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ABSTRACT 

In this thesis I use the theory of groupnets (Brandt groupoids) to 

investigate the homology of mapping cylinder groupnets; that is, groupnets 

G which are the homotopy colimits of diagrams (V, A) of groupnets. When 

the edge morphisms of (V, A) are all monomorphisms, G is known as a 

graph product. The principal result of the thesis is the construction of a 

G-complex with universal properties - the G-mapping cylinder - from a 

diagram of complexes corresponding to (V, A) , and the subsequent proof 

t hat 

if G is a graph produat and the vertex aorrrplexes ru>e all free 

resolutions of their respeative trivial modules, then the 

G-mapping aylinder is a free resolution of its trivial module . 

An extension of the ca·tegorical approach to rings and modules is 

developed in order to provide the general result. The notion of chain 

homotopy is also extended to a form strongly motivated by the topological 

definition of homotopy. The mapping cylinder complex determines Mayer

Vietoris sequences for the homology of graph products, which in turn may be 

used to extend several results on duality groups. 

For each group in a certain class of groupnets with cohomological 

dimension two (including torsion-free one-relater groups and tree products 

of free groups ), the mapping cylinder may be employed to evaluate a 

comultiplication which gives a coring structure to the integral homology 

module of the group. This comultiplication is in turn analysed (though not 

in full generality) to provide further information about the group. 
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INTRODUCTION 

This thesis offers a contribution to the theory of homology of groups, 

appr oached from the point of view of groupnets (Brandt groupoids). Until 

l 

the appearance of Higgins' formalisation [13] of the theorems of Kurosh, 

Gr ushko, Neilsen and Schrier, the availability of the bridge between topology 

and combinatorial group theory provided by the groupnet was largely ignored. 

Possibly it was felt that the advantages of such a formalisation were 

outweighed by the amount of technical machinery first necessary to make the 

theory work. However, once this machinery had been assembled most proofs 

became straightforward, and after the appearance of Higgins' book, renewed 

interest led t o the generalisation of f urther results by Ordman [27], 

Crowell and Smythe [7]. Chapter 1 provides the necessary summary of the 

theory of groupnets. 

During the last two decades, as a result of the work of G. Higman, A. 

Karrass , Hanna Neumann, B.H. Neumann, D. Solitar and many others, much 

attention has been drawn to groups which are graph products (what Karrass 

would call treed HNN groups: free products with amalgamation, HNN 

groups, tree products and the like). The theory of groupnets lends i t self 

neatly to the study of such groups. Of late, interest has been aroused in 

the comparison of the homology of such groups with that of the subgroups 

comprising them. This comparison, in the form of a Mayer-Vietoris sequence, 

was published for free products with amalgamation by Swan [38] in 1969. The 

principal res ult of this thesis is the construction of a 'mapping cylinder' 

complex f or the homotopy colimit G of each groupnet diagram (V, A) , 

given any diagram of complexes corresponding to (V, A) , with the 

subsequent proof that 

i f G is a graph produat, and eaah vertex aorrrplex is a free 

resolution of i t s trivial module, then the G-mapping cylinder is 

a free resoluti on of its trivial module. 



2 

As a corollary of this result, Mayer-Vietoris sequences with arbitrary 

coefficients were determined for any graph product in mid-1974. The 

s equences for an HNN group were found independently by Bieri [l], 

apparently in late 1973, while more recently Chiswell [3] has published 

these sequences for the general case, The latter author extends Bieri's 

method by use of Serre's theory [30] of the fundamental group G of a graph 

of groups; both proofs construct a short exact sequence of G-modules 

generated by the cosets of the subgroups comprising G, and then form the 

corresponding long exact homology sequence, in contrast to this author's 

method of constructing a G-complex with the required universal properties. 

The construction of the mapping cylinder complex enables evaluation of 

a comultipl i cation on the integral homology module of certain graph products 

with cohomological dimension two to be made. This defines a coring structure 

dual to the ring structure of the cohomology module induced by the cup 

product . The comultiplication is in fact connected with the lower central 

series of the group. The canonical form of the comultiplication is 

determined for several cases with homology modules of low rank; it is hoped 

that the general solution of the combinatorial problem so raised, is not 

inaccessible. 

In all that follows, it is assumed that the reader is familiar with the 

category theory in Chapters I to IV and VIII of Mac Lane's book [20]. A 

general treatment of homological algebra sufficient for the purposes of 

this thesis may be found in either of the texts of Eilenberg and Steenrod 

[8] or Northcott [26]. 
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CHAPTER l 

GROUP NETS 

This chapter will provide a resume of the work of Higgins [13], Crowell 

and Smythe [6, 7], using their terminology. No proofs will be provided. 

These aut hors, as well as Ordman [27], have shown that a formalisation of 

many topological proofs of group-theoretic results (for instance, that of 

Gr ushko's Theorem [33]) may be made in purely algebraic terms using Brandt 

groupoids. The term 'groupoid' here refers to the categorical definition : 

a small category in which every morphism is an isomorphism; not to the 

differ ent a l gebraic notion of a set with a binary operation. Throughout 

this wor k t he term 'groupnet' is used for four reasons: to avoid ambiguity; 

to emphas i s e the presence of the graph underlying any groupnet; to 

harmonise with more general definitions (of partial product nets and 

pregroupnet s) required for proofs in [6] and [7]; and to allow the 

distinction to be made between the ringnets of Chapter 2 and the ringoids 

already known to the literature (see [16], [19, p. 250], [23] and [42]). 

A knowledge of the interdependence of categories, groupoids and graphs 

is assumed (see Higgins [13])°. The following notational conventions with 

respect t o a small category C will be employed throughout the thesis. The 

object set of C is denoted ICI and the statement f EC means f is a 

morphism of C. The horn set C(C, C') or homc(C, C') is the set of 

all morphi sms f in C with domain <lorn f = C and codomain cod f = C' . 

An object C may represent its identity morphism at any t ime. Every 

d" 1gram in C denotes the statement that it commutes wherever possible. 

Finally a morphism written as C >-+ C' is a monomorphism, one written as 

C-++ C' is an epimorphism, and one written as C--=-+ C' i s the identity. 



1. 1 DEFINITION. A partial product net A = (A, E(A), \, p, µ) 

consists of two sets A and E(A) , two maps A, p : A+ E(A) and for 

some Pc Ax A a partial product µ P + A satisfying 

(i) if (a' a,) E p then pa = \a' and 

(ii) if (a' a,) E p then >..µ(a, a') = \a and 

pµ(a, a') = pa, 

The product µ(a, a,) is usually written aa' and the phrase ' the product 

aa' is defined' will be taken to mean that (a, a') E p • Elements of 

E(A) are called the ends of A 
' 

while if a EA , the elements \a and 

pa of E(A) are respectively the left and right end of a. Generally A 

and p will denote without further distinction the left and right end maps 

of any partial product net. 

The partial product net A is a product net if it further satisfies 

(iii) if (a, a') EA x A and pa= >..a' then (a, a') E P. 

Thus, any directed graph D = (E, V) consisting of a set of directed 

edges E with a set of vertices V as its ends is a partial product net, 

each edge having its initial vertex as left end and terminal vertex as 

right end, and with no multiplication defined on it. 

Conversely, any partial product net A determines a directed graph 

D(A) having vertices the ends of A and edges the elements a of A 

directed from >..a to pa. The forgetful functor determined by A 1---+ D(A) 

i gnores the multiplicative structure. 

In similar fashion, any small category C is a product net with set 

of ends JC\ , each morphism in C having as left end its domain and as 

right end its codomain. Multiplication is given by composition of 

mor phisms, with fg = g O f. 

1.2 DEFINITION. A morphism f: A+ B of partial product nets 

consists of two maps f: A+ B and E(f) E(A) + E(B) such that 

(i) if aa' is defined in A then f(a)f(a') is defined in 

4 



B and . f( aa ') = f(a)f(a') and 

(ii) f preserves ends, that is, 

f, i, B 

and lp 

EU) -E...,..(f_,.)-+ E(B) E(A) 
E(f) 

E(B) • 

To facilitate the next definition, the subset Id A of identities of 

A is distinguished as follows: an element i of A is in Id A if 

ai = a and ia' = a' whenever ai and ia' are defined in A . 

1.3 DEFINITION. A (partiaZ) product net with identities is a 

(partial) product net A with a set isomorphism a: E(A) ~ Id A such 

that for all a in A both a.crp(a) and crA(a).a are defined. In such 

a case the identification (which is unique) is always made, and A and p 

are retractions (see Higgins [13, p. ~6]). 
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One instance of an associative product net with identities is the set 

of n x m integral matrices for all (positive) integers n and m . Each 

n x m matrix has left identity I n 
and right identity 

usual matrix multiplication acting as partial product. 

I , with the 
m 

A morphism f: A~ B of (partial) product nets with identities is a 

(partial) product net morphism also satisfying 

(i) f(Id A) c Id B and 

(ii) E(f) is induced from f via 
-1 

cr 

The class of associative product nets with identities is precisely the 

class of small categories; movement from one to the other will be made 

without comment. 

Any subset of a (partial) product net (with identities) which is itself 

a (partial) product net (with identities) is called a subnet; the context 

will clarify how much structure is involved. 

1.4 DEFINITION, A groupnet A is an associative product net with 

identities for which every element has an inverse (necessarily unique); 



that is, for every a in A 

-1 
a a= pa 

there exists an 
-1 

a in A such that 

The category of groupnets and their morphisms is denoted Gpne,,t and 

is identifiable as the category of small categories for which every 

morphism is an isomorphism. The following definitions are required: 

(i) An (additively written) groupnet A is aheiia:n if whenever 

a+ a' is defined in A then so is a'+ a and they are equal. An 

abelian groupnet is thus a disjoint union of abelian groups whose set of 

(additive) zeroes is its identity set. The category of abelian groupnets 

and their morphisms is denoted Abne,,t. 

(ii) For any set S the subcategory Abne,,t(S) of Abne,,t has as 

objects the abelian groupnets which have S as set of zeroes and as 

morphisms those groupnet morphisms which are the identity when restricted 

to S. Considered as a set T(S) of trivial abelian groups, S is the 

null object of Abnd(S) • Two abelian groupnets A and B over S 

(that is, objects of Abne,,t(S)) have as binary biproduct A Et) B the 

abelian groupnet 

(A© B)(s) = A(s) © B(s) ~s ES 

6 

with coordinatewise addition. An abelian group structure on hom(A, B) is 

given by (f+g)(a) = f(a) + g(a) for a in A • From these remarks it 

follows that Abnd(S) is an abelian category. 

Note that the functor T; Set+ Gpne,,t determined from S ~ T(S) 

is left adjoint to the forgetful functor U: Gpne,,t + Set [13, p. 17], 

w~ere Se,,t denotes the category of small sets and set maps. Higgins' 

simplicial functor b is right adjoint [13, p. 17]. 

(iii) An element a of a groupnet A is a ioop at i for i in 

Id A whenever pa= Aa = i It is obvious that the set of loops at any 

particular identity forms a group, the ioop group at that identity. If the 

o~ly looph in A are the identities themselves, A is said to be aayciic. 



(iv) Any subnet of a groupnet which is i t self a groupnet is called 

a subgroupnet. A subgroupnet B of A is wide when Id Ac B. There is 

always a maximal acyclic subgroupnet of A 

(v) When (i, j) E Id Ax Id A set 

clearly it is wide, 

A(i, j) = {a EA : Aa = i, pa= j} . 
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If A(i, j) is nonempty for every such pair, A is said to be connected. 

Equivalently, A is connected if it is not the disjoint union of two non

empty subgroupnets, Any acyclic connected groupnet is a tree. The relation 

i "'j <==> A(i, j) # ¢ 

on Id A is an equivalence relation which partitions Id A into the 

i dentities of its distinct connected components. 

It is apparent that the objects of Gpne.t with a single identity form 

a full subcategory which is Gp, the category of groups. This extension 

of Gp was required when the concept of the covering space was transferred 

from topology to group theory. It contains algebraically-determined 

const ructs - homotopies, fibrations and 'unit intervals' - which are either 

undef ined or vacuous in Gp yet correspond closely to the topological 

definitions through the forgetful functor from Gpne.t to Gna.ph, the 

category of directed graphs. 

The following groupnet will be used extensively in later work. 

Whereas the trivial group is 'the' acyclic connected groupnet with a single 

identity, the unit interval groupnet is 'the' acyclic connected groupnet 

with two identities . In Higgins' terminology it is the simplicial groupoid 

with two vertices and hence the absolute free groupoid of rank one on the 

graph 

0 * 
1 . 

1.5 DEFINITION. The unit intervai groupnet I= {o, 1, *, *-
1

} has 

identities 

Id I= {o, 1} , 



end maps 

\0 '-* 0 Al 
-1 

= = ' 
= '-* = l 

po 
-1 

0 pl = P* = = P* = l 
' ' 

and partial multiplication 

0.0 = 0 , O.* = * *,l = * 
-1 

*·* = 0 

-1 
* ·* = l 1.1 = l 

Introduction of this groupnet simplifies the intuitive picture of a 

groupnet (in terms of its underlying graph). 
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1.6 EXAMPLE. Let A be a connected groupnet. Construct an 

isomorphic connected groupnet A* from A in the following manner. Set 

Id A*= Id A and select from it a specific identity, 0. Let A*(O, 0) 

be the group of loops in A at O , that is, A*(O, 0) = A(O, 0) • Denote 

by T a maximal tree in A , so that T(i, j) is a singleton { t . . } 
1,J 

in A for every ordered pair of identities (i, j) in Id A , with 

t .. = i 
1, 1, 

and 
-1 t .. = t ... 
1,J J1, 

For each j 'I- 0 in Id A* adjoin a copy 

(say) 

1. 
J 

of I to A*(O, 0) u Id A* , identifying o. with 
J 

0 and l . with j • 
J 

The groupnet A* so formed is connected. Each a in A(i, j) has a 

unique representation 

a= ti
0
a*t

0
j , with a* in A*(o, o) , 

and the map f : A + A* given by f(a) = -1 * *· a *. 
1, J 

is a groupnet isomorphism. 

Thus a groupnet essentially consists of a group at a distinguished 

identity and a set of edges or spines radiating from this identity. 

As with groups, a presentation A ~ < X : R > can be assigned to a 

connected groupnet A • Free groupnets and groupnet generators and 

relations are defined in terms of graphs (see [13, Chs 4 ,9]) and are the 

expected analogues. 

1 example , if A* is the isomorphic image of the connected groupnet 



A as given in (1.6), and 

A(0,0)~<X:R> 

is a presentation of the loop group in A at identity O , then 

A* ~ < X, * ., j # 0, j E Id A* : R > 
J 

is a presentation of the connected groupnet A* • 
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It must be emphas ised that a generating set for a groupnet consists of 

elements of the groupnet and hence may have more than one identity. A 

presentation of a groupnet is not a group presentation unless every element 

of the set of generators (and the set of relaters) has the same (unique) 

left and right identity, Thus the presentation 

of the free groupnet on a single generator does not represent Z, the free 

group on a single generator, 

Category Gpne,t admits all limits and colimits [13, Chs 7,9], Two 

groupnets A and B have as product A TT B, their cartesian set 

product with Id(A TT B) = Id Ax Id B and the naturally induced 

coordinatewise groupnet structure. Their coproduct A UB is the 

dis joint union Av B with Id(A U B) = Id Av Id B and groupnet 

str•ucture induced separately from the two components. Subcategory Abnd(S) 

for a set S admits all products and coproducts, with 

and 

(u ACL] (s) = U (ACL(s)) \;fs ES • 
CL CL 

Th~ righthand term is that of Ab , the category of abelian groups. Usually 

the finite biproduct is called the direct sum and is written 

n 
® A. • 

i=l 'l, 

1.7 DEFINITI ON. Two groupnet morphisms f, g A~ B are homotopic 
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(written f ~ g ) if _h e is a groupnet morphism 

F: I X A -+ B 

for which 

(i) F(O, a) = f(a) '<la E A and 

(ii) F(l, a) = g(a) '<la E A 

Such a morphism F f ~ g is known as a homotopy beween f and g and 

is completely determined by f and 

{F(*, i) i E Id A} 

since necessarily 

-1 g(a) = F(*, Aa) f(a)F(*, pa) • 

Homotopy of morphisms is an equivalence relation; two morphisms are 

homotopic precisely when they are naturally equivalent as functors, 

If morphisms f : A -+ B and g : B -+ A exist such that f o g ~ lB 

and g o f ~ lA then A and B are of the same homotopy type (A ~ B) 

with homotopy equivalence f and homotopy inverse g. For example, a 

groupnet morphism f: A-+ B always determines a constant homotopy 

x(f) : f ~ f given by x(f)(*, i) = f(i) for i in Id A , and thus it is 

apparent that isomorphic groupnets have the same homotopy type. 

The subgroupnet B of A is a strong (deformation) retract of A if 

there is a homotqpy equivalence f: A-+ B (called a retraction) with 

homotopy inverse the inclusion morphism j : B >---+ A , such that 

( i) f o j = 1
8 

and 

(ii) F: j of~ lA satisfies F(*, i) = i '<Ji E Id A. 

As instances, Id A is a strong retract of A via either A or P; 

while any connected groupnet has as a strong retract the loop group at any 

selected identity. Thus any groupnet has the homotopy type of a disjoint 

collection of groups. Clearly equal homotopy type does not imply 

is omorphism, There is a strong analogy between the distinction of 

isomorphism from homotopy_ in Gpne..t and the distinction of homeomorphism 
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from homotopy equiva~e. e i n Top, the ca tegory of topological spaces. 

Certainly homotopic topological spaces have homotopic fundamental groupnets 

[13, Ch. 6, Prop. 13]. 

At this point , in order to construct a groupnet having universal 

properties with respect to a particular diagram of groupnets, it is 

necessary to work in a wider category than Gpne,t Thus a pregroupnet is a 

partial product net with identities in which each element has (not 

necessarily unique) two-sided inverses. Note, however, that a pregroupnet 

with a single identity is not necessarily a pregroup (Stallings [34, 35]). 

If A is a pregroupnet and is a congruence (an equivalence relation on 

a partial product net which preserves left and right identities and products 

wherever defined) then the set of congruence classes Al= is also a 

pregroupnet with the product: 'aa* is defined if there is a in a and 

a* in a* such that aa* is defined, and then aa* = [aa*] 1 

A , however, does not always define a groupnet Al= • 

A groupnet 

1.8 DEFINITION. A universaZ groupnet for a pregroupnet A consists 

of a groupnet G(A) and a morphism W: A~ G(A) such that any other 

morphism from A to a groupnet B factors uniquely through W. Such a 

universal groupnet always exists and is constructed thus: the set 

S(A) = {nonempty sequences al' • • • , a n 
a . E A, l :': i :'= n, 

1, 

is a product net with the same ends as A , with end maps 

&nd with juxtaposition of sequences as partial product . A congruence is 

generated from the relation u\v on S(A) , called eZementa.ry aontraation, 

which is defined whenever u = a1 , •.. , an and 

in A • 
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Then G(A) = S(A)I= is a groupnet in this case, and ~ is the 

composite 

A >-+- S(A) -++ S(A) /= , 

The set Id G(A) is identifiable with Id A • If A is a groupnet, ~ is 

an isomorphism, Full exposition of these results occurs in Crowell and 

Smythe [6], 

1.9 DEFINITION. A groupnet diagram (C, A) consists of a small 

category C and a functor A: C + Gpne-t:. If C is the free category on 

a directed graph D = (E, V) , that is, the category of directed paths in 

D, then (C, A) is denoted (V, A) and is considered to be a collection 

of groupnets {Av} indexed by the vertices v of D, together with a 

collection of morphisms {A : A, + A } indexed by the edges e of D. 
e Ae pe 

Henceforth this will be the only type of groupnet diagram considered, 

1.10 DEFINITION. A mapping cylinder m: (V, A)+ m(V, A) for a 

groupnet diagram (V, A) consists of 

(i) a groupnet m(V, A) , 

(ii) a morphism Av+ m(V, A) for each v in D, 

(iii) a homotopy for each e in D 

which is 

(iv) universal over all collections 

sat i sfying conditions (i)-(iii); that is, given such a collection there 

exists a unique morphism X: m(V, A)+ N such that for all V in D and 

e i n D, 

m(V, A) - N 
X 

m(V, A)~ N. 
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It is apparent that the mapping cylinder is a looser construction than 

the colimit li.m A in Gp~e.t, which requires equality rather than homotopy 
--+-

in conditions (iii) and (iv) above. For this reason the mapping cylinder is 

referred to as the 'homotopy colimit' of the functor A. The colimit 

object actually appears as a certain double quotient of the mapping cylinder 

object, with colimit morphisms formed from mapping cylinder morphisms by 

composition with the canonical quotient morphism (see [7, Th. 6.3]). // 

1.11 THEOREM [7, Th. 6.1]. For any groupnet diagram (V, A) there 

exists a mappirt{J cylinder which is unique up to a unique isomorphism. 

A sketch of the construction is given. Index copies r of r by the 
e 

edges e of D, and define 

Generate - on P from the relations 

Then pregroupnet P determines a pregroupnet P/ '= and the mapping cylinder 

is , from ( l. 8) , 

m(V, A) = G(P/ =) , 

and 

There is a one-to-one correspondence between Id m( V, A) and \/ Id A 
v¥v v 

which will, in future, always be employed. D 

A presentation of a mapping cylinder may be given in terms of 

presentations of the vertex groupnets. Suppose <Xv: Rv> is a 

presentation of the vertex groupnet Av for V in a connected directed 

graph D. Then 



(V m (x ); m (*, i), i E Id A>..e' e ED 
vED V V . e 
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V mv(Rv); m (*, >..x)-
1

m, (x)m (*, px) = m A (x), x E X,e, e Ev) 
v ED e l\.e e pe e I\ 

is a presentation of m(V, A) To instance this construction, consider the 

trivial groupnet diagram (V, 1) on a connected directed graph D having 

the trivial group at each vertex and the identity morphism on each edge. 

Its mapping cylinder has a presentation 

mCV, 1) =<m (*, 1), e ED >. 
e 

When A is a monomorphism (injection) for each e in D, the 
e 

mapping cylinder is known as the graph product and in this case each m 
V 

for v in D is an embedding [7, Th. 6.2]. In illustration of this case, 

consider the directed graph 

0 . 
D = e () f ' 

• 1 

and a groupnet diagram (V, A) in which AO is a group and A and Af e 

are monomorphisms. If A1 is also a group, m(V, A) has the homotopy 

and type of HNN (A1 ; Ae (A 0) ~ Af (A 0)) , the HNN group with base A1 

associated subgroups Ae (A 0) and Af(A0) • If A1 = B0 v B1 is the 

disjoint union of two_ groups and Ae (A 0) c B0 while Af(A0) c B1 , then 

m(V, A) has the homotopy type of the free product with amalgamation 

The groups mentioned are the loop groups of their respective mapping 

cylinder groupnets. In a connected mapping cylinder groupnet G, the loop 

group is found from a presentation of G by adding further relators to the 



presentation, corresponding to generators of a maximal tree in G (cf. 

(1,6)), For example, consider the former case above with 

) ' A (x.) = y. 
e -z, -z, 

and 

Af(x.) = y. 1 for i = O, l. Then 
'I, -z,+ 

-1 -1 
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= * *-1 -1) 
Y1 Y,)Jo' XO = * y * = *,j.f1*2 xl = = *,j.f 2*2 1 0 1 ' 1Y1 1 

~ <y O' y l' y 2' t, *1• * 2 

,..., (y y y t * · y = y_u y - t-1y
0
t, y

2 
= t-1

y1t) = O' l' 2' ' 1 . 1 :c-O' 1 -

A*.= 0 and P*· = 1 for 
'I, 'I, 

i = l, 2. A maximal tree in m(V, A) is represented by 

loop group of m(V, A) at identity 1 is isomorphic to 

* , so that the 
1 

which is a presentation of the knot group of the trefoil knot, as an HNN 

group, // 

A diagram of groups with monic edge morphisms, together with its graph 

product, is closely related to a graph of groups and its fundamental group, 

as introduced by Bass and Serre [30], In a graph of groups, each edge 

corresponds to a pair of amalgamating subgroups, while in a diagram of 

groups it corresponds to a group monomorphism, The connection is specified 

thus: A _2__ B in a graph of groups corresponds to 

A B 

in a di~gram of groups, while f A>- B in a diagram of groups 
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A corresponds to A - B with morphisms 1 A : A >--+- A and f : A >--+- B in 

a graph of groups. It follows (see Higgins [13]) that the fundamental group 

of a connected graph of groups is isomorphic to the loop group (at any 

identity) of the graph product of the corresponding group diagram, and 

viae versa. See Cohen [4], Chiswell [3], Gildenhuys [10] and Cossey and 

Smythe [5] for examples of the group-theoretic use of these constructions.// 

This chapter closes with a description of the covering groupnet 

corresponding to a given subgroupnet of any groupnet. As in the purely 

topological approach this has an intimate connection with the problem of 

finding the homology of a subgroup in terms of that of the group containing 

it, but the methods used are entirely algebraic. 

Morphism TI: A~ A in Gpnet is said to have the path-lifting 

property if whenever a EA and i E Id A with TI(i) = Aa then there is 

a in A such that TI(a) = a and Aa = i Should TI also be surjective 

it is a fibration; if further the covering element a is uniquely 

determined for each a in A (that is, TI has the unique path-lifting 

property), then TI is a aovering map and A a aovering groupnet. II 

For a wide subgroupnet B of A there always exists a covering 

TI A ~ A for which A !:::< B Denote by A/B the set of right cosets 

Ba = {b • a E A : b E B} for a in A • 

Then 

A= {(Ba, a*) EA/Bx A : pa= Aa*} 

is the covering groupnet, with Id A= A!B under the identification 

(Ba, pa)+-+ Ba, identity maps 

A(Ba, a*)= Ba and p(Ba, a*)= B(aa*) • 

and partial product 

The covering map TI is the projection of the second coordinate of A 

ith p: A/B ~ Id A given by p(Ba) = pa 1 



A/B -p 
Id A 

is a pullback square in Se.t 

In [7
1 

§BJ, Crowell and Smythe have shown that the covering G of a 

graph product G = m(V, A) corresponding to a wide subgroupnet of G is 

also a graph product, In fact G = m(V, A) where A 
V 

is a covering of 
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Av for each v in D, corresponding to certain special wide subgroupnets 

The construction will be detailed later in (5,1). 



CHAPTER 2 

MODULES OVER RINGNETS 

2.1 Ringnets 

Groupnets form a wider class than groups, extending the category of 

small monoids for which every morphism is an isomorphism to the category 
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of small categories for which every morphism is an isomorphism, The 

analogous extension from unital rings to ringoids; that is, from the 

category Rng of small preadditive monoids to the category Rngoid of 

small preadditive categories has been dealt with in depth in the literature 

[23] , The category Rngne.t of unital ringnets, described below, forms an 

even wider class than Rngoid, with subcategory inclusion functors 

Rng c..+ Rngoid 4 Rngne.t 

which are full as well as faithful. 

2.1.1 DEFINITION. A category C is partiaiiy preadditive if it 

admits an abelian groupnet structure on horn sets; that is, for any 

pair of objects (C, C') in !Cl , homC(C, C') has an abelian groupnet 

structure, with respect to which the composition map is bilinear, A 

functor between partially preadditive categories is partiaiiy additive if it 

preserves this structure; that is, if it is an abelian groupnet morphism on 

each horn set, 

For instance, Abnet is partially preadditive, since for any two 

abelian groupnets A and B there is the abelian groupnet structure on 

hom(A, B) given by 

Id hom(A, B) = homSe.t(Id A, Id B) 

hom(A, B)(h) = {f E Abne,t(A, B) flidA = h} 

for all h in Id hom(A, B) , and for f, g E hom(A, B)(h) , 

(f+g)(a) = f(a) + g(a) Va E A • 



Any preadditive category i s at once partially preaddit ive; any 

addit i ve functor is at once partially addit ive . Further , any partially 

additive functor between preadditive categories is at once add itive. 
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2.1.2 DEFINITION. A (unital) :r>ingnet is a small partially preadditive 

category. The category of all small partially preadditive categories and 

the covariant partially additive functors between them is called Rngne,t. 

and 

For any pair (i, j) of objects in a ringnet R define 

zR(i, j) = Id R(i, j) 

zR = \/ zR(i, j) ; 
( i ,j) EI RIX IR I 

t he lat ter i s called the set of zeroes of the ringnet R. Bilinearity of 

composition in R ensures that composition of any morphism i n R with a 

morphism of zR is again a morphism of zR, whence zR i s closed under 

composition in R 

Thus zR is itself a small category, with object class lzR I = IRI 

composition induced from R and hom
2
R(i, j) = zR(i, j) for each pair 

< i' j) in lzRI For each i in lzRI , the identity morphism in 

zR(i, i) is the zero element of the unique group in R(i, i) containing 

1. ' 
the identity morphism for i in R The set of identity morphisms 

1, 

in R is known as the set of identities Id R and is identifiable with 

IR I If, for each p in zR, the abelian group in R with zero element 

p i s written R(p) , then 

R = V R(p) • 
pEzR 

Conversely, any triple R = (R, zR, ~) is a ringnet if it satisfies 

conditions (i)-(v) below. 

(i) The set of zeroes zR of R is an associative product net with 

identities. 

( ii) The set 



R = V R(p) 
pEzR 

is an (additively written) abelian groupnet which has its additive 

identities equated with the elements of zR. 

(iii) Product ~: R(p) ®z R(p*) + R(pp*) , defined whenever 

pp* E zR • and abbreviated ~( r ® r*) = rr* for r in R(p) and 

R(p*) , is an abelian group morphism for all pp* in zR . 
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r* in 

( iv) For each i in Id zR there exists 1. in R(i) for which 
t. 

1 . • r = r and r* .1. = r* whenever r E R(p) r* E R(p*) and 
t. t. 

, 

i = AP = pp* • 

(v) The product is associative whenever an association is defined. 

Note that if any fin ite association is defined in R , all other 

associations of the same elements are defined in R. 

As a ringnet, JRI = Id zR and r* or= rr*. In this case, the 

zero map z : R + zR of the ringnet R is given for r in R(p) by 

zr = p, and {1. : i. E Id zR} is the set of identit ies of R. 
t. 

Consideration of this internal description of a ringnet as a triple 

determines the following 'internal' description of a morphism in Rngne.t. 

2.1.3 REMARK• A partially additive covariant functor f between two 

ringnets R and S is called a :t>ingnet morphism. It consists of a 

morphism zf: zR + zS of product nets with identities, and, for each p 

in zR, an abelian group morphism f: R(p) + s(zf(p)) satisfying 

( i) f I zR = zf , 

(ii) if i E Id zR, then f(li) = lzf(i) and 

(iii) if rr* ER, then f(rr*) = f(r)f(r*) . 

In future, movement between the 'internal' and external descr iptions of 

Rngne.t will be made at will. Context will be indicated by the use of 

symbols R, zR, and so on, when dealing with the categorical aspects of a 
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particular ringnet, and R, zR, and so on, when dealing with the algebraic 

aspects. 

2.1.4 REMARK. Note that Rngoid is the full subcategory of Rngne.t 

which has as object class the class of ringnets R for which the small 

category zR is a preorder (that is, each horn set of zR has at most one 

element), // 

Extensive use will be made of the ringnet induced from a groupnet, 

2.1.5 EXAMPLE. Let A E !Gpne.tl The groupringnet ZA of A is 

defined as follows. 

(i) Let zZA = {(i, j) E Id Ax Id A : A(i , j) t ¢} • These zeroes 

admit a groupnet structure having Id zZA = {(i, i) E Id Ax Id A}~ Id A , 

A(i, j) = i , p(i, j) = j and product (i, j)(j, k) = (i, k) • (When A 

is connected, zZA is the simplicial groupoid 6(Id A) of Higgins [13, 

p. 8]. ) Then, 

(ii) ZA( i, j) is the free abelian 

{[a] : a E A(i, j)} for all 

1. = [i] 
'I, 

E ZA(i, i) 'tJi E Id A (iii) 

( iv) the partial product on ZA is 

of A • 

group on 

( i, j) in zZA , 

, and 

extended linearly from that 

The ringnet so formed is actually a ringoid and can be identified with 

Mitchell's ZA for the small category A [23, p, 11] , Of course, any 

unital ring R may be used rather than Z to induce a ringnet from A in 

a similar manner (af. [16, §2]), 

2.1.6 EXAMPLE. For a ringnet R, the discrete category lzRI is a 

(trivial) abelian groupnet and Z(izRI) is the triviaZ groupringnet for 

R; it is a disjoint union of copies of Z, one for each object of R, 

and extends the description of Z as the groupring of the trivial group. 

Clearly any groupnet morphism f: A+ B induces a groupringnet 

morphism f: ZA + ZB by linear extension from the generators. No 

dist inction of terminology will be made between these morphisms. 
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Tensor products of ringnets are defined pointwise: the tensor product 

R ® S of two ringnets R and S is the ringnet with z(R ® S) = zR x zS 

and (R ® S)(p , q) = R(p) ® S(q) ; all actions are defined by coordinate. 

For preadditive categories this is also the definition in Rngoid [23, 

§2]. Given ringnets R, S and T the following identities hold in 

Rngne..-t: 

Z®R'=ER, 

S®R'=ER®S, 

T ® (S ® R) '=E (T ® S) ® R , 

and for groupnets A and B, 

ZA ® ZB '=E Z(A X B) • 

Proofs are straightforward. 

As in Gpne..-t, the weakening of similarity conditions in Rngne..-t from 

isomorphism to homotopy proves very productive, As there, too, the term 

' homotopy' is reserved for the internal description of Rngne..-t: it is 

natural equivalence in the external definition, It is described here in 

slightly different terms in order to utilise the groupnet I and preserve 

some visual similarity with the topological definition. 

2.1.7 DEFINITION. Two ringnet morphisms f, g: R + S are homotopic 

(written f ~ g ) if there is a ringnet morphism 

F : f ~ g : ZI ® R + S 

satisfying both 

(i) F([O], r) = f(r) 

(ii) F([l], r) = g(r) 

'fr ER 

Vr ER 

and 

Such a morphism is called a homotopy between f and g and is determined 

entirely by f and 

{F([*], 1i)' F([*-
1
], 1i] i E Id zR} 

Ringnets R 

and S are homotopic (R-:::- S) or of the same homotopy type precisely when 



there is a homotopy equivalence f: R + S and a homotopy inverse 

g : S + R such that f o g ~ S and g o f ~ R • 
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2.1.8 EXAMPLES. (i) There is a constant homotopy x(f) 

any morphism f. 

f ~ f for 

(ii) A homotopy of groupnet morphisms induces a homotopy of groupring

net morphisms: if f, g: A+ B are groupnet morphisms with a homotopy 

F : f ~ g : 1 x A + B then F : f ~ g : ZI ® ZA + ZB is the composed 

morphism 

ZI ® ZA ~ Z(I X A) L ZB ' 

so that for all i in Id A , 

F([*], [iJ) = F(*, i) 

and 

-( r -1] . ) . -1 F L * , [ i,] = F( *, i,) • 

Morphism F is the induced homotopy between f and g. Obviously, 

homotopic groupnets induce homotopic groupringnets. 

Homotopy of ringnet morphisms and hence of ringnets is naturally an 

equivalence relation. For ringnet morphisms f, g, h : R + S and 

homotopies F: f ~ g, G: g ~ h, a specific transitive homotopy 

FG: f ~his generated from 

and 

for all i in Id zR. II 

2.1.9 DEFINITION. A ringnet diagram (V, R) consists of a directed 

graph D and a functor R V + Rngnd where V is the free category on 

D. Hence it may be thought of as a collection of ringnets {RV: VE D} 

and a collection of ringnet morphisms {R : R, + R : e E D} • 
e Ae pe 

As an illustration of this definition, any groupnet diagram (V, A) 



24 

induces a groupringnet diagram (V, ZA) with (ZA) = Z(A) 
V V 

for each 

vertex V in D and the induced morphism A ZA" -+ ZA for each edge e e pe 

e in D. The trivial groupnet diagram (V, 

ringnet diagram (V, Z) in this fashion. 

2.1.10 DEFINITION. A representation a 

ringnet diagram (V, R) comprises 

(i) a ringnet a(V, R) 
' 

1) induces the trivial 

(V, R)-+ a(V, R) of a 

(ii) a ringnet morphism av R -+ a(V, R) for each v in D, 
V 

and 

(iii) a ringnet homotopy a 
e 

for each e in 

D. 

Thus, when (V, A) is a groupnet diagram with mapping cylinder 

m: (V, A)+ m(V, A) and induced groupringnet diagram (V, ZA) there is an 

induced representation (also written 'm' ) m: (V, ZA)-+ m(V, ZA) having 

m(V, ZA) = Z(m(V, A)) , 

with groupringnet morphisms mv and homotopies m 
e 

induced from those of 

the mapping cylinder. The representation induced from (V, 1) is called 

the trivial representation of (V, Z) and is denoted t: (V, Z)-+ t(V, Z) • 

There always exists a homotopy colimit M: (V, R)-+ M(V, R) for any 

ringnet diagram (V, R) ; that is, a representation of (V, R) universal 

with respect to all other representations of (V, R) It is not required 

in the theory below so its construction will not be given. It is rather 

too free an object for present purposes, where attention is directed to 

induced representations. In general, the homotopy colimit M(V, ZA) 

induced from a groupnet diagram (V, A) is not isomorphic to the induced 

representation Z(m(V, A)) • 



2.2 Modules 

As might be anticipated, the extension of ringoids to ringnets 

indicates an extension of (unitary) modules over ringoids to (unitary) 

modules over ringnets. For a unital ring K - in other words a small 

preadditive monoid - a left (right) unitary K-module is an additive 

covariant (contravariant) functor K + Ab • For a ringoid C - a small 

preadditive category - a left (right) unitary C-module is an additive 

covariant (contravariant) functor C +Ab. (See Latch and Mitchell [16], 

Lee [17] or Watts [42 ] for this definition. Mitchell [23, p. 9, p. 17] 

appears to be in error in his description of right C-modules as covariant 

functors C + Ab and left C-modules as contravariant.) 

2.2.l DEFINITION. If R is a ringnet, a left (right) (unitary) 

R-module is a partially additive covariant (contravariant) functor 

R + Abne;t. If A is a groupnet, a ZA-module is referred to as an 

A-module. 

and 

Thus, a left R-module M may be thought of as 

(i) an abelian groupnet 

M(i) = V M(z) 
z Em( i) 

for each i in IRI , where m(i) = Id M(i) and 

(ii) an abelian groupnet morphism 

M(4) M(dom 4) + M(cod 4) 

for each 4 ER, such that 

l;Ji E IR I ' 
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If M(4)(m) is abbreviated tun whenever 4 ER and m E M(dom 4) then 

condition (ii) implies that the following equalities hold whenever the left-

hand side is defined: 



and 

Jt(m+m ') = Jtm + Jtm , 

(Jt o Jt*)(m) = Jt(Jt*m) 

(Jt+Jt*)(m) = Jtm + 1t*m. 
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Though the abelian groupnets {M(i) : i E IRI} determined by the 

module M need not be disjoint, in future it will be notationally 

convenient to assume that they are. This assumption is reasonable, since 

for any left R-module M: R ~ Abne;t there is always a naturally 

isomorphic left R-module M: R ~ Abne;t for which these abelian groupnets 

are pairwise disjoint. Obtain ~ from M by replacing M(z) by an 

(isomorphic) labelled copy M(z) = M(z) x {i} for each z in m(i) and i 

in IRI • The action of M(~) for It in R is then given by 

Jt(m, dom It)= (Jtm, cod It) • 

With this assumption, the identification 

M = \/ MC i) 
iE!RI 

of the functor with an abelian groupnet is made, and 

zM = \ / m( i) , 

iE!RI 

the identity set of this groupnet, is called the set of zeroes of M. It 

inherits a (left) R-module structure from M. If m EM, the zero of the 

group containing m is denoted zm. The map p : M ++ IRI given by 

p(m) =i 'rJm EM(i), i E JRI 

is now well-defined and is known as the right map of M . A right module is 

similarly analysed to determine a Zeft map. 

For the purposes of calculation, it proves much easier to work with an 

internally defined R-module structure than with the definition given above. 

Oddly enough, a left R-module M is internally a right R-module M and 

vice versa• The probability of confusion is high and care must be taken in 
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dis tinguishing context. Generally the symbols M, zM and so on will be 

reserved for the functorial aspects of a (left) R-module, while M and zM 

will be reserved for its use as a (right) R-module. 

2.2.2 DEFINITION. Let R be a ringnet. A right R-module 

M = (M, zM, p, ~) comprises 

(i) a disjoint union 

of abelian groups, 

M = V M(z) 
zEzM 

(ii) a set map p : zM ++ Id zR which extends by component to 

M and determines the partition 

M = \ I M( i) 
iddzR 

of M into abelian groupnets 

M( i) :: V M( z) . ' pz=-z.. 

and 

(iii) a right R-aation ~. That is, 

~: M(z) lcJ.z. R(p) ~ M(pp) 

is an abelian groupnet morphism defined whenever pz = Ap 

which, when contracted to ~(m ® r) = mr, satisfies 

m.lpm = m , 

and 

m(i-r-*) = (mr)r* 

whenever the left-hand side is defined. 

This definition is easily seen to represent the left R-module M with 

the same underlying groupnet and with R-action Jtm = mr. 

One virtue of this approach to module theory is that it allows a useful 

broadening of the definition of a bimodule , which is extensively employed in 

the succeeding chapters . 



_2.2.3 DEFINITION. An abelian groupnet M is an R-S bimodul,e if 

it is both a left R-module and a right S-module such that, for r ER 

s ES and m EM, if either of (rm)s or r(ms) is defined , then both 

terms are defined and are equal. 

The partitions 

M = V M(i) 
iEidzR 

and M = V M(j) 
jEidzS 

determined by the two module structures then determine a further partition 

M = V M(i, j) 
( i ,j) EidzRxidzS 
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of M, where M(i, j) = M(i) n M(j) . Should M(i, j) t ¢ for every pair 

(i, j) of Id zR x Id zS then M may be considered as a bifunctor 

S ® R0
P + Abne,t, partially additive in each argument, covariant in S and 

contravariant in R. This is not always the case. Any ringnet R is both 

a left and a right R-module , with 

R(i , j) = {R(p) : p E zR, AP= i, PP= j} 

for i, j in Id zR. If R = ZA for a disconnected groupnet A , some 

of these sets will be empty. Under (2.2.3), though, every ringnet R is an 

R-R bimodule with ringnet multiplication for R-action. Hence, so is 

zR. The left and right R-module Id zR (hereafter identified with Id R) 

is not generally a bimodule (seep. 33) . Any abelian groupnet (and hence 

any R-module) is a z_z bimodule . 

2.2.4 REMARK. If a: R + S is a partially additive covariant 

functor and N: R + Abne,t and M: S + Abne,t are both covariant 

(contravariant) functors, then a natural transformation 6: N-;-+ Mo a 

is known ' internally' as a a-morphism f: N + M of right (left) modules. 

In this guise (for right modules) it is a groupnet morphism 

f: N(i) + M(a(i)) Vi E Id R 

such that f(nr) = f(n)a(r) whenever nr is defined. When a= 1 R ~ R 

then f is an R-morphism. 
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2.2.S NOTATION. The category of partially additive covariant functors 

and their natural transformations (as in (2.2.4)) is labelled Mocf that 

of contravariant functors is Mocf-. Restriction to right (left) R-module s 

and R-morphisms for a particular ringnet R determines the category 

R-Mod:r> = Abn.e.tR l R0 P 
LR-Mod = Abn.e.t ) 

This is not a full subcategory unless the only functorial endomorphism on R 

is the identity; that is, unless R is a delta [23, p. 5]. 

An R-module Z is a ze:r>o module if it is a disjoint union of trivial 

abelian groups; that is, if 

z = zz . 

Each left R-module Z determines a subcategory 

in which 

R-Moi( Z) of 

(i) IR-Modl(Z)I is the class of all left R- modules M for 

which zM = Z and 

(ii) morphisms are those left R-morphisms which are the identity 

morphism on the set of zeroes . 

The module structure of Z ensures that the left map A : Z ++ Id R is 

common to all objects of R-Moi(z) , as is the action of R on the set 

of zeroes. For each ringnet zero p E zR and each z E Z such that 

pp= AZ , pz E Z . Hence, if Y' E R(p) and m E M(z) for M in 

IR-Modl(Z)I , then necessarily r>m E M(pz) • Category R- Moicz) is 

known as the category of standar>d left R-modules and R-morphisms ove:r> Z, 

and clearly contains Z as a null object . If Z = Id R, then 

known as the category of :r>egula:r> left R-modules and 

R-morphisms and is denoted A left regular R-module is thus 

a partially additive contravariant functor R + Ab (assuming the image 



abelian groups are disjoint). Categories and 

are defined similarly for each right zero module Z , but usually the 

superscripts l and r are dropped when it is clear which category is 

intended or when the distinction is unnecessary. 

For example, if a ringnet R is a disjoint union of free abelian 
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groups (R(p) is free abelian for each p in zR ) , and 1. 
'l, 

is a generator 

of R(i) for each i in Id zR, then the trivial groupringnet Z(Id zR) 

is regular as either a left or right R-module and is called the trivial 

R-module TR. (When R = 7.A. for a groupnet A , TR is written TA.) 

However, R is not itself regular unless zR = Id zR; that is, unless 

category zR is discrete. 

The category R-Mod is partially preadditive with finite (co)products. 

Two left R-modules M and N have as coproduct their disjoint union 

z(MUN) = zM V zN r) . z E zM , 

(MU N)(z) = 

N(z) z E zN , 

with componentwise action; and as product their cartesian product 

z(M TT N) = zM x zN, 

(M TT N)(u, v) = M(u) x N(v) , 

with action by coordinates. There is no null object in R- Mod . 

2.2.6 REMARK. When M is an R-module, the R- module MUM is 

both a l eft and a right ZT-module. If the copies of M in MU M are 

labelled by Id 1 then a left map A zM
0 

V zM
1 

++ Id I is given by 

;\z . 
'l, 

= i for 'l, in Id 1 The left I-action is 

[OJm0 = mo ' 
[l]m

1 = ml ' 

[*-l]mo = ml ' [w]ml = mo 

for m. in M. and i in Id I . Right action is correspondingly defined. 
'l, 'l, 



Since A= p , MUM is not a birnodule. 

2.2.7 LEMMA. For any ringnet R and zero R-module Z , 

is an ahelian category . 

R-lfod( Z) 

Proof. (i) Any standard R-rnorphisrn is the identity map on zeroes 

hence all horn sets have an abelian group structure , with f + g: M + N 

given by (f+g)(m) = f(m) + g(m) for f, g in homR(M, N) , and zero 
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morphism O : M + N given by O(m) = zm E Z , for m in M . Composition 

is clearly bilinear over this addition so R-Mod Z is preadditive . 

(ii) Any two standard R-rnodules M and N over Z have a coproduct 

MUN written M(f) N with 

(MU N)(z) = M(z) ® N(z) Vz E Z 

and R-action by coordinate , so R- Mod( Z ) is additive. Its diagonal 

morphism 6 : M + M © M and codiagonal morphism V: M © M + M are given 

for any module M by 

Mm) = (m, m) , 

and 

V(m, m') = m + m' Vm, m' EM. 

(iii) Any standard R-rnorphisrn f: M + N has both a kernel 

~ Ker f + M and a cokernel TI: N + Coker f . The submodule Ker f of 

M is defined by 

Ker f(z) = {m E M(z) : f(m) = z} Vz E Z 

with R-action restricted from M , and ~ is the inclusion morphism . The 

standard R-module Coker f over Z has 

Coker f(z) = N(z)/fM(z) Vz E Z 

with R-action induced from N, and TI is the canonical quotient morphism . 

l!ence R-Mo d( Z) is preabelian . The image and coirnage of f are similarly 

defined pointwise on Z from their corresponding definitions in Ab. 

( iv ) The parallel map f: Coim f ++ Im f is given as 

f(m+Ker f(z )) = f(m) Vm E M(z ) , z E Z . 
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If f(m-m ') = z m- m' E Ker f(z) , zm = zm' = z so 

m + Ker f(zm) = m' + Ker f(zm') and f is an i s omorphism. Hence R-Mod(Z) 

is abelian [28, 2.3]. D 

By applying the argument for Ab pointwise on Z , it follows that 

any standard R-morphism over Z is mono if and only if it is injective 

and epi if and only if it is surjective. 

2. 2. 8 LEMMA. The category R-Mod( Z) admits arbitrary direct products 

and coproducts. 

Proof. Let {Ma. a.EA} be a set of standard (left) R-modules over 

Z . Set 

\:Jz E Z, 

and 

where the terms on the right hand side are defined in Ab. 

n 
If r E R(p) , I 

i=l 

i s defined then 

and 

m a.. 
'I, 

E (u Ma.] (z) , 
a. 

n 
I 

i=l 

and pz 

When the index set A in (2.2.B) is finite, the identification 

n M ~uM a. a. 
a. a. 

is made and the biproduct is called the direct sum 

In particul ar, this result is true for R-Mod/f.eg • However, the requirement 



Z = Id R is very restri ctive: R-Modtteg does not admit b i modul es unless 

zR is a disjoint union of small monoids. For, if M i s a regular 

R-bimodule, A= p = 1 : Id R = Id R. If r E R(p) , r* E R(p*) , 

m E M(z) and (rm)r* = r(mr*) , then (pz)p* = p(zp*) , so that 
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pp = z = Ap* and (Ap)p* = p(pp*) , hence AP = pp = z = Ap* = pp* Each 

p in zR thus satisfies dom p = cod p. 

2.2.9 DEFINITION. Given a ringnet morphism a : R + S, any left 

(right) S-module M determines a left (right) R-module 
0
M (iif") , which 

i s called the pullback of M along a. In Mod it is the composed 

partially additive contravariant (covariant) functor Mo a : R + S + Abne.:t 

Thus for a left module, 

z0M = {( i, z) E Id R x zM a( i) = AZ} , 

0 M(i, z) = {i} x M(z) , 

A( i, z) = i 

and 

r(pr, m) = (Ar, a(r)m) . 
Clearly the pullback of a regular module is regular since Abn.e.:t may be 

replaced by Ab . 
2.2.10 EXAMPLE If the groupnet morphism a A+ B is extended t o 

groupringnets then °(TB)~ TA as A-modules, since 

z0 (TB) = {(i, ai) E Id AX Id B} 

and 

0 (TB)(i, ai) = {i} x Z[ai] ~ Z. 

Correspondingly, (TB)a ~TA. 

If in (2.2.9), M is an S..JJ' bimodule the obvious induced right 

T-action gives 0
M an S..JJ' bimodule structure. Composed functor Mo a 

det ermines the identity natural transformation i(a) 

whi ch in turn determines a ~anonical a-morphism a* 

Moa-;-+M o a 

aM + M called (lef t) 
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put tbaok projection from its position in t he Abn.v: diagram 

aM a* M 

·l p.b. 1, 
Id R Id S 

a 

That is, a*(i , m) = m. Any a-morphism f: N + M may then be uniquely 

factored through a* by a morphism a(f) 
a : N + M, evaluated as 

a ( f) ( n) = C\n , fn) • 

The change of rings technique embodied in the pullback is necessary to 

any investigation of homology. So is the next definition. 

2.2.11 DEFINITION. If M is a right R-module and N is a lef t 

R-module their tensor product M®R N over R is an abelian groupnet with 

( i) 

Id(M ®RN) = {(u, v) E zM X ZN pu = AV}/<(up, v),....., (u, pv), 

and 

( ii) 

M ®Ir N(o.) = 

p E ZR, AP= pu, pp= AV), 

I I M(u) ®z N(v) I< (mr, n) = (m, rn), 
( u-:vf Eo. 

m E M(u), n E N(v), r E R(p), Ap = pu, Pp= AV) , 

so that all the R-action ' available' from each particular 

zero is divided out. 

Should M be an S-R bimodule then M ®R N inherits a left 

S- module structure from the left map A: z (M®R N) ++ Id S given by 

iu, v) = kl , and the S-action s (m, n) = (sm, n) • That this inheritance 

is natural when M is a bifunctor is evident from the adjoint properties of 

t he tensor functor which will be described below. The tensor product 

as sociates: 



and satisfies M ®it R ~ M under the correspondence (m, r) f--+ mr. 

2.2.12 LEMMA. For a ringnet mor-phism a : R + S and a right 

S-module M , M ®s s 0 ~ 1'15 in R-Mod . 

Proof. 

ztf = {(z, i) E zM x Id R: pz = ai} . 

z(M ®s s0
) = {(z, p, i) E zM x zs x Id R pz = Ap, pp= ai}/ 
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( (ZS, p, i) rv ( Z, Sp, i) ) , 

M0 (z, i) = M(z) x {i} . 

(M ®s s0 )<a) = U M(z) ® S(p) x {i}!< (ms, s', i) = (m, ss', i) >. 
( z ,p ,i) Ea 

The required isomorphism is described by 

(m, s, i) t---+ (ms, i) 

with inverse 

(m, i) 1----+ (m, pm, i) . D 

2.2 . 13 EXAMPLE. A ringnet R is defined to have: zeroes zR = z 

the additive group of the integers; underlying abelian groupnet 

R = v_ R(n) with R(O) = z and R(n) = {O} for n # 0 ; and tensor 

nEZ 

multiplication given by multiplication of the integers. That is, for 

r. in R(j) , 
J 

1jJ : R(n) ®R(m) + R(n+m) 

i s given by iµ(r ® r') = (rr') + • The identity set Id R of R 
n m nm 

, 

consists of the multiplicative identity 1 E R(O) This ringnet is not a 

ringoid. A graded group [31, p. 157] is a set of abelian groups 

A = {A : n E Z} indexed by the integers . Let zA = z , A(n) = A and 
n n 

A zA ++ Id zR be A(n) = 0 for n in z . With 
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~ : R(m) ®A(n) + A(m+n ) given by ~(r ® a) = ra m 
for any pair (m, n) , 

it follows that A i s a left R-module, In fact it is an R-R bimodule. 

If B is another graded group, A ®RB is identifiable with the usual 

tensor product of these graded groups. For, 

whi le 

so that 

Id(A ®RB) = Z X Z I < < m+p , n) "' ( m , p+n)' m, 

= 2 X Z I< (m, n) "'(m+n, O), m, n 

rv z 

A ®R B(a.) = I I A(n) ® B(m) I < (ar, b) = 
( n --:-mf Ea. 

= U A(n) ® B(m) 
(n,m)Ea. 

A ®R B(n) = U A(i) ® B(j) 
i+j=n 

for each n in Z / / 

n, p E Z> 

E Z ) 

(a, rb) > 

For a ringnet R the set of connected components of Id R is a 

par t ition of Id R determined by the equivalence relation generated by 

AP "' pp 'tip E zR • 

The tensor product of regular modules M and N has 

I d(M®R N) = {( i , j) E Id Rx Id R: i = j}/((Ap, ")..p) "'(pp, pp), p E zR) 

wh ich i s in one-to-one correspondence with the set of connected components 

of Id R In such cas es the terminology 

is used, when the connected components are indexed by K. 

The t ensor product in R-Mod is seen to determine a bifunctor 

®R : R-Modr x R-Modi + Abnet which is covariant in both arguments. When 

r estri cted to standard R-modules, 



is additive. 

2.2.14 LEMMA. Let N be a right R-module . The functor N ®R 

preserves arbitrary coproducts in R-Modi(Z) . 

Proof. In Abne.t(S) , the canonical morphism 

UA.+TTA. 
. J . J 

J J 

is a monomorphism for each {A. : j E J} . 
J 

Since both R-Modi(Z) and 
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Abne.t(zN ®R z) are abelian categories admitting all products and coproducts 

(2 . 2 . 8) , the canonical morphism 

u (N ®R Mc,_) + N ®R (u Ma] 
a a 

is a monomorphism for each collection {Ma: a EA} of standard left 

R-modules over Z (Popescu [28, Ex. 3.1.5]). It is clearly an epimorphism.D 

2. 2. 15 LEMMA. Let M: R ® s0
P + Abnet. be a bifunctor. Then the 

i i functor M ®ir - : R-Mod + S-Mod has a right adjoint. 

Proof. Define a functor 
i i 

HomS(M, -) : s -Mod + R-Mod as follows . 

For each i in \RI M(i) = M(i, -) : s 0 P + Abnet. is a right $-module . 

Let N s 0 P + Abne.:t be a right $-module. A right R-module 

HomS(M, N) : R0 P + Abnet. is determined by 

Homs(M, N)(i) = S-Mod'L(M(i), N) Vi E IRI 

and for each t in R and 6 in S-Mod'L(M(cod t), N) 

Q-loms(M, N)(t)](6) = 6 o M(t) . 

Since 

6 o M(t) ( sm) = f( ( sm) t) = f(s(mt)) = sf( mt) 

= s.6 o M(t)(m) , 

no M(t) E S-Mod'L(M(dom t), N) , as required . This functor is right adjoint 



to - ®RM= M ®R - . The Se.:t isomorphism 

S-Mocf-(L ®RM, N) S:f R-Mocf-(L, HomS(M, N)) 

is given for any L : R0 P + Abne.:t, N: s
0

P + Abne.:t, and S-morphism 

f: M ®R L + N by the correspondence f i--- o* : L--;-+ Homs(M, N) , where 

for each i in \RI ' o*(i) : L(i) + Homs(M(i), N) is the abelian 

groupnet morphism o*(i)(l) = f(- ® l) • D 

It is apparent from (2.2.15) that the functor right adjoint to the 
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tensor product is not the usual horn functor, which would be a natural 

choice. Rather , it is a sort of 'internal horn functor' : if R is a 

commutative ringnet then the existence of this functor implies R-Mod is a 

closed category (af. Mac Lane [20, VII.7]). For this reason, the straight

forward extension from classical theory which has so far been generally 

employed must be used with caution when dealing with cohomology theory. 

The set homR(M, N) of left R-module morphisms has an abelian group-

net structure (af. (2.2.7.i)) distinguished as 

(i) Id homR(M, N) = homR(zM, zN) , and 

(ii) homR(M, N)(h) = {f E homiM, N) : f\zM = h} • 

The horn sets thus define a bifunctor homR: (R-Mod)
0

p x (R-Mod) + Abne.:t, 

contravariant in the first argument and covariant in the second. When 

restricted to standard R-modules, 

homR : (R--Mod( Y)) op x R-Mod( Z) + Abne.:t (homi Y, Z)) 

is additive. 

2.2.16 LEMMA. For a ringnet morphism a R+S and a left R-moduie 

M, 

hom5 (s0 ®RM, L] S:f homR(M, 
0 L) 

in Abne.:t for any left S-moduie L . 
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Proof. The map ~ : homs(s
0 

®RM, L] + homR(M , 0 L) determined by 

~(f)(m) = (Am, f(o(Am), m)) for each left S-morphism f: s0 ®RM+ L is 

an abelian groupnet morphism. Its inverse 

is defined as 

-1 
~ (g)(s, m) = s.o* o g(m) 

for each left R-morphism g : M + 
0 L. Here (s, m) denotes the element 

((s, Am), m) of s0 ®RM, provided that O(Am) = ps • 

2.2.1_7 REMARK. In comparison with (2.2.14), let {Ma.: a.EA} be a 

set of standard left R-modules over Z and let L be any left R-module. 

Then the canonical isomorphisms 

homR(L, TT Ma.) S:f TT homR(L, M) [29, 7.3.6], 
a. a. a. 

and 

homR(UMa.' L] S:f TT homR(Ma.' L) [29, 8.3 .4] 
a. a. 

in Se;t, preserve the abelian groupnet structure of the left hand side . II 

The final definitions pertinent to this section are those of 

pr ojectivity and freedom for standard modules. A standard R- module P 

over Z is projective precisely when in any diagram 

M---+N-z 
g 0 

in R-Mod( Z) , with an exact row, the morphism f may be factored through 

g. That is, there exists f: P + M such that go J = f. For example, 

the trivial module TR, when defined, is a projective module in Id R- Modlt.e.g . 

2.2.18 DEFINITION. If R is a ringnet, Z is a (left) R-module and 

X is a set diagram 
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X ~ zX ~ Id R , 

then X is said to admit an R-action with respect to Z if there i s a s et 

inclusion zX C-.+- Z such that 

Id R 

2.2.19 DEFINITION. Let Z be a (left) zero R-module and 

U R-Mod(Z) + Set be the forgetful functor. Let X be a set diagram 

X ~ zX _L Id R 

X if 

A standard R-module M over Z is free with basis 

(i) X is a subset of UM, 

(ii) zX = {z E Z : z = zx, x EX} and 

(ii i ) for any N in JR-Mod(Z) J and Set diagram 

X UN 

zl lUz 

zX z UzN 

~ 
Id R (D2.2 . l) 

there i s a unique extension g M + N of g in R-Mod(Z) . If M is 

free with bas is X X admits an R-action with respect to Z. In the 

event that R = ZA for a group A , and Z is the zero A-module {o} , 

a s tandard free A-module with basis X is precisely the 'classical' free 

A-module with basis X. Free modules may be described internally by the 

following construction. Suppose RE !Rngneti and the Se,t diagram 

Y = Y --3..++ zY -14 Id R admits an R-action with res pect to the left zero 
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R-module Z • The standard left R-module FY over Z is defined by 

( i) FY(z) = u R(p) X {y} Vz E Z , and 
pEzR 

yEY 
p. zy=z 

( ii) R-action r*(r, y) = (r*r, y) defined whenever 

(r, y) E FY(z) and pr* = AZ (= >..r) . 
Then FY i s free on basis V, where y is defined from the Se,;t 

isomorphism Y ~y given by y 1---+ (1>..zy' y) There is an isomorphism from 

the free R-module M with basis X to the free R-module FX, given by 

the unique extension of the set diagram isomorphism X ~ X. By convention , 

Z is considered to be the free standard module over Z with empty bas i s . 

Clearly R is itself free over zR, on basis 

Id R-=+ Id R-=+ Id R. 

The s tructural requirements of each generating diagram X and each set 

diagram morphism (D2.2.l) imply that each set X may determine more than 

one free module over Z. Hence a free module in R-Mod(Z) is not 

necessarily a free object of that category [15, II.10]. Despite the non

categorical definition of standard free modules, such objects of R- Mod(Z) 

do have most of the properties associated with free objects [15, II .10] . 

For example, proof of the following lemma involves straightforward checking, 

and is only sketched. 

2.2020 LEMMA. (i) Any free module in R-Mod(Z) is a projective 

object . 

(ii) Any module in R-Mod(Z) is the epimorphic image of a free 

module . 

(iii) Any projective object in R-Mod(Z) ~s a direct sunmand of a 

free module. 

For , each module M in R-Mod(Z) determines the set diagram 

UM= UM 
Uz UZ --14-+ Id R which admits an R-action with respect to Z , 

and thus defines the free module FUM. There is a short exact sequence 
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Ker TT >-+ FUM ~ M 

which splits when M is projective. In this case, since R-Mod(Z) is 

abelian, FUM ~ Ker 'IT© M [29, 13.2.4]. // 

It is possible to generalise the notion of free module to R-Mod. 

2.2.21 DEFINITION. Let U: R-Mod + Se,t be the forgetful functor and 

l et X = X - zX + Id R be a set diagram. A (left) R-module M is 

especiaUy free with basis X if 

( i) X is a subset of UM 

( ii) zx = {z E zM: z = zx, X E X} and zx freely generates 

ZM; that is, each z in zM is uniquely of the form 

p.zx for p in zR and zx in zX, and 

(iii) for any N in IR-Modi and any set diagram 

X ___ __;;i_ ___ UN 

zl lz 
zx zg I UzN 

~/ 
Id R (D2.2.2) 

there is a unique extension g: M + N of g in R-Mod. 

Certain especially free modules may be described internally by the 

following construction. 

For any Se,t diagram Y = Y ~ zY ---14- Id R, the triple 

(FY, zFY, A) is defined by 

(i) zFY = {(p, z) E zR x zY: pp= AZ} , 

(i i ) FY(p, z) = U R(p) x {y} V(p, z) E zFY, and 
yEY 
zy=z 

( i ii) A zFY + Id R is A(p, z) = Ap 
A 

If A should be surjective, then FY is an R-module, with R-action 

r*(r , y) = (r*r, y) defined whenever (r, y) E FY(p, z) and pr*= Ar 
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In this case, FY is especially free on the basis V, determined from the 

isomorphism Y ~y in Se;t under the correspondence y ~ (1Azy' y) • If 

"' M is the especially free module on basis X and FX is an R-module, 

there is an isomorphism M +PX, given by the unique extension of the set 

diagram isomorphism X + X. Again, R is itself especially free with 

"' basis Id R .....=.+- Id R - Id R . If FX is the especially free R-module 

determined by 

X - zX + Id R , 

"' the inclusion map zX + zFX ensures that X admits an R- act ion with 

respect to zFX. Hence FX is free with basis X in R-Mod(zFX ) . II 

The closing example of this chapter incorporates several of the above 

definitions . 

2.2.22 LEMMA. If m : B >-+ A is a monomorphism in Gpn.e;t, then the 

(right) puUback ZA.m of A aZong m 

B-modu"le . 

ZB >-+ ZA is a free (right) 

Proof. From (2.2,9), ZAm is a right B-module, with 

zZAm = { ((i, m(j)), j) E zZA x Id B} • 

For convenience, (( i, m(j)) , j) is contracted to ( i, m(j)) 

ZAm(i, m(j)) = ZA(i, m(j)) x {j} is written ZA(i, m(j)) , and the induced 

B-action a.b equals am(b) • For each connected component BK of B, 

for K in K, a distinguished identity i 
K 

of B . is selected . Define 
K 

for each j in Id A, K in K, and a in A(j, m(iK)) , the left coset 

am (B ) = { am( b) 
K 

= i } . 
K 

Choice of a set of coset representatives 

x = {a8(K). E A(j, m(iK)) : j E Id A, K EK, 8(K)j Er;} , 
J 

one for each distinct coset 



gives for each a in A(j, m(l)) a unique representation 

a= a$(K).m(b(a)), 
J 
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where in Id B , and b <a ) E B ( i , l) • Further, b<a.b*> = b<a> b* 
K 

in B. With 

zX = {(j, m(iK)) E zZA KE K}' 

z X ++- zX as z(a$(K).) = (j, m(iK)) , 
J 

and 

p: zX + Id B as p(j, m(iK)) = iK 

the triple (FX, z:.FX, p) of (2.2.21) has 

and 

Since for every l in Id B, 

u 
K $(K) . EY. 

J J 

l "'i for some (unique) 
K 

K in K , 

p: 'ZFX + Id B is surjective. Thus FX is especially free on basis 'X 

The isomorphism FX + ZAm is given by (a$(K) .' b) i-- a$(K) _m(b) its 
J J 

inverse is the map a i-- (a$( K) • , b <a>) • D 
J 
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CHAPTER 3 

THE MAPPING CYLINDER 

This chapter describes the construction of a complex for a mapping 

cylinder groupnet in terms of complexes given for its vertex groupnets and 

the edge maps between them. It thus paves the way for a comparison of the 

homology of a mapping cylinder groupnet with that of its vertex groupnets. 

The emphasis here is on the concrete and algebraic aspects of module theory 

rather than the abstract and categorical ones. 

3.1 Complexes 

3.1.l DEFINITION. If R is a ringnet, a (left) R-chain complex 

(C, 3) consists of a set C - {c - n 

dimension n and a set a= {an 

n E Z} of (left) R-modules C in n 

n E Z} of R-morphisms a 
n 

C ~ C 
n n-1 

called the boundary maps, such that for all n in Z and z in zC 
n 

Right R-corrrplexes are correspondingly defined, and complex (C, 8) is 

an S-R bicorrrplex when C n 
is an S-R bimodule and a is an S-R 

n 

morphism for all n in Z. Should each boundary map be a zero morphism 

the complex is known as a graded module. 

When z is a zero R-module (C, a) is a standard R-corrrplex over Z 

if 

(i) Cn E JR-Mod(Z)J Vn E Z, and 

(ii) a E R-Mod(Z) Vn E Z. 
n 

In such a case, necessarily Im 3 
1
(z) c Ker 3 (z) 

Af n 
for each z in z • 

Often, zC will denote the zero set Z common to the modules of (C, a) 

A standard R-complex over Id R is, of course, regular, 
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Generally, the boundary maps of different complexes will be denoted by 

the same symbol a , and dimensional subscripts will be suppressed when there 

is no likelihood of ambiguity or when a statement is true for all 

dimensions. 

Given a ringnet morphism a: R + S and a (left) S-complex (D, a) , 

then a a-chain map (a-corrrpZex morphism) f: C + D is a set 

f = {fn : n E Z} of a-morphisms fn: Cn + Dn which commute with the 

boundary maps; that is, 

C n+l 

l fn+l 

---+- D ---~ D 
n+l n 

If a i s the identity morphism on R a a-chain map is an R-chain map. 

An R-chain map f: C + D is standa.r>d over Z when both C and D are 

standard complexes over Z and f E R-Mod(Z) (c, D) n n n 
for each n in z 

The composition of a a-chain map with a T-chain map is a (Too)

chain map; the category of chain complexes and chain maps with this 

composition is named Comp. Restriction to the (left) R-complexes and 

R-chain maps for each ringnet R determines the subcategory R-Comp. For 

each zero R-module Z , the standard R-complexes and chain maps over Z 

i n R-Comp form the subcategory R-Comp(Z) . This last category i s abelian 

and has arbitrary direct products and coproducts, by obvious extension of 

the respective results (2.2.7, 2,2,8) for R-Mod(Z) . Category 

R-Comp~eg = R-Comp(Id R) is the category of reguZar R-complexes and chain 

maps . A s t andard R-chain complex is exact when Ker a =Ima l n n+ 
for all 

n i n Z that is, when 

Ker a (z) =Ima 1(z) Vn E Z, z E zC. 
n n+ 

3.1.2 EXAMPLES, (i) Any R-module M may be identified with the 

standard R-complex 
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zM c_ M ++ zM 

over zM, where M conventionally lies in dimension O . 

(ii) The following 'unit interval' complex & serves in the homotopy 

theory for complexes in a fashion comparable to the way ZI, I and [O, l] 

serve for ringnets, groupnets and topological spaces respectively. For each 

ringnet R , consider the ·complex R in R-Comp(zR) 

Here R
1 
~ R is the free (right) R-module over zR with basis 

{y} x Id R ~ Id R---+ Id R 

where z(y, i) = i for i in Id R; 

R
0 
~ R © R is the free (right) R-module over zR with basis 

{a., f3} X Id R~IdR - Id R 

where z( a., i) = z( f3, i) = i for i in Id R 

and a1 Rl -+ Ro is the skew-diagonal map 

a(y, r) = ( a., 1') - ( f3' r) for 1' in R . 

The unit R-complex & in R-Comp is defined as 

& = TI ®z R ; 

that is, the image under the tensor functor TI ®z - of the R-Mod( zR)-

diagram R. It has the form (cf. (2.2.6)) 

& = z& = {o} x zR V {1} x zR 
n 

n t O, l, 

&
0
(i, p) = {(i, a.)} x R(p) ® {(i, f3)} x R(p) , 

and 

& ( . . 
l 1,' 

p) = {( i, y)} X R(p) for (i, p) E z& 
' 

with a
1
(i, y, r) = (i, ~. r) - ( i' f3' r) for i in Id I 

and inherits the right R-module structure of R • In fact , 

free right Z(Id I) (8) R-module over z& with basis 

and r in 

&l is the 

R ' 
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Id I X {y} X Id R I d I X Id R --+ Id I X Id R 

similarly , &
0 

is the free right Z( Id I) (8) R-module over z& with basis 

Id I x {a, 8} x Id R Id I X Id R--+ Id I X Id R . 

The unit R-complex is a left ZI (8) R-complex with left map 

1 x A : z& = Id I x ZR++ Id I x Id R and left action defined by coordinate : 

([i], r).(pi, l;;, r*) = (Ai, l;;, rr*) 

for i in I , rr* in R and l;; in {a, 8, y} In particular , 

([*], i).(l, l;; , i) = (0, l;; , i) 

for each ~ in Id R With this in mind, we denote the generators of & 

as ( l , a , i ) = ( a , i ) , (1, 8 , i ) = ( b , i) , (1, y , i ) = ( c , i ) , 

( o , a, i) = (*a, i) , ( o , 8, i) = ( *b, i ) and ( O , y, i) = ( *C, i) for 

each ~ in Id R. II 

3.1.3 DEFINITIONS. (i) If M is an R-module , a complex over M is 

a standard R-complex (C, a) over zM wh ich is positive (that is , 

C = zC for n < 0 ), together with a standard R- chain map E : C + M 
n 

It may thus be thought of as a standard chain complex 

with augmentation map E : C
0 

+ M. 

+ C -f+ M + zM 
0 

(D3 . l.l) 

(ii) A standard R-complex (C, a) over Z is a resolution of the 

R- modu le M , if it i s first ly a complex over M, and if secondly the 

augmented chain complex ( D3 .l.l) is exact . 

(iii) An R- complex is especially free if it is especially free 

(2 . 2 . 21) in every dimension . A standard R-complex is projective (free) if 

it is projective (free ) in every dimension . A standard resolution (C , a) 

of t he R-module M is projective (free) if C itself i s projective 

(free) . II 

For any groupnet A , there exists a free resolution of the trivial 

A-module TA 
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3.1.4 DEFINITION. Let A be a groupnet. The bar resolution B = BA 

for A is given by setting 

(i) X
0 

= {[i] : i E Id A} , 

for n > 0 

( ii) zX = Id A '<:/n ~ 0 
n 

( iii) 2 X ++ zx as 
n n 

z[i] = i n = 0 
' 

and 

(iv) B = FX , the regular free A-module on the set diagram 
n n 

X ~ zX --+ Id A 
n n 

and 

( v) a B -+ B as n n n-1 

and 

n-1 . 
+ I <-1/'[a1 I ... I 

i=l 
a.a. 1 'l, t.+ 1 aJ 

Routine calculation shows B is a regular positive complex which is free by 

definition. The augmentation map E : B0 -+ TA is extended by A-action 

from 

E[i] = l[i] for i in Id A , 

and then 

Ed[a] = E(a[pa]-[Aa]) = a.[pa] - [Aa] = [Aa] - [Aa] = O[Aa] 



so 

as required. Proof that the augmented complex is exact is deferred until 

(3.2.7). 

Any groupnet morphism f: A+ B induces an f-chain map Bf of 

augmented bar resolutions, viz . Bf_1 TA+ TB is linearly extended from 

Bf_1[i] = [fi] for ~ in Id A 

Bf0 BA0 + BB0 is extended to an f-morphism from 

_Bf
0

[i] = [fi] for i in Id A , 

and Bf : BA + BB is extended to an f-morphism from n n n 

i n X and n > 1. // 
n 

The technique of changing rings in Comp is next investigated: it i s 

the obvious pullback . 

3.1.5 DEFINITION. Let O: R ·+ S be a ringnet morphism and C be a 

(left) S-complex. The pullback 0c of C along a is the (left) R- complex 

( i) (
0 c) = 0 

( C ) , and 
n n 

( ii) (0 a) = O ( 3 ) : ( i, c) I-+ ( i, dC) for each ( i, c) in 
n n 

0c and n in Z • 
n 

Immediately, there is a canonical pullback projection a* : 0 c + C which is 

a a-chain map, and any a-chain map f : D + C factors uniquely ( via a( f) ) 

through a* 

3.1.6 LEMMA. (i) The pullback of a standa.Y'd (regular) complex is 

standard (regular). 

(ii) The pullback of a standa.Y'd exact complex is exact . 

(iii) The pullback 0 c of a resolution C of M is a resolution of 
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Proof. Let o : R + S be a ringnet morphism and C be an S-complex. 

(i) CE ls-Comp(Z)I ~ 0 c E IR-Comp(
0 z) I • If z =Ids then 

0 z = {(i, j) E Id Rx Id S: o(i) = j} ~ Id R. 

(ii) If (i, a) E Ker 0 a (i, z) , then zc = z and 
n 

0 a ( i, a) = ( i, aa) = z( i, a) = ( i, z) 
n 

so there exists a* in C such that 
n+l 

a "* = ,.. n+l'--' .... · Hence 

(iii) 

the pullback 

Certainly 

a 
E: of 

is exact. 0 

is a complex over its augmentation map is 

E: By (ii) the augmented pullback complex 

3.1.7 COROLLARY. If a: A+ B is a groupnet morphism and C is a 

resolution of TB then °c is a resolution of TA. 

Proof. By (2.2.10), 
a TB ~ TA . 0 // 

3.1.8 DEFINITION, If C and D are respectively right and left 

standard R-complexes they have a tensor product C ®1? D which is a 

standard Z- complex over zC ®1? zD, and extends the definition of the 

tensor product of complexes over a ring in an obvious manner. That is, 

z(C ®J? D) = zC ®1? zD, 

u 
i+j=n 

(c.~v.)Cz) 
1, ~R J 

'vz E z (c ®E v) , 

and the boundary map an: (c ®E v)n + (c ®E v)n-1 is the tensor extension 

of 

a (a. ® d .) 
n 1, J 

= ( a . a . ) ® d . + ( -1 / a . ® ( a .d . ) 
1,1, J 1, JJ 

whenever i + j = n, 

Cl early, if C here is also a (standard) S-R bicomplex, then C ®RD 



inherits a left S-complex structure from the action in each dimension on 

each direct summand . 
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3.1.9 EXAMPLE. Let (C, a) be a standard left R- complex and M be 

a right R-module . Consideration of (3.1.2.i) determines a standard 

Z-complex M ®RC with 

z (M ®R c) = zM ®R zc , 

(M®R c)n = M®R en 

and boundary map lM® a. Alternatively, this complex may be considered 

as the image of C under the covariant additive functor 

M ®R - : R-Comp(zC)-+ Z-Comp(z(M ®R c)) 

3.1.10 REMARK. Functor M ®R - is right exact. Since M is a 

bifunctor R ® z0 P-+ Ab~e.t, it follows from (2.2.15) that M®R - has a 

right adjoint. By the dual of [15, II.7.7], the functor preserves cokernels. 

3.1.11 DEFINITION. Any two standard (left) R-complexes C and D 

determine a horn aompZex homR(C, D) which is the standard Z-complex with 

homR(C, D) (z) = U homR(c., D.)( z) 
n i+j=n "I, J 

for each z E z homR(C, D) • Its boundary map 8 is conventionally written 

with a superscripted dimension to indicate contravariance, and is given by 

composition on the right . That is, for f:C.-+D. 
"I, J 

and i + j = n, 

circumstance 8 is called the aoboundary map. 

n 
8f=foa 1· n+ 

In this 

3.1.12 EXAMPLE. For a standard (left) R-complex C and a (left) 

R-module N, the horn complex homR(C, N) is given, by use of (3.1.2.i), 

as 
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and 

with coboundary map for f: e + N. 
n It may also be 

considered as the image of e under the contravariant additive functor 

R-Comp(ze) + Z-Comp(z homR(e, N)) . 

3.1.13 REMARK. For any standard R-module N over Z , the functor 

homR(-, N) is left exact on R-Mod(Z) , since R-Mod(Z) is abelian (see 

Popescu [28, 3.2.2]). Moreover, this result holds for any R-module N . 

3.1.14 LEMMA. If e is a teft standard R-comptex then & ®Re is a 

Zeft standard ZI ®R-comptex. 

Proof. Since & is a ZI ® R-R bimodule (3.1.2,ii), the left 

ZI (8) R-module structure is inherited by the tensored complex. D 

Because R ®1? en~ en (cf. (2.2,11)), the tensor complex & ®1? e will 

be written henceforth as: 

and 

z(&®1?e) = 

(& ®1? e)n< 1, z) = 

Id Ix ze, 

{a} x e (z) ® {b} x e (z) ® {c} x e 1(z) , n n n-

for each z in ze. The boundary map is thus 

a {(a, c)+(b, c')+(c, c")} = (a, ac+c") + (b, ac'-c") - (c, ac") 
n . 

on (& ®R e)n(O, z) , for each z in ze and n in Z. When e is a 

(classical) chain complex over a ring, & ® e reduces to two copies of the 

algebraic mapping cylinder of the identity map e + e (Takasu [39 , §1]). 
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3.2 Homotopy 

It is now possible to present two equivalent approaches to the notion 

of homotopy (the 'deformable equality' of two chain maps between standard 

complexes). Both definitions are subject to the proviso that the images of 

the zeroes under the second map are acted on by certain specific ringnet 

elements to give the images of the zeroes under the first map. This 

condition is automatically satisfied for regular chain complexes, including 

complexes over a ring. The first definition - complex homotopy - uses the 

unit complex in a way comparable to the use of [O, l], 1 and Z1 in 

definitions of homotopy in Top, Gpne.:t and Rngne.:t respectively. The 

second - chain homotopy - i s an extension of the classical definition for 

complexes over a ring. Homotopic objects in R-Comp(Z) will be shown to 

have the same homology: it is for this reason such homotopy classes of 

complexes are def ined. 

3.2.l DEFINITION. Let C be a standard R-complex, D be a standard 

S- complex and suppose a, T: R + S are homotopic ringnet morphisms with 

homotopy v: a,;:,, T: Z1 ® R + S, If f, g: C + D are respectively 

a, T-chain maps such that 

f(z) = v([*], AZ)g(z) Vz E zC, 

then a v-compiex homotopy F: f,;:,, g between f and g is a v-chain map 

F :· & ®R C + D satisfying 

(i) F (*a, a)= f (c) 
n n 

(ii) F (b, c) = g (e) 
n n 

Ve EC n 

Ve EC n 

n E Z and 

n E Z . 

I t is thus completely determined by f, g and 

3.2.2 DEFINITION. Let C be a standard R-complex, D be a standard 

S- complex and suppose a, T : R + S are homotopic ringnet morphisms with 



homotopy v: a~ T: ZI ® R + S If f, g C + D are respectively 

a, T-chain maps such that 

f(z) = v([*], Az)g(z) Vz E zC, 

then a v-chain homotopy G f ~ g between f and g is a set 

G = {G : n E Z} of a -chain morphisms 
n 

G : C + D l , n n n+ 

satisfying 

(i) G (z) = f(z) Vz E zC, and 
n 

( ii) (ac+ca)(c) = f(c) - v([*J, Ac)g(c) Ve EC n n E Z 

For regular complexes C and D, the condition required on the 

(2.2.1) and (2.2.2) is automatically satisfied, since flidR = a 

glidR = T , AV([*], i) = a(i) and pv([*], i) = T(i) for every 

Id R 

zeroes by 

, 

i in 
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Chain homotopy for complexes over ringnets extends the definition for 

complexes over a unital ring in a straightforward manner. Suppose 

x(l) : ZI (3) K + K is the constant ringnet homotopy determined by the 

identity Rng morphism l : K + K, so that x(l)([*], 1) = l If 

f, g : C + D are chain maps between the necessarily regular K-complexes 

C and D, then 

g(c) = x(l)(I*], l)g(c) Ve EC n 
n E Z • 

By definition , f is chain homotopic to g if and only if it is x(l)

chain homotopic to g. 

3.2.3 THEOREM. Let C be a standard R-compZex, D be a standard 

S-compZex and suppose a, T : R + S are homotopic ringnet morphisms with 

homotopy v : cr ~ T : ZI ®R + S. If f, g: C + D are respectively 

a, T-chain maps such that 

f(~) = v([*], AZ)g(z) Vz E zC, 



then f is v-eomplex homotopie to g if a:nd only if f is v-ehain 

homotopie to g. 
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Proof. (i) Suppose G = {G : n E Z} n 
is a v-chain homotopy between 

f and g . Generate F: & ® C + D by v-action from 

F(O, z) = f(z) Vz E zC 

F(l, z) = g(z) Vz E zC 

F (*a, e) = f (e) Ve EC n n n 
n E Z 

F (b, e) = g (e) Ve EC 
n n n 

n E Z , 

and 

Then 

= F 
1

a(*C, e) Ve EC l, n E Z, 
n- n-

and F is a V-chain map. 

g • 

Then 

and 

(ii) Suppose F: & ® C + D is a v-complex homotopy between f and 

Define G n 
C + D to be 

n n+l 

G (e) = F 1(*C, e) Ve EC n n+ n 
n E Z . 

G is a a-morphism. 
n 

Finally, for all e in C n 
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oF 
1

(*C, c) + F (*C, oc) 
n+ n 

In future the distinction between complex and chain homotopy will be 

ignored: chain maps will be v-homotopic and context will determine which 

definition is in use. 

3.2.4 LEMMA. Homotopy is an equivalence relation on chain maps 

between standard complexes. 

Proof. Let C be a standard R-complex and D be a standard 

S-complex. Suppose p, a, T : R + S are ringnet morphisms which are 

P -=,, a Z! (8) R + S and V : 0 ,::,, T : Z! (8) R + S • homotopic via µ 

Suppose f, g, h C + D are respectively p, a, ,-chain maps for which 

f(z) = µ([*], AZ)g(z) and g(z) = v([*], Az)h(z) 

for all z in zC. 

(i) Since x(cr) : cr,::,, a: Z! (8) R + S is the constant homotopy 

determined by a, whence x(cr)([*], AZ)= a(Az) for z in zC; it 

follows that g-=,, g via the induced constant x(a)-homotopy 

X(g) : & (8) C + D with X(g)(*C, c) = g(zc) . For then, 

X(g)a(*C, c) = X(g)(*a, c) - X(g)(*b, c) - X( g)( *C, ac) 

= g(c) - x(cr)([*], Ac)g(c) - g(zc) 

= g(zc) 

= dX(g)( *C, a) . 

-
(ii) There is a symmetric ringnet homotopy V : T,::,, a ZI (8) R + S , 

with v([*], i) = v([*-l], i) for i in Id R . Since 

h(z) = V([*], Az)g(z) for z in zC, the symmetric v-homotopy 

F: h-=,, g : & (8) C + D determined from the v-homotopy F: g,::,, h 

is generated from 

F(*C, c) = F(c, c) , Ve EC n 
n E Z . 

&(8)C+D 



(iii) To each µ-homotopy F f ,:y g and v-homotopy G: g CY h 

there i s a µv-homotopy H: f CY h. For f(z) = µv ([*], Az)h(z ) 

immediately, and, with 

H(*C, a)= F(*C, a)+µ([*], Aa)G(*C, a) ; 

aH(*C, a)= aF(*C, a)+µ([*], Aa)aG(*C, a) 
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+ µ([*], Aa){G(*a, a)-G(*b, c)-G(*C, ac)} 

= f(c) - µ([*], Ac)g(c) - F(*C, ac) 

+ µ([*], Ac){g(c)-v([*], Ac)h(c)-G(*C, ac)} 

= j'(c) - µv([*], Ac)h(c) - H(*C, ac) 

= Hd(*C, c) • 

Hence H i s the requisite µv-chain map. D 

3.2.5 EXAMPLE ( Contracting homotopy). Let C be a standard 

R- comp lex . A contracting homotopy s for C is a x(l)-homotopy 

s l CY O between the identity l: C + C and the zero chain map 

0 C + C It thus consists of a set s ={an: n E Z} of standard 

R- morphisms s : C + C satisfying 
n n n+l 

as+ sa = l 

3.2.6 LEMMA. If a standa:t>d Z-compiex ha.s a contracting homotopy it 

i s exact. 

Proof. Let s = {s : n E Z} be a contracting homotopy for the 
n 

s tandard Z-complex C. For each z in zC consider c in Ker a (z) n 

Immediately, (as+sa)(c) = as(c) + z = C 'which implies c E Im a 1( z) • 0 
n+ 

3.2.7 EXAMPLE. The augmented bar resolution (3.1.4) of a groupnet is 

exact . For if B i s the bar resolution of TA for a groupnet A , a 

contracting homotopy s of Z-morphisms may be extended linearly from 

s_
1
[i] = [i] Vi E Id A 

s
0
(a[pa]) = [a] Va EA , 

and 
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sn (a[a
1 

I ... I aJ) = [a I a1 I ... I aJ 'r/a E A , [a
1 

I · .. I a ] E X n n 

for n::: l. 

Routine calculation shows that es_1 = l, as0 + s_1e = l and, in 

higher dimensions, as+ sa = l (of. [19, IV.5.1]). 

There is a partial converse to (3.2.6), namely, that any positive 

projective exact complex in R-Mod(Z) has a contracting homotopy (of. [15, 

IV, Ex.4.1]). Proof is deferred, however, until (4.2.2). Since any free 

standard A-complex is a free standard Id A-complex for any groupnet A 

and TA is a projective Id A-module, this partial converse immediately 

implies the next result. 

3.2.8 COROLLARY. For any groupnet A, any (regular) free 

A-resolution of TA has a oontraoting homotopy. D 

(This contracting homotopy consists of Id A-morphisms.) 

3.2.9 DEFINITION. Suppose C is a standard R-chain complex, D is 

a standard S-chain complex and R ':::! S with homotopy equivalence a: R + S 

and homotopy inverse T S+R Let v: To cr ':::! lR and 

µ : a o T ':::! 1
8 

. Then C has the same homotopy type as D (or, is 

homotopio to D ), written C ':::! D, if there is a a-chain map f: C + D 

and a T-chain map g: D + C such that 

( i ) g O f( Z) = v( [ *] , AZ) • Z 'rJ Z E zC , 

(ii) f o g(z') = µ([*], 11.z').z' 'r/z' E zD, and 

(iii) go f is v-homotopic to le and fog is µ-homotopic 

Homotopy type is clearly an equivalence relation. It will be shown in 

( 4 . 2.6) that homotopic groupnet morphisms f, g : A+ B with homotopy 

a : f ':::! g induce a-homotopic chain maps Bf':::! Bg : BA+ BB on the 

augmented bar resolutions. 
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3.2.10 EXAMPLE. Homotopic groupnets have augmented bar resolutions 

which have the same homotopy type. For , if f: A+ B and g: B + A are 

groupnet morphisms with homotopies O : go f ~ lA and , : fog~ 18 , 

then by (4.2.6) there is a a-homotopy 

and a ,-homotopy 

By definition, B(g of)= B(g) o B(f) and B(1A) = lBA · 

3.2.11 LEMMA. An additive funator F R-Comp(Y) + S-Comp(Z) 

preserves homotopy. 

Proof. Suppose G: f ~ g: C + D where C and D are standard 

R-complexes over Y, and f and g are standard R-chain maps. Then 

G = {G : C + D 
1

, n E Z} satisfies 
n n n+ 

Hence 

ac +ca= f - g. 

F(aG+Ga) = F(aG) + F(Ga) 

= F(a)F(G) + F(G)F(a) 

= F(f) - F(g) 

Since (Ff)(z) = (Fg)(z) = z for all z in Z 

FG = {FG n 

is the required homotopy. This result holds whether F is covariant or 

contravariant. D 

3.3 The Mapping Cylinder 

The construction in this section of a manageable f ree resolution for 

graph products provides the main tool used in the rest of this work . 

3.3.l DEFINITION. A aompZex diagram (V, R, C) consists of a 



directed graph D , a ringnet diagram (V, R) , and a composed covariant 

functor 

Co R V + Rngnd + Comp 

subject to 

(i) Co R(v) E IRv-Compl for v in D and 

( ii) C o R( e) 

e in D • 

Co R(Ae) +Co R(pe) is an R -chain map for 
e 

It may thus be considered as a collection of complexes 

v Ev} and a collection of chain maps 

is an R -morphism, 
e 

e E D} . 
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It is a standard/regula:r/projective/free/exact complex diagram when Cv is 

a standard/regular/projective/free/exact complex for each v in D, and, 

in the first two cases, when r!3 is a standard/regular chain map for each 

e in D. 

3.3.2 DEFINITION. A a(V, R)-mapping cylinder 

µ (V, R, C) + µ(V, R, C) for a complex diagram (V, R, C) comprises 

( i) a representation 0 : (V, R) + a(V, R) of (V, R) (see 

( 2. 1. 10)), 

(ii) a a(V, R)-complex µ(V, R, C) 
' 

( iii) a a -chain map µv CV + µ(V, R, C) for V in D, and 
V 

(iv) a -homotopy 
e Ae pe 

0 r!3 for in D ' a µ µ ~µ e 
e 

which is 

(v) universal with respect to all constructions already 

satisfying conditions (i)-(iv). 

Any construction satisfying conditions (i)-(iv) is called a a( V, R)

representation of (V, R, C) • Once a(V, R) has been prescribed , the 

mappi ng cylinder may be considered as a homotopy colimit 'with respect to 
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a(V, R) '. / I 

A constructive proof of the existence of mapping cylinders follows. It 

corresponds to the process in Top of adding a handle to the union of 

vertex spaces for each edge of the directed graph, and identifying its 

initial boundary with the source complex and its terminal boundary with the 

sink complex. Hence the name 'mapping cylinder' (cf. [31, p. 32]); the 

mapping cylinder will also be shown to be the algebraic mapping cone of a 

suitable chain map. 

3.3.3 THEOREM. For any representation a: (V, R) + S of a standard 

compl,ex diagram (V, R, C) , there exists a a(V, R)-mapping oyUnder 

µ : (V, R, C) + M ; moreover, M is a standard S-compl,ex. 

Proof. Let (V, R, C) be a standard complex diagram and 

a : (V, R) + S be a representation of the ringnet diagram (V, R) • Some 

simplification of notation is first necessary. For each e in D 
& 
e 

represents a subscripted copy of the unit RAe-complex & 
Morphism 

a : R + S 
V V 

determines the right pullback of S which is an S-R 
V 

bimodule. Similarly, homotopy a : ZI ® R, + S 
e l\e 

determines the right 

pullback of S which is an S-Z1 ® RAe bimodule. Hence the R -
V 

tensor product 
Sv ® CV is a left S-module, as is the 

V n 
ZI ® RAe-tensor 

product (&e ® CAejn. Element ((s, AC), c) of 

ps = a (Ac) - will be written (s, c) 
V 

element ({s, ([1], AC)e)' (d, c)) 

of Se® (&e ® CAe} - with ps = (J ([l], AC) = a R (Ac) - will be 

e 
e pee 

n 

written (s, d, c, e) for d in {a, b, c} ; and similarly element 

( (s' ( [ 0] , AC) ) , ( *d , C)) , with ps = CJ ([OJ, Ac) = a Ae (Ac) , will be 

e 
e 

written (s, *d, c, e) . Thus, for example, 
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(s, •d, a, e) = (so/[*], \c ) , d, c, e) (D3.3,l) 

in this terminology. The construction now proceeds. 

(i) For each e in D, 

under the identification (q, O, z, e) 1--+ (q, z) for q in zB and z i n 

C
\e z • Define an abelian groupnet Mn as follows for each n in Z. It 

has identity set 

zMn = [Yo z[s" ®i, c"] ]/ (cq, 2) - h< [•l, AZ), c"(2)], 

V(q, z) E z(sAe ~e cM], e Ev), 

written zM for all n in Z 

0 
ror eac ~ equiva ence c ass o Set Zv 

-- z n z (sv 191v cv] ,.. h SA"' • 1 1 z f 

zM, and each v in D. Then let 

M (Z) = 
n 

®U 
zEZAe 

eED 

(s*, b, 

(cs, C) = ( s , *a, C, e) , V( s, C) E SAe ®>.e c~e, e E D, 

a, e), v(s*, cf(c)] E sPe ® cPe, e Ev) (D3.3.2) n pe n 

for each Z in zM and n in Z. This equation may be simplified by 

virtue of (D3,3.l) to 

M ( Z) 
n 

®U 
zEZAe 

eED 

(D3.3,3) 

The lef t S-module structure on each of the zero sets z(sv ®v cvJ 
determines a well-defined left map A: zM ~ Id S. Similarly, the left 

S-action on 
is compatible with the 

r elat i ons in M ( Z) , so that M is a left s-module. 
n n 



(ii) Boundary map a : M + M is induced from the boundary maps 
n n n-1 

oh the direct summands , as they also are compatible with the relations. 

That is, 

a(s, c) = (s, ac) , 

and 

a(s, (*)d, c, e) = (s, a(< *)d, c), e) , 

for d in {a, b, c} Under the isomorphism of (D3.3.3) the latter 

equality reduces to 

a(s , c , e) = (s, c) - (so/[*], >..c), ~-/c)] - (s, ac, e) 

for all (s, c, e) in s"-e ®>..e c~~l x {e} • 
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Routine calculation shows an is a well-defined S-morphism and that 

(M, a) is a standard S-complex. It remains to prove that (M, 8) is 

actually the mapping cylinder ; this is more apparent when M is written 

in the form (D3.3.2). 

( iii) Set as 

µ ~ ( C) = (av< AC) , C) , \;/1) E D , n E z , 

so that for r in RV, 

Since 

map as required. 

(iv) Let 

and 

1) = a (r)µ (c) • 
v n 

(in 

1) = µ a( c) , 
1) 

µ is a a - chain 
1) 



µe(d, c) = (a ([l], Ac), d, c, e) 
n e 

for d in {a, b, c}, e in D and n in Z This is a o - chain 
e 

map. Since 

and 

e c) ( 0 / [ 0] , AC) , µ ( *a, = *a, C, 
n 

= ( o A/ AC) , *a, c, e) 

= ( o >.e (Ac) , c) = µ"e(c) 
n 

µ~(b, c) = (oe([l], Ac), b, c, e) 

= ( o R ( AC) , b, c , e) 
pee 

e) 

= ((i)"peRe(Ac), c!<c)) = µ~eC~(c) 

is the requisite o -homotopy such that 
e 

/e ~ µpe~ • Thus (M, a) 

certainly a o(V, R)-representation of (V, R, C) • It must now be shown 

to be universal. 

(v) Assume \l : (V, R, C) -+ N is any o(V, R)-representation of 

(V, R, C) , whether N is standard or not. It is necessary to find an 

S-chain map 0: M-+ N which satisfies 

'r/v E D , and 'r/e E D • 

M~N 

For each v in D, n in Z, z in zCv and [(q, z)] in Z , the 

zero q.vv(z) in zN is well-defined. Hence the S- morphism 
n 

0 M (Z)-+ N (q.vv(z)] n n n n 

given by 
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is 



and 

0 (s, c) 
n 

V = s.v (c) 
n 

s E S(q) , 

satisfies all these requirements. In fact, it does so uniquely. Thus 
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µ: (V, R, C) + M is a a(V, R)-mapping cylinder for the standard complex 

diagram (V, R, C) . By definition any two a(V, R)-mapping cylinders of 

(V, R, C) are isomorphic as S-complexes, by a uniquely determined 

isomorphism. The mapping cylinder constructed above (D3.3.2), or its 

isomorphic form (D3.3.3), will be termed the a(V, R)-mapping cylinder of 

(V, R, C) . D 

In fact, there is always a a(V, R)-mapping cylinder for any complex 

diagram (V, R, C) and ringnet representation a: (V, R) + a(V, R) • It 

is found by indexing the zeroes of (3.3.3.i) by dimension and then showing 

the (suitably altered) morphisms of (3.3.3.ii, iii, iv) are well-defined 

on the zeroes. Proof is no more difficult than above, but the added detail 

is unnecessary for an understanding of the mapping cylinder construction, 

and the result is not required below. 

3.3.4 LEMMA. The mapping cytinder is an atgebraic mapping cone. 

That is (cf. [19, p. 46]); if µ: (V, R, C) + M is the a(V, R)

mapping cylinder of (3.3.3), then there exist S-chain complexes K and K' 

and an S-chain map f: K + K' such that 

M = K ' Er> K Vn E Z , n n n-1 

and 

a<k', k) = <a'k'+fk, -ak) • 

Proof. For each n in Z, define a standard complex diagram 

( V, R, C n) from ( V, R, C) by 

( i) (c )v = cv (cf. (3.1.2.i)), and 
n n 

( ii) 



Let 

Thus, 

n 
K 

for 

(v, 

all 

R, C ) -+ J(l-
n. 

be the o(V, R)-mapping cylinder of 

n in z ' 

d1' = zM ' 

~(Z) = U (sv (8) cv]<z) l:JZ E zM , 
EZ V n 

Z V 
VED 

1½_(Z) = u (sAe ®Ae c~e]<z) x {e} l:JZ E zM, 
zEZAe 

eED 

and the boundary map of J(1- in dimension 1 is 

The S-complexes (K, a) and (K', a') are 

and 

K~ = ~ ' 

a ' ( S , C) t,--,+ ( S , ac) , 
n 

a : (s, c, e) 1-+- ( s , ac, e) . 
n 

Boundary map a1 = {an: x -+ x'} is an S-chain map 
1 n n 

a'a1(s, c, e) = (s' ac) - (so/ [ *], AC), 

= (s, ac) - (so/[*], Ac), 

K-+ K' 

ac~c c)) 

c~_1 < ac)) 

= al (s' ac' e) = a1a(s, c, e) . 

By (D3.3.3), 

M = K' (£) K 
1 

, 
n n n-

and from (3.3.3.ii), 
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(V, R, C ) • 
n. 

since 
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a((s', c'), (s, c, e)) 

= (<s', ac')+(s, c)-(so)[*], Ac), cf(c)J, -(s, ac, e)J 

= (a'(s', c')+a/s, c, e), -a(s, c, e)) 

as required. D 

for the next lemma, replace (K, a) in (3.3.4) by (K+, a+) , where 

K+ = K and 
n n-1 

~+ - ~ · K+-+ K+ a - -a for all n 
n n-1 · n n-1 

in z . 

3.3.5 LEMMA. There is a short exact sequence 

in s-Mod( zM) • 

Proof (cf. [19, p. 46]). The injection i : K' >--+ M is immediately 

an S-chain map. The projection p : M-+-+ K+ of the second coordinate; 

p((s', c'), (s, c, e)) = (s, c, e) , satisfies 

a+p((s', c'), (s, c, e)) = -(s, ·ac, e) 

= p(a'(s', c')+a/s, c, e), -a(s, c, e)) 

= pa((s', c'), (s, c, e)) 

and so is an S-chain map. Since S-Mod(zM) is abelian, the sequence 

K' >--+ M -+-+ K+ is short exact for all n in Z (see, for example, [ 28 , 
n n n 

2.3.5]), as required. D 

Obviously, complex M is not a direct sum, so the short exact sequence 

of (3.3.5) need not split. 

The next theorem is essential to any concrete use of the mapping 

cylinder. For any groupnet diagram (V, A) and complex diagram 

(V, ZA, C) , it determines which properties of (V, ZA, C) are inherited 

by the m(V, A)-mapping cylinder. Despite the complexity of terminology and 

detail necessary, it is hoped the arguments used will appear straightforward. 

3.3.6 THEOREM. Let (V, A) be a groupnet diagram with mapping 

cylinder m : (V, A) -+ G and let (V, ZA, C) be a standard complex diagram. 



Let m : (V, ZA) -+ ZG be the induced r>ep:r>esentation of (V, ZA) and le t 

µ : (V, ZA, C) -+ M be the G-mapping ayUnderi of (V, ZA, C) 'I'hen 

(i) if (V, ZA, C) is r>egular>, M is regular>; 

(ii) if (V, ZA, C) is friee, M is free; 

(iii) if G is a graph product and (V, ZA, C) is exact, M 

is exact; and 

(iv) if G is a graph product and Cv is a r>esolution of TA 
V 

for each v in D , then M is a resolution of TG • 
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Proof. (i) Complex M is standard by definition, so an isomorphism 

zM S;! Id G 

of G-modules is required. Now (cf. (2.2.22)) 

so 

z(zcv ®v cv ] = { (i, m)k)) E zZG : k E Id A)/ 

( (i, m)k)),..., (i, mv(l)) A/k, l) :t¢). 

Thus 

zflJ = {(i, mv(k)) E zZG k E Id Av, v ED}/ 

( (i, mv(k)) ,..., (i, mvU)); A)k, l) :I ¢, v E D, 

,..., ( i, m A (j)) ; e E D) 
pe e 

Def ine r; zM -+ Id G from 

r;(i, m)k)) = >.(i, m)k)) = i ; 

it i s a well-defined G-morphism on these zeroes since 

r;(g. (pg, mv(k))) = r;(>.g, mv(k)) = >.g 

= g.pg , 

and is clearly surjective. If r;(i, mv(j)) = 1'; ( i , mW ( k)) , then 
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n 
G(m (j), m (k)) i ¢ and there is an element g = TT p in 

V w Z=l z 

G(mv(j), mw(k)) , where each Pz has one of the forms 

m (a) , a EA Vz ED, 
Vz Vz 

Pz = m ( [ *]' [q J) 
ez ' q E Id AA , 

ez 
ez E D , 

me ([*-1]' [qJ) ' q E Id AA , el E D • (D3.3.4) 
z ez 

Considered as an element of zZG, 

while as an element of 'lM, 

(mv Oa) , mv (pa)) 
n n 

(mv ( Aa), mv ( Aa)) 
n n 

(mAe ( q) ' mAe ( q)) 
n n 

= ( Ap , AP ) • 
n n 

Hence in 'lM , 

(i, mw(k)) = (i, ppn) 

rv (i, Apn) = ( i, ppn-1) 

rv (i' Apl) by induction 

and s is an isomorphism . 

( ii) Suppose ( V, ZA, C) is free and that CV is the free left 
n 



Av-module with basis 

That is, for each z in 
V 

zC , v in D and n in Z, by (2.2.19), 

Define 

and 

z 

xEXV 
n 

( >..z, >..zx). zx=z 

X ++ zX by n n 

>.. zX -+ Id G by 
n 

{

X f--+ ZX 

[xleJ i---+ [zxleJ , 

A G-action with respect to zM is induced on 

X = X ~ zX 2-+ Id G 
n n n 

The free left 

G-module FX over zM with basis X has, for each Z in zM with 
n n 

t..Z = i , 
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FX (Z) = 
n 
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I I ZG(i, mv(AZx)) x {x} EB 
( i ,mv (tzx°)) EzZG 

xEXV 
n 

((i,m)AZX)) ,zx) EZ 

vED 

U ZG(i, mAe(AZx)) x {[xJeJ} • 
(i ,mA/ AZX)) EzZG 

xEXAe 
n-1 

((i,mAe(Azx)) ,zx) EZ 

eED 

The G-morphism ~ : FX + M extended from the map 
n n n 

X + M with 
n n 

<t>}xJ = (m)Azx), (AZX, x)) 

has the G-morphism 1jJ : M + FX , where 
n n n 

and 

v E D , 

Vx E XAe 
n-1 ' 

e E D , 

as inverse. Hence Mn is free for n in Z. 

When (V, ZA, C) is a free regular complex diagram, M is a free 

regular G-complex by (i) and (ii). For each i in Id G, it follows that 

FX (i) = 
n 

U ZG(i, mv(Azx)) x {x} © 
(i,m)Azx)) EzZG 

xEXV 
n 

vED 

U ZG(i , mAe(Azx)) x {[xieJ} 
(i,mAeOzx) ) EzZG 

xEXAe 
n-1 

eED 

in this case. 

In the next two sections of the proof it will be assumed that G is a 
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graph product; that is, that A 
e 

is a monomorphism for each e in D • 

(iii) Suppose (V, ZA, C) is exact. Since the maps mv A -+ G 
V 

are embeddings [7, Th. 6.2], the right pullback of ZG along 

a free right A -module (2.2.22). In the terminology of (2.2.22), 
V 

zcV ~ FX for each V in D 'where 
- V 

xv= {a8(K). E G(j, mv(iK)) : j E Id G, KE KV, 8(K).i E 1;} , 
J 

m 
V 

is 

KV is the set of connected components of Av, and iK is a distinguished 

identity of the component 

in Abnet, for any left 

and 

A -module 
V 

N 

for each 

But 

u 
K 8( K) .EY. 

J J 
KEK 

V 

K in Then 

;\z=i,KEK} 
K V 

{a8(K) _} x N(z) • 

J 

· h 1 (zcv &-,v cv, 1 /Q, ") • d th b d This implies that t e comp ex O 'Cl a 1.n uces e oun ary map 

l X a : FX 19. CV -+ FX 19. CV and hence that (Fxv ®v CV' l X a) is v 0 v n v 0 v n-1 

exact . Thus, for each v in D, ZGV19. CV. t df h 
0 1.s exac, an or eac 

V 
e in 

D ' 
is exact. The exactness of M may now be proved 

directly. Suppose 

L [nf (gi, ci)] + I ~f (g, c, e)] e Ker a ( Z) 

eED =l p p n 
vED l,=l 

for some z in zM (cf. (D3.3.3)). Then 
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- I (nf (gpme([*], Ac), C~_
1

(c ))] - I fnf (g, acp , e)] = Z . 
eED ~=l p p eED ~=l p 

This implies 

From 

n 
e 

(a) I (g, ac) = o in 
p=l p p 

(b) 

for each e in D , and 

l (gl' acl) + Jn ~t (gp, op) l 
Ae=v 

- I 
eED 

If (gm ([*], Ac ), ~ 
1

(c ))] 
~=l p e p n- p 

pe=V 

= 0 in ZGV ® CV for each V in D • 
V n-1 

(a) there exists for each e in D ' an element 

k 
e 

zcAe ®>.e cAe 
ge = I (gq' C q) in 

q= l 
n 

such that 

Let 

for each e 

k 
e 

g* = I e q=l 

in D ' 

n 
e 

= I (g ' C ) • 
p=l p p 

(g m ([*], AC ) , Ce (c ) ) 
q e q n q 

so that in M , 

ZGpe ® cpe in 
pe n 

-a[kf (g, c, e)] = - ge + g* + nI (g, c , e) • 
q=l q q e p=l P P 

The boundary of this equation in M is 



z = -ag + ag* + ag -e e e 

so that (b) may be rewritten as 

n 
e 

I 
p=l 

I 
eED 
pe=v 

for each v in D. There is thus an element 
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in 

in ZGV (8) CV which 
V n+l 

maps to this element of the kernel, for each v in D. Hence 

= I 
vED 

I 
eED 

C ' p 

in M, as required. 

(iv) Suppose CV is a TAV = TV-resolution for each v in D, so 

that for each e in D, 

cpe_ T 
O E pe 

because Ce is an A -morphism and the complexes are regular. Then 
0 e 

(V, ZA, C) determines an exact regular complex diagram ( V, ZA, 8) which 

I CV for Bv , and for 
has for each V in D , the augmented complex -+ T 

V 

each e in D , the A -chain map 
e 

Be=Ce "'>O vn _ , 
n n 

and 
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Denote by M* the G-rnapping cylinder of (V, ZA, B) Then the diagram 

+ M + 
n 

a* 
l s* 

- M* - M* + Id G 0 -1 

in G-Comp~eg has an exact top row and a bottom row exact in all dimensions 

greater than l , by (i) and (iii) above. Further, for each i in Id G , 

LL zcv(i, m)j)) ®v c~(j) . , 
(i,m}':TYJ EzZG 

vED 

M~(i) = M
0
(i) © I I (zc>-e(i, m>./j)) ®>-e T>.e(j)] x {e}, 

( i ,m>.P)) EzZG 
eED 

M~/i) = U zcv(i, mv(j)) ®v T}j) , 
(i,m}"J)) EzZG 

vED 

and the boundary maps are 

a/g, c) = ai<g, c) = ( g' ac) ' 

a1<g, c, e) = (g, c) - (gm/[*]' AC)' ~(c) J 

ai<g, c, e) = ( g' c) - (gm/[*], AC), ~(c) J - (g, ac, e) ' 

s*(g, c) = ( g, E:C) ' 
and 

E: * ( g, [j] , e) = ( g, [j]) - (gm/ [.,.] , j) , [A/ j)]) • 

Set 

U zc"e (i, m>../j)) .·®>..e T>../j) x {e} 

( i ,m>../ j)) EzZG 
eED 

for each i in Id G, so that M~(i) = M0(i) ® N0(i) • If Po 

is projection of the first coordinate, 

M* + M 
0 0 
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for all i in Id G , and p -1 
M* -+ M 
-1 -1 

is the canonical quotient map, 

then 

* 
-+ M* + ••• -+ M* -+ M* ~M* -+ Id G 

n 1 0 -1 

l· l· 1Pa lP-1 l· 
-+ M -+ -+ M -+ M - M -+ Id G (D3.3,5) 

n 1 0 - -1 E 

where £(mo) = P_1E*(mo' o) But NO ~ E*N0 
as follows.~" As in ( iii) . 

above, assume K is the set of connected components of A for V in 
V 

V 

D , and i is a distinguished identity of the component AK of A for 
K 

V V 

each K in KV Thus for each e in D and K in KAe there is a 

unique identity i e(K) 
of Id A 

pe 
such that i ( ) rv A (i ) e K e K 

" groupnet diagram (V, T) with trivial vertex groupnet 

" TV = {i : K E K f , 
K V 

for all v in D, and trivial edge morphism 

i t---+ i ( ) 
K e K 

for each K in KAe and e in D. It has mapping cylinder 

There is a 

" 
which is a free groupnet. There is a groupnet morphism ~: G-+ w(V, T) 

with 

and 

~(i) = i 
K 

i rv i 
K 

KE KV , VE D, 

i rv i 
K 

V E D , 

e E D • 

1, I am indebted to my supervisor, Dr N. F. Smythe, for his formali sation of 

this proof. 
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A directed graph D* is defined from D and the free groups ZGV to have 

and 

with 

and 

i ' K 

p (gm, (A, ) , i , e) = (gm ( *, i ) m (A ) , i ( ) ) Ae /'\e K e K pe pe e K 

From (iii) above, it is possible to write 

if each coset representative g of Glm,_e(A,_e) is replaced by its coset 

and 

n( e) 

I I 
eW Z.=l 

i ' K 
e) , 

Pz.{(gz.m, (A,), i )-(gz.m (*, i )m (A ), i ( ))} = 0 Ae Ae K e K pe pe eK 

in E*N
0
(j) . Hence g determines a closed edge path in D*, and 

for a particular z., K and e. But then iK = iK, and there exists 

a in such that 

( 
±1 . ) ( ±1 . ) 

m,_e(a) = mel * , ~l ..• mer* , ~r 

The image of this equation under W in w(V, T) is 
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Since w(V, T) is free, this product is reducible and there is an s ~ r-1 

such that 

The process continues, so that g = 0 , and since E* is an epimorphism, 

N
0 
~ E*(N

0
) as required. Hence the bottom row of (D3.3,5) is exact. But 

M_
1 
~ TG in G-Modlteg under the G-morphism n : (g, [j]) 1---+ [Ag] defined 

whenever j E Id A 
V 

so that by (D3.3.4), 

g E G For 

n 
g = TT Pi 

l.=l 

(rt Pi .mv (a), [pa]) 
i=1 n 

(g, [jJ) = (Tl Pi·me ([*], q), [Ae (q)J) 
i=1 n n 

(

n-1 1 ) TT Pi·me ([*- J' q), [q] 
i=1 n 

a-, Pi• DaJ) 
i=1 

= c-1 w Pi• 
[q]) 

a-, Pi' 
i=1 

[Aen (q)J) 

= (Ag, [k]) 

by induction, where Ag = m (k) 
w 

for a unique k in Id A That is, n 
w 

is a monomorphism. It is clearly an epimorphism and the proof is complete.O 

3.3.7 COROLLARY. Let (V, A) be a groupnet diag~am with graph 
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product m: (V, A)+ G and iet m: (V, ZA) + ZG be the induced 

representation of (V, ZA) . Let (V, ZA, C) be a compZex diagram in which 

Cv is a free resoiution of the triviai A -moduie T for each v in D. 
V V 

Then the G-mapping cy Under µ : ( V, ZA, C) + M has for M a free G

reso iution of TG. Moreover, if G* is the group of ioops at a seiected 

identity i of Id G - the ciassicai case - then M(i) ~s a free G*

resoiution of Z 

Proof. Suppose T is a maximal tree in the connected component 

of G containing i. Each element g of 

Id Av, may be uniquely written in the form 

g = g*t. ( .) ~,mv J 

G ( i , m (j)) , for any j 
V 

G. 
~ 

in 

for g* in G* and t. ( .) in T The classical result follows from 
~,mv J 

(3.3.6) when every free generator x of M n 
is replaced by the element 

t. , [x] of M , and corresponding adjustments are made to the boundary 
~,I\X n 

maps. D 

A simple example shows that it is not necessary that G be a graph 

product for the mapping cylinder M of an exact complex to be exact. 

Let 

where A
0 

= < t : ) ~ z 

* = m ([*], [OJ) , 
e e 

0 

and A (t) = l, and let 
e 

G = m(V, A) . Then if 



= ( * 
e 

-1 ) * t* = l e e 

~ Z since A* = P* = 0 . e e 

As m
0 

: t 1-+ l is not mono, G is not a graph product. If c0 after 

augmentation is the free A
0
-resolution of Z, 

with al[tJ = (t-l)[OJ , then ~ : co -+ co may be extended from 
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~[OJ= [OJ and ~[tJ = O[OJ • The G-mapping cylinder M of (V, ZA, C) 

is a free regular G-complex 

o -+ ZG[tleJ - ZG[tJ Et> ZG[O le] - ZG[oJ- o , 

with 

and 

It follows that the augmented mapping cylinder is the direct sum of two 

exact sequences 

and 

where 

o-+ ZG[tjeJ ----+ 
a2 

o-----* 

ZG[tJ 

ZG l* e] ·--a-,--+-
1 

0 

ZG[O] - Z-+ o , 
£ 

a ' [* ] = - ( * -1) [ 0 J and £ [ 0] = -1 
l e e 

On the other hand, an equally simple example shows that exactness at 

each vertex complex is not sufficient to ensure exactness of the mapping 

cylinder. 

Let 



where A
0 

= < t 

G = m( V, A) , 

0 . 
D = e () . 

l 

(V, A)= {A0 , A1 ; A , e Af 

) ~ z , A1 = < s : ) ~ z 

* = m ([*], [OJ) 
e e 

and 

f ' 

: AO -+ Al} , 

and A/t) = A/t) 

< 
-1 -1 \ 

G = t, s, *e• *f *e t*e = l = *f t*f/ 

= < s, *e• *f : 
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= l . If 

which is a groupnet of the homotopy type of the free group (s, *~l*f: ) 

on two generators (cf. p. 15). Here t I-+ l and m
1

: s 1--+ s , and 

G is not a graph product. The augmented free resolutions 

and 

c1 = o -+ ZA [sJ -+ ZA [l] -+ Z -+ o 
l l 

with chain maps ~.cf: c0 -+ c1 extended from ~([OJ)= c{([O]) = [l] 

and S[t] = c{[t] = O[s] , determine a complex diagram (V, ZA, C) with 

augmented free regular G-mapping cylinder 

Here Id G = {O, 

M/1) = ZG(l , 

Ml(l) = ZG(l , 

MO(l) = ZG(l, 

M = Id G-+ M -+ M -+ M -+TC-+ Id G. 
2 l 0 

l} , 

O )[ t I e J © ZG(l , O)[t\fJ , 

o )[ t J © ZG( 1, l)[s J © ZG(l, O)[o\e] © ZG(l, O)[o\f] ' 

O)[O] © ZG(l, l)[l] , 

and the two-dimensional boundary map is extended from 
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and 

Hence [tie] - [tlfJ E Ker a2(o) , but Im a3(o) = O in M2(o) , and the 

mapping cylinder is not exact, 

As an illustration of the case in which the conditions of (3.3.7) are 

s atisfied, the next example is worked through in detail. 

3,3.8 EXAMPLE. Let 

0 

D = e () f, 

l 

where A 
e 

and Af are monomorphisms, 

A
1 
~ FIR is a torsion-free one-relator group (which may be free); 

Al = < y . ' l s j s m : r) . 
J 

If G = m(V, A) then 

G = (xi, y ., 
J 

l s i Sm, l s j s m, * e' *t : 

-1 
Ae (xi), 

-1 
Af (xi), l r, * X,* = *f Xi*f = e i. e 

\Y j ' l S j S m, t, t 
-1 t-1A (x.)t = Af(x . ), = * *t : r, = * *r e ' e e i. i. 

and the loop group G* at identity l is isomorphic to GI< * ) 
e 

; 

and 

s 

l 

G* = \Yj' l S j s m, t : r, t-1A (x.)t = Af(x .), l s i Sn) . 
e i. i. 

By the Lyndon Identity Theorem it follows [18, §11] that the complex 

m 
c1 = 0 -+ ZA1 [rJ -+ © ZAl UI) -+ ZA [ lJ -+ o 

j=l 
l 

i 

s 



with boundary maps 

and 

a
1 

[y .] = (y .-1) [1J , 
J J 

given in terms of Fox's free differential calculus [9J in ZF, is a f ree 

resolution of Z. Together with 

n 
Co= 0-+ © ZA

0
[x.]-+ ZA [OJ-+ O, 

i=l i, O 

and chain maps rf3 and cf extended from ~[OJ= c{coJ = [lJ , 

m aA (x.) 
cf[x.J = I ; i- [1/.J 

1 'I, • 1 y. J 
J= J 

and 

it forms a complex diagram (V, ZA, C) satisfying the requirements of 

(3.3.7). The G-mapping cylinder M of (V, ZA, C) is an exact free 

resolution of TG, with 

M
1 

( l) 0 (j;l ZG( 1, l) U/) l E!) l!l ZG( 1, 0) [xi]] E!) ZG( 1, 0 )[Ole] E!) 

84 

ZG(l, O)[O !fJ , 

M
0

(1) = ZG(l, l)[l] ® ZG(l, O)[OJ , 

and boundary maps 

and 

a2 [xi if] = [xi] - *fµ~c{[xi] - m0 (xi-1) [O lfJ , 

a1[y) = m1(yj-1)[1J, 
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Since * is a maximal tree in G 
e 

M(l) is a free G*-resolution of Z, 

freely generated as a G*-module in dimension 2 by 

in dimension 1 by 

{ w), 1 < j < 

and in dimension O by {[1], *~
1[o]} // 

The essence of Theorem (3.3.6) is that the process of taking mapping 

cylinders is a well-behaved one which preserves many of the properties of 

the origi na l complex diagram. In particular, for groups G known to be 

graph products, the mapping cylinder provides a very simply defined G-free 

r esolution given in terms of the vertex resolutions. The only added 

structure arises from the diagram itself; as a result the mapping cylinder 

res olution is much more amenable to computation than the bar resolution 

&J or the resolution defined by Lyndon [18, §s] from a presentation of G 

with a complete set of identities. 

As was mentioned above, the mapping cylinder is not generally a 

direct sum of complexes, in contrast with Trotter's group systems [40], so 

its homology cannot be expected to split simply in terms of the homology of 

its vertex complexes. Chapter 4 examines the relationship between the two. 



CHAPTER 4 

THE MAYER-VIETORIS SEQUENCE 

4.1 Homology 

It is possible to measure the deviation from exactness of a chain 

complex in any abelian category by means of the homology objects of the 

complex [20, VIII.4]. 
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4.1.1 DEFINITION. Let (C, a) be a standard (left) R-complex. The 

homology module H( C) of C is the standard (left) graded R-module 

{H (C) 
n 

n E Z} with zH(C) = zC and nth homo logy module H (C) 
n 

by 

H (C)(z) =Kera (z)/Im a 1(z) ~z E zC, n E Z. 
n n n+ 

Its R-action is induced from C. 

Thus complex C is exact if and only if 

z . 

H (C) = zC 
n 

for each 

When a: R + S is any ringnet morphism, D is any standard 

S-complex and f: C + D is any a-chain map, the square 

D -r D n a n-1 

defined 

n in 

ensures that f induces a well-defined a-chain map of graded modules 

H(f) : H( C) + H(D) , the induced homology chain map. Under this definition, 

H: R-Comp(Z) + R-Comp(Z) 

is an additive covariant functor, the homology functor, on each such 

abe lian category . 

Homotopic chain maps induce homology chain maps which differ only by a 

'change of base point isomorphism', as the following lemma shows. 



4.1.2 LEMMA. Let C be a standard R-complex, D be a standard 

S-complex, and suppose a, T : R + S are homotopic ringnet morphisms with 

homotopy v : cr,:,, T : ZI ® R + S. If f, g : C + D are respectively 

a, T-chain maps with 

f(z) = v([*J, Xz)g(z) ~z E zC, 

which are v-homotopic, then 

H(f) = v([*], X-) o H( g) : H(C) + H(D) . 
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Proof. If F: f,:,, g, then (aF+Fa)(c) = f(c) - v([*], Xc)g(c) for 

all c in C. If c E Ker a (z) then aF(c) = f(c) - v([*], Xc)g(c) , 
n 

so that 

4.1.3 COROLLARY. If f,:,, g : C + D in R-Co.mp(Z) then 

H(f) = H(g) : H(C) + H(D) . D 

4.1.4 COROLLARY. Homotopic chain complexes in R-Comp( Z) have 

isomorphic homology modules. 

Proof. If C,:,, D in R-Comp(Z) with homotopy equivalence f C + D 

and homotopy inverse g: D + C then H(f o g) = H(1D) and 

H(g of)= H(1C) by (4.1.3). Hence H(f) o H(g) = lH(D) and 

H(g) o H(f) = lH(C) • D 

4.1.5 LEMMA (Snake Lemma) [20, VIII.4.5]. Suppose 

is a short exact sequence of complexes in R-Comp(Z) Then there is a set 

w = {wn: n E Z} of standard R-morphisms w : Ker aC + Coker aA 
n n n 

such 

that the sequence 

Z + Ker aA + Ker a8 + Ker aC + Coker aA + Coker a
8 

+ Coker aC + Z n n n n n n 

with induced morphisms is exact in R-Comp(Z) for each n in Z. 

Proof. Category R-Comp(Z) is abelian. The morphisms w are 



constructed as follows: if 
C 

a E Ker c) (z) 
n 

for z in zC then, since 

is an epimorphism, there exists b in B (z) with B(b) =a. 
n 

As 

8 

aCB(b) = ac(a) = o = B(a8b) , the exactness of the middle term ensures the 

existence of a<a> in An_1(z) for which a(a(a}) = a
8

b 

w (a) = a<a > + Im aA(z) 
n n 

Thus the map 
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is well-defined. It is called the aonneating morphism in dimension n. D 

4.1.6 LEMMA (The Long Exact Homology Sequence) [15, IV, Ex.2,4]. For 

eaah short exaat sequenae of ahain aorrrplexes 

in R-Comp(Z), there is a graded module morphism w H(C) + H(D) of 

degree -1 , suah that the long homology sequenae 

w 
+ Hn(A) + Hn(B) + Hn(C) -!I:+ Hn_ 1(A) + ••• 

in R-Comp(Z) is exaat. 

Proof. Since R-Comp(Z) is abelian the proof is that of [15, IV.2.1] 

with a suitable change of notation. If w is the connecting morphism of 

( 4. l. 5) , then 

for each z in zC and n in 

boundary. D 

Z, and 

A a< a> + Im a ( z) n 

w 
n 

is called the nth invariant 

4.1.7 LEMMA. The funator H preserves arbitrary direat produats and 

aoproduats in R-Comp(Z) . 

Proof. Let {(ca, aa) : a EA} be a set of standard R-complexes over 

z • Then (n caJ = TT (c~) and the boundary map is 

a n a 

TT a{ aa}A = {aaaaL . The map 
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given by 

_{ca.}A + Im(TT a) (z) I---+ {c + Im aa. l(z)} 
n+l a. n+ A 

is the required isomorphism for the product, Popescu [28, 3 .1.1] gives the 

result for the coproduct because H is additive, D 

4.1.8 DEFINITION. If A is a groupnet, let M be a right A-module 

and N be a left A-module. If C is a regular projective left 

A-resolution of TA , the homology module H*(A; M) of A with 

coe fficients in M is the homology module 

and the cohomology module H*(A; N) of A with coefficients in N is the 

homology module 

tf (hom/C, N)) • 

By convention the induced horn complex is written 

so that 
n n n-1 H (A; N) =Kero /Imo • 

Proof that these definitions are independent of the choice of the 

regular projective A-resolution C of TA is deferred until (4,2,5). 

4.2 The Comparison Theorem 

In any abelian category it is possible to compare any positive 

projective complex over one object with any resolut ion over another object , 

given a morphism between these objects. 

4.2.l LEMMA (Restricted Comparison Theorem). In R-Comp(Z), let X 

be a projective complex over C , augmented by e: : X -+ C , and let X' be 



a resolution of C', with augmentation map £' X' -+ C' For each 

R-morphism y : C -+ C' there is a chain map f X -+ X' such that 

£'f = y£. Any wo such chain maps are x(l)-homotopic. 
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Proof. The proof uses only the categorical properties of projectivity 

and exactness in R-Comp(Z) , so that of Mac Lane [19, III.6.1, III.6.2] 

for the classical case applies verbatim. D 

The chain map f is said to Lift y 

4.2.2 COROLLARY. A positive projective exact complex in R-Mod(Z) 

has a contracting homotopy. 

Proof. For such a complex P, both the identity 1 : P-+ P and the 

zero chain map O : P-+ P lift the R-morphism 1 = 0 : Z-+ Z in dimens ion 

-1 . By (4.2.1), 1 '="' 0 • D 

The availability of a definition of homotopy of chain maps between 

complexes over different ringnets enables an extension of (4.2.1) to be 

made . Recall that in any category C an object P is projective if for 

every diagram 

M--++ N 
g 

in C for which g is an epimorphism, the morphism f factors through 

g Further, any epimorphism in R-Mod(Z) is an epimorphism in R-Mod . 
thus: if g : M ++ N is in R-Mod(Z) then g M(z)-+ N(z) is a 

s urjection for each z in z Hence if f, h N -+ L are morphisms in 

R-Mod such that f O g = h 0 g then f(z) = h(z) for z in z , and if 

n E N( z) there exists m E M(z) with g(m) = n so that f(n) = h(n) . 
4.2.3 THEOREM (Comparison Theorem). Let C be a positive complex 

over M in R-Comp(Y), for which Cn is projective in R-Mod for each 

n, Let D be a resolution over N ~n S-Comp(Z) and Let a R-+ S be a 
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ringnet morphism. Then any a-morphism f : M -+ N lifts to a a-chain map 

g : C-+ D such that Eg = fE. Any two such chain maps a.:t'e x(a)

homotopic• 

Proof• · The pullback aD is a resolution of aN in R-Comp(az ) by 

(3.1.6.iii). The a-pullback projection a* 

projection a* -1 
aN-+ N satisfy 

D-N 
0 E 

Morphism f M-+ N factors uniquely via a(f) 

aD-+ D and the a-pullback 

There then exists an R-chain map a(g) : C-+ aD lifting a(f) , for which 

a Ea<g) = a(f)E , and such that any two such lifting maps are x(l)-

homotopic. The proof of this result follows the usual course but is 

sketched here because of the special circumstances involved. 

Consider the diagram 

in which a 
E is an epimorphism in R-Mod (a Z) and hence an epimorphism in 

R-Mod. Since c
0 

is projective in R-Mod, there exists an R-morphism 

lifting a(f) · If the R-morphisms 

commuting with the boundary maps, have been found for OS k S n-1 , then 

a(g) : c -+ aD is determined as above, since in the diagram 
n n n 
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C --~ C 
n n- 1 

lcr(g)n- 1 

aD --.... Im 0 a -+ 0 z 
n aa n 

n 

0 a is an epimorphism in R-Mod(0 z) 
n 

Any other morphism cr(h) lifting 

a(f) satisfies cr(g)(y) = cr(h)(y) for all y in y . 
' 

construction of the 

x(l)-homotopy cr(g) '.::,, cr(h) is similar and is not given (cf . [19, III . 6 . 2]). 

The composite a*a(g) = g is a a - chain map satisfying the 

requirements of the theorem . Any other such chain map h factors uniquely 

as h = a*a(h) , so that there is a X(l)-homotopy cr(H) : cr(g) '.:>< cr(h) . 

But then the composite a-morphisms 

H = a* o a(H) 
n n+l n 

C -+ aD -+ D 
n n+l n+l 

comprise a x(cr)-homotopy g ~ h. D 

4.2.4 LEMMA (Regular Comparison Theorem). Let C be a projective 

complex over M in R-Comp~eg, let D be a resolution over N in 

S-Comp~eg and let a : R-+ S be a ringnet morphism. Then any a- morphism 

f: M-+ N lifts to a a-chain map g : C-+ D with £g = f£ and any two 

such lifting chain maps are x(a)-homotopic . 

Proof. Since 0 D E R-Comp~eg by (3.1,6.i), it is sufficient that C 
n 

be projective in R-MoMeg for each n, for then the Restricted Comparison 

Theorem may be applied in the proof of (4 . 2 . 3) to give this result . D 

4.2.5 COROLLARY. The definition (4 .1.8) of the (co)homology modules 

of a groupnet A with coefficients in a given A-module is independent of 

the choice of the regular projective A- resolution C of TA . 

Proof. Suppose D is any other regular projective A-resolution of 

TA . Thus in A-Comp~eg (4.2.4) implies the existence of A-chain maps 

f: C-+ D and g: D-+ C lifting the identity map TA-+ TA and hence the 

existence of x(l)-homotopies fog'.:>< lD and go f '.:><le . Hence C '.:>< D . 
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The additive functors M®A - and homA(-, N) preserve homotopy in 

A-Comp4eg (3.2.11), so that M®A C ~ M ®AD and homA(C, N) ~ homA(D, N) 

in Z-Comp(zM ®A Id A) and Z-Comp(homA(Id A, zN)) respectively. By 

(4.1.4), 

and 

4.2.6 COROLLARY. Homotopic groupnet morphisms induce homotopic chain 

maps on the augmented bar resolutions. 

Proof. Let f, g: A+ B be homotopic groupnet morphisms with a 

homotopy a f ~ g. If cr([*], A-)Bg : BA+ BB is the f-chain map 

extended from 

o([*], A-)Bg_
1
[i] = a([*], i).[gi] = [fi] Vi E Id A , 

o([*], A-)Bgo[i] = [fi] Vi E Id A ' 

and 

I gaJ 

in X and n ~ l, then Bf and o([*], A-)Bg 
n 

both lift the morphism Bf_
1 

TA+ TB. By (4.2,4), the chain maps Bf 

and o([*], A-)Bg are x(f)-homotopic, hence Bf and Bg are 

o-homotopic. D 

4.2.7 THEOREM. If the groupnet morphism .r: A+ B is a retraction, 

M is any regular right B-module and N is any regular left B-module then 

and 

H*(A; rN) ~ H*(B; N) 

in the following two cases: 



(i) B is the loop group of the connected groupnet A at a 

selected identity; 

(ii) A is the covering groupnet corresponding to the wide 

subgroupnet B of some groupnet C . 
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Proof. In both cases, if k E Id B. l E Id A and r(l) = k • there 

exists a unique element a<k, l) = a in A such that Aa = k • pa= l 

and r(a) = k In the former case, if B = A(O, 0) for a selected 

identity O • the spine *l has this property (1.6). In the latter case, 

A= {(y, c) EC/Bx C: PY= Ac} B is a subgroupnet of A under the 

identification b r--+ (BAb, b) for all b in B • and if a coset 

representative X y 
is chosen for each coset y • then. 

r(y, c) = x c(x )-l. Hence if r(y, py) = AX = k • the element 
y ye y 

(HAXy• xy) of A has the required property. 

Let L be any regular left B-module. Then the map 

(m, l) r--+ (Cm, i) • ( i, l) ) • defined whenever Am = i = pl in Id B • is an 

isomorphism 

Any B-morphism g: L + N determines the pullback A-morphism 

rg: rL + rN. Any A-morphism f: rL + rN determines a B-morphism 

f: L + N where f(i, l) = (i, fl) for each i in Id B, since 

( Ab ' 1< bl)) = f( Ab ' b . l) = b . f ( pb ' l) = b ( pb ' 10 = ( Ab , bf( L)) 

Thus 

(compare with the Pullback Lemma [19, V.1.2]). 

However, the pullback rBB of the bar resolution of B is a 

projective A-resolution of TA , as follows. For each pair (k, L) 

Id B x Id A such that rCl) = k • and each generator X of X in 
n 

in 

BB 
n 



such that AX= k, the element (l, x) of rBB ( l) may be un i quely 
n 

written in the form 

-1 
(l, x) = (a<k, l>) (k, x) • 

Hence, if g is an epimorphism in the A-Comp~eg diagram 

rBB 
n 

P --++ Q - Id A , 
g 

9 5 

then the lifting map g rBBn + P may be generated by A-action from any 

set of elements 

{p(k, x) E P g(p(k, x)) = f(k, x), k E Id B, AX= k}. 

That is, 

and 

4.3 Mayer-Vietoris Sequences 

This section compares the (co)homology of a mapping cylinder with the 

(co)homologies of the vertex complexes comprising it, by means of an exact 

sequence. 

4.3.1 LEMMA. Let a _: (V, R) + S be a representation of a ringnet 

diagram and let µ: (V, R, C) + M be the o(V, R)-mapping cylinder of the 

s t andard complex diagram (V, R, C) . For any right S-module N there is 

a ringnet representation j : (V, Z) + Z and a standard complex diagram 

(V, Z, N ® C) such that the j(V, Z)-mapping cylinder of (V, Z, N ® C) is 

isomorphic to N ®s M. 

Proof. The representation j (V, Z) + Z consists of the obvious 



identity morphisms and homotopies. The pullback NV of N along 

R + S 
V 

determines a standard Z-complex 

Morphism cf= (N ® C)e : (N ® C)Ae + (N ® C)pe is given by 

~ ( n , c) = ( no e ( [ * J , AC) , 1 ( c)] 

and is a Zl -chain map. (The notational conventions here correspond to 
e 
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those of (3.3 . 3) with S replaced by N .) If n : (V, Z, N ® C) + H i s 

the Z-mapping cylinder of (V, Z, N ® C) , then 

zN = Y» z(sv ®v cv)/(cq, z)"' (qae([*J, Az), ~(z)], e Ev), 

zH = Y» z(Nv ®v cv)/(<p, z)"' (poe([*], AZ), ~(z)], e Ev), 

M (Z) 
n =U 

zEZ 
V 

VED 

for ea ch Z in zM , and 

H (Y) = 
n 

vED 

for each Y in zH 

eED 

By (2.2.12) and tensor associativity, 

for each V in D. The result follows from (2.2.14). D 

In other words, the mapping cylinder commutes with tensor products. 

4.3.2 THEOREM (Mayer-Vietoris Sequence). Let a: (V, R) + S be a 

ringnet representation and µ: (V, R, C) + M be the a(V, R)-mapping 

cy U nder of the standard comp lex diagram ( V, R, C) • Let N be a right 

S-module and L be a left S-module. There are abelian groupnet morphisms 

i, p, a and t, TI, o such that the following homology sequences, 

respectively, are exact: 
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... ~ u H (N"e ®, c"e] X {e} ~ u H (NV ® cv) ~ H (N ® M) 
e ED m l\.e V ED m V m s 

~UH _
1

(N"e Cxl.. c"e) x {e} ~ ••• , (D4.3.l) 
eED m ~Ae 

~ H (hom
5

(M, L)) ~ TT H (horn (cv, vi)] 
m vW m v 

8 m -

Proof. (D4 .3.l). By (4.3.1) there is a Z-mapping cylinder 

n : (V, Z, N ® C) ~ H of the standard complex diagram (V, Z, N ® C) such 

t hat H ~ N ®s M. From (3.3.5) there is a short exact sequence 

U (Nv ® cv) > i~ • N ®s Mm _P_;.:.++ U (N"e ® c"e ) x {e} 
VED v m eED >..e m-l 

in Z-Comp(zH) for each dimension m 

the long exact homology sequence (4.1.6), 

This short exact sequence induces 

H(p*) m 

Here wm+l = n(a~) where by (3.3.4), 

am
1

(n, a , e) = (n, a) - (no ([*], >..a), ~(a)) ; m m e m m m 

the result is found directly from the evaluation of w in (4.1.5). 

As the homology functor preserves arbitrary coproducts (4.1.7), 

and 

The required result is obtained if i , p and 
m m 

a m 
is written for the 



composite of H(i;), H(p;) and H(a:) , respectively, with the above 

isomorphisms. 

( D4. 3. 2). In S-Mod( zM) horns(-, L) is left exact (3.1.13) so 

that the short exact sequence 

of (3.3.5) induces a left exact sequence 
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( l * ,L > ( 
m horns Usv ® Cv, i) . 

VUJ V m 

If 

f E homs(li Sv ® Cv, L)(h) , 
VW V m 

then for each Z in zM, 

Define g<f > 

and 

g(f > is an 

f: z-kl [sv ®v c~]<z) ~ L(h(Z)) • 
V 

vEJJ 

M (Z) ~ L(h(Z)) for each Z in zM by 
m 

g<f>((s, c ) , o) = f(s, c ) , m m 

g<f>(o, (s', c 
1

, e)) = h(Z) ; m-

S-morphism. Since ( 1* L)(g<f>) = g<f> o 1* = f , the 
m' m 

sequence of horn sets is short exact in Z-Comp(homS(zM, zL)) and 

determines the long exact homology sequence (4.1.6), 

H ( ( l * ,L)) 
r.l H (horns (u Sv ® CV, L)) ~ 

m VED V 
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Here Wm= H((~, L)] where by (3.3.4), 

the result is found directly from the evaluation of w in (4.1.5). Finally , 

~ H(TT horn (cv, VL)] (2.2.16) 
vED v 

~ TT H(horn (cv, VL)] (4.1.7) 
VED V 

and similarly 

The required result is obtained if and o 
m 

is written for the 

composite of H(<1;, L>), H(<n;, L>) and H(\~• L)] , respectively, with 

the above isomorphisms. D 

4.3.3 COROLLARY (Mayer-Vietoris Sequence for Graph Products). Let 

(V, A) be a groupnet diagram with graph product m (V, A) + G . Let N 

be any right G-modu"le and L be any left G-module. The following 

(co)homology sequences are exact: 

. . . , (D4.3.3) 

(D4.3.4) 

Proof. There always exists a standard complex diagram (V, ZA, C) 



with a free Av-resolution of T 
V 

for example, and 

the induced Ae-morphism between the bar resolutions, hence there always 

exists a mapping cylinder complex which is a free G-resolution of TG 

(3.3.7). D 
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Any groupnet diagram (V, A) determines a groupnet diagram (V, A*) , 

called the derived Loop group diagrcun, where A* is a set of loop groups 
V 

of Av , one for each component of Av, determined by a retraction 

rv · A + A* , and where A*= r o A (see [7, p. 271]). If A is a ·v v e pee e 

monomorphism, so is A* 
e 

If the mapping cylinder m(V, A) of (V, A) is 

connected, so is the mapping cylinder m(V, A*) of (V, A*) , and they 

have isomorphic loop groups. 

4.3.4 COROLLARY (Mayer-Vietoris_ Sequence for groups with the homotopy 

type of graph products). Let (V, A) be a groupnet diagrcun of connected 

groupnets unth a derived Loop group diagrcun (V, A*), for which each A 
e 

is a monomorphism. AssW11e the graph product m: (V, A*)+ G is connected, 

and Let r: G + G* be a retraction of G to its Loop group at a selected 

identity. For any regular right G*-module N and any regular Left G*

module L the foLLouJing group (co)homology sequences are exact: 

d i 
••• + LJH (A~; N) x {e} ~ LJH (A*; N)-!!l.+ H (G*; N) 

eED m l\e VED . m v m 

p 
____!!4 LJH (A*· N) x {e} + ••• , (D4.3.5) 

e ED m-1 >..e' 

If1+1(G*; L) + •••• (D4.3.6) 

(.nv v(rL) Proof. Since iv J ~ N and ~ L, the result follows 

immediately from (4.2.7) and (4.3.3). D 
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In the examples following, it will be assumed that (V, A) is a group 

diagram, its graph product G is connected, and G* is the loop group of 

G at a specified identity . The left regular G*-module L and the right 

regular G*-module N are arbitrary. Clearly it is possible to modify 

(V, A) without altering G*, so that all the edge monomorphisms are 

subgroup inclusion morphisms. This is done in the first example , for the 

sake of simplicity only. 

4.3.5 EXAMPLE. Let 

so that G* --

and 

l 2 

0 

D = I\ 
1 2 

The Mayer-Vietoris sequences for 

2 i 
(f) Hm (Ai; N) ~ Hm( G*; N) 

i=O 

••• -+ Ef'1(G*; L) 
m - ® ~(A.; L) 

t. i=O 

G* are thus 

1Tm+l _mtl 
H . (G*; L)-+ ••• , 

if the edge labels for the homology of AO are dropped. Here 

a = ( (car*, -car*' 0), (car*, 0, -car*)) , 

i = (car*, car*, car*) 

0 = ((res*, res*), (-res*, O), (0, -res*)) , 

and 

l = (res*, res*, res*) , 

where the maps res* and car* are induced by the inclusions of the 

respective subgroups. 



4.3.6 EXAMPLE. Let 

0 

D = e () f ' 

l 

where A is a subgroup inclusion morphism, so that 
e 

1 02 

with stable letter 
-1 

t = *e *f, say (cf. (3.3.8)). The Mayer-Vietoris 

sequences for G* are thus 

l i 
® H (A . ; N) -1!1+ H ( G*; N) 

i=O m i- m 

and 

.m ~ 
••• -+ 1t (G*; L) 

l° 
® ~(A.; L) 

i=O 1, 

~ ... ' 

if the edge labels for the homology of A
0 

are dropped. Here, if 

~ - ((res* res*) (-res 0*, -t* o res2*)) , 
u - O' 0 ' 

and 

1 = (res*, res*) , 

where the maps res* and cor* are induced by the inclusions of the 

indicated subgroups, and conjugation by t in G* induces the isomorphisms 

and t* : H (A; N) ~ H (A2 ; N) • 
m O m 
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If (V, A) is a group diagram derived from a graph of groups, the 

Mayer-Vietoris sequences for the (co)homology of the graph of groups are 

found from those of (V, A) by dividing out, in each dimension , one copy of 

each source vertex (co)homology group, and for each such , one of the 

corresponding pair of 'edge' groups. Specifically, in (4.3.5), the Mayer

Vietoris sequences for the graph of groups 

are obtained from those of (V, A) by dividing out, in dimension m, the 

short exact sequence 

in the homology sequence, and the short exact sequence 

in the cohomology sequence. 

These sequences are due to Lyndon and Swan [38, 2 . 3] in the case of the 

free product with amalgamation (4.3.5) and to Bieri [l] in the case of the 

HNN group (4.3.6). Recently Chiswell [3] has independently determined the 

Mayer-Vietoris sequences for fundamental groups of graphs of groups, and 

applied them to the calculation of the Euler characteristics of such 

groups. // 

This chapter closes with a generalisation of some results of Bieri and 

Eckmann on duality groups. 

4.3.7 DEFINITION. A connected groupnet A is of finite cohomoLogicai 

dimension cd(A) ~ m if Ff(A; L) = 0 for every k > m and every left 

A-module L It is of cohomoiogicai dimension m if cd(A) ~ m but 

cd(A) ¾ m-1. HomoLogicai dimension hd(A) is correspondingly defined. 

4.3.8 DEFINITION. A connected group A is of type (FP) if the 

trivial A-module z admits a finite A-projective resolution. It is of 
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type (FP) if Z admits a finitely generated A-free resolution. 

A group is of type (FP) if and only if it is of type (FP) and of 

finite cohomological dimension. 

4.3.9 LEMMA. If D is a finite graph, (V, A) is a group diagram, 

the graph produat m: (V, A)+ G is aonneated, and G* is the loop group 

of G at a speaified identity, then 

(i) 

(ii) 

·t A 1.- V 

and 

·t A 1.- V 

is of type (FP) 

is of type (FP) 

for au V in D, so is G* , 

for aU v in D, so is G*. 

Proof. Both results are immediate consequences of (3.3,7) and 

( D3. 3. 3). 0 

This lemma is also proved by Chiswell [3, Th. 3] and, for amalgamated 

free products and HNN groups: by Bieri and Eckmann [l, 2]. 

4.3.10 DEFINITION. A group A is a duality group of dimension n if 

there is a dualising right A-module N and a fundamental class a in 

H (A· N) such that the cap-product an - induces isomorphisms 
n ' 

0(A; L) ~ H k(A; N ® L) for every left A-module L and all k in Z 
n-

(see Bieri and Eckmann [2]). 

A group A of type (FP) is a duality group of dimension n if and 

only if ~(A; ZA) = 0 for all k # n and Ef(A; ZA) is torsion free as 

an abelian group; or if and only if ~(A; M) = 0 for all k # n and all 

induced A-modules M = L ® ZA [2, §3.l]. 

4.3.11 THEOREM. Let D be a finite graph, (V, A) be a group 

diagram, with aonneated graph produat m: (V, A)+ G, and let G* be the 

loop group of G at a speaified identity. Assume Av is of type (FP) 

for aU v in D · If 



(i) 

(ii) 

A is a dua,Uty group of dimension n - l for aU v in 
V 

D, such that v = \e for an e in D, and 

A is a dua,Zity group of dimension n for aii other v in 
V 

D , 
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then G* is a duality group of dimension n 

Proof. Since for each v in D, ZG* is an induced A -module, 
V 

the Mayer-Vietoris sequence (D4.3.6) with L = ZG* ensures innnediately that 

J<(G*; ZG*) = 0 for all kt n, and determines the short exact sequence 

D and 

o-+ TT n11-1 (A>.e; ZG*) x {e} -+ Fi"(G*; ZG*) 
eED 

-+ TT Hn (Av; ZG*) -+ o • 

vED 
v#e 

eED 

Ff" (A · ZG*) ':::!. Ff" (A · ZA ) 191 ZG* v' - v' v 'O'v 
for all V in D such that 

v t Ae for any e in D. These groups are torsion free over Z so that 

Ff"(G*; ZG*) is torsion free. D 

4.3.12 LEMMA. With the conditions of (4.3.11), if Av is a duality 

group of dimension n - 1 for aU v 1...n D , and if cd G* ~ n-1 , then 

G* is a duality group of dimension n - 1 . 

Proof. Any induced G*-module L is an induced A -module for each 
V 

V 

in D • ( 6) k(G*·, L) = O From D4. 3. , Ff" 
for all kt n, n-1 and all induced 

G*-modules L , and the sequence 

n 
-+ H ( G*; L) -+ 0 
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is exact. Finally, cd(G*)::: n- 1 implies n H ( G*; L) = 0 • D 

These results extend those of Bieri and Eckmann for free groups with 

amalgamation [2, Th. 3.2, Th. 3. 5.i] and of Bieri for HNN groups of type 

(FP) [ l , Th.5,2 , Th.5,3.i]. It has recently been shown by Strebel [36 , 

Theorem , §4 .4] that all duality groups are necessarily of type (FP) , 

hence this assumption may be removed from (4 . 3 , 11) and (4 . 3 . 12) . 
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CHAPTER 5 

A CLASS OF GROUPNETS WITH COHOMOLOGICAL DIMENSION TWO 

5.1 Subgroupnets 

As was indicated at the end of Chapter 1, a description of the 

construction of a mapping cylinder groupnet homotopic to a wide subgroupnet 

of a mapping cylinder groupnet is given here. There is a corresponding 

construction of a mapping cylinder complex for a wide subgroupnet which 

directly determines a Mayer-Vietoris sequence for the wide subgroupnet. 

5.1.l LEMMA [7, §§s, 9]. If m (V, A)+ G is a connected mapping 

cylinder for the group diagram (V, A) , H is a wide subgroupnet of G 

and TI: G + G is the covering map corresponding to H, there exists a 

groupnet diagram (V, A) such that m : (V, A) + G' is a mapping cylinder. 

Moreover, there exists a covering map corresponding to a 

certain wide subgroupnet KV of Av , for each v in D ; and if G is a 

-
graph product then so is G. 

Sketch of Construction. Each Av is defined from the pullback square 

c-c 
1T 

in Se.;t, with groupnet structure induced from the cartesian product 

-G X A 
V 

The groupnet morphism 
- -A : A, + A 

e l\e pe 
is defined as 

it is clearly a monomorphism if Ae is. Groupnet G is a mapping cylinder 

- -m: (V, A)+ G with groupnet morphisms 



-
for all (y, mv(a), a) in Av and V in D, and groupnet homotopies 

for all y in G/H with py = mAe(iAe) , where iv represents the 

identity of Av If, for g in G, the double coset 

defined as 

and the set of double cosets G/H Av is denoted by 

then a subgroup is defined for each d in 

Hgm (A ) 
V V 

is 

p 
V 

and each 
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V in 

D in the following manner. A coset representative in d is chosen to 

subgroup ~ is then 

Crowell and Smythe [7, 5 . 2] show that 

corresponding to K 
V 

= {~ d E Pv}' 
A ~ B = 

V - V 

where 

'IT 
V 

and 

¼ 
V 

is the covering map 

thus 

Bd 
V 

Bd = {(ad, a] EA/~ X A : pad= Aa}. 
V V V V V V 

This isomorphism is determined from a one-to-one correspondence of G/H 

with 



viz. 

for an a 
d 

in av 

and the inverse map is given by 

Y f-+ o(y) 

for a unique v 

for any a in Av such that there is h in H for which 

D 

in D, 

5.1.2 LEMMA. If B is a wide subgroupnet of the connected groupnet 

A and TT: A+ A is the covering corresponding to B, then the pullback 
-

of any free A-resolution C of TA along TT is a free A-resolution of 

TA . 

Proof. By (3.1.7) it is necessary only to prove TTC free for all n 
n 

in z . Suppose C n 
is the free A-module with basis 

X = X n n 
z zX c Id A 

n 

so that the module's left map A equals z, and for each ~ in Id A , 

C (i) 
n 

= li ZA(i, AX)[x] 

xEXn 

Hence for each y in A/B , 

With 

and 

TTC (y) = {y} X C (py) 
n n 

= U {y} x ZA(py, AX)[x] • 
xEX n 

xn = {(y, x) EA/BX xn: PY= AX} 

-zX = {y E A/B 
n 

PY = AX, x E X } , n 

z 
- -X + zX as z(y, x) = y, 
n n 



A zX + Id A as the inclusion map, 
n 

the free A-module FX with basis X n n 
is isomorphic to 

FX ( y) = I I 2A ( y, o) [ ( o, x) J , 
n ( o7x)EX 

n 

the isomorphism ~ : TIC (y) + FX (y) 
n n 

is extended linearly from 

llO 

As 

-
~(y, a, x) = (y, a)[(ya, x)] , and has inverse ¢ extended by A-action from 

¢[(y, x)] = (y, AX, x). D 

5ol.3 THEOREM. Let m: (V, A)+ G be a connected mapping cylinder 
-

for the group diagram (V, A) , H be a wide subgroupnet of G , TI : G + G 

be the covering map corresponding to H and let m : (V, A) + G be the 

pullback mapping cylinder. Let (V, ZA, C) be a complex diagram where Cv 

is a free A -resolution of T for each v in D, let 
V V 

µ: (V, ZA, C) + M be the G-mapping cylinder of (V, ZA, C), and let M 

be the pullback of M along TI. 

-(i} If G is a graph product, M is a free G-resolution of TG 

(ii) There exists a comp lex diagram ( V , ZA , C) with G-mapping 

cylinder µ : (V, ZA, C) + M. 

Proof. (i) If G is a graph product, M is a free G-resolution of 

TG and (5.1.2) applies. 

-v 
C 

(ii) By (5.1.2) and the isomorphism Av~ Bv of (5.1.1), the pullback 

of 
-

along A + A 
V V 

is a free regular A -resolution of 
V 

For each e in D' c8 : CAe + cPe is extended linearly from 

• 

-
for all c in C~e and y in G/H with PY= mAe(Ac) . The G-mapping 

-cylinder µ : (V, ZA, C) + M of the complex diagram (V, ZA, C) so 

f ormed, i s determined from the pullback squares 
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-v TT* 
& ® c"e 

TT).../~JTT~e V CV & ® c"e C 

µ"l p.b. lµ" Vv E D , and µ•l p.b. 
e Ve ED . µ 

y 

M 
TT* 

M M M 
TT* 

The required .isomorphism 

M (y) ~ u ZG(y, o) (8) Cv(o) ® u ZG(y, o) ®, c"e (o) 
n &vy v n &vy l\e n-1 

vED eED 

is extended linearly from 

(y, g, c) i---+ (y, g) ® (yg, c) • D 

5.1.4 COROLLARY. With the conditions of (5.1.3), if G ~s a graph 

product, N is any reguZar right H-moduZe, L is any reguZar Zeft H

moduZe, and r : G + H is the retraction G c:,, H , there are Mayer-Vietoris 

sequences 

( DS. l. 1) 

and 

TT 
m+l Ff1+1 (H; L) + • • • • (DS.1.2) 

Proof. The Mayer-Vietoris sequences (4.3,3) for the graph product 

m 
(V, A)+ G, with coefficients in ff and rL , determine these 

sequences by (4.2.7). D 

5.1.5 REMARK. If i : B + A is a subgroupnet inclusion morphism and 

BA is the bar resolution for A, then 
is a free B-resolution of 

by consideration of (2.2,22) (for the left pullback) and (3.1.7). Tensor 

associativity and (2.2,12) imply 

TB 
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Hence for any subgroupnet B of A and any right B-module N, 

Since the horn functor is not generally right adjoint to the tensor 

functor, the corresponding result for cohomology may not be expected to hold 

unless A is a group. // 

5.2 Diagonal Maps 

This section develops the theory of diagonal approximations on 

complexes. This is then applied to determine a coring structure on the 

homology module of a groupnet, subject to the restriction that the 

comultiplication associates only up to isomorphism in dimensions greater 

than two. It parallels the development of a ring structure on the 

cohomology module (see for instance Mac Lane [19, VIII, §9]). 

5.2.1 DEFINITION. For a groupnet A , the diagonal map 6: A+ Ax A 

is defined as 6(a) = (a, a) for a in A • It associates, so that the 

induced r ingnet morphism also does: 

5.2.2 LEMMA. If C is a free A-resolution of TA, then C ®z C is 

a free Ax A-resolution of TA ®z TA 

Proof. If C n 

is the regular free 

is the regular free A-module with basis 

Id A-module with basis X* n 
where 

x~ = {ax: a EA, x E Xn, pa= Ax} . 

X , then it 
n 

Since T(Id A) , which has the same underlying abelian groupnet as TA , is 
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projective (in fact, free) as an Id A-module, the augmented complex C+ of 

C with augmentation £ has a contracting homotopy s of Id A-morphisms 

( 4. 2. 2) • A set 

s = {sn : (c ®z c)~-+ (c ®z c)~+l' n ~ -1} 

of Id Ax Id A-morphisms is defined on the augmented tensor complex by 

and 

n 
z:: sk ® in-k + s ie ® s 

k=O - n 
'<Jn ~ O , 

where C ®z_ C is augmented by £ = £ ® £ : C0 ® c0 -+ TA® TA Then 

Es _
1 

= 1 , a-s +s ,...=l 
1 0 -1 c.. ' 

and for n ~ 1, 

= a ( ~ s ® 1 + s_1 e ® sn] n+l 1..., k n-k 
k=O 

+ s 
1

e ® a 
1

s + s 1 e ® s 1 a - n+ n - n- n 

= 

hence s is a contracting homotopy of (c ®z c)+ By (3.2,6) the 

augmented complex is exact. A simple computation shows that (c ®z c)n is 

isomorphic to the free regular Ax A-module on basis 

n 
Yn = kYa xk x xn-k . 0 

Y , where 
n 

5.2.3 COROLLARY. If C is a free A- resolution of TA for a groupnet 

A , there exists a !:,-chain map w : C -+ C ®z C , commuting with the induced 

• 
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morphism t, TA -+ TA ®z TA . Moreover, any wo such chain maps are x(b.)

homotopic. 

Proof. This is an immediate consequence of the regular comparison 

theorem (4.2.4). D 

Any b.-chain map w C-+ C ®z C lifting b. TA-+ TA ®z TA which 

satisfies 

w(c) = c (8) c Ve E c0 

is called a diagonai approximation; clearly such maps exist. 

5.2.4 LEMMA. The diagonai map 

Bib.) H*(A; M) -+ H*(A x A; M ®z M) 

6: A-+ Ax A induces a homoZogy map 

and a cohomoZogy map 

H*(t,) H*(A x A; L) -+ H*(A; L) for any right A-moduZe M and any left 

Ax A-module L. 

Proof. Let C be any free A-resolution of TA , and let 

w C-+ C ®z C be any 6-chain map lifting 6: TA-+ TA ®z TA. If 

X M-+ M®z M is the composed morphism 

M -:/4+ M ® M -+-+ t, (M ®z M) ~ M ®z M , 

with leftmost map the diagonal in A-Mod(zM) (2.2,7.ii), then 

X (8) w : M ®A ·c -+ (M ®z M) ®AxA (c ®z c) determines the homology map and 

(w, £): homAxA(C ®z C, L)-+ homA(C, L) determines the cohomology map. 
D 

5.2.5 LEMMA. If r: A-+ A* is the retraction of the connected 

groupnet A onto its ioop group and j : A*-+ A is the inclusion· map then 

(i) if M E \A *-Modlt.e.g I then M ~ j L for an L in 

IA-Modlt.e.g I , 

(ii) if N E \A-Modlt.e.g I then N ~ rK for a K in 

\A*-Modlt.e.gl , and 

(iii) if N is a left regular A-module and P is a right 

regular A-module then 
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Proof. (i) Since r o j = lA* , M = j(rM) . 

(ii) If i is the selected identity of A onto which A is 

retracted, then N(i) is an A*-module under the subgroupnet action of A* 

in A , and N ~ rN(i) The isomorphism is given by 

(iii) (Compare with (4.2.7.i).) The isomorphism 

is given by 

for all (p, n) in P ®AN such that pp= j =An. 

5.2.6 DEFINITION. A right regular A-module M for a connected 

groupnet A is flat if, whenever f: C + B is a monomorphism in 

A-Mod!t.e.g , l ® f: M®A C + M®A B is a monomorphism in Z-Mod!t.e.g. 

This definition extends that for groups [19, V.8. 6] in a straight

forward manner. If r: A+ A* is the retraction of A onto its loop 

group A* , and j A*+ A is the inclusion morphism, then (4.2.7.i) and 

(5.2.5) imply that M is flat in A*-Mod!t.e.g if and only if K is flat in 

A-Mod!t.e.g conversely, N is flat in A-Mod!t.e.g if and only if tri is 

flat in A*-Mod!t.e.g. 

5.2.7 REMARK, Regular projective A-modules are flat for a connected 

groupnet A. The proof of Hilton and Stammbach. [15, III.7.4] suffices by 

virtue of (2.2.20.iii), (2.2.14), and the isomorphism ZA ®AM ~M. 

5.2.8 THEOREM (The Kunnuth Formula). If A is a oonneoted groupnet 

and M is any right regular flat A-module there is a split short exaot 

sequence 
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O + [H(A; M) ® H(A; M) ]n L Hn (A x A; M ®z M) 

+ [Tor
1 

(H(A; M), H(A; M))]n-l + 0 (D5.2.l) 

for each n in Z (although the splitting is not natia>al). 

Proof. Let C be a left regular free A-resolution of TA and let 

j A*+ A be the inclusion of the loop group. Since f..? is flat in 

A*-Mocl'Leg and jC is a free A*-resolution of TA* (compare with (5.1.5)), 

if X D >--- B is an abelian group monomorphism, then 

l ® x jcn ®z D + jcn ®z B is an A*-monomorphism, and so 

l ® (l ® x) : f..? ®A* (jcn ®z v) + I..? ®A* (jcn ®z B) is an abelian group 

monomorphism. Hence M®A Cn is a flat Z-module for all n in Z by 

(5,2.5.iii). It is thus torsionfree, and the Kunnuth Formula for abelian 

groups [19, V.10,4], together with the ' middle four interchange': 

for all nonnegative integers p and q, leads to the required result. D 

The torsion product in (D5.2.l) is of the Z-complex H(A; M) with 

itself. The map p is a specific example of the external homology product, 

defined for any standard right R~complex K and any standard left 

R-complex L to be the map 

p : H(K) ®R H(L) + H(K ®R L) 

given by tensor extension of 

p( [u] ® [v]) = [ _u@ v] V[u] E Hk(K) , [v] E HzCL) • 

The map p is the composition of p with the 'middle four interchange ' 

isomorphism. 

5.2.9 COROLLARY. If A is a connected grou:pnet and M is any 

right regular flat A-module then there is a natia>al isomorphism 

[H(A; M) ®z H(A; M)]n ~ Hn (A x A; M ®z M) , 0 ~ n ~ 2 • 
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· Proof. The right Z-module H0 (A; M) ~ H0.(A *; p,fi) ~ p,fi ®A* Z is flat, 

since if x: C ~ B is an abelian group monomorphism so is 

1 ® x p,fi ®A* C >-+ p,fi ®A* B As H_1(A; M) = 0 , it follows from [19, 

V.8.6] that 

[Tor1 (H(A; M), H(A; M))]n-l = 0, 0 ~n ~ 2. 0 

5.2. 10 COROLLARY. The diagonal map 6: A+ Ax A for a connected 

groupnet A induces n: H*(A; M) + H*(A; M) ®z H*(A; M) for any flat 

right regular A-module M • · In dimensions O , 1 and 2 it is unique; in 

higher dimensions it is unique to within the splitting isomorphism of the 

Kunnuth Formula. 0 

Such a homology map is called a diagonal comultiplication. It induces 

a coring structure on the homology module H*(A; M) which associates to 

within the splitting isomorphism of (5.2.7) by virtue of the regular 

comparison theorem. 

S.2.11 REMARK. The diagonal map 6: A+ Ax A for a groupnet A 

induces a cohomology map H*(A; L) ®z H*(A; L) + H*(A; L ®z L) for any left 

A-module L. It is the composite map 

H*(A; L) ®z H*(A; L) ~ H*(homA(C, L) ®z homA(C, L)) 

H* (A x A; L ®z L) 

H*(n) 

H*(6) H*(A;L®zL), 

where p is the external homology product and H*(n) is the homology map 

induced from n : homA(C, L) ®z homA(C, L) + homAxA(c ®z C, L ®z L) , with 

[n(f ® g)](c ® c*) = f(c) ® g(c*) , for a projective A-resolution C of 

TA . When L is regular, H * (A; L ®z L) may be replaced by 

H* (A; 6 (L ®z L)) 

cup product 

if, further, L = TA , the diagonal map induces the 

U H*(A; TA) ®z H*(A; TA) + H*(A; TA) . 
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As in the case when A is a group, the cup product i nduces a ring structure 

on the cohomology module H*(A; TA) II 

Let C be a free A-resolution of TA • The switch map 

S C (8) C + C (8) C is given by 

and is an AX A-chain map satisfying S (n 19\ n) - n 19\ n o Vo 'Cl Vo - Vo 'Cl Vo 

If w: C + C (8) C is any diagonal approximation lifting ~ 

then so is Sw: C + C (8) C. Consequently, 

H(F. (8) w) = H(F. (8) Sw) : H(A; M) + H(A x A; M ®z M) 

by (5.2.3) and (4,1.2), and the next lemma follows. 

on 

TA + TA (8) TA 

5.2.12 LEMMA. The g:mded coring H*(A; M) is commutative to within 

the splitting isomorphism of the Kunnuth Formula. D 

In other words, if q: H*(A x A; M®z M) + H*(A; M) (8) H*(A; M) is the 

map given by the splitting isomorphism, then the induced diagram 

n 
H*(A;M) --+ H*(A;M)(!§!*(A;M) ·l lqoH,(]®S')op 

H*(A;M) n H*(A;M)(!§!*(A;M) 

Hence, for h in H (A; M) 
n 

and any summand 

wk (8) w~-k of n(h) , if both k and n - k are odd, the element 

-(w~-k (8) wk) must also be a summand of n(h) 

element +(w~-k ®wk) must be a summand of n(h) 

if one of them is even the 

A map with this 

property for some tensor product C (8) C of complexes is called 

antisymmetric. 

As usual with proofs involving the comparison theorem, the existence of 

a required chain map is comparatively easy to demonstrate but its 

construction is often difficult. The next example gives a diagonal 

approximation for the bar resolution (cf . [19, VIII.9, Ex. l ] ); this 
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construction is, of course , extremely cumbersome to manipulate on the 

homology level. Explicit construction of a simpler diagonal approximation 

in -low dimensions for any mapping cylinder complex is deferred until Chapter 

6. 

5.2.13 EXAMPLE. A diagonal approximation w: BA+ BA (8) BA on the 

bar resolution of a connected groupnet A is given by 

wo[i] = [i] (8) [i] Vi E Id A ' 

and 

for [a1 I . . . I a,;] E Xn and n :='.'. 1 . Routine calculation determines that 

this is a 6-chain map. 

The section closes with the construction of a diagonal comultiplication 

for the homology module of a subgroupnet from that of the connected groupnet 

containL,g it. 

5. 2. 14 LEMMA. Let B be a wide subgroupnet of the connected groupnet 

A and let ,r : A + A be the covering cor>r>esponding to B • If e is a 

free A-resolution of TA , any 6-chain map w : e + e (8) e lifting 

6 TA+ TA@ TA induces a 6-chain map w: ,re+ ,re (8) ,re lifting 

6 TA ·+ TA (8) TA , which is a diagonal, approximation if w is. 

Proof. The square 

A __ ir_ ... A 

~l_ 1~ 
AXA-AXA 

,rx,r 

is defined in Gpne.t; its bottom row is the covering corresponding to the 

wide subgroupnet Bx B of Ax A • By (5.1.2), ,re is a free 

- -A-resolut ion of TA with augmentation s(y, c) = [y] • If 



w (a)= 
n 

for an element a of C , then 
n 

w (y, c) = 
n 

n 
I ak ® a~-k 

k=O 
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defined for each y in A!B with py =AC, satisfies the requirements of 

the lemma. D 

If B is a wide subgroupnet of the connected groupnet A and M is a 

flat regular B-module, the diagonal comultiplication on H*(B; M) may be 

induced from that of A in two ways. Firstly, it may be found directly as 

the diagonal comultiplication 

by (5.1.5) and (5.2.10 ) since M ®8 iu is a flat regular right A- module. 

Secondly, if w: C ~ C (8) C is any diagonal approximation of 

~:TA~ TA x TA , t hen by (4.2.7.ii) and (5.2.14) it may be induced from 

the map 

of (5.2.4). The latter method is preferable when information on the cosets 

A/B is available. 

5.3 A Class of Groupnets 

class 

The class of groupnets described here has elements in common with the 

C = U C 
m 

m 

of groups of Waldhausen [41, p. 158] and the class U HNNn 
n 

of groupnets of Crowell and Smythe [7, §10]. Its nice properties arise 

from the well-behaved nature of the mapping cylinder. 

5
0
3.l DEFINITION. A class of groupnets A is said to be admissible 

if it is cl osed under homotopy type, disjoint unions and the taking of wide 
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subgroupnets. That is, 

( i) if A E A and A' ~ A then A' E A 

( ii) if A E A and A' :':A then A I E A and 

( iii) if {A } C A then V A E A . 
a a a 

If T is the class of acyclic groupnets and F is the class of groupnets 

of the homotopy type of disjoint unions of free groups, both T and F are 

admissible classes. 

5.3.2 DEFINITION . Let D be the class of directed graphs and let A 

be a class of groupnets. The class D(A) is defined to consist of those 

groupnets G such that 

(i) there is a graph product m(V, A)~ G with D in D, 

(ii) for each e in D, AAe is a disjoint union of free 

groups, and 

(iii) for each v in D such that v t Ae for any e in D, 

5.3.3 LEMMA. If A i s an admissible class," so is D(A) . 

Proof. Closure under homotopy type and disjoint unions is immediate 

from the definitions. If GE D(A) and H is a wide subgroupnet of G, 

by (5.1.1) there exists a graph product m(V, A)= G ~ H, where -G is the 

covering of G corres~onding to H. Each Av has the homotopy type of a 

disjoint union K = V lf1 of subgroups of A , hence if Vt Ae for 
V 

dEPV 
V V 

any e in D , A EA . Since KAe is a disjoint union of free groups , 
V 

and is necessarily a strong deformation retract of AAe , [7, Th. 8,4] 

implies that each AAe may be replaced by KAe without altering the 

homotopy type of the mapping cylinder. Thus H is homotopic to a· graph 

product of the required kind. D 

Class C(G) of [7] differs from the class D(A) both in its use of a 



class of small categories C rather than the class of directed graphs 0 

and in its requirement that all vertex groupnets (cf, (5.3.2.ii, iii)) 

should belong to the class G. 

122 

5.3.4 DEFINITION. The class G of groupnets is defined inductively 

to be: 

'vn ~ 1, 

and 

G = U G 
n n 

Trivially Gn-l c Gn, since for any GE Gn-l the groupnet diagram (V, A) 

with D = {•} (the directed graph with one vertex and no edges) and 

A = G, has mapping cylinder m(V, A)= G. 

As with the class U HNNn of [7, §10], G1 contains the free groupnets 
n 

and G
2 

contains the free products of free groups amalgamated over 

subgroups. 

5.3.5 LEMMA [24]. If G is a one-relator group without torsion, 

then G E G • In fact, G has the homotopy type of a subgroupnet of a 

graph product m(V, A), where 

0 

D = e () f, 

1 

and_ A1 is a torsionfree one-relator group whose defining relator has 

shorter length than that of G. 

Proof. This observation, originally due to Moldavanski [24], employs 

the standard embedding of the Freiheitssatz [21, Th. 4.10]. Suppose 

: r) is a one-relater group without torsion, where the 

relater r involves all the generators (n ~ 2) , and is not a proper 
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power, and is cyclically reduced, Assume G is not free. Let a .(r) 
'I, 

denbte the exponent sum of generator x. in r and assume initially that 
'I, 

a
1
(r) + = 0 . Let p = a1

(r) be the sum of positive exponents of xl in 

, and replace by + -P p 
Though + is no longer cyclically 1' r 1' = Xl 1'Xl r 

reduced, the proof stated in [22, Th. l] may be followed, except that where 

these authors would define a new generator by 4xix~j' we will define a new 

generator for every occurrence of an element x~jxir{_ (for i ¢ 1 ). With 

this slight alteration, necessary to give the result in the form of 

(5.3.5), it is possible to write 

t O <J'<m .. ' ,,· ' 2 < i < n 
'1,J ., 

where the replacement of r by 
+ r 

r* 
' 

+ 
r ' 

ensures that 

t .. 
1.,J 

j 

O < J. < m 2 <is n) 
i' 

is non-negative, and 

where r* is a word in the generators t. . which is of length strictly 
'1,J 

less than that of r. Then G ~ m(V, A) where 

A = <Ao, Al; A e' Af : AO -+Al> ' 

Ao = < y • . ' 0 < j < m., 2 s i < n ) 
' 1.,J 'I, 

Al = ( t . . ' 0 < j < m.' 2 < i s n : r* > 
' 1.,J - 'I, 

A (y . . ) = t .. O < j < m. 
7,, 

2 s i < n , 
e 1.,J '1,J 

and 

Af(y . . ) = t. ·+1 
1,,J 1,, ,J 

0 < j < m. ' 1., 

Since AO is a free group, A
1 

is a torsion-free one-relator group whose 

relator has length less than r, and A 
e and Af are both group 
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monomorphisms, G has the homotopy type of a graph product of the 

specified form (cf. (3.3.8)). If no generator of G has exponent sum zero 

in r, G is a subgroup of the torsion-free one-relator group 

r(z~, z 2z~a, x 3 , ••• , xn]), where a1(r) = a 

and a2(r) = 8. Since z1 has exponent sum zero, and any added length of 

the relator in G* is due solely to appearances of z
1

, G has the 

homotopy type of a subgroupnet of a graph product of the specified form. 

Then either A1 is free, in which case GE G
2 

, or the process may be 

repeated a finite number of times only. D 

5.3.6 DEFINITION. If (V, A) is a groupnet diagram with connected 

vertex groupnets, 

e E D} < (X) 

and 

nV = sup{cd Av: VE D, v # Ae Ve ED} S (X) 

where if either sum is infinite it implies that an element of the respective 

set does not have finite cohomological dimension. The numbers nE and nV 

are correspondingly defined in terms of homological dimension. 

and nV are assumed nonempty. 

Both 
V n 

5.3.7 LEMMA. If (V, A) is a groupnet diagram with connected vertex 

groupnets and connected graph product m : (V, A) -+ G , then 

and 

V V 
n S cd GS n + l if 

E V 
n = n 

Moreover, the corresponding resuZt hoZds for the homoZogicaZ dimensions 

hd . 

Proof. Since the maps A 
e 

for e in D and m 
V 

for V in D are 
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group monomorphisms, 
E V n s n s cd G [11, 8,1.2 ] and V n may be assumed 

finite. Then by (D4.3.4), for all V m > n there is a short exact 

sequence 

and a short right exact sequence 

for any left G-module L. The result follows immediately. D 

Lemma (5.3.7) is proved by Bieri [l, 4.1] for HNN groups of the 

homotopy type of G, and partially proved by Gildenhuys [10, Th. 2] in 

the case when D is a tree. The result cd GS 1 + sup(nE, nV) for the 

fundamental group G of a graph of groups is also obtained by Chiswell 

[3, Corollary, Th. 2]. 

5.3.8 COROLLARY. If A E G , then cd A s 2 and hd A s 2 • 

Proof. The proof proceeds by induction. Any acyclic groupnet has the 

homotopy type of a disjoint collection of trivial groups, so for any A 

in G
0

, TA admits a free A-resolution of length O and cd A= 0 

Consequently, for any A in Gl ' 
cd A S 1 and TA admits a free 

A-resolution of length s 1 . Suppose that for any A in Gk ' 
where 

0 S k s n-1 ' 
cd AS 2 . Let G in G be homotopic to m(V, A) . As 

n 

E n < 1 and 
V n < 2 , cd Gs 2 immediately. D 

Note that for any groupnet G in G , TG admits a free G-resolution 

of length S 2 , by (3.3.7) and consideration of the inductive process of 

(5.3.8). 

5.3.9 COROLLARY. For any connected groupnet A in G, the diagonai 

map 6 : A~ Ax A induces a commutative coring structure on the homoiogy 

moduie H(A; M) for any fiat right regufor A-moduie M , by means of a 
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unique induced diagonal comultiplication 

H(A; M) + H(A ; M) ® H(A; M) . D 

The elements of G are comparatively easy to manipulate ; a s an 

example, a reasonably simple diagonal approximation for any element of G 

is constructed in the next chapter . 



CHAPTER 6 

THE DIAGONAL COMULTI PLI CATION AND ITS INVARIANTS 

6.1 Diagonal Approximations for Mapping Cylinders 

As was mentioned in the previous chapter, it is not usually easy to 

construct explicit chain maps between free resolutions using the pullback 

methods of the comparison theorem. However, given the simple form of a 

groupnet in G a diagonal approximation may be detailed for its mapping 
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cylinder complex which extends those of the associated vertex complexes. 

6.1.l LEMMA (Existence). Let (V, A) be a groupnet diagram with 

connected mapping cylinder m: (V, A) + G and let (V, ZA, C) be a complex 

diagram. If 

(i) Cv is a free Av-resolution of Tv for all v in D, 

(ii) the G-mapping cylinder µ 

G-resolution of TC , and 

(V, ZA, C) + M is a free 

(iii) wv : Cv +CV® Cv is a diagonal approximation for each v in 

D, then 

there exists a diagonal approximation w : M + M® M extending the wv 

Proof. For each i in Id G and n in Z, 

M (i) = 
n 

U ZG(i, mAe(j)) ® C~~1(j) x {e} . 
jEidAAe 

eED 

Let 6v: Av+ Av x Av be the diagonal map for each v in D and 

6 : G + G x G be the diagonal map for the mapping cylinder groupnet. 

Define , for each n ~ 0 , V in D and c in CV 
n 



This map may be extended by 6-action to form a 6-chain map on the 

n-dimensional direct summand of M 
n 

Hence is defined on M
0 
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and 

w
0

(m) = m (8) m, as required. Suppose that for Os ks n-1, a 6-chain map 

~ : Mk+ (M ~ M)k exists which extends the vertex diagonal approximations 

in these dimensions; that is, 

-M n 

• • • + (M (8) M) + (M (8) M) l + n n-

For each basis element X 

Id G 

+ (M (8) M) O + TG (8) TG + Id G x Id G • 

a~ 
1

a(m1 (>..x), x) = o; 
n- l\e 

since the 

bottom row is exact there exists an element ~ (m 1 (;\x), x) in (M ® M) 
n l\e n 

completing the square. The 6-morphism ~n may then be freely extended by 

6-action to the (n-1)-dimensional direct summand of M 0 n 

The following theorem a llows explicit description of a diagonal 

approximation for any connected groupnet G in G provided its structure 

as an element of G is known. In it, an element (g, x) of a free 

G-module with basis X will be written g[x] (cf. (3.3.8)). 

6.1.2 THEOREM. Let (V, A) be a groupnet diagram with connected 

graph product m: (V, A)+ G. Let (V, ZA, C) be a compZex diagram where 

and Cv has basis 
n 

n in 

Z and v in D . Suppose the foUowing four conditions are satisfied by 

(V, ZA, C) 

(i) for aU V in D CV = Id Av ; , 3 

(ii) for aU e in D , A;\e is a disjoint coiiection of free 

groups and c>..e = Id A;\e ; 
2 



(iii) 

(iv) 

for aU V in D and X in Xv, there exist Rx and 
l 

L . xv d ( ) x ~n 
O

, an r x and Z.(x) in A , such that 
V 

a[x] = r(x) [Rx] - Z.(x) [Lx] , 

provided that Z.(x) = A(Lx) if v = Ae for an e in 

D; and 

for aU e in D and x in Ae x
0 

, there exist e(x) 

xPe and A <x > in A (A (AX), Ae(x)) such that 
O e pe e 

in 

If µ : ( V, ZA., C) -+ M is the G-mapping ay l.inder of ( V, ZA, C) , there 

are diagonal. approximations for the Cv which extend to a diagonal. 

approximation for M • 

Proof. 

freely by 

and 

A d . l . . V CV CV 19,. CV iagona approximation w : -+ 0 

6 -action and the comparison theorem from 
V 

w~[z] = [z] ® [z] , 

w~[y] = Z.(y)[Ly] ® [y] + [y] ® r(y)[Ry], 

for any v in D. The mapping cylinder is (3.3,6.iii) 

M
0
(i) = U ZG(i, mv(Az))[z] , 

V 
zEX

0 
vED 

vED eED 

and 

vED eED 

may be extended 

129 
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for i in Id G, with boundary maps 

'vy E V 
x1' v E D , 

[z] - m (* AZ)m (A <z>)[e(z)] e ' pe e 'vz E XAe 
0 

e E D , 

a
2

[x] 'vx E xv 
2 

V E D , 

and 

a2[yJeJ = [y] - me(*, Ay)µie~[y] - mAe(r(y))[RyJeJ 

+ mAe(Z(y))[LyJe] 'vy E ~e , e ED. 

Note that the mapping cylinder itself ·~atisfies' condition (i) above, and 

i ts boundary map in dimension l 'satisfies' condition (iii). The diagonal 

approximation w : M ~ M® M is partially determined (6.1.1) by 

w0[z] = [z] ® [z] 'vz E ~, v ED, 

and 

Routine calculation shows that the evaluation 

V 'vy E X l , V E D , 

w1 [zle] = {m (*, Az)mp (A <z>)[e(z)]} ® [zje] + [zleJ ® [z] e e e 

for all z in ~ and e in D ' 
completes the chain map w in 

dimension l . In fact wl is derived from the dimension l boundary map 

of M in the V is derived from the dimension l boundary same way as wl 

map of CV for any v in D. It remains to evaluate w
2
[yje] for y in 

XAe and e in D. Define 
l 



131 

f[yJeJ = m (*, Ay)m (A <Ly>)[e(Ly)J ® [yJeJ e pe e 

- me(*, Ay)µie~[y] ® mAe(P(y))[RyJeJ 

+ [Ly I e J ® [y J + [y I e J ® mAe (P(y)) [Ry J , 

so that 

/::,(me(*-l, Ay)).(wo-cff)[yJeJ = m (A <Ly>)[e(Ly)] ® µpe~[y] pe e l 1 

Since rfe is exact, for each e in D, y in ~e, and t in ~e , 

there exists a set map 

D(e, y, t) : A (A (Ay), At)-+ cf?e(A (Ay)) pe e l e 

such that 

pe a
1 

D(e, y, t)(a) = al(t)[Lt] - Ae<Ly>[e(Ly)J 

for all a in A ( A ( Ay ) , At) . If pe e 

define 

D[yJeJ = t:,(m (*, )...y)) I I n(at){D(e, y, t)(at)@ m (at)[t]} , 
e t pe 

at 

so that 

t:,(me(*-l, Ay)] .(wa-ar+cD)[yJeJ = 

~ I n (at) {mpe (at) [t] ® mpe (Ae (p(y ))A/ Ry>) [e(Ry) J 
at 

which is a cycle of M
1 

® M
0 

• As M® M is exact, there exists B[yJeJ 

in M
2 

® Mo such that 3B[yJeJ = (wa-ar+aD)[yJeJ. Thus w2 may be freely 

extended by /::,-action from 
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w2[yjeJ = (I'-D+B)[yjeJ , 

wqere the differential, term D[yleJ E M1 ® M
1 

and the boundary term 

The boundary. term always disappears at the homology level. 

NOTE. For any group A generated by X , such that A is the 

epimorphic image ~ : F ~ A of the free group generated by X, the term 

Laa is understood to mean the image under ~ of the Fox derivative of a 
X ax 

in ZF. If ~he term S[y] above is a 'derivative'; that is, 

aA (y) 

S[y] = L ;t [t] , 
t 

aat 
then it is possible to set D(e, y, t)(a.J =Lat* [t*], and in this case 

t* 

a straightforward, if tedious, calculation shows that (wa-ar+aD)[yjeJ = 0 , 

so B[yje] may be equated with zero. 

6.1.3 EXAMPLE, Consider Example (3.3.8) where G = m(V, A) is the 

torsion-free one-relator group of (5.3.5). Then 

Ao = ( y .•• 
1,J 

0.::: j < m. • 
7, 

Al = ( t . .• 
1,J 

0.::: j.::: mi' 

A (y • . ) = t .. and Af(Yi) e 1-J 1,J 

and 

2.::: i .:: n } 

2.::: i .:: n r> 

= t. ·+1 for 
7, ,J 

0 .::: j < m. 2 .::: 
7, 

i .:: n , 

for O.::: j < m. , 2.::: i.:: n. 
7, 

Consequently, aieD(e, y, t)(l) = aieD(f, y, t)(l) = O[l] for all 

generators y of A
O 

and t of A 
1 

• Hence w2 1]1 •. I e] = r !]1 . . I e] , and 
1,J 1,J 

w
2

r., ... J.je1 = m (*, O)[l] ® [i,,. -le] + [y . . je] ® y . • [OJ 
1..1 v J e 1,J 1,J 1,J 

+ [o I e J ® r,, .• J - m ( *, o) [t. J ® y • • [O I e J 
l..11,J e 1-J 7-J 
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w
2
[if. -If] = mf(*, 0)[1] ® LY· -If] + [if. -If]® y .. [0] 

7,J 7,J 7,J 7,J 

+ [0 If] ® W .. ] - mf( *, 0) [t. . 
1
J ® y .. [0 If] 

7,J 7, ,J + 1,J 

As an element of G, y .. 
1,J 

is equal to either m <•, 0)t . .m (•-
1

, o) 
e t-J e 

or 

( -1 ) mf ( * , 0 ) t . . 1mf * , 0 . 
7, ,J + The homology of G with trivial coefficients is 

found as follows . The tensored complex has 

m -1 m .-1 

TG ® M 2 = Z [r J ffi f i Z [y · · I e J (t) I I Z Uf · · I fJ 
G i=2 j=O t-J i=2 j=O t-J 

m. m.-1 
n 1, n 1, 

TG ®a Ml= .L .I Z[ti :7 @ .L .I zwi:, @ Z[0le]@ Z[0lf] , 
t-=2 J =O j.J t-=2 J=O j.J 

TG ®a Mo = Z[l]@ Z[0] , 

m. n i, 

and boundary maps a2[r] = I I cr .. <r) [t .. J 
• • 1,J 1,J 

t-=2 J=O 
, where a . . (r) denotes the 

7,J 

exponent sum of generator t. . in r , 
1,J 

and 

Suppose 

and 

so that 

a 2 [y .. I e] = [y . J - [t . J , a 2 Uf ,,.J. If] = [y . J - ~ · · +1] , 
7,J 7,J 7,J " 7,J 7, ,J 

m.-l 
n i, 

L L £ • • ([~ • • le]-[il .. If]) + Hr] E Ker a2 . That is, 
• -2 ·-o t-J t-J t-J 7,- J-

£. 
0 

= l,a. 
0 
(r) , 2 s i s n , 

7,, 7,, 

£ •• =£ •• l + Zo .. (r), lSjSm.-1, 2SiSn, 
7, ,J 7, ,J - 7,J 7, 

£. = -la. 
1,,m.-l 1,,m. 

7, 7, 

m. 

l, [ a . . (r) = O , 2 s i s n . 
·- 0 7,J J-



Either 

m. 1, 

I 
j=O 

a . . (r) "# o 
1,J 

for some 2 sis n ( i n other words, the 

relater of G is not a cormnutator), in whi ch case H2(G; TG) = O or 

m. 1, 
L CJ • • (r) = 0 for all 2 Si Sn , in which case H2(G; TG) ~ Z , with 

j =O 1-J 

generating element 

n mi-1 { j } 
g = [r] + L L L CJ. (1') (u, .. le]-[i;. -If]) 

i=2 j=O p=O 1,p 1-J 1-J 
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In the latter case, suppose (K ® w1
) 

2 
Z ® c; + [(z ® c1

) ® (z ® c1
)] 2 is 

given by 

n 
Then, since H

1 
(G; TG) ~ Z([OleJ-[OlfJ) © L Z[t.J 

i=2 1, 
and 

H
0

(G; TG) ~ Z[l] , 

Q
2

(9) = [1] ® 9 + 9 ® [1] + ([OleJ-[OifJ) ® t - t ® ([OieJ-[OifJ) 

where 

m.-1 . 

t = .I { i f 0 i (r)}[tio] · 0 

1-=2 J=O p=O p 

Hence i n the case of a one-relater group , the extending part of the diagonal 

approximation for the mapping cylinder i s particularly simple, and the 

diagonal comultiplication for G depends essentially on any diagonal 

approximation for the embedded one-relater group A1 . 
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6.2 The Problem of Invariance 

It is hoped to use the diagonal comultiplication to give a finer 

classification of groups in G than is given by their homology modules with 

integral coefficients. Thus it is necessary to determine the invariants of 

such maps; that is, to abstract that information contained in the diagonal 

comultiplication which is independent of any choice of basis for the 

homology module. I have not as yet been able to proceed far in this 

determination. 

The diagonal comultiplication is related to the lower central series of 

the group G, as is the low-dimensional homology (af. Stallings [32]), and 

appears in particular to provide information about G
2

/G
3 

. It is hoped the 

diagonal comultiplication may be refined to provide a quick and computable 

method of abstracting this information from a presentation of G. 

The work below assumes n
1

(G; TG) is torsion-free; if H1(G; TG) has 

torsion, the results hold for the torsion-free part. 

Let A= Zn and B = Zm be two finite direct sums of copies of the 

integers and suppose A and B are freely generated as abelian groups by 

the sets {x. : ls is n} and {y. : ls j s m} respectively. Here A 
~ J 

is intended to represent H2(G; TG) and B , the torsion-free part of 

H
1

(G; TG) . Let /J. : A-+ B ®z B be an antisymmetric group morphism, so 

that if 

lsisn, 

then the associated set 

D ={Di= (o(i, j, k)) : 1::: i Sn} 

of n m x m integral matrices, consists only of skew-symmetric matrices 

(af. (5.2.11)). 
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If S(n, m) denotes the set of all such antisymmetric group morphisms 

A~ B ® B, a relation '"" on S(n, m) is defined by 

b,rvf~3a A 9:'.A, S (D6.2.l) 

in which case r is said to be similar to 6 in S(n, m) via (a, S) 

This relation is obviously an equivalence relation and partitions S(n, m) 

into similarity aZasses. 

The invariants of a similarity class thus represent the 'basis-free' 

information carried by the elements of the class. 

6.2.l PROBLEM. What is the form of a canonical representative of each 

similarity class of S(n, m) for each n and m in Z? Alternatively, 

how may a complete set of similarity invariants be found for each element of 

S(n, m) ? 

Clearly the cases S(o, m) and S(n, 0) for all n, m ~ 0 are 

trivial, as the only possible map is the zero morphism, in its own 

similarity class. Similarly, the only map in S(n, 1) is the zero map, by 

antisymmetry. Henceforward it will be assumed that S(n, m) has n ~ l 

and m ~ 2 • The remainder of this section is devoted to a few general 

considerations. 

6.2.2 PROPOSITION. The zero morphism o 

element of its similarity dass in S(n, m) . 

A~ B ® B is the only 

Proof. If O '""6 via (a, S) -1 
6 = S ® SOa = 0 0 

All antisymmetric maps are in future assumed nonzero. 

6. 2. 3 REMARK. The rank rt, = rank(Im 6) and nuUity 

null 6 = rank(Ker 6) of an element 6 of S(n, m) are invariants of its 

similarity class. 

6.2.4 DEFINITION. If 6 E S(n, m) then the greatest aorrmon divisor 

gt, of 6 is the integer 
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96 = g. C. d. ( 0 ( i, j, k) ls j, ks m, l s is n) . 

Since 6 is antisymmetric, 

96 = g.c.d. (o(i, j, k) : 2 s k Sm, 1 s j < k, ls is n) . 

6.2. 5 LEMMA. The greatest aoTrD71on divisor is an invariant of each 

similarity a"lass. 

and 

Proof. Suppose 6 ,.._, r in S(n, m) via (a, 8) , and let 

8 = (8- .) represent the matrices associated with a 
1,J 

and 8 

a = (a .. ) 
1,J 

respectively. This notation will be used throughout the chapter. Let 

m m [n m m ) 
= L L L L L aij°(j, k, OBkpBiq Yp ® yq · , 1 s i s n , 

p=l q=l j=l k=l "l=l 

so that 

m m [n i)) y(i, p, q) = I L Bk 8 iq L a . . o (j, k, , 
k=l "l=l p j=l 1,J 

1sp,qsm , 1 s i s n , (D6.2.2) 

and similarly 

m 
~ Tk T "lq [ _I ai .y(j, k, "l)) o(i, p, q) = I , 

k=l "l=l p J=l J 

1sp,qsm, 1 sis n (D6.2.3) 

Hence 96 = gf • D 

Incidentally, since 6 is antisymmetric, it follows from (D6.2.2) that 

any map r similar to 6 is necessarily antisymmetric. 

6.2.6 DEFINITION. Let 6 E S(n, m) with associated set of matrices 

D = {Di : 1 sis n} . The ith aoTrD71on divisor gi6 of 6 for ls i Sn 

i s defined as 

9,6 = g.c.d. (o(i, j, k) 
--<.. 

1 s j, ks m) , 



so that g6 = g.c.d.(g .6 : 1 sis n) . 
..{, 

6.2.7 REMARK. If 6,...., r via (1, 8) in S(n, m) , then 

g-6 = g.r , ls is n 
..{, ,<.. 

This is an immediate corollary of (6.2.5), since, with 

and (D6.2.3) become 

m m 
y(i, p, q) = L L 8kp8 1~o<i, k, i> 

k=l L=l <A.t 

and 

m m 
o<i, p, q) = L L TkpT7~y<i, k, i) 

k=l L=l <A.t 

a= I , (D6.2.2) 
n 
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for 1 Sp, q Sm and 1 Si Sn, or in terms of the associated matrices, 

-T -
G. = 8 D.8 

'I, 'I, 
1 s i ~ n . 

6.2.8 LEMMA. If 6 E S(n, m), XE S(n-p, m) for a p in Z, 

1 s p s n-1 , and 

I(x.) = 6 (x.) , l s i s n-p , 
'I, 'I, 

any I' simi iar to I may be extended to a r simi iar to 6 for which 

g .r = g .6, n-p+l sis n. 
,<.. ,<.. 

-Proof. Let Irv r via <a, 8) in S(n-p, m) , and define a from a 

by 

a(x.) = a(x.) 
'I, 'I, 

1 s i s n-p , 

a(x.) = x. 
'I, 'I, 

n-p+l s i s n 

In matrix terms, a = a+ I 
p 

If r E S(n, m) is the morphism 

8 ® 86a-l : A~ B ® B , then 
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S ® S6(;;)-1 (xi) , l s i s n-p , 

r (x.) = 
'I, 

S ® S6 (x .) n-p+l s i s n , 
'I, 

r (xi) l < i s n-p , 

= 

S®S6(xi) , n-p+l s i s n 

6,..., r by definition, and g.6 = g.r 
-<. -<. 

for n-p+l Sis n , by comparison 

with (6.2.7). D 

6. 2. 9 REMARK. Clearly a similar result holds for any subset of (n-p) 

elements of {x. : l Si Sn} on application of a suitable permutation of 
'I, 

{i : ls i < n} . If it should happen that 13 = I 
m 

in (6.2.8), then 

y( i, k, 7,) = nr a .. o<j, k, 1,) , l s i s n-p , 
j=l "1,J 

y( i, k, 7,) = o ( i, k, 1,) , n-p+l s i Sn ; 

if, further, for a pair (k, 1,) with l S k, 1, Sm, it should happen that 

o(i, k, 1,) = O for ls is n , then similarly y(i, k, 1,) = O for 

l s i s n . 

These last two results form the basis of inductive proofs on n in 

S(n, m) , used in the succeeding section . 

6.3 Some Solutions 

The table below summarises the number and general form of those 

similarity invariants of an antisymmetric morphism 6 : A~ B ® B which are 

ascertained in this section. 



~ 2 3 4 

l gt:i., [fr p .)gt:i., l s j s s-1, rt:i. = 2s; p. > 0, l s i s s-1 
i=l 1, 

1, 

gt:i., p(gt:i.), q(g!:i.) 

2 gt:i. gt:i., p(g!:i.), p ~ 0 a(gt:i.), ba(gt:i.); a, p, q ~ 

? 

-
3 gt:i., p(gt:i.)' qp(gt:i.), ? 

- q, p ~ 0 
? 

TABLE 6.1. Similarity Invariants 

Before proof of these results is given, some simplif ied notati on is 

required. If t:i.,...., r via (a, S) in S(n, m) , then, for l Si Sn 

n m m 
L aiJ.y(j, p, q) = L L Skpo(i, k, Z)S1n , l Sp, q Sm. 

j=l k=l Z=l v<.t 

If the matrix associated with ra(x.) is denoted 
1, 

calyJ. = 
(jil 

a .. y(j, p, q)) , ls is n 
1, 1,J 

then 

[a!yJ. = flD.8 , l ::: i s n . 
1, 1, 

The skew-symmetric matrix D. will be written 
1, 

, 

D . = < o ( i , 1, 2) , ... , o ( i , 1, m) , o ( i , 2 , 3) , ..• , o ( i , m-1, m) > , 
1, 
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0 

l ::: i S n , 

and the associated set of matrices D will be written 

D = (o(l, 1, 2), ..• , o(l, m-1, m); ... ; o(n, 1, 2), .•. , o(n, m-1, m)). 

For example, if m = 3 and n = 2 , 

v = < oCl, 1, 2), 0<1, 1, 3), 0(1, 2, 3); 

8(2, 1, 2), 0(2, 1, 3), 0(2, 2, 3)). 

If M is a p x p integral matrix, then 



M[~l' 
'Z,l' 

... , 

... , 

is the k x k minor of M composed of the intersections of rows i
1 

to 

6.3.l DEFINITION. If M is a p x p integral matrix, the kth 

de terminantat divisor <¼_(M) of M for ls k Sp is defined to be 

dk(M) = g.c.d. [ M[~l' ... , ~kl 
'Z,l' .•• , 'Z,k 
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Hence, for M = (µ .. ) 
-Z..J 

l <' <'< 1<'< - -z..l < ... -z..k - P, - Jl ••• < jk ~ pl 
d

1
(M) 0= g.c.d. (µ .. : l Si, j Sp) , and if 

-Z..J 

<¼_(M)ldk+l(M) . For convenience, l is defined to be d0(M) 

The kth (positive) invariant factor sk(M) of M for 1 s ks p is 

0 , <¼__
1 

(M) = O • 

6.3.2 LEMMA. If 6 E S(l, m) for any m in Z, there exists a 

unique element I(!J.),,..., 6 in S(l, m) such that 

. 
+ 

(S-1 ) 0 TTPj g!J. 
. . J=l . 
+ + + 0m-2s' 

c-1 J - TTP. g!J. 0 
J=l J 



wher~ r6 = 2s and p. > O, ls j s s - 1 
J 
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Proof. As the only isomorphisms Z ~ Z are a= ±1, it follows that 

6"' r in S(l, m) if and only if there exist E = ±1 and 8 : B ~ B such 

that 

G = rf'CED)8 ; 

or, in matrix terms, if and only if G is congruent to ED. By Newman 

[25, Th. IV.l, Th. IV . 2], r6 = 2s for some integer s , and D is 

congruent to a unique matrix 

where h.Jh. 1 for l < i S s-1 and the elements 
7, 1,+ 

are the positive invariant factors of D. Since D and -D have the 

same positive invariant factors and h
1 

= s
1

(D) = d
1

(D) = g6 the result 

follows with h. = p . 
1
h. 

1 
for 2 Si< s • 

7, 7,- 7,-
Matrix I(D) is the skew-

norrnai form of D. 

The next two theorems rely on an inductive proof: their difficulty 

lies only in the proof of their respective results for low integer values . 

6.3.3 THEOREM. If 6 E S(n, 2) for any n in Z, there exists a 

unique e"lement I(6),...., 6 in S(n , 2) such that 

I(D) l .= [:A 9J and I(D). = 0 
7, 2 , 2SiSn. 

Proof . It is necessary only to prove the existence of such an element: 

its subsequent uniqueness is quite apparent. When n = l, the result holds 

from (6 . 3.2); in fact, each similarity class contains precisely one anti

symmetric morphism together with its negative , since then 

g6 = g(-6) = Jo(l, 1, 2) 1 . Suppose the result holds for elements of 

S(k, 2) , ls ks n-1 , and let 6 E S(n, 2) • Define XE S(n-1 , 2) as 



K(x.) = 6(x.) , ls is n-1 , 
1, 1, 

with canonical form ti"' I(ti) via (a, S) in S(n-1, 2) . That is, 

96 = g.c,d. (9.6 : 1 s i S n-1) 
,(_ 

[ 
0 9liJ 

I(D)l = -
-96 o 

and 

96 = (9K, 9 6) , n 

I(D). = 0 
1, 2 ' 

By (6.2.8) there exists 6"' r in S(n, 2) with 

[
o 9~ G = 

l r _
9
I;. O 

and for some £ = ±1, 

G = n 

2 sis n-1. 
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Of course if 9n6 = 0 the result is immediate. For 9 6 t O , there exist n 

integers x and y such that 

If 

0. = [* -Jy 
£9n6 
96 

o. is extended from a (6.2.9), and I(6) = S ® Sfo.-l, then 

= r. i = 1 , 

2sisn, 

as required. D 

6.3.4 THEOREM. If 6 E S(n, 3) for any n in Z, there exists a 

unique element I(6) "'6 in S(n, 3) such that 
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0 

0 

0 

(n ~ 2) , 

< ~ 
0 

0 J I(D) 3 0 qp(gt:i) (n ~ 3) , and I(D). = 0 for 4 ::; i ::: n ' 'I, 

-qp(gti) 0 

where p, q ~ 0 • 

Proof. The proof is inductive for n > 3 , but the cases n = l , 2 , 

and 3 must be determined individually. When n = l the result is 

immediate from (6.3.2), as rti = 2. 

Case n = 2 • Both g1ti and g2t:i may be assumed nonzero by (6.3.2) 

and (6.2.9). There exists ti"" r in S(2, 3) such that 

G = <glti, o, O· 
' 

a, b, C ) ' (a, b, C) = g2ti • 

Step a. . Either (b, c) = 0 or there exist integers X and y such 

that xb + ye = (b, c ) . In either case, 

( 91 ti, o, O; a, b, c),-..,,(glt:i, o, O; a, (b, c), 0 ) 

the similarity is via (a, 8) where a= I
2 

and 

-c 
0 X (b,c) 

s= b 
0 y "[b,cT 

0 0 l 

in the latter case. 

Step b. If (b, c) t O , it is possible to choose integers u and v 

such that 

(i) ua + v(b, c) = g2ti, and 

since by Dirichlet's Theorem (see, for instance, [12]), the general solution 

for u is infinitely often prime. With such a choice, set a= I , and 
2 



l 0 0 

0 u -(b,c) 

e= 9l-" 
0 a 

V 

~ 
so that 

1~ (a:, S) . When (b, c) = 0 this similarity holds with u = l. 

~te~ e. Let w and z be integers for which 

'!hen 

(ug1l, 
-(b,..J)9/· 

g2t, 

vi.a ( a:, 6) , where 

tep d. Since 

, O; 9/1, 0, 0) rv (gA, 
-w(b,c)g

1
ti 

, O; O, 
9i 

s= I3 and 

ug1A 

gtl -z 
a = 

92A 
gK""" w 

u('J- c)g A 
l 

is a multiple of gA, 

(b ,c)g
1
A 

gA ' 0) 

) ( 
(b,c)g1A ) 

o ,,_, gA, o , o ; o, gA O 

via CL, 8) , where a = I
2 

and 

l 0 0 

8 = 0 l 
w(b,c)g

1
ti 

g2AgA 

0 0 l 

Hence D,.., IL) - ( g , 0) O· 
' 0' p( gA), 0 ) as r equired , where 

p = It remains to show that t his form is unique. 
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Step e. Suppose 6"' r via (a, 8) in S(2, 3) , where 

D = < g, 0, 0; 0, pg, 0 ) , G = < g, 0 , O ; O , qg, O > 

and g, p, q > 0 • The following simultaneous equations hold: 

all= {811822-821812} 

qa12 = {B11823- B21813} 

o = {B12B23-B22B13} ' 

a21 = P{811832-831B12} ' 

qa22 = P{811B33-831813} ' 

o = P{B12B33-632B13} • 

If <let 6 = £B and dct a= ca, (D6,3.3J and (D6 .3 .6) imply 
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(D6.3.l) 

(D6.3.2) 

(D6.3.3) 

( D6. 3. 4) 

(D6.3.5) 

(D6.3.6) 

811f 82?833-B32823 } = £8 • (D5 •3•7) 

If 812 # O , then 8Lv = (B22slJ)/812 and 833 = (83 2813)/812 , in 

contradictior. to (D6.3.7), He ce 5
12 

= 0; consequently, 8
13 

= O. 

Since c; - + 
'"'11 'th remaining equations ensure that q£a = pB

11
E
8 

and thus 

q = p • 

Case n = 3. All of g16, 926, and g
3

6 may be assumed nonzero by 

(6.2.9) , (6.3.2) and Case n = 2 above. With g = (g
1

6 , 9
2

6) , Case n = 2 

and (6.2 .8) together i ply the existence of 6 ,_., r in S(3, 3) with 

G = < g, o, o; o, pg, o; a, b, c > , (a, b, c) = g 
3

6 , 

and p ~ o. The same process applied to the pair (G
1

, G
3

) determines a 

similar map with associated set 

< 96, o, o; e, f, h; o, q96, o > ( e , f, h ) = pg • 

Since e is a multiple of 96 

via 

D '""L - <96, O, O; 0, f, h; O, q96, O) 

(a, B) , where S=I 
3 

and 



Cl =-

0 

0 

l 

Repetition of Case n = 2 for the pair (L
2

, i
3

) shows that 

( qgt,., 0, 0; f, h, 0 ) ,...., ( g*, 0 , 0 ; 0, p*g*, O ) 

in S(2, 3) via (a, 8) where g* = (qgt,., f, h) , 

.... 
~ 

-
g* -z 

~ 
0 j " 8= a = XU 

s.tJ:l w V 
g* -

and 

hx = !hi 
.fu + lhlv = (_f', h) 

(u, f, h) = l 
' 

( uqgll), + (f, h)z = g* , 

k = (hz)/g* 

and 

l = (v jh lq( gli)w+fg*) I (Cf, h)g*) • 

If a is extended from a by (6 .2.9 ), then 

( O, O, gt,.; f , h, O; qgt,., O, 0),...., ( O , O , xgt.; O, p*g*, O; g*, O, 0) 

via (a, 8) in S (3, 3) , where g* is a multiple of gt,. and p* ~ O. 

That is, for a suitable permutation 8, 

D ,...., < xg t,., 0 , 0 ; 0 , 0 , qp ( gt,.) ; 0 , p (gt,.) , 0 ) , 

and for 8 = I
3 

and 

D,...., I(D) = (gt,., 0 , O; O, p(gt,.), O; O, O, qp(gt,.)) 
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as r~quired. Since the isomorphisms by which I(t,.) is similar to t,. need 

not be unique, it is still necessary to prove that this form is unique . 

I 



. -
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Suppose 6....., r in S(3, 3) , where 

D = < g, O, O; O, ug, O; O , 0 , vug > , G = < g, o, O; O, xg , o; o, o, yxg > , 

and g, u, v, x and y are all assumed positive. The following 

simultaneous equations hold: 

all = 1811822-821812} 

xal2 = 1811823-821813} 

yxal3 = {812823-822813} 

a21 = u{ 811832-831812} 

xa22 = u{ 811833-831813} 

yxa23 = u{ 812833-B32813} 

0 31 = vu{ 821832-831822} 

xa32 = vu{B21833-B31823} , 

yxa33 = vu{B22833- B32823} · (D6 . 3 . 8) 

If <let a= £
0 

and <let 8 = £8 , the evaluation of £
0 

through these 

equations implies 

With X = x(x, u) , 

2 
£ X y 

a 
2 

= £BU V , and hence that 2 
xy 

u = u(x, u) , - 2 
y = SU 

- 2 
V = SX 

and 

(s E Z) , and 

a 33 = a 33x, the third, sixth and ninth equations of (D6 . 3.8) imply 

That is, u = l. The converse argument with r....., 6 ensures that x = l . 

It follows that x = u and y = V. 

Case n > 3. Assume the inductive hypothesis holds for 3 s k S n- 1 

Let 6 E S(n, 3) with g.6 # 0 for l Sis n . 
,<.. 

S(n, 3) such that 

G = < gX, o, O· , 0, p(g6), O· , o, o, qp( 96.); o, o, O· , 

where gX = g.c.d. (g .ti : l s i ~ n-1) , (a , b , a) 
,<.. 

Then 

There exists 6....., I' i n 

... ' o, o, O; a , b , a > 

= g 6 ' 
and p , q:::: 0 . 

n. 

, 

'I 

I 



G ,..., < 9K, o, O; o, p(9E), O· a, b, a ; o, o, qp(96); o, o, O; , ... , 
by a suitable permutation of the generators of A 

rv { 96, o, O· 
' 

o, :r>(96), O· 
' 

o, o, S!'( 96); e, f, h; o, o, O; .. . ' 
where (e, f, h) = qp(96) and !', s :::: 0 

' on application of 

k = 3 and (6.2.8) to the first three matrices, 

rv { 96, o, O· 
' 

o, :r>(96), O· 
' 

o, o, B:r>(96); o, f, h; o, o, O; ... , 
since e is a multiple of 96 ' 

rv ( 96, o, O· 
' 

0, u( 96) , O· 
' 

x, y , z· , o, o, wu( 96); 0, 0 , O; ... , 
where (x, y, z) = S!'( 9/l) and u, u) :::: 0 

' on application of 

k = 3 to the first, second and fourth matrices, 

rv ( g6, O, O; O, u(96), 0, O, O, z; O, O , wu.(96); O, O, O; 

since 96jx and ..ig6ly 

... , 

o, o, 0) 

o, o, O) 

Case 

o, o, 0 ) 

0, 0, 0) 

Case 

o, o, Q) 

rv ( 96, O, O; O, u(96), O; O, 0 , vu(96); O , O, O; ... ; O, O, 0) = I(D) , 

on application of (6.2.9) and Case n = 2 to the third and fourth 

matrices, as required. 

Again it is necessary to prove an element of this form is unique. If 

< g, 0, 0; 0, ug, 0; 0, 0 , vug; 0, 0 , 0; ... ; 0, 0, 0 ) rv 
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<g , o, O; o, xg, O; o, o, yxg; o, o, O; .. . ; o, o, o> 

via (a, S) in S(n, 3) for g, u, v, x, y > O , then the simultaneous 

equations (D6.3.8) hold, together with the equations 

= 0 4 s i s n , 

xa.i2 = 0 4 s i < n , 

yxai 3 = 0 , 4 s ~ < n. (D6.3,9) 

If a* = (a .. : l s i, j s 3) then det a*= ±1 because a .. = 0 for , 
~J ~J 

i s n by (D6,3,9). As for Case 3 2 2 l s j < 3 and 4 s n = EX y = ESU V 

and the resultant analys is carries over ve:r>batim. Hence I(6) is unique . D 

By methods aki n to those used in ( 6 .3.4) it is possible to determine 

that each element 6 of S(2, 4) is similar to a map r with associated 

set 
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G = <gt:,, o, o, O, o, p(gt:,); o, a(gt:,), o, o, ba(gt:,), q(gt:,)), 

p, q, a:".: O (D6.3.10) 

6.3.5 CONJECTURE. In S(2, 4) , each element t:, is similar to a 

unique element of the form (D6.3.10). 

6.4 Application of the Diagonal Comultiplication 

The final section of this work examines the way in which those 

invariants of the diagonal comultiplication so far evaluated, can 

distinguish between elements of G with the same integral homology . Two 

examples are investigated in detail and the chapter closes with a tabulation 

of these and several other examples. 

The diagonal comultiplication for a group G apparently measures the 

torsion subgroup of the abelian group G2!G3 • If G is an element of G 

its diagonal comultiplication may be built up by successive applications of 

Theorem (6.1.2) from the diagonal approximations of elements in G
1 

(cf. 

(6.1.3)). The first such stage is explicitly calculated below. 

6.4.1 NOTATION. Let w be a word in the free group 

F=<x.,l<isn 
1, ) • For each pair of generators (xi, xj) of F, 

is the augmentation map of the group ring ZF. 

F 
' 

the symbol < w' x. > , previously written as 
1, 

£(a~] . That is, for i # j , < w; xi, X .) is 
J 

occurrences of x. 
1, 

preceding each occurrence of 

ZF + Z 

For each generator x. of 
1, 

a. (w) 
1, 

, denotes the integer 

the exponent sum in w of 

+l x. 
J 

minus the exponent 

sum of occurrences of x. 
1, 

preceding each occurrence of -1 x. 
J 

For example, 
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By induction on the length of w , it may be shown that 

= ~<w, x.>(<w, x.>-1) 
1,. 1,. 

and 

( W; X,; , X • ) + ( W; X • , X. ) = ( W, X, ) (w, :r; • ) 
v J J 1,. 1,. J 

Suppose G = m(V, A) is a connected groupnet in G
2 for which A is 

V 

a free group with basis X for each v in D. If CV is the standard 
V 

Av-free resolution of Z with length l 

CV = 0 -+ (±) ZA [x] -+ ZA [v] -+ o , 
V V xEX 

V 

and, as before, C~[Ae] = [pe] dlld 

I 
yEX 

pe 

8A (x) 
e 

[y] 

for all x in XAe , then the next result is a corollary of (6.1.2) and 

the Note following it. 

6.4.2 COROLLARY. If M is the G-mapping cylinder of this aorrplex 

(V, ZA, C) , then the tensored diagonal approxirration 

K@w
2

: TG®M
2

-+ [(TG®M) ® (TG®M)]
2 

is 

6® w
2
[xle] = [pe] ® [xje] + [xje] ® [Ae] 

+ [Aele] ® [x] -

for all e in D and x in XAe. D 

L < A ( x) , y > [y] ® [Ae I e] 
EX e 

y pe 

Once a basis for H2(G; TG) has been found, the diagonal 

comultiplication may be calculated from (6.4.2). // 



For the remainder of this chapter, all the connected graph product 

groupnets dealt with will be of the specific form G = m(V, A) , where 

0 

J. 

A
8 

and Af are monomorphisms, and A
0 

and A1 are finitely generated 
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free groups, with A
0 

= <xi, ls i S k : and A 1 = < y j, l s j s l : > • 

The loop group of G at identity l is thus 

If A~ is the commutator quotient group of A . for i = 0, l 
1, 1, 

then A 
e 

and induce the abelian group morphisms A* A* · A* -+ A* e' f · o l 
respectively. 

As the tensored boundary map 6 ® a 
2 

: TG ® M 
2 

-+ TG ® M 
1 

is 

l 
6 ® a2 [x -I g] = [x .7 - L < A ( x.) , y . > [y J 

1, i,J j=l g 1, J J 

for g in {e, f} , it follows that 

k 
L P . ( [x . I e] - [x . I f] ) E H 2 ( G; TG) 

i=l 1, 1, 1, 

k 
L p .x. E Ker(Ae*-Ar*) . 

i=l 1, 1, 

This isomorphism is convenient for use in the choice of basis elements for 

H2(G; TG) . In similar fashion, H1(G; TG) is the quotient of the free . 

abelian group with basis {[O!eJ-[OlfJ, [if), ls j S l} by the group 

Im(A;-Af) . 

6.4.3 EXAMPLE. Let k = 2 , l = 3 , and 
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The loop group of G at l is the one-relator group 

while H
2

(G; TG) is generated by (x1+x2) and lm(A;-AJ) is generated by 

then 

If <A (x.); y, y > is contracted to <e(i); p, q> 
e 1.- p q 

<e(l); p, q> = o 

(f(l); 3, 1> = 0 

( f( l); 3, 2} = 0 

<e(2); 2, 1> = 14 

< e ( 2) ; 2, 2 > = 15 

<e( 2 ); 2, 3) = -4 

( f ( 2 ) ; 2 , l} = 4 

< f ( 2) ; 2 , 2 } = l 

< f ( l) ; 1, l > = 6 

(f(l); 1, 2> = 0 

( f( l); 2, l > = 16 

( f( l); 2, 2} = 6 

<f(l); p, 3) = o ; <e(2); 1, 1> = 15 

<e(2); 3, 1> = -2 

<e ( 2); 3, 2> = -2 

<e(2); 3, 3> = l 

< f ( 2) ; 3 , l > = 0 

< f ( 2) ; 3 , 2 } = 0 

<e(2); 1, 2> = 22 

<e(2); 1, 3> = -4 

< f ( 2 ) ; 1, l} = l 

< f( 2); 1, 2 > = 0 

( f( 2); p, 3} = 0 

If n
2 

is restricted to its image in H1(G; TG) ® H1(G; TG) , then 

n
2

(x
1
+x

2
) = 6{([oleJ-[olfJ) ® w1J- [y1] ® ([OleJ-[OifJ)} 

+ 6{([0ieJ-[0ifJ) ® [y
2
]-[Y 2] ® ([OieJ-[OifJ)} 

- 14{ lif 1J (8) lif 2J - Uf 2J (8) lif 1J} 

The matrix associated with n2 is thus 

w = [: : _:j 
G6 14 o 

which is similar to 

since (6, 14) = 2. The invariant 2 of n2 measures the torsion of 

G*IG* 2 3 
simple computation shows that G*/G* 2 3 

is generated by the cosets of 
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6.4.4 EXAMPLE. Let k = 2 , Z = 2 , and 

The loop group of G at l is 

while H
2

(G; TG) is generated by {x1 , x2} and Im(A;-AJ) is trivial. 

Since 

<e(l); 1, 1> = 3 , < e ( 1); 2, 1> = 0 , <e(l); p, 2> = 0 ; 

( f( l); 1, 1> = 3 , ( f( 1) ; 2, 1> = 2 , ( f(l); 1, 2) = -2 , 

( f(l); 2, 2> = 0 <e(2); 1, 1> = l <e(2); 2, 1> = 8 

<e(2); 1, 2> = 0 <e(2); 2, 2> = 6 ( f( 2); 1, 1> = l 

< f( 2); 2, 1> = 4 < f( 2); 1, 2> = 4 ( f( 2); 2, 2) = 6 

if n
2 

is restricted to its image in H1(G; TG) ® H1(G; TG) then 

n
2

(x
1

) = 3{([ojeJ-[ojf]) ® [i,,1] - w1J ® ([ojeJ-[olfJ)} 

- 2{ Uf 1] ® [Y2J - Uf 2] ® [Y1]}, 

and 

n
2

(x
2
) = 2{([oieJ-[o lfJ) ® [y1] - lit'1] ® ([ojeJ-[olfJ)} 

+ 4{([0ie]-[Ojf]) ® [y;) - [y 2] ® ([Oje]-[OifJ)} 

+ 4{ lil 1J ® [y 2J - w 2J ® w 1J l 

The matrices associated with n2 are thus 

By (6.3.4), 



< 3, O, -2 ; 2 , 4, 4) ,.,., ( 1 , O, O; 6 , -16 , 4) 

rv (l, 0 , O; 6, 4, O) 

rv ( 1 , O, O; O, 4, O) 

Here the invariant 4 measures the torsion of c;1c; this group is 

generated by the co sets of { (p, y 1] , [t, y 2] , [ii 1 , y ;J } subject to the 

relations 
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The tables below summarise thi s information for several other 

groups, according to the rank of their respective second homology modules. 

In these t ables, the integer m is the rank of the free abelian group 

H
1

(G; TG) , and it may be checked that in all the examples given, 

6.4.5 DEFINITION. If B is a finitely generated free abelian group 

of rank m , the symmetric difference BVB of B is the rank (~ free 

abelian subgroup of B ® B generated by 

{x @ y - y @ X : y, X E B} • 

Any .basis {bi' 1 <ism} of B determines a basis 

{b. ® b . - b . ® b. : 1 s i < j s m} 
1, J J 1, 

of BVB • There is thus an abelian group isomorphism between the symmetric 

difference and a subgroup of the wedge product 

B I\ B = B ® Bl{x ® y ,.,., -y ® x : x, y E B} , 

e a luated as 

b.@b.-b.@b.~b.Ab .. II 
1, J J 1, 1, J 

As the diagonal comultiplication i s skew-symmetric, i t may be considered 

as a mor phism n
2 

: H
2

(G; TG) + H
1

(G; TG) I\ H1(G; TG) . Examination of the 



G* k i m 

( t ,y l: t- 1y f t=y i) l l l 

( t ,y l : t- 2y l t 2= [ t ,y l J- l ) 2 2 l 

( t,y l: [t- 1 ,1'1 ][t,yl l ]=l) 2 2 2 

<t t-1 -2 -2t 5 ,Y 1 ,Y 2 ,Y 3 : Y 2 Y 3 =y 1 , 
2 3 3 

t- ly 3y 2y- l t=y- 2y- 3) 
l 3 2 l 2 

( t ,y l ,y 2 ,y 3 : 

t- l 2 - l t- - 2 2 Y 1 Y 2Y 1 -y 3 Y 2Y 1 • 3 3 

t- 1YfY~Vi 2t=y·/y 2YfY3 2Y 2 > 

< t,y1 ,Y2= 
2 3 3 

t- 1 (y 1Y2) 4 ty; 4Y; 4t- 1yfY ~t=y~yf > 

< t,y1 ,y2: [t2 ,!'21'1 J=l> 2 3 3 

< t,y1,Y2,y3:t- 1yzY·j2t=#iy 3, 
2 3 3 

t-1 -1 -1 t 1-p -1 -1) 
Y 1 Y 3Y 2 Y 1Y 3 =y 1 Y 3 Y 1 

( t,yj , 2~:S2p: 

p l 2p-l 2p 

[t,y2J IT [y 2q-1 •Y2q ]=l> 
q=2 

Ae At 
Basis 

H2(G; TG) 

y2 
l 

y3 
l 

¢ 

Yl Y2 
¢ 

Y2 Y2Y1
1 

11,_y 2 ifiy2 
x1 

Yl Y2 

y·/y·/ yS 
l 

x1+x2 

YiY~2
1 Y12Y2 3 

y y2y- l 
l 2 l y-/Y2Y1 

-2x1+x2 

YfY~Y1
2 

Y3
2
!12YfY3

2
Y2 

4 4 
Y3 Y2Y1 

X1+X2 
(y1y2) 4y3 1Y~ 2 y2y2 

1 2 2 l 

Y3 Y-:/Y-:J' 
x1-x2 

!'2!1,. Y3
1 

-2 
Y2Y 3 ifiy 3 

x1+x2 
y-ly y-1 Y t-PY"j 1Yi 1 

1 3 2 Y 1Y 3 

p 
Y2 Y 2 IT [y 2q - 1 ,y 2q J X1 

q=2 

TABLE 6.2. Rank H2(G; TG) = n :S l 

Basis 
Im(A*-A *) e f 

-

-

Y1-Y2 

Sy 1 +2y2 

+2y3 

-y 1 +Y2 

+2y3 

4y 1 +4y2 

-y3 

PY1+PY2 

+y3 

PY 1-Y2 

+py3 

¢ 

w 

-

-

( p+l) 

( 3,-3,0) 

( 0,0,4) 

( 6,6,-14) 

< -2p,-2p,o> 

<o,o,2p-3> 

~ [ 0 lJ 
-1 0 

q=l 

I(W) 

-

-

< Jp+1 I> 

<3,o,o> 

( 4,0,0) 

<2,0,0> 

< J2pl ,o,o> 

( J2p-3J ,o,o) 

~ [ 0 ~ -1 0 
q=l 

..... 
<.n 
0) 



G* k 7, m Basis Bas i s w 
H2(G;TG) Im(A *-A*) 

e f 

( t t- 1 3t ~- 1 t - 1 4 2t 2 2 2) ,Y 1 ,y 2 : Y 1 =y 1 Y 2Y 1 2 , Y 2Y 1 =y 2Y 1 Y 2 2 2 3 Xl ,X2 ¢ ( 3 , 0 , -2 ;2 ,4,4> 

< t,Y1 ,Y 2 :t- 1Yi t =YiY2YiY 2
1 •t-ly ~y f t =y~y fy ~) 2 2 3 Xl ,X2 ¢ ( 4 ,0 ,-2;2 ,4,4> 

( t y y y ·t- ly-211 y 2y-lt-y - 1y x 1 , - y1+5Y 2 
'1'2' 3 ' lv312 - 2 3 ' 3 3 3 ( - 1,1,10;3,0,l> 

t-1 St -3 t-1 2t 2 -1 -1 - 2 -2y-l) 
Y2 =y3 Yi, Y1Y2 =Y1Y2 Y1 Y3 Y2 3 X2-X3 +3y 3 

( t · t- 1 t- t- 1 t- - 2 2 x1 ,x4 ' 2y 1- Y2 ,y 1 ,y 2 ,y 3 . y l -y 1 ' y 2 -y 3 y 1' 
4 3 3 ( l,0,0;2,-4,0;4,0,-8> 

r1y-1y 2y t=y y-1y t-1y 2y4t=y2y 2y 2 > 
1 3 1 . 1 2 1' 2 3 3 2 3 

X2-X3 -2y3 

<t ·t-1 2t- 2 t-1 t - -2 2 Xl ,X4, 2y1-y 2 ,y 1 ,y 2 , y 3 ' y 1 -y 1 ' y 2 - y 3 y 1' 
4 3 3 ( 2 , 0 , 0 ;2,-4, 0 ; 4 , 0 , -8> 

t-ly-ly2y t=y y-l y t-ly2y4t=y2y2y2) 
1 3 1 1 2 l' 2 3 3 2 3 

X2-X3 - 2y 3 

( t · t- l t- t- l t - - 2 2 Xl ,X4' 2y 1-Y 2 ,y 1 ,y 2 ,y 3 ' y 1 -y 1 ' y 2 - y 3 y 1' 
4 3 3 ( l,0,0;2,-4,0;4, 2 , - 1 2 ) 

t-1 -1 2 t - - 1 t-1 2 Gt- 3 ~ 3 ) Y 1 Y 3Y 1 -y 1Y 2 Y 1 • Y 2Y 3 -Y 3Y 2 3 X2-X 3 - 2y 3 

( t y y y ·t- ly 2t-y 2 t-1 t - - 2 2 x1 ,x4, 2y 1-Y2 
' 1 ' 2 ' 3 ' l - l ' y 2 -y 3 y l ' 

4 3 3 <2,0, 0 ;2, - 4,0;4, ~ ,-12> 
t- l - 1 2 t - l t- l 2 6 t 3 2 3 ) Y 1 Y 3Y 1 =y 1 Y 2 Y 1 , Y 2Y 3 =y 3Y 2Y 3 x2-x3 -2y 3 

TABLE 6.3. 2 s Rank H2(G; TG) = n S 3 

I(W) 

( 1,0,0;0,4 ,0 ) 

( 2 ,0, 0;0 , 2~0 ) 

( 1,0,0;0,l,0> 

( 1,0,0;0,4,0; 0 , 0, 8 ) 

< 2,0,0; 0 , 4 , 0; 0 ,0 , 8 ) 

<1,o,o;o,2,0; 0 , 0,24> 

<2,o,o;o, 2 ,0; 0 , 0 , 24> 

1--' 
<.n 
-.J 
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examples above , and comparison with the dual case (see Sull i van [ 37]), 

strongly suggest that the sequence 

is exact,modulo torsion in H1(G; TG) . Here the skew-symmetric bilinear 

map [ , J is defined by [ , r -1 -1:J ] (x I\ y) = LX , y • However, the 

diagonal comultiplication provides more information than is implied by the 

isomorphism Coker n == G*/G* as is illustrated below. 
2 3 ' 

If m ~ 3 , every 

element of H
1

(G; TG) V H
1

(G; TG) may be written as a simple s kew product 

(that is, in the form x Vy for some pair (x, y) in H/G; TG) ) , but 

this i s not so for higher m. For any linearly independent set of elements 

{ < . < } x.: 1_ 1,_4 
7, 

of H
1

(G; TG) , for instance, the element 

x
1 

V x
2 

+ x
3 

V x
4 

cannot be written in t his form. Let G* be the final 

group of Tabl e 6 .2, wi th p = 2 , so that c;1c; is free abelian of 

rank 5 = ~(4. 3) - l , and n2 (x
1

) = t V y 2 + y3 V y4 . Hence rank W = 4 . 

Let H = m(V, B) be t he mapping cylinder groupnet for B = <x . 0 l . ) , 

81 = <y 2 , Y3• Y4 : > ' 8e(x1) = Y2 and Bf(xl) = Y2[Y2, Y3j U/2• Y4] 

That is, H* = ( t, y 2 , y 3 , y 4 : [t, y 2] [Y 2 , y J [Y 2 , y 4] = l) , H 2 (H; TH) 

is generat ed by rfl
1

(H; TH)= 4 and H*/H* ,:;,! z5 
2 3 -

The diagonal 

comultiplication 6 for H is given by 

with associ ated matri x D = < 1, 0, 0, 1, 1, 0) and 

I(D) = < 1, 0 , 0 , 0, 0, 0) Hence rank D = 2 and 6 is not similar to 

n . The simi larity invariants of n thus reflect more of the structure of 
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