect, the merging,
which will involve considerable reconnection of the field lines, is delayed until the flow
pattern is made more appropriate for the process. According to fig.26 showing contour
plots of v, ¢ and J, this means the shrinking and eventual removal of the vortical flow
structure associated with the old x-points to allow the vortices of the permanent x-points

to stretch out and fill the space. The resulting flow pattern between the merging islands
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then has plasma entering along the y-axis and exiting parallel to the x-axis , the opposite to
that of the original x-point so that the reconnection during coalescence occurs in the same
manner as for the initial tearing mode but orientated at right angles to it. The new flow
pattern is also consistent with the new o-point that will exist there afterwards. The first 3
frames of fig.29 show, in 3-D perspective, that as the x-point changes its identity it also
loses its current spike. In general the time dependent diagnostic parameters in fig.25 show
little or no change during phase(I) except for the growth of the odd Fourier modes but the
changes that have occurred, especially in the fluid motion, have prepared the way for the
considerable reconnection that defines the next stage of the coalescence process.

Phase IT Reconnection :

With the appropriate flow structure now set up the two islands begin to approach
each other at a faster rate, see fig.25(d) and 27(a), with a consequent steepening of the
current and flow gradients and an increased compression of the field lines, see fig.27(b)
and (c), so that a localized neutral layer is generated between them. From frames 4,5 and
6 of fig.29 it can be seen that this corresponds to the formation of a sharp current trough
or reverse current sheet where once there was a peak and roughly defines the extent of the
diffusion region within which the field lines of the two islands will reconnect to form a
single island topology. Phase II is classified as the reconnection stage of the coalescence
process because according to fig.25(a) and (b) it defines the stage during which the most
flux is reconnected and at the fastest rate. Besides the sharp drop in the reconnected flux
there is a small increase in the island width, see fig.25(e), as the pair of islands merge to
form a single larger one. Fig.25(c) shows that the start of phase II occurs when the rising

single island mode, ¥, ,begins to dominate over the falling double island Fourier mode,

y,. The end of phase II occurs when the flux destruction ends and is marked more

precisely by the point at which the o-points come together as shown in fig.25(d).

Phase III Relaxation :

After the majority of the reconnection is complete a relaxation phase follows during
which the new composite island relaxes to a more preferable shape while removing
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remnants of the reconnection process, see fig.28. The current trough is filled in to form
the usual o-point current peak, see frames 7 to 12 of fig.29, and the velocity gradient
around this new o-point is reduced, see fig.28(b). The wavelength of the new island that
emerges from the reconnection phase is now longer than the preferred island length with

A =L, =2n/0.23 > L,.¢= 0.35 . As a consequence the central island region shrinks

creating a steady decay of the reconnected flux during phase I although initially there is a

rise as shown in fig.25(a) due to the increase in flux associated with the filling in of the

current trough.

Biskamp and Welter 241 in an earlier study of coalescence (using the exact island

equilibﬁum), distinguish only two stages, the first of which corresponds to the
Preparation phase described here plus the early part of Phase II describing the flux build
up, which they, perhaps more appropriately describe as the 'MHD phase’ since it
represents that part of the process that occurs without any dissipation and hence resembles
the evolution of the ideal MHD coalescence instability found by Finn and Kaw %! and
simulated by Pritchett and Wu (23], They make no distinction between the Reconnection
and the Relaxation phases but instead describe this part of the process simply as the
Reconnection phase.

At no stage was there any evidence of secondary island formation in the neutral
layer between the coalescing islands like those found by Biskamp (301 According to
Bhattacharjee, Brunel and Tajima (26] these secondary islands are always removed from
the neutral layer by the flow and suggest that the results of Biskamp are a consequence of

non-general symmetry constraints on the flow field employed to achieve higher numerical

resolution.
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I-3.5 Long Time Behaviour with Symmetry Breaking and Period
Doubling Bifurcations

By this stage it should now be clear, especially from the forked behaviour of the x
and o-point positions versus time, that coalescence and secondary island generation are
essentially opposite topological transfofmations. Fig.25(d) shows that during coalescence
two adjacent o-points merge together eliminating an x-point to remove an island while
figs.18(c) and 19(d) show that during secondary island generation an x-point splits in two
producing a new o-point between them to create a new island. In a sense secondary island
generation and coalescence could be considered as creation and annihilation operations on
the island chain.

It should also be apparent from the examples given in the previous two sections,
fig.20 and figs.26 and 28, that the final state created after secondary island generation is
similar to the state existing‘ just before coalescence, and vice versa. In fact the two
examples actually come from the same run with L, = 2n/0.23. To see how this can occur
we will now consider the full evolution of a similar run made with K = 0.25. This is
shown in fig.30. By following the evolution of these diagnostic quantities, especially the
reconnected flux and the positions of the x and o-points, it is possible to resolve the
sequence of events by comparing them section by section with the plots of figs.25 and 19
corre_sponding to the instances of coalescence and secondary island gcneration.‘

The tearing mode is triggered with a wavelength A = L, = 2n/0.25 and grows to
form a chain of magnetic islands with that wavelength. However because L, > Ly the
inner reconnected field loops contract to their 'preferred’ aspect ratio, as do the o-point
current peaks, causing the x-point current sheets to lengthen, so that they eventually
become unstable to a secondary tearing mode. This results in the generation of secondary
magnetic iél;:nds whiéh equalize with the primary islandsvto form a new chain with half

the original wavelength. The o-point current peaks, which have only been slightly

decreased in size, take up a bigger fraction of the island length, leaving less room for the x-
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point current sheets, which are consequently now short enough to be stable to further
teéring modes. According to fig.30(a) the plasma appears to settle in this double island
state, which is the same stage reached in the example shown in fig.18(a) of section I-3.3.
However now that the wavelength, A = L, < L,.¢ the o-points are close enough for the
attraction of the parallel current channels to induce the islands to coalesce back to the
single island state, i.e. back to a state with one island per periodicity length. This is
marked by the sharp drop in reconnected flux that corresponds to the second phase of the
coalescence process. Following this, the central island regions contract and the x-point
current sheets lengthen, bringing the Iplasma back to the initial island state in which the
x—point current sheets again become unstable to the secondary tearing mode so that the
cycle can begin over again. However during the next secondary island generation the two
processes begin to overlap, that is, the primary islands start coalescing with the seéondary
islands before the secondary islands have fully grown. The overlap increases with time so |
that the coalescence and regeneration reduce to a series of asymmetric peristaltic-like
squashing and stretching motions in which a bulge forms to one side of the primary
island, and in the process of being drawn back into the main body of the island induces a
small shift in the island position, see fig.31. This is seen as a damped oscilation in all the
diagnostic quantities of fig.30. As the competing mechanisms become more c,losely‘
synchronised, the motion is damped dpwn to a rigid drift of a chain of asymmetric islands
with one island per periodicity length aS shown in fig.32(b). It seems that the final state is
reached when a perfect balance is achieved between the tendency to generate secondary
magnetic islands and the tendency for them to coalesce.
In terms of the saturated behaviour as a function of L, the asymmetric naturé of the

islands means that the critical point at L, = Ly, is a parity breaking bifurcation. It

represents the second such symmetry breaking transition as the first would be the onset of
the tearing mode itself which brcaks the translational symmetry, see ﬁg;33(b).

Since the total momentum is conserved, the drift is actually a travelling wave motion
of the magnetic island and its vortical flow structure through the stationary plasma. The
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phase velocity of the travelling wave is given by the gradient of the x and o-point
positions versus time, see fig.30(e), and shows it to be less than the resistive diffusion
velocity, making it consistent with the degree of decoupling of the field from the fluid
allowed by the finite resistivity. Again looking at fig.30(e) the motion can be seen to
originate from the smoothing out of the 1/4 wavelength phase shift that is produced after
the island chain has undergone both secondary island generation and coalescence.

This type of evolution also occurred in essentially the same manner for simulations
made with KP = 0.26, 0.25, 0.23, 0.19, 0.15, 0.14 and 0.13. In each case the final
saturated state was a chain of drifting asymmetric islands as shown in fig.32(b),(c),(d)
and (e). These contour plots of y have been cut and pasted in order to show a full island
length which, because of the drift,is usually out of phase with the simulation region.
They have also been orientated with their long neck sections pointing in the same direction
so that the drift in all cases depicted is from left to right.

The direction of the travelling wave, positive or negative, depends on which side
the primary island moves in when it first coalesces with a secondary island, and, since
there does not appear to be any reason for a preferred direction to exist, the choice should
be random, perhaps depcnding on the rounding error in the calculation. This seems to be
backed up by the fact that three of the cases (K, = 0.26, 0.25 and 0.14) had phase
velocities in the opposite direction to the others. This means that the parity breaking
transition at L, = Lc;i, also represents a bifurcation of the phase velocity and from
fig.33(a) it appears to be a typical parabolic bifurcation. The plot shows the zero phase
velocity symmetric island solution becoming unstable for L, > L; and being replaced by

two finite phase velocity solutions corresponding to the right and left going asymmetric

island states.
The onset of the first secondary island generation occurs earlier in the evolution the
longer is the periodicity length. For the case with L, ’.very close to Ly , i.e. K, =0.263

shown in fig.18(a), the initial tearing mode has almost saturated before the x-point current
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sheets have got long enough to go unstable to the secondary tearing mode. With L,
increased to L, = 21/0.25, see fig.30(a), the x-point current sheets reach the critical length
soon after the overshoot of the saturating primary tearing mode while for L, increased to
L, =2m/0.14 the periodicity length is so much greater than the ‘preferred' island length
that the current sheets become unstable before the primary tearing mode has finished
growing. The time between the first regeneration and coalescence also decreases with L,

so that although they are well separated for K, = 0.25 they overlap straight away for

K,=0.14 .

From fig.32, showing the flux contours of several saturated states for increasing
values of L, it can be seen that the size and aspect ratio of the inner reconnected field
loops are still reasonably well preserved deSpite the increased length of the islands and the
growing asymmetry. From the corresponding contour plots of the current density in
fig.34 it can be seen that the asymmetry is mostly in the x-point current sheets (see also
the 3-D perspective plots in fig.35) which increase in length with L, while the o-point
current peaks remain much the same size. The asymmetry of the x-point current sheets
must be the feature which provides stabilization against secondary island generation since
symmetric current sheets of these lengths have proven to be unstable. Since they represent
stable equilibria the asymmetry must somehow also stabilize the tendency to coalesce.

| Consider now the unstable zero phase solutions for L, > L. If a parity symmetry
constraint (i.e. Y(x,y) = y(x,~y), ¢(x,y) = —=¢(x,—y) ) is enforced in the simulation by
only exciting the cos components of ¢ in the initial perturbation, then the symmetry |
breaking bifurcation is prcv‘ented from occurring. The secondary island still forms, but,
because it produces a quarter wavelength shift of the x-points, the islands are prevented
from coalescing since this would require coupling to the cos modes of . As a result the
plasma is for;ed to saturate into a symmetric double island state (i.e. with two islands pér ‘

periodicty length). Of course, as soon as the symmetry constraint is relaxed the islands are

able to coalesce and so forth until the asymmetric travelling island solution is attained.
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However it is instructive to consider further these symmetric solutions as will become
apparent from the set of simulations, made in this way, with kp =0.23, 0.19, 0.15, 0.14,
0.125, 0.12 and 0.1.

The first three of these developed into double island states with equal sized islands
at saturation, identical to each other as well as identical to islands produced in simulationss
with half the periodicity length so that the effective periodicity length was reduced to L,/2.
Thus with the symmetry constraint imposed the symmetry breaking bifurcation at
L, = L reduces to a period halving transition.' The amplitudes of the odd Fouriér
modes in this case are all vanishingly small, as shown in fig.18(d). The cases with
L, > 27/0.15, on the other hand, developed into modulated double island states with one
long island and one short island per periodicity length as shown in fig.32 for the cases
with k;, =0.12 and 0.1. Note that, because of the symmetry constraint, they actually form
with a long/short island in the middle of the simulation region and half a short/long island .
on either side, whereas the plots in fig.32 have been cut and pasted to show the complete
island lengths. With these cases the odd Fourier modes have finite amplitude, especially
V;, which is the mode that produces the modulation of the islands. The disparity in the
island size increases with periodicity length along with the amplitude of the y; mode as
shown in figs.36 and 37 by the series of crosses. By ruling a line through these pqints
and extrapolating back to the axis to where y, vanishes, we can determine th¢ value of L, |
corresponding to the onset of this change in island configuration to be L,=418,ie. kp
= (.15. The transition to the modulated islénd state avae this value of L, destroys the
sub-periodicity .length of LP/Z and therefore represents what is known as a period
doubling bifurcation. We shall denote it by Lpp. In other words, when L, > Lpp the
identical double island solution becomes unstable and the system ( Which still has the
symmetry contraint imposed) bifurcates to either a modulated island state with the short
island in the middle or one with the long island in the middle as’shown in fig.33(b). The

difference in the two states is just a half waveléngth phase shift of the island chain.
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Looking now at fig.34 showing the corresponding contour plots of the z-current
density we see that the x-point current sheets of the modulated island states are
asymmetric just like those for the asymmetric travelling island solutions with half the
periodicity length, although in this case they are arranged symmetrically about each
o—point. The similarity of the x-point current sheets in these two types of solution is more
clearly shown in the 3-D perspective plots of J, in fig.35.

Having identified the period doubling bifurcation for the symmetric solution branch
it is now worth considering the stability of these new modulated island states with the
parity symmetry constraint removed. This is easily done by restarting the simulation with
a small symmetry breaking perturbation of t}}e cos component of ¢;. When this was don‘e
for the cases with L; < Lpp the perturbation immediately developed an exponential growth
rate eventually leading to the usual sequence of coalescence and secondary island
generation back to the asymmetric single island travelling island solution. For the
modulated island states with k, = 0.15, 0.14 and 0.125, »i.e. with L, just greater than
Lpp, the ﬁerturbation amplitude was much more docile and tended to oscilate although
with an ever increasing amplitude indicatingthat these solutions are also unstable, but
more weakly. However, for the last two modulatevd island states with k, = 0.12 and 0.1
the perturbation exponentially decayed away showing that they are, in fact, stable
solutions even with the symmetry constraint removed.

Thus we now have another critical transition point at L, = Lcp,(2), located between
L, =2r/0.12 and 27/0.125, which appears to correspond to the interchange of stability
from the asynﬁnctric travelling isiand state to the symmetric médulated double island state,
as indicated in fig,33(a). The stability of these solbutio,ns again seems to be related to

asymmetric property of the x-point current sheets. As L, is increased above Lpp, the x-
point current sheets become more asymmetric until finally at L, = L (o) the asymmetry is

sufficiently developed to stabilize the tendency of the islands to coalesce and regenerate so
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that, with or without the symmetry constraint in place, the modulated double island state
becomes the stable solution.

The double island state was attained with only one secondary island generation, and
not the repetitive action of coalescence and regeneration,so the islands do not develop any
drift. That is, their phase velocity is zero. It would seem therefore that the parabolic
variation in the phase velocity of the asymmetric travelling island solution, shown in
fig.33(a), discontinuously terminates at this second transition point although it is possible
that this may just be a consequence of the initial conditions used - the plasma may have
been started in the basin of attraction of the zero phase velocity state.

To see this more clearly, consider the following analogy of a potential surface with
a saddle point, corresponding to the unstable symmetric solution, and two wells on either
side, the bottom points of which correspond to the two stable asymmetric travelling island
states. This effectively describes the situation for L, < Lcy2). The saddle point defines a
stable solution only when the systerri is contrained to the ridge passing through the saddle
point in analogy to the way that the symmetric island solution is stable only when the
symmetry constraint is enforced. Once this constraint is relaxed the trajectory would fall
away from the saddle into one of the wells corresponding to the transition to the
asymmetric travelling island state.

As L is increased towards L) one can imagine the potential surface changing so
that the saddle point gets lower and lower until for L, > L;,(5) it becomes lower than the '
wells and hence takes over as the most stable state of the system. This could happen in at
least 3 ways. As the saddle point moves below the wells either: (1) the wells cease to exist
in which case the asymmetric travelling island solutions no longer exist and the parabolic
branches in the phase velocity plot would simply terminate, or (2) The wells become
points of inflection so that the symmetric travelling island solution cxistsrbut is no longer
stable producing an interchange of stability to the symmetric modulated island solution
which would then be represented by a well on the potential surface or (3) Th¢ wells
remain locally as wells so that several basins of attraction exist with the final solution
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depending on which basin the initial conditions are closest to. The wells of the asymmetric
travelling island solution may eventually disappear at a higher value of L so that a
hysteresis type bifurcation is formed; an occurence common in bifurcation theory fe1],
This would mean that close to L,y both the symmetric, modulated double and the
asymmetric, travelling single island states would be stable with the transition point
occurring at a different value of L, depending on which state we force the state into to
begin with. With the simulations made so far, the possible extent of the overlap, if it
exists, is limited to between kp =(.125 and 0.12. Further runs made between these limits ‘
would be required to resolve the question of hysteresis but this will be left for a later
investigation.

The flux contour plots in fig.32 and thc' current contour plots in fig.34 are divided
by dotted lines into the three types of saturated states determined so far as a function of
L. The first plot is an example of the symmetric stationary single island state that exists
for L, <Ly . The next four are examples of the asymmetric, single island, travelling
wave solutions that occur for Ly < Ly <Ly o) and the last two are examples of the
stationary modulated double island solutions that exist for L, > L py(2) . These are all
referred to a plot of the saturated reconnected flux as a function of L, which highlights
the difference in the nature of the transitions at L ; and Lcﬁt(z); The symmetry breaking
transition at L, = Ly, is marked by a sharp dip in AY while the transition at L, = L)
, which appears to occur because of the need to keep the density of islands within a certain
range, is marked by a discontinuous jump in A¥ corresponding to the extra reconnection
produced by the introduction of a second island. Note that AW is the total reconnected flux
over one periodicity length.’ If this was changed to the average reconnéctcd flux per unit

length the second transition would still be discontinuous but the variation would look
more like a saw tooth with AY decreasing steadily before the transition, then jumping up
and decreasing again after the transition. The transition thus also serves to bring the

average reconnected flux per unit length back close to the value it has at Lprer and
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indicates that, if this behaviour is to be maintained, further such transitions will occur at

larger values of L,

To see how this may happen it is instructive to consider the behaviour of each
individual Fourier mode as a function of wavenumber, k, = mk,, or wavelength,
Am = 21t/k,, not to be confused with periodicity length L, = A,. Plots of the first four
fourier modes of y on the neutral lineb, hy.(x=0) | , are shown in fig.36(a) as a function
of k;, and in fig.37(a) as a function of A,,,. The variations of the higher order modes tend
to clutter together at the short wavelength end of these plots, so to see them more clearly,
higher resolution plots covering ‘only the short wavelength range of k,, and A, are also
given in figs.36(b) and 37(b) form = 1,2, ..:,?.

The m = 1 mode has a wavelength equal to the periodicity length and since it
represents the single island component of y its variation as a function of A is very similar
to the variation of A as a function of L, up to A = L, = Lpy9) - At A = Lyyy9) , which
corresponds to the transition to the double island state, hy; | discontinuously drops down
to a lower amplitude while at the same time the m = 2 amplitude, |\|12 |, jumps up at
A =.Lc,i[(2)/2 to take over as the dominant Fourier mode. What's more, it does so by |
taking on almosf exactly the same amplitude as |\|Il | did in the range of A between
Lcrir2y2 and Loy - This behaviour is repeated by all the even modes with the m = 4
mode, hy,!, jumping up at A = Lcﬁ[(é) /4 1o follow the same amplitude as |y, |, the
m = 8 mode, hyg |, jumping up to the value of |y, |atA = Lcrir2) /8 and the m = 6
mode, hyg |, jumping up to the vaiue of hyslatX =Ly /6. The transitions of the odd
Fourier modes, on the other hand, are always just to a smaller amplitude. From this it is
clear that after the transition each even mode takes on the same amplitude as the mode with

half its wavénumber to form the following sequences of mode amplitude transitions, one

for each odd Fourier mode like so :
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WV DY DY, oY, oY, & Dominant Sequence
Y DYy DY DY DY
< 2Yg0o VY40 V20 V10 2 VY5

Y112 VY56 D VYog V4 DY

The implication from this is that, as L, is increased above L), We can expect more
such transitions to states with larger numbers of islands per periodicity length which are
dominated consecutively by the amplitudes of the modes in the lowest order sequence,
shown above, as they move into the optimal range Ly 5/2 <A < Lgjyz). This has
already been shown to be the case for y; and y, ; Y3 would be expected to remain
subdominant while v, which follows the amplitude of y,, would be expected to jump up
to the amplitude of y at L, = 2 L) to take over from y, as the dominant mode,
creating a quadruple island state. Similarly as L, is increased further so that y, moves out
of the optimal range, g should take over as the dominant mode to create an octuple island
state and so on.

This optimal range would therefore represent the range of wavelengths which
islands in an island chain will transform towards via the mechanisms of coalescence and
secondary island generation, irrespective of ;he initial wavelength or periodicity length,
except when L, < L, where it is constrained not to.

Note that the islands in the double island state, which is dominated by Y, , are of
different sizes, i.e. big, small, big, smali, ....etc. This is because they are modulated by
the finite, although subdominant, amplitude of the longer wavelength y; mode. As L is
increased to much higher values, more of the low order modes will have longer
wavelengths than the reigning dominant mode, including those which were never
dominant at smaller values of L. This will tend to increase the complexity of the
modulation so that islands with many different sizcs; shapes and orientations should be
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produced. In fact a run was made with K = 0.05 which by this scenario puts it in the
range of , dominance so that it should have four islands per periodicity length. Although
the run was not quite completed to saturation it was run long enough to show the
transformation via two regenerations into a quadruple island state as shown in fig.38.
Besides further verifying the predicted hierachy of dominance as a function of L, , it also
shows the more exotic modulation due to the effect of the y, ,y, and y3 modes;

producing a state with two asymmetric islands orientated in opposite directions, which are

separated by two smaller symmetric islands.

As L, is increased we might therefore expect the saturated island chain to change,
through a series of island doubling transitions at L, = Lp) = 22 Lerigc2) where n = |
2,34, ..., to more complex arrangements of the islands which in the limit that Lp — o0
would be quite chaotic. The number of islands per periodicity length would increase but
the density of islands would remain reasonably constant while the shape and size of the |
islands would vary from island to island. In a sense Lpr could be considered as an order
parameter like those in transitions to chaos that occur in bifurcation theory. It is, however,
not clear what type of transition will occur at higher values of L, that is, whether a series
of symmetry breaking and period doubling bifurcations will generate these more complex
island states or whether some other type and/or combination will occur. Simulating this
would be expensive since the characteristic scale length of the islands is expected to
remain in the range of the dominant wavelength between 1/2 L5y and Ly o) so that the

" number of Fourier modes needed would increase with Lp.
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I-3.6 Reconnection Rates

Two types of magnetic configurations giving rise to enhanced reconnection have
been discussed in the literature, a 'diffusion’ model proposed by Sweet [*! and Parker!>®!
and a 'wave' model first discussed by Petschek 3762631 In this section we shall briefly
discuss how the reconnection occurring in our simulations compares with these two
models.

The Sweet-Parker model assumes that the reconnection mechanism is confined to
the diffusion region around the x-point where the frozen-in condition is violated and over
which the x-point current sheet forms. In this region the magnetic diffusion is balanced by
the inward flux transport, while the incoming plasma is accelerated along the sheet mainly
by the pressure force. In contrast, Petschek proposed that the diffusion region is relatively
small and that the reconnection process is dominated by two pairs of MHD mode shocks
placed back to back bounding the field reversal region, see fig.39(a). The propagation of
the waves away from the field reversal region is balanced exactly by the plasma flow into
it so that the shocks remain stationary. As the plasma flows through the shock wave front,
the magnetic fields are refracted toward the normal which reduces the magnitude of the
magnetic field and accelerates the plasma flow along the fronts to the upstream Alfvén
speed.

The incompressibility constraint used here eliminates the fast compressional or
magnetosonic mode while leaving essentially unchanged the shear Alfvén mode and the
slow mode. But since the slow mode may give rise to shocks travelling at an arbitrarily
slow speed, stationary shocks can still be generated in systems, as here, with slow plasma
flows so that the Petschek configuration is still possible. The incompressibility constraint
does however eliminate the possibility of fast reconnection 641

In previous studies of reconnection, the process has been simulated either by

(60]

externally driven reconnection ‘> or reconnection driven by instabilities which are self-

consistantly realized in a plasma (2630411 ' According to Biskamp (601 the distinction is
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largely overemphasized, the basic reconnection process being the same, at least within the
same model equations. A driven system may be regarded as a small section of some
spontaneously reconnecting one, whose global geometry and available energy are
simulated by suitably chosen boundary conditions. The problem is then to create inflow
and outflow conditions which are consistent with the reconnection process. Biskamp
achieved this by using an iterative method to remove the spurious boundary current layers
that form when the outflow is inconsistant with the inflow, to obtain reconnection rates in
good agreement with the Sweet-Parker scaling.

On the other hand, reconnection via an instability has the advantage of avoiding the
messy adjustment of boundary conditions but usually requires a much larger grid to fully
contain all the flows and field structure associated with the self-consistent evolution of the
instability, which usually extend well beyond the reconnection region. The main problem,
however, is that once perturbed from equilibrium, a plasma driven by an instability is in a
state of dynamical non-equilibrium until it saturates and so the assumption of steady state,
crucial to the Sweet-Parker and Petschek models is not strictly valid. Thus although it
would be interesting to compare the rates of reconnection during a tearing instability, or
coalescence, or secondary island generation with the reconnection models, the constantly
changing rates of reconnection occuring during these processes, as indicated by the
varying growth rates, make this hard to justify. Inspite of this, Bhattacharjee, Brunel and
Tajima (26 attemped a comparison with that part of the evolution during their simulations
of coalescence where the rate was momentarily constant (presumably when the growth
rate was at a maximum) and claimed to have obtained a variation conforming with the
Sweet-Parker Scaling. Unfortunately, in the present study, because the outputs from each
run were mostly only made at regular intervals, data corresponding to the point of
maximum growth during each of the reconnection processes was not always available, so
a comparison could not be made without considerable extra effort. That is, except to point

out that the much higher growth rate during coalescence as compared with secondary

island generation indicates a much higher rate of reconnection during coalescence.
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Nevertheless, since each simulation was evolved completely to saturation, where
reconnection persists to balance the diffusion losses, the final states obtained do indeed
represent systems of truly steady state, selfconsistent reconnection which can therefore be
compared with the two steady state reconnection models. But first, as a means of
introducing the relevant parameters, a brief derivation of the Sweet-Parker scaling law will
be given. A more thorough review of the various reconnection models is given by
Vasyliunas (631

The diffusion region is represented by a rectangular box in fig.39(b) with half
length A, and half-width & and where V, is the speed of the plasma flow into the diffusion
region and V, the flow out. Given that the system is in steady state, the magnetic Mach
number, M = V,/V, , is a measure of the magnetic flux feconnected per unit time and is
therefore, also called the reconnection rate. The aim is to employ this model to determine
the rate of reconnection in terms of the resistivity, or more appropriately the Lundquist
number S. In this simple model all quantities are treated as constant over the face of the

box. We begin by integrating the z-component of Ohm's law over one quarter of the box

to give:

A
E28A=n_Uszxdy (138)
00

where E, is considered constant and where the diffusion region around the neutral line is
sufficiently small that the V x B term can be neglected. The right hand side is evaluated

by integrating Ampere's law around the box to give:

A

ledxdyzn B, A/ (139)
00

where B, << B, just above and below the diffusion rggion. Outside the diffusion region
Ohm's law reduces to E + VxB =0. so that :

E =V, By (140)
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and from conservation of mass, with the assumption of incompressible flow we have :

V,A=V 3 (141)
Combining equations (138) to (141) and eliminating 8 gives :

nv,

V=

(142)
Ho A

By taking the characteristic diffusion length to be equal to the length of the diffusion
region, A, equation (142) reduces to :

Vi = Vraoo) ¥y (143)

where Vgoc) = /(H,A) 1s the local resistive diffusion velocity at the edge of the diffusi

region. The plasma flow is considered to be accelerated up to the local Alfven velocity at

the end of the diffusion region, which fixes Vy =V 40y = Bk,c/(}.Lop)”2 . The local

Sweet-Parker reconnection rate is thus given by :

v ‘

_ x -1/2

Mgp=5—=—=~S;0, (144)
A(loc)

where S1,.(A) = V zqocy VRr(loc) 1S the local value of the Lundquist number just in front of
the diffusion region. In terms of dimensionless variables defined in section I-2.1 this
becomes  Sy,.(A) = Bioc A S/ Mioe Where Vaqoc) = Bioe » VR(loc) = Mioe/(SA) 5 Nioe =

cosh?(8) and S is the asymptotic Lundquist number. This is not quite true since even

though the wall value of the magnetic field is used in S, it includes the axial value of the
resistivity', which is much smaller than the wall value because of the cosh’x dependence.
Nevertheless S still turns out to be an important scaling parameter. A derivation of the
Petschek Scaling law (631 gives a different reconnection rate which takes the form :

M,=n/(81n(S, )) (145)

With the dimensionless terms used here the local reconnection rate is given by My,
= V}oe/Bioc » the ratio of the inflow velocity to the magnetic field just in front of the
diffusion region. The dimensions of the diffusion region correspond roughly to those of
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the current sheet so that as in section I-3.3 we will equate § with the half width of the
current sheet and A with the half length, the values of which are measured from contour
plots of J, . The value of § is then used in contour plots of V and B to determine the
values of V), = [V, (x=8,y=0) | and By, = [B(x=8,y=0) |.

As was shown in section I-3.2 the significant viscosity and finite wall separation
used in these simulations alters the size of the current sheet and the rate of reconnection,
so that it is not possible to make a direct comparison with the reconnection rates predicted
by the two models. It is, however, possible to compare the scaling with the Lundquist
number and that is what is done here. The Sweet-Parker and Petschek reconnection
scalings have, however, been modified by Park, Monticello and White U to include the
effect of viscosity, for which simulations done in cylindrical géometry asymptotically
approach the modified Sweet-Parker scaling. But because of the conducting wall
stabilization it is still not possible to make a direct comparison, so for the present, a
comparison will only be made with the unmodified scalings.

In fig.40(a) are plotted the measured reconection rate, M, the local Sweet-Parker
rate, Mgp(joc)» and the local Petschek rate, Mp,,) as a function of Sy,c(A). The variation
of M, , which varies as 3106-1.12 , shows poor agreement with both models although it
is clearly closer to Mgp(qc). If, as shown in fig.40(b), the diffusion length is fixed at a
constant value (in this case set equal to the half width of the original current channel so
that S;,c = Bjoc S /Mo ) instead of using the half length of the x-point current sheet,
which decreases with S, the agreement of M, with the new local Sweet-Parker rate is
greatly improved, that is My, o< Sy 068 But, as shown in fig.40(c), the best agreement
is achieved if the asymptotic value of the Lundquist number, S, is used giving My, o< S”
052 1n all cases there is very poor agreement with the Petschek rate. In fig.41(a),(b) and
(c) My, is plotted against S;,o(A)" %, S;,c" %> and S ~®° to show that good linear fits

can be obtained with the two versions of the Sweet-Parker scaling which have a constant

characteristic diffusion length.

95



@)

Rec. Rate

(b)

Rec. Rate

()

Rec. Rate

Fig.40

M = 3.23 S(loc)™-1.12

100 5
10 1-:

] B M

j e S(loc)**-0.5
o2 g pi/(8InSloc)
102 S—— S—

10 100 1000

S(loc)
0 M= 0.19 (BS)™-0.66

10

a M
o (BS)"-5
m  pi(8InBS)

e | I —
10 100 1000
BS

10000

M = 0.24 S**-0.52

g M
® S™-0.5.
B pi/(8InSloc)

™ T

100 1000 10000 100000



M=V/B vs. $**-0.5

@) y =2.205e-4 + 0.2027x R =1.00
1.0e-1 -
5.0e-2 -
Fig.41
0.0e+0 - T T T T
0.0e+0 5.0e-2 1.0e-1
$**.0.5

M=V/B vs. (B*S)**-0.5 (Diff. Length = 1.0) |

0.02
®) y=-0.0019+0.1159x R=1.00
M 0.01-
0.00 T T +
1.366-20 1.00e-1 2.00e-1
(/Brs)y*-5
M=V/B vs. S(loc.)**-0.5 (Diff. length = A)
0.02 :
(C) = -0.0085 + 0.2607x R =0.99
M 0.01-
0.00 L T

ES— .
0.02 0.04 0.06 0.08 0.10 0.12
S(loc2)*-5



(sot)g
coot 00t
P A A A e A A ’b-
.-nb- IN
00’k =Y 6529°1vX,89000L =4
=Dt
(Bo-Bo) (-201)s *8A *joA mopuj
()
(oov)g
000t 008 009  ooOf 002 0
A J A i A 1 A 1 Nﬂa
- £-9003
- £-9002
- e-e00c /N
- £-900°F
- €-900'S
004 =Y 6SZ9°b-vX, 60001 =4
£9009

(901)s S 190ys JusLIN3 03 joA mopu)

Nv.mE_

sJ//
000014 000t 00t ot

ALl . ) VW S S | TP Sy ‘bﬂ

o) v
00'L=Y 0526°0~X, 162}'0= A
~ 0t
(Bo1-B0)) (s.8) *sA “Jop mopuj
@
sJ/a/
002} 000 008 O009 OOy 002 O
PY 1 A 1 A 1 A 1 a2 1 ﬁ aﬁnq
- £-900°}
- 6002
- c-e00¢ N
- 000"y
- £-900'S
00't =H BSZ60VX, 16210 =4
£-900'9

(S.8) "8A “joA mojju;

00000¢ 00001 0001 00t

Dbl | NP Sy Maasss s o

00°'L =Y ¥EELOvX ., 20210 =K

IN

(101d Boj-Boj) 5 "sA jop mojpuy

(®

8
00021 0000} 0008 0009 0209 0002
e L L ) i PR | A 1

-

00'L=Y ¥EELOVX, 202104

S "SA 199ys Jus.und 0} A}20j9A Moyuj

291



0001 oot

P S T S A A A §

680"H P/SYOX,2002Z~4

]
(Boj-Boy) (v01)s *sA (90)g = oA uenjjy 8207

@)
{oot)g
0001 008 009 [oLo] 4 002 ]
A 1 1 A L A 1 A —.o
20
660~YH P/Sr0-vX,28022=4
€0

(o01)s "8 (201)g="joA usajy 820

€81

ssa/

00001 000t 004

Dbl | PP S Y I PPV O Wy

ol

660=H C19Z0-vX,2Z2590=4

4

ao_.a% (s+(001)g) 'sA (20))g = "|9A UeAJY *207

@)
sva
00Zf 000} 008 009 ©0OY ©00Z O
re 1 A 1 A, 1 PO B 2. A —d
L]
L
"
20
660=H €1920-vX . 22500 = A co

(S«(201)g) sA ‘joA usajly 00

0000t 0001 001

| TP

66'0=YH 6.020vX,29120=4

1
(B01-Bo)) s “sA (201)g = (uenyy *20) A

(®

8
000Z1 0000 0008 0009 000y 0002 0
A L A 'l A A " -d

860~Y 6.020-vX,20120~K

€0
S "8A (90))g = (ueajly ea0))A



The inflow velocity V.. and the local Alfven velocity ( = By ) are also plotted as a
fuction of S, S;,. and S,,.(4) in figs.42(a), (b), (c) and 43(a), (b), (c). Since the
measurements are taken from the steady state configuration where inflow matches outflow
it is perhaps not surprising that the inflow velocity, Vi, , has the same dependence on S
as the maximum outflow velocity given fig.23 of section I-3.3, i.e. Vio ,Viax < S~ 0.3,
The measurements of B, , the field strength just in front of the current sheet, are a little
less accurate but they too show a definite inverse power variation with S, Sy, and S,,.(A)
which is due, at least partly, to the decrease in the width, 8, of the current sheet with S
because of the decreasing field strength towards the neutral line.

In review, the results, although not absolutely conclusive, clearly favour the Sweet-
Parker scaling above the Petschek in line with the findings obtained in several other
studies [26:30:41.60] although there do exist studies of reconnection which have found

Petschek scaling [65.66] Note also that the Petschek model has A ~ & ~ S while the
Sweet-Parker model has & ~ S”! but A ~ 1.The observations here are that although both A
and d decrease with increasing S, see fig.22, A can be made larger by increasing L , see

fig.24, so that even if S is large, A can still be of order 1 providing a further evidence

against the Petschek model.
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I-3.7 Summary and Conclusion

In summary it has been shown by systematic numerical computation :

(1) That the magnetic islands produced by a tearing mode on a current sheet develop
narrow x-point current peaks in addition to the ﬁsual, broad o-point current peaks which
persist after saturation, see fig.9 of section I-3.1.

(i) The existence of Li,.¢ : a periodicity length, L, beyond which the magnetic
islands cease to become larger, and instead thé x-point current peaks stretch into current
sheets, see fig.11 of section 1-3.2.

(iii) The existence of Ly : the periodicity length (> L) at which the x-point
current sheets become tearing unstable and c:onscquently generate secondary magnetic
islands, see figs.19, 20 and 21.

(iv) Coalescence can occur if the wavelength, A, is around Ly,¢ or less ( and the
periodicity length, L, is long enough to allow it ), see figs.25, 26, 27, 28 and 29.

(v) The dynamical competition between secondary island generation and
coalescence is the factor determining the form of the final saturated state for L, > Ly, see
fi g.3 1.

(vi) The conflic; between current sheet instability (secondary island generation) and

coalescence is finally resolved in the long time limit by the formation of travelling islands

with stable asymmetric current sheets, see figs.32 and 34.

(vii) Thus L4, corresponds to a new, symmetry-breaking bifurcation point (c.f. the
well known bifurcation at the value of L, at which the linear tearing instabilty occurs
when the original current sheet bifurcates to a static island chain ), see fig.33.

(viii) That the values of L and L.¢ and the qualitative nature of the transition is

independcﬁt;bf both wall separation and viscosity but does depend on the resistivity (i.e.

the Lundquist number S), see figs.12,13,15,16 and 17.
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(ix) If a parity symmetry constraint is imposed in the y-direction, then, when
Ly > Loy, the symmetry breaking bifurcation is prevented and instead a period halving
transition occurs at L to a state with two equal sized symmetric islands per periodicity
length, see fig.11.

(x) As L, is increased beyond L, another transition point, Lpp, has been found,

where the symmetric double island state changes in form to a modulated double island
state (with locallyAasyrnmetric x-point current sheets arranged symmetrically about each
island), see figs.32 and 34. |

(xi) Lpp therefore corresponds to a new period doubling bifurcation of the
symmetric solution branch, see fig.33. |

(xii) With the symmetry constréint relaxed a further transition at
L, = Lry2) > Lpp has been found, corresponding to an interchange of stability from
the asymmetric travelling single island state to the stationary symmetric modulated double
island state, see fig.33.

(xiii) A simulation done at even higher periodicity length has shown the existence of-
a static quadruple modulated island state with both symmetric and asymmetric islands.

The nature of the discontinuous transitions of the individual Fourier modes on the
neutral line as a function of Lp indicate a likelyhood for further transitions, at higher Lp’
which double the number of islands ‘per periodicity length each time, ie from m=1 mode
dominance to m=2 mode domihance to m=4 mode dominance and so on, as thé
wavelength of these particular Fourier modes move into thé optimal range of wavelengths
between Ly 2y/2 and Ly;,0y. Although this appears to be reasonably evidént from the
results obtained, it is still rather speculative and so it would be worthwhile to obtain,
further confirmation by computing one or more of the higher order transitions, say from
the the douBi‘e to the quadruple and/or from the quadruple to the octuple island states; also

verifying the complete absense of a triple, pentuple, hextuple; hcptuplé and other non

mode number doubling states.
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The possibility that magnetic islands would break up into smaller ones as well as
coalesce to form larger ones depending on the wavelength of the original islands was
previously conjectured by Biskamp and Welter (241 However the 'breakup’ of islands is
not technically correct since, although the final result is essentially equivalent to each
island having split into two smaller ones, the actual transformation, as shown in fig.20,
involves the birth of new secondary islands between each of the original islands which
consequently shrink to make room. They also suggest that coalescence would be more
frequent on the basis that short wavelength tearing modes usually have larger growth rates
leading to islands that subsequently tend to coalesce. Fig.44 indicates that this is
essentially correct, as it shows the linear growth rate peaking pretty well at the same low
wavelength as the saturated reconnected flux and island width, i.e. close to A = Ly ¢. The -
actual wavelength of the dominant linear mode will not necessarily be able to take on this
particula; value since it must divide a whole number of times into the periodicity length,
L, but it could be expected to be close to Lp,ef. IfA =L, =L.¢then the island will just
saturate with this wavelength but if L, > A then because the optimal range of wavelengths
lies to the higher side of Lp,ef the islands will coalesce but, as we have found here, thi$
can still involve one or more secondary island generations between each coalescence as
. the system undergoes a damped oscilation around the final configuration.

There is, however, the question of whether this behaviour would be reproduced in a
geometry and conditions more closely resembling those of laboratory plasméé 6r whether
itis justa consequence or artifact of the specific numerical setup. For instance, it was
shown that if we had chosen a slightly more realistic saturation mechanism with 1 =1(y) |
instead of | = 1(x) there would have been the possibility of obtaining saturated magnetic
island states without ariy fluid motioﬁ and hence none of the steady state reconnection that
seemed to govern the properties of the equilibria simulated here. The results of‘ Hesse and
Schindler [58) indicate that such states don't exist but this should still be checked, as well

as the effect of the geometry. Although the plane slab configuration used here is
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topologically different from most experimental setups it is considered to be a reasonable
approximation to the region around a single mode rational surface that is sufficiently far
from the edge of the plasma for geometrical effects to be relatively unimportant. The
closeness of the conducting walls in these simulations, which are set this way for the
purpose of improving numerical efficiency, is justified by the fact that the essential aspects
of the complex phénomena demonstrated here were found to be independent of the wall
separation with the major effects being simply to reduce the growth rate, see fig.44, and
the the size of the saturated islands. Even so'there are other aspects of the configuration

which do not transfer easily to the toroidal plasma configuration of tokamaks, such as the |

symmetric nature of the initial equilibrium around the neutral line. In contrast, the

variation of the field quantities around a propér, modé rational surface corresponding to a
particular helicity are quite asymmetric, with.the instability to the tearing mode being more
critically dependent upon the field gradients on either side. It would therefore probably be
useful to redo all these simulations for the case of say ka single helical mode in cylindrical
geometry to see if the various transitions via coalescence and secondary island generation
will occur as a function of the helical periodicity length, which would depend on the major
diame;cr (i.e. periodicity length of the cylinder) and the radius of the mode rational
surface. Many simulations have already been made in 2 and 3-D cylindrical configurations
but so far there has been little clear evidence of the behavidur shown here in slab
geometry. Nevertheless Park, Monticello, and White 1] have shown, in their simulations
of helical tearing modes in a cylindrical plasma, the formation of localized current sheets at
the x-points between the evolving magnetic islands. What is more, they found that, whcn
the viscosity was made negligibly émall compared with the ;esistivity, ie. v << 1, the
long current sheet that formed at the x-point of an m=1 resistive internal kink magnetic
island became unstable to m>1 tearing modes, but, because of the considerable increase in
the mode uségé that this entailed, they could not afford to investigate the evolution very |
far. Even so, there are aspects which are already different from what was observed here.

For instance the observation that the instability of the current sheet depended on there
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being negligible viscosity conflicts with the fact that, in all our simulations of secondary
island generation, not only was the normalized viscosity (v = 0.01) larger than the
resistivity ( = S™! £0.005), it showed no influence over the critical periodicity length,
L.t that marks the threshold tearing mode stability of the x-point current sheets. They
also observed a transition to higher and higher m components indicative of a transition to
turbulence around the reconnection layer. On the other hand, Biskamp [60], who
performed a similar simulation, found that a small secondary tearing mode magnetic
island, or bubble, was convected along the x-point current sheet to merge with the main
body of the m=1 kink magnetic island before it could grow to a significant size. Another
island would then emerge which wouid alsé be convected along the sheet so that the
process was rcpéated over again. This could, perhaps, be related to the repetitive
~coalescence and regeneration of magnetic islands described in section I-3.5, although
there are many differences. It is possible that the curvature of the cylindrical configuration
prevents the secondary magnetic islands from being able to maintain position long enough
to develop into a sustained secondary island structure as in the slab case although this idea
is negated to some extent by the fact that he also demonstrated a similar sort of behaviour
in a simulation of forced reconnection in slab gcometfy. In any case, on the basis that the
slab b_ehaviour does transfer directly to the cylindricai case, the evidence here implies that
sustained higher order island structures should be generated as long as the helical
periodicity length is made large enough. To show this will be the task for a future
investigation. For realistic values of S (~106), however, L4, 2 100, see fig.17(b), so the
scale length for a current sheet would have to be roughly less than 1/16 of the nﬁnor
radius in order reach the new symmetry breaking regime. Consequently applications in
space and astrophysical plasmas sound mofe likely.

In line with most recent studies of reconnection 254169 we find our simulations to
be reasonably consistant with the Sweet-Parker scalihg for the reconnection rate. The

scaling of the diffusion region as defined by the current sheets is different from that
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determined by Biskamp, although it is not inconsistant with the Sweet-Parker model. The
evidence here is that the length of the x-point current sheet is determined, not so much by
the properties of the reconnection process occurring within the diffusion layer but more by
external inﬂuenccs‘which allow it to extend to fill the available space. In particular,
because of the invariance in size of the o-point current peaks for L, > Ly, it tends to
increase in direct proportion with the periodicity length, ie A~L;, S~ 034 The decrease of
A with increasing S also appears to be more a consequence of the decrease in space left as
a result of the increase in size of the central island region and hence the o-point current
peak with S. In the simulations of forced: reconnection made by Biskamp, in which there
are no magnetic islands to influence thellengt‘h of the current sheet, he found that A was
completely independent of S but was so highly sensitive to the driven asymptotic inflow
velocity, M, ie. A~ M?*, that within a short range of values of M, A reached the global
system size. This is perhaps analogous to the direct dependendence of A on L, shown
here. However, in contrast to Biskamp it was also found that the width, 8, of the current
sheet shrinks with decreasing 1,ied~ S~ 024 in line with elementary boundary layer
theory. |

Besides the bifurcation behaviour found in this study it is possible that further
investigations will uncover more exotic phenomena similar to that already found for a
model of an interchange-unstable plasma in a shearless field using the 'Navier-Stokes
approximation', In this study Maschke and Saramito (7] identified successive bifurcations
leading to turbulence including regimes involving period doubling and strange attractors.
They also showed that this system of equations was formally similar to that for a tearing
mode unstable layer. To avoid the computational expense of simulating the full ‘evolution‘
they later applied bifurcation theory for compact operators to caléulatc solution branches
for the time-ésymptotic states of nonlinear tearing modes (686970, bur except for the.
bifurcation of the tearing mode itself as a function of S, they did not appear to have

computed anything resembling any of the symmetric or asymmetric solutions found here.
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II-1.1 Introduction : Tearing Modes, MHD Activity and Mode Locking

So far the study has been mainly exploratory, guided loosely if at all by
experimental observations. In this second part of the thesis a more concerted effort is
made to try to understand the specific nature of the MHD activity observed on the LT-4
tokamak.

Such large scale fluctuations are detected on LT-4 (1] by means of several detection
systems including : banks of external magnetic pickup éoils (often called Mirnov coils)
which detect fluctuations in the poloidal magnetic field; the monitoring of the soft X-ray
continuum emissions from the hot centre of the plasma which show fluctuations in the
plasma temperature and/or density; and phase scintillation interferometry techniques which
detect local density fluctuations. The main concern here is with the poloidal magnetic field
fluctuations which can be classified into several types or regimes, as in fig.45, according
to their amplitude as a function of the safety factor, q(a), (or inverse rotational transform)
at the limiter radius, r=a, which defines the edge of the plasma.

The appearance of such fluctuations is a common occurrence in tokamak
discharges, and in LT-4 (}718] they generally have a frequency of around 12 kHz in
regime III and 20 kHz elsewhere. Spatial analysis of the signals shows that they result
from the rotation of helical magnetic structures within the plasma. Because of this and the
fact that the plasma is assumed to be ideally stable it is generally believed that such
oscillations are the result of nonlinearly saturated magnetic islands produced by resistive
tearing modes. These would arise from perturbations of the form: § = &, exp(i (m6-
n¢)+ yt } around a rational surface with minor radius r=r,, defined by q(ry) = m/n where
m and n are the poloidal and toroidal mode numbers, to eventually form a helical magnetic
island structure like that drawn schematically in fig.51 for the case with m=2/n=1. Note
that with m=2 and n=1 a double island structure is genc;rated in which the field lines
forming the x and o points travel twice the long way around the torus for each circuit
around the short way before coming back upon themselves.
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The helical magnetic island topology also affects the density and temperature
distribution as well as the magnetic field within the plasma so that periodic signals in the
various detectors are produced because of the motion of the islands around the torus.
Many theories have been proposed to explain the cause of the mode rotation, which is
either due to the islands having a finite phase velocity through the plasma or more simply
a convection of the islands along with the bulk fluid motion of the plasma, or even a
combination of both.

Tearing mode simulations by Monticello and White (121 have shown that the
inclusion of diamagnetic effects cause a mode rotation at the diamagnetic frequency
without affecting the nonlinear growth or saturation of the islands. The rotation is shown
to correspond to a drift through the plasma because of the constancy of the angular
momentum. However, the possibility of this being the source of mode rotation was
confounded by.a similar simulation made by Scott, Hassam and Drake (2] which included
compressibility in the calculation to show that the diamagnetic drift of thé islands is
damped out by sound waves the along field lines as the tearing mode becomes nonlinear.
The rotation of the saturated tearing mode magnetic islands therefore cannot be due to a
diamagnetic drift.

On the other hand Sigmar et al. 73} observed experiﬁ:entally that the rotation of the
islands is altered by the toroidal rotation of the plasma as a whole, while Stringer (74]
showed that when inertial, resistive and parallel viscosity are included in the equilibrium
equations radial electric fields build up in order to equalize the ion and electron diffusion
rates. The E x B drift that results from this ambipolar diffusion produces the rotation of
the plasma. The stability of such a radial electric field in non-axisymmetric tori is also
diécussed from a thermodynamic point of view by Shaing 0751,

The resulting fluid motion may have poloidal and toroidal components, although a
study éf the time evolution of mass flows in a collisional tokamak by Hassam and
Kulsrud [ indicates that the poloidal rotation is strongly damped by magnetic pumping.

Magnetic pumping occurs as plasma rotates through the inhomogeneous toroidal magnetic
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field. This heats up the plasma and leads to a transformation of the kinetic energy of
rotation into thermal energy which damps the poloidal rotation.

It is also possible that the remaining toroidal plasma rotation is sheared. However
the experimental evidence shows that the m/n = 1/1, 2/1 and 3/1 signals are often phase
locked (18] when they are present simultaneously in the plasma. Assuming that these
signals are actually due to separate modes occurring on different rational surfaces and not
Fourier components of a single mode then this observation would seem to be consistent
only with a rigid uniform rotation of the plasma.

Assuming therefore that the MHD activity is due to saturated tearing mode magnetic
islands convecting along in a rigid toroidally rotating plasma it is then necessary to
determine more specifically how this scenario would account for the range and variability
in amplitude and frequency of the MHD activity that is observed. This is particularly
important if we are to understand the dynamical behaviour of the magnetic islands that
leads to the onset of a major disruption.

LT-4 exhibits a variet); of activity as shown in figs.47, 48 and 49 which is not
always the same as in other tokamaks. Fig.47 shows that instead of a growing oscillatory
m=2 signal as seen in TFR "7} | the conditions preceding a disruption in LT-4 are
reasonably quiescent before being punctuated by a series of fast transients which are
referred to as minor disruptions. Conéidering the overwhelming evidence for the existence
of an m=2 island preceding the disruption in other tokamaks it is hard to reconcile its
apparent absence at this stage in LT-4. An alternative possibility is that, preceding the
disruption, an m=2 mode does exist but is mode locked so that no oscilatory signal is
generated on the pickup coils. This seems likely to be the case in the type B discharge
shown in fig.47 where the termination of the MHD oscillations in regime III occurs within
one cycle. In fact during this irregular phase, which occurs when the density drops in
regime III, the MHD activity is observed to stop within a cycle and restart several cycles
later with otherwise no change in amplitude or frequency. Given that saturated tearing

modes tend to change adiabatically on a resistive timescale the rapid disappearance and re-
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emergence of the signal is unlikely to be due to changes in the size of the islands but more
simply due to a temporary cessation in their rotation. This irregular phase does not always
lead to a disruption but may return to normal cyclic activity as shown in fig.48, if the
density or gq(a) becomcs‘hi gher.

As mentioned earlier magnetic islands may lock in phase with other islands of
different helicities but for a mode to stop rotating it must interact with something external
to the plasma so it can be locked into the laboratory frame. Such an external field
perturbation could be produced by the limiter or in the case of LT-4 through the periodic
vertical field perturbation produced by its single armed iron core, see fig.45.

In the absence of tearing modes the externally imposed perturbations may interact
resonantly with the rational surfaces to create magnetic islands by means of forced
reconnection >~%, In fact a calculation of the vacuum magnetic surfaces for a tokamak
configuration in the presence of a periodic vertical field perturbation to model the affect of
(78]

the iron core showed the formation of several stationary magnetic island chains

including an m=2/n=1 island with a width approx. 10.% of the minor radius. Whether
these static force reconnected islands will be reproduced in a rotating plasma is considered
in section II-3.2. Assuming that they do then it is relevent to ask how they would affect
the evolution of tearing mode magnetic islands which normally tend to convect along with
the plasma. This would result in a competiﬁon between the two conflicting island states,
the resolution of which should shed light on the mechanism of mode locking. This forms
the subject of investigation in section II-3.3. In any case the size of these static islands
could at least be considered as a measure of the influence or coupling that the external
perturbation has at the rational surfaces within the plasma and is used in section II-2.1 as a
rough criterion for predicting when mode locking might occur.

An alternative mechanism of mode locking involving the effect of a resistive wall is
described by Nave and Wesson 1 A perfectly conducting wall responds to fluctuations
in the magnetic field immediately, so that no persistent currents can be supported in it,

whereas in a finitely conducting wall eddy currents can be induced because of the reduced
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response time. The induced currents give rise to J x B forces which interact back on the
plasma resulting in a transfer of momentum from the plasma to the wall. This causes a
slowing down of the plasma which, as discussed in section II-2.3, allows increased
penetration of the fields into the wall so that the interaction is strengthened. The
consequence is an increasingly rapid transfer of momentum from the plasma, which
finally brings the magnetic islands to rest. This was shown to occur over many cycles
with an initially . dependence of the frequency followed by exponential decay. It does not
however represent a viable modelocking mechanism for explaining the stop/start MHD

activity shown in figs.47 and 48 where the By' fluctuations stop within a cycle and return

again several cycles later with no change in frequency or amplitude.

Persson and Bondeson ¥ have demonstrated a similar sort of resistive wall mode-
locking for the case when the rational surface of an m=2/n=1 mode moves outside the
plasma. Once outside, the mode is no longer fo;ced to rotate with the plasma and is
dragged to a halt by its interaction With the finitely conducting wall. The reduced
stabilization that results then allows the mode to grow as an external kink on the timescale
of the resistive wall. This scenario is considered to be a likely process leading to the onset
of a major disruption as the current increases so that q(a) falls below 2.

In LT-4 the apparent mode locking and onset of disruptions occur when
2 < q(a) < 3. That is, when there are no rational surfaces near the edge of the plasma to
allow mode locking in this way. An alternative scenario is therefore required, although it
is possible that it could be applied to the m=3/n=1 mode to explain the drop in signal for
q(a) > 3. In this study consideration has been restricted to mode locking due to the
interaction of the mode with an external asymmetric field perturbation.

One way to verify mode locking experimentally would be to apply a controllable
external field perturbation to the outside of the plasma which could be tuned to lock and
unlock the modes at will. This has, in fact, already been done on several
tokamaks!81:8283], including the Pulsator tokamak in Garching which was equipped with

a set of m=2/n=1 helical coils around the plasma. As the current in these coils was
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increased a point was reached where the Mirnov oscillations would stop, and when the
helical current was turned off they would resume again with the same amplitude and
frequency. Such observations are remarkably similar to the irregular MHD activity
observed on LT-4, see r’i"g.47 and 438, reinforcing the belief that they are due to this form
of mode locking.

The importance of these experiments, however, is brought out by the fact that the
mode locking tends to delay the onset of a disruption, although it does'nt prevent it. This
may be because the helical currents lock the phase of the tearing mode island without
preventing further growth. In the Pulsator experiment it was also found that if the current
was increased further a disruption could be triggered even in a discharge that is not
otherwise disruptive; thus providing a clear indication of the connection between the
m=2/n=1 island and the major disruption.

The problem with mode locking as a means of stabilizing a tearing mode magnetic
island is that the island is locked out of phase with the external helical perturbation so that
increasing the size of the perturbation just makes the island bigger while decreasing it just
allows it to become unlocked. To suppress the growth of the island the external
perturbation must be in phase with the mode so that the island has a squeezing force on it

to retard its growth. This was made apparent in a quasi-linear numerical study of feedback

[12,84]

stabilization which showed that, while a feedback signal with the proper phase

relation can successfully stabilize magnetic island growth, a phase independent or
dynamical stabilization scheme does not exist. Without feedback, phase information island
growth is only momentarily reversed when the feedback phase opposes growth, but
“overall stabilization is not achieved. A full non-linear simulation of feedback stabilization
showed (831 that even when there is no mode rotation the tearing modes tend to flip out of
phase with the feedback signal applied at the boundary so that growth is enhanced instead
of retarded. Only by pulsing the feed back signal was it possible to limit the growth of the

tearing mode islands and prevent a disruption, although this method was not successful

when mode rotation was included.
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Another way, considered by Holmes et al.8! | to control the amplitude of the
tearing mode is to modify the current profile near the rational surface by raising the
temperature outside it. This would reduce the current gradient that drives the tearing mode
and so stabilize the mode. Reiman ¢! showed numerically that this method of island
suppression could be achieved by locally heating the plasma with rf driven currents
without the use of feedback control. The calculation was performed self consistently with
specialization to currents driven by lower hybrid waves, although similar calculations (87}
have been used to explore the feasibility of using electron cyclotron heating (ECH) for the
purpose.

The techniques of tearing mode stabilization through a feedback signal or current
profile modification are based essentially on the idea of reducing the available free energy.
Chu et al.®® consider an alternative method based on increasing the effective singular
current layer width in order to artificially induce the Rutherford regime in which the
growth of the mode is slowed down to the flux diffusion time across the layer. This
happens normally as an island becomes nonlinear but can be induced by externally
imposed magnetic ‘islands. The difference between this and the feedback stabilization
scheme is that the harmonic number of the externally imposed islands is required to be
much higher than that of the tearing mode for the scheme to be effective.

The use of externally applied resonant perturbations for stabilizing tearing modes is
obviously important for avoiding disruptions. However, here we are more concerned with
how such effects can be tied in with the behaviour of the tearing mode in order to explain
the observed MHD activity. This may ultimately prove to be more important by
contributing to the understanding of how the disruption can occur in the first place.

The work in part II is organised into two parts. In the first, a quasi-linear delta-
prime analysis is used to calculate the amplitude of the poloidal magnetic field oscillations
that would be produced by an m=2/n=1 saturated tearing mode fnagnetic island. The

theory, including a derivation of the expression for Bg;/Bgq is given in section II-2.1,
while in section II-2.2, the results of the calculation based on electron temperature data
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from LT-4 are used to predict the variation of Bg;/Bgg as a function of the value of the

safety factor, q(a), at the edge of the plasma. This is compared with the corresponding
experimentally observed variation and a mode locking scenario is invoked as a possible
explanation for the narrow range of q(a) covered by the experimental results as compared
with theory. A discussion of the results is then presented in section II-2.3.

In the second half of part II are presented some preliminary nonlinear simulations of
the effect of a corrugated boundary perturbation on the evolution of the tearing mode
magnetic islands in a flowing plasma to qualitatively model the effect of the limiter or iron
core. A derivation of the corrugated wall boundary condition is given in section II-3.1
which is first used in section II-3.2 to study the effect of the flow velocity on the magnetic
islands produced via forced reconnection by the corrugated boundary. In these
simulations the walls are brought in close, so that the tearing mode is completely
stabilized. In section II-3.3 the corrugated walls are separated again to demonstrate mode
locking and partial mode locking of tearing mode magnetic islands, which is shown to
occur with a dynamical response very similar to that observed experimentally. At this
stage my grant for using the Cyber 205 supercomputer ran out so that many obvious
questions about this work were regrettably left unanswered, although it is hoped to

continue the investigation at a later date.
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I1I-2.1 A Quasi-Linear Delta-Prime Model for Poloidal Magnetic Field
Fluctuations

The MHD activity observed in LT-4 (17,18} 35 with other tokamaks, is found to
have a direct correlation with the value of the safety factor at the edge of the plasma, q(a).
This is summarized graphically in fig.46, which shows a significant peak in the amplitude
of the poloidal magnetic field fluctuations over the range : 2.5 < q(a) £ 2.9, referred to as
regime III. If, as is generally believed, this activity is a consequence of rotating tearing
mode magnetic islands then it should be possible to reproduce the same range of activity
using numerical modelling techniques. Ideally this could be done with a fully nonlinear
code, however, as an initial step, a far simpler quasi-linear delta-prime analysis (11 g
used here. The calculation is based on the radial safety factor profiles inferred from
experimental electron temperature data and on the assumption that the poloidal magnetic
field oscilations are due to a saturated m/n = 2/1 tearing mode. Using this technique
Carreras et al.l'!] were able to calculate amplitudes as a function of q(a) in good
agreement with results from the Ormak and T-4 tokamaks.

Given the sﬁccess of the approach it is the aim here to perform a similar calculation
using temperature profile data from the LT-4 tokamak to verify that the variation of the
amplitude of poloidal field fluctuations as a function of q(a) in fig.46 can also be
explained in terms of the saturated tearing mode activity. In the rest of this section is
provided the details of the model equations used .

Now that we are trying to obtain quantitative results to compare with experimental
data it is necessary to émploy a more realistic geometry. Consider a tokamak of circular

cross-section with the usual ordering B, >> By where By, and Bg are the toroidal and

poloidal components of the magnetic field. To model this we use a cylindrical

approximation to the torus ( B, — B, ) and limit our interest to a single helical mode of
the form : f(r,t) exp[i(m6 + kz )] where k =n/Ry, m and n are the poloidal and

toroidal mode numbers of the perturbation andr, 6, z, Ry are as defined in figs.50(a) and
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(b). The helical symmetry implies that all quantities are a function of T, r and t only,
where T = mO+kz so that the problem reduces to a two dimensional one with
d/0z = (k/m)d/d8 . This symmetry together with V-B = 0 also allows the magnetic field
to be specified in terms of a helical flux function, y;, similar to the flux function in

equation (18) defined for the slab case :

) z 2

B=ész\yh—-§Bze + B é (146)
and is related to the vector potential, A, by Wy, = (kr/m) Ag— A, .y, is called a helical
flux function because it is proportional to the flux through a helical ribbon defined by the
magnetic axis and a helix of constant T at a minor radius of r as in fig.50(b).

The specific aim here is to evaluate the relative amplitude of the poloidal magnetic
field oscillations, BellBéo, at the edge of the plasma, r=a, due to a helical tearing mode
magnetic island located at the rational surface, r=r,, where the safety factor, q, defined in
cylidrical geometry by :

20

RB
00

qs=- (147)

is equal to the rational fraction m/n. The subscript '1' denotes the perturbed quantity while
the subscript '0' denotes the zero order background field. Until otherwise stated, the
helical flux function will be referred to as just y, leaving off the subscript 'h' for

convenience. From (146) the zero order poloidal magnetic field is given by :

0
= _llfﬂ - .lff_ B (148)
00 or m 20
and substituting this into (147) gives :
-T BzO

q@) = (149)

R[ V) - (a/m)B, |

The shear in q is then given by :
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‘V'o + rw’o'

: q
== (150)
T v, - (B,
At the mode rational surface, r;, where yg'(r) = 0 and q(r;) = m/n this becomes :
2 11
m) R Wy(T,)
Q) = —(;) - 1‘; : (151)

s 20
where B, is taken to be constant with respect to r. The width, W, of the island in the

narrow island approximation 4! in terms of the amplitude of perturbed helical flux

function, y, is given by :

1/2
v, (r)
W = 4| —— (152)
Yolry)
which when combined with (151) gives :
: «)
m T
BzO = 15(-{-1—) 5 L (153)
T ; 2
s q(rs)W

By substituting this back into (147) an expression for the zero order poloidal field at r=a is
obtained in terms of the safety factor and the perturbed helical flux function at the mode

rational surface as follows :

2

m (r)

B, |, = -16(;-) ri Y% - (154)
s q(a)q'T) W

Using the standard tokamak orderings 9 in terms of the small inverse aspect ratio, € =
a/R , where B,; ~ O(e?), kr/m ~ O(g), ;' ~ O(e?), the perturbed poloidal magnetic field
is given approximately by :

L

_ Bt lea = (155)

r=a

Combining this with (154) then gives the desired expression for the relative amplitude of

the poloidal magnetic field fluctuations at the edge of the plasma :
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. Eh 156)
\]Il(l’s) or r=a (

I w2 (rs)
B rma = — 9@ ———— | 7] 4@
60 16 m/n)z a

The task is now to calculate the perturbed flux function, y;, and island width, W, for the
saturated tearing mode. To do this a set of reduced resistive MHD equations for the helical
flux function and velocity stream function in cylindrical geometry are derived ¥ in a

similar manner to those for the slab case in section I-2.1 by using equation (146),

assuming incompressibility and only keeping terms of lowest order in £ (891, They are :

N L V.Vy = I - E:"‘ (157)
ot
d .
5 (VpVo) = =& [ Vyx VI ] (158)
) 2kB,
ol = Vy - — (159)

where ¢ is defined the same as in the slab case by V =&, x V¢ + V, &,. Except for the
2nd. term in (159) and the neglect of viscosity these equations have the same general form
as equations (25), (26) and (27) in part I-2.1. They form the basic set of equations for
studying the evolution of an m 2 2 tearing mode magnetic island in a tokamak type
plasma.

While the sizes of the magnetic islands are still small compared to the width of the
diffusion layer their behaviour is adequately described by the linear form of these
equations, which predicts an exponential growth rate on a hybrid hydromagnetic-
resistive time scale. However, when the magnetic island exceeds the width of the
diffusion layer, higher order eddy currents, which oppose the zero order current near the
rational surface, become dominant and produée a force which replaces the inertia as the
force which impedes the growth of the mode B, From this point onwards the inertial term
in (158) can be neglected so that :

éz~[ Vy x VIZ] =0 (160)
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which was used by Rutherford ©°! to show how, at this stage, the growth slows to an

algebraic rate.

At saturation the y; mode has essentially the same shape as the linear eigenmode,
so the factor in the square brackets of equation (156) is estimated using the linear form of
\ through :

y(r,0,z,t) = \yo(i') + y,(r,t) cos(m8 + kz) (161)

Substituting this into (160) we find to first orderin € :

1o, ai m” )

T 3r or —:Z—W1=_a\|;

v, (162)

which, given the equilibrium toroidal current, J,,, and the equilibrium flux function, /g,
is suitable for calculating the linear eigenfuntion, y, valid for the region outside the
diffusion layer. Equation (162) is integated numerically in cylindrical geometry using a
1-D shooting code written by R.B. White.

With the boundary conditions for y; and y'; specified by :

v, = o, \V'l = mr™! near r = 0
' (163)
y, =0 , y, =-1 atr =a .

the code integrates in from the plasma edge and out from the axis toward the rational

surface atr =r, and then normalizes the results so that , is continuous there.
Since the equations are only valid for the region exterior to the diffusion layer, y';
is discontinuous at r = r corresponding to the finite linear A' mentioned in section I-1.1.

To calculate the saturated island width of the tearing mode magnetic island we employ the

concept of a nonlinear A', that was alsb discussed in section I-1.1 and is defined by :

1 M, EE}.

- - 4
o ! r-wp (164

A'(W) =

v, @) | o lriwe
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where W is the full island width across the separatrix at its widest point. The saturated
island width, W,,, is then simply obtained from the condition given in section I-1.1 that
A'(Wg,) =0. A'is effectively proportional to the free magnetic energy of the initial
equilibrium that can be released through reconnection of the field lines. The saturation

condition therefore simply means that the island stops growing when there is no free

energy left to drive it.

Having specified the initial equilibrium and from it evaluated the linear profile of the
perturbed flux function and then the corresponding saturated island width, equation (156)
can finally be used to calculate the amplitude of the By fluctuations at r=a corresponding
to é particular helical magnetic island at r=r, with poloidal and toroidal mode numbers

m and n.
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II-2.2 Results - Comparison with LT-4 MHD Activity

The equilibrium is specified through the following parametrizé.tion of the safety

factor (111

1/A(0)

q@) = q(O)( 1+ @/ M”)

(165)

where A(r) = 7&0‘ + %—7»2 (r/a)2

Values of the parameters q(0), Ag, Ay, and 1, are determined by fitting with experimental
electron temperature, T,, profile data obtained from Thompson scattering measurements
on LT-4. According to Spitzer (503 M o< Te‘m, so assuming a static equilibrium and

uniform electric field in Ohm's law the current density varies approximately as J, o< Te3’2.
This establishes the connection between the electron temperature data and the current

density. From Ampere's law and equation (147) the expression :

B, 1 r dq

- L I R |
7 R 1@ [ 9@ ar} (169)

can then be used to relate the current density to the safety factor. This is done by inserting

the parametrization of q, (165), into (166) to give a corresponding parametrization for J,

2
T =t -2 Ay (5)2 (L) --}3—(5) In(f)
© =10 R PR PNl et

2A
T
where f =1+ (g) (167)

and where J,(0) is related to q(0) through :

2B
q(0) = —— (168)
Ho R 1,(0)

This was derived from Ampere's Law by assuming that, in the limitr = 0, Bge<r.
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The fitting parameters are then obtained by fitting the parametrization (167) to the
LT-4 electron temperature data taken to the 3/2 power while the value of q(0) is evaluated
using (168) after adjusting J,(0) so that the total current is equal to that measured directly
on LT-4.

Ideally, all the Thompson scattering measurements for profile determination should
be made simultaneously with measurements of the amplitude of the poloidal magnetic field
oscillations at the edge of the plasma, as was the case on Ormak !}, This would allow a

point for point comparison of experimental Bg;/Bgy measurements with theoretical

values calculated from each g-profile. Thompson scattering measurements on LT-4,
however, were limited to one per discharge making it necessary to run a series of similar
discharges to build up a single temperature profile 1. The difficulties in reproducing the
exact same conditions in each discharge puts obvious limitations on the accuracy, making
it unrealistic to attempt more than one profile determination, see fig.52(a).

However if we assume that the basic shape of the g-profile remains approximately
the same, then the parameter r,, in the parametrization for q in equation (165), can be
varied, keeping q(0) fixed, to obtain different g-profiles for a range of q(a) corresponding
to a variation in the total current. In this way a plot of Bg;/Bgq versus q(a) can still be
generated.

Even with this approach a further problem arises because of the scarcity bf
experimental data points, see fig.52(a). With only four data points, accurate to within +
70 eV, it was not possible to obtain a unique fit, so a rough hand fit was made from
which a parametrization was obtained using a least squares fitting code. The data points
‘are most scarce towards the outside region of the plasma where the m > 2 rational surfaces
tend to be and hence where the current density gradients would most sensitively affect the
size of the magnetic islands. Probably as a consequence of this, the initial fit ( fit(1) in

table 2.), when used in the calculation, predicted negligible By amplitudes for all except
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the m=2/n=1 mode which peaked around the same range of q(a) as in LT-4 but was an
order of magnitude too small with Bg;/Bgg ~ 0.02 % instead of 0.3 %.

The saturated island width, which ié the dominant factor determining the size of the
MHD activity, was found by Carreras et al. 1146 be very sensitive to small changes in
the shape of the profile. With this in mind, a parameter study was made of the behaviour
of W, versus q(a) as a function of Ay and 7\,2. the aim being to determine values of these
parameters which give W,, and Bg,/Bgg for an m=2 island more closely resembling the
experimental results in fig.46. The results of this study are recorded in figs.53(a),(b) and
(c) and show that in most cases the saturated island width peaks within a finite range of
q(a). In particular fig.53(a) shows that increasing A, : broadens the range of the peak,
shifts the peak towards larger q(a) and, except for Ay < 0.7, only mildly affects the size of
the peak. On the other hand fig.53(b) shows that the main effect of increasing A, is to
increase the size of the peak with less change in position as is made clearer in fig.53(c).

Given this information a second fit ( fit(2) in table 2.) was produced by increasing
A, from 1.2 to 2.0 so as to bring the peak amplitude roughly up to that observed
experimentally, see fig.54(c). However, now the problem is that the peak is too broad. A
third fit ( fit(3) in table 2. ) was therefore made by decreasing A, from 0.77 to 0.6 so as to
make the peak narrower, then readjusting A, to get back to the correct peak amplitude.
Unfortunately, as noted in the parameter study, decreasing A also shifts the peak to a
lower q(a), so that, although the peak in Bg;/Bgg vs. q(a) now has roughly the same
height and width as the experimental results, see fig.54(c), it is centred on a significantly
lower q(a). This discrepancy is accentuated by the fact that correcting the calculated values
of the safety factor of the experimental results for toroidal effects indicates that the range
of MHD activity occurs at a slightly higher range of q(a), as shown on the upper scale of
fig.46.

The current and electron temperature profiles corresponding to these fits are plotted

in fig.53(a) and (b) and show that fit(2) is actually a better fit to the data while fit(3) is
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worse, although all are within experimental error. Further adjustment of A and A, could
not be made to produce a better fit to the experimentally observed MHD activity.
Therefore either the theoretical model is not sophisticated enough to predict the correct
range, which is likely, or the magnetic islands are still there but for some reason the field
perturbation is not detected outside the narrow range of q(a) shown in fig.46 and 52(c).

It was noted in section II-1.1 that there are several possible sources of asymmetric
external field perturbations, such as would be produced by the limiter or the single armed
iron core and according to the vacuum calculation by Dewar (8] these can interact
resonantly with the rational surfaces to produce stationary magnetic islands with widths a
significant fraction of the minor radius. Such islands would, through the coupling of the
field to the fluid, create a drag effect on the rotating plasma in the vicinity of the rational
surfaces and would clearly conflict with the tearing mode magnetic islands which
normally convect along with the plasma. A possible scenario is that when the tearing
mode islands are small, the external perturbation forces the mode to be stationary with
respect to the laboratory frame but as the island grows larger, so that a larger region of the
plasma is prevented from rotating, a point must come where the drag forces on the plasma
within the islaind are sufficient to overcome the influence of the extemal perturbation
causing the island to get dragged around the torus with the rest of the plasma.

The significance of this scenario here is in the fact that it is only when the magnetic
islands are unlocked and rotating past the Mirnov coils that the temporal fluctuations in
the poloidal magnetic field are produced. Therefore mode-locking of the islands to an
external field perturbation could explain the absence of a signal even when the magnetic
islands are still large enough to significantly perturb the poloidal magnetic field.

A rough criterion for estimating the point of transition to the unlocked state could be
when the tearing mode islan width exceeds that calculated for the static, forced
reconnected islands which were found to be roughly 10 % of the minor radius, i.e.
r=0.1a 8] By invoking mode-locking below an island width of W = 0.105, as in

fig.54(a), the detectable Bg signal is then restricted to the range : 2.6 < q(a) < 2.9, which
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brings the theoretical prediction of fit(2), shown in figs.54(b), into good agreement with
the experimentally observed range of MHD activity as function of g(a), see fig.54(c).

The plausibility of this argument is diminished somewhat when considering how
the transition to the mode-locked state would occur as function of time. Arguably this
could occur suddenly with the signal disappearing within one cycle as is observed during
the irregular MHD activity, see fig.48, or gradually over several cycles with a slowing
down in frequency. However the regular MHD activity, see fig.48, appears to decay over
a number of cycles with a steadily decreasing amplitude and with no change in frequency.

Note that the decrease in amplitude of By' ( ~ @Bg) cannot be due to a decrease in

frequency, o, since the period of the signal does not get longer. This amplitude decrease
would perhaps be more consistent with a decrease in island size rather than a locking of
the mode and since the range of MHD activity shown in fig.46 applies to both the regular
and irregular activity the above mode-locking scenario appears less convincing.

But despite its shortcomings as an explanation for the Bg' versus q(a) diagram,
evidence of mode-locking during the irregular MHD activity is overwhelming and in

section II-3.3 a numerical investigation is made of the way this might occur.
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11.2.3 Discussion of Results and Conclusions

Even without mode locking there are several discrepancies in the calculation which
require further qualification. For instance there is the question of the validity of using
perfectly conducting wall boundary conditions in modelling the LT-4 plasma. In reality,
the vacuum vessel wall is not perfectly conducting but has a finite resistive skin time and,
because of the presence of a limiter, it is also separated from the edge of the plasma by
several centimetres, not right up against the plasma as was assumed in the calculation.

The finite resistivity allows flux penetration of the wall so that it no longer acts as a
rigid flux surface and therefore no longer provides the stabilization produced by a
perfectly conducting wall. This, however, is not necessarily the case if the plasma is
rotating. According to a calculation done by Jensen and Chu 21 3 resistive wall will
stabilize modes just like a perfectly conducting wall if the plasma rotates past it with a

period, @™, much shorter than the resistive skin time of the wall, TRewall) = Hoda/my, , i.e.

when Wty >> 1 where My, is the resistivity. and d is the thickness of the wall. If the
flow is sheared, however, the effect is destabilizing but only very weakly for the
parameters of most tokamak plasmas. A report by Rutherford and Furth ®*] also indicated
the same sort of resistive wall stabilization for ideal kink instabilities at the edge of a
rotating plasma provided the oscillation frequency of the stabilized kinks exceeded the
rotation frequency of the plasma.

Even assuming that the plasma rotation is fast enough for the resistive wall to be
treated as if perfectly conducting, the wall is still separated from the edge of the plasma by
the limiter and therefore its stabilizing effect will be somewhat reduced.

To investigate the effect of moving the conducting wall further out, the calculation
was extended beyond the limiter radius at r = a, by adding a smoothly joining
exponentially decaying tail to the current profile, with the conducting wall boundary
condition applied at a larger radius at r = b. This is baséd on the assumption that a diffuse
plasma, which supports a weak current, exists between the limiter and the wall.
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The destabilizing effect is quite dramatic even when b is only a little greater than a.
When b = 1.5a the peak saturated island width is almost doubled, producing an almost

sixfold increase in the Bg amplitude. Even the original equilibrium current profile, fit(1),

resulted in a peak amplitude many times greater than for the experimentally observed
signal when the wall radius was increased. In fact it was difficult to find a set of
parameters for the current profile which would not produce such large amplitudes for the
m=2/n=1 mode. It would therefore seem almost necessary to have full perfectly
conducting wall stabilization to account for the smallness of the experimentally observed
signal.

The reason for this may involve the limiter. One proposition put forward by
Freidberg, Goedbloed and Rohatgi B4 1o explain the absence of experimentally observed
external ideal MHD kinks is that the limiter would stabilize such modes by forcing them to
assume the form of a standing wave with a node occurring at the limiter. The constraint
can be thought of as a coupling of plus and minus n numbers for each m so that the net
effect is one of stabilization. Alternatively, it is conceivable that the rotation of the plasma
past the limiter might have a stabilizing affect by preventing such nonaxisymmetric field
perturbations from penetrating out beyond the limiter. If the rotation is fast enough the
limiter may possibly act on the plasma like a conducting wall even though it forms a ring
at only one point around the torus. It is in the light of such considerations that we justify
the use of perfectly conducting wall boundary conditions adjacent to the plasma.

The results of the quasi-linear delta-prime calculations, described in the previous
section, have been based solely on the m=2/n=1 saturated tearing mode magnetic island,
~ however a spatial analysis of the signal shows the experimentally observed MHD activity
to have a large, often dominant m=3 component. It has therefore been suggested that the |
MHD activity is actually due to an m=3 tearing or kink mode, since it begins near where
the q = 3 rational surface enters the plasma. This is especially evident when toroidal

corrections are made to the g-values, see upper scale in fig.46.
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It is however unlikely that an m=3/n=1 mode forms the dominant magnetic island in
the plasma since no spontaneous m=3/n=1 amplitude was produced in the calculation even
with the conducting walls pulled further out, although this may be due to poor fitting of
the electron temperature profile in the outer region of the plasma. By the same token it
would be hard to explain the absence in the plasma of a dominant m=2/n=1 island given
the apparent easily destabilized nature of the m=2 mode shown by the calculation. A
possible scenario is that there is a small m=3 island which is driven by the m=2 mode
through the coupling created by the poloidal variation of the toroidal field in the manner
demonstrated by Finn (5] On this basis it would contribute to the signal but only over the
range of q(a) for which the m=2 mode is unstable. In fact since the q=3 rational surface is
closer to the the edge of the plasma than the q=2 surface the Mirnov coils would probably
tend to pick up a larger proportion of m=3 signal even if the m=3 island is much smaller.

A significant m=2 component of the signal is observed on the Mirnov coils but its
dominance should be more evident with an internal detection system. The soft X-ray
emissions clearly show fluctuations in the temperature and density but since most of the
flux comes mainly from the hot centre of the plasma they are only suitable in LT-4 for
distinguishing sawteeth oscilations and m=1 modes. Phase scintillation interferometry on
the other hand detects only density fluctuations and is therefore more suitable for picking
up signals from the region between those covered by soft X-rays and Mimov coils.
Results from this technique seem to indicate a large m=2/n=1 mode B3 but this is not yet
conclusive because the method involves a line integral through a volume of plasma which
makes it difficult to determine the mode structure of the signal.

Spatial analysis of the magnetic coil signals in the small tail of activity of regime II
in fig.46 reveals it to be almost a pure m=3/n=1 mode. It is therefore likely that this
activity does correspond to a spontaneous m=3 kink or tearing mode. If we assume, as
proposed earlier, that the absence of an m=2 signal in regime II is because it is mode
locked then the fact that the m=3 mode is not implies a weaker coupling of the external

perturbation to the m=3 island. This seems unlikely given that the m=3/n=1 rational
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surface is closer to the edge of the plasma and this therefore represents another drawback
to the mode locking scenario as a means of explaining the narrow range of MHD activity
of regime II1.

In conclusion, although the mode locking scenario provides a neat way to clip the
unexplainably broad range of activity predicted by the quasi-linear delta prime calculation
as a function of q(a), it is more likely that its failure to predict the narrow range observed
experimentally is an artifact of the way in which a single temperature profile was, with
minimal justification, adjusted to represent the profiles corresponding to a range of g(a).
More accurate representations of the temperature profile for several values of q(a) would
probably allow the same calculation to predict a range of activity closer to that observed.

The validity of the calculation is backed up by its successful application to results
from Ormak and T-4 1. These dcvices‘ exhibit broader ranges of MHD activity as a
function of q(a) than LT-4 which agree more closely with the theoretical predictions
without invoking mode locking. This could just mean that they do not have sufficient
asymmetry to induce locking of their islands. In any case the quasi-linear delta prime
theory has been successfully applied to many situations including a calculation of plasma
disruptions by Turner and Wesson [°® in which the self consistent interaction of the
tearing mode evolution with transport processes is investigated.

The major limitation of the analysis, as used here, is the scarcity and poor quality of
the electron temperature data. The few Thompson scattering measurements are clearly
insufficient to distinguish the subtle changes in the current profile for which the saturated
island width is so sensitive. Conversely it is because of this great sensitivity that a
reasonable fit to the temperature data could be found which was also reasonably consistent
with the observed amplitudes of the poloidal magnetic field fluctuations.

If mode locking is dependent upon the size of the islands, as suggested, then the
sensitivity to the current profile could mean that the general transport related fluctuations
in the current during the discharge may produce changes in the island size sufficient to

induce a switching back and forth between the locked and unlocked states similar to that
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indicated by the irregular MHD activity. Fig.54(a) indicates that a fluctuation in island
width of only ~3.% of the minor radius would be required. In any case the overwhelming

evidence for mode locking during this irregular MHD activity provides the main

motivation for investigating the process further.
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I-3.1 Corrugated Wall Boundary Conditions.

In the calculaﬁons of the previous section a mode locking scenario involving the
effect of an external field perturbation in the LT-4 tokamak was invoked without actually
demonstrating how it would occur or whether it can occur. These questions are, perhaps,
best tackled using numerical modelling techniques for which the nonlinear 2-D plane-slab
visco resistive code used in Part I is suitable for doing a qualitative study of the process.
To simulate the relative motion of the plasma past the walls, a uniform ExB drift in the y-
direction, Vy , is set up as described in section I-2.1 by introducing a potential difference

between them. This is implemented in the code by setting the initial zero order velocity

stream function as :
c —
0,(x) =V x (169)
which is maintained by fixing the wall values at :

(170)

¢;(in) = * Vy X,
To simulate the periodic field perturbation of the limiter or iron core a sinusoidal magnetic
field variation can be imposed at the boundary, although to avoid the generation of
artificial viscous boundary layers it is also necessary to perturb the fluid in the same Way.
This can be achieved by adjusting the boundary conditions to model a corrugated perfectly

conducting wall as schematically shown in fig.55.
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The boundary conditions that are required to be satified at this corrugated wall are :

n'B lw a1 = 0 —  perfectly conducting wall 171)

nv|, . =0 —  Impenetrable wall (172)

nx(VxV) Iwall =0 — No generation of vorticity at wall  (173)

The equation of the corrugated wall is :

x = X, + AW cos(k y) (174)

for which a (non-unit) vector normal to the surface of the wall is :

n =28 +k AW sin(ky)é, (175)

Consider first the boundary condition on the magnetic field in equation (171) which

becomes :

B, + B,k AW sin( kny)‘xw+Aw sty = O - (176)

The grid in the code is fixed between x =1 X,, and cannot be made to follow the

corrugation without altering the geometry of the grid and hence the entire structure of the
code. Alternatively the values of , ¢ and { can be specified at x =+ X, but so as to be
consistent with a corrugated perfectly conducting wall. To do this we can take advantage
of the fact that AW << X, and expand the boundary condition, (176), in a Taylor series

to first order in AW around x = X, like:
oB_
BX(XW) + -5;— AW cos( kny ) + By(Xw) kn AW sin( kny )=0
X

W

177)

then substituting in equation (18) of part I-2.1 for B in terms of  this becomes :

32 .
—[‘%ﬂxw ‘[aﬁaﬂ AW cos(k y) + [%f] k AWsin(k y) = 0

X

: X, (178)
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The spectral nature of the code means that it is also necessary to express W in equation
(178) in a Fourier expansion in order to extract out the boundary conditions for each
Fourier component. To be consistent the largest period allowed for the boundé.ry
perturbation must equal the periodicity length of the plasma so that k, = 2nn/Ly,. The

condition then becomes :

2 { - v X)) mcos(k y) + y (X )msin(k_y)
m=1

. _
1 oV,

- —AW/|—2
2 ox (
X,

(m+n) cos( kmmy ) + (m-n) cos( km_ny ) )

awc
+ -;—AW =

( (m+n) sin(k__y) + (m-n) sin(k__y) ) }
X

ox

1 AT

0 .
+ -2—AW = nsin(ky) =0 (179)

X

W

where k, = m k; and where we have divided through by k;. In general to satisfy this

condition the coefficients of each Fourier component must vanish so that the following

individual boundary conditions for each y°, and y*, are obtained by gathering terms

with the same arguments :
[ C

. 1 V| . | N,rin

VoK) = — AW ox ox
Xy X
S S

s 1 m-n a\vl m-n| awmm

V(X)) = —EAW | m-n| ox ox 180)
Xy Xy
m = 1,2,3,.....
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As with the straight conducting wall, the corrugated conducting wall imposes no
constraint on the y°, component, so it is arbitrarily set to zero to be consistent with the
prepared form of the initial conditions.

The boundary condition (172) generates an identical set of conditions for the

Fourier components of ¢ :

C Cc
c 1 aqﬂ m-n | + aq>m+n
OnXy) = 2 AW ox ox
Xe Xe
S S
s 1 m-n aq)l m-n | + aq>m4—n
On&W) = AW T | ox ax (181)
X,
The condition (173) on the vorticity reduces to :
(e, =0 (182)

which, although quite different from the boundary conditions for y and ¢,also generates
~ an identical set of mode conditions to them except for the zero order mode which does

have a definite vanishing constraint imposed upon it as follows :

LX) =0
c 1 aqcm-n I + aC:ﬂ-ﬂl
aX) = AW T ox
X Xw
s 1 m-n aC-'ism-n | + ac-:nm
X = TAW | m-n | ox ox (183)
Xw Xo

The boundary conditions (180), (181) and (183) can bé greatly simplified by noting that,
close to the corrugated wall, the plasma will be dominated by the zero'th and the resonant
or n'th Fourier modes. If we, therefore, neglect the contributions to all but these modes

then the corrugation boundary conditions at x ==X, reduce to :
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1 oy,
~2AW > when m=n
c . X
Wm(xw) = X,
0 otherwise
v (X,) =0 forall m, (184)

and similarly for ¢ and . This is further justified because we are really only interested in
what is going on well within the plasma, so that the purpose of the corrugation is just to
create some sort of periodic external field perturbation which will interact with the plasma
at the neutral line in a similar way to that produced by the limiter or iron core. It is
therefore not important that the disturbance at the wall have a perfectly sinusoidal variation
as long as the conditions are sufficiently well behaved not to produce any significant
boundary layer effects. The corrugated boundary conditions were implemented in this
simplified form and were found to be quite satisfactory for the purpose, with no

significant velocity shear being produced at the boundary as was the case when only the
magnetic field was perturbed. Att =0 we have :

cosh(x)

\V;(X) = 2111( cosh(X W))

o) = 2xV,

Lx) =0

so the boundary conditions should then take the form :
V(X t=0) =-AW tanh(X )

C
0o(X,, 1=0) = -AW V,

(o(X,,t=0) = 0
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However, so as to avoid generating any unwanted Alfven waves the corrugation was

turned on adiabatically, with the amplitude, AW, increasing (half) sinusoidally from zero
over a period of time (usually t = 3,000 t A ) up to the desired value for the run.

In all the simulations made so far, only the n=1 mode of corrugation with period
equal to L, has been used, although the conditions obviously do allow for studies

requiring finer corrugations.
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II-3.2 Forced Reconnection in a Flowing Plasma

Before employing the corrugated boundary condition in a calculation involving
tearing mode magnetic islands it is first worthwhile to investigate what its effect will be in
a plasma without tearing modes. Fig.14 shows that conducting wall stabilization can be
used to completely stabilize the tearing instability by having the wall separation less than
the current channel width. In this section we make use of this fact to study forced
reconnection in isolation by setting X, = 1.0 and begin by considering the effect of a
corrugation with amplitude AW = 0.02 in an initially stationary plasma, i.e.with Vyo =0.

As also demonstrated previously (55.36.78] the effect of such a perturbation is for it
to interact resonantly with the plasma at the neutral line to produce a magnetic island
considerably larger than the perturbation at the boundary, see fig.56, with the x-point of
the island forming directly opposite the point of maximum inward amplitude of the
corrugation.

The original current channel is maintained by a z-directed electric field and non-
uniform resistivity in the same manner as for the tearing mode simulations of Part I, so
that the plasma can reach a steady or saturated state. The ﬁme taken to reach this saturated
state after introducing the boundary perturbation is, as with the tearing mode, govemned by
the reconnection rate, except of course, when the amplitude of the corrugation is increased
more slowly than the reconnection process. This was found to be the case here with
simulations done with S = 10* taking much longer to reach saturation than when S = 10°,
consistent, perhaps, with the Sweet-Parker scaling. This aspect of forced reconnection
has been thoroughly investigated by Biskamp % so will not be gone into any further
here.

The general properties of the final saturated state are also similar to those of the
tearing mode. The current distribution, see fig.56, has a peak at the o-point and a
narrower peak at the x-point although both are much less prominant than for the tearing
mode, see fig.8(b). The usual vortical flows associated with the continued reconnection
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after saturation also form with the plasma incident at the x-point being accelerated along
the current sheet towards the o-point.

The reconnection process produced by perturbing the boundary conditions has been
studied analytically by Kulsrud and Hahm (5536 and later by Hu 7] In these a simple
analytical island solution is derived in the limit of perfect conductivity for a plane slab
configuration similar to that in fig.55 and the resistive evolution to this state is examined
using various asymptotic techniques. The island width predicted by the analytical solution
is much smaller than that determined here but this is presumably because they use a
simpler initial equilibrium of the form B, = x/a &, in which the magnetic field increases
uniformly instead of rounding off to a limit as with the By = tanh(x/a) &, equilibrium used
here. The stronger field away from the neutral line in the former case creates a greater
tension in the field lines which prevents the island from pushing out as far as in the latter
case.

The formation of magnetic islands through forced reconnection induced by a
resonant boundary perturbation is clearly not new and has even been demonstrated
experimentally by inducing an island large enough to trigger a disruption of a tokamak
plasma (811 However the mechanism becomes more interesting when the plasma is given
a uniform bulk flow in the y-direction (parallel to the neutral line) . Then the situation is
not so trivial and should provide some insight into whether the influence of a boundary
perturbation such as would be produced by the limiter is diminished at all by the rotation
of the plasma.

In the simulations performed here an initially uniform zero order flow, Vyq, is
driven by an electric field, E, , in the form of an E x B drift maintained by a potential
difference between the walls as described in section I-2.2 and II-3.1.

The interesting aspect of this arrangment comes from the basic conflict that exists
between the zero order flow and the static island produced by the corrugated boundary

purturbation. To see this note that the magnetic island induced by the boundary
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perturbation divides the plasma into two distinct topological regions of (1) inside and (2)
outside the separatrix of the island. Because of the highly conducting nature of the plasma
the magnetic field is coupled to the fluid through the so called 'flux freezing' condition.
The Lundquist number, which is the ratio of the Alfven to the resistive velocity, defines
how fast the plasma may diffuse relative to the field lines due to the finite resistivity and
so provides a measure of the strength of this fluid-field coupling. In many situations of
interest the resistivity is so small that the resistive diffusion can be neglected, so that the
approximation of S = eo can be employed. In this case the fluid can be considered to be
exactly coupled to the field so that no relative motion is possible, at least across the field
lines.

The E x B drift generated by the applied electric field forces the plasma to flow in
the y-direction. This is all right for the plasma outside the separatrix where the topology of
the field lines does not inhibit such a motion, but, because of the locally closed nature of
the field lines within the island region, the flux freezing constraint prevents the plasma
. within the separatrix from doin.g the same. In fact, except for flows of the magnitude of
the weak vortical flows associated with the continued reconnection after saturation, the
zero order flow must be completely excluded from the island region.

The simulation also includes a finite scalar viscosity, which provides a coupling
between adjacent fluid elements, tending to retard their relative motion. If the viscosity is
weak then we could expect an island to form in which the zero order flow is totally
excluded from the island region with a velocity gradient created just outside the separatrix
depending on the size of the zero order flow, V. However if the viscosity is large the
drag force exerted by the fluid outside the separatrix on the fluid inside it will tend to
transfer momentum to the plasma within the island so that it is also dragged downstream.
But if S is very large then this penetration of the zero order flow would violate the flux
freezing constraint. To avoid this the island must either be removed, or at least reduce in
size to where the local value of S is small enough for the flow through the island to be

consistent with the degree of decoupling allowed by the finite resistivity. This is possible
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since the Lundquist number decreases towards the neutral line due to the decrease in
magnitude of the magnetic field, which vanishes on the neutral line. The size of this
decoupling region will decrease with incréasing S and in the limit that S — o the plasma

has only two options: (1) to either form an island with the zero order flow totally excluded
or (2) not form an island at all and allow the zero order flow to extend across the whole

plasma.

For a finitely conducting plasma, what happens will depend basically on four
parameters : (1) the amplitude of the boundary perturbation, AW; the size of the zero order
flow, Vg, produced by the applied electric field; and the two coupling constants, v, the
viscosity and S the Lundquist number. Since it is reasonably clear that increasing AW will
tend to increase the size of the island, we will only consider, in this initial study, the
dependence of the forced-reconnected magnetic island on Vg in the range between 0 and
V 4 for several values of v and S. Note also that we will only ever consider one periodicity
length with K, = 0.35.

It was shown earlier that iower numbers of Fourier modes are needed in simulations

with reasonably high viscosity so most of the simulations of forced reconnection were

done with v = 0.01 with fewer, but more expensive, simulations run with v = 0.0001.
In fig.56 are arranged a set of contour plots of y, J, and ¢ for S = 104, v = 0.01,
which show the changes to the forced reconnected island that occur with increasing values

of the zero order flow velocity. They are all referred to a plot of the corresponding

saturated reconnected flux versus Vo which provides a more quantitative measure of the
changes occurring to the island. Note that with the normalizing factors used here V, is

actually a dimensionless ratio of the flow velocity to the Alfven velocity, as written
explicitly on the plot, and hence really represents a magnetic Mach number. The plots
show that, while Vg is around the magnitude of the vortical reconnection flows (approx.
5x107*), the zero order flow is mostly diverted around the island. But because of the

relatively high viscosity it penetrates the island region when Vo is not much higher than
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this. As Vg is increased above the value at which t € zero order flow just penetrates to
the neutral line the magnetic island is shown to decrease rapidly in size, becomin g a thin
filament for cases when the flow is more uniformly spread across the plasma.

As well as decreasing in size the island forms further downstream, with the position
of the x-point no longer opposite the maxima of the boundary perturbation. The variation
of this phase shift with Vyo is shown in fig.57(c), to almost round off to a limiting value
before increasing again as Vy, approaches V. It is possible that the mode may start
rotating for Vg close to V4 but this is not significant since then the island is negligibly
small.

The effect of the flow on the current distribution is for the x-point current peak to
merge with or, perhaps more accurately, be engulfed by the upstream o-point current peak
so that eventually, as V. approaches V ,, there is only a single asymmetric current peak.
Notice, however, that while the flux magnetic island becomes narrowér with increasing

zero order flow the current peak, or current island, becomes broader, covering a

considerable fraction of the plasma width.

The same behaviour was exhibited by a set of runs made with S = 10%, v =0.01, as
also summarized in figs.57(a), (b) and (c), but with the penetration of the zero order ﬂow‘
into the island region and consequent fall in island size occuiring at a higher value of V.
With S = 10° the rate of reconnection is much higher than for S = 10* so the fall off value
of Vg still corresponds to a value not much greater than the magnitude of the vortical
reconnection flows (approx. 0.002 V, ). On this basis, and as long as the viscosity is
high, we could expect the flow penetration and consequent fall in island size to occur at a
lower value of V the lower is the value of S.

On the other hand, with the viscosity reduced to the much smaller value of
v =0.0001, the viscous coupling between the plasma inside the island with that outside
is greatly reduced so that, as shown in fig.57 for S = 10° and 10, the magnetic island is

able to be maintained at its full width with the zero order flow excluded from inside the
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separatrix for much higher values of V. This is shown specifically for the case with
S = 10%, v = 0.0001, Vyo = 0.01 in fig.58. Note that since the linear momentum is
conserved,V, becomes equivalent to the éverage flow velocity in the y-direction after the
plasma is perturbed. The fact that the flow does not quite vanish inside the separatrix is
due to the vortical reconnection flows which, for this case, are much smaller than Vyo. By
excluding the flow in this way the magnetic island retains many properties of the case
where there was no zero order flow. For instance, the x and o point current peaks are Still
preserved, although a little distorted, and the phase shift is much smaller than for the
higher viscosity case in which the zero order flow has completely penetrated.

As noted earlier, whether the island is large or small, the effect of flow on the
current distribution is quite dramatic and the 3-D perspective plots and contour plots of J,
in fig.59 show the various forms it takes for different values of Vy0, v and S. From them
it can be seen that reducing the viscosity tends to sharpen the features of the current
distribution, which at high V4, when the flow has penetrated, tend to form a line of
V—shaped peaks with the arms of one rapped around the next in the line.

Fig.57 shows that as well as delaying the flow penetration and drop in island size to
a higher Vy,, the weaker viscosity also decreases the size of the transition range. For
example with S = 10%, v = 0.0001 the island can be decreased from full size to a narrow
filament just by doubling the zero order flow velocity, whereas for S = 10°, v =0.01 the
flow veloéity had to be increased by a factor of 10 or so to achieve the same end.

It has been shown that the velocity of the zero order flow at which the fall off
occurs clearly depends on the viscosity and the conductivity of the plasma, decreasing
with increasing v and S. The reason for the dependence on v is reasonably obvious. The
dependence on S is made clearer by noting that relative motion of the plasma past the field
is allowed if it is less than the resistive diffusion velocity, so the critical value of Vy, must
at least be greater than S™!, even with high viscosity. When the viscosity is weak the

dependence of the fall off velocity on S and v is more subtle. However the determination
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of the actual dependence will be left for a future investigation except to point out that the

critical velocity appears to approach V , in the limit that v — 0 and/or S — 0.

The high velocity shear that would exist just outside the separatrix in such

circumstances might be expected to become unstable to the Kelvin Helmholtz
[98,99,100,101]

instability resulting in the onset of turbulence. This can occur in
unmagnetized fluids with high Reynolds numbers (192! and in inviscid fluids when the
Mach number exceeds 2121, However, in a plasma with a magnetic field parallel to the
flow, Sen °! has shown that even if the plasma is completely inviscid a velocity
dicontinuity in excess of twice the Alfven velocity is needed for the instability to occur.
The improved stability in the presence of a magnetic field is simply derived from the
increased tension of the fluid along the magnetic field lines of force due to the 'flux
freezing' condition. This is not the case if the flow is transverse to the field and it was
shown ® in such cases that the mégnetic field has no effect on the instability.

Given the relatively weak flows in tokamak plasmas the likelihood of a transition to
turbulence via the Kelvin Helmholz instability seems remote ; except perhaps near rational
surfaces where a component of the magnetic field parallel to the flow may have a null. In
the slab case discussed here this is equivalent to the neutral line where the By field drops
to zero. We consider only flows which are sub-Alfvénic away from the neutral line and
since the velocity shear occurs outside the separatrix it is unlikely that the K-H instability
will occur in these simulations. It is conceivable, however, that the part of the separatrix
near the x-point on the neutral line may have super-Alfvenic flows but this is where the
velocity shear is weakest, see fig.58, and the instability is also stabilized by the finite
viscosity. In any case for the parameter values tested, S = 10°, 10%, v = 0.01, 0.0001 and

0 < Vy0 <V, no turbulent activity was evident, although when the boundary corrugation

was turned on suddenly an initial violent oscillation in the reconnected flux occurred when
Vo was close to V4. This, however, always decayed away and is most likely just the

relaxation response to the sudden change in field at the boundary.
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In summary it has been shown that a resonant boundary perturbation will still
produce a magnetic island in a flowing plasma by diverting the bulk flow around the
island region. This can occur as long as the flow velocity is below a critical value
dependent on the viscosity and the conductivity of the plasma. Otherwise the flow will
spread across the whole of the plasma with just a thin filament of an island forming.

The apparent reduced interaction of the boundary perturbation with the neutral line
at high flow velocities, as signified by the reduced island width, could be interpreted as
being related to the situation of reduced penetration of magnetic flux into a resistive wall
when the adjacent plasma has a sufficiently high rotation frequency. The problem with
this idea, however, is that even though the island may be negligibly small, fig.59 clearly
shows that the effect on the current remains significant. This is especially evident for the
case with S = 10%, v = 0.0001 and Vg = 0.5.

The conditions in a highly conducting tokamak plasma like LT-4 where S ~ 108 are
probably still such that an island would form unimpeded by the plasma rotation because
of the very weak viscosity and low rotation frequency.

The dependence of the flow velocity, at which the island is suppressed, on the size

of the boundary perturbation, AW, will be left for a later investigation.
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II-3.3 Mode Locking : Preliminary Simulations

We now consider the effect of the bbundary corrugation in a tearing unstable plasma
by increasing the wall separation to X, = 2.5 . This creates an added conflict because now
a tearing mode magnetic island will spontaneously form in addition to the forced-
reconnected one. The difference, however, is that while the forced reconnected island is
fixed in the frame of the stationafy boundary corrugation, the tearing mode island is free
to convect along in the frame of the plasma which, in this case, moves relative to the wall.
Obviously a moving and a stationary island cannot co-exist on the same rational surface so
it is expected that a competition will develop between the tendency for the island that
forms to either convect along with the plasma or become mode locked onto the stationary
boundary perturbation.

Such a situation is qualitatively similar to that which may occur in the LT-4 tokamak
because of the asymmeﬁé perturbing effect of the limiter and/or the single armed iron core

and is, therefore, considered to be a possible mechanism for explaining the stop-start

nature of the MHD activity observed, see figs.47 and 48.

The aim here is to study the basic dynamical mechanism of mode locking and for
this purpose the plane slab configuration is adequate since it is far simpler than the actual
tokamak geometry but still retains the essential elements of the process.

Whether mode locking occurs will depend on S, v, Vo, AW and X, etc.. Ideally it
would Be desirable to perform a systematic parameter study of the dependence of mode
locking on these parameters in a similar fashion to that done in the forced reconnection
study of the previous section. Unfortunately my grant for using the Cyber 205 super-
computer ran out before this could be achieved and so only a handful of exploratory runs
was possible. These, however, were sufficient to at least demonstrate the basic
phenomenon, with results that correspond well with experimental observations.

The initial strategy was simply to test for mode locking of an already saturated
tearing mode in a flowing plasma by first doing a run with unperturbed walls and then
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using the resultant saturated island state as an initial equilibrium in several runs made with
different corrugation amplitudes to determine the critical value.

This was based on the assumption that mode locking must occur if given a large
enough boundary perturbation, which is shown to be the case in a run described in fig.60
for the case with AW = 0.05 and S = 1000., v = 0.01, V5 = 0.01 and K, = 0.35. The
evolutions of the x and o point positions clearly show the locking of the island, while the
variation in y(x=0,y=0) shows the corresponding disappearance in the magnetic field
fluctuation. The third plot shows the additional reconnected flux produced on top of that
generated by the tearing instability after the mode locking occurs. The amplitude of the
perturbation was increased smoothly from AW = 0. to AW = 0.05 over a period of 3,000
T and shows mode locking occurring well before reaching full amplitude. What is more,

the transition is shown to occur within one cycle, similarly to that observed
experimentally, although it is possible that this may not be so for other values of S, v, and
Vyo

Runs made with smaller corrugation amplitudes show that mode locking still occurs
in the same manner with amplitudes as low as AW = 0.012, but when AW = 0.01 the
corrugation was found to be insufficient to fully lock the mode. Inste-ad, as shown in
fig.61, the island is temporarily delayed for a few cycles while it slowly squeezes past the
point of maximum inward amplitude of the corrugation and then finally surges free to
convect along with the rest of the plasma, only to get stuck again at the next peak in the
corrugation. The process is repeated ad inﬁni(um, producing a longer-cycle distorted
magnetic field response similar to that recorded on LT-4 during the stage of the discharge
preceding a major disruption, see fig.47. The implication of this being that the apparently
isolated bursts of growth and decay often referred to as minor disruptions in LT-4 (171
may actually be instances of partial mode locking of the magnetic islands. If this is so then
the fact that they precede a major disruption indicates that the major disruption may also be

a consequence of the same processes that induce mode locking. Each minor disruption is
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accompanied by a negative voltage spike, a burst of hard X-rays and a dip in both soft X-
ray and electron cyclotron harmonic emissions, although the plasma current remains
unaffected, so for this partial mode locking scenario to be valid it must be able to explain
the occurrence of such phenomena.

Fig.62 shows contour plots of J,, W, ¢ and cross-section plots of V, at two times
during the process corresponding to: (a) when the island is temporarily mode locked, and
(b) just after it has squeezed past a corrugation. The current and magnetic flux function |
contours show the magnetic field to be relatively unchanged throughout the process and
generally look the same as for a tearing mode island in the absence of flow or a boundary
corrugation. The plasma motion, in contrast, is dramatically altered during each cycle.
When the island is locked the flow is mostly diverted around the island similar to that for
the forced reconnection case of the previous section, but, because the island surges free
with a velocity initially much higher than the averaged flow velocity, (which is maintained
by momentum conservation) the pattern is reversed with an almost complete transfer of
momentum into the island from the surrounding plasma. Although this appears quite
violent, the plane slab configuration only represents the local region around a single
rational surface of a toroidal plasma so such a transfer of momentum would probably not
be quite such a global process in practice.

Keeping AW = 0.012, several runs were made with higher flow velocities. With
Vyo = 0.03 the island remained unlocked while for Vyo = 0.015 the island became
partially locked in the same manner as when AW = 0.01, Vo = 0.01. Since the island

was fully locked with Vyq = 0.01, AW = 0.012 this shows that larger amplitude

corrugations are needed to lock the mode when the flow velocity is increased. This is,
perhaps, not unexpected since the larger the flow velocity the greater is the momentum
that has to be diverted around the island by the influence of the corrugation.

Further runs will be done later to determine the effect of v and S, although judging

from the response with purely forced-reconnected islands, described in the previous
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section, decreasing the viscosity should make it easier to lock the mode by decreasing the
drag on the plasma within the island.

Although the procedure of turning on the wall perturbation after the tearing mode
magnetic island has saturated is the least complicated way of examining mode locking it is
not the most realistic since the effect of the limiter and/or the iron core would exist right
from the beginning of the discharge, before the relevant tearing modes emerge. It would
probably therefore be more realistic to reverse the procedure and test for the transition
from the static forced reconnected magnetic island state to the unlocked island state as the
tearing mode evolves. This could be done by introducing the full boundary perturbation
right at the beginning of the run, or at least increasing the corrugation amplitude to its
maximum in a time short compared to the linear growth time of the tearing mode. Su;h
simulations could then be used to confirm whether there is a threshold island size for
unlocking the mode, as suggested in the mode locking scenario described in section
II-2.2, or whether mode locking is determined more by the linear phase of the tearing
mode through the interaction of the linear eigenfunction with the wall corrugation.

As a matter of interest, an example of a similar typ’e of mode locking can occur in
the fluid dynamical system of the earth's atmosphere as a result of geographical effects.
An example of this can be seen in the weather maps in fig.63 which show a high pressure
vortex (or anti-cyclone) getting temporarily locked in the Great Australian Bight for almost
a week before squeezing past the south eastern tip of the mainland to continue its journey
eastwards. Note from the plot of the evolution of the centre of the High how it accelerates

away from the Bight faster than it approaches it.
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section, decreasing the viscosity should make it easier to lock the mode by decreasing the
drag on the plasma within the island.

Although the procedure of turning on the wall perturbation after the tearing mode
magnetic island has saturated is the least complicated way of examining mode locking it is
not the most realistic since the effect of the limiter and/or the iron core would exist right |
from the beginning of the discharge, before the relevant tearing modes emerge. It would
probably therefore be more realistic to reverse the procedure and test for the transition
from the static forced reconnected magnetic island state to the unlocked island state as the
tearing mode evolves. This could be done by introducing the full boundary perturbation
right at the beginning of the run, or at least increasing the corrugation amplitude to its
maximum in a time short compared to the linear growth time of the tearing mode. Su;h
simulations could then be used to confirm whether there is a threshold island size for
unlocking the mode, as suggested in the mode locking scenario described in section
II-2.2, or whether mode locking is determined more by the linear phase of the tearing
mode through the interaction of the linear eigenfhnction with the wall corrugation.

As a matter of interest, an example of a similar typ'e of mode locking can occur in
the fluid dynamical system of the earth's atmosphere as a result of geographical effects.
An example of this can be seen in the weather maps in fig.63 which show a high pressure
vortex (or anti-cyclone) getting temporarily locked in the Great Australian Bight for almost
a week before squeezing past the south eastern tip of the mainland to continue its journey
eastwards. Note from the plot of the evolution of the centre of the High how it accelerates

away from the Bight faster than it approaches it.
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II-3.4 Final Remarks

Much of the research presented in this thesis is part of an on-going study of the
reconnective processes in plasmas. It is an area which has proven to be a rich source of
interesting physical phenomena, and it is with anticipation that I look forward to tackling

the many questions that have arisen from my work so far.
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