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ABSTRACT

| In this thesis I use the theory of groupnets (Brandt groupoids) to

investigate the homology of mapping cylinder groupnets; that is, groupnets
‘}: G which are the homotopy colimits of diagrams (D, A) of groupnets. When
the edge morphisms of (D, A) are all monomorphisms, G is known as a
graph product. The principal result of the thesis is the construction of a
G-complex with universal properties - the G-mapping cylinder - from a
diagram of complexes corresponding to (D, A) , and the subsequent proof
that

if G 1s a graph product and the vertex complexes are all free

resolutions of their respective trivial modules, then the

G-mapping cylinder is a free resolution of its trivial module.

An extension of the categorical approach to rings and modules is
developed in order to provide the general result. The notion of chain
homotopy is also extended to a form strongly motivated by the topological
definition of homotopy. The mapping cylinder complex determines Mayer-
Vietoris sequences for the homology of graph products, which in turn may be
used to extend several results on duality groups.

For each group in a certain class of groupnets with cohomological
dimension two (including torsion-free one-relator groups and tree products
of free groups), the mapping cylinder may be employed to evaluate a
comultiplication which gives a coring structure to the integral homology
module of the group. . This comultiplication is in turn analysed (though not

in full generality) to provide further information about the group.
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INTRODUCTION

This thesis offers a contribution to the theory of homology of groups,
approached from the point of view of groupnets (Brandt groupoids). Until
the appearance of Higgins' formalisation [13] of the theorems of Kurosh,
Grushko, Neilsen and Schrier, the availability of the bridge between topology
and combinatorial group theory provided by the groupnet was largely ignored.
Possibly it was felt that the advantages of such a formalisation were
outweighed by the amount of technical machinery first necessary to make the
theory work. However, once this machinery had been assembled most proofs
became straightforward, and after the appearance of Higgins' book, renewed
interest led to the generalisation of further results by Ordman [27],

Crowell and Smythe [7]. Chapter 1 provides the necessary summary of the
theory of groupnets.

During the last two decades, as a result of the work of G. Higman, A.
Karrass, Hanna Neumann, B.H. Neumann, D. Solitar and many others, much
attention has been drawn to groups which are graph products (what Karrass
would call treed HNN groups: free products with amalgamation, HNN
groups, tree products and the like). The theory of groupnets lends itself
neatly to the study of such groups. Of late, interest has been aroused in
the comparison of the homology of such groups with that of the subgroups
comprising them. This compariscn, in the form of a Mayer-Vietoris sequence,
was published for free products with amalgamation by Swan [38] in.1969. .The
principal result of this thesis is the construction of a 'mapping cylinder'
complex for the homotopy colimit G of each groupnet diagram (D, A) 5
given any diagram of complexes corresponding to (D, A) , with the
subsequent proof that

if G 148 a graph product, and each vertex complex is a free

vesolution of its trivial module, then the G-mapping cylinder is

1 free resolution of its trivial module.




As a corollary of this result, Mayer-Vietoris sequences with arbitrary
coefficients were determined for any graph product in mid-1974. The
sequences for an HNN group were found independently by Bieri [1],
apparently in late 1973, while more recently Chiswell [3] has published
these sequences for the general case. The latter author extends Bieri's
method by use of Serre's theory [30] of the fundamental group G of a graph
of groups; both proofs construct a short exact sequence of (G-modules
generated by the cosets of the subgroups comprising G , and then form the
corresponding long exact homology sequence, in contrast to this author's
method of constructing a G-complex with the required universal properties.

The construction of the mapping cylinder complex enables evaluation of
a comultiplication on the integral homology module of certain graph products
with cohomological dimension two to be made. This defines a coring structure
dual to the ring structure of the cohomology module induced by the cup
product. The comultiplication is in fact connected with the lower central
series of the group. The canonical form of the comultiplication is
determined for several cases with homology modules of low rank; it is hoped
that the general solution of the combinatorial problem so raised, is not
inaccessible.

In all that follows, it is assumed that the reader is familiar with the
category theory in Chapters I to IV and VIII of Mac Lane's book [20]. A
ceneral treatment of homological algebra sufficient for the purposes of
this thesis may be found in either of the texts of Eilenberg and Steenrod

[8] or Northcott [26].




CHAPTER 1

GROUPNETS

This chapter will provide a resumé of the work of Higgins [13], Crowell
and Smythe [6, 7], using their terminology. No proofs will be provided.

ese authors, as well as Ordman [27], have shown that a formalisation of
many topological proofs of group-theoretic results (for instance, that of
Grushko's Theorem [33]) may be made in purely algebraic terms using Brandt
groupoids. The term 'groupoid' here refers to the categorical definition:
a small category in which every morphism is an isomorphism; not to the
different algebraic notion of a set with a binary operation. Throughout
this work the term 'groupnet' is used for four reasons: to avoid ambiguity;
to emphasise the presence of the graph underlying any groupnet; to
harmonise with more general definitions (of partial product nets and

'egroupnets) required for proofs in [6] and [7]; and to allow the
distinction to be made between the ringnets of Chapter 2 and the ringoids
already known to the literature (see [16]1, [19, p. 250], [23] and [42]).

A knowledge of the interdependence of categories, groupoids and graphs
is assumed (see Higgins [13]). The following notational conventions with
respect to a small category € will be employed throughout the thesis. The
object set of C 1is denoted || and the statement f € C means f is a

norphism of C . The hom set C(¢, C') or homC(C, ¢') is the set of

morphisms f in C with domain dom f = ¢ and codomain cod =er
sbject (¢ may represent its identity morphism at any time. Every

pam in C denotes the statement that it commutes wherever possible.
Finally a morphism written as C >— C' is a monomorphism, one written as

>~ (' is an epimorphism, and one written as ( —— (' is the identity.




1.1 DEFINITION. A partial product net A = (A, E(4), A, p, W)
consists of two sets A and E(4) , two maps A, p : A4 > E(4A) and for

some PCA XA a partial product W : P> A

P then pg'= Ag! and

m

(1) 2F  (a3tal)

) if (@ieg’)uELl. then Milg.pal) =-Ag. wand

-
He

!

pa .

pula, a')

product u(a, a') 1is usually written aa’ and the phrase 'the product
aa' 1is defined' will be taken to mean that (a, a’) € P . Elements of

U

E(A) are called the ends of A , while if a € A , the elements Aa and

t end of a

are respectively the left and rigl

nd p will denote without further distinction the left and end map
any partial product net.
The partial product net 4 1is a product net if it further satisfies
(iii) 4if (a, @a’) €4 x A apd pa = Ma’" then (a, ') € P .
Thus, any directed graph D = (E, V) consisting of a set of directed
s E with a set of vertices V as its ends is a partial product net,
ach edge having its initial vertex as left end and terminal vertex as

ght end, and with no multiplication defined on it.

Conversely, any partial product net A determines a directed graph
(4) having vertices the ends of A and edges the elements a of 4
rected from Mg to pa . The forgetful functor determined by A > D(A

res the multiplicative structure.

In similar fashion, any small category C is a product net with set

ends |C| , each morphism in C having as left end its domain and as
right end its codomain. Multiplication is given by composition of
hisms, with fg =go° f .

1.2 DEFINITION. A morphism f : A~ B of partial product nets
consists of two maps f : A > B and E(f) : E(4) » E(B) such that

if agg' is defined in A then f(a)f(a’) 1is defined in

{"d)




= -y A . PR B
[ and .;' ) | ’_’J)f(a ) and

(ii) f preserves ends, that is,

A A and p o)

Y

B() Sy BB E(4) E(B) .

B
To facilitate the next definition, the subset Id A of identities of
A is distinguished as follows: an element 7 of A is in Id A if
at = a and Za' = a' whenever a7 and <a' are defined in A .
1.3 DEFINITION. A (partial) product net with identities is a
(partial) product net A with a set isomorphism o : E(4) = Id 4 such
that for all g in A both a.op(a) and oA(a).a are defined. In such
a case the identification (which is unique) is always made, and A and p
are retractions (see Higgins [13, p. 46]).
One instance of an associative product net with identities is the set
of

n X m integral matrices for all (positive) integers n and m . Each

x m matrix has left identity In and right identity Im s with the

usual matrix multiplication acting as partial product.
A morphism f : A +~ B of (partial) product nets with identities is a
(partial) product net morphism also satisfying

(1) f(id 4) c Id B and

(ii) E(f) 4is induced from f via Mo .

The class of associative product nets with identities is precisely the
class of small categories; movement from one to the other will be made

“hout comment.

Any subset of a (partial) product net (with identities) which is itself
2 (partial) product net (with identities) is called a subnet; the context
will clarify how much structure is involved.

1.4 DEFINITION. A groupnet A is an associative product net with

identities for which every element has an inverse (necessarily unique);
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(iv) Any subnet of a groupnet which is itself a groupnet 18 ealled
a subgroupnet. A subgroupnet B of A is wide when Id A < B . There is
always a maximal acyclic subgroupnet of A4 ; clearly it is wide,

(v) When (Z, ) €Id 4 X Id 4 set

A, ) ={acd  da=1, pa = j} .
If A(i, ) is nonempty for every such pair, 4 is said to be connected.
Equivalently, A is connected if it is not the disjoint union of two non-
empty subgroupnets. Any acyclic connected groupnet is a tree. The relation
i~mg=AE, §)#0

on Td A is an equivalence relation which partitions 1Id A into the
identities of its distinct connected components.

It is apparent that the objects of Gpnet with a single identity form
a full subcategory which is Gp , the category of groups. This extension
of COp was required when the concept of the covering space was transferred
from topology to group theory. It contains algebraically-determined
constructs - homotopies, fibrations and 'unit intervals' - which are either
undefined or vacuous in Gp yet correspond closely to the topological
definitions through the forgetful functor from Gpnel to Graph , the
category of directed graphs.

The following groupnet will be used extensively in later work.
Whereas the trivial group is 'the' acyclic connected groupnet with a single
identity, the unit interval groupnet is 'the' acyclic connected groupnet
with two identities. In Higgins' terminology it is the simplicial groupoid
7ith two vertices and hence the absolute free groupoid of rank one on the

oA

raph

1.5 DEFINITION. The unit interval groupnet 1 = {0, 350% *_l} has

identities

g I imodong ke,




PO =

%

and partial multiplication

Introduction of this groupnet simplifies the intuitive picture of a
groupnet (in terms of its underlying graph).
1.6 EXAMPLE. Let A be a connected groupnet., Construct an
isomorphic connected groupnet A* from A in the following manner
- Jd A and select from it a specific identity, 0 . Let
be the group of loops in A at 0, that is, A*(0, 0) = A(0, 0) . Denote

7 a maximal tree in A , so that T(Z, j) is a singleton {tij}

for every ordered pair of identities (Z, g) in Id 4 , with

t;§ = tii ., For each j # 0 in 1Id A* adjoin a copy Ii

to A*(0, 0) u Id A* , identifying g with 0 and 1. with J .
T Jv
The groupnet A* so formed is connected, Each a in A(Z, j) has a

unique representation

g = t, a*t_ . ith a* in 4% 0
a Lioa tOJ , with in (05 Q) »

o o 4 -1 . > o
ond the map f : 4 > A* given by f(a) = . a**j is a groupnet isomorphism.

Thus a groupnet essentially consists of a group at a distinguished

ity and a set of edges or spines radiating from this identity.

As with groups, a presentation A = (X : R) can be assigned to a
connected groupnet A . Free groupnets and groupnet generators and
relations are defined in terms of graphs (see [13, Chs 4,9]) and are the
expected analogues.

example, if A* is the isomorphic image of the connected groupnet
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of the connected
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EFINITION., Two groupnet morphisms f, g A ~ B are homotopie




F:1xA4~+>B

for which

n

(d din B0 ‘@) = il Na & docand

(23)s Py @) =ugla) . Ya &4 .
Such a morphism F : f o~ g is known as a homotopy between f and g and
is completely determined by f and

{F(*, 1) : © € 14 A}

since necessarily

g(a) = F(*, A\a) " F(@)F(*, pa) .
Homotopy of morphisms is an equivalence relation; two morphisms are
1omotopic precisely when they are naturally equivalent as functors.,

If morphisms f : 4 > B and g : B > A exist such that fo g ~ lB

o

)

and g o f o~ iy then A and B are of the same homotopy type (A ~
with homotopy equivalence f and homotopy inverse g . For example, a
groupnet morphism f : A - B always determines a comstant homotopy
X(f) : fe~of given by x(f)(*, 2) = f(z) for <2 in Id 4 , and thus it
pparent that isomorphic groupnets have the same homotopy type.

The subgroupnet B of A is a strong (deformation) retract of A if
there is a homotopy equivalence f : A + B (called a retraction) with

homotopy inverse the inclusion morphism g : B > A , such that

i) Fogg =03 and
(11) F ¢ jeo fies 1,  satisfies F(#, 2) =1 Yo €Id 4

\s instances, Id A is a strong retract of A4 wviq either A or p j

while any connected groupnet has as a strong retract the loop group at any
selected identity. Thus any groupnet has the hometopy type of a disjoint
collection of groups. Clearly equal homotopy type does not imply

isomorphism. There is a strong analogy between the distinction of

isomorphism from homotopy in Gpnet and the distinction of homeomorphism
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homotopy equivalence in Top , the category of topological sp

Certainly homotopic topological spaces have homotopic fundamental groupnets
[18, Gh, 6, Frops 131l.

At this point, in order to construct a groupnet having universal
properties with respect to a particular diagram of groupnets, it is
necessary to work in a wider category than Gpnef . Thus a pregroupnet is a
partial product net with identities in which each element has (not
necessarily unique) two-sided inverses. Note, however, that a pregroupnet
with a single identity is not necessarily a pregroup (Stallings [34, .35]).
If A is a pregroupnet and = 1is a congruence (an equivalence relation on
a partial product net which preserves left and right identities and products
wherever defined) then the set of congruence classes A/= 1is also a
pregroupnet with the product: 'oa* is defined if there is a in o and
a* in a* such that aq* is defined, and then oo* = [aa*] '. A groupnet
4 , however, does not always define a groupnet A/= .

1.8 DEFINITION. A universal groupnet for a pregroupmet A consists
of a groupnet G(4) and a morphism Y : A > G(A) such that any other
morphism from A4 to a groupnet B factors uniquely through V¥ . Such a

universal groupnet always exists and is constructed thus: the set

S(A) = {nonempty sequences Ars veey @ ¢ A el =12 =n,

is a product net with the same ends as A , with end maps

)\(al’ NREEN Cln) T )\al 9 p(al’ seey an] = pan

and with juxtaposition of sequences as partial product. A congruence = 1is
enerated from the relation u\w on S(4) , called elementary contraction,

o
=]

which is defined whenever u = a cess @ and

l’
ass . @l i R ok o
S5 2 Q1 %1 Y20 i

for some a.a, . in 4 .
[ -
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Then G(4) = S(4)/= is a groupnet in this case, and y 1is the

composite

A > 5(4) > S(4)/= .
The set Id G(A) is identifiable with Id 4 . If 4 is a groupnet, Vy is
an isomorphism. Full exposition of these results occurs in Crowell and
Smythe [6].

1.9 DEFINITION. A groupnet diagram (C, A) consists of a small
category C and a functor A : C + Gpnet . If C is the free category on
a directed graph D = (E, V) , that is, the category of directed paths in
D , then (C, A) is denoted (D, A) and is considered to be a collection

of groupnets {Av} indexed by the vertices v of D , together with a
collection of morphisms {Ae 2 AAe =% Ape} indexed by the edges e of D .

Henceforth this will be the only type of groupnet diagram considered.
1.10 DEFINITION. A mapping cylinder m : (D, A) > m(D, A) for a
groupnet diagram (D, A) consists of
(i) a groupnet m(D, A) ,

(ii) a morphism m, Av + m(D, A) for each v in D,

(iii) a homotopy m, : m, e:mpe o Ae for each e in D

which is
(iv) universal over all collections

{v ¢ |Gpnet|, {n, : 4, >N, v € D}, {ne tmy, =y 0 Ay e ¢ n}}

satisfying conditions (i)-(iii); that is, given such a collection there

exists a unique morphism X : m(D, A) = N such that for all v in D and

ACIA

m(D, A)——*N m(D, A)———*N.

g im D .




It is apparent that the mapping cylinder is a looser construction than

the colimit 1lim A in Gpnet , which requires equality rather than homotopy
—

in conditions (iii) and (iv) above. For this reason the mapping cylinder is
peferred to as the 'homotopy colimit' of the functor A . The colimit

object actually appears as a certain double quotient of

the mapping cylinder

object, with colimit morphisms formed from mapping cylinder morphisms by

composition with the canonical quotient morphism (see [7, Th. 6.3]). o

1.11 THEOREM [7, Th. 6.1]. For any groupnet diagram (D, A) there
exists a mapping cylinder which is unique up to a unique isomorphism,

A sketch of the construction is given. Index copies Ie of I by the

edges e of D , and define

RGP [V 1

VED e€D

Generate = on P from the relations

an~ (Oe, a) and 4 (a) ~ (1,, a) Va €4 e €D

Then pregroupnet P determines a pregroupnet F/= and the mapping cylinder

is, from (1.8),

m(D, A) = G(F/S) ,

m :AU>—-+P-)->P/5->G(P/_—3

v ’

m : 1 Xx B sl P+ B =2 B 2) 5
e e
There is a one-to-one correspondence between Id m(D, A) and \¥/ Id Av
v&D
which will, in future, always be employed. 0

A presentation of a mapping cylinder may be given in terms of

presentations of the vertex groupnets. Suppose (Xv 2 Rv) is a
presentation of the vertex groupnet Av for p in a connected directed

graph D . Then




<U\€/D mv(XU); m (%, 1), © € 1d 4y , e €D :

-1
7 : (
mv(Rv], m, (%, Ax) mxe(x)me(*, px) moeée(x), x € Xke’ e € D>

veD
is a presentation of m(D, A) . To instance this construction, consider the
trivial groupnet diagram (D, 1) on a connected directed graph D having
the trivial group at each vertex and the identity morphism on each edge.
Its mapping cylinder has a presentation

m(D, 1) = (me(*, L ywer €
When Ae is a monomorphism (injection) for each e in D , the

mapping cylinder is known as the graph product and in this case each m,

for » in D is an embedding [7, Th. 6.2]. In illustration of this case,

consider the directed graph

O

1
and a groupnet diagram (D, A) in which Ay is a group and Ae and Af
are monomorphisms. If Al is also a group, m(D, A) has the homotopy
type of HNN(Al; Ae(AO) g;Af(Ao)] s the HNN group with base Al and

agsociated subgroups Ae(AO) and Af(AO) . If A, =B, VvB Iis the

)

disjoint union of two groups and Ae(AO) < B, while Af{AO) = Bl » then

m(D, A) has the homotopy type of the free product with amalgamation

The groups mentioned are the loop groups of their respective mapping
cylinder groupnets, In a connected mapping cylinder groupnet G , the loop

group is found from a presentation of (G by adding further relators to the




=
(6]

presentation, corresponding to generators of a maximal tree in G (ef.

(1.6)). For example, consider the former case above with
AO = (xo, @) ¥ s Al = (yo, Yy Yp * Yq = yQyO) § Ae[xi) = y. and

Af(xi) =Y fon, 7 (= 0,1 .« Then

m(D, A) g;(xo, Zis Yoo Yy Ypo *l’ *2 :

- - - _l - _l — 7 _l
Yy Slllgy ®g Ttqlgts T ¥ i*e o Bt Hilng¥y TP >
;<y0’ yl’ ‘7/2’ t& *l' *2 :

ail

4 . PO PYNGESE. |
Yy = Yoy £ 5 %p %ap Yy T E Yt Yy B B U1t>

- Le o
<yo’ Yy» Yoo bs ¥y P Uy T Y¥gr Yy T Ypta Yy = T ylt>

IR

where % = me(*’ QRS = mf(*, Q) 5 AEL

2 ) 0 and p*i = 1 £op

=1, 2 . A maximal tree in m(D, A) is represented by * s SO that the

loop group of m(D, A) at identity 1 is isomorphic to

m(D, A)/(*l) es<yi, 0=<=2,¢:Y YHYgs Y4 = t_lyit, z = 0, l>
which is a presentation of the knot group of the trefoil knot, as an HNN
group., //

A diagram of groups with monic edge morphisms, together with its graph
product, is closely related to a graph of groups and its fundamental group,
as introduced by Bass and Serre [30]. In a graph of groups, each edge
corresponds to a pair of amalgamating subgroups, while in a diagram of

groups it corresponds to a group monomorphism. The connection is specified

thus: 4 -EL-B in a graph of groups corresponds to

7%

in a diagram of groups, while f : 4 > B in a diagram of groups




()]

-

corresponds to A v B with morphisms 1, : A >> 4 and f : A>> B in

a graph of groups. It follows (see Higgins [13]) that the fundamental group
of a connected graph of groups is isomorphic to the loop group (at any
identity) of the graph product of the corresponding group diagram, and
vice versa. See Cohen [4], Chiswell [3], Gildenhuys [10] and Cossey and
Smythe [5] for examples of the group-theoretic use of these constructions.//
This chapter closes with a description of the covering groupnet
corresponding to a given subgroupnet of any groupnet, As in the purely
topological approach this has an intimate connection with the problem of
finding the homology of a subgroup in terms of that of the group containing
it, but the methods used are entirely algebraic.

Morphism m : 4 > 4 in Gpnet is said to have the path-lifting
nroperty if whenever a €A amd 72 E Id 7 with 7(Z) = A\a then there is
% in A4 such that m(a) = a and Ay =i . Should m also be surjective
it is a fibration; if further the covering element a is uniquely
determined for each g in A (that is, ™ has the unique path-1lifting
property), then m 1is a ecovering map and A a covering groupnet. //

For a wide subgroupnet B of A there always exists a covering

m: 4+ 4 for which % ~B . Denote by A/B the set of right cosets

Ba = {b.a €4 : b €B}Y for a in A .
Then

Y = {(Ba, a*) € A/B x A : pa = Aa*}

is the covering groupnet, with Id X = 4/B under the identification
(Ba, pa) +> Ba , identity maps

M(Ba, a*) = Ba and p(Ba, a*) = B(aa*) »
and partial product

(Ba, al)(Baal, a2) = (Ba, alaz) .

The covering map m is the projection of the second coordinate of 4 .

Wwith o : A/B ~ Id A given by p(Ba) = pa ,




is a pullback square in Sef .
In [7, §8], Crowell and Smythe have shown that

graph product G = m(D, A) corresponding to a wide

also a graph product. In fact ¥ = m(p, X) where

in #Di

The construction will be detaile




CHAPTER 2

MODULES OVER RINGNETS

2.1 Ringnets

Groupnets form a wider class than groups, extending the category of
small monoids for which every morphism is an isomorphism to the category
of small categories for which every morphism is an isomorphism. The
analogous extension from unital rings to ringoids; that is, from the
category Rng of small preadditive monoids to the category Rngoid of
small preadditive categories has been dealt with in depth in the literature
[23]. The category Rngnet of unital ringnets; described below, forms an
even wider class than Rngoid , with subcategory inclusion functors

Rng < Rngoid < Rngnet
which are full as well as faithful.

2.1.1 DEFINITION. A category C is partially preadditive if it
admits an abelian groupnet structure on hom setsj that is, for any

pair of objects (C, C') in 18] & homC(C, C') has an abelian groupnet

structure, with respect to which the composition map is bilinear. A
functor between partially preadditive categories is partially additive if it
preserves this structure; that is, if it is an abelian groupnet morphism on
each hom set.

For instance, Abnet is partially preadditive, since for any two
abelian groupnets A and B there is the abelian groupnet structure on

hom(4, B) given by

Id hom(4, B) thSet(Id A %Td BY 3

hom(4, B)(h) = {f € Abnet(4, B) : fl 4, = n)

For 511 & in Td hom(d, B) , and for fs g € hom(4, B)(h) ,

(ftg)(a) = f(a) + gla) Va € 4 .




Any preadditive category is at once partially preadditivej; any
additive functor is at once partially additive, Further, any partially
additive functor between preadditive categories is at once a

2.1.2 DEFINITION. A (unital) ringnet is a small partially preadditive
category. The category of all small partially preadditive categories and
the covariant partially additive functors between them is called Rngnet .

For any pair (%, ) of objects in a ringnet R define

zZR(Z, §) = 1Id R(Z, J)

R = \/ ZR(Z, 4)
(7,7)€|R|x|R]

the latter is called the set of zeroes of the ringnet R . Bilinearity of
composition in R ensures that composition of any morphism in R with a
morphism of zR is again a morphism of 2zR , whence 2zR 1s closed under
composition in R .

Thus zR is itself a small category, with object class |zR| = |R| ,

composition induced from R and homZR(i, j) = zR(Z, §) for each pair

(¢, 207 2n |zR| . For each i in |zR| , the identity morphism in

zR(7, 7) 1is the zero element of the unique group in R(Z, 7) containing

7. , the identity morphism for i in R . The set of identity morphisms
7

in R is known as the set of identities Id R and is identifiable with
|R| «+ If, for each p in zR , the abelian group in R with zero element

p is written R(p) » then

R(p) .
p€zR
R

Conversely, any triple R = (R, zR, V) is a ringnet if it satisfies
conditions (i)-(v) below.

(i) The set of zeroes ZR of R is an associative product net with
identities.

(ii) The set




=\ R

p€zZR
is an. (additively written) abelian groupnet which has 3
identities equated with the elements of zR .

(iii) Product ¢ : R(p) @ R(p*) » R(pp*) , defined whenever

pp* € zR , and abbreviated Y(r @ r*) = rr* for r in R(p) and

R(p*) , is an abelian group morphism for all pp* in ZR .

(iv) For each i in Id zR there exists 1. in_ R(z) . For
(2

r* whenever r € R(p) , r* € R(p*

i = A\p = pp* .

(v) The product is associative whenever an association is
Note that if any finite association is defined in R , all other
associations of the same elements are defined in R .

As a ringnet, |R| =1Id zR and r*o r = rr* , In this case, the
zero map z : R+ zR of the ringnet R is given for r in R(p) by

zr = p ,and {I,:% €Id zR} is the set of identities of R .

Consideration of this internal description of a ringnet as a triple
determines the following 'internal' description of a morphism in Rngneft .
2.1.3 REMARK. A partially additive covariant functor f between two
ringnets R and S is called a ringnet morphism. + consists of a
morphism zf : zZR + zS of product nets with jdentities, and, for each p
2R , an abelian group morphism f : R(p) -~ S(zf(p)) satisfying

() gl = 2f

and

(ii) if 4 € Id zR , then f(1.)

2 sz(i)
(iii) if »r* € R , then f(rr*) = f(r)f(r*) .
In future, movement between the 'internal' and external descriptions of
Rngnet will be made at will. Context will be indicated by the use of

symbols R, zR , and so on, when dealing with the categorical aspects of a




particular ringnet, and R, ZR , and so on, when dealing with the algebraic
aspects.

2.1.4 REMARK. Note that Rungoid is the full subcategory of Rngnet
which has as object class the class of ringnets R for which the small
category zR 1is a preorder (that is, each hom set of zR has at most one
element), Ve

Extensive use will be made of the ringnet induced from a groupnet.

2.1.5 EXAMPLE. Let A € |Gpnet| . The groupringnet ZA of A is
defined as follows.

(i) Let zZ4 = {(£, j) €¢1d A xId A : A(Z, ) # #} . These zeroes
admit a groupnet structure having Id zZ4 = {(£, 7) € Id A x Id A} =2 Id 4 ,
Mz, g) =12, p(2, §) =4 and product (z, §)(j, k) = (2, k) « (When A4
is connected, 2zZ4 is the simplicial groupoid A(Id 4) of Higgins [13,

p. 8].) Theh,
(ii) 2ZA4(Z, j) 1is the free abelian group on
{fal * @ € &CL, I} for'all (£, g) in zZ4
(iix) Ji =Nz e ZACe 2" Yo € Id%, and
(iv) the partial product on Z4 is extended linearly from that
of "4

The ringnet so formed is actually a ringoid and can be identified with
Mitchell's ZA for the small category A [28, p. 11] . Of course; any
unital ring R may be used rather than Z to induce a ringnet from A in
a similar manner (ef. [16, §21).

2.1.6 EXAMPLE. For a ringnet R , the discrete category |zR| is a
(trivial) abelian groupnet and Z(|zR|) is the trivial groupringnet for
R ; it is a disjoint union of copies of Z , one for each object of R ,
and extends the description of Z as the groupring of the trivial group.

Clearly any groupnet morphism f : A + B induces a groupringnet
morphism f : ZA + ZB by linear extension from the generators. No

distinction of terminology will be made between these morphisms.




"

Tensor products of ringnets are defined pointwise: the tensor product
R® S of two ringnets R and S is the ringnet with z(R® S) = zR X zZS
and (R® S)(py, q) = R(p) ® S(q) 3 all actions are defined by coordinate.
For preadditive categories this is also the definition in Rngoid [23,

8§2]. Given ringnets R, S and T the following identities hold in

Rngnet:
L®R=R,
S®R=2R®S ,
TO®BSR®R) =2=(T®S)BR ,

and for groupnets A and B ,
IA ® IB = 1(A x B) .
Proofs are straightforward.

As in Gpnet , the weakening of similarity conditions in Rugnef from
isomorphism to homotopy proves very productive. As there, too, the term
'homotopy' is reserved for the internal description of Rngnet : it is
natural equivalence in the external definition. It is described here in
slightly different terms in order to utilise the groupnet I and preserve
some visual similarity with the topological definition.

2.1.7 DEFINITION. Two ringnet morphisms f, g : R > S are homotopic
(written f o g ) if there is a ringnet morphism

F:feg:2ZLI®R>S
satisfying both

(i) FCLO], &) = fle) . ¥p '€ B ; and

(i3) HCL1)y p) = gle) o ¥p 6B .

Such a morphism is called a homotopy between f and g and is determined

entirvely by f and
{F([*], 1) F[[*'l], zi] : 1 € 1Id ZR}

since g(r) = F[[*_¥], pr}f(r)F([*], ]pp) for » in R(p) . Ringnets R

and S are homotopic (R ~8) or of the same homotopy type precisely when




o

there is a homotopy eq ilence f : R > S and a homotopy inverse
Gures > B suehbhat s o gy S, iand  Se o ff o R,

2.1.8 EXAMPLES. (i) There is a constant homotopy X(f)
any morphism f .

(ii) A homotopy of groupnet morphisms induces a homotopy of groupring-
net morphisms: if f, g : A > B are groupnet morphisms with a homotopy
F:fog:1xA>B then F: fog: Z1 ® ZA » IB is the composed

morphism

ZI@ZA;Z(IXA)—F»ZB,
so that for all Z in Id A4 ,

F([%], [Z]) = F(%, ©)

P+, [61) = Fex, )7
Morphism F is the Znduced homotopy between f and g . Obviously,
homotopic groupnets induce homotopic groupringnets.,

Homotopy of ringnet morphisms and hence of ringnets is naturally an
equivalence relation. For ringnet morphisms f, g, # : R > S and
homotopies F : fo~g , G : g~h , a specific transitive homotopy

nla

FG : f ~ h is generated from

FG([#1, 1,) = F([+1, 1,)6(C+1, 1)

FG{[*"l}, Ji] - F[[*‘l], 17:]0[[:*—1], 17:]

Fop alll™ 2% Im Shd 25" . i/

2.1.9 DEFINITION. A ringnet diagram (D, R) consists of a directed
graph D and a functor R : D - Rngnet where 0 is the free category on

D . Hence it may be thought of as a collection of ringnets {Rv 3 DE D}

and a collection of ringnet morphisms {Re - Rke ¥ Rp' 2 € D}
[

As an illustration of this definition, any groupnet diagram (D, A)




induces a groupringne igram (D, ZA) with (ZA)U = Z{ﬂw} for each
v

vertex v 1in D and the induced morphism A4 : 74 + 14 for each edge
e o) !

Ae 2
e in D . The trivial groupnet diagram (D, 1) induces the trivial
ringnet diagram (D, I) in this fashion.

2.1.10 DEFINITION. A representation o : (D, R) » o(D, R) of a
ringnet diagram (D, R) comprises

(i) a ringnet o(?D, R) ,

(ii) a ringnet morphism g, Rv 20.0(0, R). for.eachs v, in D

and

(iii) a ringnet homotopy O : 0, ~0 o R for each e in
e Ae pe e

D
Thus, when (D, A) is a groupnet diagram with mapping cylinder
m: (D, A) > m(D, A) and induced groupringnet diagram (D, ZA) there is an
induced representation (also written 'm' ) m : (D, ZA) » m(D, ZA) having
m(D, ZA) = Z(m(D, A)) ,

with groupringnet morphisms m, and homotopies m, induced from those of

the mapping cylinder. The representation induced from (D, 1) is called

the trivial representation of (D, Z) and is denoted t : (D, Z) » (D, 1)
There always exists a homotopy colimit M : (D, R) » M(D, R) for any

ringnet diagram (D, R) ; that is, a representation of (0, R) universal

with respect to all other representations of (D, R) . It is not required

in the theory below so its construction will not be given. It is rather

oo free an object for present purposes, where attention is directed to

induced representations. In general, the homotopy colimit M(D, ZA)

induced from a groupnet diagram (D, A) 1is not isomorphic to the induced

representation Z[m(D, A)) ¢




2.2 Modules

As might be anticipated, the extension of ringoids to ringnets

indicates an extension of (unitary) modules over ringoids to (unitary)

modules over ringnets. For a unital ring K - in other words a small
preadditive monoid - a left (right) unitary K-module is an additive
covariant (contravariant) functor K - Ab . For a ringoid C - a small
preadditive category - a left (right) unitary C-module is an additive
covariant (contravariant) functor C - Ab . (See Latch and Mitchell [16],
Lee [17] or Watts [42] for this definition. Mitchell [23, p. 9, p. 17]
appears to be in error in his description of right C-modules as covariant
functors C - Ab and left C-modules as contravariant.)

2.2,1 DEFINITION. If R is a ringnet, a left (right) (unitary)
R-module is a partially additive covariant (contravariant) functor
R > Abnet . If A 1is a groupnet, a ZA-module is referred to as an
A-module.

Thus, a left R-module M may be thought of as

(i) an abelian groupnet

M = \/ M

zeém(7)
for each ¢ in |R| , where m(¢) = Id M(¢) ; and
an abelian groupnet morphism
M(n) : M(dom n) + M(cod &)
for each x € R , such that

M © #*) = M(n) o M(x*) vYr o 2* € R,

M) = Iy vi € [R| ,

MCtn®) = MCr) + M(x®) va + 2* e R .

If M(n)(m) is abbreviated mm whenever x € R and m € M(dom n) then

condition (ii) implies that the following equalities hold whenever the left-

hand side is defined:




n(mtm') =
(n o 2¥)Y(m) =

3
‘domn(m)

(rn*)(m) = am + n¥m .
Though the abelian groupnets {M(Z) : © € |R|} determined by the
module M need not be disjoint, in future it will be notationally
convenient to assume that they are. This assumption is reasonable, since

for any left R-module M : R - Abnet there is always a naturally

isomorphic left R-module M : R > Abnet for which these abelian groupnets

are pairwise disjoint. Obtain M from M by replacing M(z) by an
(isomorphic) labelled copy M(z) = M(z) x {£} for each 2z in m(Z) and <
in |R| . The action of f(r) for 1 in R is then given by

n(m, dom x#) = (4m, cod 1)

With this assumption, the identification

M = \/ M(1)
1€|R|

of the functor with an abelian groupnet is made, and

e \/ mi) ,
1€|R]|

the identity set of this groupnet, is called the set of zeroes of M . It
inherits a (left) R-module structure from M. If m €M, the zero of the
group containing m is denoted zZm . The map p : M ]Rl given by
o(m) =4 ¥m € M(z) , < € |R]

is now well-defined and is known as the right map of M . A right module is
similarly analysed to determine a left map.

For the purposes of calculation, it proves much easier to work with an
internally defined R-module structure than with the definition given above.
0ddly enough, a left R-module M is internally a right R-module M and

vice versa. The probability of confusion is high and care must be taken in




distinguishing context. Generally the ymbols M, zM and so on will be
reserved for the functorial aspects of a i R-module, while M and
will be reserved for its use as a (right) R-module.

2.2.2 DEFINITION. Let R be a ringnet. A right R-module
M= (M, zM, p, V) comprises

(i) a disjoint union

of abelian groups,
a set mp p : zM - Id ZR which extends by component to

M and determines the partition

M = \/ M(3)
1€1dzR

of M into abelian groupnets

M(Z) = \V/ M(z) ,

pz=1

and
a right R-action VY . That is,

Y s M(2) ®; R(p) = M(pp)

is an abelian groupnet morphism defined whenever p2z = Ap
which, when contracted to Y(m ® ») = mr , satisfies

m.1 =m,
om

m(pr*) = (mr)r*
whenever the left-hand side is defined.
This definition is easily seen to represent the left R-module
the same underlying groupnet and with R-action #am = mr .
One virtue of this approach to module theory is that it allows a useful
broadening of the definition of a bimodule, which is extensively employed in

the succeeding chapters.




2.2.3 DEFINITION. An abelian groupnet M is an R-S bimodule if
it is both a left AR-module and a right S-module such that, for » € R ,
s €S and m € M , if either of (rm)s or »r(ms) is defined, then both
terms are defined and are equal.

The partitions

M = .\v/ M(Z) and M = .\v/ M(5)

1€1dzR J€ldzs

determined by the two module structures then determine a further partition

M = MCZ . %5)
(Z,J)€IdzR*XIdzS
of M , where M(Z, j) = M(Z) n M(j) . Should M(Z, j) # @ for every pair

(2, j) of 1Id zR x Id zS then M may be considered as a bifunctor

S ® R°P . Abnet , partially additive in each argument, covariant in S and
contravariant in R . This is not always the case. Any ringnet R is both
a left and a right R-module, with

R(Z, ) = {R(p) : p € 2R, Ap = %, PP = g}
for 4, g in Id zR . 1If R = ZA for a disconnected groupnet A , some
of these sets will be empty. Under (2.2.3), though, every ringnet R is an
R-R bimodule with ringnet multiplication for FR-action. Hence, so is
ZR . The left and right R-module Id zR (hereafter identified with Id R )
is not generally a bimodule (see p. 33). Any abelian groupnet (and hence
any R-module) is a Z-Z bimodule.

2.2.4 REMARK. If o : R> S is a partially additive covariant
functor and N : R > Abnet and M : S -+ Abnet are both covariant
(contravariant) functors, then a natural transformation § s N-—>W0o g
is known 'internally' as a o-morphism f : N > M of right (left) modules.
In this guise (for right modules) it is a groupnet morphism

f: N(Z) > Mo(d)) Vi €IdR

IR
=

such that f(nr) = f(n)o(r) whenever nr is defined. When 0 = Th

then f is an R-morphism.




2.2.5 NOTATION. The category of partially additive covariant functors
and their natural transformations (as in (2.2.4)) is labelled Modz 2 that

of contravariant functors is Modn . Restriction to right (left) R-modules

and R-morphisms for a particular ringnet R determines the category

op
B-fod” = Abnet®  (B-Mod® = Abnef:

This is not a full subcategory unless the only functorial endomorphism on R
is the identitys; that is, unless R is a deléta [23, p. 5]
An R-module Z is a zero module if it is a disjoint union of trivial

abelian groups; that is, if

% =VZL .

l A
Each left R-module 2 determines a subcategory R-Mod"(Z) of R-Mod

in which

(1) |R—MOdZ(Z)| is the class of all left R-modules M for
which zM = Z , and
(ii) morphisms are those left R-morphisms which are the identity
morphism on the set of zeroes.
The module structure of Z ensures that the left map A : Z > Id R is
common to all objects of RLMOdZ(Z) , as is the action of R on the set
of zeroes. For each ringnet zero p € zR and each 2z € Z such that

pp = Aa 5. P8 €& » Hence, If 2 € R(p) and m € M(z) for M in

l 3
lR—MOdZ(Z)l , then necessarily rm € M(pz) . Category R-Mod“(Z2) is

known as the category of standard left R-modules and R-morphisms over 7 ,
and clearly contains Z as a null object. If Z = Id R, then
R-ModZ(Id R) is known as the category of regular left R-modules and

R-morphisms and is denoted R—ModnegZ . A left regular R-module is thus

a partially additive contravariant functor R = Ab (assuming the image




abelian groups are disjoint). Categories R-Mod¥(2) and R—Hodﬂegr
are defined similarly for each right zero module Z , but usually the
superscripts I and » are dropped when it is clear which category is
intended or when the distinction is unnecessary.

For example, if a ringnet R is a disjoint union of free abelian

groups (R(p) is free abelian for each p in ZR ), and 1i is a generator

of R(1) for each i in 1Id zR , then the trivial groupringnet Z(Id zR)
is regular as either a left or right R-module and is called the trivial
R-module TR . (When R = ZA for a groupnet A4 , TR is written TA .)
However, R is not itself regular unless 2zR = Id zR ; that is, unless
category zR is discrete.

The category R-Mod is partially preadditive with finite (co)products.

Two left R-modules M and N have as coproduct their disjoint union

z(M | | m)

zZM4 v zN ,

M(z) 5 B €2ZY,

M ] | w2

NE2OE & 2k 20,

with componentwise action; and as product their cartesian product
z(m N)
(M M) (u, v)

with action by coordinates. There is no null object in R-Mod .

"

zZM x zN

M(u) x N(v) ,

2.2.6 REMARK. When M is an R-module, the R-module M| | ¥ is
both a left and a right ZI-module. If the copies of M in XM M are

labelled by Id I then a left map 70 ZMO v le +> Id I is given by

Az, =1 for ©Z in Id T . The left I-action is
7

1]
=i

[O]mO MLy [l]ml

0

1]
=

[*_l]mo =m o [¥Im = m,

Bop . in M., and 7 in k¥ o Right aghion is correspondingly defined.
7 7




is not a bimodule.

| »
e "Lk

Since A=p , M|

2.2.7 LEMMA., For any ringnet R and zero R-module 7 , R-Mod(2)
18 an abelian category.

Proof. (i) Any standard R-morphism is the identity map on zeroes
hence all hom sets have an abelian group structure, with f + g : M > N

given by (ftg)(m) = flm).+ g(m). for f, g in homR(M, N) , and zero

morphtsm 0 : M > N given by 0(m) = zm € Z , for m in M . Composition
is clearly bilinear over this addition so R-Mod 2 is preadditive.
(ii) Any two standard HR-modules M and N over Z have a coproduct

M

| N written M@® N with

(M | | M)(2) = M(3) ® N(z) Vz €2
and £R-action by coordinate, so R-Mod(2) is additive. Its diagonal
morphism A : M > M ® M and codiagonal morphism V : M@® M > M are given
for any module M by
A(m) = (my m) ,

and

Vim, m") =m+ m' ¥Ym, m' ¢ M.

(iii) Any standard R-morphism f : M = N has both a kernel
{ : Ker f > M and a cokernel T : N »> Coker f . The submodule Ker f of
M 1is defined by
Ker f(z) = {m € M(2) : f(m) = 2z} VYz € Z

with R-action restricted from M , and < 1is the inclusion morphism. The
standard R-module Coker f over Z has

Coker f(z) = N(z)/fM(z) Vz € Z
with R-action induced from N , and 7 is the canonical quotient morphism.
Hence R-Mod(Z) is preabelian. The image and coimage of [ are similarly
defined pointwise on Z from their corresponding definitions in Ab .

(iv) The parallel map 7 : Coim f > Im f is given as

T(m+Kep f(z)) = Flm)t NMmoEMCRIE S e A




fim-m") = 2 , m-m Ker f(2) , zm = zm' = 2
m + Ker f(zm) = m' + Ker f(zm') and f is an isomorphism. Hence R-Mod(
is abelian [28,.2.31. O

By applying the argument for Ab pointwise on Z , it follows that
anv standard R-morphism over Z 1is mono if and only if it is injective
and epi if and only if it is surjective,

2.2.8 LEMMA. The category R-Mod(Z) admits arbitrary direct product
and coproducts.

Proof. Let {Md : o € A} be a set of standard (left) R-modules over

N

Set

. (Ma(z)) ¥z € Z ,

v o

(\__L Ma](z)

T (Ma(z)] Vz € Z ,

[ M](z)
o
o o
where the terms on the right hand side are defined in Ab .
n
. o 3 1 1(2) d p=z
If r €R(P) » ). My . € ( Ma](z) 5 {mu} € (u L(J( ) and r

1=1 % o

is defined then

and
r{ma} = {rma} € [T;T Ma](pz) . O
When the index set A in (2.2.8) is finite, the identification
'I:TMOLg_[ELMOL

is made and the biproduct is called the direct sum

® Ma .
o

I'n particular, this result is true for R-Modreg . However, the requirement




7z = Ia R 1is very restrictive: R-Modreg does not admit bimodules unless
zR is a disjoint union of small monoids. For, if M 1is a regular
B-bimedile, A=p=sl:IdRAIdR,. DB, v € Rlp) , »* € Rip*)

m € M(z) and (rm)r* = r(mr*) , then (p2)p* = p(zp*) , so that

pp = z = Ap* and (Xp)p* = p(pp*) , hence Ap = pp

p in 2zR thus satisfies dom p = cod p .

2.2.9 DEFINITION. Given a ringnet morphism o0 : R > S , any left

(right) S-module M determines a left (right) R-module u (Mp) , which

is called the pullback of M along ¢ . In Mod it is the composed
partially additive contravariant (covariant) functor Mo o : R> S » Abnet .

Thus for a left module,
2= {(£, 2) € Id R x zM : o(2) = Az} ,

M, 2) = {2} x M(z) ,

Mi, 2) = ¢

r(pr, m) = (Ar, o(r)m)
Clearly the pullback of a regular module is regular since Abnet may be
replaced by Ab .

2.2.10 EXAMPLE . If the groupnet morphism ¢ : A + B is extended to
groupringnets then O(TB) ~ T4 as A-modules, since

29(TB) = {(i, 0i) € Id A x 1d B}

O(rB)(i, o) = {4} x Zloil = I .

Correspondingly, (rB)° ~ T4 .

If in (2.2.9), M is an S-T bimodule the obvious induced right

T-action gives Oy an S-r bimodule structure. Composed functor Mo o

determines the identity natural transformation L0) : Moo——Moo

i . . (0] =)
which in turn determines a canonical o-morphism o* : "M > M called (left)




pullback projection from its position in the Abnet diagram

O'*

___>M

Y

Al Peb s A
I
dR"o—‘*IdS.

That is, 0*(Z, m) = m . Any O-morphism f : N> M may then be uniquely

factored through o* by a morphism o(f) : N > u , evaluated as

a(ANn) = (M, fn)

The change of rings technique embodied in the pullback is necessary to
any investigation of homology. So is the next definition.

2.2.11 DEFINITION. If M is a right R-module and N is a left
R-module their temsor product M(SR N over R is an abelian groupnet with

(1)
1d (M ®R N) = {(u, v) € zM x zN : pu = awl/ (up, v) ~ (u, pv),
p EZR, Ap = pu, pp = Av 7,
and

(ii)
M @ N(o) = ‘L—Jy M(u) B N(v) / ( (mr, n) = (m, ™),
(u,v)€a

m € M(u), n € N(v), » € R(p), \p = pu, Pp = A0l ,
so that all the R-action 'available' from each particular

zero is divided out.

Should M be an S-R bimodule then bi@k N inherits a left
S-module structure from the left map A2 z@d@% N) >> Id S given by

Nu, v) = X , and the S-action s(my, n) = (smy n) . That this inheritance
is natural when M is a bifunctor is evident from the adjoint properties of

the tensor functor which will be described below. The tensor product

associates:




Lo ® (oM ® pll) = (Ig ® gMp) ® N in Abnet ;

1

and satisfies M @k R = M under the correspondence (m, r) V> mr .
2.2.12 LEMMA. For a ringnet morphism o : R > S and a right

S-module M , M @% ° >~ in R-Mod .

Proof.
2 = {(z, 1) € zM x Id R : pz = 0i} .
Z[M @% So] = {(z, p, ©) € 24 x 2S x Id R : pz = Ap, pp = 0L}/
£ (ad, s 2) v ila, aps 204 &
o ; h
M(z, 1) = Ma) x {2} .

1

[M 8@ SO](a) M(z) ® S(p) x {2} (ms, ', 2) = (my 88", 7)) .

(RyP.L)Ed
The required isomorphism is described by
(my, 8, 2) > (ms, 7)
with inverse
(my, 2) > (m, pm, 7) . )
2.2.13 EXAMPLE. A ringnet R is defined to have: zeroes ZR = 7o

the additive group of the integers; underlying abelian groupnet

R = \V/ R(n) with R(0) = Z and R(n) = {0} for n # 0 ; and tensor
nel

multiplication given by multiplication of the integers. That is, for
ni an WR(F)
7 Jd) s

Y : R(n) ® R(m) + R(ntm)

0 g f . ] : ; £
is given by w(rn ® rm) (rr )n+m The identity set Id R of R

consists of the multiplicative identity 1 € R(0) . This ringnet is not a
ringoid. A graded group [31, p. 157] is a set of abelian groups

A = {An : n € Z} indexed by the integers. Let zd = Z , A(n) = An and

A : zAd»>TId zR be Mn) =0 for n in Z . With




o : R(m) ® A(n) » A(mtn) given by ¢(rm ® a) = ra for any pair (m, n) ,

it follows that A4 is a left R-module. In fact it is an R-R bimodule.

If B is another graded group, A4 @k B 1is identifiable with the usual

tensor product of these graded groups. For,

1d(4 ®, B) = Z x I/ ((mp, n) ~ (m, p+n), m, n, p € 1)

= Zx L J {my n) '~ (mn,00), myhn E LD

TR
while
A ®, B(a) = J__{_ A(n) ® B(m) / {(ar, b) = (a, rb))
(n,m) €a.
= | | Am) ® B(m)
(n,m) €
so that
A ®, B(n) = J__J_ A(Z) ® B(J)
itg=n
for each »n in Z . 1/

For a ringnet R , the set of comnected components of I1d R is a
partition of Id R determined by the equivalence relation generated by
Ap ~pp VYp € zR .
The tensor product of regular modules M and N has

1d(M®, V) = {(Z, §) € Id R x Id R : 2 = JH/{(Ap, Ap) ~ (pp, PP), P € ZR)
R

which is in one-to-one correspondence with the set of connected components

of Id R . In such cases the terminology

1d(M ®, N) = Id R/~ = {EJ : x €k}

is used, when the connected components are indexed by 20

The tensor product in R-Mod is seen to determine a bifunctor

®, R-Mod” x R—ModZ + Abnet which is covariant in both arguments. When

restricted to standard R-modules,

®y * R-Mod” () x R—ModZ(Z) > Abnet (¥ ®y z)




is additive.

2.2.14 LEMMA. Let N be a right R-module. The functor N@R

preserves arbitrary coproducts in R-ModZ(Z) ‘

Proof. In Abnet(S) , the canonical morphism

dodmace> Tr*4L
r B B

is a monomorphism for each {Aj : j € J} . Since both R—MOdZ(Z) and
Abnet(zN @b Z) are abelian categories admitting all products and coproducts

(2.2.8), the canonical morphism

-l—L(N@RMa] +N®R (a MO.)

o

is a monomorphism for each collection {Ma : o € A} of standard left
R-modules over Z (Popéscu [28, Ex. 3.1.5]). It is clearly an epimorphism.0
2.2.15 LEMMA. Let M : R® S°P . Abnet be a bifunctor. Then the

functor M @, - : }?—M()dZ -> S—ModZ has a right adjoint.
7
Proof. Define a functor HomS(M, =) : S-Mod” ~ R—ModZ as follows.

For each 7 in [R| , M(£) = M(Z, -) : S°P 5 Abnet is a right S-module.
Let N : S°P > Abnet be a right S-module. A right R-module

HomS(M, N) : R°P > Abnet is determined by
Homg(M, N)(2) = S-Mod®(M(£), N) vi € |R]|

and for each £ in R and 4 in S—Modn(M(cod T N) 5
[Homg(M, NI(D](§) = § o M(D) .

§ o M) (em) = F((smt) = Fls(mt)) = sfmt)
g.4 o M(HY(m) ,

§ o M(E) ¢ S—Modn(M(dom L) N) , as required. This functor is right adjoint
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to - @k M=M®. - . The Set isomorphism
S-Mod™ (L ®, M, N) = R-Mod™ (L, Homg (M, N))

is given for any L : R°P > Abnet , N : S°P 5 Abnet , and S-morphism

f:M® L~>N by the correspondence f+> §* : L —> Homg(M, N) , where
for-emeh 2 in Rl . %) 2 L2) » HomS(M(i), N) is the abelian

groupnet morphism §¥(2)(2) = f(-® 1) . a

It is apparent from (2.2.15) that the functor right adjoint to the
tensor product is not the usual hom functor, which would be a natural
choice. Rather, it is a sort of 'intermal hom functor' : if R 1is a
commutative ringnet then the existence of this functor implies R-Mod is a
closed category (ef. Mac Lane [20, VII.7]). For this reason, the straight-
forward extension from classical theory which has so far been generally
employed must be used with caution when dealing with cohomology theory.

The set homR(M, N) of left R-module morphisms has an abelian group-

net structure (ef. (2.2.7.1i)) distinguished as

(2 )i il homR(M, N) homR(ZM, zN) , and

(i1) homg(M, M)(R) = {f € homp(M, W) = flyy = n}

The hom sets thus define a bifunctor hom, : (R-Mod)°® x (R-Mod) - Abnet ,

contpravariant in the first argument and covariant in the second. When

restricted to standard R-modules,

hom,, : [R—Mod(Y))Op x R-Mod(2z) - Abnet(hom (Y, 2))

is additive.
2.2.16 LEMMA. For a ringnet morphism o : R > S and a left R-module
M’ 3
o o
homS[S ®, M, L] = hom, (M, L)

in Abnet for any left S-module L .
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o :
Proof. The map ¢ : homS(S ®p ¥, L] - I‘xomR(M, 9L) determined by
o(AHm = (wm, fo(am), m)) for each left S-morphism f : i @% M~>TL is

an abelian groupnet morphism. Its inverse

o hom (¥, °L) homc[SO ®, M, L]

is defined as

¢_l(g)(s, m) = 8.0* o g(m)

o]

for each left R-morphism g : M > "L . Here (s, m) denotes the element

(s, Am), m) of 5° @, M , provided that o(km) = ps .
2.2.17 REMARK. In comparison with (2.2.14), let {Ma : o €A} be a

set of standard left R-modules over Z and let L be any left R-module.

Then the canonical isomorphisms

homR(L, T;T Ma] EIT;T homR(L, Ma) 29, 7.3.851.
and
homR(_la_l_ M L] gTaT homy, (M , L) [29, 8.3.4]

in Set , preserve the abelian groupnet structure of the left hand side. //
The final definitions pertinent to this section are those of

projectivity and freedom for standard modules. A standard R-module P
over Z is projective precisely when in any diagram

B

|s

M 27-N 7?»2

in R-Mod(Z) , with an exact row, the morphism f may be factored through
g . That is, there exists ? : P>M such that go f = f . For example,
the trivial module TR , when defined, is a projective module in Id R-Modreg.

2.2.18 DEFINITION. If R is a ringnet, Z is a (left) R-module and

X is a set diagram




§ b f ~ T4 R ,

then X is said to admit an R-action with respect to 2 if there is a set

inclusion zX C— 7 such that

zXx —— 72
\/x
Id R :

2.2.19 DEFINITION. Let 2 be a (left) zero R-module and
U : R-Mod(Z) - Set be the forgetful functor. Let X be a set diagram

Z
X — 22X . Id R . A standard R-module M over Z is free with basis

X 4F
(i) X 1is a subset of UM ,
(i) zXx={z2 €2 : 2 = zz, ® € X} and

(iii) for any N in |R-Mod(2z)| and Set diagram

b g — Uy
z Uz
zX =) — UzN
A A
Id R (D2.2:1)

there is a unique extension g:M>N of g in R-Mod(2) . If M is
free with basis X , X admits an R-action with respect to 7'« . In tEhe
event that R = ZA for a group 4 , and Z 1is the zero A-module {0} ,
a standard free A-module with basis X is precisely the 'classical' free
A-module with basis X . Free modules may be described internally by the

following construction. Suppose R € |Rngnet| and the Set diagram

Y= ¥ Ly 2¥ s Id R admits an R-action with respect to the left zero




R-module Z . The standard left R-module FY over Z is defined by

(i) FY(z) = | | R(p) x{y} vz €2z, and
pEZR
yey
p.2y=2
(ii) R-action »r*(r, y) = (r*r, y) defined whenever
(r, y) € FY(2) and pr* = Az (= Ar) .

Then FY is free on basis VY , where V is defined from the Set

isomorphism Y =5 given by y +—* (szy, y) . There is an isomorphism from

the free R-module M with basis X to the free R-module FX , given by
the unique extension of the set diagram isomorphism X+X . By convention,

7 is considered to be the free standard module over Z with empty basis.

Clearly R is itself free over zR , on basis

IdR—IdR—IdR.

The structural requirements of each generating diagram X and each set
diagram morphism (D2.2.1) imply that each set X may determine more than
one free module over Z . Hence a free module in R-Mod(Z) 1is not
necessarily a free object of that category [15, IT.10]. Despite the non-
categorical definition of standard free modules, such objects of R-Mod(Z)
do have most of the properties associated with free objects [15, IT.101.
For example, proof of the following lemma involves straightforward checking,
and is only sketched.

2.2.20 LEMMA. (i) Any free module in R-Mod(Z) <s a projective
object.

(42) Any module in R-Mod(Z) is the epimorphic image of a free
module.

(1i1) Any projective object in R-Mod(Z) <is a direct summand of a
free module.

For, each module M in R-Mod(Z) determines the set diagram

um = um dz,, uz A,y Td R which admits an R-action with respect to Z ,

and thus defines the free module FUM . There is a short exact sequence




Ker T > FUM —L»s ¥

which splits when M is projective. In this case, since R-Mod(Z) is
abelian, FUM =2 Ker m@® M [29, 13.2.4]. //
It is possible to generalise the notion of free module to R-Mod .
2.2.21 DEFINITION. Let U : R-Mod > Set be the forgetful functor and
let X = X ->> zX > Id R be a set diagram. A (left) R-module M is
especially free with basis X if
(i) X is a subset of UM ,
(ii) zX = {z € zM : 2 = zx, x € X} and 2zX freely generates
zM ; that is, each 2z in 2zM is uniquely of the form
p.zx for p in 2zR and zx in 2zZX , and

for any N in |R-Mod| and any set diagram

g — UN

— UzN

zX 2g
\/
1d R

there is a unique extension g : M+ N of g in R-Mod .

s (D2.2.2)

Certain especially free modules may be described internally by the
following construction.

For any Set diagram Y =Y 245 7Y A, Id R , the triple

(FY, zFY, \) is defined by

(i) z#Y = {(p, 2) € zR x zY¥ : pp = Az},

(ii) BY(p, 2 = | | R(p) x {y} ¥(p, 2) € zFY , and
yeyY
Zy=3

(iii) A : zFY > Id R is Mp, 2) = Ap .

If A should be surjective, then FY is an R-module, with R-action

r*(r, y) = (r*r, y) defined whenever (r, y) € %V(p, 2) and pr* =




In this case, FY 1is especially free on the basis 1 , determined from t

isomorphism Y ~7 in Sef under the correspondence y > (1 ; y] .

AZy
M is the especially free module on basis X and FX is an R-module,
there is an isomorphism M + FX , given by the unique extension of the set

diagram isomorphism X > X Again, R 1is itself especially free with

basis Id R—> Id R—> Id R . If %X is the especially free R-module
determined by
e rh oo id KR,
the inclusion map ZX »> zﬁx ensures that X admits an R-action with
respect to zFX . Hence FX is free with basis X in R-Mod(zFX) . Vi
The closing example of this chapter incorporates several of the above

definitions.

2.2.22 LEMMA. If m : B > A 1is a monomorphism in Gpnet , then the

(right) pullback 24" of A along m : IB >+ IA is a free (right)
B-module.

m

Proof. From (2.2.9), ZA is a right B-module, with

224" = {((z, m(), §) € zZ4 x 14 B}

For convenience, ((i, m(j)], j) is contracted to (i, m(j)) 3

2" (i, m() = 14(e, m(5)) x {j} is written Z4(Z, m(j)) , and the induced

B-action a.b equals am(b) . For each connected component B, ef B .

for k 1 K , a distinguished identity iK of BK is selected. Define

fop each 4 in T4 4 , ¥ in X y,eamd & in A(j, m(iK)) , the left coset
am(8,) = {am(b) : b € B, Wb

Choice of set of coset representatives

X = {aB(K)j ca(g, m(z)) + J €1d 4, «

one for each distinct coset




aB(K) -m(BK] 5
dJ

gives for each a in A(j, m( Z)) a unique representation

a = aB(K)jm(b(a)) .

where 1 NiK in Id B , and b{a) ¢ B(iK, 1) . Further, b{a.b*) = b{a)b*

in B . With

zZX = {(j, m(iK)) € zA : k € K} ,
z: X > zX as Z(aB(K)j) = (4, m{iK)) ;

and

p 2 ZX > Td B s p[j m(iK))=iK,

the triple (?’X, z,?’X, o) of (2.2.20) has

#x = {((4, m(2))s (@ 1) € 2x x 228}

and

B(( m())s o D) = L1 Aegge } x Bl D)

K
B(K)jEYj

Since for every 7 in 1Id B , ZN‘/ZK for some (unique) «k in K ,

o) z?X + Id B is surjective. Thus FX is especially free on basis X.

The isomorphism 7X + 4" is given by (aB(K) 3 b) = doy m(b) ;3 its
J g

inverse is the map a W (aB(K) , bla)) . (]
J




CHAPTER 3

THE MAPPING CYLINDER

This chapter describes the construction of a complex for a mapping
cylinder groupnet in terms of complexes given for its vertex groupnets and
the edge maps between them. It thus paves the way for a comparison of the
homology of a mapping cylinder groupnet with that of its vertex groupnets.
The emphasis here is on the concrete and algebraic aspects of module theory

rather than the abstract and categorical ones.

3.1 Complexes

3.1.1 DEFINITION. If R is a ringnet, a (left) R-chain complex

(C, 3) consists of a set ( = {Cn : n € I} of (left) R-modules C,
dimension n and a set 9 = {Bn : n € Z} of R-morphisms 8n
called the boundary maps, such that for all 7 in Z and 2z

an_lan 17 Cn(Z) > Cn_l(BBz) s

Right R-complexes are correspondingly defined, and complex (C, 3) 1is

an S-R bicomplex when C_ is an S-R bimodule and Bn is an S-R

morphism for all n in Z . Should each boundary map be a zero morphism
the complex is known as a graded module,

When 2 is a zero R-module (C, 3) is a standard R-complex over Z

(i) e, e |R-Mod(2)| ¥n € Z , and

(di) "9 € R-Mod(2) Yn € Z .
In such a case, necessarily Im 8n+l(z) c kee an(z) for each 2z in Z .

Often, zC will denote the zero set Z common to the modules of (C, 9)

A standard R-complex over Id R is, of course, regular.




Generally, the boundary maps of different complexes will be denoted by
the same symbol 9 , and dimensional subscripts will be suppressed when there
is no likelihood of ambiguity or when a statement is true for all
dimensions.

Given a ringnet morphism o : R > S and a (left) S-complex (D, 3) ,

then a 0-chain map (o-complex morphism) f : C > D 1is a set

f= {fn SE Z} of 0O-morphisms fh : Cn - Dn which commute with the

boundary maps; that is,

. > - it Cn -> Cn_l—-’
f£+l fh f%—l
> - — T
afe Dn+l Dn Dn—l e L

If ¢ is the identity morphism on R , a o0-chain map is an R-chain map.
An R-chain map f : C > D is standard over Z when both C and D are

standard complexes over Z and f, € R-Mod(2)(C , D for each n in Z .
n " “n

The composition of a 0-chain map with a T-chain map isa (1T o 0)-
chain map; the category of chain complexes and chain maps with this
composition is named Comp . Restriction to the (left) R-complexes and
R-chain maps for each ringnet R determines the subcategory R-Comp . For
each zero R-module 2 , the standard R-complexes and chain maps over Y/
in R-Comp form the subcategory R-Comp(Z) . This last category is abelian
and has arbitrary direct products and coproducts, by obvious extension of
the respective results (2.2.7, 2.2.8) for R-Mod(Zz) . Category
R-Compreg = R-Comp(Id R) is the category of regular R-complexes and chain

maps. A standard R-chain complex is exaget when Ker Bn = Im an+l for all

w in Z 3 that is, when

Ker Bn(z) = Tm 8n+l(z) ¥ € Z , = €20 .

3.1.2 EXAMPLES. (i) Any R-module M may be identified with the

standard R-complex




M S Mz
over zM , where M conventionally lies in dimension O .

(ii) The following 'unit interval' complex & serves in the homotopy
theory for complexes in a fashion comparable to the way 21, T  and. [0, 1]
serve for ringnets, groupnets and topological spaces respectively. For each
ringnet R , consider the complex R in R-Comp(zR)

R = zR >— Rl —51* RO = ZR

Rl ~ R 1is the free (right) R-module over 2zR with basis

{y} xIdR —%>1d R — Id R
where z(y, 2) =% for 2 in Id R ;

R@® R is the free (right) R-module over ZR with basis

{0, B} x IA R —=+> Id R — Id R
where z(a, 7) = z(B, 2) = ¢ for

- Rl e RO is the skew-diagonal map

Blys m) = (@ ) ="(fy ) for
The unit R-complex & in R-Comp is defined

& = 11 @7 R 3
that is, the image under the tensor functor T1 ® - of the R-Mod( zR) -

diagram R . It has the form (ef. (2.2.6))

5n=zsz{o}szv{1}sz, n#£0,1,

§,(%, p) = {(, ®} x R(p) ® {(2, B)} x R(p) »

El(i, p) = {(£, )} x R(p) for (Z, p) € 78 ,

with al(i, oy o s o 1 - (i, Bs ) for 4 in Id1 amd » sy R

and inherits the right R-module structure of R il R et 81 s, :the

free right Z(Id I) ® R-module over z§ with basis




, : 1 ie,
1d I x {y} xIJdR —2%+I1d I xIdR—1d I x Id R ;

similarly, 50 is the free right Z(Id I) ® R-module over z& with basis

X —
TR, B XIa 0 i I xTdR—>1d 1 x1a R,

The unit FR-complex is a left ZI ® R-complex with left map
X XN : 26§ =1d1 %x2zR»>1Id 1 xId R and left action defined by coordinate:
([Zl, 2)ulpts Ey 2%) & dde, B, 20*)
, rr* in R and & in {a, B, Y} . In particular,
(L% 2381y €4 2) © K0, £, 2)
in Id R . With this in mind, we denote the generators
ae (1, O, 8hds (@, ) 5 (18, 48) =ib, 2% 5 €1, ¥ &) = {65 £)
(0, 0, 2) = (*a, 2) 5 (0, By, Z2) = (%b, Z) and (0, v, ) = (*C, 2)
eagh % dn  Id iR . 14
3.1.3 DEFINITIONS. (i) If M is an R-module, a complex over M
a standard R-complex (C, 3) over zM which is positive (that T8

b & ZC for..m <0 ), together with a standard R-chain map € : C > M .

It may thus be thought of as a standard chain complex

+Cl+CO-—E->M—>zM

with augmentation map

(ii) A standard R-complex (C, 3) over Z 1is a resolution of the
R-module M , if it is firstly a complex over M , and if secondly the
augmented chain complex (D3.1.1) is exact.

(iii) An R-complex is espectally free if it is especially free

A standard R-complex is projective (free) if
it is projective (free) in every dimension. A standard resolution (C, 9)
of the R-module M is projective (free) if C itself is projective
(free). T4
there exists a free resolution of the trivial

For any groupnet A4 ,

A-module TA




3.1.4 DEFINITION. Let A be a groupnet. The bar resolution B = BA

for A is given by setting

(1) X, = {[¢] : ¢ € 1d 4},

X = {Ezl I e an] ta; €4, 1< 1 =ny pa; = Mg, s 1= i < n}

i) ZXn = Td e iNini= 0.0

(i) .z X X as
n n

and
ZEzl bves an] = Aa, ¥ >0 3
(iv) Bn = FXn , the regular free A-module on the set diagram
X —Z»zX — Id 4 ;
n n
and

(v} 8 B =*>B as
Sl[a] = alpal - [Aa]d ,

and

Sn[gl [ 2% l an] = al[}z2 e aé]
n-1 i
+ .Zﬁ (-1) [ql . aa.. b iy anJ

n
+ (-1) Eal g ‘ an—l] Foxme R 2.
Routine calculation shows B is a regular positive complex which is free by

definition. The augmentation map € : BO + TA 1is extended by A-action

from

e[Z] = 1[Z] for 2 in Id 4,

and then

edla] = e(alpal-[Aal) = a.lpal - [Aa] = [Aa] - [Aa] = O[Aal




as required. Proof that the augmented complex is exact is deferred until

(8<2:7 )
Any groupnet morphism f : A > B induces an f-chain map Bf of

augmented bar resolutions, viz. Bf;l : TA > TB is linearly extended from

Bf;l[ij = [l for 4. dm Td 4,

Bf, » B4, BBO is extended to an f-morphism from
U

be[i] = [fZils fane 75 ineTd 4 ,

and th : BAn s BBn is extended to an f-morphism from

B, fa, | --- 1@l =[fay | e | fa] for [a, | oo | @]

"
in X}7 and n=1 ., i

The technique of changing rings in Comp is next investigated: it
the obvious pullback.

3.1.5 DEFINITION. Let o : R > S be a ringnet morphism and C be a
(left) S-complex. The pullback % of C along © is the (left) R-comj

(i) (%), =°(c,} , and

(i) (%),

"
Q
o
Qo
=
S

(24 e) V> (2, 9¢) for each (z, e) in

% and n in Z.
n

& . - . . . (0] ¢ 2
Immediately, there is a canonical pullback projection 0* : "C > C which is

a oO-chain map, and any O-chain map f : D= C factors uniquely (via o(f) )
through o*
3.1.6 LEMMA. (Z) The pullback of a standard (regular) complex is

standard (regular).

(ii) The pullback of a standard exact complex is exact.

(1i21) The pullback 9 of a resolution C of M 1is a resolution of




Proof. Let o0 : R > S be a ringnet morphism and C be an S-complex.
(i) ¢ ¢ |s-Comp(z)| = %¢ ¢ |R-Comp(°z)| . If 2 =1d S then
O = {({, §) €IdR*xId S : o(4) = jlxId R .

(i1) 1f (4, e) € Ker Oan(i, z) , then ze = z and
g - . - .
3n(l, af = 1, de) = T, e) = (24:8)

so there exists R | o=
xis e ik Cn+l such that 3n+lc

o Gt g i
8n+l(1, e*) = {1, e)

(iii) Certainly C 1is a complex over OM 3 its augmentation map 1s
the pullback Terref we CO +~ M . By (ii) the augmented pullback complex

is exact. )
3.1.7 COROLLARY. If o : A > B is a groupnet morphism and € 18 @
resolution of TB then 9¢ 4is a resolution of TA .

6]

Proofs By (2.2.10), IB x=TA . (w84

3.1.8 DEFINITION. If C and D are respectively right and left

standard R-complexes they have a tensor product C ®p D which is a
standard 7Z-complex over zC @% zD , and extends the definition of the
tensor product of complexes over a ring in an obvious manner. That is,
z(C ®g D) = zC ®p zh .
(c ® D), (=) = s (c; @ D)() Vz €z(c®D)

and the boundary map an 5 (C @% D)n -+ (C @% D)n—l is the tensor extension

of

. s
3, (c; ® dj] = (8,e,) ® d; + (-, ® [ajdj)

whenever 7 + j = n .

Cliearly, 1f G hers is also a (standard) S-R bicomplex, then ( @% D




inherits a left S-complex structure from the action in each dimension on
each direct summand.

3.1.9 EXAMPLE. Let (C, 9) be a standard left R-complex and M be
a right R-module. Consideration of (3.1.2.1) determines a standard
I-complex M @ﬁ C with

z(M @, C) = M ®, € ,
Me,¢c), =48 C, ,
and boundary map lM ® 9 . Alternatively, this complex may be considered

as the image of C under the covariant additive functor

M@, - : R-Comp(zC) > Z-Comp(z (M ®, C))

3.1.10 REMARK. Functor M @% - is right exact. Since M 1is a

bifunctor R @)ZOP ~ Abnet , it follows from (2.2,15) that M @% - has a

right adjoint. By the dual of [15, I1.7.7], the functor preserves cokernels.
3.1.11 DEFINITION. Any two standard (left) R-complexes C and D

determine a hom complex homR(C, D) which is the standard Z-complex with

z homR(C, D) homR(zC, zZh) s
hom,(C, D), (2) .|‘_ homR[Ci, Dj)(z)
2+9=n
for each 2z € Zz homR(C, D) . Its boundary map & is conventionally written
with a superscripted dimension to indicate contravariance, and is given by

composition on the right. That is, fer £ 3 Ci - Dj and 2+ g =n,

n d N _ .
B 3 homR(C, D)n > homR(C, D)n+l is evaluated as &§ f = fo 3n+l « In this

circumstance & is called the coboundary map.
3.1.12 EXAMPLE. For a standard (left) R-complex C and a (left)

R-module N , the hom complex homR(C, N) is given, by use of (Al 2000,
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z homR(C, N) = homR(zC, 2

and

homR(C, N)n homR(Cn, N) 3

with coboundary map 8" f— fa for f = Cn + N . It may also be

ntl
considered as the image of ( wunder the contravariant additive functor

homg(-, N) : R-Comp(zC) ~ Z-Comp (z hom(C, m)

3.1.13 REMARK. For any standard R-module N over Z , the functor

homR(—, N) is left exact on R-Mod(Z) , since R-Mod(Z) is abelian (see

Popescu [28, 3.2.2]). Moreover, this result holds for any R-module /(A

3.1.14 LEMMA. If C 1is a left standard R-complex then & ®R C 18 a

left standard 11 ® R-complex.
Proof. Since & is a ZI ® R-R bimodule (3.1.2.ii), the left

71 ® R-module structure is inherited by the tensored complex. O

IR

Because R @h Cn Cn (ef. (2.2.11)), the tensor complex & @% C will

be written henceforth as:

z(6 ®; C)

Id T3¢ 26 o

(6 ® C),(1, &) = {a} x C, (2) @ {b} x C,(2) ® {c} xC, (=) ,

and

(6 ® €), (0, 2) = {sa} x C (3) © {sb} x C,(2) ® {xc} x C_,(2)

for each z in 2zC . The boundary map is thus

Bn{(a, e)+(b, e")+(c, eM} = (a, dete™ + (b, de'-c") - (c, 3ec")

on (5 @% C)n(l, z) and

5 {(*a, e)+(*b, eN+(*c, ")} = (*a, dete”) + (#b, de'-c") - (*c, dc")
n
on (8 @% C)n(o, z) , for each z in zC and n in Z . When (C is a

(classical) chain complex over a ring, & ® C reduces to two copies of the

algebraic mapping cylinder of the identity map C > C (Takasu [39, §11).




3.2 Homotopy

It is now possible to present two equivalent approaches to the notion
of homotopy (the 'deformable equality' of two chain maps between standard
complexes). Both definitions are subject to the proviso that the images of
the zeroes under the second map are acted on by certain specific ringnet
elements to give the images of the zeroes under the first map. This
condition is automatically satisfied for regular chain complexes, including
complexes over a ring. The first definition - complex homotopy - uses the
unit complex in a way comparable to the use of [0, 1], T and ZI in
definitions of homotopy in Top, Gpnet and Rngnet respectively. The
second - chain homotopy - is an extension of the classical definition for
complexes over a ring. Homotopic objects in R-Comp(Z) will be shown to
have the same homology: it is for this reason such homotopy classes of
complexes are defined.

3.2.1 DEFINITION. Let (C be a standard R-complex, D be a standard
S-complex and suppose 0, T ¢ R > S are homotopic ringnet morphisms with
homotopy v : 0 ~T : ZI@R+S . If f, g: C +D are respectively
0, T-chain maps such that

fiz) = w(I»], A2)g(a) ¥z € zC ,
then a v-complex homotopy F : f o~ g between f and g is a v-chain map

F : & ®p C » D satisfying
() Fn(*a, e) = f%(c) Ve ¢ Cn , n €7 and
(ii) Fn(b, e) = gn(c) Ve € Cn R S

It is thus completely determined by f, g and

{F(%c, 0) :c€C _,,nc¢ Z}

3.2.2 DEFINITION. Let C be a standard R-complex, D be a standard

S-complex and suppose 0, T : R > S are homotopic ringnet morphisms with




homotopy V : 0T : ZI®R>S . If f, g : C—>D are respectively
0, T-chain maps such that
fla) = v([*]1, Az)g(2) Vz € zC ,

then a V-chain homotopy G : f~g between f and g 1is a set

G = {Gn : n € I} of o-chain morphisms

Gae Gl > ])
n

satisfying

(1) Gn(z) = fz) ‘¥z € z0', and
(i1) (3e+@d)(e) = fle) - v([*], Ae)gle) Ve € Cn AR R Al

For regular complexes (€ and D , the condition required on the zeroes by

(2.2.1) and (2.2.2) is automatically satisfied, since o

Fliag =

R AW([*], 2) = 0(£) and pv([*], 2) = ©(Z) for every < in

Td R &

Chain homotopy for complexes over ringnets extends the definition for
complexes over a unital ring in a straightforward manner. Suppose
x(1) : ZI ® K ~ K is the constant ringnet homotopy determined by the
identity Rng morphism 1 : K > K , so that x(1)([*], 1) =1 . If
Fai g OG> D Epe chain maps between the necessarily regular K-complexes
¢ and D , then

gle) = x(1)([*], L)gle) Ve €C , n € i

By definition, f is chain homotopic to g if and only if it is x(1)-
chain homotopic to g .

3.2.3 THEOREM., Let C be a standard R-complex, D be a standard
S-complex and suppose o, T : R + S are homotopic ringnet morphisms with
homotopy Vv : o~T : LIQR~>S . If f,g :C~>D are respectively

o, T-chain maps such that

2

f(a) = v([*], A3)g(z) Vz € zC ,




then f 1is v-complex homotopic to g <if and only if f is V-chain

homotopie to g .

Proof. (i) Suppose G = {Gn : n € I} is a v-chain homotopy between

f and g . Generate F : §®C > D by v-action from

(05 &) = fz) Yz € zC ,
RS 2) Slgla)s. Ve €126,
Fn(*a’ e) = fh(c) Ve €C , n € T
Fn(b’ e) = gn(c) Ye € Cn s o
and
Fn(*c’ e) = Gn_l(c) Vorgios Jup o € Z.
Then
oF (*C, ) = G, _,(e)

f_1(e) = V([#], de)g, ,(e) - G, ,3(c)

Fn-l(*a’ e) - Fn-l(*b’ e) - Fn—l(*c’ de)

Fn_la(*c, o) We & Cn— e

l 2
and F is a V-chain map.
(ii) Suppose F : §®C > D is a Vv-complex homotopy between f and

g s Define G ¢ C_ D to be
n n n+l

Gn(c) = Fn+l(*C, e) Ve € Cn LN e

Then

G (re) = F (%, re) = F ., ((T01, »).(xc, e))

v([o], r)Fn+l(*c, e) = o(r)Gn(c) >

and Gn is a o-morphism. Finally, for all e in Cn 3




S

(3¢ +e,_,9)(e) = 3F, ,(#c, c) + F, (%c, 3e)

Fna(*c, e) + Fn(*c, 9e)

Fn(*a, e) - Fn(*b, e)

e v([*], Ae)g, (c) . O

In future the distinction between complex and chain homotopy will be
ignored: chain maps will be v-homotopic and context will determine which
definition is in use.

3.2.4 LEMMA. Homotopy is an equivalence relation on chain maps
between standard complexes.

Proof. Let C be a standard R-complex and D be a standard
S-complex. Suppose P, 0, T : R~ S are ringnet morphisms which are
homotopic via W : p~0 : ZI®R>S and Vv : 0 ~T: 71 @ RS,

Supposes fy gy hs =Dy are respectively p, 0, T-chain maps for which

f(2) = w([*], Az)g(z) and g(z) = V([*], Az)h(2)
for alls Sz ARt ZOW

(i) Since x(0) : 0 ~0 : ZI®R > S is the constant homotopy
determined by o , whence x(0)([*], Az) = 0(Az) for 2z in Z@ = i

follows that g ~ g wia the induced constant x(0)-homotopy

X(g) : 6§®C~>D with X(g)(*c, e) = glze) . For then,

X(g)a(*c, ) = X(g)(*a, e) - X(g)(*b, e) - X(g)(*c, dc)

gle) - x(0)([*], Ae)gle) - g(ze)

g(ze)

X(g)(*Cc, e) .

(ii) There is a symmetric ringnet homotopy V : T ~0 : ZI @ Rr S

with (081, ) =w([»*];4) for 4 dn Id.R . Since

n(z) = V([*], A\z)g(z) for =z in zC , the symmetric V-homotopy

F:hog: ®C>D determined from the v-homotopy F : go~h : 6®C > D
is generated from

F(*c, ¢) = F(c, ) , Ye €C , n & z
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(iii) To each up-homotopy F : f~g and v-homotopy G : g=~h
there is a uv-homotopy H : f~h . For f(2) = uw(l*], Az)h(2)

immediately, and, with

H(*c, ) = F(*c, ¢) + U([*], Ae)G(*c, ¢) 3
3H(*c, c) = dF(*c, ¢) + u([*], Ae)3G(*c, e)
= F(%a, ¢) - F(*b, e¢) - F(*c, 3c)
+ u([*], Ae){G(*a, c)-G(*b, e)-G(*c, 3c)}
= f(e) - u([*]1, Ae)g(e) - F(*C, odc)
+ u(L[*1, re){g(e)-v([*], Ae)h(e)-G(*C, dc)}
= f(e) - w([*1, Ae)h(e) - H(*c, 3c)
= Ha(*C, c)
Hence H is the requisite pv-chain map. o

3.2.5 EXAMPLE (Contracting homotopy). Let C be a standard
R-complex. A contracting homotopy s for C 1is a x(1)-homotopy
s : 1~0 between the identity 1 : C -+ C and the zero chain map

Qs @ > (¢, It thus censists of & 'Set & = {sn tn € Z} of standard

R-morphisms e Cn = Cn+l satisfying ©9s + sd = 1 .

3.2.6 LEMMA. If a standard I-complex has a contracting homotopy it

18 exact.

Proof. Let s = {Sn : n € I} be a contracting homotopy for the
standard Z-complex C . For each 2z in zC consider ¢ in Ker Bn(z)
Immediately, (9s+sd)(e) = 9s(e) + 2 = ¢ , which implies ¢ € Im 3n+l(z) . Bl

3.2.7 EXAMPLE. The augmented bar resolution (3.1.4) of a groupnet is
exact. For if B is the bar resolution of TA for a groupnet 4 , a

contracting homotopy s of Z-morphisms may be extended linearly from

s [d1=1[] Vi eldd,

so(a[pa]) [a] VYa € 4,

and
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sn(aEal ] e s ! an]) = [ﬁ I a, | s l an] Va €483 Eal | .o | an] € Xn

o = b .

Routine calculation shows that €s i I SRR = T T (e 53— U= < VR )

higher dimensions, 9s + sd =1 (ef. [19, IV.5.1]).

There is a partial converse to (3.2.6), namely, that any positive
projective exact complex in R-Mod(Z) has a contracting homotopy (ef. [15,
IV, Ex.4.1]). Proof is deferred, however, until (4.2.2). Since any free
standard A-complex is a free standard Id A-complex for any groupnet A4 ,
and TA is a projective Id A-module, this partial converse immediately
implies the next result.

3.2.8 COROLLARY. For any groupnet A , any (regular) free
A-resolution of TA has a contracting homotopy. O
(This contracting homotopy consists of 1Id A-morphisms. )

3.2.9 DEFINITION. Suppose C is a standard R-chain complex, D is
a standard S-chain complex and R ~ S with homotopy equivalence o : R = S

and homotopy inverse T : S >R . Let v : To 0« lR and

p:oo Taxlg . Then C has the same homotopy type as D (or, is
homotopic to D ), written C =~ D , if there is a o-chain map f : C > D
and a T1-chain map g : D +~ C such that

(i) g o flz) = w[*], Az).2 Vz € zC ,

(ii) fo g(z") = uw(l+l, Az").2" V¥z' € zD , and

(iii) g o f is v-homotopic to lC and fo g is yp-homotopic

to lD ®

Homotopy type is clearly an equivalence relation. It will be shown in
(4.2.6) that homotopic groupnet morphisms f, g : A > B with homotopy
0 : f~g induce o-homotopic chain maps Bf ~ Bg : BA > BB on the

augmented bar resolutions.
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3.2.10 EXAMPLE. Homotopic groupnets have augmented bar resolutions
which have the same homotopy type. For, if f : A>B and g : B > A are

groupnet morphisms with homotopies o : g o f o~ lA and. T =2 f o g~ lB 5

then by (4.2.6) there is a o-homotopy

B(g o f) ~B(1,)
and a T-homotopy
B(f o g) ~B(1,} .
By definition, B(g o f) = B(g) o B(f) and B(lA) =1y -

3.2.11 LEMMA. An additive functor F : R-Comp(Y) =+ S-Comp(Z)
preserves homotopy.

Proof. Suppose G : f~g : C > D where ( and D are standard
R-complexes over Y , and f and g are standard R-chain maps. Then

L Cn > Dn+l’ n € I} satisfies

G + Go =f-g .

Hence

F(aG+Gd) = F(3G) + F(GI)

F(3)F(G) + F(G)F(?)

]}

F(P) - F(g) .

Since (Ff)(z) = (Fg)(2)

2 fop allstg AR 4

FG

{Fe : FC, > FD 15 1 € zZ}

is the required homotopy. This result holds whether F is covariant or

contravariant. O

3.3 The Mapping Cylinder

The construction in this section of a manageable free resolution for
graph products provides the main tool used in the rest of this work.

3.3.1 DEFINITION. A complex diagram (D, R, C) consists of a




directed graph D , a ringnet diagram (0, R) , and a composed covariant
functor

C o R : D~ Rngnet + Comp
subject to

(i) Co R(v) € |R-Comp| for v in D and
(ii) Co R(e) : C o R(Xe) » C o R(pe) is an R -chain map for

2 ST

It may thus be considered as a collection of complexes

{CU ¢ IRv_Compl v € D} and a collection of chain maps

{Ce : Cke > P : ¢® is an Re-morphism, e € D} .

It is a standard/regular/projective/free/exact complex diagram when ¢’ is

a standard/regular/projective/free/exact complex for each v in D , and,

in the first two cases, when ¢° is a standard/regular chain map for each
el Tanr D
3.3.2 DEFINITION. A o(D, R)-mapping cylinder
u: (D, R, C) » w(D, R, C) for a complex diagram (D, R, C) comprises
(i) a representation ¢ : (D, R) > o(D, R) of (D, R) (see
(291.10003

(ii) a o(D, R)-complex w(D, R, C) ,

(iii) a ov—chain map uv : ¢” > w(D, R, C) for » in D , and

(iv) a oe—homotopy ue : uke o~ upe o ¢ for e in D,

which is
(v) wuniversal with respect to all constructions already
satisfying conditions (i)-(iv).
Any construction satisfying conditions (i)-(iv) is called a o(D, R)-
representation of (D, R, C) . Once o(D, R) has been prescribed, the

mapping cylinder may be considered as a homotopy colimit 'with respect to
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A constructive proof of the existence of mapping cylinders follows. It
corresponds to the process in Top of adding a handle to the union of
vertex spaces for each edge of the directed graph, and identifying its
initial boundary with the source complex and its terminal boundary with the
sink complex. Hence the name 'mapping cylinder' (ef. a8 . HE gl e
mapping cylinder will also be shown to be the algebraic mapping cone of a
suitable chain map.

3.3.3 THEOREM. For any representation O : (D, R) > S of a standard
complex diagram (D, R, C) , there ewists a o(D, R)-mapping cylinder
W w0, R, C) > Mg marecienr, M is a standard S-complek.

proof. Let (D, R, C) Dbe a standard complex diagram and
g v (05 R > 5 bea representation of the ringnet diagram (D, R) . Some

simplification of notation is first necessary. For each e in D , Ee

represents a subscripted copy of the unit Rxe—complex £ . Morphism

GU - Rv + S determines the right pullback s’ of S which is an S—Rv

bimodule. Similarly, homotopy o, : 11 @)Rke + S determines the right
pullback g€ of S which is an s-11 @)Rke bimodule. Hence the RU—

tensor product sY @b CZ is a left S-module, as is the ZI ® Rxe—tensor

product g7 @2 (52(3 Cke] . Element ((s, Ae) , c) of & @b CZ - with
n

ps = ov(kc) — will be written (s, ¢) ;3 element ((3, GIELS Ac)e), (d, c))

e Ae . r e
of S @2 {Ee ® C }n = with @8 = Oe([l], Ae) opeRe(Ac) will be

wpitten (s, d, ¢, e) for d in {a, by ek § and similarly element

((s, (01, Xe)e), (xd, @)) » with ps = 0,([0], 4e) = oy (Ae) , will be

wpitten (&, #d, €5 €) - Thus, for example,
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(5. *d, .0, €)= (soe([*], Ae) ., de 2. e) (D3.3.1)

in this terminology. The construction now proceeds.

(i) For each e in D ,

7721 1§ [ Ae Ae
Z[Se ®, (EQ®C' ]] = Z[S ®, C ]
under the identification (g, 0, 2, e) V> (g, 2) for g in Z§ and z in

A - .
zC € . Define an abelian groupnet Mn as follows for each n in Z . It

has identity set

M, = \/ z(Sv ®, Cv] /<(q, z2) ~ [qo ([*1, A2), Ce(z)],
VED .

¥(g, 2) € z(ske 8, c)‘e], e ¢ D> ,

written 2zM for all =n in Z.

Set Zv =27Zn ZLSU @% Cv] for each Set equivalence class Z of

zM , and each v in D . Then let

. v v e Ae
Mz = || [s ®, Cn](z) ® |1 [s ®, [se®c U(z)/

zEZv zEZAe
V€D e€D

A A
<(s, o) = (5, %2, cs ), Vg, @) €5°®, CF s e €D

e
[s*, Ci(c)] = (s*, b, ¢, €), V[s*, ci(c)] g 5 ®e 6P, e € D> (D3.3.2)
for each Z in zM and n in Z . This equation may be simplified by

virtue of (D3.3.1) to

ol v v Ae Ae
M (2) = | [S ®, cn](z) ® [S @\ cn_l}(z) x {e} . (D3.3.3)
2€Z zEZA
v e
v€D e€D
The left S-module structure on each of the zero sets Z(Sv @b Cv]

determines a well-defined left map A :2zM>IdS§ . Similarly, the left

S-action on g @b Cz and S° @% [Ee @)Cke] is compatible with the
n

relations in M (Z) , so that Mh is a left g-module.
n




(ii) Boundary map Bn - Mn 3 Yas is induced from the boundary maps

il
on the direct summands, as they also are compatible with the relations.
That is,

g, ) = (a, 3e) ,

3(s, (¥)d, o, e) = (s, 3((»)d, 8]s e »
o d 3in {a, b, £} . Under The isomorphism of (D3.3.3) the latter

equality reduces to

s, c; e) = (8, ) - (soe([*], Ae) Ce_l(c)} - (s, %, e)

n

e

; Ae A
for all (g, ex.@) dm S @ﬁe Cn

lx{e}.
Routine calculation shows an is a well-defined S-morphism and that

(M, 3) is a standard S-complex. It remains to prove that (M, 9) is
actually the mapping cylinder; this is more apparent when M is written

in the form (D3.3:2).s
(iii) Set uv s ¢V + M as
7 n n
uz(c) = (ov(kc), c) L N ED o mER,
so that for » in Rv :
v % 3 v v
W (re) (o,(Ar), re) = (o,(r), e) (in s ®,C, )
v
ov(r)un(c) b
Since apv(c) = B(OU(AC), c) = (ov(kc), Bc) = uva(c) . pv is a cu—chain

map as required.

] e Ae .
Civ) Lek W [5(8 C )n > Mn be given by

Wind, ) = (0,([01, Ae), *d; e e)




e
wid, o) = (0,([13, Ae), d, o, e)
Eow & An {8, b, e}, g i D amd m in L. This is a Oe—chain

map. Since

ui(*a, e) = (0,01, Ac), #a, c, e)
= (oxe(kc), %, c, e)
= (0,,(2e)s ©) = W0 ,
and
pi(b, e) = (0,([11, Xe), b, e, e)

(opeRe(Xc), b, ¢, e)

e . pee
[opeRe(XC), Cn(c)] =u C ),
e ol Ae pe .
1° is the requisite oe-homotopy such that Y o~ U ¢® . Thus (M, 9) is

certainly a o(D, R)-representation of (P, R, ) . It must now be shown

to be universal.
(v) Assume v : (D, R, C) >N is any o(D, R)-representation of
(P, R, C) , whether N is standard or not. It is necessary to find an

G-chain map © : M > N which satisfies

¢’ e
uv VU Yv € D , and t?// \\ye Ne €D .
MTN MTN

Por seh © in By om dm Ty 8 AR zc’  and [{gy )] 2 & 4 the
Zero q.vZ(z) in 2zN is well-defined. Hence the S-morphism

v
0, : Mﬁ(Z) - Nn(q.vn(z)}

o
o

[

ven by




v )
On(s, e) = s.vn(c) Ye € Cn(z) g ens(g)s

e A
Gn(s, c, e) s.vn(*c, e) Ve € Cnfl(z) s & € 8(g)

satisfies all these requirements. In fact, it does so uniquely. Thus
w4, By Cy+ M igm o(D, R)-mapping cylinder for the standard complex
diagram (D, R, C) . By definition any two o(D, R)-mapping cylinders of
(D, R, C) are isomorphic as S-complexes, by a uniquely determined
isomorphism. The mapping cylinder constructed above (D3.3.2), 0¥ 2ts
isomorphic form (D3.3.3), will be termed the o(D, R)-mapping cylinder of
(0, R, L) . O

In fact, there is always a o(D, R)-mapping cylinder for any complex
diagram (D, R, C) and ringnet representation ¢ : (D, R) = (D SRS T
is found by indexing the zeroes of (3.3.3.i) by dimension and then showing
the (suitably altered) morphisms of (3.3.8.11, dii, iv) are well-defined
on the zeroes. Proof is no more difficult than above, but the added detail
is unnecessary for an understanding of the mapping cylinder construction,
and the result is not required below.

3.3.4 LEMMA. The mapping cylinder is an algebraic mapping cone.

That is (ef. [19, p. 461); if WM : (D, R, 0y > ¥ is the o(D, R)-
mapping cylinder of (3.3.3), then there exist S-chain complexes K and
and an S-chain map f : K > K' such that

= !
M=K ®K , ¥n€l,

5(k', k) = (9'k'+fk, ~9Kk) .
n in 1 , define a standard complex diagram

R, C) by

(efs £3:3.2.4))5 and
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Let K : (D, R, Cn) > K' be the o(D, R)-mapping cylinder of (D, R, Cn)

Thug, for all »n in Z 4,

21"
K (2)

™ ,

11 (s” ®, CZ](Z) VZ € zM
zEZv

veD

K’;(z) {0 (sxe ®, C:\le}(z) x {e} VZ € zM ,

zEZke
e€D
and the boundary map of K" in dimension 1 is

8?(3, e, e) = (s, e) - [soe([*], Ae) ., Ci(c)

The S-complexes (K, 3) and (X', 3') are

Bé s (85 o) =& (8, e) ,
Kn 3 K? g
and
an « (o, oy 2)+* (B, %2y a) .
Boundary map Bl = {8? - Kn = Ké} is an S-chain map X = K' since

a'al(s, e, e) (s, 9c) - [soe([*], Ae), GC:(C)]

(s, 092) - (soe([*], Ae) , Ci_l(ac)]

Bl(s, d¢c, e) = Bla(s, R

By (D828.8),

e 70
M Kn ® K

and from (3.3.3.1ii),
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(s’ "), (s, 5 @)

((S', de")+(s, c)-[soe([*], Ac) , Ce(c)}s -(s, d¢, e)

(3'(s’, 43 (s, e, €, -3(s, c, e))

as required. O
For the next lemma, replace (X, 9) in (3.3.4) by (K+, o) , where
K; = Kn—l and 8; = —an—l o K; > K;—l Eor el e iy ane L
3.3.5 LEMMA. There is a short exact sequence
g sk il 4t
in S-Mod(zM)
Proof (ef. [19, p. 461). The injection % : K' > M is immediately

an S-chain map.

The projection p

M K+

of the second coordinate;

p((s’, @), (8, e)) = (8, e; €) » satisfies

a+p[(s', cl)y (85 es e)) = -(s, doc, e)

p(a’(s', C')+8l(s, e, e), -0(s, c, e))

1}

pa((s’, "), (s, ¢, @)

and so is an S-chain map. Since S-Mod(zM) 1is abelian, the sequence

+ o 5
Ké > Mn >~ Kn is short exact for all n in Z (see, for example, [28,

2.3.5]), as required. O

Obviously, complex M is not a direct sum, so the short exact sequence

of (3.3.5) need not split.
The next theorem is essential to any concrete use of the mapping

cylinder. For any groupnet diagram (D, A) and complex diagram

(D, ZA, C) , it determines which properties of (D, ZA, C) are inherited

by the m(D, A)-mapping cylinder. Despite the complexity of terminology and

detail necessary, it is hoped the arguments used will appear straightforward.

3.3.6 THEOREM. Let (D, A) be a groupnet diagram with mapping

(D, A) > G and let (D, ZA, C) be a standard complex diagram.

cylinder m :
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Let m : (D, ZA) + IG be the induced representation of (D, ZA) and let
u: (D, ZA, C) > M be the G-mapping cylinder of (D, ZA, C) . Then
(<) if (D, ZA, C) is regular, M <is regular;
(i2) if (D, ZA, C) <is free, M 1is free;
(1i2) if G 1is a graph product and (D, ZA, C) 1is exact, M
is exact; and

(iv) if G 1is a graph product and ¢’ is a resolution of TAv

for each v in D , then M <is a resolution of TG .
Proof. (i) Complex M is standard by definition, so an isomorphism
zM 2 1Id G

of G-modules is required. Now (ef. (2.2.22))

226° = {(¢, mv(k)) € zIG : k € 14 Av} ’

z[ZGv ®, cv] = {(t, m (k) €216 : k €Td A} /

(s m () ~ (&5 m(D) & Ak, 1) # 8) .

2 = {(i, m (k) €2LG : k € 1d A4, v €D}/
(@, m(o) ~ (&, m(D); Ak, D # 8, v €D,
(25 my (D) ~ (&, mpeAe(j)); e €h) .

Define ¢ : zM - Id G from

z(i, my(K) = AMes m(R)) =13

it is a well-defined G-morphism on these zeroes since

z(g. (ogs m (K))) = T(Ag> m(K)) = Ag

g-Pg »

and is clearly surjective. If C(i, mv(j)) - C(i, mw(k)] , then
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n
G(mv(j), mw(k)) + @ and there is an element g = | Py in
It

G(mu(j), mw(k)) , where each Py has one of the forms

(m a) ,» & €4, & vy €D 4
v, v, 1
_ . KBTI Sy € X4 A FRAT SR
P; =1 ¢ Ael 7
-1
kmez([* s fg e ¢ € I4 Akez s e, €D . (D3.3.4)

Considered as an element of zZIG ,
(i, m (R)) = (&5 m(D). Opys opy) oo (5 op,)

while as an element of zM ,

Qﬂu (Aa), m, (pa))
n n

(myg (@25 7o 4, (@)

"
e

()\pn’ ppn)

(mpe 4, (@), m, ()
n n n

§

(mv (Aa), m, (Aa))

n n

| bmy, (@5 m, (@)
n n

~o

(mpe Ae (q), m
\ non n R

(> 20,)

Hence in zM ,

(&, m () = (2 ep,)
b (7:’ Apn) . (7:’ ppn—l)
~ (i, Apl) by induction
= (¢, m(D) >

and ¢ is an isomorphism.

(ii) Suppose (D, ZA, C) is free and that CZ is the free left
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Av—module with basis

Voo ¥ —Ee® Airaa .
n n n v

That is, for each 2z in zc? . # im D and % In Z , by (2.2,18),

c(a) = J_}]_ 24 (Az, Azz) x {x} .
(Az,Xzz)ezld, | ©

)
XEX
n

(Az,Azx) . 2=2

Define
X = [ Xv] Y [ {[xle] sy 6 XAe }] >
We Nofkpm ™ e\/€D e
zX =[ sz]v[ {[zle]:zézxxe}],
B pwn o ™ e\E/D e
X~ Zx
2z Xn e zXn by
[xle] — [lee] .
and

zvl—+ mv(kzv)

[z|e] — mxe(kz) .
A G-action with respect to ZM is induced on
z A

X =X —»2x — 14 G
n n n

from the map ZXn + zM given by zv P»-[mv(sz), zv] . The free left
G-module FXn over zM with basis Xn has, for each Z in zM with

AZ = % 4
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FX (2) = $at 26(2, m (Azx)) x {z} @
(& ,m,(Xza)) €226 B

xEXU
n

((i,mv(xzx)),zx)ez
V€D

26(i, my, (Azx)) x {[x]e]} .
(i,mke(xzx))EzZG 4 ) I

xGXxe
n-1

((z ,m)\e(kzx)) ,2zx) €2
e€D

The G-morphism @n - FXn o Mn extended from the map ¢n ~ Xn = Mn with

D (m (Azz), (Azz, x)) Vo € XZ R

A
(mxe(xzx), (Azx, ), e) Vzx € anl ,

¢n[x‘€] e en

has the G-morphism wn - Mn o FXn , where

V (9? (ake’ x], e) S (gmke(ake)’ [x‘e]) .
as inverse. Hence Mn is free for n in Z .

Wwhen (D, ZA, C) is a free regular complex diagram, M 1is a free

regular G-complex by (i) and (ii). For each 7 in Id G , it follows that

FX (1) = bl 26(i, m(\zz)) x {z} ®
" (m,(Xz2)) €226

xEXU
n

veD

Z¢(z, mAe(Azx)) x {[x|e]}
(i,mxe(xzx))EzZG

re
xeXn_l

e€D

in this case.

In the next two sections of the proof it will be assumed that G 1is a
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graph product; that is, that Ae is a monomorphism for each e in D .

(iii) Suppose (D, ZA, C) 1is exact. Since the maps m, : A HG

are embeddings [7, Th. 6.2], the right pullback ¥ of 16 along m_ is
v

a free right Av-module (2.2.22). In the terminology of (2.2.22),

o va for each v in D , where

P {aB(K)J- € G(d, mv(iK)) 1 J €I1d G, K €K, B(K)j € Y;} 5

Ku is the set of connected components of Av , and iK is a distinguished
. - K
identity of the component Av of Av for each k in Kv . Then

v
G" QN

IR

va @b N
in Abnet , for any left Av—module i . (gBut

14 (FX, ®, V) = {(@> m,(z)) 2) €2 X2l : Az =1, K€ k,}
and

Ex, 8 1) (G mG)s ) x L1 gy } X0
(ie) 67
. Jd J
KEKU
This implies that the complex [ZGU @% CU, 1® 8] induces the boundary map
le'FX@Cv—>FX®Cv and hence that FX@CU 1 X 9 ds
o v v n-1 U e
exact. Thus, for each » in D , ZGU @% Cv is exact, and for each e in

By ZGxe @ke Cke x {e} is exact. The exactness of M may now be proved

directly. Suppose

n n
v e
(g.ne)| *+ X | X (g, e €)| €Ker 9, (2)
sz:D Zgl B aEhulm=l e B n

for some 2 in zM (ef. (D3.3.3))s Then




5 {z (9,5 acz)]Jr 3 Lz (g,c)l

v€ED \L=1 e€D

' e%) [Pgl [gpme([*], Acp)’ Ci‘l(cp)” : e%D L 1 (gP’ Hogs 6)1 %

This implies

n
e
bal ¢ D (@ B2 ) =0 in Zer ®A Cke for each ¢ in D , and
p:]_p e n-2
(b)
n n
¥ o)+t T |5 G, 0)
2. g,s 0OC W2 ), g . €
=1 "% 99 e lp=l p
Ae=v
n
215 (o). ()]
TR, gm*,c, (&)
e€d |p=1 2 # n-1+p
pe=v

o : v v )
=.0 «an  ZG @b Cn—l fopseach viving D &

From (a) there exists for each e in D , an element

o : e e
g, = q;l (gq, cq) indZe &, L
such that
ne
8g, = = (9, ¢,)
Let
ke e ! pe pe
92 = qz& [gqme([*], Acq), Cn(cq) in +Z6 @be Cn

Fom each™ e “in *DF ., Sp et aissid

k n
e e
-B(Z (9,> e)] =g, rgi+ X (g, 5 ) -

g=1 p=1 p

The boundary of this equation in M as

T4




il >

n
e
7 = =Bg +* gt + 9g,_ -~ ( m ([*], Ac g e
e e e pZi gp e( p)’ n—l[ p) 2
so that (b) may be rewritten as
n
Y oloppe)t T g 3 @,
d g13.iC%) & g, - gt =0 in 16 Q6 C
=1 s ge) L dep Vs
Ae=v pe=v
for each v in D . There is th ; e i
o e in ere is thus an element g, in J4¢ @b Cn+l which

maps to this element of the kernel, for each v in D . Hence

[ %
Biz - I |2 G

g g
veD e€D \g=l L

)

in M , as required.
(iv) Suppose ¥ is & TAv - Tv-resolution for each » in D , so

that for each e in D ,

CO Tke
cPé — 1
0 & “pe

because Cg is an Ae—morphism and the complexes are regular. Then
(D, ZA, C) determines an exact regular complex diagram (D, ZA, B) which
has for each » in D , the éugmented complex c’ » TU for BY , and for

saah e In D the Ae—chain map

and
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Denote by M* the G-mapping cylinder of (D, ZA, B) . Then the diagram

9% 5
.+M*+...->ME*L-—1>MS—€—->M*1->IdG

g w¥ Mn T s > Ml'—gz* MO o s e

in G-Compreg has an exact top Tow and a bottom row exact in all dimensions

greater than 1 , by (i) and (iii) above. Further, for each 7 in Id G ,

M) = ]| 26° (1, m () B, Co(d) s
[L,mv 7)) €226
V€D
e (. . -
M*¥(i) = M (2) ® [ZG (2, my () ® T, (H]| x {e} ,
0 0 (i’mx J))EZZG Ae Ae " Ae

e

e€D
M*_(4) = 8 (i, m () ®, T (5 ,

V€D

and the boundary maps are

Bl(g, e) ai(g, e) = (g, %) ,

Bl(g, . ) = lg, e)'= [gme([*], Ae) , Cg(c)] 5

a(g, e, e) = (g ©) - (gme([*], Ae), cg(c)] - (g, 3¢, e) ,

e*(g, e) = (g, €2) »
and
e*(g, [41, e) = (g, [4D) - (gme([*], 3, Eae(j)]) g
Set
Wy(i) = 262(3, my () 8y, Ty () x le}
(i,mxe(j))ézZG
e€D

for each %2 in Id G , so that Mg(i) = Mo(i) C)No(i) . If py: MS ~ M,

is projection of the first coordinate,
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J = * 3 * .
M_l(z) MLl(L)/E No(z)
for all 4 in Id G , and Py ¢ Mfl = M_l is the canonical quotient map,
then
> M* > >yt £y >1d 6
i O sve 1 0 Y
e Mn o PP Ml . < Mb —ET* M_l > Td (G » (D3.3.5)

where s(mo) =p le*(mo, 0) s JBUE NO -~ e*NO as follows.* As in (iii)

above, assume Kv is the set of connected components of Av for v in

D , and iK is a distinguished identity of the component A; of Av for

each Kk in Kv . Thus for each e in D and k in KXe there is a
unique identity Tl ef  Id Ape such that te(K) N'Ae(iK) « There is a
groupnet diagram (D, T) with trivial vertex groupnet
7 o= {i 2Kk € K}

for all » in D , and trivial edge morphism

2 = . i .

R s Y “e(k)
for each Kk in K and e in D . It has mapping cylinder

Ae

w(D, T) = <we(*, iK), K € Kxe’ ere phe S

which is a free groupnet. There is a groupnet morphism ¢ : G > w(D, Ty

with

Y(z) iK s 7€ Id AU - mliK a1 1GHE Kv S e

2 K
Te o a € Av ANE R Kv s B ED

Y(m (@)
and

whéhiﬂ=thiQ, i €Id 4, t~E K €Ky, » e €D.

% T am indebted to my supervisor, Dr N.F. Smythe, for his formalisation of

this proof.
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A directed graph D* is defined from D and the free groups Z6° +to have

v* = {(gmv(Av), iK) ¢ G/mU(AU) XK s pg = mv(iK)} >

and
Bt = {(gmy, (4))s %> €) € 6/my (4))) x Ky, x B}
with
Momy, 4))> o €) = (am (4),)> ©)
and

p[gmxe(Ake)’ iK’ e) ¥ (gme(*’ iK)mpe(Ape)’ ie(K)) .

From (iii) above, it is possible to write

N (j) = {gm, (4, )} xT. () x {e} ,
0 (j,m 2 ) €z1G Ae Ve e (7’,() e
Ae 'k

M ICENCR)
e €D

if each coset representative g of G/mke(éke) is replaced by its coset

gmke(AAe] . If G eKer e*(j) n Ny s then

4 nle)
5 e%g Zgi pz(glmke(Ake)’ L2 e) ¥
and
n( e) . . .
e%g ZZ& pl{(glmke(Ake)’ iK)_(mee(*’ tK)mpe(Ape)’ 1e(K))} =0

in E*No(j) . Hence § determines a closed edge path in D* , and

i il v 2 i :
(97me Ure)» i) = [glmel(* i Ll] . mer[* g 7“r}moe(/loe)’ !

for a particular 1, k and e . But then iK = iK, and there exists

2 1m AK such that
Ae

(a) [ +1 . ] [*il . ]
m a) = m . T eee m sy L .
Ae ey 1 e, r

The image of this equation under Y an s ) as




3 il 5 £ T
= * . ot
e - Y ¥ By Y, o Ty
g5 r

Since w(D, T) is free, this product is reducible and there is an s = r-1

such that

( +1 . ] [ ) ]'l
m gl i = Ml LT 7
es+l s+l es 8

The process continues, so that g =0, and since €* is an epimorphism,

NO = e*(NO) as required. Hence the bottom row of (DB.3,5) is exact. But

M . 2 TG in G-Modreg under the G-morphism n : (g, [J]) +> [Ag] defined

whenever j € Id A, s 4 € G and mv(j) = pg + For
n
g =1 Py s
1=1
so that by (D3.3.4),

pyom (a), [pa]]
n

r‘—\ﬁ
o~ S
" 1
b

Y
=~ S
1] 1
- =

pyem, ([*], q)» Eﬁen(q)]}

n

Cgy B3R W

,,
e
=~ B
1] 1
——r

pyom, (71, @) 1a]]

Pys [Aa]]

ﬁ
e,
o~ S
" I
——r

n-1
(TT Py EqJ] in M_, ,

ﬁ"lr oy I, (@)

=1

(Ag, [k1)

by induction, where Ag = mw(k) for a unique k in Id Aw A Bhaitl s )

is a monomorphism. It is clearly an epimorphism and the proof is complete.l

3.3.7 COROLLARY. Let (D, A) be a groupnet diagram with graph
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product m : (D, A) > G and let m : (D, ZA) > IG be the induced

representation of (D, ZA) . Let (D, ZA, C) be a complex diagram in which
¢’ is a free resolution of the trivial Av-module Tv for each v in D .

Then the G-mapping cylinder w : (D, ZA, C) > M has for M a free G-
resolution of TG . Moreover, 1f G* 1is the group of loops at a selected
identity 1 of 1d G - the classical case - then M(Z) <is a free G*-
resolution of I .

Proof. Suppose T 1is a maximal tree in the connected component Gi
of G containing < . Each element g of G(i, mv(j)), for any J in

Id Av , may be uniquely written in the form

g = g*t. -
t,mv(g)

fonp™ g* in,. GY and ti in T . The classical result follows from

am (J)
(3.3.6) when every free generator & of Mn is replaced by the element

ti Ax[x] of Mh , and corresponding adjustments are made to the boundary
2
maps . a

A simple example shows that it is not necessary that G be a graph

product for the mapping cylinder M of an exact complex to be exact.

Let

0

(D, A) = {4, 4, : A + 4} s

wheme A ei=t (ke il el s ang Ae(t) =1, and let & = m(P, A) . Then if

e me([*], pod )y




¢ = <1;, ¥ o Tpe = 1>
e e e
2 G 3 )
e
=7 since A% = ok =0 ,
e e
As m. : t+— 1 is not mono, G 1is not a graph product. If CO after

0

augmentation is the free Ao—resolution of =L %
0> ZA[t] » ZA [0 > Z > 0

with Bl[t] = (¢-1)[0] , then g% CO 4 CO may be extended from

cé[o] = [0] and Ci[t] = 0[0] . The G-mapping cylinder M of (D, ZA, C)

is a free regular G-complex
0 > Z6[t|e]l — Z6[t]1 ® Z6[o|e] — Z6[01—> 0 ,

with

0,[t]e] = [ - » uC5[t] - m (t-1)[0]e] = [¢] ,

al[t] mo(t—l)[o] = o[o] ,

and

3,[0]e] = (1_*9)[01 g

It follows that the augmented mapping cylinder is the direct sum of two

exact sequences

0 + 26[t|e] ——5— 26[t] ——5— 0
2 1

and

j ———— ZG[*e]——-> ZeL0]—+ 2+ 0

’
al
where [ ] = [0]e] , a7+, = -(*e—l)[O] and e[0] = -1 .
On the other hand, an equally simple example shows that exactness at
each vertex complex is not sufficient to ensure exactness of the mapping

cylinder.

Let
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O

|=e

(D, A) = {4, 475 4> Af 2 Al} ;

where AO S )

I
~
h =S
1
o

Y Z and Ae(t) = Af(t) =0 e T

G = mlD,WA)ES i me([*], [0]) and *f = mf([*], [0]) , then

G = <t, 8y *ys o *;lt*e =1 = *}lt*f>
— = *e, *f: )t
which is a groupnet of the homotopy type of the free group <s, *;l*f - >
on two generators (ef. Pp. 15). Here m, : t+—1 and m : 8F*> &, and

0 1
G is not a graph product. The augmented free resolutions

CO

0¥ ZAo[t] > ZAo[O] 70k o

and

cl

0 »~ Z4,Le] = ZA,[1] ~ Z~>0
with chain maps i Cf : CO > ¢t extended from Cg([o]) = Cgk[O]) = i1

and Ci[t] B C{[t] - 0[s] , determine a complex diagram (D, ZA, C) with

augmented free regular G-mapping cylinder

M=1d G > M2 = Ml o> MO + TG ~ 1d G .

Have. J8.06 = 10,1k

M,(1) = Z6(1, 0)[t|e] ® 26(1, O)[t|f] »
M, (1) = Z6(1, 0[¢] ® 26(1, 1)[s] ® ZG(1, 0)[0|e] ® ZG(1, 0)[o|f1 ,
Mo(l) - 76(1, 0)[0] ® Z6(1, L)[1] ,

and the two-dimensional boundary map is extended from
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0[] = [£] - » WicEL£] - m(¢-D)lole] = [¢] ,

and

,0¢171 = [8 = *ict] - my(¢-Dl0|£1 = [£] .

Hence [t|el - [t|f] € Ker 3,(0) , but Im 3,(0) =0 in My(0) , and the
mapping cylinder is not exact.

As an illustration of the case in which the conditions of (3.3.7) are

satisfied, the next example is worked through in detail.

3.3.8 EXAMPLE. Let

3
D=e £y
1
(D, A) = {4,, A3 4, Ap i Ay >4},
where Ae and Af are monomorphisms, AO = (xi, s gt =L )

Al ~ F/R is a torsion-free one-relator group (which may be free);

Al = (yj, OB M L

If G = m(D, A) then

G = <xi, yj, T s T =g =m * *f :
r *—lx.* = A (x.) *-lx.* = A (x ), I =2 < n>
Mo eE e EiSEE itk
= P, B %is #a's B B 0 t"lA(x)tzA(x)1<7,<n>
-yjalEJ-m, n Mgy Mpx Ta e I 2 FE ) = =

and the loop group G* at identity 1 is isomorphic to G/<*e) :

x el [ .
G = <yj’ = i= b s & Ae(xi)t = Af(xiJ’ Jos = ﬂ> .

By the Lyndon Identity Theorem it follows [18, §11] that the complex

m
Cl =0 > ZAl[r] > J?l ZAl[yJ] > ZAl[l‘i - 0
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with boundary maps

and
0,] = (b0

given in terms of Fox's free differential calculus [9] in IF , is a free

resolution of Z . Together with

n
® =0+ ® 1 fx;] > nulo1-0,

=1
and chain maps ¢® and Cf extended from Cg[o] = C{[O] = [ 5

m 0A @r.) m 9A ( )
T e o e @]mﬁw-zi—ul
J=1 e
it forms a complex diagram (D, ZA, C) satisfying the requirements of
(3.3.7). The G-mapping cylinder M of (D, ZA, C) is an exact free

resolution of TG , with

n n
My(1) = 26(1, DIr]1 ® L@ Z6(1, 0)[xi|e]] ® L@ i, O)Exilf]
e p=1
m n
M (1) = [@ Ze(1, 1)[yj]] ® L@ Z6(1, 0)[‘”7:]] ® 26(1, 0)[0]el ®
=1 p=1
Z6(1, 0)[0]|f1 ,
Mo(l) = 26(1, 1)[1] ® Za(1, 0)[0] ,

and boundary maps

R oy
ay]%H@W¢
o, [ 1e] = [5;] - % C5 ] - myle;-1)l0led
0, e, 17 = [;] - +piy¢l ] - my(e;-1) L0151

al[yj] : ml(yj—l)[l] >

and
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Bl[xi] = mo(xi—l)[o]
Since *, is a maximal tree in G , M(1) is a free G*-resolution of Z ,

freely generated as a G*-module in dimension 2 by

{[r’], *;l[xile], *;l[mi‘f], e i n} 3

{[yj], 1<g4=m, *;l[xi], IS =, *;l[0|e], *;l[om} ;

IA

in dimension 1 by

and in dimension 0 by {[l], *;1[0]} 8 //

The essence of Theorem (3.3.6) is that the process of taking mapping
cylinders is a well-behaved one which preserves many of the properties of
the original complex diagram. In particular, for groups G known to be
graph products, the mapping cylinder provides a very simply defined G-free
resolution given in terms of the vertex resolutions. The only added
structure arises from the diagram itself; as a result the mapping cylinder
resolution is much more amenable to computation than the bar resolution
BG or the resolution defined by Lyndon [18, §5] from a presentation of G
with a complete set of identities.

As was mentioned above, the mapping cylinder is not generally a
direct sum of complexes, in contrast with Trotter's group systems [u0], so
its homology cannot be expected to split simply in terms of the homology of

its vertex complexes. Chapter 4 examines the relationship between the two.
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CHAPTER 4

THE MAYER-VIETORIS SEQUENCE

4.1 Homology

It is possible to measure the deviation from exactness of a chain
complex in any abelian category by means of the homology objects of the
complex [20, VIII.u4].

4.1.1 DEFINITION. Let (C, 3) be a standard (left) R-complex. The
homology module H(C) of C 1is the standard (left) graded R-module

{Hn(C) : n € Z} with zH(C) = zC and nth homology module Hn(C) defined

by

Hn(C)(z) = Ker Bn(z)/Im 3n+ Gz) Nz 20 .. nyE L

1
Its R-action is induced from C .

Thus complex C is exact if and only if Hn(C) = z0 for each 7n in

When © : R > S is any ringnet morphism, D 1is any standard

S-complex and f : C > D is any O-chain map, the square

)
Cn g Cn—l
fh lfk—l
&y T Ppua

ensures that f induces a well-defined o-chain map of graded modules
H(F) : H(C) » H(D) , the induced homology chain map. Under this definition,
H : R-Comp(Z) > R-Comp(Z)
is an additive covariant functor, the homology funetor, on each such
abelian category.
Homotopic chain maps induce homology chain maps which differ only by a

'change of base point isomorphism', as the following lemma shows.
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4.1,2 LEMMA. Let C be a standard R-complex, D be a standard

: R > S are homotopic ringnet morphisms with

If. s @

S-complex, and suppose T, T

homotopy Vv : 0 ~T : LI®R >S5 . : C > D are respectively

o, T-chain maps with

f(z) = vW([*], Az)g(2) Vz € zC ,

which are v-homotopiec, then

H() = v(I[*1, A=) o H(g) : H(C) » H(D) .

Proof. If F : fo~g , then (3F+F3)(e) = f(e) - v([*], Ae)g(e) for

alds e am E s BE e e Ken Bn(z) then dF(e) = f(e) - v([*], Ae)g(e) ,

so that
f(e) + Im 8n+l(z) = v([*], kc).(g(c) + Im 3n+l(z)) : a
4.1.3 COROLLARY. If fo~g : C=>D in R-Comp(Z) then
H(f) = H(g) : H(C) » H(D) . O

have

4.1.4 COROLLARY. Homotopic chain complexes in R-Comp(Z)

isomorphic homology modules.

Proof. If C~D in R-Comp(Z) with homotopy equivalence Pl ey )

and homotopy inverse g : D > C then H(f o g) = H[lD) and

H(g o f) = H(lc) by (4.1.3). Hence H(f) o H(g) = lH(D) and
H(g) o H(Sf) = Loy o

(Snake Lemma) [20, VIII.4.5].

A >, B ——ﬁ++ (6

4,1.5 LEMMA Suppose

is a short exact sequence of complexes in R-Comp(Z) . Then there is a set

. A
w = {wn : n € I}  of standard R-morphisms w, : Ker BS > Coker 3, such
that the sequence

Z - Ker SA -+ Ker BB - Ker BC - Coker 3A - Coker BB - Coker BC > 7
n n n n n n

with induced morphisms is exact in R-Comp(Z)

is abelian.

for each

n

in

Z.

The morphisms

w are

Proof.

Category R-Comp(Z2)
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: g
constructed as follows: if ¢ € Ker Bn(z) for z in 2zC then, since B

is an epimorphism, there exists b in Bn(z) with B(D) = e « &8s

4 G B
BAlBY = 3 (@) =0 = 8(3 b) , the exactness of the middle term ensures the

B

existence of afe) in An_l(z) for which ofafe)) = 9°b . Thus the map
w (e) = ale) + In 35(2)
n n
is well-defined. It is called the commecting morphism in dimension 7 . O

4.1.6 LEMMA (The Long Exact Homology Sequence) [15, IV, Ex.2.4]. For

each short exact sequence of chain complexes

g

4> B —Em
in R-Comp(Z) , there is a graded module morphism w : H(C) > H(D) of
degree -1 , such that the long homology sequence

w
n
vou > B (4) > B (B) > B (0) — > B, [(A) > ...

in R-Comp(Z) is exact.

Proof. Since R-Comp(Z) is abelian the proof is that of [15, IV.2.1]}
with a suitable change of notation. If w 1is the connecting morphism of
(4.1.5).s then

W (c + Tl (z)] =w (e) = ale) + Im SA(z)

n ntl n n
for each 2 iw 20 snd » in L , oud w, is called the nth <Znvariant
boundary . a

4.1.7 LEMMA. The functor H preserves arbitrary direct products and
coproducts in R-Comp(Z) .

Proof. Let {(Ca, Ba) SeRe A} be a set of standard R-complexes OVer

7 « 'Then ( Ca} B [02] and the boundary map is

o n o

T_T 3{01}4 = {Baca} . The map
¢ / A
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anT—T ga] = Kep(r‘r a]ﬁ/&m[T"T a] > T;T Hn(ca)

n+l

given by

(oghy + (T T3] @+ {o + o)

n+l A

is the required isomorphism for the product. Popescu [28, 3.1.1] gives the
result for the coproduct because H is additive. O

4.1.8 DEFINITION. If A4 is a groupnet, let M be a right A-module
and N be a left A-module. If C is a regular projective left

A-vesolution of TA , the homology module Hy (A3 M) of A with

coefficients in M is the homology module
HM ®, C) »
and the cohomology module H*(A; N) of A with coefficients in N is the

homology module

H(hom,(C, M)
By convention the induced hom complex is written

n
$
aais > homA(C, N)n-———+ homA(C, N)n+l = eiae
so that H'(A3; N) = Ker ¢ /Im Gn_l .
Proof that these definitions are independent of the choice of the

regular projective A-vesolution C of TA is deferred until (L2 ST

4.2 The Comparison Theorem

In any abelian category it is possible to compare any positive
projective complex over one object with any resolution over another object,
given a morphism between these objects.

4.2.1 LEMMA (Restricted Comparison Theorem). In R-Comp(Z) , let X

be a projective complex over C , augmented by € : X > C , and let X' be
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a resolution of C' , with augmentation map €' : X' > C' . For each
R-morphism Y : C >~ C' there is a chain map f : X > X' such that
e'f = ye . Any two such chain maps are X(1)-homotopic.

Proof. The proof uses only the categorical properties of projectivity
and exactness in R-Comp(Z) , so that of Mac Lane [19, III.6.1, III.6.2]
for the classical case applies verbatim. O

The chain map f is said to ILift Yy .

4,2.2 COROLLARY. A4 positive projective exact complex in R-Mod(Z)
has a contracting homotopy.

Proof. For such a complex P , both the identity 1 : P > P and the
zero chain map 0 : P+ P 1lift the R-morphism 1 =0 : 2> Z in dimension
o s Be Eh R 2Y, m]

The availability of a definition of homotopy of chain maps between
complexes over different ringnets enables an extension of (4.2.1) to be
made. Recall that in any category C an object P is projective 1.6 for

every diagram

/2

F

W == s

i

in C for which g is an epimorphism, the morphism f factors through
g . Further, any epimorphism in R-Mod(Z) is an epimorphism in R-Mod ,
thus: if g : M N is in R-Mod(Z) then g : M(z) - N(z) is a

surjection for each 2z in Z . Hence if f, h : N > L are morphisms in

hGz) for 2 im & 5 =nd af

R-Mod such that fo g = h o g , then f(2)

w € N(z) there exists m € M(z) with g(m) = n , so that f(n) = h(n)

4.2.3 THEOREM (Comparison Theorem). Let C be a positive complex

over M in R-Comp(Y) , for which ¢, is projective in R-Mod for each

n , let D be a resolution over N in S-Comp(Z) and let o : R>S be a
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ringnet morphism. Then any O-morphism f : M > N 1ifts to a o-chain map
g : C~>D such that eg = fe . Any two such chain maps are x(o)-
homotopic.

g

Proof. The pullback OD is a resolution of "~ in R-Comp(cz] by

(3.1.6.iii). The ¢-pullback projection g% : %) > D and the o-pullback

projection Ojl : Oy 5> § satisfy

Morphism f : M » N factors uniquely via o(f) : M > %y through Oil .

There then exists an R-chain map o(g) : C > % lifting o(f) . for which

Ogo(g) = o(f)e , and such that any two such lifting maps are x(1)-
homotopic. The proof of this result follows the usual course but is
sketched here because of the special circumstances involved.

Consider the diagram

OD——*ON‘*

Z
0 OE

in which ¢ is an epimorphism in R—Mod(OZ) and hence an epimorphism in

R-Mod . Since CO is projective in R-Mod , there exists an R-morphism

galies . ) o
(gl el > ODO lifting o(f) . If the R-morphisms o(g)k 20y Dy

commuting with the boundary maps, have been found for 0 < k < »n-1 , then

of G D ITRRE A o 0D is determined as above, since in the diagram
n n
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Q
Q

a(g9), 4
% —sm% %,
(]
9
n
a . . . .
Bn is an epimorphism in R-MOd(OZ] . Any other morphism o(k) lifting

o(f) satisfies o(g)(y) = o(h)(y) for all y in Y ; construction of the
x(1)-homotopy 0(g) =~ o(h) is similar and is not given (ef. [19, III.6.2]).

The composite o0*cd(g) = g is a o0-chain map satisfying the
requirements of the theorem. Any other such chain map % factors uniquely
as h = o*c(h) , so that there is a x(1l)-homotopy O(H) : o(g) =~ o(h)

But then the composite ¢-morphisms

o
- * s
Hn 0n+l i G(H)n ’ Cn i Dn+l 5 Dn+l

comprise a x(o)-homotopy g =~ h . O

4,2.4 LEMMA (Regular Comparison Theorem). Let C be a projective
complex over M in R-Compreg , let D be a resolution over N 1in
S-Compreg and let o : R+ S be a ringnet morphism. Then any O-morphism
f:M~>DNV lifts toa O-chainmap g : C > D with €g = fe and any two

such lifting chain maps are X(0)-homotopic.
Proof. Since g R-Compreg by (3.1.6.i), it is sufficient that Cn

be projective in R-Modreg for each 7 , for then the Restricted Comparison

Theorem may be applied in the proof of (4.2.3) to give this result. O
4.2.5 COROLLARY. The definition (4.1.8) of the (co)homology modules

of a groupnet A with coefficients in a given A-module is independent of

the choice of the regular projective A-resolution C of TA .

Proof. Suppose D is any other regular projective A-resolution of
TA . Thus in A-Compreg , (4.2.4) implies the existence of A-chain maps
f:C+D and g & D+ € lifting %he identity map TA > TA and hence the

existence of x(1l)-homotopies f o g o lD and g o f o~ lC . Hence C ~1D .
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The additive functors M @h - and homA(—, N) preserve homotopy in
A-Compneg (3.2.11), so that M® C =M ®, D and homA(C, N) e:homA(D, n)
in Z—Comp(zM @h Id A] and Z-Comp(homA(Id A, ZN)) respectively. By
(4.1.4),
HiM ®, ¢) =Hm®, D) ,
and
H (hom , (C, M)} = H(hom (D, m) . 0

4.2.6 COROLLARY. Homotopic groupnet morphisms induce homotopic chain
maps on the augmented bar resolutions.

Broof. Vilet  f. g HWAEE B S be homotopic groupnet morphisms with a
homotopy O : fa~g . If o([*],<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>