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SUMMARY

Slow viscous flow through reqular arrays of cylinders and spheres
is studied theoretically and the drag force exerted by the fluid on a
cylinder or a sphere forming the regular array is calculated.

The method used essentially consists of comparing a solution of
the Stokes equations outside a cylinder or a sphere with a sum of solutions
having equal singularities inside every cylinder or sphere of the regular
array.

For cylinders, results are given for square and triangular arrays
for flow parallel and perpendicular to the axes of cylinders, while for
spheres results are given only for a simple cubic array. Results agree

well with the corresponding values reported by previous researchers,

notably Hasimoto (1959).



| 5 SLOW VISCOUS FLOW PARALLEL TO REGULAR ARRAYS OF CYLINDERS

i | Introduction

The study of the flow of a viscous fluid past a regular array of
circular cylinders is important for understanding the operation of many
heat and mass transfer equipments.

In this chapter we shall consider square and triangular arrays
of cylinders, and calculate the drag force exerted by the fluid on a
cylinder forming the array by matching a solution of the Stokes equations
outside the cylinder with a sum of solutions having equal singularities
inside every cylinder of the array.

This problem was first solved by Emersleben (1925) for a square
array. His solution which was based on complex zeta functions appears
to be valid only at low values of the volume fraction of the cylinders.

Happel (1959) employed his free-surface model, which he had
previously used for the fluid flow relative to arrays of spheres (1958),
to the case of flow relative to arrays of cylinders. He developed a
mathematical treatment on the basis that two concentric cylinders can
serve as the model for fluid flow through an array of cylinders. The
inner cylinder consists of one of the cylinders in the array and the
outer cylinder of a fluid envelope with zero drag on the surface. The
relative volume of fluid to solid in the cell model is taken to be the
same as the relative volume of fluid to solid in the array of cylinders.
He derived a formula for the Kozeny constant, which is equivalent to a
drag force, F, per unit length of the cylinder, given by

4TUU

Qn(l/e)—l.5+2g—%€2

where € is the volume fraction of the cylinders, and U is the average

speed of the fluid. This formula is moderately accurate for low values

gk €.




Sparrow and Loeffler Jr. (1959) applied an analytical method based
on truncated trigonometric series to square and equillateral triangular
arrays. Their solution was exact on three boundaries of a typical element
of a cell of the array and was collocated or fitted at a set of points on the
fourth boundary of the element. Their results are graphed and agree well
with the formulae of Emersleben and Happel and extend them to higher
values of the volume fraction.

We shall use a multipole technique to solve the problem despite
Happel and Brenner's (1973, p. 386) claim that the method of reflections
cannot be directly applied to problems involving arrays of cylinders
because no solution of the creeping motion equations exists for a single
cylinder in ah unbounded medium. Convergence difficulties concerning the
r2 and &n r terms can be overcome by using a modification of O'Brien's
(1979) method. This will be further discussed in §1.3.3.

1.2 Equations of motion of slow viscous flow

The Navier-Stokes equations for the motion of a viscous incompress-

ible fluid, in the usual notation, are given by (Batchelor (1967), p. 147)

DY 5
e = PE ~ Vp 3+ V'Y (1)

or

(3\_7 %,
0 [ o V.VWV| = pF - Vp + uV'v

. ) 2 :
where pV.VV are the inertial terms and V'V the viscous terms.

In general, the body force F can be expressed as

F = -VQ

and combined with the pressure term, so that

( oV ) 5
0 { Sl v.Vv| = -V(p+pQ) + uv'v (2)




If we write p in place of p+pfl, equation (2) becomes

(8\_/ vl = -v v?
Ry oY)~ R Y ¢’

The pressure p appearing in equation (3) 1s termed the dynamic or
hydrodynamic pressure and vanishes when the fluid is at rest (Happel
and Brenner (1973), p.28).

For steady inertia-free flow, equation (3) reduces to

2 1
NV ==Y 4
V up (4)

which, together with the continuity equation,
constitutes the creeping motion or Stokes equations for this situation.

Taking the divergence of equation (4) and using equation (5), we

find that

¥y = 0 (6)

i.¢. P is harmonic.

If we take the curl of equation (4), we get

VW = 0 (7)

where @ = $VxV is the vorticity vector.

For a two-dimensional flow, we can write from equation (5)

v = v
where

A = (0,0,y)
and Y 1is called the stream function. Then

2
(i) = (OIOI_%V LP)
and equation (7) becomes
vy =0 (8)

l.e. Y 1is biharmonic.




1:3 Flow parallel to cylinders in a square array

1:.3:1 Description

Let solid circular cylindefs of radius a be arranged in a
square array, parallel to the z-axis, with centres at points having
coordinates (pb,gb) where p and g are integers, and b 1s the
distance between the centres of adjacent cylinders. Let the fluid
have velocity w parallel to the z-axis. The fluid is then driven
by a constant pressure gradient in the z-direction.

The equations of motion (equations (4) and (5) of §1.2) reduce

=9,
AR L Y
U 9z oz
2 P d
or 5 ,£=o (1)
0
where §§»= - P = constant, and w = 0 on the surface of each cylinder.
In terms of the cylindrical polar coordinates (r,0,z), the first
of equations (1) becomes
2
10 ow 1 9w P
A A e S T
r a6
2 2
d w 1 9w 1 O'w P
i et e e T 42)
or r 98

fe e, 2 The first solution

et
2
o
w* = w + "1 (P/N)

Substituting in equation (2) we see that

2 2

0 w* = 1 gw* L 1 9w TR (3)
g 7

or

ar B 2

=
Q

l.e. w* obeys Laplace's equation.



(a) end view

PO C

(b) typical element

e 2
Fig.l Parallel flow: Cylinders in a square array



Using the method of separation of variables, the general solution

of equation (3) 1is

(o 0]
m ) -m i 11 r
w*x = A fnr + B + Z (C r cos mb+D r cos m+E r sin mO+
m m m
m=1
F r sin md)
m
Therefore,
2 o0
Pr m -m m.
w=ASShr+B-—+ Z (C ¥ cos mB+D r cos mB+E r sin mO+
4 m m m
m=1
Fmr sin mB) (4)

Here m takes on integral values to ensure that the velocity 1s single-
valued. The constants A, B, Cm, Dm etc., 1n equation (4) are to be
determined from the boundary conditions.

An end view of the arrangement of cylinders in the square array,
and a typical square cell are shown in Fig. 1l(a). From the symmetry of
the situation it is obvious that we need focus our attention on only the
cross-hatched element ABCD in Fig. 1l(a). Fig. 1l(b) 1is an enlargement
of the typical element, and also shows the boundary conditions.

The condition 5% = 0 expresses the symmetry property, while the
condition w = 0 at r = a results from the no-slip requirement of viscous
flow.

We may now apply the above boundary conditions to reduce the

number of constants in equation (4)

ow 1 ow
" = 36 a O 1implies E 0 o 0
ow 1 9w " i .
ol 3 B oak G = 4 implies m =4, 8, 12, .....
and
Pa2 m -m
w=0at r =a implies A fna +B - —=0, C a +D a = 0
41 m m
Using the above findings, equation (4) can be written as
oo
P 2 2 4 4
w = A I&n A — (r -a )+ Z A [(x/a) n—(a/r) n]cos 4nf (5)
a 4y = 4n



_8_
This solution is unaltered if we change O to -6 or increase §
e
% .3

153 3 The second solution

Using a modification of O'Brien's (1979) method, Drummond (1982)

has expressed the second solution for w as

Y (e e]
4 : P
w =Y I{A &n e S Z A ( = ) Pcos 4nf  } - —— + I (6)
a 4n 3 Pg 40
P,q n=1 jeie]
where (r ,6 ) are the polar coordinates of a field point P(r,0)

referred to the centre of another cylinder, and I 1is an 1ntegral over

the surface at infinity which cancels the divergent terms in the solution.
Each of the cylinders in the array contributes equally to the singularities
in equation (6).

1.3:4 Matching the solutions

Since equations (5) and (6) represent the same function in the

domain (allf, a € r < b), we can write

2 0o 4
Ll + Z A (r/a) ncos 4n6
4 4n
=1
Y o 4
. 7g {an &n ggg Ay e %——-) Mcos amd  }+1 (7)
p,q9#0,0 m=1 jslef i

We can match the solutions by using complex variables as follows.

: if
Let z = rele bo S F e P4 and d = (p+ig)b where
Pq Pq 9
dpq are the complex coordinates of the centres of the cylinders. Then
z = z-d and equation (7) may be written as
Pq Pq
i (o)
Pa 4n
— +
a1 R Z A4n(z/a)
n=1
P 4
= RIL % Wt o §- ] ey (8)
p,qg#0,0 pq m=1 ele



d

where J =1+ 1L L A Sn (- ——g-), and R = real part of.

p,g#0,0

190]

The right hand side of equation (8) may be expanded as a power
series in 2z and matched term by term to the left hand side. To do this

we define a set of constants

b n A LA Y =T
= 5 A 3 6wl i 5 L (p+1iq)
p,q70,0 pq p,g#0,0
For a square grid symmetric in p and (g, Pn = 0 unless n 1s a

multiple of 4.

Equation (8) can then be written as

2 )
s ) (z/a)*"
4y Sy 4n
e . i A\ i e (4n+4m-1) ! St
= Rf nZl {4n P4n(a/b) +mzl A4m (am=-1)!(4n) ! P4m+4n(a/b) }

(a/fa) *Pea)

i 4n )
Hence the coefficient of =z gives

(4n+4m-1) ! 4n+4m
Bam “(4ny t (dm=1) | F a2

At T
4n 4n

1o = 112]31 . 18 & (9)
Equation (9) can be solved step by step to give
P4 4 71 12 20
A4 = A[- Z_ (a/b) + Z$ P4P8(a/b) +0(a/b) ]
2
8 g 11} 16 24
A_ = A[- — T
g [ 8 (a/b) + iiai P4Pl2(a/b) +0(a/b) ]
12
12 12 151 20 28
B = Rle ==
12 [ 1o (a/b) + FTSeT P4P16(a/b) +0(a/b) 1] (10)

and so on.



=t ]_O -
g Determination of P4n
4 0s 4n ( tan ! )
. " " —4n . B AECEE o
e e = LI 7 p
p,q#0,0 p,g#0,0 gl N Sy

(P %g <)

For large n these series converge rapidly, and, therefore,
P12' P16' P20 etc. can be evaluated directly by summing over an octant of
the grid and multiplying the edge terms by 4 and the interior terms by

8, and taking sufficient terms to get any desired order of accuracy.

To determine P4 and P8 we proceed as follows.

P4 = ) bgllp 1

»970,0 (il

pra7 (ptiq)
R

Now z e - (residue of E—EQE—EE- at n = -1iq)
n=-© (n+1q) (ntiq)

(Spiegel (1964),p.175)
4 N T
W 3+2 sinh Tq

Sinh4ﬂq

Summing over g, we get:

1 R e gk sk
+
G et e Sl i) I N
p,g#0,0 (p+iq) p=l p g=l1 sinh 7mg
4 4 2
rang Brakote 2T E 342 sinh 7g
! 4 90 '3 ool
g=1 sinh mqg
(Spiegel (1968),p.108)
or P4 ="3.151211992
Similarly
il o B O 4 2 4 . .6
p = o z l_.+ 2m Z 315+420 sinh mg+126 sinh mg+4 sinh g
8 8 315 ol
P=1 p g=1 sinh Tqg
or
P8 = 4.255772971

The values of P4n are given in Table 1.



1136 Determination of A

For steady flow of fluid through the element ABCD of Fig. 1, the

pressure and shear forces must balance. The thrust due to pressure on
2 2
; . P{b -Tfla )
unit length of the element 1is 8 The only nonezero shear force
1s given by
m/4 N 2
. OW E Pa m
f s = A )
0] r=a

Equating these two forces, we get

2
EE_ (11)
2UT

Equations (10) and (11) give the unknown constants 1n equation (5).
Since, by symmetry, the velocity is a maximum at B in Fig. 1 and
has a saddle point at A, we can also determine the constant A by putting

3 b
i 0 at either A(r = E

0 = 0)  or B(r = %5», B = % ) 5

. P The total flux and the drag force

2
The total flux @ through a square cell of area b around a

cylinder is given by

b
i 5 sec v)
Q =8 J do [ w r dr
0 a
b
Tt E—sec 0 3 14 5 sec B
=23{J d6 j r(A &n —) dr - A J db J (ri—a )r dr
0 a H 0 a
e 1/4 2 sec
4n A
- Z A J dab J r(xfa) cos 4nf dr
4n
=il 0 a
b

= oeeC

(0 0]
Z m/4 2 A
- A I do J r{a/r) 'cos 4nf dr
i 0 a =
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Values of P

TABLE 1

4n

P
4n

451 211992
a3l 12971
.938849013
015695033
7996096753
.000976805
999755875
.000061036
.999984741

TABLE 2

Values of P

on

P
on

.863031696
009639971
1999718356
.000011647
« 299999587

10
34
12
3
14
15
16
17

© @ 9 O

10

6.
5

6

6

P
4n

.000003814
. 999999046
.000000238
.999999940
.000000014
. 999999996

P
6N
000000015
999999999




The last two integrals can be evaluated by using the formula

f n-1 1 n y
J cos (n+l)x cos %X dg = ; COSs X Ssin nx

Then Q@ simplifies to

= 2 4
2 5 Bl 3 Ta p bl 3% g
= = — - =) + + — (- = + ~
0 A[_b I~ B - = ) = 1 e =)
oo - n _ 4n+2 n .. 2n  4n
4 T (-1)" b sakEl) c32 e i
4 4n-2
o 1) (dne1) e (2n-1) (4n-1)b" " -l

Substituting for A and A4n from equations (11) and (10)

respectively, and rearranging, we get

o = Pb4 [:(Qn b 3 LR “ Ta ﬂ2a4 )
m
2T av/2 6 2 b2 4B
+ 2 P4 4 P8 19 p12 ) )
X5 X6 X LT
6o e 8><9><lO><42 l2><13><l4><43
P 7P 11P 15P -
84 12 16 16
TR R - - P le L Y @ ta )
3 2 3 4
4 4 4 =
DX, Tarter simplification,
2
4 2 P
Pb 2 W 4 4 8
S 2 = 1. +T - — - —
0 T [ n (b/a) 1.310532926+W (a/b) 4 (a/b) 4 (a/b)
16
+ 0(a/b) (12)
flux Q
If 5 . W bis
U S oF Uhe ool 5 denotes the superficial velocity

b
parallel to the cylinders, and F 1is the drag force per unit length on

: - 2 . ,
one cylinder given by, F = Pb , then equation (12) can be used to obtain
P o= 2mMuu
= = 5 3 g (13)
2 Z 4 p4 8 1€
n(b/a)-1.310532926+7 (a/b) “- %‘ (a/b) - 54 (a/b) +0(a/b)



In terms of the volume concentration € of cylinders given by

2
g = i , equation (13) becomes
b

4mMuU

i 2

P

2 4 4 8
2n (1/€)-1.4763359%6+2c-3c - e £ F 0(g ) (14)
2T
1.4 Flow parallel to cylinders in an equilateral triangular array

In an equilateral triangular array the solid circular cylinders
are arranged parallel to the z-axis, with centres at points

[ (pt+ %-)b, Zé gb], and the fluid is moving with velocity w in the z-

2

direction, driven by a constant pressure gradient -P.

An end view of the arrangement of cylinders in the triangular
array, and a.typical hexagonal cell are shown in Fig. 2. From the
symmetry of the situation, it is obvious that we need focus our attention
on only the cross-hatched element in Fig. 2(a). FPig. 2(b) ., is an
enlargement of the typical element, and also shows the boundary conditions.
The flow is symmetric about OA, OB and AB.

The equation of motion is the same as before (i.e. equation (2)

of §1.3) and its solution satisfying the boundary conditions of Fig. 2

1s given by

5 P L2
w=Afn — - — =
n 3 au (r -a ) +

Il 0~ 8§

A6n[(r/a)6n—(a/r)6n]cos 6n 6 (1)

=1

The second solution may be expressed as

w=ZX3{a fn -1 _ ) A_ (a/r )6ncos 6n 6 }- — + 1
P.q Fl== . £ 5

where the symbols have the same meaning as in §1.3.3.

For matching the two solutions we use the complex variables and

define



L E

(a) end view

30°~,B
i/ S
| & i
| /J

ke b =

(b) typical element

Fig.2 Parallel flow: Cylinders in a triangular array



w05 =
. L R iy
P6n e T ¥ (p + % + iqg i ) i
p,q70,0
On matching we find that
6 - (bn+6m-1) 6n+6
A n . ntom=—1 )1 n+6m
= - — - P b
A6n e p6n(a/b) m%l A@m (bm-1) ! (6n) ! 6m+6n(a/ )
gl =l e
We can solve this equation step by step and obtain
s 6% 3 18 30
A6 = A[ - T (a/b) + ATy P6Pl2(a/b) +0(a/b) ]
Pl2 A7 24 36
Alz = A[ - IE—-(a/b) + TG P6P18(a/b) +0(a/b) ] (2)
Pl8 18 23!} 30 42
= ey + . +
e e e T Pl i L

and so on.
y Bo oy . 1 d di ) '
P12 18 P24 etc. can be evaluate irectly by summing over
1/12th of the plane and multiplying the edge terms by 6 and the interior
terms by 12, and taking sufficient terms to get any desired order of

accuracy.

To determine P6 we proceed as follows.

Faa= &
p,q#0,0 2§+q 2 iq'Eg

If we substitute the coordinates of the grid points, this series can be

re-written as



e
00 (00 (o 0] l
| 1
p6=22_6+2Z 6+2z 6
n=1 n=-x° ( 2n+1 . V3 n=-®° (n+i /3)
g =
l 2 2
(0 0] (00) l
|
£ 2 ¥ i ) 5
n==° [ 2n+1 . w3 ) n=-° (n+2i v3)
> 5 |
(o o] [0 0] l
1
+ 2 z ‘ * 2 Z 3
n=-x 2n+1 o 5v3 ) n=-° (n+31 /3)
2 2 j
- + (3)
Now
% 1 t
z —————— = -~ (residue of S e TR at z = -1iq)
o 4t ) 6
n=-© (n+iq) (z+iq)
(Spiegel (1964), p.l1l75)
4
il % ﬁf 15+15 SinhZTTOL + 2 vginh WG (4)
A [ 1.6
sinh TQ
and
p 1
Z = (residue of L R ag. g = =iR)
a4 ( 6 o
n=- (2n+l . } (z+1iR)
s
2
(Spiegel (1964), p.1l75)
4 .
M EE ( 15-15 cosh2ﬂ8+2 cosh TfR (5)
3 6
3 cosh TR
Putting @ = /3, 2 /3, o . in equation (4) and
s 3 5 V3
B = —g ' K% ' -15 s+ G in equation (5), and using equation (3),
we get

P6 = 5.863031696

The values of P6 are given 1in Table 2.
n



Applying the force balance condition to the element ABCD of Fig. 2,

we get
e 2
A_}/3 Pb (6)
4TH
: . 8W: 0
We can also determine the constant A Dby putting 5 at
b : b m
either A(r = "L 0 = 0) or B(r = 75 g = 2 )

Equations (2) and (6) give the unknown constants in equation (1).
£.00
/3 b

2

The total flux O through a hexagonal cell of area

around a cylinder is given by
b
m/6 5 sec 0
Q0 =12 J do f wr dr
’ 0 a

Substituting for w from equation (1) and carrying out the

integration, we get

=12 | a b* i 30° for ) 9? A
ol S 5 dgd3 24t 2

-— | == - +
88 ¥3 843 24

P 5b4 a2b2 ﬂa4
4y

8

+
iy el

+
i (_l)n b6n 2
1 6n on+1

n 4(6n+l)(6n+2)a6n(/3)

(_l)n a6n (/3)6n—l }—|

B ien-2)p ™2

Using equations (2) and (6) and re-arranging, we find that



- 19 -
: 2 4
o ? ( [Qn AN = | 3, 2ma ma ]
T o8mu & 36 V3 2 | .. 4
8TH | a 36 ¥3 2 Pl b
P P12 . ®18 : ]
XTX8X
[3 g 6X13X14X272 9><19><2O><273
12 9%x10X11 15%X16X17
§ = iy P.=1 = ————F 3 P
40 6 272 12 273 18
21x22%23 24
————T R Ak ) + O(a/b) '
27 =
or, after simplification,
2
4 ) p
3Pb 2T 2o W 4 6 12
- sl 0 47 + B e = ) o
3w [Zn(b/a) 3930379 73-(a/ ) 3 (a/b) e (a/b)
24
+ 0(a/b) ] (7)
2Q : PR . .
o, - B e 5 is the superficial velocity parallel to the cylinders,
/3 b

and F is the drag force per unit length on a cylinder, given by

e 2
Y3 Pb
F = g iRk then we can use equation (7) to obtain
2T
F = L =
2 P2
2T ¢ SR ) 4 12 4
fn(b/a)-1.393037947 + 73 (ayl) "= 3 (a/b) —'gé (a/b) +O(a/b)2

In terms of the volume concentration of cylinders,

equation (8) becomes

4TUU

en(1/€)-1.497504971+26— — - —— € + 0(e

(8)




1.5 Conclusion

4
The drag calculations are accurate to order ¢ for the square
6 .

array and to € for the triangular array, and may be used from low
to moderately high values of €, particularly in the case of the triangular
array, but the errors are not insignificant when the cylinders just touch.

At very low volume concentrations of the cylinders, when £&n (1/€)
is large, Happel's (1959) free-surface model approximation 1s good.

With zero drag on the outer cell wall, the force balance gives

P x (area of the cell)
2T

B =

independent of the arrangement of the cylinders, and the velocity near a

cylinder is

P X (area of the cell)
¥ fn (r/a) i

P (a2—r2)

w =

The drag force F on a unit length of a cylinder is then given

4muU
n(l/e) - k

| S

whére.  K.'is clese to 1.5.

This suggests that the cylinders may be regarded as almost
independent of their arrangement and dependent only upon their average
volume concentration. In the more refined calculations the value of
K will vary with the arrangement of the cylinders under consideration.
Thus a reasonably accurate empirical formula for the drag force would be

4TUU

en (1/6) —+2e-1€°

where K 1is determined experimentally and is a measure of the
reqgularity of the arrangement.

The method used above for the square and the triagnular arrays may
also be applied when the cylinders are arranged in a hexagonal or a rect-

angular array (Drummond (1982)).



i SLOW VISCOUS FLOW PERPENDICULAR TO REGULAR ARRAYS OF CYLINDERS

2N Introduction

Slow viscous flow past a system of parallel circular cylinders
oriented at right angles to the direction of fluid flow is of interest
for the theory of filtration through fibrous filters, and has been the
subject of many experimental and theoretical studies. A comprehensive
review on the subject was made by Davies (1973).

Tamada and Fujikawa (1957) studied, on the basis of Oseen's
equations of motion, the steady two-dimensional flow of a viscous fluid
passing perpendicularly through an infinite row of equal, parallel and
equally spaced circular cylinders, and found that the drag acting on any
one of the c?linders in the row was always greater than that acting on
the same cylinder when it was immersed alone in an unlimited uniform flow
with the same velocity.

Hasimoto (1959) used Fourier series to find solutions of the Stokes
equations of motion for the two-dimensional flow past a square array of
circular cylinders, and calculated the drag, F, per unit length on one of
the cylinders, given by

4TUU
2n(b/a)-1.3105

P =

where U 1s the mean velocity of the fluid.
He also remarked that, by making use of elliptic functions, he had

obtained a formula corresponding to the above in the form

_4muy

B 2 (1)

Snin i) 3105+ 22 40’

2
b

Equation (1) can be re-written as



P o= — 8mMuU (2)

dn(l/e) - l.4763+2€+0(€2)

Ta . : : :
where € = e is the volume concentration of the cylinders in the

b

square array.
Happel (1959) applied his free-surface model, discussed 1in §l1l.1,
to fluid flow perpendicular to cylinders, and obtained the drag force

equivalent to

4TUU
F = E -

fn(b/a) - 1.0724 +O(a/b)4

Kuwabara (1959) employed a model identical to that of Happel's,
except that on the surface of the outer cylinder vorticity was assumed to
be zero, instead of the drag as in Happel's model. He derived a formula

for F equivalent to

41U

2
fn(b/a) - 1.3224+4T 32 + 0(a”/ph
b

Kirsch and Fuchs (1967) set up an experiment to test Happel's and
Kuwabara's formulae, and found that Kuwabara's formula fitted the experimental
data better than Happel's formula.

More recently, Sangani and Acrivos (1981) extended the earlier
analysis of Hasimoto (1959) and derived expressions for the drag force, F,
acting on a cylinder in a square and a hexagonal array. For a square array,

they obtained

o 8TUU

in(l /ey - l.476+25—l.774€¢+4.O76E3+O(54)

Problems involving transverse flow past reqgular arrays of cylinders

also occur in electric conduction, heat flow and optics. Work 1in these



areas has been done by Lord Rayleigh (1892), Drummond (1971) and Ninham
and Sammut (1976).

In the following we shall use our multipole technique to calculate
the drag force on a cylinder for transverse flow past a square and a
triangular array of cylinders.

' Flow perpendicular to cylinders 1n a square array

2.2+3 Description

As in §1.3.1, let solid circular cylinders of radius a be arranged
in a square array, with their axes parallel to the z-axis, and their
centres at points having coordinates (pb,gb) where p and g are integers,
and b is the distance between the centres of adjacent cylinders. Let the
fluid be driven by a pressure gradient -P in the x-direction and have a mean
velocity U in that direction. The fluid velocity 1s zero on the walls of
each cylinder.

A typical quarter cell for the arrangement is shown in Fig. 3(a).

2elil Equations of motion and their solutions

As shown in §1.2, for a two-dimensional flow, the Stokes equations,
Viz;

1
\72\_7=HVP, V.V =0

are equivalent to

vp = 0 (1)
and

vl = o (2)

where 1) 1is the stream function related to the velocity components by

1 9y v
e — e and V. = = 3
r =t 6 Sr o
The equation of continuity V.V = 0 1is satisfied for any choice of
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A general solution of equation (2) in polar coordinates (r,0)

is given by

2 -1 3 cos ©
= ] o5 RS =3 - =
V] EO+FO frxr ¥ x (GO+HO in ¥ (Elr 1e Glr le n r) {sin 8
e 6
+ Z [(E r+F r_m+r2(G r"+H m)]{c?S g
e~ m m m m sin mH

m=2

(de Veubeke (1979),p.242)
This solution can be simplified by using the symmetry properties and the
boundary condition of the flow as follows.
(1) When 6 - -0, Vr is unaltered. This means that { contains
sine terms only.
£13) When 8 > m+06, Vr is reversed. Therefore, Y contains
odd multiples of 6 only.
(11i) The boundary condition Vr =0 = V6 at r = a 1implies
that Y = constant = 0, for convenience.
Thus, the general solution satisfying the symmetry properties (i) and (ii)

and the boundary condition (iii) above is

2 =
po= 2 { AO[ (r/a)3— §£-+ %

2 2a
2O [ e 52 RE i SR 2
0 a a e

s
J sin ©

2 o0
a 1 2n+3 2 on+1 1
+ éﬁ'nél { A [ e e B P Y ey
(a/r)2n+l I
g 1 2n+l 1 2n-1
g oA R
2 2n+1 .
R e (a/x) _l} sin(2n+1)6 (4)
b,

a i ; . .
where the factor éﬂ- has been introduced to simplify equation (8) as we

shall see later.



= 2% -

From equations (3) and (4), the velocity components Vr and V6

are
2 2
v == {a [(r/a)2-2+(a/r) ]+C [-4 2n 3 +2-2(a/r)°1} cos B
3§ 8U 0 0 a

- 2n+1 2n+2 2n 1 2n+2

a Pt s n n+

e _ s R

i 8U ngl { An [ n+1 bxis) slmiey n+1 LArE) .

Y [ 22+l (a/r)2n—2(a/r)2n+2- % (r/a)2r1 '} cos (2n+1)0

{ AO[—3(r/a)2+2+(a/r)2]+CO[4 2n §-+2—2(a/r)2]} sin 0O

(00] =
+ 2n+2 2 1 2n+2
b z A grant (r/a) e +2(r/a) Py v (a/r) =
o3 n n+l n+1l

}sin(2n+l)@

(5)

Since the Cartesian components of velocity, u and v are related to

Vr and V_ by

S,
B eos, B - N sin, B
x 6
and
v =V sin 6 + V., cos 09,
r 6
we can use equations (5) to determine u and v. Then
r2 &
= — —— —.l — ="
u 81 [2AO( 5 ) 4 CO n z ]
a
a p 2n r2 S 1+C 2 2
o n- n n
+— 7 {2a (r/a)"( —= - 1) - —— [(r/a)-(a/p) "]
8U n 2 n
n=J1 a
2n r2
o (a/x) (— - 1)} cos 2n 6
n-1 2



S o
and
oo 2 C -A
y - 2 2
v==2 ) {2a (r/a)zn(l— — ) + "= [(x/a) - (a/r) ")
8 n 2 n
n=1 a
5 i
+ 2C (a/xr) n( LAV 1)} sin 2n6
n-1 2
a
Now
Up = W%y
is equivalent to
2 2
p _ u[ 0 R g l_avr f XE " ) v, . @) ize
or L 8r2 r or r2 r2 862 r2 6
and 5 5
B e Yy vy 5 B
— == = | + = — - — 4+ — + — —
r 90 t 2 r or 2 i 2 2 96
. or r r a6 ¥

Equations (7), in conjunction with equations (5), yield

gk 2n+1

[An(r/a)2n+ +C_(a/r) ] cos(2n+l)8

e}
Il
Il o~ 8

0

Equations (4) and (8) provide the first solution of equations (2)

and (1) respectively.

As in §1.3.3, using a modification of O'Brien's

(1979) method,

Drummond (1982) has expressed the second solutions for p and y as

P=If J ¢ (a/r_ )™ cos(antl)e (9)
g ned jole] jele}
and
a2 4r Sk
Y = gﬁ' AP {Ao(a/rpq) + CO[— E2S gn(r_ /a) - ;f—-]} sin 6
P,q jele} =
8 = 1 2n+1 1 2
+— 3§ % {a o e L S
81 e nzl i {ntl) (Z2n+l) jolef s M jole|
2 2n+1 .
= o3 (a/rpq) ]} 51n(2n+1)@pq %



where (rpq, qu) are the polar coordinates of a field point P(r,0)

referred to the centre of another cylinder, and I in equation (10) is an
integral over the surface at infinity, which cancels the divergent terms
in the solution. Each cylinder of the array contributes equally to the
singularities in equations (9) and (10).

If we use complex variables and equate expressions (8) and (9)

for p we get
) [An(z/a)2n+l+cn(a/z)2n+l] K0 58 256 ey e (11)
n=0 n=0 p,g Pd

This eguation is true for all 2z and not just for the real part of

Substituting =z = z-d where d = (ptigq)b are the complex
Pq Pgq Pq

coordinates of the centres of the cylinders, and cancelling those singular

terms which come from the central cylinder, equation (l1l1l) becomes

e 2n+1 o 2m+1
A_(z/a) PO O T la/(z-d )]

n=0 m=0 Prq#O'O

The right hand side of the above equation may be expanded as a power

series in 2z and matched term by term to the left hand side. The
+
coefficient of z2n * then gives
w (2m+2n+1) ! 2m+ 2n+2
m+2n ! m+2n+
A o=oe
n mZO € (Zm) T(2n+1) 1 "2me2n+2 2/P) L

where Pn have the same definition as in §1.3.4. For a symmetric grid

P
2n+1

Similarly, using complex variables and matching expressions (4)

and (10) for Y , we get
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- 222 27
a
A zz _ 2z
81 1AO( a3 ) + CO(2z/a)
& 1 2n+l zz 2 2n+1
Nk =2 ZZ n
PR aobang /) i N T e :
n=1
- g 2n+1
N+
) £ e La/a) ]}
R=1
2 ( -2 z z =
= g_ § 2% " o 2 _Bgzgg v 2
p,q#0,0 jele] a Pg
(0]
3 Z An (e )2n+l
A (n+l) (2n+l) Pg

where =z complex conjugate of =z

1 i imaginary part of
and we have cancelled those singular terms which come from the central
cylinder.

Putting zpq B z—dpq, the right hand side of the above equation

may be expanded as a power series in z and equated term by term to the

: . Tl = :
left hand side. The coefficient of z2n 2z would reproduce equation (12)

. = 2n+1 . .
while the coefficient of z“" would give another set of relations which

can be written as
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s ( 2m+2
2n 2m+2n) ! m+2n
Ak LI - b
e So g 1 mZO o i1y 2 Qomt2n+2
(0 0] =
" z C 2n (2m+2ne2) ! (2m+2n+1) !
=0 m (2n+l)! (2m+1l)! m(2042) Y (2n-1) |
2m+2n+2
(a/b) P E no=1,2,3,..«.
+2n+
2m+2n+2 (13)
I 2. 2
where @ = LI —i%%;f——‘ S e n (14)
p,g#0,0 d p,g#0,0 (ptiq)
Pg
For a symmetric grid Q2n+l = 0.
Equations (12) and (13) can be solved step by step to give the
constants An and Cn in terms of CO. Thus
An—l 2n 4 5)
= - + -
CO (b/a) P2n n(2n+l)(P2+2Q4)P2n+2(a/b) 8n(2n+l)P4P2n+2(a/b)
n(n+l) (2n+1) (2n+3)
+ - - + +
{ 6 e Nl L R SRR LS 4(P2+2Q4)Q6]}
3
(a/b)8+0(a/b) Y B =0,1,2, .- (15)
and
C
LB ey ™ = (. 4200 )+4n (n+1) P (a/b) °+[n(2n+1)P_P
CO 2n 2n+2 2n+2 2 2mt2
4
+2 +1) (2n+1 + =
n(n+l) (2n )(P2 2Q4)Q2n+4](a/b) [l6n(n+l)(2n+l)P4Q2n+4
4n(n+l) (n+2) (2n+3) 6
+
. (P2+2Q4)P2n+4](a/b)
3 {n(n+l)(2n+3)(22n+43) - M n(ntl) (n+2) (2n+1) (2n+3)
2 4 2n+4 3
RESE ¥4 -
R e nEnRL) (P 20 VP P o
-6n(n+l) (2n+1) [P_P +4(P_+20 )0 10 \(a/b)8+0(a/b)lo (16)
2" 4 2 “*4"%6" 2on+a |

Il
s
N
w

n

.....
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Zuded Determination of Pn and Qn
n cos n(arctan % )
Pn = L X (p+iq) R I RPRYE
p,q#0,0 p,q#0,0  (p +q )
and
N it cos n(arctan 3 )
ghl= . L L {p +q Jiprig) = Lz b
n 2 2 (n/2-1)
p,q70,0 p,g#0,0 (p +q )
= = £ 1 14 .
where Pn and Qrl are real, and P2n+l 0 Q2n+l or a symmetric grid
For a square grid (or a triarmgular grid for that matter) P7 and Q4
are not unique as they depend upon the order of summation. Using the

method of residues (§l1l.3.5) we £find that

1 2 1
P2 = 2 z DL G 27 Z
n=1 n g=1l sinh 7q
=T if we sum over p first
and
=By <
P = 27
2 2 :
n=1 n p=1 sinh T7p
= -7 if we sum over g first
Similarly, the value of Q4 ranges from -0.94... to 4.08... depending

upon whether the grid is first summed at 45° to the axis or whether the
sum 1s taken over p or q first.

Lord Rayleigh (1892) chose P2 = -T 1in his conductivity claculations
and used a physical argument to justify his choice. As we will show in
§2.2.5, this difficulty can be avoided by calculating P2 and Q4 from the

symmetry properties of the pressure and the velocity respectively.

Once we know the values of P2 and Q4 from §2.2.5, we can choose



the correct order of summation and obtain

1 1
- n=1 n p=1 sinh Tp
& - N
and

= i h 1g-1

1 2 2 coth fad-
e P A ) &
n=1 n g=1 sinh Tq

4.0784°c1162

For a square grid, the other Pn and Qn are zero if n 1is not a

multiple of 4, and P4, P8, Pl2' s are the same as for the parallel
flow.
Q8 may be obtained by using the method of residues. Thus
: 5 0= , LS .
45 sinh mg+45 sinh Tg+6 sinh Tg-2Tq cosh Tg(45+30sinh Tg
2ﬂ6 2ﬂ6 = +2 sinh4ﬂ')
Q. = - ] g

8 945 45 Wl Sinh7TTq

4.515515440

Ry 50 @

Q etc. can be evaluated by direct summation over

16" *20

the grid. The values of Q4n are given in Table 3.

2524 Determination of C

Consider the x-component of the Stokes equations

dp _ 2
ox V- u

Integrating over the interior of the element ABCDE of Fig. 3(a) and using

Green's theorem in the plane, we obtain



B D » (5B D c
( du du d
e p dy - pdy-—uﬁ = dy + | - dy = Y
A E D A E
B E A
[%de+[g—udx+fg£d} (17)
c ¥ /p %Y g °F
Po = Pb2
On CD, p =0 and on AB, p el e Therefore,J p dy = - T
A
D rTT/2 o
Using equation (8), J p dy = J pa cos 6 d6 = (AO+CO) 4
E 0
du
By symmetry, i 0 on AB and CD
ou
and = = 0 on CB and EA
dy
The right hand side of equation (17) thus reduces to
D il
“J (agdy_égdx}_ uaj s
3 3 i
E X b 0 ar
Using the first of equations (6), the last integral = —(AO—CO) %ﬂ
Hence equation (17) becomes
2
Pb am
wrenl s fpaC ) — = ~ (A - =
( 0 O) ( 0 CO) 4
which gives
2
. s I (18)
0 2Ta
Equations (15), (16) and (18) give the unknown constants 1n

equations (4) and (8).
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W sl Ty, R Al e =

g R g LIS

TABLE 3

Values of Q4n

Q4n

.078451162
.515515440
.880730845
.031540315
.992198699
.001954101
.999511784
.000122073

w b Wb, wWw bW b e

.999969482

TABLE 4

Values of Q6n

Q6n

5.656802867
6.030184464
5.9991791 79
6.000035299
5.999998767

10
L1
12
13
14
15
16
L7
18

O O = &

10

2

Bw o W Wb

Q

B

n
000007629
999998092

.000000476
.' 999999988
.000000029
. 999999992
.000000001
. 999999999

6on

000000046

5.999999998

6
6



2:2+9 Determination of P2 and Q4

As remarked in §2.2.3, P2 and Q4 can be calculated by using the

symmetry properties of the pressure and the velocity respectively.
b : ;
By symmetry, the pressure at the point A(r = PY 6=0) in Fig. 3(a)
is - gg ‘ Equating this to the expression obtained by substituting the

coordinates of A in equation (8) and using equations (15) and (1l6), we

get
a (o]
Pb 2cO P2 P4n 4
e B odayp)
n=1 16
or,using equation (18)
D SP
P = -2m+d-4 ] —3%
n=1 16
S to at least 9 decimal places

(i
P_ can also be calculated by using the pressure at B(r = B = P i 1

2 ;;5:

but the series found in this case, (=1) —— , 1is more slowly

Il o~ 8
=
N
=

convergent.
If we calculate the pressure to higher order in (a/b) and claim

: Pb .
that the pressure at A or B is exactly - o we can find a number of other

p
(2h-1 ) 0dn=-1) -2 = 1

series satisfied by P , such as
n 1 16"

n

Il o~ 8

Q4 may be determined from one of the symmetry properties of the

velocity, e.g., the velocity is a maximum at B or it has saddle points at

b . d :
A and C (r = 5—,9 = 90°). To obtain a more rapidly convergent series
we put
E)vr
il ot I ¢ at A
ar

and, using equations (5), (15), (16) and (18), obtain



(2n-1)
== D
1-2n 4n

Y]
o]
+
=
I| &~ 8

n=k 4

4.078451162

We may also calculate Q4 by putting v = 0 at B.

2026 The flux and the drag force

The flux Q through the quarter cell ABCDE of Fig. 3(a) 1is the
flux across DC or AB.

b/2
Q = flux across DC = j u dy
a

Substituting for u from the first of equations (6) and

integrating, we get

2 2 7
ba b 2a b 1 2a
Q:—{A —_ -1+ — —2C[2n————+
8u | "o | 2 42 J B 2 T2
n n+2 1 2n
21 | st o/ ™ L w2
n=1
i onie
¥ 2(n+D) (2n11) 2270 _'
w 1
n - 2n 'L 2n
+ pey e R e -
nzl (-1) cn[ G - (2ah)

1 2n+2
i he Sl P
2n+1 Ll _l}

Expressing An and Cn in terms of C_ by using equations (15) and

0

(16) and re-arranging, the above equation can be written as



=~ 37 =
B P ©0 P Co P
i Loba jﬂn b 1 i 2 5 4n _ z 4n
ol B T % +1
au |22 212 T RN n=t pidnt1)is”
0 Q P o P —
2 2 4
+2 z - e +2(a/b) [ 1+ 59 Z ——%
n=1 (4n-1)16 =l e =
P R P
4 4dn-1 n+
+(a/b) [ ~(P.+20,) (1% ] B% = 0 )
+
2 4 n=1 l6n 4n 2n=l l6n 4n+4
. e =P e
+P2Ll—z ——4nJ‘
n=l 16 - =
e 1 1
" = 2 +1) (2n+1) (4n+
n=1 16 n=1 (4n+1)16
7S
P4n+4)
o By 2
1 an-1 Nl
gy =) P - =) 0 ) ]
=] =1 ot
4 2n=l l6n 4n 4n=l l6n 4n+4
® n.p 3p o ® P
+(a/m)° 94[ ey in =5 2" e Q4n+4+6Q4{ =14 ¥ _é% ]-20—12p4
n=l 116 o T n=1 16
(e 0]
e (2n+1) (4n+3) (2n+17)
+
12n= l6n 4dn+4
o0 -
2 2n+1) (4n+1
-2y ) o +O(a/b)lo}
=1 16 * -

Putting the values of C Pn and Q , and simplifying, we finally
n

0,

get
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3 2
Pb a 4 6
Q = s [4n(b/a)-1.310532926+T —5 = 8.7557339(a/b) +63.217216(a/b)
b
8 10
-235.8407556(a/b) +0(a/b) 1] (19)

, Wwe can also

" = oA k7 R A S o
Since Q flux across DC WC dD WC 0 wc

calculate Q by substituting the coordinates of C in equation (4) and
using equations (15), (16) and (18).

2
If U = Q is the mean velocity of the fluid, and F = Pb is

b/2

the drag force per unit length on a cylinder, then equation (19) can be

used to obtailn

4TUU
%o 2 4 6
zn(b/a)—l=310532926+”(a/b) -8.7557339(a/b) +63.217216(a/b)
8 10

-235.8407556 (a/b) +0(a/b) (20)

TTa2
In terms of € = e the volume concentration of the cylinders,

b

equation (20) can be re-written as

8TUU

e —
2 3 4 5
2n(1/€)-1.476335966+2€-1.774282644€ +4.07770443€ -4.842274025€ +0(€7)

(21)

FICE Flow perpendicular to cylinders in an equilateral triangular array

' S P | Case 1: When the flow is in the direction of a nearest neighbour

As in §1.4, the solid circular cylinders are arranged in an equilateral
triangular array, with their axes parallel to the z-axis, and their centres

3 . :
%-)b, Ké-qb]. Let the fluid be driven by a pressure

at points [(pt+
gradient -P in the direction of a nearest neighbour, which is taken as

the x-direction, and have a mean velocity U in that direction. The fluid

velocity is zero on the walls of each cylinder.



A typical quarter cell for the arrangement 1is shown in Fig. 3(b).

The equations of motion are the same as for the square array
(i.e. equations (1) and (2) of §2.2). Thus, referring to §2.2, the
solutions for the pressure, p, and the stream function, Y, are as given
by equations (8) and (4) respectively, where the constants An and Cn are
related to CO by equations (15) and (16).

CO can be determined by integrating the x-component of the Stokes
equations over the interior of the element ABCDEF of Fig. 3(b).
Proceeding on the same lines as in §2.2.4, we get

2
- P
Sy S Eb (1)

CO 41 a

Pn and Qn are now defined as

=T
i g
P = I (p+%+lq—2)
p,g#0,0

and 2 /3 2
(p+%) +<Tq>

an ZZ 1

p,q#0,0 e % o /g )

For a triangular grid, apart from P_ and Q4, Prl and Qn are zero

2
unless n 1s a multiple of 6, and P6, P12' Pl8' .... are the same as for
the parallel flow.
Q6 may be obtained by using the method of residues. Thus
: ™ 1%
3 - 3+2 sinh? 1¥34 ~mv/3q (coth —533~)(3+ civih" 23q )
i A ) ;
g even sinh4 v 3g
=
™3 8%
2TT4 S8 e m/3g -mv/3q (tanh —5—3 ) (3-cosh? Ut
2]
" g odd 4 ﬂ/3q
cosh 5

= 5.656802867
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..... can be evaluated by direct summation over the

Q Q Q

52 Tip" <24

grid. The values of Q6n are listed in Table 4.

P2 and Q4 are not unique as they depend upon the order of
summation. We can, however, avoid this difficulty by deducing their
values from the symmetry of the pressure and the velocity at an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>