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ABSTRACT

This thesis examines the use of product integration for the
construction of numerical schemes for integral equations. After a
brief discussion of the literature in chapter 1, the product
integration technique, based on piecewise interpolating polynomials
is described in chapter 2 for integrals of the form

1

I(f)= J fle)g(s)ds

g 0
where f(t) is 'smooth' and g(t) is absolutely integrable. Euler
Maclaurin sum formula are derived for the cases when g(%) is
'smooth' and when g(z) has a finite number of algebraic and
logarithmic singularities. The application of these Euler Maclaurin
expansions to numerical schemes for integral equatioms is briefly
discussed.

In chapter 3, the smoothness of the solution of the second kind

Volterra equation
t
7 B
y(£) = F(8) + VE £,(2) + J $.4(8)) 4
0 Vi-8
is examined. It is shown that

y(t) = u(t) + V&t v(¢) ,

where, under appropriate smoothness conditions on fi(t), f2(t) and

g(t, s, y) , u(t) and v(¢) are smooth functions which are the

components of a system of equations of the form




F e
u(t) = fi(t) + J 91(t, s, u(s), v(s))ds
QuYtEs. -
& ( Yedle )
1 t g2(t,s,u(s),v(s))
v(t) = fz(t) + — J ds
VE 0 Vt-8

The smoothness results for g(f) , established in chapter 3, are
used in chapter 4 to construct efficient numerical schemes for (#).
These schemes are based on the product integration technique
described in chapter 2 and makes use of (*#*) in a neighbourhood of
the origon. Convergence and stability of these schemes are examined.

In chapter 5, the product integration technique described in
chapter 2, is used to construct numerical schemes for the first kind

Fredholm equation

IA

b
J k(t, 8)y(e)ds = g(t) , a=t=bh

a

Convergence results for various choices of k(%, g) and g(t) are

obtained.




CHAPTER 1

INTRODUCTION

1.1 Introduction

Many problems in mathematical physics can be reduced to finding

the solutions of integral equations of the form

t
(e = flE) + [ K(t, 8, yle)lde » ga=t=7 ERNER.
a
and
/0
Ay(t) = f(E) + J Kty edulelds. s a = tisib . G112
a

Equations of the form (l1.1.1) are called Volterra equations whilst
equations of the form (1.1.2) are called Fredholm equations. If

A # 0 , the equations are of the second kind and are of the first
kind otherwise.

The usual method of solving second kind equations is to
discretize (1.1.1) or (1.1.2) at a number of grid points and then to
replace the integral by a quadrature formula based on those points
(see, for instance, Linz (1967), de Hoog and Weiss (1972 a) and
Atkinson (1971)). This reduces the problem to that of finding the
solution of a set of equations (non-linear for (1.1.1) and linear for
(1.1.2)). In order that such schemes be efficient, it is necessary
that the quadrature rules used yield 'good' approximations to the
integral terms. Thus, special care must be taken when dealing with
equations where a singularity occurs in the integrand or one of its
derivatives. Clearly, this requires that the smoothness of the
solution Y(t) should be known, since the most efficient quadrature

rules are those which take the exact nature of the singularity into




account.

For first kind equations, however, numerical schemes as described
above do not in general converge. This has been illustrated by Linz
(1967) and Jennings (1972) for linear first kind Volterra and
Fredholm equations, respectively. However, convergent schemes for
such Volterra equations have been constructed and analysed by Linz
(1967), Noble (1964), Hung (1970), Kobazasi (1966), Jones (1961) and
de Hoog and Weiss (1972 b, c) when the kernel K(t, 8, y(s)) is
smooth and linear and by Weiss and Anderssen (1972) and Weiss 1e%2)
when the kernel is linear and has an algebraic singularity at ¢ =8
Numerical schemes for first kind Fredholm equation with singular
kernels have been constructed by Christiansen (1971) and Noble
(1971). Although convergence for these schemes has been demonstrated
numerically, no analytic convergence results have yet been obtained
as far as the author is aware.

It should be noted, however, that numerical solutions of integral
equations can sometimes be obtained by indirect means. Examples of
this are the numerical schemes based on the inversion formulae for
Abel type equations (see, for instance, Minerbo and Levy (1969) and
Anderssen and Weiss (1973)) and numerical schemes based on
regularized forms of fiprst kind Fredholm equations (see, for instance,
Wahba (1970) and Jennings (1972)).

In this thesis, we examine the use of product integration to
obtain direct finite difference schemes for second kind Volterra and
fiprst kind Fredholm equations where the kernels are singular. We
attempt to show that this technique is particularly suitable for
integral equations when the smoothness of the solution y(%) , as

well as the singularity in the kernel can be taken into account. The

product integration technique was first applied by Young (1954) to




integral equations and has subsequently received considerable
attention in this context by Noble (1964), Atkinson (1967), Linz
(1967), Hung (1970), Noble and Tavernini (1971), Weiss and Anderssen
(1972), Weiss (1972), de Hoog and Weiss (1972 d) and Anderssen, de

Hoog and Weiss (1973).

1.2 Thesis Outline

In chapter 2, the product integration schemes are described.
Quadrature formulae based on piecewise polynomial interpolation are
constructed and generalised Euler Maclaurin sum formulae are derived
for the case when the integrand has a finite number of algebraic or
logarithmic singularities.

In chapter 3, the smoothness of the solution of the second kind

Volterra equation

77
y(£) = F1(E) + VE £ () + [ glt.s.y(e)) 4 (1.2.2)
0 Yt-8

is examined. A particular case of this equation gives the solution
of a heat conduction problem. It is found that
y(t) = u(t) + /£ v(t)

where u(t) and wv(t) satisfy a system of coupled Volterra
equations.

The results of chapter 3 are then used in chapter 4 to construct
a number of numerical schemes for equation (1.1.2) based on the
product integration technique described in chapter 2. Convergence
results and asymptotic expansions for the numerical solution are
obtained using the results of chapter 2. Stability of the numerical

schemes is then examined via these asymptotic results.

In chapter 5, numerical schemes are constructed for the first




kind Fredholm equation

b
g(t) = { ks, a)pte)a)rqlit, s)ly(adde , a=t=hb (1.2.2)
a

where k(t, s) has a singularity at ¢ =s and p(¢t, s) and
q(t, s) are smooth, periodic functions. It is indicated how
equations of the form (1.2.2) arise naturally in the solution of
Laplace's equation, conformal mapping problems and scattering
problems. The numerical schemes considered are the product
integration analogues of the midpoint, trapezoidal and Simpson

schemes. Convergence results for various choices of k(%, s) ,

p(t, s) and q(t, s) are derived.




CHAPTER 2

PRODUCT INTEGRATION

2.1 Introduction

A widely used technique for the evaluation of integrals of the

form
1
Ig(f) - J f(s)g(s)ds (2 aelatlo)
0

where f(t) is 'smooth' and g(t) is absolutely integrable is

product integration. In this technique, Ig(f) is replaced by
Ig(f) where f(t) is some approximation to f(#) such that Ig(f)

can be calculated in a simple manner.

The class of methods we shall examine are the product integration
rules in which f(t) is approximated by piecewise polynomial
interpolation. Although the convergence of these schemes follows
immediately from standard results on Lagrangian interpolation, the
correct rate of convergence for specific choices of g(t) has not
been investigated.

In this chapter, we derive generalised Euler Maclaurin sum

formulae for schemes where g(t) may have a finite number of algebraic
and logarithmic singularities. We then indicate how such expansions
can be used to obtain accurate convergence rates for integral

equations with weakly singular kernels.

In section 2.2, we introduce the quadrature rules under
consideration and prove a basic lemma. Euler Maclaurin sum formulae
ape established for 'smooth' and 'weakly singular' g(t) in sections
2.3 and 2.4 respectively. These results are then applied in section

2.5 to obtain accurate convergence results for second kind Fredholm




and Volterra equations.

2.2 The Product Integration Rule

the Lagrangian polynomials

Lk(t) w(t)/w'[uk}(t—uk} R

and the grids

the approximation to f(2%)
ft)
and hence

g(s)f(s)ds

Jtz-#l

Lo

s—tz

tZ+l
Y i

k=1 i Jtz

il
hf(tZk} f g(tz+sh)Lk(s)ds -

il 0




This is the mm point quadrature rule with which we are concerned.
The weights

1l

[ g(tz+sh3Lk<s)ds o ik g s

0

are calculated analytically. The error functional for the rule is

E I AP T
g(f) g(f) g(f)

I (Ff-P)
g
and an expression for it is obtained in the following lemma.

Lemma: 2.2.1. If F(E) € Cp+l[0, 11, p=zn , then

P o T met (n+r)
¥ J wr(s)h ) g[tz+sh)f (tz+sh)ds
o —

B
g r=0 1=0

+ OE™Y . 122

wp(t) = w(t)pr(t)
and pr(t) is a polynomial of degree r .

Proof. It is clear that
m-1 1l o
Eg(f) =h ) J g(tl+sh){f(tz+sh)-f(tz+sh}}ds . (2.2.6)
1=0 ‘0

s <1, it follows from (2.2.1) and Taylor's theorem that

f[tz+sh—(s—uk)h}

2 (—l)r(s-uk}r

r!

h
r=0

£ (g 4em) + 0P

Ri= Ly 5o




}(tz+sh} = f(tz+sh}

; {f(tZk)—f(tZ+sh)}Lk(s)

I
e~

k

i ) n
- L Oy § () ) ¢ oY

r=1 k=1
D= By ens g el o {2:.2.7)
Since
T (o-)® gl
s-u, ) L, (s) = w(s) (2.2.8)
o P O
and
q
n u
(3
2

it follows that

n
L (s-w)'L(e) =0, r=0,...,7%1. (2.2.9)

; q
n (s—uk) & § {r](_l)qsr_q g U
k_l W q:o q k:l wl uk
r n > " “Z et
: q=z-1 kzl (Q](_l) w’luk§ 4 . (2:2510)

Substitution of (2.2.8), (2.2.9) and (2.2.10) into (2.2.7) yields

: pn +1
f[tz+sh} - f(tz+sh} = pZo hn+rf(n+r)(tz+sh}w(s)pr(s) i O(hp ey

e Dy snny ML & 0285010

where

Pl pl A M e
g {4y = el ¥ 7 (”+P'1](—1)q‘l i eF 1., £2.9.08)
r (n+r)! g=0 k=1

nt+q-1 w Uy,




The result follows on substitution (2.2.11) into (2.2.6). #

REMARK. Clearly, wr(t) s, »=0, ..., p-n , also depend on
kK =1, veoey . In addition, it should.be noted:that"lemma

2.2,1 is valid for any absolutely integrable g(%)

For fixed © ," 0i= &'="1l' " the Sum

it (n+r)
h E g(t +sh}f‘ (¢ +sh} (292.13)
1= 7 )
=0
L (n+r)
is a generalized Euler approximation to J g(s)f s)ds
0

Summation formulae for (2.2.13) have been investigated by Lyness and
Ninham (1967) and the application of their results to (2.2.4) is the

basis of sections 2.3 and 2.k4.

2.3 Smooth g(t)

Let f(¢) € P10, 11, p=n and g(¢) ¢ i T

Applying the Euler Maclaurin sum formula to g(t)f(n+p) t) , we find
m-1 ale

) g[tz+xh]f(n+P)(tz+xh] . J g F ") (yat
1=0 0

gt l
p-n-r-1 h ()l gtl ik
g ( +§;% [ £ +1 Eg(t)f(n+r)(t)]dt + o™ r+l} ,
q=0 iy 0 atl
7 =B e an PR 28l )
where Bq(x) s @ = 1y 25 ene 5 are the Bernoulli polynomials.

Substituting (2.3.1) into (2.2.4) and collecting powers of & ,

we obtain




i 1
E(f) =K J wy(s)ds . [ g() F ™ (£)de
0 0
e R & (n+r+l)
Yos Ll “ w ., (8)ds . f g(t)f (t)dt
r=0 0 0

4] s
+ Z e Z+l)' [o wZ(S)BP—Z+l(S)dS X

15 -1+1
fo Z:P‘—Z” [g(t)f(””)(t)]dt} + 0(PtY) . (2.3.2)

The above equation is a generalised Euler Maclaurin expansion for the
error functional.

X K= 1y ssvs Boysareschosen such that

1
f sTw(s)ds =0, 2=0,1, .., q <nm (2.3:.3)
it is clear from (2.2.5) that
e %
J s wr(s)ds 20 5 B2 0 ds vas 85 1 =8y sien §F
0
and hence the first g + 1 terms in (2.3.2) vanish. This may be
expected since for g(¢) = 1 , (2.8.2) reduces to the Euler Maclaurin
sum formula for the corresponding composite interpolatory quadrature
rule (see for instance, Baker and Hodgson (1971)).
In the case that g(t) = 1 and a symmetric rule is used, the

coefficients of the odd powers of h are zero and so the expansion

is in integer powers of h2 . For a general g(t) , however, the

rule is not symmetric and so this does not happen.

2.4 Singular g(t)

In this section, we shall consider the case where g(t) has a

finite number of algebraic and logarithmic singularities.




Firstly we shall establish an Euler Maclaurin sum formula when

g(t) = tB(l-t)wIt—vlesgn(t-vi)lt—uilé . (2.4.1)

As in section 2.3, expansions for sums of the form

m-1

h 2 g(tz+xh}z(tz+xh)
1=0

where z(t) is a smooth function are required. Such expansions have
been derived by Lyness and Ninham (1967) who use Lighthill's
procedure to obtain asymptotic expansions for the integral terms in

Poisson's summation formula

m-1 L
no Y gt +rah)z(t,+xh) - J g(8)z(s)ds

1=0 ° : 0
+o0 il
S (—l)qexp(—ﬂi(Zx-l)q} J g(8)z(s)exp(2miqms)ds
q:_OO 0
HoRp i

exp(-2miqx) [ g(s)z(s)exp[zﬂ%giqu S e 1T )

q=- 0

"
o~

where the prime on the summation sign indicates that the term
corresponding to g = 0 has been deleted.

Applying the results of Lyness and Ninham (1967, Eq. 8.1) to

g()F M) (£) we find that
et (n+r) » (n+r)
hoY g(tz+xh}f (tz+xh} = f g(s)f (s)ds
1=0 0
p-n-r ;q+l % ta)
+ = {th(—B—q, )Y’ (0)

q=0
L (A l—x)wii)(l)

hY[E(“Y’Qa x"mvk}+(_l)q£(_Y'Q> mvk'x)]wéi)(vk)

+

-+

hé(g(-é—q, x—mvi)—(-l)qi(—S—q, mvi—x))wgi)(vi)}

+ O(hp-n—r+l} i g A T (2.4,3)

b




(n+r)

1 W Y §
f (t)(1-¢t) lt—vkl sgn(t—ui}lt—vil !

(n+r)

=f (t)tBlt—vlesgn(t—vi)lt—vil6 2

B

(n+r)

=f (t)t (l—t)wsgn(t—vi)\t-vild L

- f(n+r)(t)t8(l—t)w\t—vk\Y

and i(a, xz) is the periodic generalised zeta function. The
periodic generalised zeta function is defined by
i(a, 2) = gla, ) , @ - & = integer, © < r=<1
where z(o, x) is the generalised Riemann zeta function (see, for
instance, Whittaker and Watson (1958)).
Substitution of (2.4.3) into (2.2.4) yields

.

il
E () h””‘[ w (s)ds [ () (8)ds

0 0
(r-1)
n+r+8+1 & wOZ (0) [l

n o
h —_— w,(s)z(-B-r+l, 8)ds
120 (r-1)! o /!
r-1, (r-1)
2% (1)

(r-7)!

(-1)
h

n+r+wt+l §

wz(s)g(—w—r+l, 1-s)ds
=0

0

(r-1)
ntr+y+l § Vaz (vk}

h e
120 (r-1)!

1 .
Jo wz(s)[;(-Y—r+Z, s—mvk}

<-1>”‘Z£(-v-r+z, mvk—s}ldb
(P—Z)(v )

p-n r VY ) (L i
2 hn+r+6+l y 3l i w,(s) |z (-6-rtl, S‘WU')
r=0 1=0 et 0 X i

- (—1)”'15(-6-r+z, mvi—s)Jdk + 0[hp+l) ' (2.4.4)

This is the desired Euler Maclaurin expansion for g(t) given by

(2.4.1). For the important case of end point singularities (i.e.




L £
g(t) = te(l—t)w ) terms of the form I wz(s)c(u, s)ds and
0

1
J wz(s)c(a, 1-s)ds can be reduced to sums of ordinary zeta functions
0

by the relations

and

" r il ! =1
[ S C(aa S)ds = 1"_(1 [C(U--l)-l” [ SP C(a_l, S)ds E]

0 0
=1y 2, of - 0k Rl
1 U s K = 1, uwsus B o are chesen such that
1l
{ w(s)ds = 0 (2.4.5)

0
the fiprst term in (2.4.4) is deleted. However, from €200
conditions for higher order convergence depend on g(t) , and
therefore (2.3.3) does not in general lead to higher order

convergence.

To illustrate this, we take g(%) = t_% and determine the
conditions necessary for optimal convergence in the cases 7 = 2 and
n =3 .

If n = 2 we require (2.4.5) and

1 5
[ wle)t(%k, g)ds = 0 . (2.4.6)
0

Numerical calculation yields

Uy = ,1182506128 . Uy = . 7182932992 . (2.457)

For n = 3 we require (2.4.5), (2.4.6) and




i
[ sw(s)ds = 0
0

Numerical calculation yields

u, = 04456270208 , u, = .3909749362

. U, = .8537066313 . (2.4.8)

2 5 3
The quadrature formula with the points given by (2.4.7) and (2.4.8)

has been applied to

1l —
7 (S [ &= de = 1+ m/2
g 0 Vx

Numerical results for various stepsizes are tabulated in table 2.1.
The order of convergence can be seen to be three and four and a half,

respectively.

Table 2.1
Stepsize n=2 n=3
h E () E ()
g ! g
0.2 6.008 E-6 8.025 E-9
0.1 7.004 E-7 1.505 E-10
0,05 8.287 E-8 6.956 E-12
0.025 9.933 E-9 3.013 E-13

The extension of (2.4.4) to a g(t) which includes terms of the

form 4£nt , £n(1-%) , ant—ukl and sgn(t~vi)ﬂn|t—v{| can be made

by differentiation with respect to B, w, Y and 6 , respectively.

To illustrate this, we consider the case when

0 Y
g(t) = Ln|t-v, | = ——-[lt—v | ]
k oY k =0

Putting B, w and ¢ to zero, differentiating (2.4.4) with respect

to Y and then putting Y = 0 , we find that




it

E(f) = ik f wy(s)ds J g(e)f™ (e)ds
0 0

p-n-1 L il

- 2 i {J wr+l(s)ds J g(s)f(n+P+l)(s)ds
r=0 0 0
r -1 1
1 [d’“ (n+1) -

t - — (ge)f (t))' J w,(s)c(-r+l, s)ds

120 (P10 g2t =0 1o ©

r1 &L (n+1) - ~
+ (-1) =7 (g(t)f (t)), J wz(s)c(—ml, l—s)ds}}
dt t=1 ‘0
p-n r i
(n+r) ntr+l 1 =

+ )y f (v, )n {Znh Y e [ w (s)(c[—r+2, s-mv

o K R o= K

r-1 - g - ~
+ (-1) “g(-r+2, mvk—s}}ds + Y AL I wl(s)(c'(-r+2, s—mvk)
I=g > 0
e )

+ (-1)" Zc'(—r+Z, mvk—s)lds} e (2.4.9)

where

L', ) = 7o E(a, 8) .

This expansion can be simplified slightly by substitution of the
relations

t(-q, s) = _Bq+1(3)/(q+l) gy Gisl0iils 2y won

Again, if (2.4.5) holds, the first term in (2.4.9) is deleted.

2.5 The Application to Integral Equations

Atkinson (1967) considers the numerical solution of linear
Fredholm integral equations of the second kind with singular kernels,
al

ylE) = GlE) ¢ X { K(Eakeylaydsthy 0= t's 1ING €2:841)
0

where




K(t, 8) =
k

] Pk(t, s)Qk(t, R e (R (2.5:2)

1o~

and Pk(t, g, Qk(t, By K= Ly e 2 uSatiehy

(1) Qk(t, 8) is continuousion 0 <& ; £ =1 ;

1
(ii) [ lPk(t, s)lds is bounded, and
0

. ik
i) 1im [ |p, (t,, s)-P,(t,, &)|ds = 0 uniformly
Itl't2l+o 0 s KN

in tl and t2 .

Important cases of Pk(t, s) are

|t-s|Y , |v-s|¥, 0>y>-1, &n|t-s| , Ln|v-s],
e=v=s1. (2.85.8)
For illustrative purposes it is sufficient to consider the case
K(t, s) = P(t, s)d(t, 8)
The application of product integration to the integral term in

(2.5.1) yields the numerical scheme

m-1 n
¥y G[tij} + A z E WZk(tij)Q(tij, by ) ¥y s
1=0 k=1
J 8Ly g Bloh CE B euay WL (2.5.4)
where
T s-t,
WZk(t) = f R(E, S)Lk( % ]ds
t
L
and Yij denotes the numerical approximation to y(tij) . Atkinson

has shown that if A is not an eigenvalue of (Za5.1)s then (2.5.4)

has a unique solution for sufficiently small h and

max ‘y(tij)_yijl = 0(F)




m-1 n

Wt . . o gV (B
ZZO kzl Zk( LJ}Q(tLJ tZka(tlJ)

1
- fo K(tij, s)y(s)ds| . (2.5.5)

We shall indicate how the results of section 2.4 can be extended to
obtain accurate convergence estimates for (2.5.5). It will be
assummed that @(t, s)y(s) 1is p + 1 times continuously
differentiable with respect to s

The direct application of the results of section 2.4 yields the
following estimates for F :

1
(i) E = o[h” J w(s)ds] + oW Y)Y for P(2, &) = |v-g|Y
0

1L
(ii) E O[hn J w(s)dsl + O(hn+l£nh) for P(t, s) = &n|v-s]| .
0

However for the case P(t, s) = It—s‘Y or En‘t~s| , (2.4.4) and
(2.4.9) are no longer valid, since the singularity can be at

SIS tij S ol T ..., m-1 , and thus depends on

h . The extension of section 2.4 to these cases is obtained in the
following way. First, the integral terms in (2.4.2) are rewritten as
MLG L. 48
2 thJ

i s 1
Jo g(s)z(s)exp[gf%giqdb = tij Jo g(tijs}z(tijs}exp(———7?———}db

T (l—t.,)exp Eji;féi% Jl g((l_tij}s+tij)z((l_tij)s+ti') X

% J




= Lo
g(t) \tij ) (LA R - tys <1

equation (2.5.6) becomes

1 \

(l—s)Yz(tijs}exp[gféﬂfﬂds

1. -
J g(s)z(s)exp[gj%gfﬁ = ¢ty J
h

0 td 0

~

- 1. >
& L £y 2mLq ¥ » 2m.qs
t (l tij} exp[ z 1 JO S z((l tij}s+tij)eXp{__Z__qdb >

o ; 5l
o 1 o0 (9,5.18)

h = n/tij C
The singularities of the integrands on the right hand side of (2.5.8)

are now end point singularities independent of tij and so asymptotic

expansions in A and h respectively for the corresponding integrals
can be calculated in a similar way to Lyness and Ninham (1967) by
Lighthill's procedure.

Define

(l—s)Yz(tijs}exp(Qﬂifs)db

SYz((l—tij)3+tij)exp(?ﬂi?s)ds

R=glhy TEgihy g 0pae,

Clearly Gl(tij’ T} and GQ(t"’ T} are the Fourier transforms of

Td

the generalized functions

SE] E (l-S)Yz(tijs}H(s)H(l—s)

9, (¢,

d




tij’ g} = sYz((l—tij}s+tij)H(S)H(l—3)

where H 1is the Heaviside step function defined by

1 B=.0
H(a) =
OIS R
Fep K =0%, et
U] ( 2s s) = (l—s)Yz(t..s}
Il 1J 2
il
v, e gl =l z([l—tij}s-rti & 2R
e q
BB, .. 6] e = (. 2 a¥etlta) |,
127 q=0 q' 3 13 J
R, ( ) = Zi [_ﬁij)q (q) q+Y
5 tij’ s o —q—!——z (tij)(l_s) B(1-g) ',
k-t @y, e
Ra[ Tk g} = Z 7 b4 (tij)s H(s)
q=0
and
K q oy
, C (-1) 2 q
R (t..,8) = ) =5 (. .. TV1-8) e8] -
R £ 9 55d 15

Then it follows from Lighthill's theorem that

1d

+(X)
M j (B, (¢, ;2 )Ry (¢, ;5 5) Jexp(aniterds + of|7|7* )
e (2.5.9)

+oo
A A n 1 -R=1
6, by A = J RUACTRDENCR s) Jexp(2mitards + o(|T| %71 .
b (2.5.10)

The generalized Fourier tpransforms in (2.5.9) and (2.5.10) can be

evaluated by standard integrals (see, for instance, Lyness and Ninham

(1967, Eq. (6.14))). Substituting the resulting asymptotic expansions
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for Gl(tij’ q/ﬁ} and GQ(tij’ q/@) 5-tug BSSpEeET 8 S dnte (200E9))

we obtain in the same way as Lyness and Ninham (1967)

m-1 il
3 i E . b
h ZZO ltz+xh tijl z(tz+xh} = f |s tijl z(8)ds

0

kB oogel e
B 2 &———-{C(—q, x) éﬁ—-[lt—t..\yz(t)]‘
; 1 7 £=0

q=0 dt
+ (-1)%(-q, 1-2) & [\t—t..le(t)}l }
at? o t=1
K . pq+lty
) ~ .
gy , {C(—Y-q, z-u.)+(-1) % (-v-q, 1+u.—x}}z(q)(t..)
q:O q J dJ 1d
¥ O(t%TYﬁk+l) + 0((1-t..}l+yﬁk+ll L e e, e,
1J ] ig

Hence it is easy to verify that for g(¢) defined by (2.5.7),

equation (2.4.4) remains valid if the order term is replaced by

0[hp+%/%97”_Y} + 0[hp+i/ﬁ1—t..}p_”—Y]
1J o

In a similar way it can be shown that for g(%) = ant-tijl the

order terms in (2.4.9) have to be replaced by
ptl [ p-n . Pl fro p-n
O(Zn(tij}h iy ] k o(zn(l PP ot ) ] .

We thus obtain the estimates

(1ag)- B

1
o(h” f w(s)ds] y 0@y for B(t, 8) = |t-s|) ,
0

and

1
O[hn J w(s)ds] + O(hn+l£nh) for B(%., 8) = Enlt—s]
0

Gi)
As an example consider the equation

T 4
y(z) = 1 + (o kzl Pk(t, S)Qk(t, g)yledds 4 BT,

where




sin(EéEJ sin(égfg

Ql(t, s) + In

(t—3) (t+8)(2n-t-8)| °
2
P,(t, 8) = n|t-s| , P,(t, 8) = Ln(2m-t-8) ,
= = - - 6 -
Pu(t, s) = Ln(t+s) , Pl Q2 Q,j g =1,

which has the solution,

y(t) = 1/(1+nln2)

Atkinson has applied the product Simpson rule o B 03 U, = %,
B \

Uy = s [ w(s)ds = O} to this equation. Although the rate of
0

4
convergence was observed to be approximately o(h’) , only O(ks}

: : LU
convergence was established. The above estimates yield O(H Enh}

convergence.

The above analysis, can also be extended to Volterra integral

equations with singular kernels. In particular, the important case

y(£) = F(£) + J g\t.8¥(8)) 45 . t =0
0 vt-8

will be treated in some detail in chapter 4.




CHAPTER 3

SMOOTHNESS OF A SECOND KIND VOLTERRA EQUATION

3.1 Introduction

As noted in chapter 1, finite difference schemes for the second
kind Volterra equation
t
ylt) = fi&) + f k(t, s, ylg))de , 0=t =T (4003
0
are usually constructed by discretizing equation (3.1.1) at a number

of grid points and then replacing the resultant integrals by quadrature

formulae. For example, let

Then, discretizing (3.1.1) at these points yields

v

y(s,) = £(t;) + [0 K(s;, o0 y(e))ds

In order that the quadrature formulae used to approximate the

Tt

%
integrals ( K(ti’ s, y(s))ds be efficient, it is necessary to
0

know the smoothness of the kernel K(t, 5, y(s)) , or in particular
the smoothness of the solution Y(%)

Equation (3.1.1) with

Rty ey saiiEatall (3.1.2)
Vt-8

where g(t, s, y) is 'smooth', has received considerable attention
(see Chambre (1959), Levinson (1960) and Keller and Olmstead

(1971)). This equation apises for instance in the heat conduction

problem




ow(x,t) _ Szw(x,t)

ot RN ’
WEa, 0)="-0 \ (818D
d
-ﬁ%£l=6@w,t%ﬂtn, t >0

where ®(y) and f(t) are assummed to be continuous. In this
case, it can be verified (see Mann and Wolf (1951)) that
F(%) = w(o, ) - f(L)
satisfies
F(t) = -f(£) - = Jt GE@) 4 (3.1.4)
ym ‘0 Vt-s
The solution can then be found using the relation
w(xz, t) = - £ 3 Jt giglfll—exp{—xz/u(t—s)}ds
ym ‘o VE-s
The smoothness of the solution of equation (3.1.1) with the
kernel given by (3.1.2) has been investigated by Miller and Feldstein
(1971) who show under suitable smoothness conditions on gl 85 )

and f(¢) that
&
y'"(t) =0t ") as t+ 0

In this chapter, we extend this result and show that if

flEder= fi(t) + /E'fQ(t) ;

then
y(t)= w(t) = V& v(E)
where wu(t) and wv(t) are smooth under suitable smoothness

conditions on fl(t), fz(t) and g(t, s, y) and satisfy the system

of equations




b s
u(t) = fl(t) + [ gl(t, s, u(s), v(s))ds
0 Vt-s
0= % =Tr (81.5)
AR ORO)
v(t) = f,(¢) + —_.J s
g ‘0 Viss
where
g,(ts 8, u, v) = g(t,s,utVev)-g(t,s ,u-vsv)
2Vs
T } . (3.1.67)

g,(t, 8, u, v) = g(t,s,u+¢§b);g(t,s,u—/§b)

The system (3.1.6) provides an alternative for the numerical
computation of y(#) in a neighbourhood of the origin. This will be
examined in chapter 4.

In section 2.2, we establish a number of basic lemmas. The
equivalence of (1.1.1) with the kernel (3.1.2) and (3.1.5) and the

smoothness of wu(#z) and v(t) are examined in section 3.3.

3.2 Preliminaries

In this section, we shall establish a number of lemmas which will

be required in the subsequent analysis.

LEMMA 3.2.1. Let fi(t), fé(t) and g(t, 8, y) be continuous

with respeet to t and s on 0 <8 =t =T and globally Lipschitz
continuous with respect to y . Then, (1.1.1) with the kernel given
by (1.1.2) has a unique continuous solution y(t) on [0, T].

Proof. The result follows from the usual contraction mapping and

translation argument on C[0, T] . #

LEMMA 3.2.2. Let

() fi(t) and fé(t) be continuous on 0 =t =T ,




(17) gl(t, 8, %, ») and g2(t, s, u, v) be continuous

with respect to t, 8, u and v on 0=g=t=T,

—60 & o DL o gnd

lel—v2l

0

IA

Igl(ts Sy U, vl}_gl{ta s U 02}‘
, P

\gl(t, S, U, v}—gl(t, 8, Uys VY| = = lul-u2

& (3.2.1)

g, (s 85 u, v)-g,(t, 8, uy v} =L V5 |v)-0,]

IA

|92[t, S, Uy u)—gQ(t, S5 Uy v) | Llul—u2\

for some constant L and all u, Ups Uys Vs Uy and

Uz.

Then the system of equations

1 (T SI’+;2’
u(t) = fl(t) + —;—J gl(t, s, u(s), v(s))ds ,
t 0 vVi-s
pEdeil, Pely L vanp £8.2.2)
i SP ( }
o(t) = () + ———;;[ g \t, s, uls), v(s))ds,
2 tr’+2 0 r—t—S )

has a wnique solution u(t), v(t) € CLo, T].

Proof. Let K be a positive constant such that

U X
2%%;—{ gL . DR
t ' ° 0 vt-8

On defining

x(z) = Kult) ,
the result follows by the application of a contraction mapping and
translation argument on C[0, T] to the corresponding system of

equations for u(t) and (%) . =

DEFINITION. The resolvent R(t) associated with a given kernel




function a(t) ¢ Ll(O, T) 1is defined as the unique Ll solution of

the linear equation

t
RGE) = alE) + J a(t-s)R(s)ds , 0=t =T
0
Remark. If the kernel function a(%t) is non-negative a.e.,

then the resolvent R(%) is non-negative a.e. (see Miller and

Feldstein (1971)).
LEMMA 3.2.3 (Tricomi (1957), Chapter 1). If X(%)
solution of the linear equation

t

X(t) = f(¢) + f a(t-8)X(s)de , 0=t=T,
0
then
t
X(E) &= FGE) f R(t=8)fledda sy 0=t =1
0

18 the

LEMMA 3.2.4. Let fi(t), fé(t) € c[o, T1 and u(t), v(t) be

the solution of the system

+

L : sr
u(¢) = f,(¢) 7[ (u(s)+vsv(s))ds ,
17 0 vt-s

4

v(t)

]

fé(t) r+%

then,

(7
ult) = f () + —i;-[ R(t-s)sr(fl(s)+/5f2(s))d% :

S al . PO Ly B

T
v(t) = f,(£) + ;;%:g-[o R(t-s)sr(fl(s)+/§fé(s))ds R

(B8.25:8)

(3 2ll)

where R(t) is the resolvent assoctated with the kernel function




-k
a(t) = 2Lt -
Proof. Clearly from (3.2.3),

u(t) - /& v(2) = f,(2) - /E'fz(t) 3

2(t) = ¥ (wE)+/Eo(t)) .

Then from (3.2.3), x(t) satisfies
z(t) = tr(fl(t)+/Ef2(t)} + 2L f

and applying lemma 3.2.3 we find that
r d r
x(t) =t (fl<t)+/€f2<t>) - J R(t-8)s (fl(s)+/§f2(s))ds v K2 26)
0
The vesult for 0 < t < T follows from (3.2.5) and (3.2.6). From
lemma 3.2.2, u(t), v(¢) € C[0, T] and the result follows. #

LEMMA 3.2.5. ILet u (%), uy(®), v,(2) and vy(t) Dbe the

wnique eontinuous solutions of the systems

1 t Sr+%
f gl[t, S ul(s), vl(s))ds

T G ) G A
1 i tf o Vs

<

t
1
v (8) = F(£) + ;;;%-JO g, (ts &, uy(8), vl(s))db

t-s8

1 Sr+%
ug(t) ql(t) + ;; Jo kl(t, Sy u2(s), vz(s))ds

r
S

Sk T, &, MQ(S)’ v, (s))ds
0 vt-s %

i
vz(t) qz(t) it ;;:g J
where f (), f(£), q,(¥), q,08) & OL0s T1 4 @,y B4 Ua v)
qg(t, By R kl(t, an. Wl IR ond kQ(t, s, U, V) are continuous

with respeet to t, 8, U and W en =8 =t=%, Z2Ru,

v < © and gl(t, 8, U, ) and g?(t, s, u, v) satisfy (3.2.1).
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Then

t
|ul(t)—u2(t)| < \fl(t)( + e JO R(t-s)s”(ijl(s)|+/§|f2(s)\}ds

and
" e Sl ’
lvl(t)—UQ(t)l < lfQ(t)I + Wjo R(t-38)s (ifl<s)|+/s‘|f2<s)l}ds
where
F(8) = £(8) - q () +
4 sl )5, )
e g Esnals mala), v.(8) =k |5, u-E)y v te)))dsi
tr o ey il 2 2 i 2 2

fé(t) = Fale) = q2(t) +

1
fr+%

t »
S
(g.(t, e, n.(8), 9.(8))Kk. (£, 8, u(a), 2 (s)))ds ,
Io/t—_s—z 2 2 2 2 2

%
and R(t) 1ie the resolvent associated with the kernel 2Lt °

Proof. Define

z(t) = ul(t) - u2(t) 3
w(t) = vl(t) - vz(t) 5
g, (£85u,(8) 0. (8))-g. (t,8,u,(s),v,(8))
1 il 1 1 1 2 g g T
w(s)
Cl(t, 8) =
0 ; w(s) =0 ,
/s_[gl(t,s,ul(s),02(3))—gl(t,s,u2(s),1)2(8)}}
s =0s) 200
z(s)
Dl(t, s) = §
0 3 2(8) =0
(£,8,u, (8) 0, (8)) =g, (£,8,u (8),0,(s))
& L2 2 Bl - s Ve w(s) # 0,
Vs w(s)
C,(ts 8) =4
0 ; Yaw(s) =0,
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9, (t ,s,ul(s) ,02(3))—g2 (t,s,uQ(s) ,02(3))

z(8) >

2(8) £0 ,
Dz(t, )=

2 Zlaic oy
Clearly from (3.2.1),

]Cl(t, alls ’Cz(t, s)|, \Dl(t, s)|, |D2(t, gl =5 » - k8290

Subtraction of (3.2.8) from (3.2.7) yields

= t v
z(t) fl(t) + 7:% JO i_s (/S_C’l(t, s)w(s)+Dl(t, s)z(s))ds ,

r+i —

1) t r
w(E) = F.(8) + — | —2— (VB0 (t, sdule)+D (¢, 8)z(s))ds ,
£ 2 L0 Vt-s 2 :

and it follows from (3.2.9) that

t r
~ L S
2(6)| = |7, (8)] + --[ (et wlsted)te
4 ﬁp 0 Vt-s
* 2 L P
lu(t)| = [F ()] + —g—;J £ (Vslws)|+|z(s)|)ds .
t 2’0 Vt-s

Let xl(t), xz(t) ¢ [0, T] be two non-negative functions such that

o t r
|ﬂw|=mﬁw|-ﬁu>+%ﬂ 21 b |
t 0 vt-s
“ L [ 2 (ute|+]ate)])
wlt)| = |FlEy] = @, ()t , J Vslw(s)|+|z(s)|)ds .
| 2 ; 7% Jo Vi

Then from lemma 3.2.4,

lz2(e)| = [F(B)] - = (8) +
il E v M
——;—J R(t-s)s {|fl(s)l—xl(s)+/g(|f2(s)|—x2(s)}}ds .
2% 0
lw(t)| = |f2(t)l - xz(t) +

t = =
L JO R(t-0)s{ | 7 ()| -z, )+ (| Fp(e) | -wp() }ao -
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The result follows since R(%), x](t) and xQ(t) are non-negative. #

LEMMA 3.2.6. Let f(£), g(¢) € c*"[-b, b], b >0 and define
F(t) = vVt {f(VE)-F(-VE)}
and
G(t) = g(VE) + g(-VE)

o
Z

Then, F(t), G(t) € C [
Proof. The result is clearly true for #n = 0 . Assume the
result is true for 7n = r and consider the case 7n =r + 1

Clearly,

1
3%

F'(t) = (F(VE) -f(~VE) } +§{f'</t‘>+f'(—/t‘)}

From Taylor's theorem with integral remainder,

(L
L{j‘(/t_)-f(—/t_ﬂ = £(0) + ‘?H (1-s)f"(sVE)ds
vt “a Mg

1
- J (1-s)f”(—s\/?)d,s}

0
Hence,
Fr(t) = £1(0) + {g(V/B)+g(-VD)} + VELF/E)-F(-VE)}
where }(t), é(t) satisfy the hypothesis with »n = r . It follows
2 — - + "
that F(t) € ™o, %] . similarly, G(¢) € ¢7 [0, T1 and the

result follows by induction. i

COROLLARY 3.2.1. Let g(t, s, y) be n times continuously
di fferventiable with respect to t and s on 0 =8 = t= 1T onds.2n
times continuously differentiable with respect to Y for

o <y <® ., Then sgl(t, 8, u, v) and gd(t, s, u, v) where
gl(t, 8, u, v) and g,(t, s, u, v) are defined by (3.1.6) are n

times continuously differentiable with respect to t, 8, U and v on

O e v L O TR S S




3.3 Smoothness Results

We first consider the relation between Yy(t) defined by (3,1.1)
with the kernel given by (3.1.2) and u(f) and v(f) defined by
(8, 180,
THEGUREM® 3.8.1. If
(i) fl(t), fé(t) € C[o, T] and
(i2) g(t, s, y) 1is continuous with respeet to t and s

G- OF="8

IA

t =T and globally Lipschitz continuous
with respect to Yy ,
then (851.5) and’ (8. 1.1), with

f(£) = £1(¢) + /t_fQ(t)

and kernel given by (3.1.2), have wnique continuous solutions u(t),
v(t) and y(t) . Furthermore,
y(t) = u(t) + v/t v(¢) .

Proof. Existence, continuity and uniqueness of u(t), v(¢t) and
y(t) follows from lemmas 3.2.2 and 3.2.1. The result follows since
u(t) + V€ v(t) satisfies (3.1.1) with the kernel given by (3.1.2). #

We shall now examine the smoothness of u(t) and v(¢f) . Since
inductive arguments will be used, it is convenient to consider the

more general problem

1 t sr+%gl(t,s,u(s),v(s))
u(t) = fl(t) + —;—f ds
t 0 vit-s
DA s, s SRR ¢ T
1 t sPQQ(t,s,u(s),u(s))
DG = A N J ds
= £ ) Vis

or equivalently,




%
1 tsr+2gl(t,ts,u(ts),v(ts)}
utt) = fl(t) + J ds
0 v1-8
Il 0 (A PO W SR S SN
1. spgz(t,ts,u(ts),v(ts))
vit) = f2(t) + J ds
0 v1l-8

Formally differentiating (3.3.2), we obtain

t »+d og
w'(¢) = B (8) + —== J I {aul (t, s, uls), v(s))u'(s)
0 vt-s

17

agl
+ 55—-(t, g, wle); v(s)}v'(s)}ds :

1 t S1”+l 892
v!(¢) = F,(¢) + =3 f {3u (£, s, ute), vis))u'(s)
t 2 °0 vi-s
dg
+ 5—2 (t, gy e s u(s)}v'(s)}ds ¥
v
where
1 »r+k
F (8) = fl() + J {gl(t, ts, u(ts), v(ts))
0 v1-s
dg 9g
+ ¢ §;i-(t, £8 o UlE ), v(ts)} + ts Sgi-(t, ts, u(ts), v(ts)}}db 5
and

L s 9g,,
F,(t) = fi(t) + [ { £ (¢, 8, ults), v(ts))
2 S

d9g
+s 03—2 (¢, ts, u(ts), u(ts)}}ds .

We now consider the system
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3
1 Jt SP+E {agl

u(t) = F (%) + (t, s, uts), v(e))U(e)
: FOEL Jg g AoH
9g
+ ggi'(t, s, u(s), v(s)}V(s)}ds :
} (la3sa)
rt r+l ag
V(t) = F,(t) + e J & {5—3 (¢, s, u(s), v(s))U(s)
ped 49 VE-g V%
5 Z
9g
* 552'(t, s, u(s), U(S))V(s)}ds

In the following lemma, we prove that under appropriate conditions

on fi(t), f2(t) > gl(t, 8. u; V) sand gz(t, gL sen) o (853030 dies

a unique continuous solution on [0, T] which coincides with u'(¢)
and v'(t) where u(t) and v(t) are the solution of (3.3.1).
LEMMA 3.3.1. Let

(2) fl(t), fé(t) 2 sgl(t, 8, U, V) and g2(t, 8s Ws'v)

be continuously differentiable with respect to t and
t, s, u and v respectively for 0=<s =t =T and
gy, PE® ., ond

(i1)

g
2
& oL , —au

g
2
S o

al
ou

i
oV

L

£

a

L Wel il ;s eilie=teonst.

Then the solution of (3.3.1) is continuously differentiable and
satisfies

u'(t) = U(E)

and

v!(t)

V(t)

where U(t) and V(t) 1is the unique continuous solution of (3.3.3).
Proof. It follows from lemma 3.2.2 that (3.3.3) has a unique

continuous solution. Using the same argument as in Miller and

Feldstien (1971) (theorem 1), we may assume that Sgl(t, Sly Wy )
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and gQ(t, 8, u, V) have compact support.

Let 8 be a real number in the range 0 < & < T/2 . For

b<h =68 and 0%+ =084 8 =08/7 .. define

b, hi= u(ﬁ(l+k})-u(t) T
th
and
\
. Bl v(t(1+h))-v () S g
th
Then
£ (£} -F. (8) 1 rtk
a(t, h) = — = LM f%'J £ oack {(l+h)gl(t(l+h),
0 V1-s

ts(1+h), u(ts(1+h)), v[ts(l+h)}}—gl{t, ts, u(ts), v(ts))}ds .

By the mean value theorem,

(1+h)g, (£(1+h), ts(1+h), u(ts(1+h)), v(ts(1+h)))

- g, (¢, ts, ulte), v(zte))

= hgl(t(1+h), te( 1+h), u(ts(l+h)}, v (ts(1+h)))

9g
+ th 5;£—(t+®(th), ts(1+h), u(ts(1+h)), v(ts(1+m)))

9g
+ tsh sgi-(t, ten(tsh), u(ts(1+h)), v(ts(1+h)))

dg
b (u(tsm))-u(ts)) 5= (¢, ts, Ats), v(ts(1+m)})

dg
+ (v(ts(1th))-v(ts)) 55£—[t, ts, u(ts), D(¢s)) ,

where 0 < O(th) < th , 0 <n(tsh) < tsh , u(ts) lies between u(ts)
and u(ts(l+h)} and ?(ts) 1lies between v(%¥s) and v(ts(l+h)) .

Hence
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t r+; og
- [ 2 { L (t, s, ti(s), v(stsh))z(s, h)

z(t, h) = F (£, h) +
il tr’+l 0 /Ez au
%91 £
= (£, s, uls), D(s))w(s, h)}ds ; (8.3.4)
where
fl(t(l+h))—fl(t) 1 r+k
Fl(t, h) = o + J gl[t(l+h), ts(1+h),
0 v1-s
891
u(ts(14h)), v(ts (1))} + t 5= (t+0(th), ts(1th),
Bgl
u(ts(1+h)), v(ts(l+h))} + ts 55—-[t, tsin(tsh) ,
u(ts(1+h)) , v(ts(l+h)})}ds :
Similarly

t r+l (99
. [ 2 { - (¢, s, fi(s), v(sth))z(s, h)

Wi Ee B s B Gl
. tr+§ Jo vims \o¢
%9, ~
+ 55—-(t, 8, uis)., u(s)}w(s, h)}ds s 1625 85
where
£ (E(+h)) -F,(8) t rtl (9g
F (¢, h) = - = L J s——{g% (t+a(th),
0 Vt-s
9g

ts(1+h) , u(ts(1+h)), v(ts(1+h))) + 53—2 (¢, ts+B(tsh),

u(ts(1+h)), v(ts(l+h)})}ds *

0 < a(th) < th, 0 < B(tsh) < tsh , 2%(s) lies between u(s) and

u(stsh) , and »(s) lies between v(s) and v(stsh) . On defining

z(0, h) lim Fl(t, h)
t>0

1]

Fl(O, h)

and
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(F)1(r+1)! 92

5 (0, 0, u(0), v(0))z(0, h) ,

w(0, k) = F (0, h) +
(r+3)!

it follows from the application of lemma 3.2.4 to the system
(3.3.4) - (8.3.5) that z(£, h) and w(t, h) are continuous on

pl= t.=TLS . Define

( i P Sr+§
QECE, h) = ELGE, R)r= () J
l 5

= L FOL g s

Bgl 3 Bgl 1
{B;"Q,S,uw),wswhﬂ —Er-&,s,uw),MsﬁJms)

%9, . %,
+ [ﬁ— (£, s, uls), 9(&)) - === (¢, s, uls), u(s)}Jvm}dS .

and
1 t Sr+l
Qz(t, h) = F2(t, h) - F2(t) + f
r+3 70 Visg

9, 3 9,
{[sa—-(t, G, AL i v(s+sh)} - ga—-(t, S s wieni, U(S)}]U(S)

9, 99,
+ [’au— (£, s, uls), ¥(s)) - = (&, &, ule), v(s)}le(s)}ds .
Let € be a positive real number. Since sgl(t, 85 Hsy P and
gQ(t, s, U, v) have compact support, there exists an ho such that

flem™ 0 X h S ho 5

IA
m

e, (¢, n |

IA

and Jnah e, ('3.8:6)

IA
m

|@,y(t, )|

Hence, the application of lemma 3.2.5 to the systems (3.8.8) and

(3.3.4)-(3.3.5) and the subsequent use of (3.3.6) yields
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lz(t, h)-U)|

IA

It

T
|, E.m)| + _i_ J R(t-s)s”l{lcgl(s, n |
217

0
+/§\Q2(s, n)|}ds

IA

t
el1+ ——%:I J R(t—s)sr+l(l+/53db}
SR 0

and

A

i
(e, W-V(&)| = |Q, (¢, B)| + E J R(t-s)s”*l{lézl(s, n|
0

3
+_
22

+/s_|Q2(s, n)|}ds

IA

T
e[l - 1 J R(t-s)sr+l(l+/§)ds]

r+2 40

2t 2

for 0 <t < T-8 , where R(¢) is the resolvent associated with the
-% : ;
kernel 2Lt . TFrom Miller and Feldstien (1971) (lemmas 2 and 4),

z

IA
o+
IA

BB = £l-a.e. on O s C = const.
vt

and hence

IA

|z(¢, B)-U(t)| =< De
, 0st=7-68, D= const .

lw(t, )V ()| = De

IA

Thus ,

¥

alt, h) + U(¥)

and

w(t, h) > V()
uniformly on 0 < t = I-8 . Since § is arbitrary, U(t) and V(%)
ape the continuous right derivatives of u(¢) and v(t) respectively
on 0<% <7 . Inaddition, from the uniform convergence to U(t)
and V(%) , respectively, it follows that for any interval

r={t,FT=t=2-8 thesats {a(*;B):0<h*= 8§} and
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{w(*, h) : 0 <h <8} are equicontinuous and hence
Ieime 2 (Gl = imzilE=h, h) = UCE) &
h~>0 h>0
Limw(t, k) = lim w(t-h, h) = V(t)

h~>0 h~>0
uniformly on I . This implies that U(f) and V(¢) are the left
hand derivatives of u(t) and v(t) respectively on I . A simple
argument shows that U(t) and V(%) are the left derivatives of
u(t) and v(t) respectively at ¢t =T . This completes the proof. #

We can now prove the principal result of this chapter.

THEOREM 3.3.2. Let
(i) Filt)s F(3) € c*ro, 71 ,

(i2) g(t, s, y) be n times continuously differentiable
with respect to t and s on 0=<s=<t=T and
on times eontinuously differentiable with respect to
y on -2 <y <o, and

(iii) g(t, s, y) be globally Lipschitz continuous with
respect to Y .

Then, the solution u(t), v(t) of (3.1.5) with gl(t, 8y w, V) and
gQ(t, s, u, v) defined by (3.1.6) is n times continuously

(m)

differentiable. Furthermore, u "(t) and weE (B 5 T 0 e

is the solution of the equations obtained by formally di fferentiating

(a8 1Bl v Trmes.

Proof. From corollary 3.2.1, it follows that Sgl(t, 8. W, v)

and gz(t, s, u, v) are n times continuously differentiable with

S S gLk =SS

, v <o,

respect to t, &, ¥ and ¥V on 0 >

The result follows by induction and lemma 3.3.1. #

The above result can be extended, when fl(t), fb(t) and
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'd(ta S, y) ar malytic.
MHEOREM 35343 ket

(1) fi(t) and f,(t) be real analytic in a neighbourhood

e~

@ o= = -
(ii) g(t, s, y) be real analytic in an open set containing
all real ordered triples (t, s, y) , 0=<s=t=T,
-® <y <® gnd
(ii2) equation (3.1.5) have a wnique continuous solution
u(t), v(t) 1in an open set containing the interval
QL= B =
Then wu(t) and v(t) are analytic in an open set containing
QLS SE s il

Proof. It follows from (ZZ) and (3.1.6) that gl(t, Bta Uis )
and gz(t, s, u, v) are real analytic in an open set containing the

real ordered quadruples (£, 8, u, v) , 0=8 =t =T, -®<y, v <@,
For € > 0 define

D(e) = {z : -€ = Rez < T+¢ , |Imz| =€} ,

N

P = Maxﬂfl(z)\, \f2(z)| via G BEEYD .

B(e) = {(z, a8, y):2 € D(E), 0 =& =1, |y| = Bra} ,
P(g) = {2, 88 ps ) a € Dle); D=8 = 1y |pls lq| = P+1} ,
9g
M = Max{|g(z, 38, ¥)|,» gy-(z, 28, y)| : 2z € D(g),
0<s =1, |yl = 2P+2}
and
Gle)l = {2 = =€ = Reg = Eq IImzl < g/2}

Choose € such that fi(z) and fé(z) are analytic on D(g) and

gl(z, w, u, v) and ij2(2, W, Uy V) ave analytic on F(E) . Let
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H(E) denote the set of all functions ¢ , real analytic in the
interior of G(€) , continuous on G(€) and satisfying
[6(2)| < P+1 for =z € G(e) . Given ¢, ¥ in H(E)

, define

1

Rl(¢, P (z) = fl(z) + J 2 il gl(z, 8z, 9(s2), 1P(}g{z)lds
0 V1-s
{3+3:7)
1
Ry(9, ¥)(2) = Kf,(2) + K J 92[2, sz, ¢(sz), yi%ﬁlng
0 V1-s
where X = V€ . As in lemma 3.2.2, K is introduced to obtain a

contraction mapping. From (3.1.6) it follows that

A

R (6, ¥)(2)| = P+ (EM/2 ,

A

|R, (9, Y(z)| = vE (P+M/2)

Hence, if € < Egvae By F min{l, l/Mz} , then (3.3.7) is a mapping

from H X H into itself. It can easily be verified that (3.3.7) is
a contraction mapping and consequently u(z) and v(2z) are real
analytic in the interior of G(e)

This result can be extended in the following way. If u(¢) and
v(£) are real analytic in a neighbourhood of 0 =<t = T+6 ,

T, 8 >0 , then (8.1.5) is rewritten as

t —
u(T+t) = fi(t) + J 81T o (t+t, T+s, u(t+s), v(T+s))ds
0 vVt-s8
s O=%t=1TT
~ TR o
v(T+t) = fé(t) + f gz(T+t, T+s, u(t+s), u(T+s)}ds
vT+t ‘0 Vi-8
where
}(t) = f. (T+%) + f —E—g (T+t s, u(s) v(s))ds
4 : 0 V1+t-s > e

and
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Y. it
fz(t) = fé(T+t) S f = 92(T+t, g, u(s), v(s))ds
VI+t ‘0 V1+f-8

Clearly fl(t) and fé(t) are real analytic in the interior of

R(E) = {2z : 0 = Rez = €, |Imz| = €/2} for some € > 0 . From (iii),

(3.8.7) can be replaced by

= V82+T
0 v1-s

n

ﬁl(¢, e = wlr+a) + 22 f {gl(r+z, T+82,
d(T+s2), w(r+sz)}—gl(T+z, T+ez, u(t+sz), v(t+sz))}ds

b (3.3.8)

B ¥ (1
R (9, ¥)(z) = v(t+z) + : J - {92[T+z, T+e3,
Y Tta “0 vl-8

d(T+sz), w(T+sz))—g2(1+z, T+sz, u(T+sz), v(T+sz))}ds

As previously, u(T+t) and v(T+t) can be shown to be analytic in
the interior of R(E) for € sufficiently small. If & is chosen
such that € - 28 > 0 , this process can be continued with
T=T*kE =0

Since u(z) and v(z) are bounded for 2z € D(e) , it follows

from the form of (3.3.8) that the interval [€, T] can be covered by

a finite number of applications of the above process. =
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CHAPTER 4

NUMERICAL SCHEMES FOR SECOND KIND VOLTERRA EQUATIONS
WITH SINGULAR KERNELS

4.1 Introduction

In chapter 3, we have shown that, under appropriate smoothness

assumptions on fi(t), fz(t) and glts¥ss y) , the selutien of the

second kind Volterra equation

y(t) = fl(t) + /EfQ(t) - rj ﬁt—&(s-)lds WA IS A

0 Vi-s
has the form
y(t) = u(t) + v v(t)

where wu(t) and wv(¢) are the components of the solution of the
system (3.1.5). Since, from theorem 3.3.2, w(t) and v(£) are
smooth, derivatives with respect to & of g(t, 8, y(s)} may become
unbounded in a neighbourhood of the origin. This indicates that

quadrature rules for integrals of the form

Jti g(ti,s,y(s)}

Tl ¥ s
o 0 vE,-s

and hence the associated numerical schemes for (4.1.1) will often
yield low order convergence, if they are based on polynomial or

piecewise polynomial approximations to s(ti, s, y(s)) ;

% S et e
However, from theorem 3.3.2, u(t) and v(t) and hence

gl(t, 85 ule)s v(s)) and gQ[t, g, wia),; v(s)} are smooth and this

suggests that the system (3.1.5) be used to obtain numerical
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approximations to y(t) . This approach however has two drawbacks:

(i) The computation involved in solving a system of equations
is necessarily greater than solving a single scalar equation.

(ii) The system (3.1.5) is unstable in the sense that while the
solution y(t) may not grow rapidly, the individual components u(%t)
and v(t) may grow exponentially. To illustrate this, we consider

y(t)=l—Jty(—S)ds,
0 Vt-8

which, by a Laplace transform argument, has the solution

y(t) = exp(mt)erfe(/TE)
where
erfe(t) = £i~f exp(—sz}ds
YT L

The solution of (3.1.5) is given by

u(t) = Sﬁgéﬂzl-{erfb(/553+erfc(—/ﬁf)}
and
o(t) = ERUE) (o pe( /i) -erfe(-/TE)}

2t
which grow exponentially.

In this chapter, we suggest numerical schemes for (4.1.1) which
are based-on (3.1.5) only in a neighbourhood of the origin and on
(4.1.1) for the Pest of the interval. In this way, it is possible to
take advantage of the smoothness properties of u(t) and v(%)
without -letting the instability of the system (3.1.5) become dominant
and also minimises the extra computation involved in solving the
system of equations. As an example, schemes based on the product
integration analogues of Simpson's rule are treated in detail. An

alternative scheme which can be applied when the derivatives of
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g(t, s, ¥y) are known explicitly is also suggested.

In section 4.2, some notation is introduced and a number of
lemmas required for the subsequent analysis are established. The
numerical schemes are given in section 4.3 and their convergence is
examined in section 4.4. Asymptotic results and a numerical
example for the 'Simpson' schemes are given in sections 4.5 and 4.6,

respectively. The alternative scheme is outlined in section 4.7.

4.2 Preliminaries

Since in this chapter we only consider the product integration

analogues of Simpson's rule (ul =0, U, = % and Ug = l) o AN IS

convenient to simplify slightly the notation used in chapter 2. In

particular, we define

t; = 2l RO el i ss R = m

2

wley = T°F Ce=k)
k=0

L, (£) = wlBEE)E(2-2) ' R)(E-k)) , k=0, 1, 2
3

W(t) = T | (E-k)
k=0

and
L, (%) = WCE)H(E)H(3-¢) /(W' (R)(t-k)) , k=0, «c.,y 3

where H(#) is the Heaviside step function defined by

1, £t210
H(t) =
- 8

The following lemmas will be required in sections 4.4 and 4.5.

LEMMA 4.2.1. There exists a constant K such that
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'Lil 1 o X .

A T &

P Ayl e

Proof.
1-1 1-2
15 . il 1 1
Zgl § 1 i (' l)% % 3 i ¢( 3 ds
St v A, e M (T
3
= —. #
(Z=1)*

LEMMA 4.2.2. If f(t) <is continuously differentiable,

o=u=<l, 8<a<xl agnd uw#e ; then
A t.
i-1 f(t,+sh)VE +sh i
no Y L L = J Iﬁflﬁg:ds + BE vE. ft.Ya(u, s) + 0(114 )
1=0 VE.+uh-t,-sh 0 V£.-8 St VE.-
7 A % 7
7, = ]_, o M (14».2.1)
and
i-1 f(t,+sh) " ey 4 .
noy = B J ds + hzf[ti)a(u, g) + O[———% .
1=0 Vt.+uh-t,-sh 0 vVt.-8 VE .-
% l 7 z
= s st G L0500
where
E(%, 1-s+u) S g >l
olu, 8) =
o(%, u-s) - = iy W > 8
Yu-s

and (-8, a) 1is the generalised periodic zeta funetion.
Proof. Since
17 1
f fls)g(s)ds = ¢t [ f(ts)g(ts)ds ,
0 0
the lemma follows immediately from the generalized Euler Maclaurin
sum formula for integrands with algebraic singularities given in

Lyness and Ninham (1967) (Equation (2.4.3)) for u =0 or 1.
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For & > u , the result for (4.2.1) follows in the same way by
the generalised Euler Maclaurin sum formula, since it is easily

verified that

. iil f[tz+sh)¢tz+sﬁ iil f{tz+(s-u)h}VtZ+(s-u)E
=h

+ 0(h) .

20 fF i ah = B o s ) 1
1=0 t$+ tZ s =0 ti tZ (s-u)h

LE 3 >is % then

i-1 f(tz+sh}/tz+sh
) =%

1=0 Vt.tuh-t,-sh 7t
% 1

f(tz+(l—u+s)h)VtZ+(l-u+s)h

I D~

0 /fi+l-tz—(l—u+s)h

y Fle Ve,
— + 0(h)
Again, the use of the Euler Maclaurin sum formula yields the required
result.

The result expressed by equation (4.2.2) can be established in a
similar way. #

If the hypothesis on f(t) in lemma 4.2.2 is weakened, we can

obtain:

LEMMA 4.2.3. If f(t) 1is continuous,

fesh) - f() =o(® , ose=sT,

g=u=1, 0%5e <L ohg w#Fa, then

t.
(2 -
FONE e+ 0BTy %=

i-1 f(tz+sh)/tz+sﬁ

h - J R [ T |
1=0 Vt.+aﬁ—t _sh 0 vt.-s

i L 7
and

i1 f(t+eh) % £e) p

" J &) go+of®), £=1, .ccom.
1=0 /ti+aﬁ-tz—sﬁ Qr Wl

Proof. (Cleanily
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i1 f(t,+sh)VE sk (%%
¥ gl l _{ f(e)ve o
1=0 VE.+uh-t_ -sh 0 Vt.-s
7 L 7
i-1 | f(¢,+sh)VE, +sh 1 f(t,+ah)VE, +ah
< § glotd Al J L Con gy
1=0 vVt .+uh-t,-sh 0 vt .-t,-xh
7 1 2t L
-1 1
= 2 h]f(tz+sh}ftz+sh| e o B J sl + O(h%}
1=0 Vt.+uh-t -sh 0 VE.-,-2h
7 72 Ty L
-1 1
=t ) B L - J 2 + O(h%)
1=0 Vti+ﬁ-tz—sh 0 »/ti—tz—xﬁ

where

_ Max
C—WW?J"U&)I :

%
The term which is summed can be shown to be O(hg) by the
generalised Euler Maclaurin sum formula. The second part of the

lemma follows in a similar way. #

4.3 Numerical Schemes

First, we shall describe the finite difference schemes proposed
by Linz (1969) for equations of the form
t
y(E) = (L) + J g(t, g, y(s))p(t, SR e SO S ot s R Ry
0
where g(t, s, y(s)} is 'smooth' with respect to s and p(t, s)
may contain integrable singularities or singularities in its
derivatives. We note that (4.3.1) may be a system of equations.
Discretising (4.3.1) we obtain

(6) = 76) + | " alegs 00wl e

1

DRSO e (4. 852)
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As mentioned previously, replacing the integral terms in (4.3.2) by
quadrature rules will yield a numerical scheme for (4.3.1). Since

p(ti, s) may be singular, suitable quadrature rules are those based

on product integration. In particular let

7
g(tia S y(S)) 3 ZZO Ciz(s)g(tia tl’ y(tz\)} s b Sy ss.n N

be the approximation to g(ti, s§,y(s)) on 0=<sg = t, Product

integration then yields the quadrature rule

t, o
7 7
. B!
J 5(t7:’ S, y(s))p(tia S}ds Lo 2 B’LZ‘C/(t@, tza y(tz)) >
0 1=0
L= q’ 2 m b
where
t,
7
BiZ = Jo Cﬂ(s)p(ti, s)ds
This leads to the numerical scheme
7
He B f(ti} t+ ZZO Bilg(ti’ tza yz) s T =gy eessm, (4.3.3)
where Ys denotes the numerical approximation to y(ti} « The
scheme (4.3.3) requires ¢q starting values Ygs> *=s yq—l which

must be determined independently. If Bii # 0 the scheme is

implicit and explicit otherwise. Implicit schemes require the
solution of a nonlinear equation at each step.

The concept of a repetition factor as introduced by Linz (1967)
for second kind Volterra equations with 'smooth' kernels (i.e.
p(t, 8) = 1 } can be generalized in the following way to include the

scheme (4.3.3).

DEFINITION. The scheme (4.3.3) has a repetition factor p if
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p 1is the smallest integer such that

Ciz(t) = Ci+p,l(t) S ti :

for 7 =0, ..y 2-r , where r 1is a fixed integer independent of

In the remainder of this chapter, we shall consider schemes
which are obtained in the following way.

Tf 7 . isi even, S(ti’ 8, y(s)) , T =2 , is approximated by a

piecewise quadratic interpolating to g(ti, g% y(s)) at the points

tQZ’ t2Z+l and t22+2 . If 72 1is odd this can be extended as
follows:
(a) g(t., s, y(s)) is approximated by a piecewise quadratic

1

on [O, ti—3] and a cubic interpolating to g(ti, 8, y(s)} at

ti—3’ ti—?’ ti—l and ti on Eti—3’ t%] , Or

GB): 18n ReL, sl g(ti, e y(s)} is approximated by a cubic

interpolating at 0, 2, 22 and 3k and on [3h, ti] by a piecewise

quadratic interpolating at t21+l’ t21+2 and t21+3 s iTheat ashy
(a)
: ol
Coz,0(8) = & hl ’

s-t s-t
¥ G- 27 J o
o, oy il oy 4y
s-t
= 21 > R
CQi,22+l(s) = Zl( 7 ] 0] sl
s-t
_ 21-2
Cot 238" 12( 7 1 ’
¢ oM AR () M T =) S i e D O

22+1,7
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S=T_.. s-t,.
o 21 -4 21-2
(8) = ZQL———l ' LO(——] :

02i+1,2i-2 h h
(s-t..
Fd 21-2 B
02i+1,2i—2+r(8) g Lr[_——z——~} pr S
(b)
CQi,Z(S) = C2i,l(3) s b SRS
c (a) =& | = 0, 1y 2
22+1,r e e B >
~ re s s-3h
Coaw1,38) = Laﬁ} g Zo[ 7 } g
8-t
A g 271, ! ’
02i+l,2l(8) = Zl-——7r——q 2t A= Nk e
s-t s-t
~ I 21-1 21+1
Core1,21+1'8) = ZQL_'h—] % Zo[ } A TR 8

PR :z[s—t—z—i‘—l—]
22+l ,22+1 2 h

The methods (a) and (b) have a repetition factor of one and two
respectively and can be thought of as generalizations of the schemes
Simpson #1 and #2 for Volterra integral equations of the second kind
with 'smooth' kernels investigated by Linz (1967) and Noble (13964).
Clearly the above can be generalized to piecewise polynomial
interpolation of higher order. However the present schemes contain
most of the features of the more general class and most of the
analysis given in the sequel generalizes easily. A similar analysis
can also be used to obtain corresponding results for the block by
block methods suggested by Linz (1969).

We now apply the above to obtain numerical schemes for the
solution of (4.1.1). As suggested in section 4.1, approximations to
u(t) and v(t) are obtainedon 0=t =a, a >0, via (S le5 )i

For a<t=<7T , (4.1.1) can be rewritten as
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1A

t
y(t+a) = F(t+a) + f Qiﬁ+a,s+a,y(s+a)) ds , © t =T-a (4.3.4)

0 Vt-s

where

a
F(t+a) = fi(t+a) + Vtt+a fé(t+a) 4 f 9(t+a,s,y(s)) g
0 Vt+ta-s

The term F(¢+q) 1is approximated by applying product integration to

each of the terms on the right hand side of

ds

Ja g(tta,s y(s)) ds = Ja /s—gl(tm’s u(s),v(s))
0  Vtta-s 0 Vtta-s

- de

[a 92[t+a,s,u(s),v(s))

&0 Vt+a-s

where gl(t, S84l V). vand gz(t, 8, U, V) are given by (3.1.6).

For example, if a =t o then
Ja /Egl(ti+a,s,u(s),v(s)} 2§ : )
ds o~ Q SR ARl 0 e e R,
0 W 1-0 I L g l v Z
and
a gQ(ti+a,s,u(s),v(s)} 2n
f ds = ) P, o 9,(t0a, b, up, v))
0 Vti+a-s 1=0 3
where
QA NEC (8
& s o f —— ds , 1=0, s 2nll
n+t, 0 r—ti e
s-t
g @ZQL in—zl
B o = J ds
2n+t ,2n 0 ‘/W
a LA
P L [ 2n+t .1 BT % 0y &
2n+t 4o




D
1 ’ =
. L o
27t 2 21

and Uss V7o l 0, ..., 2n are approximations to u(tz} and
v(tl} respectively. Using this approximation for F(t+a) , a

scheme applied to (4.3.4) is then used for the calculation of y(t)
(o gt 7 4 Eo i A
For the analysis of these composite methods it is sufficient to
investigate the schemes for (3.1.5) and (4.3.4) separately. Although
(4.3.4) has a 'smooth' solution, it is of the form (4.1.1). Hence,
for notational convenience, we shall consider the schemes applied to
(4.1.1) rather than (4.3.4) and assume that the solution is 'smooth'.
The finite difference methods for (4.1.1) corresponding to (a)

and (b) are

Y, = Ji(ti} * /E; fQ(ti} i 1=0 Wilg(ti’ £ yl}.’

oo (8S5D)

- "B 8)
el S
o 0

and Yi» gi are the approximations to y[ti} . Similarly, the
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schemes for (3.1.5) are

1
i \ T
uy = £y l8) + L %5291 (855 275 ups )
L; =2, v.., m (4.3.62)
G e—— gl )
v, = filt.) + — W Gals s
7 2 N7, /E;-Z:O 2192 N, 7 1 l
and
X i e
= B to 1319, (850 t70 w5 v)
i =2, .., m (4.3.6b)
R N NS P ks o)
Ve = ) £ —— Weoa@a B s o o U5
7 DEx T /?;-Zzo 272 T i 7 %
where
. /EbiZ(S)
XZ - J ——dS )
5 0o VE-s
and
: Y5 Vel ()
i [
® 0o V&S

Note that the schemes (4.3.5 a, b) and (4.3.6 a, b) require starting

values at t =0 and ¢t =h .

4.4 Convergence Results
In the sequel, we shall assume that g(t, S, y(s)} 5
gl(t, s, u(s), v(s)) and gQ(t, s, u(s), v(s)) are sufficiently

smooth. Subtracting (4.1.1) from (4.3.5a), (3.1.5) from (4.3.6a)

and defining
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7 7 7
Yi = (U ‘U(ti})/fz s
we obtain
7
aﬁ = ZZO sz(g(tia tzs yl}_g(tz’ tZ’ y(tz))} ki Pi

R RN Ot T

Il R R TR

-
1]
R
=
o
o~
—
Q
N
%
o+
“
o+
=~
-
<
™~
-
<
=~
—
Q
N
—
o+
o
»
<+
=~
w
<
—
o+
=~
—
-
<
o
o
o~
~—
~—
A
SE
X

7
P. &2 Tuwadaltse 25, v(t2)) ds ,
biahg ip pUr et /A o /Ezjg
&
Qi = ZZO Xizgl(ti’ tZ’ u(tz}a U(tz}}
¥
_f /s g,(t;> 5, uls), v(e))ds ,
0 Vti-s #
: Ln
7 Z gQ(ti,s,u(s),v(s)}
R.:iw.g(t.,t,u(t),v(tn-[ iy
1 120 Y,Z LAy R l L T 0 /t—i—:-—s—

Corresponding equations for (4.3.5b) and (4.3.6b) are obtained by

~

: : ol By e s B i
replacing 0., Wl,l’ Pz’ by il i Pl,

The following lemma examines the asymptotic behaviour of Pi’

~

Qi’ Ri and Pi, Qi’ Ri .
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LEMMA 4.4.1. There exist continuously differentiable functions

¢r(t)’ wr(t) and @r(t) s 12 = 0,1 such that for 4 = 1

3

A h“
- h2¢r(t2i+r] : 0[ r————l 4
t2i+r

7
= h2 |
% t2i+r lf)1'>(t2i+1r') N O[

7 by

o h
Roitr = hz@r(t2i+r) 5 O[ E—-__J
21ty

A

Corresponding relations for Q and R TR

21+r°> T27i+r 24+p °

with ¢ (), ¥ (¥) and © () replaced by (%), b () and @r(t)
respectively are also valid.

Proof. For simplicity, denote g¢g(t, s, y(8)) by g(t, 8) . By
definition,

27 z=1 "2

zzo LYRTICTE ty) = zzo RZO 9(ty5s top4n)

Applying lemma 2.2.1 with A replaced by 2h

and Ug = 1 , we find that

s-t
i1, B o142 zk[ hQZ
I gl

T e

. }J
120 k=0 7 2L +k "

3 il
= const A { w(2s)2h 2
0

9(3)(t, S) = ?_aﬁg’ﬂ »
ds

The result for P2. now follows by the application of lemma 4.2. 2,
7




with % = 0 , to the right hand side of the above equation, since

il
f w(2s) =0
0

To obtain the required asymptotic estimate for P , we first note

27+1

that Lagrangian interpolation yields the estimate

s-t .
3 Barad b (#
\ J k 2 s

z g(t ] s Lo _nJ
%=0 27+1 21 +k -2 e ]
21-2 21.+1

Fier
J 20 +1 g(t2i+l,s} ey
¢

9319 ¥Ppiug™®

Hence, we find that

s-t
: 3 t Z
2i+1 i-2 2 27+2 L 2
: T s ABE
Lo W g8lbas 0 08y) = zzo kzo 9(ts010 ozaa) Jt %

0 R

T

22+1 Dt Fap
+J g( 22+, ) 4 O(hu}

t

og-g  ¥Pori1~?

Proceeding in the same way as for P2i , but using lemma 4.2.2, with

U, = 1 , yields the result.
The other estimates follow in the same way. #
Remark. Note that the proof of lemma 4.4.1 is very similar to

the method used in sections 2.2 and 2.3 to establish Euler Maclaurin
sum formulae. The only difficulty is that which arises when 7 is
odd.

We shall now prove some convergence results for the schemes

(H 355 By Bl

THEOREM 4.4.1. Let g(t, s, y) be globally Lipschitz continuous

with respect to y and




i

Then there exist constants K, K such that

7
]ai| < K[hE - ﬁg—i LR O W

and

+ —

]a.| < %[k 2 earaaie iy 1

[SIEN
S0
o»
WL L S
-
[
"

Proof. Since the arguments for the scheme (4.3.5a) can be
extended to (4.3.5b), only the scheme (4.3.5a) will be considered.

Let gi » 1 =2, «.., m , be the solution of (4.3.5a) obtained with

exact starting values, i.e.

b, = Wi’OK(ti, 0, ¥(0)) + Wi’lK(ti, h, y(w)

Bl Sy e ) &0 S el CtiIBY

Clearly
o = (y;-9;) + @,-v(e)) . (4.1.4)
We now estimate the terms in brackets separately. Subtraction of

(4.3.5a) from (4.4.3) yields

~

Y.

7

(g(z;5 0, y(0)-g(t;, 0, y,))

~Hr 2 Mo

+ 0y (gt hy y))-g(t;5 By y)))

==
I e~—1cs.
<

(gle,s 3,5 3 -glte tpaggd] 5 £ 52, sus,m o ()

Let C be a constant such that

lg(ti’ rh, y(rh)) - g(ti, rh, yr}| SR G, B0, 1y B 50 ety

and
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| ; P| < KEE», = Oyl TR e, , m (4.4.6)
b
2
Then, defining
g, = |[§i—yi}/?;| R e TRy

multiplying (4.4.5) by Vti » taking absolute values and applying the

Lipschitz inequality for g(t, &, y) , we find that

£ 1w, ZI
b, =486 L "} —L&Z+C“n6, A e
4 % =2 V&,

where L is the Lipschitz constant of g(t, s, y) with respect to

Y . Since

1 ~1¢%.

'Wi Z|/VtZ » L =2, «.., m , are uniformly bounded,
1=2 g
it follows in the same way as in Linz (1969) that

&i =X . B =Dy e i
To estimate lgi—y(ti}[ , Wwe examine (4.4.1) with B y[tr) .

r =0, 1 . Using the Lipschitz continuity of g(¢t, s, y) and

lemma 4.4.1, we obtain

i 7
]gi_y(ti}| = L Zzz [Wi,zl|g1_y(tz}| i O(hz) : i 5 29 apS SEN m .

Hence, using the arguments in Linz (1969), we obtain

The result follows. #

A similar convergence result for the schemes (4.3.6 a, b) can
also be obtained.
)
THEOREM 4.4.2. Let g(t, s, y) and gg‘g(t, s, y) be globally

Lipschita continuous with respect to Y

w, - ulty=6,, v,-vlt)=n,; 6,n =00, r=0,1

and
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r r r r r r r’
Then there exist constants K, 2 such that
7
ogls vyl < xfw + 2, oo, 1,
Vi.
7
and
o o 7
lBi\,]Yiisk[ifﬂwL%], Sy DHCR Ak e
Vi

Proof. Again, we shall only examine the scheme (4.3.6 a) as the

analysis extends simply to (4.3.6 b). As in theorem 4.4.1, we write

8, = (u-i,) + (3,-u(t,)

and

Y = {(v.—ﬁ.}+(ﬁ.—v[ti}}}/zz

1 T 1 T

where ﬁi and 5i are the components of the solution of (4.3.6 a)

obtained with exact starting values.

Let (C be a constant such that

lgp(ti, rh, u(rh), v(rh)}—gp(ti, th, u,, v )| =6,

ir ‘/t_,L-

and

Then, defining

W
"
—
BN
.
I
<
.
~—
<+
Q.
“
o
1]
N
“
-
=

and

=
I
o
L=
|
<
.
~
o
o
-
o
I
N
-
3
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we obtain in a similar way to theorem 4.4.1,

. Dt 1m0
BiE@LZz =z (BZ+YZ}+ChO,i=2, By
=2 z
~ e
S SV L (BZ+YZ)+Chc,i=2, , m
E v 1m0 Ve,

(B.+Y.) < V%, L TEH !Xizl + wizl (B,+Y,) + 2cho 2 2.9 m
A "3 7 tZ /t_ A 1 ) 51 a0 ey .
l

b ol 8, (9]
Since ) { i } is uniformly bounded, it follows in the
=2

ok Ve

same way as in Linz (1969) that

Bi+\?iSKhO, RN L

The estimates for lﬁi—u(tiBI and Iai_v(ti}l follow in a similar

way. ft

4.5 Asymptotic Expansions and Numerical Stability

Suppose that in (4.3.1) a perturbation &f(¢) in f(£) causes

a chenge  Qy(s) din yl(E) , i.e.
il

y(t) + Sy(t) = f(¥) + 8f(¢¥) + J pit, s)g(t, Sis y(s)+6y(s)}ds
0

Then, neglecting the 0(5y2) term, we obtain
v 5
Sy(t) = 8f(EL) + Jo (i ) gg (£,78, y(S)}éy(s)dS . (4.5.1)

The linearized equation (4.5.1) characterizes the sensitivity of
(4.3.1) with respect to a perturbation in f(¢) . This sensitivity

must be reflected in the growth of the discretization error and the
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propagation of rounding errors in finite difference schemes for
(4.3.1). Hence, the best we can expect for a finite difference
method is that the leading term in the asymptotic expansion of the
error grows in a similar way to the solution of (4.5.1). In this
case, the scheme will be called numerically stable.

We shall first derive an asymptotic error estimate for the
scheme (4.3.5 a). To study the effect of rounding errors, we shall

consider the propagation of the starting errors 4y = y(tr) = Gr 5
ép =0(8§) , » =0, 1. Without loss of generality, we take the

starting errors to be non-zero.

To simplify the notation, we introduce
dg
G(t, 8) = ——-(t, 8, y(s))

and

g(t.04.)-g(t,0.y(t,))
zr(t) = 3 = S [ (4.5.2)
r

The following theorem examines the asymptotic behaviour of the

numerical solution.

THEOREM 4.5.1. Let Cr(t) , r=0,1, be the solution of the

system

(2
G(Ls8) 1 2 '
= ——— |3 cz. (s . =0l I (LT E e
ﬁr(t) ¢p(t) - Jo = (3c0(3)+3cl( ))ds r (

and let x(t) be the solution of

- G(t,s)

0. 8 Vio=8

x(t) = 6OFO(t) + GlFl(t) - J x(8)ds

where

ds
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5 L =
and Gy =55 @ =3 Then
il
Ol e = h2 - $ ; . 5. 2 . :
21+r s Cr(t21+r) s Ozo(t2@+r}w21+r,o ch 0l l(t21+ryw21+r,l
3
I 2!
h 2 :
+ hx[t2i+p} + O|——| + 0 ——ﬁ—é—- B o O P — S (R /4.7 SR
Ve Vit .
21tr 21+r

Proof. Applying Taylor's theorem to (4.4.1) and using theorem

4.4,1 and lemma 4.4.1, we obtain

27+y . 7
— y 2 L
%oi+r 122 W2i+r,ZG(t2¢+r’ S Jishy, S B ¢r(t21+r}
; Vg 8 g
i W2i+r,06020(t2i+rj J2i+r,l lzl(t2l+r}
3
n 3
12 é
P I S Y ' . I IS P B S STy e
Vi, . Vik~ «
21ty 27+

From the linearity of (4.5.4), we can write

R 2, s M
where
27+r 7 hLl.
= : + h . +
Poisr ZZQ 2i+r,ZG( 22+r° Z}pl ¢r( 21+r} e :
iy 2i+r
= 0 Al s e B e IO S GLE G S E)
and
27+r
= . + W_. Sz W\ .
Doty ~ ZZQ W2i+r,ZG(th+r’ tl}ql 22+r,0 0 O( 21+r}
3
h2§
: B () :
2rtr gl s 2A z
21+r
A e O s i T Lt sk 5 L4 (56D
Let

q; = wi,odozo(ti} + Wi,ldlzl(ti) oo 8 F ey Ml

Substitution into (4.5.6) yields
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7 &
+ Y w6, t)(6 W, =z (¢ )46 W, a (t,)) +0 fize) ;
k el R T T i W L L 5

Tae = 0e oy e e S R T SRR

Clearly,
27+r
zzz Woien 18 Eaiaps B0y o2 ()
{l{ @il 1 § ( )
= 2h ks e (T -
0 5. S e TR . 2i4r® "21+k
1+r 2L
3
h2 E
z (¢ YW }db +0 v o Beks s Wil
0‘\'2L+k’ " 2L+k ,0 { R
21+1r
Since
t}
2h 1 |+
W, = J el
L VE -t
t
2h 1 |=— 2h
[ (P s e
0 VE +ohs g VEE VT Aohs

ah h
= — 1 0(—3} e = R S fal T = S S5 08

it follows that

2147 : 3
g W2i+p,ZG(t2i+r’ tz)wz,ozo(tz)
2h 1 =1, 2
= J zo{%%dt J oh ) { 1 1 7(28)
0 0 =1 /t2i+r—t21—23ﬁ/t21+23h k=0

h hZ ]
‘ 0
L’(tziﬂﬂ’ t21+k)zo(t22+k}ds : Ot(i-z)%z§]} i [/E_—_— P




Y4

TSR SN G e = P e L G gl
Applying the Euler Maclaurin sum formula for integrands with
algebraic singularities and lemma 4.2.1 to the right hand side of

(4.5.9), we obtain

£ 5 2y sina s - Cle5.10)

3
1 72 \
ol + AL e n
ZZQ Wz,zu(tz, tz}wz’lzl[,: nfl(ti} - 0[——%J ;

o TR M T -
Since () satisfies an equation of the form (4.1.1) it follows from
the results in chapter 3 that
|z (t+h) - (t)| = O{h%) o DL e Tk

Hence, using lemma 4.2.3,

27+r N
ZZQ W2i+r,ZG{t'2i+1” tZJx(tZ)
ey s Gt 1 s
& JO {Qh Zgl /z e kzo Lk(QS)U{tzﬁr’ 7:22+Z<)‘7C(t22+1<)}ds
3 2t+r 21 ]

+ ofr?)

ds + O[h%] ,

/t a

Do . )
J 27 +2 (I(t%ﬂq,S)x(s)
0 v

. -0
21.*Tr

I LA S SR o e s LY,
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\ .
Let Ti e - hx(ti] o LR 2 anid s s SBhen subtraction: of

(4.5.12) from (4.5.7) and the use of (4.5.10) and (4.5.11) yield

: 3
’L —_
h28 ;
To =k W B BV 0[———} R D Sy ok
2 Z:2 71 Z l E

Hence, in the same way as in theorem L4.L4.1,

3
(12
Te = 0 @—§% s = A
vONE,
%
To estimate p; o> (4.5.5) is rewritten as
Fid]. 1-1+r
¥ = W 7 3 ] g W_. G 5
Poitr Zzl 2i+r,218 Bogen o1)Poy Zzl 2i+p,2041% Bozamrtar1)Pozn
7 hu
(
as ) ¢rkt2i+r + 0 /t PR b —1 (0 € 1| e 5 TfD
21+r

In a similar way to (4.5.8), we obtain

)

nal” 7;
el EJ
Ve Tar-e \(1+2-21)2
e L R [ ALAEO s S B G = SO s

An analogous analysis to that used for the estimation of e, yields

7 4
= \ h X
B = HEE N5 o 0[——————— | et Bl S e e e
21tr r >~ 2utr \/E_T——
21+r
Hence, the result follows. #

In the following theorem, an asymptotic error estimate for the

scheme (4.3.5 b) is given.

THEOREM 4.5.2. Let ﬁr(t) be defined analogously to (4.5.2).

Let £ (t), »=0,1, be the solution of
JA

( G(t,s) (
0 Vvt-s

2, (£) = §,(8) + apco(s)+brcl(s))db s BERel X
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and &P(t) s =0, 1, be the solution of

© Glt,a) (

T arxo(s)+brxl(s)}ds,

xr(t) = docPFO(t) - GldPFl(t) ks J

7 =0,
where
P (t G(t,s)ﬁp(s)
F(B) = J ——ds, r=0,1
0 VsVt-s

and a, = bl = % v al =EblE % s By SB8/a28, e =i25/72 ,

dy = 86/72 , dj = 75/72 . IThen

7
R )+ 38 o N
21+r Qp( 21+’ Ozo(t2z+r) 21tr,0 8 6lzl(t21+r)w21+r,l
\ 3
u 3.
A 26 .
+ hxr( 2i+r} LB b, ghdEne 5 PRl L e e o b i
Cotep) “oitr

Proof. The proof proceeds as for theorem 4.5.1. The only
difference is that the repetition factor is two and hence estimates
such as (4.5.8) are no longer valid for all % but depend on
whether 7 is even or odd. The ramifications of this are that the
error due to the inexact starting values no longer varies continuously

With D =
7

From (4.5.3), we obtain

Co(t) - Cl(t) = ¢O(t) - ¢l(t) s

35,(8) + 55,(8) = M)

where

C G(t,8)
AE) = Lo () + 20.(8) + J 6(£:8) 3(s)ds
4 = 0 V/is

Hence, Cp(t) , »=0,1, and x(¢f) are obtained as the solutions

of equations of the form (4.5.1), which implies that (4.3.5 a) is a

numerically stable scheme for (4.1.1).




From (4.5.13),

(,O(t) + a;l(z;) = Al(t) N

LolE) - &y(2) 22<t>

A = A (t i
X (8) = 8(8) + 9,(8) + | SR § (evde
0 Vt-s “

A AN t ~
%, (t) J HE2) 3 (s)ds
0 Vt-s
Hence, Ep(t) ¢ BiS0,uld (Enas clearly, also ﬁp(t) S rd=; Ol }
may have unstable growth for a stable equation (4.1.1). For

instance, if G(Z, s) = -1 , it follows from a Laplace transform

that XQ(t) behaves like exp[//g tl . Thus the scheme (4.3.5 b)

is not numerically stable.

It is clear that the preceeding arguments can be generalized to
show that all methods based on piecewise polynomial interpolation and
having a repetition factor of one are numerically stable. On the
other hand, numerical instability may occur in methods with a
repetition factor greater than one. For Volterra integral equations
of the second kind with smooth kernels, this result has been
established by Linz (1967) and Noble (1969).

Asymptotic error estimates similar to those given in theorems
4.5.1 and 4.5.2, can be obtained for the schemes (4.3.6 a, b).
However, since the system (3.1.5) is unstable, for practical purposes
the schemes (4.3.6 a, b) can not be regarded as being numerically
stable with respect to equation (4.1.1). As indicated previously, it
is therefore necessary to terminate the schemes (4.3.6 a, b) before

the instability becomes dominant.
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4.6 Numerical Example

The investigation of the radiation of heat from a semi-infinite
solid having a constant heat source leads to the equation (see for

instance, Keller and Olmstead (1971)),

(t -
z(t) = L 1-x (s) ds
YT ‘0 VE-s

The composite scheme (4.3.6 a) on 0 =<t <a and (4.3.5 a) on
a =1t =1 was applied to this problem with various step sizes.
Starting values u(0) and v(0) were obtained via (3.1.5), i.e.,

u(o) = gl(O) 5
v(0) = g,(0) + 2g(0, 0, u(0)) .

v and v,_)

: (
The other starting values \ul, u2, 1 5)

were obtained by

applying one step of the block-by-block method suggested by Linz
(1969) to (3.1.5). All the resultant nonlinear equations were solved
by a Newton Raphson iteration.

The numerical results for various stepsizes & are tabulated in

table 4.1,

4.7 An Alternative Formulation

From chapter 3, the solution of (4.1.1) has the form
y(z) = u(t) + VE v(¢t)
where u(t) and v(t) are the components of the solution of (3.1.5).
The derivatives of y(t) will therefore, in general, become
unbounded in a neighbourhood of the origin. This difficulty, however,
can be avoided, if we extract a truncated Taylor series expansion
(about the origin) of v(¢) multiplied by vE  fvem y(&) « In

particylar, if u(t) and v(#) are suitably smooth, then




Table 4.1

a = 0.5 a = 0.45 a = 0.475 a = 0.4875

Hies Ol h = 0.05 h = 0.025 h = 0.0125
Q) 3.53715229F -1 8«5 3823239E-1 3.5381.8981K-1 3.53818448F -1
0.2 4.88883032E-1 4.88809522E-1 4.88802420£-1 4.88801735E-1
0.3 5. 78B8OS~ 5. 78796717 <A 5.78790942F-1 5.78790440E-1
0.4 6.42585689F-1 6.42542771E-1 6.42539428F-1 6.42539175E-1
0.5 6.89183436E-1 6.89216386E-1 6.89214888F-1 6.89214802E8-1
0.6 7.24398475E-1 7.24383572F-1 7.24383127E~-1 7.24383123F-1
0.7 7.51593944F -1 7.51600536E-1 7.51600597F-1 7.51600626E-1
0.8 i1« 731800815 -1 Telt81:8 7020 E=l; 7.73187284F-1 7. 73187322E-1.
0.9 7.90688141F-1 7.90685735E-1 7.90686053E-1 7.90686089E-1
4.0 8.05144191~F-1 8.05144999F -1 8.05145307£-1 8.05145339E-1
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- = #kﬂ(})(‘)
w(e) = y(e) = ££* ) -L~i77~;L_
k=0 .

= witt) - & DCE)
is p times continuously differentiable. As (theorem 3.3.2)
(k) (k)

U (£} and v (¢) , Kk =0, ..., p are the components of the

solution of the system of equations obtained when (3.1.5) is

differentiated k times, we can obtain M(K (0) and U(P (OYT e

the derivatives of fl(t), f2(t) and g(¢t, s, y) are known

analytically, by letting ¢ +tend to zero in these equations. When

p = 2 , for example, we obtain

GO Fal0) s

»(0) = £.(0) + 2g(0, 0, u(0)) ,

3g
u'(0) = £1(0) + 2 Sf’(oa 0, u(0))
and
" oy a[}' — o 5)
?7’(0) =z }:(ﬂ) t 2 au[ (Oa 0, L{('\)\) 2 32{,("‘) av (ﬁa 61K l((O))
Z oY Y

Since u(t) is smooth, jl(t, s, u(s), 5(3)} and
go(t, 2y ula)s 5(3)) will be smooth, if g(¢, s, y) 1is suitably

smooth. Hence, if (4.1.1) is rewritten as

u(t) = f(£) + VE_(jb(t)—ﬁ(t)) +

)

ft ¢§gl[ﬁ,s,u<s),w<3)}+, (£,8,0(s),0(s))
0 vVt-8
product integration schemes {based on piecewise polynomial inter-

polation to gl(t, s, u(s), d(s)) and gz(ﬁ, s, u(s), d(s)) } for

the above equation should yield reasonable results.

The scheme corresponding to the Simpson scheme (a) is

ds

b




z
REAC RN AN RN ORI (C5)

+ W09, (s, t, i, 3t ), 1 =2,

The scheme corresponding to the Simpson scheme (b) is obtained by

~

replacing XiZ and WiZ by XiZ and WiZ respectively.

Convergence results corresponding to theorem 4.4.1 and asymptotic
results corresponding to theorems 4.5.1 and 4.5.2 can easily be

obtained for these schemes.




CHAPTER 5

THE NUMERICAL SOLUTION OF FIRST KIND
FREDHOM EQUATIONS WITH WEAKLY SINGULAR PERIODIC KERNELS

5.1 Introduction

The numerical solution of a Fredholm equation of the first kind
b
Ky = J K(ts8)ylsdds = Ff(E) 5 a=1t'sbh (5o
a
poses a number of theoretical and practical difficulties. Some of
these may be illustrated by considering the case when k(Z, s) is
symmetric, square integrable and has a complete set of orthonormal

eigenfunctions ¢r(t) with associated eigenvalues Ar 5

e e WALIEE |Xr| > |A In this case,

r+l|
k(t, s) rzo A 0,(8)0 (s) , a.e.

and so a perturbation

[oe]

Sf(e) = 6r¢r(t) >
r=0

in f(t) causes a perturbation

© §
Sy() = 11— 6,(8)
B=UR

in the solution. Since the operator K 1is compact, Ar tends to
zero as r increases. As the components 6r¢r(t) in Sf(¢) are
amplified by a factor l/Ap in Oy(Z) , the rate at which the

eigenvalues tend to zero will characterize the sensitivity of (5.1.1)

to perturbations in g(¢)
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It must be expected that the sensitivity inherent in (5.1.1) will
manifest itself in the approximate solutions obtained by the
application of numerical schemes (such as finite difference schemes)
directly to (5.1.1). Hence, direct methods will fail to yield
satisfactory results, if the eigenvalues tend to zero too quickly or
if the data f(¢) contains highly oscillatory errors. In these
cases, schemes should be based on a regularized form of (5.1.1) (see
Tikhonov (1963 a), (1963 b)) where the solution will depend
continuously on the data.

The behaviour of eigenvalues of Fredholm operators has received
extensive investigation. As a general rule, the smoother the kernel,
the faster the eigenvalues tend to zero. Consequently, it may be
expected that direct methods will be unsuitable unless the kernel or
one of its derivatives is singular or discontinuous. In fact, many
Fredholm equations which arise in practical applications have kernels

which are singular at ¢ = s . A typical example is

k(t, 8) = log /(x(t)-x(s)}2+(w(t)_w(s))zJ (5.1.2)

where (x(t), w(t)} is the parametric equation of a plane, closed,
smooth and simple curve. Details about applications where this
kernel arises are given in section 5.2.

A number of methods for the solution of first kind Fredholm
equations with singular kernels have been proposed, (see for instance
Noble (1971) and Christiansen (1971)). Convergence of these methods
has been observed, but, as far as the author is aware, no convergence
results have been established.

In this chapter, we examine the product integration analogues of
the mid-point (ef. Noble (1971)), trapezoidal and Simpson schemes for

the equation




T4

b
J {k(t, s)q(t, s)+p(t, e)ly(s)ds = f(t) , a<t<bhb (5.1.3)
a

where ¢(¢, s) and p(Z, s) are periodic and 'smooth' and k(t, s)
is periodic and has a singularity at t =s . In particular, we
shall examine the case when the eigenfunctions of the operator
associated with the kernel k(Z, 8) are

(1) 2mrt = Dt
L cos (b—a) s slin W

gl O L T = LS 2

(ii) cos ©

o e T
(b-a) )

It will be assumed in the sequel that (5.1.3) has a unique, periodic
and 'smooth' solution.

In section 5.2, a number of applications for the Fredholm
equations under consideration are given. Numerical schemes, based on
product integration, for (5.1.3) are derived in section 5.3 and the
convergence of these schemes is then investigated in section 5.4. A

numerical example is given in section 5.5.

5.2 Some Applications of First Kind Fredholm Equations

Let u(x, w) satisfy Laplace's’ equation

Bt W 2 (x, w) €8 5.2..4)

subject to the Dirichlet boundary condition
0@ 1D = RCmE, WAL, Cs ) &G (5,2+2)
where S is the region enclosed by the plane, closed smooth and
simple curve C given by
= w(E) 5 0SS 2n

and




= (B 0=t =i9m .

It is well known (see, for instance, Greenberg (1971, Ex. 6.3)) that

; 2m (o, 9
ulz, w) = - a—n-(;ds), y(8)) - %(x(S), y(8))
o N

{(x2(8)+y2(s)12+!+ (z(s)z' () 4y (8)y ' (8))?
2 2
x (s)+y~(s)

}U(x, y, 4(8), y(s))ds (5.2.3)

where v(z, w) satisfies (5.2.2) and (5.2.1) for (z, w) €S ,

0
oy denotes the normal derivative at the boundary C and

Uz, 0, & M) = = Lnf(e-8) 2+ w-n)?}

For (x, w) € C , equation (5.2.3) reduces to
2m
Fla(t), w(e)) = fo k(t, s)y(s)ds
where k(t, s) 1is given by (5.1.2).

Other problems which may be reduced to integral equations with
logarithmic kernels are given by Christiansen (1971) and are
summarised below:

(i) The solution of the reduced wave equation in two
dimensions. This yields equations (see Noble (1962))
with kernels which can be expressed as a Hankel
function of order zero and thus has a logarithmic
singularity.

Electrostatic and low frequency electromagnetic
problems (see Mei and van Bladel (1963)).

The computation of conformal mappings (see Symm
(1966), (1967) and Hayes, Kahaner and Kellner (1972)).

Electromagnetic scattering problems (see Tanner and

Andreasen (1967)).
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(v) The propagation of acoustic and classic waves (see

Banaugh and Goldsmith (1963 a, b)).

5.3 Numerical Schemes

In this section, we shall construct finite difference schemes
for (5.1.3) which are based on the product integration analogues of
the midpoint, trapezoidal and Simpson rules.

Let

and again introduce grids

ti = as¥ith 5 % =05 s M

and

ti—% o N (P R — i | R

Discretization of (5.1.3) on these grids yields

[ kle,e odaley hwole s)lytards = 7tz,)

28 By vevs WELE 45.8,1)

and

b
J {k(ti_%a SBQ(ti_%a S)+p(ti_%, syly(s)ds = f(ti_%} >
a

&% ily ssnn B« NEHEGE)
In order to obtain numerical schemes, the left hand side of
(5.3.D)or (5.3.2) is replaced by a quadrature formula. However,
since k(t, s) is singular at t = § , quadrature formulae based on

approximating k(ti’ s}p(ti, s}y(S) and k[ti—%’ s}p(ti_%, s}y(s)

by a polynomial or piecewise polynomial will generally yield poor

results. More suitable formulae are obtained by product integration




7

where p(ti, S}y(s) or p(ti_%, S}H(S) is replaced by an

approximation P(ti’ s} or P(ti 1 s} « The quadrature weights
=

b
Jak(ti, 6)p(t;, 8)ds , £ =0, ..., m1

or

b
J k(ti_%, S}P(ti_%, Byde s 2.2 L, winy W
a

are evaluated analytically.
For the product integration of the midpoint scheme,

p(ti_%, s}y(s) is approximated by a piecewise constant; viz.

p(ti_%, s)y(s) o P(ti—%’ s)

where

Y, (2) = H(t-tz_l}H(tl-t}
and H(t) is the heaviside step function. This leads to the
quadrature formula
b n
Ja ke, o 2ol g SVytodds = 1 agppley y by Juley )

L= B m” (5.8:8)

where

b
a; = fa k(ti_%, s)wz(s)ds

Since the term Q(ti 15 s}y(s) is 'smooth', a suitable approximation
=

for the second term on the left hand side of (5.3.2) is




ws T 5 (508
Replacing the integral terms in the left hand side of (5.3.2) by

(5.3.3) and (5.3.4) yields the scheme

A {ailp(ti—%’ tZ—%}+hq(ti—3§’ tz_;e,} lez = f(tl—%) s

o A s B
where Yy > L =1, «.., m denotes the numerical approximation to
t
y[ Z—%)
In the trapezoidal scheme, p(ti, S}y(s) is approximated by a

piecewise linear function. Since p(t, s) and y(t) are periodic,

we use the approximation

p(t;, s)y(s)

p(t;, t,_Jy(t; )
_ (h-t) (t+h-b)

X (8) =~ H(h-t) + S H(b-h-t)
(t-¢,_,) (¢;-¢)

X, (£) = —h—H(t-tZ_Q}H(tz_l—t} t ——

and H(t) is the Heaviside step function.

In a similar way to the midpoint scheme we obtain

{a,p(t; st 1 )halt, 15ty Yy = CT

l=1
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b
a,; = Ja k(ti-l’ s}xz(s)ds
and Yy denotes the numerical approximation to y(tz_l} .

For the Simpson scheme, p(ti, s)y(S) is approximated by a

piecewise quadratic. In particular, we assume that m is even and

that
p(tis s}y(s) = P(tia S}
m
< L nyeel, e )
=1
where
e t t+2h-b
Al(t) = ZO[E}H(Qh_t) + 22[ 7 ]H(b—Qh—t) 5

EPox-2
Ay (2) = Zl[———z-——%H(t—tok_2}H(tQk—t} s Rl it

“tox-2
Dy (B) = 12L——77——4H(t—t2k_2)H(tzk—t}

t—t2k
Y T CR IO B S N S
where
2 L)
Zr(t) = =) °* s 2

J#r

3=0
This leads to the scheme

l {ailp(ti—l’ tz—l}+hYZq(t7:—l’ tz_l)}yz = f(ti_l) - )

eSS

l
3 = 1y asxs W L{5BT)

where




b
= Ja k(ti—l’ S)Az(s)ds 5

Mg St

¥og.q, = 218

and Yg denotes the numerical approximation to y(tz l}

REMARK. The numerical schemes in this section, are very similar
to those proposed by Atkinson (1967) for second kind Fredholm

equations.

5.4 Convergence Results

Initially, we shall examine the midpoint scheme (5.4.5) for the

equation

2T
J k(t-g)y(s)ds = g(t) , 0=t =2m
0

where k(t) is square integrable, periodic with period

even. In this case it is easy to verify that

[e<]

k(t-s) 2 A cosr(t-s)
r=0 :

oo

Y A _{sinrtsinrs+cosrtcosrs} , a.e.
y

r=0

1 2m
= J k(s)cosrsds , » > 0
0

The results for this problem are summarized in the following theorem.
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THEOREM 5.4.1. If y(¢) <is two times econtinuously di fferentiable,

and Xp satisfies

-q
BRI BAt L R %D

A, = ar 4 O(r—l_q} oD% g <o,

then the midpoint scheme (5.3.5) applied to (5.4.1) is convergent in

the sense that

3
HEMQ < K2h2 9 a K2 = const. ,

Proof. From section 5.3, with @ = 0 and b = 2m , we obtain

2m
J k(t._;—s)wj(s)ds

(2
0 2

t, t. )

o

dJ J
A {sinrt. sinrsds + cosrt. cosrsds
r 1-% ” 1-% !

-1 g-1

L cosr(ti-tj} 5

cos[(np+r)(ti—tJ}] = cosr(ti—tj} L tip

it follows that

m-1
g = PZO drcosr(ti—tj)




Define the m X m matrix

and the m X 1 vectors

In addition, 2Z satisfies an equation of the form

and so it follows that

From (5.4.2), it can easily be verified that A4 is a circulent

matrix (see, for instance, Varga (1962)) and consequently

2ls FPETE




(o) = [ embize )]

(ezr*} = [m_%exp(—iltr)}

g = (diag(pZ})

(dr—l+dm-r+l

Taking norms in (5.4.4) yields

l4ell, = lirl,

and since

it follows that

el
el - if p#0

From the conditions on Ar and (5.4.3), we obtain

JOON R WS &
lpp\ > Ka{r +(ml-r) "1}, K,
m 1s sufficiently large, and hence

e 7 —q
lell, = kel -

It now remains to estimate HI"I|2 . Clearly




{7
-1 a0
)| K {0 B
158y )

(s—tZ+%}k(ti_%-s}y’(s)ds + 0(h2}

m-1

( , 5
h Jo (s-%)h ZZO k[ti_%-tz—sh}y [tz+sh}ds + 0(n°)

As in chapter 2, we obtain the Poisson summation formula,

m-1 2m
1 1 !
n 1 ke oy (o) - jo (e, o)y (@)

{bnm(ti_%}cosQﬂns+cnm(ti_%}sinQHns} T R R

2T
2 J ki(t-2)y ' (@)eosnxde , W= 1y 2, e
0

klt=2)y" (e)sinnede , %= 1y 25 s

(s-%)cos2mmsds =

it follows that

o 4
2
ho) J (s—%)sin?nnsdbcnm(ti_%) + 0(h%)

n=1l °0

el ozo ____—c”’”(ti'%} + 0(n%)
20 n
n=1

Assuming that the only singularities of k(t) are at -2m, O

2m , we find that

and




2m 2m
k(t-s)sinnsds + 2 J Z«.(t—s)[y’(s)-y’(t))sinnsds

cn(t) = 2y'(¢) J !

0
Since k(t—s)(y’(s)—y’(t)} is Lipschitz continuous, we obtain
2m
J k(t—s)(y’(t)—y’(s)}simsds = O[%]
0
and hence

2T

k(s)cosnsds + O[%}

= 2y'(¢t)sinnt J
0

' : i
= 2Ty (t)SLnntXn - O[ZJ

Consequently,

since sinnmti cr , and hence
-%

HTHQ = gh2 € = const. (5 lE=Ti)

The result now follows on substitution of (5.4.11) into (5.4.10).

To illustrate this result, consider the case when

k(L) = log[sin %w] 5

which arises when the curve in (5.1.2) is a circle with radius
and centre at the origin. Then,

N =
0 leg2 .

176 J N R ST

and hence,

%
H€H2 <\ k¥h® , XK = const.

The above result for the scheme (5.3.5) can easily be extended to

equations of the form




2m
J {k(t-8)tp(t, 8)}ly(s)ds = g(t) , 0 =<t =21, (5.4.12)
0

where p(%Z, ) is periodic and 'smooth'. 1In this case we obtain an
error equation of the form

(A+hB)e = r (5,.5,13)
where A 1is defined as previously and

} . (p(ti_%a tj_%}}

g = (bij

Multiplication of (5.4.13) by i yields

1

(z+na™"B)e = 477 r .

Let f(Z, s) be the 'smooth' solution of the equation
2m
J RCe=T)f (T, 8)dr = plEae)i, 0 =% , & =<2T%
0
For example, if
k(t) = Ln|sin t/2|
we find from the Fourier representation of k(#) and p(f, s) that

r2m ra- 5 2T
f(t, s8) =K cot|——| == p(T, s)dt + ¢ p(t, s)dt
2 9T
0 0
Then it follows from theorem 5.4.1 that

478 = F % . B

cij} , epq = 00)

If -1 is not an eigenvalue of the operator

2m
= f 1CE, 8)yls)ds s
0

it follows from the theory on the numerical solution of second kind




Fredholm equations (see, for instance, Atkinson (1971)) that the

matrix I + AF has a bounded inverse if % is sufficiently small.
Thus multiplication of (5.4.1lu4) by (I+hF)_l and taking norms yields

| @™ enmy o)el, e

_Elrl,
p

s K = const. ,

where p is defined by (5.4.9).

Since

b b

| (0™ (zenm) )|, 2 [l+h Kl} lll, » % = const. ,

it follows that

Hence, we obtain

COROLLARY 5.4.1. Let the hypothesis of theorem 5.4.l be
satisfied and in addition let (5.4.15) have a wnique continuous
solution. Then ©f -1 <8 not an eigenvalue of the operator F , the

scheme (5.3.5) applied to (5.4.12) is convergent and
I
H€||2 < gz 4 14l XS B8 5 K = aansts
REMARK. Equation (5.1.2) can be written in the above form with

R(t=8) = log(sin E%Ei]

/(x(t)—x(s)}?+(w(t)—w(s)ﬁ
t-8 :

Sin |———
2

p(t, 8) = log{

Convergence for the scheme (5.3.5) can also be established for

equations of the form




2m
f k(t-s)q(t, s)y(s)ds = f(¢t) , : (5.4.16)
0

LEMMA 5.4.1. Let the solution of (5.4.16) be twice continuously

di fferentiable, p; >0 for % 0) 5, =01, cou, n, (Wheve p; are
defined by (5.4.8)) and

p = min {|pi|} >xkh?, 0<q<3/2, K= const.
1<i=<n

If, in addition, q(t, s) satisfies
(i) q(t, s) 1is periodic and symmetriec,
(iz) ql(t, ) > 0 (or < O)%, and
2T 2T
(221) Jo fo q(t, s)q(t)q(s)dsdt > 0 (or < 0) for all
non zero functions q(t) ,

then the scheme (5.3.5) applied to (5.4.16) is convergent and
SE
H€H2 < k24 3 K = const.

Proof. Under the above hypothesis, there exists a set of

functions ¢r(t) in O L. was 5 such that

[o2]

gt 8) = Br¢r(t)¢r(s) 5 Br >0
r=0

The error equation for this case is

r r(ti—%)aij¢r(tj—%}

g
and aij is given by (5.4.2). Multiplication of (5.4.17) by €

yields




Defining

B, 5 (¢r(h/2)€l, o ¢P(2ﬂ_h/2)€m) o e A

it can easily be verified that

oo

ele = Yy B elEpr Le
b (I

r=0
-1
where E, E and P are the m X m matrices defined by (5.4.5),
(5.4.6) and (5.4.7), respectively. Since
1t -1 2
€ EP >
ALFE €| z ple |5

it follows that

leTae| >

q = Inf  la(¢, )] .
O=t=2m

R

lell, = 5

and the result follows as previously. #

REMARK. Using a combination of the arguments in corollary 5.4.1

and lemma 5.4.1 we can obtain corresponding results for

2m
J {k(t-8)q(t, 8)tp(t, s)}y(s)ds = g(t) , 0=t =< 2m.
. :
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The above analysis can easily be extended to

i
fo k(t, s)y(s)ds = g(¢t) , o<ts=m, (5.4.18)
where
P
kitem) =53 chosrtcosrs 9, S
r=0
As in theorem 5.4.1, we obtain an error equation,
m Qg—l 1
jzl péo dpcosrti_%cosrtj_%ej =2y T =1, eeaym,
where dr s =0, ..., 2m-1 , are given by (5.4.3) with m
replaced by 2m and & = %—. Defining the 2m dimensional vectors

A ~

€ and r where

Bk 4
7 7
. = E 3
€m+7, mtl-1
A : AR (PSS |
4 = ri
oti = Tmil-i
we find that
2m 2@—1 3 J.
jzl péo drcosrti_%cosrtj_%sj =r, , =1, ..., 2m
and
2m 2;—1 2
Y a4 SINPT. LSAnt. 48 = 0 5 s Ly den g 20 5
j & 1-% J-%4d
J=1 r=0
and hence
2m 2@—1 .5 i
jgl PéO dpcosr(ti‘tj}sj i T e 1L e e

Convergence now follows as previously. In a similar way we can

establish convergence for (5.4.18) when




Sll

o
k(t, 8) = ) A sinrtsinrs
r=1

s, d.e.

The results of corollary 5.4.1 and lemma 5.4.1 can easily be verified
for these kernels.

We shall now indicate how the above results can be extended to
the trapezoidal (5.3.6) and Simpson (5.3.7) schemes.

Firstly, we shall examine the trapezoidal scheme (5.3.6) for

equations of the form (5.4.1). In this case, we obtain

2m
. = J k(t._l—s}xj(s)ds

@
7J 5 %
© J 2m 2
- z A SLnrti_l J Xj(s)31nrsds+cosrti_l { Xj(s)cosrsds}
r=0 0 0
(
o el ;? A
= Xoh + 2 5 3 cosr(tﬁ—t.}
r=1 hr J
m-1
= ¥ dasspli by o s F B dens (5.4.19)
r AN
r=0
where
= A/
do o
and
usin2 ?;— 0o A e
d, = h ] 5, r=1, ., ml
p=0 (mp+r)

Since (5.4.19) is of the same form as (5.4.2), the results follow in
the same way as in theorem 5.4.1. In particular, it can be shown

that under the hypothesis of theorem 5.4.1 that,

3
lell = kn? q W k5= COnSER |,

where
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with

e, =ylt, ) - P =1, iy m.
Clearly, the analysis easily extends to the results given in
corollary 5.4.1 and lemma 5.4.1. It can also be verified that the
results remain valid when the eigenfunctions are cosrt or sinrt ,

=0, L

The application of the Simpson scheme (5.3.7) to (5.4.1) yields

2m
- J k(¢ —s)Aj(s)db

%3 5 0
© 2T 2m
=R {Sinrt. { A.(s)sinrsds + J A.(s)cosrsds}
e e 1-1 ) 5
r=0 0 0
T ap.cosr(ti—t.} (85,28
rs0 * «
where
—| } ZZ “ae ?
aO,QZ—l LS 1195 m/
= = (N 2
uo’zz Yh/s , 1 i 5 M/
AT
h(3+cos(2rh)) - ;-51n(2rh)
(0] = s
ngl-1 22
2 A, g2y p=1,5,
and
e
Yhcos(rh) - — sin(zrh)
o = - 5 2r N b= T A R T
r 2L »2n
It follows that
m-1 ( )
e = 2 d .cosp|t.-t.
1J p=g Y LY,
where
(s}
R A o 4
er 2 mpty mptr,J

p=0
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As previously, the error equation for (5.3.7) has the form

where

and hence

1

lell, = lla =, lvll, - (5.4.21)

From (5.4.20), it follows that
X -1 -1
A = EPlE Ul t EP2E U2
where E and E_l are given by (5.4.5) and (5.4.6), Pl and P2

are given by (5.4.7) with dp replaced by drl and dr2 >

respectively,

Ul = (diag(uil)}

with
1 7 edd
i
0 71 even
and
U2 =TI - Ul :
Hence
i 1 =1 -1,
AA” = E(PlE UlEP1+P2E U2EP2 E
and since
» Tnr2 e
E“UE =%|----1--- -
L Gl I
e 2
where I denotes the m/2 X m/2 identity, it follows that

m/2

AAT = EWE *




where
|
VaaahL1>
et oty == e
L Vi 1 Vs
with
T % =i dis (; 2 4p2
5 il gkz i
— ) E\-
Vl2 (diag(%( pilpm/2+i,l+pi2pm/2+i,2}})
and

4

. ;Z, 2 2
i [dlag(z[Pm/2+i,l+pm/2+i,21]}

b x -
It can easily be verified that the eigenvalues of (AA } > are

ariv ai—ubi
i L U, SRR TR 7 )
r 2b2
r
where
T TS o
a4, = Z\Pp1"Pro*Pr/otr ,1Pm/2+r,2
and
= %
b, 2(prlpm/2+r,2+pr2pm/2+r,l}
Since
Ppt1,1 B [3+cos(2rh))0p+l - Sln(2Ph)Tr+l
and
Pptl,2 = -4cos(rh)0r+l + 431n(rh)Tr+l
where
e Xm + Am +m-r
SRty i { (YA 2}
] h® g=0 “(mgtr) (mq+m-r)
and
oo A P
: O E { mgtr  __mgtm-r }
Bk 59 q=0 (mq+1°)3 (mq+m—1ﬂ)3

9L




a5

it follows that

b_.. = sin(zh){rt

r+1 = SRS B L

O’ L
r+l m/2+r+l Tm/2+r+lgr+l} ?

i

Ap = O{r_q} s 0 Sig < 5o |

a similar argument to that for the midpoint scheme (5.2.5) yields
7
HVHQ < Kh? , K = const. (5lf.22)
Thus, if

o, | = x4

(for instance if Xr = ar 9 ), then substitution of (5.4.22) into
(5.4.21) gives
Z
HS”Q < knz ™4 k K = const.

The above result does not generalize immediately to lemma 5.4.1 since
P and p;, are different. However, all the other results for the
midpoint scheme (5.3.5) can be extended to the Simpson scheme

(B2l

In many cases, the analytic calculation of the elements

2m
aij = J k(ti—%’ s)wj(s)ds 5

0

2m
a;; JO k(¢ s)xj(S)ds

or

2m
a; fo k(ti, S}Aj(s)ds

is difficult or even impossible. However, it is often possible (for
instance, by extraction of singularities) to obtain approximations of

the form
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o n
aij:aij'i-O(h}, n>q+%

To illustrate this we consider the case when

For

t-8

Kt 8)

|

log(|t-s|) + log

log[sin

|t-s| < m , suitable coefficients can be obtained by applying

product integration to the term log(it—sl) and ordinary quadrature

to the term log Tl s If we use aij instead of a;: s

the error equation has the form

where

and

de = (a+n"Q)e
=r+ 2
Q& (quB > qij = 0(1)
T _—
b= (bl, s by » by = 0(1)

This gives

3
Ja~ {0 )

o K = const.

IA

lell,

Convergence can now be established as previously.

5.5 Numerical Results

In order to demonstrate the convergence, the schemes were

applied to
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2

2m
J {log[sin L
0

1+sin(t—s)}y(s)ds = TM(sint-cost) , 0 < t < 2T

which has the solution
y(t) = cost
The coefficients aij were calculated as suggested at the end of

section 5.4. In table 5.1, H€H2 and |[€[|, where € is defined as

previously, are tabulated for the three schemes with various step-
sizes h . It can be seen that the convergence is slightly better
than the order % (midpoint (5.3.5) and trapezoidal (5.3.6),
schemes) and 5/2 (Simpson's (5.3.7) scheme) predicted. This was

also found to be the case for a number of other examples.

TABLE 5.1

h=m/4 h=m/8 h=m/16 h=m/32

lell, | 1.173E-2 | 3.736E-3 | 1.026E-3 | 2.672E-4

Midpoint
HeH2 2.531E-2 | 1.078E-2 | 4.125E-3 | 1.513E-3
lell, | 3.198E-2 | 8.452E-3 | 2.166E-3 | 5.u480E-4
Trapezoidal
||e||2 6.387E-2 | 2.391E-2 | 8.664E-3 | 3.100E-3
lell, | 1.865E-2 | 1.582E-3 | 1.291E-4 | 1.134E-5
Simpson

H5H2 2.806E-2 | 3.374E-3 | 3.912E-4 | 4.903E-5

REMARKS. The foregoing analysis and numerical example indicates
that the Simpson method will in general yield superior results to the
midpoint and trapezoidal schemes. However, it must be remembered

that the calculation of
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is more difficult and that this may offset the superior accuracy for
a given stepsize.
It is clear from section 5.4 that when the schemes are applied

to (5.4,1), premultiplication and postmultiplication of A4 by E_l

and E vrespectively will lead to a diagonal matrix (midpoint,
(5.83.5) and trapezoidal (5.3.6)) or a matrix of the same form as
(5.4.22). Hence, for this case, the use of fast Fourier transform
techniques will yield effecient inversion methods for the resulting

system of linear equations. This will also be the case for (5.4.18).




99

REFERENCES

Anderssen, R.S., de Hoog, F.R. and Weiss, R. (1973). On the numerical
solution of Brownian motion processes. J. Appl. Prob. - In

press.

Anderssen, R.S. and Weiss, R. (1973). A stable procedure for the inversion

of Abel's equation. To be published.

Atkinson, K.E. (1967). The numerical solution of Fredholm integral
equations of the second kind. SIAM J. Numer. Anal. 4,

pPp 337-348.

Atkinson, K.E. (1971). A survey of numerical methods for the solution
of Fredholm integral equations of the second kind. Proc.
Symposium 'Numerical Solutions of Integral Equations with Physical

Applications', Fall National Meeting of SIAM, Madison, Wisconsin.

Baker, C.T.H. and Hodgson, G.S. (1971). Asymptotic expansions for integration
formulas in one or more dimensions. SIAM J. Numer. Anal., 8,

PP 473-480.

Banaugh, R.P. and Goldsmith, W. (1963 a). Diffraction of steady
acoustic waves by surfaces of arbitrary shapes. J. Acoust. Soc.

Amer., 35, pp 1590-1601.

Banaugh, R.P. and Goldsmith, W. (1963 b). Diffraction of steady
elastic waves by surfaces of arbitrary shape. J. Appl. Mech.,

30, pp' Si89=597.

Chambre, P.L. (1960). Nonlinear heat transfer problem. J. Appl.
Phys., 30, pp 1683-1688.

Christiansen, S. (1971). Numerical solution of an integral equation

with a logarithmic kernel. BIT, 11, pp 276-287.

de Hoog, F.R. and Weiss, R. (1972 a). Implicit Runge-Kutta methods

for second kind Volterra integral equations. To be published.

de Hoog, F.R. and Weiss, R. (1972 b). On the solution of Volterra

integral equations of the first kind. Num. Math. - to appear.
de Hoog, F.R. and Weiss, R. (1972 c). High order methods for Volterra
integral equations of the first kind. SIAM J. Numer. Anal. - to

appear.




100

de Hoog, F.R. and Weiss, R. (1972 d). The numerical solution of
first kind Volterra integral equations with weakly singular
kernels. 'Proceedings of the Fifth Australian Computer

Conference', pp 413-418.

de Hoog, F.R. and Weiss, R. (1972 e). Asymptotic expansions for

product integration. Math. Comp. - to appear.

de Hoog, F.R. and Weiss, R. (1972 f). On the solution of a Volterra
integral equation with a weakly singular kernel. SIAM J. Math.

Anal. - to appear.

de Hoog, F.R. and Weiss, R. (1972 g). High order methods for a
class of Volterra integral equations with weakly singular

kernels. To be published.

de Hoog, F.R. (1972). On the numerical solution of first kind

Fredholm equations with weakly singular kernels. SIAM J. Numer.

Anal. - to appear.
Greenberg, M.D. (1971). 'Applications of Green's Functions in Science
and Engineering'. Prentice-Hall, New Jersey.

Hayes, J.K., Kahamer, D.K. and Kellner, R.G. (1972). An improved

method for numerical conformal mapping. Math. Comp., 26,
pp 327-33k.

Hung, H.S. (1970). The numerical solution of differential and
integral equations by spline functions. MRC Technical Summary

Report #1053. University of Wisconsin, Madison.

Jennings, L.S. (1972). Orthogonal Transformations and Improperly
Posed Problems. PhD Thesis - Australian National University,

Canberra.

Jones, J.G. (1961). On the numerical solution of convolution integral
equations and systems of such equations. Math. Comp., 15,

pp 131-142.

Keller, J.B. and Olmstead, W.E. (1971). Temperature of a nonlinearly
radiating semi-infinite solid. Quart. Appl. Math., 29,

pp 559-566.

Kobayasi, M. (1966). On the numerical solution of the Volterra

integral equation of the second kind by linear multistep

methods. Rep. Stat. Appl. Res. JUSE, 13, pp 1-21.




101

Kobayasi, M. (1967). On the numerical solution of the Volterra

integral equations of the first kind by trapezoidal rule. Rep.

Stat. Appl. Res., JUSE, 14, pp 1l-14i.

Levinson, N. (1960). A nonlinear Volterra equation arising in the

theory of super-fluidity. J. Math. Anal. Appl., 1, pp 1-11.

Linz, P. (1967). The numerical solution of Volterra integral

equations by finite difference methods. MRC Technical Summary

Report #825, University of Wisconsin, Madison.

Linz, P. (1969). Numerical methods for Volterra integral equations

with singular kernels. SIAM J. Numer. Anal., 6, pp 365-374.

Lyness, J.N. and Ninham, B.W. (1967). Numerical quadrature and

asymptotic expansions. Math. Comp., 21, pp 162-178.

Mann, W.R. and Wolf, F. (1951). Heat transfer between solids and

Mei,

gases under nonlinear boundary conditions. Quart. Appl. Math.,

9, pp 163-184.

K. and Van Bladel, J. (1963). Low-frequency scattering by
rectangular cylinders. IEEE Trans. Antennas and Propagation,

AP-d.1.; PP;: 22756

Miller, R.K. and Feldstein, A. (1971). Smoothness of solutions of

Volterra integral equations with weakly singular kernels. SIAM

J. Math. Anal., 2, pp 242-258.

Minerbo, G.N. and Levy, M.E. (1969). Inversion of Abel's integral

equation by means of orthogonal polynomials. SIAM J. Numer.

Anal., 6, pp 598-616.

Noble, B. (1962). Integral equation perturbation methods in low-

frequency diffraction; in 'Electromagnetic Waves'. Editor,

R.E. Langer. The University of Wisconsin Press, Madison.

Noble, B. (1964). The numerical solution of nonlinear integral

equations and related topics; in '"Nonlinear Integral Equations',

Editor, P.M. Anselone. University of Wisconsin Press, Madison.

Noble, B. (1971). Some applications of the numerical solution of

integral equations to boundary value problems, in 'Conference on
Applications of Numerical Analysis', Lecture Notes in Mathematics,

No. 228, Springer-Verlag, Berlin.




102

Symm, G.T. (1966). An integral equation method in conformal mapping.
Num., Math., 9, pp 250-258.

Symm, G.T. (1967). Numerical mapping of exterior domains. Num.

Math., 10, pp 437-4u45,

Tanner, R.L. and Andreasen, M.G. (1967). Numerical solution of

electromagnetic problems. IEEE Spectrum, 4, pp 53-61.

Tikhonov, A.N. (1963 a). Improperly posed problems and the method of
regularization. Dokl. Akad. Nauk. SSSR, 151, pp 501-504;
English translation, Soviet Math. Dokl., 4, pp 1035-1038.

Tikhonov, A.N. (1963 b). On the regularization of improperly posed
problems. Dokl. Akad. Nauk. SSSR, 153, pp 49-52; English
translation, Soviet Math. Dokl., 4, pp 1624-1627.

Tricomi, F.G. (1957). 'Integral Equations'. Interscience Publishers

Inc., New York.

Varga, R.S. (1962). 'Matrix Iterative Analysis'. Prentice Hall,

New Jersey.

Wahba, G. (1970). Uniform convergence rates for certain approximate
solutions to first kind integral equations. TR-218, Stats.

Dept., University of Wisconsin, Madison.

Weiss, R. (1972). Product integration for the generalised Abel

equation. Math. Comp., 26, pp 177-190.

Weiss, R. and Anderssen, R.S. (1972). A product integration method
for a class of singular first kind Volterra equations. Num.

Math., 18, pp 442-456.

Whittaker, E.T. and Watson, G.N. (1958). 'A course of Modern

Analysis'. Cambridge University Press, New York.

Young, A. (1954). The application of approximate product integration
to the numerical solution of integral equations. Proc. Roy. Soc.

London (A), 225, pp 561-573.




	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110



