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IV

A b s tra c t

We consider a two-level atom driven by modulated light and find that complete popula

tion inversion can be induced by light without any resonant frequency component. This 

is in contrast to the familiar case of monochromatic driving in which complete popula

tion inversion is only possible with resonant light. This result concerns experimentally 

realizable systems and hence the effect of spontaneous emission is also considered. We 

also relate our work to other recent works on quantum  double-well. Analogies with the 

suppression of quantum  tunneling and with the low-frequency radiation generation are 

discussed.

By translating the results from the study of the two-level atom to the theory of optical 

waveguides, we introduce a new geometric representation for analysing the optical state 

of a single-mode optical coupler. We find tha t an optical coupler with out-of-phase 

index modulations can control and suppress the evanescent power transfer between 

cores. A new type of optical band-pass filter based on the modulated index coupler is 

proposed.



Alice’s two-level system:

‘I know what you're thinking about, ' said Tweedledum; ‘but it isn't so, nohow.

‘Contrariwise, ' continued Tweedledee, ‘if it was so, it might be; and if it were so 
it would be; but as it isn't, it ain't. That's logic. '

Lewis Carroll [2]
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C h a p te r  1

In tro d u c tio n

1.1 O v e rv ie w  a n d  m o tiv a t io n s

The studies of time-dependent two-level systems have been dem onstrated to be re

warding in producing interesting breakthroughs in many areas of physics. A few of the 

notable greats are [10]:

E i n s t e i n

on the formulation of the rate equation using the A and B coefficients.

R a b i

on nuclear magnetic resonance and molecular beam techniques.

B lo c h  a n d  P u r c e l l

on magnetic fields in atomic nuclei and nuclear magnetic moments.

T o w n e s ,  B as o v  a n d  P r o c h o r o v

on the maser-laser principle.

There are many reasons for the successes in using the two-level models. They are simple 

systems to analyse, hence the complexity of a real physical problem can be reduced to a 

manageable simplicity. On the other hand, they contain rich enough characteristics to 

accurately describe many real physical systems. Unlike the simple harmonic oscillator, 

their non-linear properties also warrant their usefulness in modeling many non-linear

1



CHAPTER 1. INTRODUCTION 2

physical problems. The two-level models are therefore a good building block for the 

development of more complicated theories.

Yet another successful use of the two-level system is that  it provides a simple expla

nation of the phenomenon of particle quan tum tunneling in a potential double-well 

[10]. In 1991, Grossmann et. al. [24, 25] found that  periodic perturbations of a po

tential double-well can control and, in particular, suppress quantum tunneling. Their 

discovery was based on results obtained by numerically solving the evolution of the 

wavefunction of a particle in a quartic potential well, taking into account the presence 

of all energy levels. It is therefore not surprising tha t  shortly after the discovery, a 

simple tw'o-level model is again used to demonstrate that  such a phenomenon is also 

present without taking into consideration the other higher energy levels of a quartic 

potential well [27, 28]. This implies tha t  the newly discovered phenomenon of quan

tum tunneling suppression, is actually an inherent property of the two-level system. 

Unfortunately, a physical explanation of the suppression of quantum tunneling wras not 

manifested by both the quartic well and the two-level system analyses.

Because of the wide applicability of the two-level system, it is interesting to investigate 

similar periodic perturbations of other  two-level systems modeling entirely different 

physical problems. The aim of the investigations is two-fold: they may provide new 

and more complete insights into the phenomenon of quantum tunneling suppression 

itself and may also reveal new applications of the phenomenon to different areas of 

physics.

In this thesis, we are primarily interested in periodic perturbations of two optical 

two-level systems: the interaction of light with a two-level atom and the optical field 

evolution in a single-mode optical coupler.

1.2 T h e s i s  s t r u c t u r e

Most of the results in this thesis are from the following papers:

1. P. K. Lam, A. J. Stevenson and J. D. Love, “Control and suppression of power 

transfer in couplers by periodic index modulat ion” , Electronics Letts. 3 1 , 1233 

(1995).
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2. P. K. Lam, A. J. Stevenson and J. D. Love, “Coupling suppression by periodic in

dex modulation in single-mode couplers” , 19th Australian Conference on Optical 

Fibre Technology conference proceedings, 158 (1994).

3. P. K. Lam and C. M. Savage, “Complete atomic population inversion using corre

lated sidebands” , Phys. Rev. A 50, 3500 (1994).

The first part of this thesis, consisting of chapters 2 and 3, studies the properties of a 

two-level quantum  system under the influence of periodic perturbation. We are mainly 

interested in the interaction of light with a two-level atom. We find tha t a two-level 

atom can achieve complete population inversion when driven by am plitude or phase 

modulated light with no resonant component. This is in contrast to the well know 

Rabi oscillation for monochromatic driving since only resonant Rabi oscillation can 

achieve complete population inversion. By making the two-level approximation of the 

double-well, we also show tha t the suppression of quantum  tunneling is possible via 

sinusoidal perturbation. Equivalence between a two-level atom interacting with laser 

radiation and a particle in a double-well is established. This allows us to understand 

the suppression of quantum  tunneling in terms of sideband excitations.

The second part of this thesis consist of chapters 4 through 6. In this part we apply 

the results obtained in the first part of the thesis to optical waveguide couplers. We 

show tha t many interesting applications of the concept of tunneling suppression are 

possible, physical devices like band-pass filters and switches can be built based on a 

mechanism analogous to the suppression of quantum  tunneling. This is possible due 

to the close analogy between quantum  mechanics and wave optics.

The contents of the individual chapters are as follow:

In chapter 2, we look at the interaction of light with a two-level atom using a semi- 

classical model and the Bloch equations. The phenomenon of using phase-locked non

resonant light to achieve complete atomic population inversion is discussed. We call 

this phenomenon “correlated sideband inversion . Two examples of correlated sideband 

inversion using amplitude and phase modulations of laser light are studied. Using a 

Bloch sphere picture, we are able to explain the occurrence of correlated sideband 

inversion. The study on the effect of spontaneous emission shows tha t correlated side

band inversion is not destroyed by spontaneous emission. We conclude the chapter by 

giving an outline of an optical experiment in which correlated sideband inversion can
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potentially be observed.

In chapter 3, we review the work on the suppression of quantum  tunneling. The m a th 

ematical equivalence between the model in chapter 2 and the suppression of quantum 

tunneling is shown. We show tha t using a suitable transformation between rotating 

frames, the suppression of quantum  tunneling can also be explained by sideband in

teraction. We also relate the work in chapter 2 to work on low frequency generation

[31].

In chapter 4, we begin by drawing the analogy between quantum  mechanics and the 

wave optics. Because of the similarity between the Schödinger equation and the scalar 

wave equation, we are able to establish a one-to-one correspondence between the pa

rameters of the two models. It is found tha t the Bloch sphere used in analysing the 

interaction of light with a two-level atom can also be used to describe the evolution of 

optical fields in an optical coupler. An example of the use of the Bloch representation 

of an optical coupler is given.

In chapter 5, we make use of the formalism developed in chapter 4 to study the effect of 

periodically modulating the refractive indices of the cores of a coupler. It is found that 

an out-of-phase modulation can suppress power transfer between cores. We refer to this 

type of coupler as the modulated index coupler. The Bloch representation of the optical 

coupler is used to analyse this coupler as well as the grating assisted coupler. From the 

analysis, a zero coupling condition is obtained for the modulated index coupler. We 

also show that the criteria of complete power transfer in a grating assisted coupler can 

be obtained by simple geometric arguments using the Bloch representation.

In chapter 6, we make use of the results in chapter 5 to investigate the spectral response 

of a modulated index coupler. We show that with the addition of an absorptive medium 

along one of the cores of the modulated index coupler, an optical band-pass filter can be 

constructed. The design criteria of such a band-pass filter is discussed. It is found- that 

the bandwidth and the suppression level of the band-pass filter is determined by the 

length of the coupler and the decay constant of the absorptive medium, respectively. 

Moreover, dynamic tunability of these parameters is achievable by using the electro

optic effect to induce the index modulation.

Finally, we give a brief summary of the im portan t results obtained in this thesis in 

chapter 7.



C h a p te r  2

C o rre la te d  S id eb an d  In v ersio n

2.1 O verv iew

Rabi oscillation of a two-level atom driven by monochromatic light is a central phe

nomenon in nonlinear optics [13]. And since it describes the dynamics of a driven 

two-level quantum system its significance extends beyond optics to a wide range of 

other physical systems [5, 6, 8]. In this chapter, we use the optical Bloch equations to 

analyse a two-level atom driven by modulated light. We are particularly interested in 

driving light which has no Fourier components at the atomic resonance frequency. A 

naive analysis might then suggest tha t complete atomic population inversion cannot oc

cur. However we show tha t it does occur. This complete inversion is in contrast to the 

familiar case of monochromatic driving in which complete population inversion is only 

possible with resonant light. The requisite light has pair(s) of correlated sidebands 

without any resonant carrier. We refer to this kind of complete atomic population 

inversion as “correlated sideband inversion” .

Two experimentally accessible cases of correlated sideband inversion are: a single pair 

of phase locked (correlated) symmetrically detuned sidebands, and resonant light phase 

modulated so that all the power is in the modulation sidebands. Such light may be 

produced from a laser using acousto-optic and electro-optic modulators respectively 

[ 12 ] .

We begin this chapter by reviewing the optical Bloch equations with monochromatic 

light before considering modulation. We then focus on the two previously described

5



CHAPTER 2. CORRELATED SIDEBAND INVERSION 6

cases of driving by a sideband pair and driving by phase modulated light. A Bloch 

sphere based physical interpretation of both cases is given. We conclude with a dis

cussion of spontaneous emission and an outline of a possible non-linear optical experi

mental demonstration of correlated sideband inversion.

2.2 T h e  g e n e r a l i z e d  o p t i c a l  B lo c h  e q u a t io n s

In this section, we give a brief derivation of the optical Bloch equations from the 

interaction Hamiltonian and the Heisenberg equation. The electric dipole interaction 

of a single two-level atom with light has the following semi-classical Hamiltonian [13],

H =  \hujaGz -  dE( t )dx, (2.1)

where d (taken to be real) is the atomic dipole moment in the direction of the electric 

field E(£), gx and d z are the Pauli spin operators and uja is the atomic transition 

frequency. The zero of energy for the atom is taken to be midway between the ground 

and excited states. We assumed tha t the quantum  correlations between the field E(t) 
and the atomic operators d, are insignificant, so tha t

(E( t ) i i ( t ) )  = (2.2)

This is known as the semi-classical approximation. The Heisenberg equations for the 

operators after the semi-classical approximation are,

° X  —  U^Q C 7 y ,

d y = u>adx +  2Ll0£( t )dz, (2.3)

d z — —2Elo£(t)dy,

where the electric held has been factored into a constant amplitude E0 and a time 

varying part, E(t) = E0£(t).  The quantity Q0 = dE0/ h , is called the resonant Rabi 

frequency. These Heisenberg equations are not very convenient to work with because 

they contain fast rotating terms at optical frequencies. We dehne rotating frame ex

pectation values u,u,  and w by,

a =  cosaJit(dx) +  sin cu/^(dy),

v = — s\ntoit(dx) +  cosüJit(dy), (2-4)
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Figure 2.1: The atomic population inversion for monochromatic drivings 
Atomic population inversion as a function of dimensionless time for detuning frequencies of 
S/Q0 = (a) 0.0 (resonant), (b) 0.5, (c) 1.0, (d) 2.0 and (e) 3.0.

where u>i is normally the laser field frequency. Since the quanti ty of interest is the 

atomic inversion given by u\  switching to this rotat ing frame will not alter the final 

results. The Heisenberg equations now become

— 8v +2Eto£(t) sin L J i t w , (2.5)

6u -\-2D0£(t)  cosu>itw, (2-6)

— 2 Q . q £ ( t ) [ u  sin l jR  + v c o s l o R ] , (2.7)

where 6 = uja — lji is the atom-field detuning frequency. Note that thus far the rotating 

wave approximation has not been made and no assumption has been made on the time 

dependence of the electric field. We call these equations the generalized optical Bloch 

equations.

2.3 M o n o c h r o m a t i c  l ig h t

An analytic solution to the optical Bloch equations can be found when the applied 

electric field is monochromatic with angular frequency uu/, so that  £(t) = cos
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In th is  case, u and — v represent the  in-phase and in -q u a d ra tu re  com ponen ts o f the 

a to m ic  d ipo le  m om ent, respective ly . We m ake the ro ta t in g  wave a p p ro x im a tio n  to  the 

d yn a m ic  equations o f u,t>, and w  by neg lecting  any fast (o p tica l frequency) ro ta t in g

te rm s and thus ob ta in

i i — — Sv, (2.8)

V =  6u +  D qIV, (2 .9)

£• II 1 JO o G (2 .10)

These are the s tandard  o p tic a l B loch equations. T h e ir  so lu tion  is given by [13]

u ( t )
0 ^  +<$2 cos Clt — 8 s in  f t i — <5 f to  (1 —cos f t f )

U oft ft2

v( t ) = 8 s in  Clt
ft COS Pit f tn  s in  f t ( 

f t Vo

w { t ) — 6 fto  (1 —cos f t f ) - f t n  s in  f t * <52 + f t n  cos f t f
w °L ft2 ft f t 2 J

( 2 . 11)

where u0, v 0 arid w0 are the  in it ia l values, and Pi is the  generalized Rabi frequency,

( 2. 12)n = +

W hen an in it ia l g round s ta te  o f w(0)  =  —1 is assumed, the  a tom ic  inve rs ion  is g iven 

by

w ( t , 6) =  —
S2 + f l l  cos(\J62 t)

(2.13)Ä2 + og
T h is  so lu tion  describes R ab i o sc illa tio n  and F ig . 2.1 shows the effect o f va ry in g  the 

d e tu n in g  frequency on the  a to m ic  p o p u la tio n  invers ion .

We observed th a t d e tu n in g  increases the  o s c illa tio n  frequency and decreases the  m a x 

im u m  invers ion ,
Pl20 - 6 2

W m ‘ I ~ a 20 +  ,9 '  ( 2 I 4 )

So non-resonant  (6 ^  0) monoch romat i c  l ight cannot yield complete atomic  invers ion  

o f Wmai =  1. F ig  (2.2) shows the  Lo ren tz ian  p ro file  o f the  m a x im u m  a to m ic  invers ion  

p lo tte d  as a fu n c tio n  o f laser de tun ing .

In tro d u c in g  the B loch vec to r p =  ( u , v , w )  a llows the  o p tic a l B loch equations (2.8, 2.9, 

2.10) to  be w r it te n  in the  fo rm  o f [13]

P =  t  x p, (2.15)

where r  is dependent on th e  d r iv in g  fie ld. T he  dynam ics  o f the B loch vecto r is ana lo 

gous to  the La rm or precession o f a m agnetic  d ipo le  in a m agnetic  fie ld . Hence we w ill
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Ö / Q ,

Figure 2.2: Maximum atomic population inversion versus laser detuning 
The maximum achievable atomic population inversion versus detuning frequency gives a 
Forenlzian profile with a peak of u>max =  1 at the resonant frequency.

refer to r  as the effective torque field. The modulus of p is conserved and has the value 

one. Hence the p dynamics occurs on a unit sphere, referred to as the “Bloch sphere11. 

This provides a useful picture for understanding driven two-level systems.

Driving with monochromatic detuned light corresponds to having an effective torque 

field of

t =  ( —f i 0 , 0 , 6 ). (2.16)

As shown by Fig 2.3, since the Bloch vector p makes a constant angle 0 with r ,  it rotates 

around the effective torque field, tracing out a small circle on the lower hemisphere of 

the Bloch sphere. Hence the optical vector does not intersect the “pole1' p =  (0,0, 1) 

corresponding to complete inversion.

2.4 A m p l i tu d e  m o d u la te d  light

In this section, we consider driving a two-level atom with amplitude modulated light. 

The amplitude modulation of light can be achieved, for example, by passing a monochro-
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w

Figure 2.3: Bloch sphere of detuned monochromatic driving 
The Bloch vector makes a constant angle 0 = t a n ~ l ( — Do/6) with the effective torque 
field, assuming initial ground state w = — 1.

matic light beam through an acousto-optic modulator . The general formula for ampli

tude modulation is given by [12]

S(t)  =  [1 + Af(t)]  cosu>it. (2-17)

We restrict ourselves to consider only the case when f ( t )  = cosu)mt. Hence u>m is the 

ampli tude modulation frequency and A the modulat ion index. The Fourier decom

position of the ampli tude modulation gives a pair of sidebands detuned by the same 

amount of u>m on either side of the carrier frequency as shown in Fig. 2.4.

The ampli tude of the sidebands is given by T \  and hence their intensities depend on 

the modulat ion index, by subst i tuting Eq. (2.17) into Eq. (2.5, 2.6, 2.7) we obtain,

ii = —8v, (2.18)

v =  8u +Qo[l T A cosujmt]w, (2.19)

w = — f20[l + A cos ujmt]v . (2.20)

Fig. 2.4 shows the atomic population inversion as a function of t ime for ampli tude 

modulated driving. Since the ampli tude modulation does not completely remove the 

carrier frequency, we observe that  the atomic inversion is complete.
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frequency
-cos

Figure 2.4: Fourier spectrum of ampli tude modulation 
The Lorentzian profile of maximum inversion is shown superimposed on the amplitude mod
ulation fourier spectrum. The length of the vectors show the relative strength of the carrier 
and sideband components.

2.5 S y m m etrica lly  d e tu n e d  ligh t

We now consider the case of driving by a pair of sidebands symmetrically detuned 

about  resonance. We require tha t  the two symmetrically detuned sidebands to be 

phase-locked to each other without which correlated sideband inversion will not occur. 

This requirement is experimentally achievable by ampli tude modulat ing the laser light 

and then filtering off the lower sideband, say, leaving the carrier and the upper sideband 

phase locked. The carrier and the remaining sideband can then be chosen to have 

frequencies equally detuned from the atomic resonance by choosing u;/ =  uja —a>m/2 as 

shown in Fig. 2.6 . £(t)  is then given by

sin((cua +  +  sin((u;a
1 1y )0 ( 2 . 21 )

The ampli tude modulation index of A = 2 is chosen to ensure that the carrier and the 

sideband have equal intensities. The optical Bloch equations are given by,

u

v

w

Q0 cos(

0,

- Q 0 cos(-UJmt)u,

( 2 . 22 )

(2.23)

(2.24)
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Figure 2.5: Atomic population  inversion of a m p li tu d e  m odu la ted  driving 
Here the modulation index A =  1 and the laser light is resonant with the two-level atom S = 0. 
Note tha t  the atomic inversion is dominated by the presence of the resonant component. 
Hence it oscillates at a frequency close to the resonant Rabi frequency. The effect of the 
sideband pair only slightly alters the shape of the oscillation.

symmetrical 
sideband pair

a i A

C O S GO
, a

k . isin * r - -  0)
1 m

1
11

sin !i frequency —
-cos

Figure 2.6: Sym m etrically  de tu n ed  driv ing a rrangem en t 
The amplitude modulation index .4 = 2, so tha t  the carrier and the sidebands are equal in 
strength. The dashed vector shows the position of the lower sideband which is filtered off.
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Since in this case the in-quadrature dipole moment is not coupled to the other atomic 

parameters,  we can write the time evolution of the atomic inversion as a second order 

non-linear differential equation,

1 . „ 2 2/ 1iv + iom tan( -iomt)w + \l0 cos ( -uOmt)w — 0. (2.25)

This differential equation has the solution, assuming an initial ground state rc(O) =  — 1, 

given by [7]

— cos
^2fl0

s in ( - ^ ’m/) (2.26)
LV m 2

Eq. (2.26) shows that complete atomic inversion can be achieved provided the argument 

of the cosine can exceed 7 r ,  that  is provided that  the inequality,

7r <
2Q0
'~u m

(2.27)

is satisfied. This requires tha t  the detuning be sufficiently small. This is our first ex

ample of correlated sideband inversion, for which complete atomic inversion is possible 

in the absence of resonant light. Note that linear combinations of the sideband and the 

carrier cannot reconstruct the resonant component  because the Fourier components 

are orthogonal to each other. Hence this complete atomic population inversion is en

tirely due to the non-linear characteristic of the two-level atom driven by correlated 

sideband inversion. Fig. 2.8 and Fig. 2.5 compare such a case when wm = 0.50f2o to 

normal monochromatic detuning.

This example of correlated sideband inversion can be understood using the Bloch sphere 

picture. For the pair of sidebands the effective torque field is,

T = (0, - Q 0 cos(umt), 0), (2.28)

which is a vector oscillating along the u-axis. For an initial ground state, the Bloch 

vector is thus confined to oscillate about  p — ( 0 , 0 , - 1 ) ,  in the v-w plane. When the 

inequality (2.27) is satisfied the oscillations swing through ±180° before r  changes 

direction, giving complete inversion p = (0,0, 1). Note tha t  the relative phase of the 

two sidebands in Eq. (2.21) does not affect the induced inversion, as long as it remains

constant.
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Figure 2.7: Atomic population inversion for single sideband driving 
Atomic population inversion w as a function of dimensionless time for a two-level atom driven 
by a single sideband £(t) =  sin((a;a 4- u>m)t) with u>m = 0.25S2o-

2.6 P h a se  m o d u la te d  light

We next consider the phase modulated field,

S(t) = cos(u>at +  A costjomt), (2.29)

where A is the phase modulation index and u>m <C u a is the modulation frequency. 

This is an interesting case since it can be realized by electro-optic modulation of a 

resonant laser. After making the rotating wave approximation on Eqs. (2.5, 2.6, 2.7) 

we find the optical Bloch equations,

u =  — s\n( A cos ujmt) w,

v = Q0 cos( A co su>mt) w, (2.30)

w = D0[s\n( A cos Ljmt) u — cos( A cos i jmt) v}.

The phase modulated light can be decomposed into its Fourier components [7]

E(t) = cos(uiat + Acosujmt) 

- Jq(A)  cosujat

(2.31)
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Figure 2.8: Atomic population inversion for sym m etrica lly  de tuned  sidebands 
Atomic population inversion w as a function of dimensionless time for a two-level atom driven 
by a pair of symmetrically detuned sidebands Eq. (2.21) with u>m =  0.50fio- The effective 
detuning of the carrier and upper sideband is ±0.25Oo-

-COS frequency

Figure 2.9: Fourier sp ec tru m  of phase m odula tion  
The Lorentzian profile of maximum inversion is shown superimposed on the phase modulation 
fourier spectrum. The amplitudes of all sidebands and carrier are given by the Bessel function 
Jn(A). The length of the vectors shows the relative strength of the carrier and sideband 
components given by these Bessel functions.
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+ ^  ( — 1 )n +1 J2n+1 ( A )[sin((ioa — (2n T 1 )com )0  +  sin((u;a + ('2n -f 1 )um )t)]
n —O
oo

+ -  1)nJ2n{A) [cos((ioa -  2nu>m)t) +  cos((u;a + 2n(jjm)t)\, (2.32)
n — 1

where J n(A)  is the n-th order Bessel function. Eq. (2.32) shows tha t the phase mod

ulated light is equivalent to resonant light with an amplitude of J0(A)Eo plus non

resonant light at the sideband frequencies with amplitudes ± J n(A)E0 as shown in 

Fig. 2.9. Similarly the Bloch equations (2.30) can be written as,

OO

Ü =  — n 0[2 ^ ( - l ) n J W i M )  cos((2n +  l)ium0]
n = 0

v =  D0J0(A) w
OO

+fio[2 ]T]( —l ) n Jiri(A) cos(2mum£)] w, (2.33)
n — 1

w = - % J o {A )  V
OO

- Q 0[2 ^ ( - l ) nJ 2n(A) cos(2nu;mf)] v
n — 1
oo

+ n 0[2 ^  ( — l ) nJ2n+i(^4) cos((2n +  1 )umt)] u.
Tl —  0

Note tha t in this rotating frame, the even order sidebands couple the atomic inver

sion with the in-quadrature dipole moment whereas the odd order sidebands couple 

the atomic inversion with the in-phase dipole moment. An analytic solution of these 

equations is not known, so we need to solve them  numerically.

Unlike the previous case complete inversion can occur for any phase modulation fre

quency. No inequality restricts the occurrence of phase modulation correlated sideband 

inversion. Fig. 2.10 presents a numerical solution of Eqs. (2.30) showing complete 

atomic inversion by the correlated sideband mechanism. The phase modulation index 

is chosen to be the first zero of the zeroth order Bessel function, J0(A0) =  0, where 

A0 ~  2.405. Hence according to the Fourier decomposition Eq. (2.32) no resonant light 

is present. The phase modulation frequency has been chosen arbitrarily to be equal 

to the resonant Rabi frequency, u>m = Q0- Fig- 2.10 shows a small rapid oscillation 

superimposed on a larger slower oscillation. Numerically, we found tha t increasing the 

modulation frequency u)m increases the rapid oscillation frequency but reduces its am 

plitude. Increasing the modulation frequency also increases the inversion period, i.e., 

the time for complete inversion from an initial ground state.
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tQQ/ 2n

Figure 2.10: Atomic population inversion for phase modulated light 
Atomic population inversion w as a function of dimensionless time for a two-level atom driven 
by phase modulation correlated sideband light, Eq. (2.29), with = D0. The light is phase 
modulated resonant light with modulation index A0, Jo{Ao) = 0, so that all power is in the 
sidebands, w is obtained by numerically solving Eqs. (2.30). Complete atomic inversion is 
achieved for tO.0/ ‘2n % 4.
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f a   ̂ f
W w

Figure 2.11: The effective torque field for phase modulated driving
(а) The effective torque field of the phase modulated driving oscillates in the uu-plane, r = 
( -Q o c°s(AoCosu;m£), - Q 0 cos(A0 cosu>mf), 0). When transformed to the phase modulated 
rotating frame, (b) shows that the effective torque field becomes r  = (- f t 0, 0, Um A sin

2.7 P h a se  m o d u la tio n : P h a se  m o d u la te d  ro ta tin g  
fram e

The correlated sideband inversion induced by phase modulated light can be understood 

using the Bloch sphere picture if we switch to a frequency modulated rotating frame

[б] . This is done by replacing the up  terms in Eq. (2.4) with up  4- A cosumt. In this 

frame the effective field is given by,

This is similar to the single detuned sideband case Eq. (2.16), except tha t the re- 

component is oscillating about zero at the modulation frequency Fig. 2.11. This is the 

crucial difference tha t makes complete inversion possible. The constant u-component 

alone would cause complete inversion, but the effect of the oscillating te-component 

does not simply average to zero. It moves the Bloch vector out of the v-w plane, reduc

ing the effective strength of the u-component of r  and hence increasing the inversion 

period. The inversion period increases with the modulation frequency because the w- 
component of the effective field is proportional to the modulation frequency, Eq. (2.34).

r  =  ( —Q0, 0 ,u mA s in u mt) (2.34)
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v  0 -

tO  / 2k

F igure  2.12: E ffects o f in d iv id u a l s idebands on the tw o-leve l a tom  I 
A two-level atom driven by (a) &  (b): S\ and (c) &  (d): S\ +  S2 - The m odulation frequency 
Uyn =  f i 0. Complete atom ic inversion is not achieved in both (a) &: (c).

T he  rap id  o sc illa tio n  o f the  invers ion  is thus caused by the  o sc illa to ry  m -com ponent.

2.8 Phase m o du la tion : S ideband analysis

M ost o f the  behav iou r o f the  co rre la ted  sideband inve rs ion  induced by phase m odu la ted  

lig h t can be accounted fo r by the  firs t tw o  pa irs  o f sidebands. F ig. 2.13g shows the 

a to m ic  p o p u la tio n  invers ion  when,

£(t)  — S\ +  Sb +  S3 +  S 4 , (2.35)
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Figure 2.13: Effects of individual  s idebands on the  two-level a tom II 
A two-level atom driven by (e) &; (f): S\ +  52 +  S3 and (g) & (h): Si -f S2 + S3 4- SA. 
The modulation frequency u m =  Dq. Complete atomic inversion is achieved in (g) in only o 
normal Rabi period.
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where,

Si = - J {( A 0)[s\n((uja + u ;m)0], (2.36)

s 2 = J\ ( A q ) [si n ( (u^a u^m )/ ) | , (2.37)

S 3 = S 2 { A q ^[ c o s ( ((-Ua -f 2 i o m ) t ) ] , (2.38)

- J 2{A0)[cos((u;a -  2um )t)\. (2.39)

Comparison with Fig. 2.10 shows tha t the behaviour of the inversion in the phase m od

ulated case is approximately reproduced. Our numerical work shows tha t as long as 

two pairs of sidebands exist, one of which is odd order and the other even order, corre

lated sideband inversion is possible for any modulation frequency. With the two pairs 

of sidebands, Eq. (2.35), the effective field, in the uniformly rotating frame Eq. (2.4), 

is

t = 2Q.0(J2(A) cos(2ujmt)i —Ji(A)cos(i jmt). 0). (2.40)

This effective field vector describes a curve in the u-v plane, not a line through the 

origin as in the case of the single sideband pair Eq. (2.28). This change breaks the 

symmetry tha t was previously responsible for periodically undoing the small increments 

in the atomic inversion, and hence a “secular” increase becomes possible. Since the 

inversion is coupled to v only by even order sidebands and to u only by odd order 

sidebands, such secular increase is only possible when the driving field contains both 

even and odd order sidebands.

2.9 E ffec t o f  s p o n ta n e o u s  e m is s io n

Since we are interested in the experimental feasibility of correlated sideband inversion 

in the optical regime we now consider the effect of atomic spontaneous emission. Spon

taneous emission at rate 7 is modeled by respectively adding the three terms —~ju/2, 

— 7 u/ 2, and —7 (w -f 1) to the three right hand sides of Eqs. (2.5, 2.6, 2.7). Fig. 2.14 

and Fig. 2.15 shows the effect of spontaneous emission on the inversion for phase m od

ulation correlated sideband driving and for detuned monochromatic driving. Although 

spontaneous emission of the two-level atom suppresses complete inversion, it does not 

completely destroy the effect of correlated sideband inversion. This is shown by the 

fact tha t the long time average inversion with correlated sideband driving Fig. 2.15 

is larger than with monochromatic driving Fig. 2.14. The case of symmetrically de

tuned sideband pair driving with spontaneous emission is also shown in comparison 

with monochromatic detuning in Fig. 2.16 and 2.17.
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Figure 2.14: Monochromatic  dr iving with spontaneous emission 
The spontaneous emission rate 7 =  O.lQo- (a ) atomic population inversion w as a function of 
dimensionless time and (b) the plot of atomic dipole phase space, for monochromatic detuned 
driving, 6 = Q q. For the asymptotic time averaged ( w)  % -0.67.
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- 0 . 5 - 1— - ' - '

Figure 2.15: Phase m odu la ted  driv ing with spontaneous emission 
The effect of spontaneous emission, 7 =  O.lf^o- (a) atomic population inversion w as a 
function of dimensionless time and (b) the plot of atomic dipole phase space, for phase 
modulated driving, Eq. (2.29), with modulation index A0 and u m — Q0- For the asymptotic 
time averaged inversion is (w) % —0.15
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v 0-

Figure 2.16: Monochromatic driving with spontaneous emission 
The spontaneous emission rate 7 = O.lQo- (a-) atomic population inversion in as a function of 
dimensionless time and (b) the plot of atomic dipole phase space, for monochromatic detuned 
driving, 6 = 0.25Qq-
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V 0 -

Figure 2.17: Symmetr i cal  s ideband dr iving with spontaneous  emission 
The spontaneous emission rate 7 =  O.lQo- (a ) atomic population inversion in as a function of 
dimensionless time and (b) the plot of atomic dipole phase space, for symmetrically detuned 
sideband pair with modulation frequency u m — 0.50Qq-
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Figure 2.18: Experimental setup for correlated sideband inversion demonstration

2.10 O u t l i n e  o f  e x p e r i m e n t

We conclude this chapter with an outline of an optical experiment in which correlated 

sideband inversion could potentially be observed. Fig. 2.18 shows such an experimental 

setup.

A laser tuned to the atomic resonance can be phase modulated (or am plitude mod

ulated) as required with an electro-optic modulator (acousto-optic modulator). The 

required modulation am plitude Aq % 2.4 is easily achieved with a resonant modulator. 

An atomic filter could be used to ensure tha t no resonant component is left. In order 

to observe correlated sideband inversion the light-atom interaction time must be con

trolled. This is possible using either a cw laser and a velocity selected (cooled) atomic 

beam or a pulsed laser and a thermal atomic beam. The inversion could be detected 

by standard hot wire or laser induced fluorescence techniques, for example.

In summary we have predicted tha t complete atomic population inversion can be in

duced in a two-level atom by driving it with correlated non-resonant sidebands. This 

correlated sideband inversion should be experimentally testable. In the remaining chap-
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ters, we will discuss this effect in the context of other two-state quan tum and photonic 

systems.



C h a p te r  3

S u p p ress io n  o f Q u a n tu m  T u n n e lin g

3.1 O v erv iew

The phenomenon of quantum  tunneling has been known since the early heyday of 

quantum  mechanics. Hund [3] in 1927 explained tha t the observed splitting of the 

vibration spectra of am monia NH3 was due to quantum  tunneling and tha t quantum  

tunneling is im portant for the intramolecular rearrangement of atoms in pyramidal 

molecules in general.

However, it was only until very recently tha t the phenomenon of quantum  tunneling 

was found to be controllable by periodic perturbation. More importantly, if the pe

riodic perturbation satisfies certain conditions, quantum  tunneling can be completely 

suppressed. This result was first reported by Grossmann et. al. [24, 25]. Their investi

gation was on the effect of a monochromatic driving force on the tunneling of a particle 

in a symmetric double-well potential. The Hamiltonian of their system was given by

~ 1 1  X ^

'H(x.p)  =  - p 2 -  - X 2 +  — — +  xSsmuj t ,  (3.1)
2 4 54 U

where S  is the am plitude of the perturbation and D is a barrier height parameter. This 

Hamiltonian is of fundamental interest because it can be used to model proton transfer 

in atoms and molecules, inversion motion of atoms in pyramidal molecules, as well as 

other mesoscopic systems (ac-driven SQUIDs).

In both their papers [24, 25], the Floquet formalism and the concept of quasienergy 

were used. By first defining a propagator for small enough time steps, they were able to

28



CHAPTER 3. SUPPRESSION OE QUANTUM TUNNELING 29

obtain a stroboscopic description of the particle’s motion in the double-well. The initial 

s ta te  of the system chosen was to position a particle with a Gaussian centre in one of the 

wells. It was found tha t in certain cases even after twenty normal tunneling periods, 

the particle remained localized in the same well. However, their work was mainly 

numerical and no physical explanation was offered to explained the newly discovered 

phenomenon. The condition for the suppression of tunneling was found to be the exact 

crossing of the two Floquet ground states, <I>e and <f>0, and no analytic expressions were 

given.

Among other results, they also observed tha t gradual tunneling still occurs even at 

the exact crossing of the two Floquet ground states. They attr ibu ted  this gradual 

tunneling to the fact tha t their chosen initial state, the Gaussian state, is not exactly 

the superposition state of the two Floquet eigenstates, ^<J>e T $ 0 -

In this chapter, we will make use of the two-level approximation of the quantum  double

well [28, 27] to relate the phenomenon of the suppression of tunneling to the work of the 

correlated sideband inversion of a two-level atom. This simplification of the quantum  

double-well enables us to find an analytic expression for the conditions needed for 

the suppression of quantum  tunneling. Furthermore, we will show tha t the gradual 

tunneling of particles even at the tunneling suppression conditions is not solely due to 

the initial Gaussian state of the wavefunction, but rather it is also due to a phenomenon 

analogous to the correlated sideband inversion in the two-level atom model. Finally, 

we also relate the two-level atom model to the work of the low-frequency radiation 

generation scheme proposed by Dakhnovskii and Metiu [31]. Again because of an 

analogy to the correlated sideband inversion of the two-level atom, we are able to 

extend the proposed param eter regime of the low-frequency radiation generation.

3.2 2-leve l  a p p r o x i m a t i o n  o f  q u a n t u m  d o u b le -w e l l

A two-level approximation of the double-well potential is given by the Hamiltonian

[28, 27]

H =  ~Y  (UXM -  |2)(2|) + v(t) (11 >{21 + 12)< 11) , (3.2)

where |1) and |2) are the two lowest energy eigenstates of the double-well and A 0 is 

the energy splitting between them. The two eigenstates are coupled to each other due 

to the presence of an external periodic driving force V(t) = l o s i n g ) -  In this model,
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the localization of a particle in the “right” and “left” well are represented by the states

i n  = d=(| l>  + |2>), (3.3)

11) =  ^ ( | 1 > - | 2 > ) ,  (3.4)

respectively. This two-level approximation of the double-well is valid provided that  the 

driving frequency u  and the energy splitting A 0 of the two levels is small compare to 

the energy of the other higher excited levels.

Using the perturbation method,  the first order approximation to the period propagator 

matrix U of the system in the basis set of { |r),  |/)} can be shown to take the form of 

[28]

u 11 =  1 , (3.5)

U 2 2  =  1 , (3.6)
to r

U12 -  exp ) h (3.7)
u  \  to / \  u> /

u2i = -u ;2. (3.8)

This is a good approximation provided that  the period is small enough to not have

caused significant changes in the state amplitudes. Hence, quantum tunneling is sup-
pressed when

2  V o
J O , mUJ

(3.9)

and

A 0 «  2a; (3.10)

where j 0,m is the m-th root of the zeroth order Bessel function.

3.3 A nalogy  w ith  th e  tw o-level a to m

We now relate our work on the two-level atom to the suppression of quan tum tunneling. 

Our two-level atom Hamiltonian Eq. (2.1) gives the following equations of motion for 

the amplitudes cg to be in the ground state and ce to be in the excited state,

i ce = \ioace -  \dE{t )cg, (3.11)

i cg = - ~ d E ( t ) c e -  \ u acg. (3.12)
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Using dashes to denote rotating variables defined by,

ce =  exp[ \i(ujat +  A cosujmt)]ce, (3.13)

cg -  exp[—^(u ;a/ +  A cos ijomt)}cg, (3.14)

we obtain for the phase modulated field E(t) = E0 cos(u;a/ +  A cosu:mt),

i ce =  l-Aujm s\n(ujrnt)ce - {-Q0cgi (3.15)

i cg = - \ E l 0ce -  \Aujm s\n(Ljmt)cg, (3.16)

where we have used the rotating wave approximation to neglect rapidly rotating terms 

proportional to exp(2i(wat -f A cosujmt)).

The equations of motion for quantum  tunneling in a modulated double-well, in the 

two-level approximation, are

i cr — Vqs\n(u)t)cr -  -2A 0c/, (3.17)

i ci — - l A 0cr -  VÖsin(u;Oc/, (3.18)

where cr and c/ are the amplitudes of the right and left well states |r) and |/), respec

tively. A comparison of Eqs. (3.15, 3.16) and Eqs. (3.17, 3.18) shows the mathematical 

equivalence of the two models by making the following s tate  correspondence,

ce cr , (3.19)

c'g Cl. (3.20)

The correspondence between parameters is,

iOm ^  U), (3.21)

Flo Ao, (3.22)

A <r+ 2V0/uj. (3.23)

The conditions for good localization in a single well Eqs. (3.9, 3.10) simply correspond 

in our model to a zero amplitude carrier component and a large modulation frequency. 

The suppression of quantum tunneling in a double-well potential is therefore analogous 

in our atomic system to modulating away the resonant component of the radiation field 

and hence suppressing any excitation of the atom. Because of the equivalent effect to 

correlated sideband inversion, the localization of a particle in one well will always be 

limited in duration, a result not apparent in the perturbative trea tm ent of [28].
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3.4 L o w - f r e q u e n c y  r a d i a t i o n  g e n e r a t i o n

Dakhnovskii and Metiu [31] has proposed tha t by driving a charged particle in a double 

well with laser, intense low-frequency radiation can be produced . Again the two-level 

approximated Hamiltonian is used,

where /r12 is the induced dipole moment, E(t)  is electric field and 2c the energy splitting. 

Similarly there is a correspondence between the two-level atom model and this,

where lo is the driving laser frequency, and e0 =  2/j.12Eo/ f u o  is proportional to the laser 

amplitude. Accordingly their conditions for low frequency generation, e/kco 1 and 

eJo(e0)/h small, correspond in our model to having highly detuned sidebands and a 

small component of resonant carrier, which induces a low frequency Rabi oscillation. 

The analogous effect to our correlated sideband inversion occurs in their model for 

cJo{co)/h =  0. Furthermore it occurs for arbitrary  values of e/hco. This extends the 

param eter regime for low frequency generation to the point of accidental degeneracy 

[31] and to arbitrary driving laser frequencies.

K = £ ( | l ) (M- |2 ) (2 | ) - / i nß (0 ( | l>(2 |  + |2>(l|), (3.24)

iOm ^  ^  i

flo  c-> 2c j  h ,

A eo,

(3-25)

(3.26)

(3.27)
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B loch  re p re se n ta tio n  o f o p tica l 
coup lers

4.1 O v e rv ie w

“ Men's labour therefore should be turned to the investigation and observation of the 

resemblances and analogies of things. .. for these it is which detect the unity of nature, 

and lay the foundation for the constitution of the sciences. ” Francis Bacon.

The analogy between mechanics and wave theory is long established and has been 

used to transport knowledge between the two fields. More than a century ago, James 

Clark Maxwell draws upon a mechanical analogy when developing his electromagnetic 

theory [1]. In the early days of quantum  mechanics, many made use of concepts 

from wave optics to explain the newly formulated quantum  theory. More recently, 

the analogy between quantum mechanics and optics has yet again been studied in a 

new framework of optical waveguide theory. Black and Ankiewicz [11] show tha t in 

the respective length and time independent case, the scalar wave equation and the 

Schrödinger equation are mathematically equivalent. One-to-one correspondence is 

found between the quantities of the two models.

In this chapter, we re-establish the one-to-one correspondence between the quantities 

in quantum  mechanics and wave optics. Our starting point is also a comparison of 

the two most im portant equations of the respective fields, namely, the Schrödinger 

equation and the scalar wave equation. However, we do not wish to limit ourselves 

to the length/tim e independent case. With the help of the slow varying envelope

33
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approximation,  we proceed to establish a correspondence of the quantities between 

the two models when they are length/ t ime dependent.  This chapter  hence plays the 

important  role of a bridge linking the two parts of this thesis.

We continue with the comparison of a four-port optical coupler and a potential double

well. It is found that the four-port optical coupler has many similar characteristics to 

the potential double-well in quantum mechanics. Quantum tunneling, for example, is 

translated to the well understood phenomenon of power transfer between the two cores 

of an optical coupler. Finally, we translate the Bloch representation used for analysing 

the two-level atom to a new representation for the optical s tate in a coupler. This Bloch 

representation of the optical coupler is a convenient tool for visualizing the evolution 

of the optical state. As an example of the application of this new representation, 

we consider the case of a uniform coupler. In the next chapter, we also use this 

representation to consider a coupler with two out-of-phase sinusoidally modulated core 

indices.

4.2 T h e  S c h rö d in g e r  e q u a t io n  a n d  th e  s c a la r  w ave 
e q u a t io n

In this section, we establish the mathematical  correspondence between the Schrödinger 

equation,
h2 9 Ö

V 2T + VV  =  ih — ty, 
2 m dt (4.1)

and the scalar wave equation,

V 2T +  k2n24? = 0. (4.2)

The quanti ty T in the Schrödinger equation is the wavefunction of a particle. Whereas 

in the scalar wave equation, T represents the complex wave ampli tude of the electric 

field, m  is the mass of the particle and h the Planck constant. In the scalar wave 

equation k denotes the wavenumber and n is the refractive index of the medium. We 

are interested to establish a one-to-one correspondence between the two equations so 

tha t  in the later chapters, concepts from the work on quan tum tunneling and correlated 

sideband inversion can be applied to the wave optics model of optical couplers. We 

start our comparison with the case when both of these equations are time independent. 

We thus require the potential of the Schrödinger equation to be time independent and
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the refractive index of the wave equation to be constant along the entire propagation 

length 2 . The two equations in the t ime/length independent case are

arid

V 2'!' + N ( e  -  V)»P =  0. 
h

(4.3)

V 2*  + (k2n 2-  ß 2)ty = 0. (4.4)

Here E  is the total energy of the particle and ß  is the propagation constant of the elec

tric field. Note that  in simplifying the scalar wave equation to the length independent 

case, we have removed the z-dependence of the scalar wave equation and hence are left 

with
2 d2 d2v? = ---- 1----
* d x 2 d y 2

(T5)

on the left hand side of Eq. (4.4). If we assume tha t  the Schrödinger equation is two 

dimensional, the correspondence is easily found to be,

2 m ,

2 m
~ l ß

k 2n 2 (4.6)

ß 2 (4.7)

X (4.8)

y (4.9)

We observe that  the square of the refractive index in wave optics is analogous to an 

inverted potential energy and the total energy in quantum mechanics is analogous to 

the inverted squared propagation constant. If the above correspondence were made, 

problems and solutions in quan tum mechanics will have a corresponding counterpart 

in wave optics.

However, we observe that  when the Schrödinger equation and the scalar wave equation 

become t ime/length-dependent ,  the correspondence is no longer obvious due to the 

difference in the first order and the second order derivative terms on the right hand 

side of Eqs (4.1, 4.2). This apparent  discrepancy can be resolved if we assume that  the 

complex electric field ampli tude in the scalar wave equation has the following form,

<P(2) =  il>(z)e'f Pd*,(4.10)

so that

dz # ( * )  =
d_

dz 4'(z) T iß4>{z. ,i f  0dz

and

dß_
d z 2

q 2  Q  C\

^(*) = ^</>(2) + 2z/? —ö’(-) + ẑ (2) ^ ß  -  d2U{ =

(4.11)

f 0dz. (4.12)
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The scalar wave equation is now' of the form

‘ d 2
V 20(z) + (k2n2(z)  -  /^(z) )?/>(*) = -

‘ö  d
^ 2*/’U) + 2 i ß( z )  —  il'(z) + i i p( z )— ß( z )

(4.13)

If we assume that  the envelope function E( z ) is varying sufficiently slowly for the 

slowly-varying envelope approximation (SVEA) to be valid, we can then neglect the 

second order partial derivative d 2U / d z 2. Furthermore the term i i j ; ( z )dß( z ) / dz ,  which 

is responsible for the coupling of the forward-propagating modes to the backward- 

propagating modes, can also be ignore by assuming that the change in the refractive 

index profile along the direction of propagation is slow compare to the evolution of the 

envelope function. The scalar wave equation is therefore reduced to

V 20(z)  + (k2n 2( z ) -  ß 2(z)) ip(z) -2 i ß ( z ) — ip(z).  
oz

(4.14)

By also assuming that  the wavefunction of a particle in quan tum mechanics can be 

written as,

^ t )  = (4.15)

The Schrödinger equation can then be rewritten as,

o , 2m 2m 2m Ö
V 20(O +  ( - - ^ -V ' ( z )  +  -^-E(t))ik(t) = (4-16)

Once again, we can obtain a correspondence of all the quantities between the two 

equations,

— 2 m V ( t ) n2, (4.17)

—2 mE(t) <-* A2 0 2, (4.18)
d

~ d t
<-» d

d z 1
(4.19)

m C-» *(*), (4.20)

0 ( 0 <-> H z ), (4.21)

7711 <-> A ß z , (4.22)

X X, (4.23)

y *-> y , (4.24)

h <-> A, (4.25)

where A =  \ /2 i r. It is interesting to note in particular,  that  the Planck constant which 

plays a crucial role in quantum mechanics has also an analogous quantity in wave
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L well R well Core 1 Core 2

Figure 4.1: The double wells of quantum  mechanics and wave optics

optics which is entirely classical. We see tha t when the wavelength of the electric field 

is short (corresponding to h —> 0), the “quantum  features” of wave optics disappear 

and the wave optics is then replaced by the more classical ray optics in this regime. The 

Planck constant on the other hand is a universal constant and cannot be varied. Hence 

the quantum  properties of a microscopic object are always present. Because of this 

correspondence between all the quantities of the Schrödinger equation and the scalar 

wave equation, we can now anticipate interesting results in wave optics analogous to 

the coherent destruction of quantum  tunneling and correlated sideband inversion.

Since the potential energy in quantum  mechanics is found to be analogous to the 

refractive index in wave optics, we anticipate tha t a quantum  double well will in many 

ways be similar to an optical coupler with the inverted profile, as shown in Fig. 4.1. In 

particular, if the two-level and two-mode approximation were made on the respective 

models, we can a t tr ibu te  the power transfer between cores of an optical coupler to 

a phenomenon similar to quantum  tunneling between potential wells. The tunneling 

period is then found to be analogous to the coupling length of an optical coupler. We 

give a further listing of the correspondence of other quantities in this case.

QUANTUM MECHANICS <-> WAVE O PTICS (4.26)

unbound states <-» radiation modes, (4.27)

bound states bound modes, (4.28)

l*> =  ~ ( l r ) +  | /»  <-> « ,  =  - 4 ( ^ 1  + ^ ) ,  (4-29)

k> = 7 2 ( |r> ~ |,}) °  = -  4' 2)’ (4'30)

I U  =  y | ( l < 7 )  +  | e > )  4 / ,  =  +  < l ’ a ) . (4-31)
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10 = 4 = ( l 9 >  -  |e>) «  *2 = - 'J'«)- (4.32)

(4.33)

4.3 B loch re p re se n ta tio n  for o p tic a l coup lers

The evolution of a coherent optical state along a general weakly-guiding, weakly coupled 

four-port coupler is well modeled by the first order coupled mode theory. Here for 

generality we consider a coupler with the following coupled mode equations for the 

field amplitudes in each core

d ,Tzb' — iß\{z)b\ -\-iC\2(z)b2, (4.34)

d hTzhl — lß7 {z )b2 -\-iC2\(z)b\, (4.35)

where bj(z) are the complex modal amplitudes and ßj(z)  are the propagation constants 

of the fundamental mode of each waveguide taken in isolation from the other, so that 

the field in each core is described by (j =  1,2)

Ej {x , y , z )  =  bj (z)'l}j (x,y) .  (4.36)

Tj are the fundamental-mode of core j ,  solutions obtained from the scalar wave equa

tion (4.2). The coupling constants C\2 and C2\ in Eq. (4.34, 4.35) are approximately 

equal in a weakly coupled system, so we may approxim ate these by C(z).  Because ßj(z)  

are comparable to the optical wavenumber, these equations allow us to solve for the 

rapid absolute phase variation in each core of the coupler. Since we are mainly inter

ested in the much slower power variation induced by the weak power transfer between 

the cores, and also in the correspondingly slow variation in the relative phase between 

the fields in each core, we restrict our attention to these “envelopes” by factoring out 

the rapid optical frequency dependence and transform to the following coupled mode 

equations

—  a l = i6ßl( z )al + iC(z )a2, (4.37) dz
d

—  a2 = iSß2(z)a2 +  iC(z )a i , (4.38) 
dz

where a.j(z) are the complex amplitudes of the phasors obtained after factoring out the 

rapid phase variations from bj(z),

a , ( 2 ) =  bl ( z ) e ~ ^ 0)C

a2(z) =

(4.39)

(4.40)
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Also 6ßj(z) = ßj{z) -  ß3(0), where ßj(0) denoting the unperturbed or average propa

gation constant of the fundamental mode for the waveguide j  in isolation.

W ith these equations, we can describe the entire envelope field in the two core system 

at each position z along the axis, provided we specify the magnitudes of the complex 

phasors, |a i(z) | and |a2(z)|, and the relative phase between them <f> 1 2 ( 2 ). The field 

amplitudes alone are sufficient to completely specify the power in each core, and for 

coherent systems, the relative phase </>12(z) is the only other quantity needed to predict 

the subsequent evolution of the fields along this coupler. Because these three quantities 

are needed, this system lends itself to a three-dimensional geometric representation for 

describing field evolution.

We now introduce a new formalism of using geometric phase to represent the optical 

field along any optical coupler. We will first show the m ethod of transforming from the 

coupled mode equations (4.37, 4.38) to the geometric phase representation. Provided 

tha t energy is conserved along the length of the coupler, the optical fields trace out a 

three dimensional sphere similar to tha t of the Bloch sphere in quantum  mechanics and 

Poincare sphere in polarization coupling. Hence, we also refer to this representation as 

the Bloch representation for optical couplers.

We let the local modes of the two cores of the optical coupler be denoted by and 

T 2, respectively. We denote the symmetric and anti-symmetric normal mode of the 

coupler by T s and T a. When light is launched into one core of a coupler with uniform 

and identical cores so tha t the initial optical field mode is given by T i,  we find tha t at 

propagation distances of a quarter and three quarters of a coupling period later power 

is equally shared between the two cores. The optical field modes at these points are 

given by

4T — —̂ ( ^ i  + ?4>2),

* 0  =  - i * 2),

(4.41)

(4.42)

for propagation distances of one quarter and three quarter periods later, respectively. 

We call these two modes the quadrature modes.

W ith these three pairs of optical modes, we define an axis for each pair and thus 

obtained a three-dimensional space with the following axes

=  Ps-Pa,N ( 4 . 43 )
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Q = P o - P ß ,
P = P2 - P u

where P3 is simply the power in the j  mode given by

Pj = s V

(4.44)

(4.45)

(4.46)

We use the symbols N, P  and Q to help identify the fact tha t the power difference of 

the two cores is given by the P-axis; the difference between the normal modes gives 

the N  value and Q represents the quadrature modes difference. Hence for example, N  

is therefore a measure of the mode symmetry, with N  =  P t o ta i denoting that all the op

tical power is in the symmetric mode and N  = — Ptota i ,  the anti-symmetric mode. We 

can proceed by normalizing the three quantities to unity by dividing each parameter 

by the total power Ptotai. Hence N ,Q  and P can only take the values between 1 and 

-1. A table is given below to show the relationships between these three pairs of modes.

4p and 4p 4/a and 4^ 4p and 4p

N  = 1 4P i[ ( i  -  O'J'a -  (i +  O'J’a!

N  = - 1 ^[(1 +  O ^ - ( 1  -  O'J'a] ^ ( * 1  -  'M

0  =  1 i[( l  +  (1 -O 'J 'a ] ^ ( ' I ' l  + i'J'j)

<3 =  - i — j[ ( l  -  t ) * ,  +  (1 +  O^a] « a - ^ ( ' J ’l -

P = 1 -  *«) - T j J f ' J ’a + i'i'fl) 4p

P = - 1

e*i0&

4/ 1

In terms of only the local held amplitude, we can express these parameters as

N
a i^ 2  g j Ö2

P t o t a i
(4.47)
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Assuming that  propagation in the coupler is lossless, vve obtain

N 2 + Q2 + P2 =  ( a ' a ' (4.50)
'  t o t a l

Hence the locus of the optical held of the coupler is a unit sphere. We call the vector 

( N , Q, P)  the optical held vector. The evolution of this held vector is determined 

entirely by a torque vector which is solely defined by the parameters  of the coupler. By 

subst i tut ing the dehnition of the N, P and Q, Eqs. (4.47, 4.48, 4.49), into the coupled 

mode equations (4.37, 4.38), we obtain

i N
= Sß(z)Q (4.51)

t N = —6ß(z)N -2C(z)P, (4.52)

d
7 / = 2C(z)Q, (4.53)

where 8ß(z) = Sß\(z) — bß2{z). It is then straightforward to obtain a torque equation 

similar to the Larmor equation for magnetic dipole,

6  = f  x d .

where O is the optical held vector and T  its torque as shown in Fig. 4.2.

(4.54)

4 .4  U n ifo rm  c o u p le r

We now analyse the case of a uniform non-identical coupler describe by the coupled 

mode equations

d
— c l \  =  ibßa\ + iC(z)a 2 ,dz (4.55)

d
—  a 2 =  —ioßa2 + iC{z)(i\. dz (4.56)

The normal modes of this coupler are given by

-  ,l' : ■
\!  i +  a+

(4.57)

T T ! +  a_ T
=  /-----------

\A  + a -
(4.58)

Here, a± = Q ±  1 /F , where Q = 8ß/2C and F =  (1 +  Q2)~l/2- 
ecjuivalent torque equation for the system, we hnd

By writing down the

T  = (2C,ü,6ß) (4.59)
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v = + l

Figure 4.2: The Bloch representation of an optical coupler 
Three dimensional sketches of the optical field envelope are shown for the corresponding 
modes 4^. Note that in the usual rotating frame, the torque vector T  must have direction 
lying within the shaded meridian. Since the coupling constant must take a positive value and 
the propagation constant difference can be either positive or negative.

Note tha t and are exactly the point of intersection of the torque vector with 

the unit sphere of the optical field as shown in Fig. 4.3. This is expected since the only 

points on the sphere which are unaffected by the torque vectors are the intersection 

points of the torque with the unit sphere. This simple example illustrates tha t the 

Bloch representation provides a clear visualisation of the evolution of the optical field. 

Using the Bloch representation many quantities of interest can be obtained by solving 

simple geometric problems without the need to actually integrate the coupled mode 

equations.

We conclude this chapter by listing the correspondence between the Bloch representa

tion of both the two-level atom and the optical coupler.

TW O -  LEVEL ATOM O PT IC A L CO U PLER (4.60)

t <-* (4.61)

IV P, (4.62)

u - N , (4.63)

V Q, (4.64)

LIq 2C, (4.65)
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P

Q

Figure 4.3: The Bloch representation of a uniform non-identical coupler

6 C-» <$/?, (4.66)

Is) # 1 , (4.67)

|e> # 2 , (4.68)

| 1 >
Vi/̂ 5 1 (4.69)

1 r) <-> (4.70)

P (5 , (4.71)

T f . (4.72)

W ith this correspondence, we thus established a link between all three models studied 

in this thesis.



C h a p te r  5

M o d u la te d  In d ex  C o u p le r

5.1 O v e rv ie w

The coupling of light between identical fibres or waveguides is used in a variety of light

combining or splitting devices, such as 3dB couplers, wavelength division multiplex

ers, broadband and wavelength-flattened couplers and so on. The so-called “grating- 

assisted coupler” makes used of in-line gratings to cause a periodic modulation of the 

coupling constant between two dissimilar waveguides to enhance power transfer.

More recently, Bragg gratings have also been employed in conjunction with couplers 

to suppress or frustrate coupling and form the basis of a new type of channel-dropping 

filter. The mechanism of the Bragg grating coupler are based solely on the Bragg 

reflection property of in-line gratings; otherwise propagation along the cores does not 

take account of the grating. In other words, the grating is assumed to be a sufficiently 

small perturbation of the refractive-index profile of the guide or coupler so tha t its 

effect can be ignored for the purposes of calculating modal fields and propagation 

parameters. The effect of the grating is that it introduces a strong dispersion in one 

core and hence causes a phase mismatch between the two cores. At the same time, 

the Bragg gratings have also created a “photonic” band gap which rejects tunneling 

photons into the second core.

In this chapter, we present an alternative mechanism for the suppression of coupling, 

using periodic modulation of core refractive-indices. This new mechanism, in contrast 

with the Bragg gratings, relies on a relatively large and slow index modulation with

44
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period of the order of 50/mi 1mm. Hence, it is necessary to solve for propagation along 

the cores taking into account the variation in the refractive-index profile of the cores. 

The resultant effect, which can partially or totally frustrate coupling is analogous to the 

coherent destruction of quantum  tunneling discussed in the earlier chapters. Similar to 

the result found in the suppression of quantum  tunneling, we find tha t the zeroth order 

Bessel function plays an im portant role in determining the ratios of the modulation 

period and amplitude for coupling suppression. Physically, we can view the effect of the 

index modulation as a mechanism which regulates the modal phase accumulation along 

the coupler. By judicious choice of the period and amplitude, the index modulation 

can be so chosen as to completely offset the accumulated phase and thereby suppressed 

the transfer of power everywhere along the length of the coupler. We will also show 

tha t this index modulation is, in a sense, the opposite of the mechanism used in the 

grating assisted coupler since both mechanisms rely on perturbation periods of similar 

scale. We make use of the Bloch representation developed in the previous chapter to 

analyse both cases, and find the conditions for complete power transfer between two 

dissimilar cores in the grating assisted coupler.

5.2 The zero coupling condition

Consider the evanescent coupler with index modulated cores shown schematically in 

Fig. 5.1, where the darker shading corresponds to higher refractive index. In the central 

coupling region, the index modulations are exactly out of phase. The propagation 

constants ß\(z)  and $ 2(2 ) of the fundamental modes in cores 1 and 2, respectively, 

vary periodically with distance 2 along the coupler. If the index modulations of the 

two cores are given by ±6n  s\n{comz),  where 6n 1 is the modulation amplitude and 

iom the modulation frequency, then correct to first order in 8n [9]

ß\ ( z )  = ßo +  kr]6nsm(Lomz),  (5.1)

^ 2( 2 ) =  ß0 -  kgSn  sin(cumz), (5.2)

where ß0 is the unperturbed propagation constant of the fundamental modes of both 

cores, k = 2tt/ \  is the wavenumber, A is the source wavelength and g is the fraction 

of modal power propagating in the cores. Propagation along the coupler is assumed to 

satisfy the weak-guidance condition so tha t the fundamental mode fields Ti and T 2 of 

cores 1 and 2, respectively, are solutions of the scalar wave equation [9]. Furthermore, 

the modulation is assumed to be sufficiently slow along the axis tha t the coupling to
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P "\v  Core 1 2k/ (ß. / p
out 1

Ü

Core 2 L
P

out 2

Figure 5.1: Schematic of a four-port modulated index coupler 
Shadings represent out-of-phase periodic index modulations in each core. The length of the 
coupler is L and the index modulation period is given by 27r/cjm.

higher-order leaky modes and backward-propagating modes is negligible. The respec

tive amplitudes a\(z)  and a2(z)  of these fields satisfy the pair of lossless coupled-mode 

equations

do. ]
dz 
da2
dz

where C  is the coupling constant defined by

1 f t  \ 1/2
C = Äk \ ~ ) /  ( " c l - 0 * 1  * 2  dA.  (5.5)4 \fiQ J JAcoI

Here nc\ is the uniform cladding index, nco is the unperturbed core index and A col 

denotes the cross-section of core 1. to and no are the electric permittivity and magnetic 

permeability of free space, respectively.

+ ikrj8ns\n{ujrnz )a2 = iCcq, (5.4)

ikrjSn sm(ujrnz)a\ = iC a 2, (5.3)

Although results from Fig. 5.2 are obtained from solving the coupled equations (5.3. 

5.4) numerically, an accurate approximate solution for the zero coupling condition can 

be obtained by iteration. If we assume tha t light is launched into core 1 by setting 

a2 = 0 in Eq. (5.3), then

f kr/Sn 1
a ^ z )  = exp i ----- -[1 -  cos(u;mz) > , (5.6)

assuming tha t ü | =  1 at 2  =  0. On substituting Eq. (5.6) into Eq. (5.4), the small 

correction to 0 2 ( 2 ) is given by

a2(z) = iC  exp
ikrj8n( 1 — coscomz'

U Jr £exp
2ikr]8n( \ — cos ojmz\

dz. (5.7)
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so th a t  a2 — 0 at 2 =  0. Using standard formulae [7], the integral can be evaluated 

analytically as an infinite series. However, when 2 is an integral multiple m of the 

grating period, i.e. 2 — 27rm/u;m, the series reduces to the single term

2 m n \  2rmriC (  2kr]8n\ (2ih]8n
------  =  ----------J0 ---------  exp ---------

7  LOm  V iO m  )  \  <-^m

Again we observe the familiar occurrence of the zeroth order Bessel function, J 0. This 

result is valid provided tha t 8n nco — nc\ and the cores are sufficiently separated 

so tha t the modulation period is small compared with the coupling length, i.e. when 

2 u m C . In this limit, the time step of 2zr/ cj m is sufficiently small so that at any

time the assumption tha t a 2 is much smaller than a 1 is always true. Eq. (5.8) ensures 

that when
2 kr)8n
— L— =]o,m,  (5.9)

where m is the m th  root of J 0, the field am plitude in core 2 is always zero at all 

integer multiple distance of the modulation period. Hence, Equation (5.9) give us the 

zero coupling condition of the modulated index coupler. Since the condition involves 

the wavenumber k, we note tha t the suppression of coupling is only occurring at one 

wavelength.

5.3 N u m e r ic a l  r e s u l t s

The coupled mode Eqs. (5.3, 5.4) were solved numerically, and the power transfer, i.e., 

the fraction of power entering core 1 at 2 =  0 which exits core 2 is plotted in Fig. 5.2 

as a function of the normalized distance 2 /L c  along the coupler, for a range of values 

of 8n. In Fig. 5.2, curve (a) shows the familiar periodic power transfer between two 

identical cores (8n =  0). The remaining curves (b) -  (d), illustrate how the applied 

index modulation affects the power transfer: in each case there is a small rapid power 

oscillation, (two cycles per index modulation period), superimposed on a complete 

sinusoidal power transfer over an effective length scale Lefl-, longer than the standard 

coupling period Lq . Hence, the effective coupling constant Ceff =  7r/LefT decreases 

with 8n. In curve (d) the accumulating power transfer is suppressed since 8n satisfies 

Eq. (5.9) at the first root of Jo- This corresponds to Cefr —> 0. Further increasing 8n 

reintroduces power transfer between the cores, since | J0(2kr}8n/ujm )| > 0 again. The 

residual rapid power oscillation in Fig. 5.2d involves less than 2% of the total input 

power. Even smaller residues could be achieved by decreasing the modulation period, 

while increasing 8n to maintain the zero coupling condition of Eq. (5.9).
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Normalized Propagation Length z /

Figure 5.2: Power transfer of a four-port m odu la ted  index coupler 
Normalized power transfer Pout2 /P\n in a four-port index modulated coupler operating at 
1.3/im, for various amounts of core index modulation Sn =  (a) 0 , (b) 1.98 x 10~3 , (c) 
2.20 x 10-3 and (d) 2.44 x 10~3 (the last case corresponding to 2kr]dn/urn = 2.405, the first 
zero of Jo). Power transfer is plotted over two standard coupling lengths of the unmodulated 
coupler. Here the fractional modal power in the core r) =  0.750, Lc =  4.27mm is the coupling 
length, and the modulation period, 2tt/ u m =  0.854mm, (corresponding to u = 10C)
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(a) P (b) P

Figure 5.3: Bloch representation of a four-port modulated index coupler 
(a) In the rotating frame with constant frequency, the torque vector is given by T  — 
(2C, 0, — 2ki]6n sin(u>mz)); (b) In the rotating frame with phase modulated frequency, the 
torque vector is given by T  — (2C cos[2kr]8n cos(u;mz)/u;m], 2C s\n[2kr]6n cos(tzmz)/u>m], 0)

5.4  B lo c h  r e p r e s e n ta t io n  o f  th e  m o d u la te d  in d e x  
c o u p le r

The coupled mode equations (5.3, 5.4) for the modulated index coupler which has 

been dem onstrated to suppress coupling can be transformed into the Bloch sphere 

representation by the method discussed in Chapter 4. Using Eqs. (4.47, 4.48, 4.49) we 

obtain

d N
dz

2krj6n sin(u;mz)(5, (5.10)

dQ _
dz

— 2krj6n sin(u;mz)/V - 2  CP, (5.11)

dP
dz

2 CQ. (5.12)

The torque equation is hence given by

Ö = (2C, 0, —2krj8n sin(u;mz)) x Ö. (5.13)

Having simplified the problem to three dimensions, we can now choose a suitable
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rotating frame to aid our analysis further. Because we are mainly interested in the 

powers in both of the cores, i.e., in the P-axis, any rotation about the /VQ-plane will 

not change the final results since the P -axis is invariant under the rotation. We choose 

a rotating frame which has a modulated rotating frequency to help us to decompose the 

index modulation into Fourier components. The new co-ordinates, denoted by primes, 

are given by,

Equations (5.10, 5.11, 5.12) can now be

sin 77 COS (lU m  2 ) 0  \ ( N  \
u > m  V ' J

cos V C O s(cU m 2 ) 0 QL U r n  V 1

0 1 ) p  !

written as,

(5.14)

N'  = —2C sin

Q1 = —2C cos

P' = 2C I cos

2kr]6n
^m

2krj8n
m

2krj8n

cos(uJmz) 

cos(u;m2) 

cos(u;rn z)

P \

P \

Q' +  sin
2kr]8n

cos (a)mz\ N'

The torque equation after transformation is

0 =  2C cos
2kr]8n

cos (u)mz) , 2C sin
2krj8n

cos( U m  Z ,0 x O .

(5.15)

(5.16)

(5.17)

(5.18)

Fig (5.3) shows the torque vectors of the modulated index coupler in both the ordinary 

and phase modulated rotating frames. We can now perform a Fourier decomposition 

of the torque vector using standard formulae [7]

Jm  / j = i

cos(2ju;mz),

4 C E ( - 1 ) 0 2j+1
j=o

2krj8n
i ü r

cos[(2j +  l)cum2],0 (5.19)

By assuming tha t the modulation period is much shorter than the coupling length, 

2Lom C, we can make use of the rotating wave approximation and neglect the terms

with oscillating frequency higher than the modulation frequency ujm in the torque. This 

first order approximation to the torque now gives,

f  = 2CJ0
2 k r ) 8 n

, 0,0 (5.20)
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The Bloch representation analysis hence shows agreement with the result obtained 

from the iterative method. Furthermore, we now obtain a first order expression of the 

effective coupling constant:

Ceff = C Jr
2kr/8n

(5.21)

Hence when the argument of the zeroth order Bessel function takes the value of one of 

the roots, coupling between the cores is completely suppressed.

The second order effect of the periodic index modulation is obtained by including terms 

with a slightly faster rotation frequency of u m. The torque of the modulated index 

coupler is now given by

T  =  2CJ0
2kr)8n

U r
, 4  CJX

2krj6n
cos(u;m2 ), 0 (5.22)

It is this second order term which gives rise to the power oscillation seen superimposed 

on the slower power transfer curve.

5.5 S q u a re -w a v e  lo n g i tu d in a l  in d e x  c o u p le r

Analysis of the modulated index coupler can be further simplified if we assume that 

the refractive indices are instantaneously flipping between two values at a regular time 

interval. Physically, such instantaneous changes in the refractive indices will give rise 

to backward propagating modes more readily then the case of the slow sinusoidal 

modulation of the refractive indices. We therefore only use this example as a theoretical 

tool for understanding the periodic undoing of phase accumulation.

We now suppose tha t the core indices vary with propagation length according to,

n0 + 6n 2 -  < 2 < i2n±Dl^
n\(z)  =

n2(z) =

n0 — 8n

7 i 0  —  6 n

<  <- ( 2 ( n + l ) 7 r

2 n n
u )  rn

< 2  < ( 2 n +  1) tt

(2 n + 1)7r <  <  (2 ( n + 1) 7rn0 T 8n

where no is the average core index. The torque vector is now given by 

' (2C,0, 2krj6n) ^  < z c
T  =

(2C, 0, —2kijbn' (2n+ 1)7r <  z <  2fn + B 7r

(5.23)

(5.24)

(5.25)

^  rn
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P

Figure 5.4: Bloch representation of the grating assisted coupler

since in any given length interval, the coupler is jus t a normal dissimilar core coupler. 

Notice tha t in this case, the torque vector has a constant length of

| / |  =  y/(2C)> +  ( 2 M« ) 2- (5. 26)

The evolution of the optical field vector can now be solved analytically for every time 

interval of constant torque. If we chose the modulation frequency so tha t it satisfies a 

periodicity condition, i.e.,

=  sJ(2Cy + (2 krjSn)*, (5.27)

then at the end of every constant torque time interval, the optical field vector returns to 

its initial position. This illustrates the concept of the undoing of phase accumulation. 

If an initial state of P = — 1 is assumed, the optical vector will describe a “figure 8 

on the bottom  of the Bloch sphere and the maximum power transfer experienced by 

the optical coupler in this case is simply

Pout2\ = 4 C2
Pin 2 max 4C 2 +  {2krj6n)2

(5.28)

Hence, if the coupling constant of the coupler is relatively small compared with the 

index change of 6n, power transfer is negligible. Since the zero coupling condition 

involves the ratio of Sn and u;m, we can therefore conclude tha t maximum power transfer 

is negligible when 2cjm C.



CHAPT ER 5. MODULATED INDEX COUPLER 53

5.6 G r a t i n g  a s s i s t e d  c o u p l e r

In this section, we use the Bloch representation to analyse the grating assisted coupler. 

The coupled mode equations for the grating assisted coupler are given by,

da i
dz 
da i 
dz

= ißia\  +z(Co + Ci s in uomz)a2, 

= iß2a2 +z(C0 +  Ci  sinujmz)ai,

(5.29)

(5.30)

where Co is the unperturbed coupling constant of the coupler; Ci and u;m are the 

grating amplitude and frequency. Rewriting these equations in terms of the N,  Q and 

P parameters gives,

d/V
dz
dQ
dz
dP
dz

- 6 ß Q , (5.31)

S ß N —2(C0 -f C i s in ^ m2)P, (5.32)

— 2(Co T C i sincumz)Q, (5.33)

where, 6ß = ß2 — ß\.  Fig. 5.4 shows the torque representation of the grating assisted 

coupler. If we assume that the modulation of the coupling constant is small compared 

to the actual coupling, i.e., C\ Co so tha t

\ f \  *  If U  =  \ / (2 C 0)2 + ( 6 0) \ (5.34)

a periodicity condition which is necessary for inducing complete power transfer between 

dissimilar cores can be obtained. The periodicity condition is given by,

U>m =  \J(2Co)2 + (6ß)2. (5.35)

To first order this periodicity condition ensures tha t the optical field vector is period

ically returning to the initial starting value after each period of coupling modulation. 

However, the presence of the small modulation of the coupling constant induces an 

incremental climb of the optical field vector from the bottom pole of the sphere to the 

top pole as shown by numerical solutions of Eqs. (5.29, 5.30) in Fig. 5.5.

The other necessary condition for achieving complete power transfer is to require tha t 

the incremental climb be sufficiently small so tha t the optical field vector will not be 

passing through the top pole of the P -axis without approaching it close enough. This 

simply translates into having the modulation frequency sufficiently larger than the 

coupling constant. The results of this simple analysis using the Bloch representation
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Figure 5.5: Optical field vector evolution of the grating assisted coupler 
(a)P-N plot of the optical field vector; (b) Q-N plot of the optical field vector. Note that the 
optical field climbs incrementally from the bottom pole to the top pole of the P-axis. This 
corresponds to a complete power transfer which is normally not possible for dissimilar core 
couplers.
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Normalized Propagation Length z /

Figure 5.6: Power transfer of the grating assisted coupler 
The normalized power transfer Pout2 /P\n of the grating assisted coupler versus normalized 
length. Complete power transfer is achieved after approximately z = 5.5Lc, where Lq =  
7t / C 0 .

of the coupler exactly agrees with the results stated by [16] in the limit when the cores 

of the coupler become very dissimilar,

(C0 -F Ci sinu;ma) 6ß. (5.36)

The conditions given were [16],

=  \6ßl  (5.37)

Um ^  Co- (5.38)

Hence, the conditions obtained above Eqs. (5.35, 5.38) are a generalization of the 

complete power transfer conditions and are applicable even to the case when the cores 

of the coupler are slightly dissimilar.

5.7 C o n c lu s io n

In conclusion, we have dem onstrated tha t an out-of-phase modulation of the refractive 

indices of coupler cores can control and completely suppress coupling. This is explained
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in terms of the periodic undoing of the phase accumulation induced by the index 

modulation.  We have also shown that  the Bloch representation of the optical coupler 

is a useful tool for the visualization of the optical s tate in couplers. Using the Bloch 

representation, a more accurate condition for complete power transfer for the grating 

assisted coupler is obtained.



C h a p te r  6

B a n d -P a ss  O p tica l C o u p le r

6.1 O v e rv iew

Recently, two new schemes have been proposed for the fabrication of optical band-pass 

filters using four-port couplers. J. -L. Archambault et. al. [32] from the University of 

Southam pton suggested the use of photorefractive Bragg gratings in optical couplers to 

achieve wavelength selectivity. Their proposed “grating frustrated coupler” is made up 

of an identical core coupler, with the Bragg gratings written along only one of the cores. 

When the light launched into the coupler is near the Bragg wavelength, the gratings 

introduce a strong dispersion, making the two cores asynchronous or phase mismatched; 

at the same time, they also create a barrier tha t rejects tunneling photons. This coupler 

was shown to achieve 70% peak transmission with a bandwidth of 0.7nm. Because of 

the Bragg reflection property, the required grating period is given by \ q =  2neffA, where 

n efr is the mode index and Ag is the transmission wavelength. The index modulation 

period A is normally of the order of 500nm.

H. H. Yaffe et. al. [33] from AT&T Bell laboratories on the other hand, used multiple 

Mach-Zehnder sections to create a “resonant coupler” . Their filter was made with silica- 

on-silicon waveguide technology, consisting of a series of parallel waveguide couplers 

connected by waveguides of unequal arm lengths (Mach-Zehnder interferometer) of the 

order of millimetres. Resonance is achieved by making the arm length difference the 

same for all pairs of arms. It was dem onstrated tha t the peak transmission achieved 

has less than ldB loss with a bandwidth of about 0.1/rm. The entire device length is 

hence about 30-40mm.

57
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i n - n
T CO

Core 1 Core 2

Figure 6.1: Twin fibre band-pass filter geometry 
The radius of the fibres are given by p and the core to core separation is d. The lower half of 
the figure show the step-index profile of the coupler.

In this chapter, we dem onstrate tha t the modulated index coupler also have band

pass filter characteristics, with the addition of an absorptive medium along one of 

its cores. Hence, this is an alternative mechanism to the existing two proposals. Our 

study shows that the modulation period required for the fabrication of such a band-pass 

filter is of the order of 100/iin, which is in between the two existing wavelength selective 

mechanisms. Theoretically, it was found tha t 50dB suppression of other wavelengths 

is achievable.

6.2  W a v e le n g th  d e p e n d e n c e  o f  th e  m o d u la te d  in 
d e x  c o u p le r

In order to work out the spectral response of a four-port modulated index coupler, we 

must first define the coupler geometry and from there obtain the coupler parameters 

as a function of wavelength. We assume tha t our m odulated index coupler is made up 

of a pair of identical cylindrical fibres with the geometry shown in Fig. 6.1. The two 

cores are evanescently coupled and have a step-index profile. The coupling constant of 

a coupler, assuming weak-guidance, is given by [9]

( 6 . 1 )

where Acoi denotes the cross-section of core 1. Hence, C —» 0 with increasing core-to- 

core separation d. In the case of the geometry shown in Fig. 6.1, the coupling constant
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is given by [9]

_  (2A )1/2 U 2 I<0(Wd/p)  f  | i/2 exp
p V23 1<}(W) ~\V3 ’ 1

where A is the profile height parameter, U is the core parameter, V  is the waveguide 

param eter and W  the cladding parameter. These param eters are given by

2  2  

n c o  -  n c l

2
C O

■̂co nci (6.3)
nco

U = p(k2n2co- ß 2)' /2 (6.4)

v  = kp(n2co -  n 2d ) l/2

% kpnco( 2 A )1/2 (6.5)

IV = p(ß2 -  k2n2c[) ' /2 (6.6)

The propagation constant of each fibre can be obtained using the equation [9]

U MU)
MU) i<0(w y (6.7)

With these we can now obtain the fraction of modal power in each fibre using

_  U2 f W 2 A'2(1V)1
11 V 2 \ U 2 K 2( W ) j

( 6 .8 )

These parameters are then substitu ted  into the coupled mode equations (5.3, 5.4) and 

the equations are integrated to a fixed length for values of the wavenumber k from 

1.2/im to l .6pm.  Fig. 6.2 shows the plot of effective coupling constant Ceff versus 

wavelength for a twin fibre coupler with and without index modulation. The effective 

coupling constant of the coupler is defined as

Ceff =  i (6.9)

where Lefj is the period taken for a complete power transfer cycle. For an unmodulated 

coupler the coupling constant increases with wavelength monotonically. As predicted 

by earlier analysis, the modulated index coupler produces suppression of coupling at 

only one wavelength. In this case, the wavelength chosen to satisfy the zero coupling 

condition of Eq. (5.9) is 1.3/xm, which is the wavelength for most of the optical fibre 

communication application. Since to the first order the index modulation modifies 

the coupling constant by a factor of the modulus of the zeroth order Bessel function,



CHAPTER 6. BAND-PASS OPTICAL COUPLER 60

1000 -

1.4
Wavelength (jim)

Figure 6.2: Effective coupling constant versus wavelength 
The effective coupling constant versus wavelength of a four-port fibre coupler. Here, p = 
3.5pm, d = 10/im, nco = 1.450 and nc\ =  1.445. The profile height parameter is A = 
3.44 x 10-3. In curve (a), the coupler is unmodulated (normal coupler); in curve (b) an index 
modulation of 2.44 x 10-3 is applied satisfying the zero coupling condition at a wavelength 
of 1.3/im.

I Jo(2kT]Sn/um) I, we observe tha t the coupling constant increases rather abruptly  on 

either side of the suppression wavelength. This suggests that the index m odulated 

coupler is capable of providing good wavelength selectivity for optical device fabrica

tion.

6.3 M o d u la te d  in d e x  b a n d -p a s s  f i l te r

The fact that coupling between fibres is suppressed at a single wavelength alone is 

not sufficient for the fabrication of an optical band-pass filter. I he spectral response 

of the lossless modulated index coupler is shown in Fig. 6.3. In comparison with a 

normal coupler Fig. 6.4 (without index modulation) of the same length and geometry, 

we observe tha t in both cases power is transm itted  through to the output port 1 at 

numerous other wavelengths.
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Wavelength (jam)

Figure 6.3: Spectral response of the four-port modulated index coupler 
The numbers labeled on the transmission peaks are the number of complete power transfer 
cycles. The transmission peak at 1.3/im is due to suppression of coupling, hence it is labeled 
by the number zero. Here the coupler length is L = IOC.

Wavelength (fim)

Figure 6.4: Spectral response of an identical core (unmodulated) coupler 
Note that in this coupler although we still obtain a transmission peak at the wavelength of 
1.3/im, the light has actually gone through 10 complete power transfer cycles.
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T h is  is expected since for a fixed leng th  coup le r, some wavelengths w ould  experience 

e xa c tly  an in teg ra l num ber o f com ple te  coup ling  cycles. Hence power at those wave

lengths is being coupled back to  the o r ig in a l fib re  at the  o u tp u t p o rt. The  num bers 

labeled on the power transm iss ion  peaks o f bo th  F ig. 6.3 and F ig. 6.4 in d ica te  the n u m 

ber o f com p le te  cycles the lig h t o f g iven w ave leng th  has gone th rough  before e x it in g  at 

the  o u tp u t p o rt o f the  coupler. N ote th a t even when the  chosen w ave leng th  o f 1.3/m i 

experienced com p le te  suppression o f coup ling , we have no t yet observed any useful 

fea tu re  o f the  spectra l response. Q u a lita t iv e ly , the  o n ly  effect o f co u p lin g  suppression 

is to  spread o u t the  spacings o f the  power transm iss ion  peaks.

We now add an abso rp tive  m ed ium  along the  second core o f the  coup ler. T h is  can 

be done, fo r exam ple , by add ing  a m eta l s tr ip  along the  o u te r side o f the  second core 

as shown in  F ig. 6.5. We m odel th is  a d d it io n  o f a bso rp tive  m e ta l by using the  e a rlie r 

coupled mode equations plus an a d d itio n a l abso rp tive  te rm  at the  end o f Eq. ( 5 .4 ).

da i 

dz 
da2

dz

ikr ]6n  sin(u;rnz )a i - f i C a 2, 

—ikr ]8ns\n {u j rnz )a 2 +  i C a { — 7 a2,

( 6. 10)

( 6 . 11)

where 7 is the  decay constan t o f the  abso rp tive  m e d iu m . Since the  m eta l s tr ip  is 

pos itioned  a t the  ou te r side o f the  second core, the  fie ld  a m p litu d e  o f the  f irs t core is 

unaffected by it .  I f  the  coup ling  constan t between the  tw o  cores is zero, the  power o f 

lig h t launched in to  the  second core w ould  decay e x p o n e n tia lly  a t the  ra te  o f 1/e 2 for 

every u n it leng th . F ig . 6.5 shows the  schem atic  o f the  band-pass o p tica l coup le r and 

the  m e ta l s tr ip  absorber.

T h is  band-pass f i l te r  makes use o f the  w ave leng th  se lective  coup ling  suppression to 

suppress power trans fe r to  the second core a t o n ly  one w ave leng th . A t th is  suppres

sion w ave leng th , lig h t in  the  firs t core is unaware o f the  presence o f the  a d d it io n a l 

abso rp tive  m ed ium  in  the  second core and hence is tra n s m itte d  th ro u g h  to  the  o u tp u t 

p o rt w ith o u t any coup ling  to  the  second core in  m uch the  same way as before. For all 

o the r wavelengths, coup ling  is not co m p le te ly  suppressed, hence the  power w ill even

tu a lly  be trans fe rred  to  the  second core. Once the  power begins to  accum u la te  in  the 

second core, the  presence o f the  abso rp tive  m ed ium  is fe lt and absorp tion  o f power 

occurs, p reven ting  transm iss ion  o f a ll o th e r w ave leng ths, and thus fo rm in g  the  basis o f 

a band-pass f ilte r .
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Core 1

Core 2

Core 2Core 1

Figure 6.5: Schem atic  of the  m odu la ted  index band-pass filter 
The absorptive metal, represented by the striped area, is mounted on the outer side of the 
core 2 and light is launched into core 1.
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6.4 P a r a m e t e r  v a r i a t i o n s

Fig. 6.6 shows the effect of varying the decay constant. Physically this corresponds to 

varying the metal strip to core separation. We observe tha t when the decay constant 7 

becomes non-zero, all transmission peaks except the suppression wavelength experience 

power loss. These peaks are called sidelobes and their heights decrease with increasing 

absorption. A suppression of more than 50dB is achievable for wavelengths above 

1.4/im when 7 =  0.4C. Increasing the decay constant increases the suppression level 

but also increases the bandwidth of the band-pass filter.

Fig. 6.7 shows the effect of varying the device length. In order to compensate for the 

broadening of the bandwidth by increasing the decay constant, we can increase the 

device length to reduce the bandwidth again since a longer coupler simply squeezes all 

the sidelobes nearer to the suppression peak.

The final parameter to consider is the modulation frequency of the band-pass filter. 

Since the zero coupling condition Eq. (5.9) is given by a ratio of the refractive index 

to modulation frequency, the performance of the band-pass filter is limited by the 

achievable index variation. A larger index modulation implies that the zero coupling 

condition will occur at a higher modulation frequency. Since the analysis of the zero 

coupling condition requires tha t 2ujm C, higher modulation frequency ensures tha t 

the effect of higher order sidebands are negligible and thus achieves better coupling 

suppression.

6.5 C o n c lu s io n

We have demonstrated tha t m odulated index couplers with the addition of an ab

sorptive medium in one core exhibit band-pass filter characteristics. The transm itted  

wavelength of the filter is simply the coupling suppressed wavelength which can be 

tuned by varying the ratio of the index modulation am plitude and period. By varying 

the amount of absorption, we can adjust the level of suppression of other wavelengths. 

Numerical results show that 50dB suppression is achievable for reasonable coupler pa

rameters. Unlike normal wavelength division multiplexers, this new type of coupler 

is not critical to length variation. However, we can vary the length of the coupler to 

obtain different filter bandwidths. It has been dem onstrated that the modulated index
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Wavelength (jam)

Figure 6.6: Effect of varying decay constant on band-pass filter response 
(a) 7 = 0.01C, (b) 7 = O.lC and (c) 7 = 0.4C. Here the coupler length L = IOC and 
the modulation frequency u m = 20C. Sn is chosen to satisfy the zero coupling condition at 
1.3/zm.
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Wavelength (jam)

Figure 6.7: Effect of varying device length on band-pass filter response 
(a) L = IOC, (b) L = 20C and (c) L — 30C. Here the decay constant 7 = O.lC and the 
modulation frequency u m = IOC. 6n is chosen to satisfy the zero coupling condition at
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coupler is a feasible alternat ive to the existing mechanisms of filter fabrication using 

13ragg gratings [32] or Mach-Zehnder sections [33]. Furthermore,  since index modula

tion can be induced by the electro-optics effect, it gives the possibility of fabricating 

optical switches.
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C onclusion

In this thesis, we have studied the effect of periodic perturbations on two optical 

two-level systems: a two-level atom interacting with laser light and the optical state 

evolution of a single-mode optical coupler. The major results of this thesis are:

1. Complete atomic population inversion is shown to be achievable by interacting

a two-level atom with light without any resonant frequency component. This 

phenomenon is called the correlated sideband inversion. Two examples of cor

related sideband inversion are : phase modulated light with no resonant carrier 

and symmetrically detuned sidebands from am plitude modulated light.

2. It has been demonstrated tha t the presence of spontaneous emission does not 

destroy the effect of correlated sideband inversion. An optical experiment which 

can potentially observe the correlated sideband inversion is proposed.

3. We have related the work on the two-level atom to other works on the suppression

of quantum  tunneling. The analogy established between the two models allows us 

to explain the suppression of quantum  tunneling in terms of sideband excitations. 

We have also extended the parameter regime for the generation of low-frequency 

radiation using the scheme proposed by Dakhnovskii and Metiu [31].

4. The Bloch representation for single-mode optical coupler is introduced. This 

new representation is demonstrated to be a convenient tool for visualizing the 

evolution of the optical state in a coupler.

5. Using the Bloch representation, we have obtained the conditions required for 

complete power transfer in the grating assisted coupler.

68
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6. By introducing an out-of-phase periodic index modulation in the cores of a coupler,

we have demonstrated that  the power transfer between cores can be controlled 

and even totally suppressed.

7. The modulated index coupler can be used as an optical band-pass filter with the

addition of an absorptive medium along one of the cores. The effects of varying 

coupler parameters on the filter response are studied.
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