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STATEMENT

The contents of this thesis are entirely my own work, 

except where otherwise indicated.
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ABSTRACT

This thesis examines methods for detecting structural 

change in parametric time-series models. This detection 

is accomplished through the use of random walk models of 

the parameter variation. Although the model of main interest 

is the transfer function models the methods developed are 

largely adaptations of procedures used for regression models3 

as the exact theory for the time-series case is generally 

too complex. An instrumental variable smoothing algorithm 

for estimating parametric change is developed3 and is shown 

to provide good estimates of the variation. Other aspects 

of the procedure are also discussed^including the estimation 

of the statistics of the parameter variation. Finally3 some 

computer simulations and analyses of real data are provided. 

These illustrate some of the main points discussed in the

thesis.
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CHAPTER 1 : INTRODUCTION

1.1 The Model

In the fo l l o w in g ,  we wi l l  be examining the f i t t i n g  of  

models to data where i t  i s  both meaningful and useful  to consider  

the measured data as being generated by a parametric model, whose 

parameters may be e i t h e r  constant over the observation period or 

funct ions  o f  t ime.  Suppose i n i t i a l l y  that  the parameters are 

constant .  Then i t  i s  hoped th a t ,  for  a sample o f  s i z e  N, a model 

of  the form

f ( u
a)

k-n
, ( m ) , . ( m)  .

k -n ’?' + e k* 1 , 2 , . . . , N ( 1 . 1 . 1 )

for some f ,  n, wi l l  expla in  the re la t io n s h ip  between the m sca la r  

in p u ts 3 u ^ ,  i = l , 2 , . . . , m ;  and the s c a la r  o u tp u t  y^. The 

p-dimensional parameter vector  G i s  unknown, and i t  i s  the 

est im at ion  of  the elements o f  t h i s  vector  which concerns us.

In equation ( 1 . 1 . 1 )  e^ i s  a random quantity  which cannot 

be measured. I t  i s  assumed to represent  the lumped e f f e c t  o f

measurement error and other  s t o c h a s t i c  disturbances  in t e r f e r in g
A

with the exact  es tabli shment  o f  the n o is e - fr e e  o u tp u t x ^= f ( . ) .  

Although the question of  the form which f  should take in 

various s i t u a t i o n s  i s  o f  great  importance,  i t  wi l l  not be 

discussed here : i t  i s  assumed that  f  has a known form.



To be more speci f i c ,  two basic models will be considered 

They could be generalized into the one model. However for the 

purposes of this exposition,  they will  be examined separately.

( I ) The regression model 

In (1 .1 .1) ,  l e t

f ( - )  = ukT0> where ukT=( u ^  ^  , . . .  ,uk^  )

0 is then an m-vector of unknown parameters : in this  case p = 

(II)  The t ransfer  function model 

In (1.1.1) ,  l e t

s t   ̂ B(z ■*■)
f ( -) “T^T ukA(z 0  k

Here i t  is assumed that  there is only one input,  uk

A(z *) = 1 + a^z ■*■+...+ a^z n

B(z_ 1) = bQ + b ^ " ^ . . .+ bnz ' n ,

where z * is the backward s h i f t  operator z ^x^ = xk_^, 

defined on all  functions of the integers;  z 1 = (z )̂ 1



T A0 = ( a ^ . .. ,an,bQ, . .. ,bn) is the vector of unknown parameters.

In this case, p = 2n+l. Where the meaning is unambiguous these 

polynomials in z  ̂ may be abbreviated to A,B.

Although the transfer function ^ is s tr ic t ly  only defined 

as a quotient in the Laplace domain, where z = e , t being 

the sampling interval, we can consider as the solution to 

the difference equation A(z_1)xk = B(z_1)uk. This eliminates 

any possible objections to the usage of jj-.

In both models, the ek are independent and indentically 

distributed ( i . i .d . )  random variables, with mean zero and 

variance o2i they are uncorrelated with the inputs u^1'  ̂ , 1 = 1,2,.

A number of generalizations can be made to both of the 

models. For example, correlation amongst the ek's could be 

introduced; the number of inputs uk in model II, or the number 

of outputs yk in both models could be increased; or the 

explanatory variables in model I could be assumed to be measured 

with error. I t  will be indicated subsequently how some of the 

modifications affect what is to follow. However at this stage, 

the simpler models set out above will suffice.



1.2 Parameter Variat ion

The estimation of  the unknown parameters in both the 

models 1 and I I  has been dealt with extensively in the 

s ta t i s t i c a l  and other l i t e ra tu r e .  Kendall and Stuart (1961), 

fo r  model I ,  and Box and Jenkins (1970) and Young (1974; 1976) 

fo r  model I I ,  are some of many references. However, most of the 

work in the area has been carr ied out under the assumption that 

the parameters remain constant over the observation in te rva l .

Often, in s i tuations where the measurements are made at successive 

points in time, i t  is reasonable to suppose that the relat ionships 

do change over time; or at least i t  would be of in te res t  to 

ascertain i f  they do, p a r t i c u la r ly  where there is some a p rio ri 

reason to bel ieve th is  to be the case. As a resu l t ,  i t  is 

useful to generalize the two models given, by replacing 0 by 0^, 

and A, B by A^, B  ̂ in model I I .  We are s t i l l  interested 

in estimating 0^, k = 1 ,2 , . . . ,N ,  but the problem has now become 

more complex. The number of unknown parameters is now pN + 1, 

which is a monotonically increasing function of the sample 

size N. From the point of view of s ta t i s t i c a l  analysis, such a 

s i tua t ion  is unsat is factory, since there are more parameters to 

estimate than there are observations.

Of course i t  must be emphasised that the problem may not be 

as complicated as th is  in pract ice. For example, i f  the estimation 

procedure used indicated some spec i f ic  pattern of parameter 

var ia t ion with time, th is  var ia t ion could be related to some other



variab le . The re la tionsh ip  would then be b u i l t  in to  the model, 

e lim inating  the need fo r  a d i f fe re n t  parameter at each time po in t, 

possibly using a s im ila r approach to the in tervention analysis of 

Box and Tiao (1975). Other s im p lif ica t ions  may occur, as in Young 

(1969), where the va r ia t ion  of a h ighly-time-varying parameter is
k

la rge ly  accounted fo r  by modelling the parameter 0^ as 0^ = T̂ O 

where is a matrix of highly varying, but measurable, state
k

variables, and 0  ̂ is a very slowly, and hence more eas ily  modelled, 

time varying parameter.

In general, however, there w i l l  be a problem of estimating 

time varying parameters, and we now consider a number of ways of 

approaching th is  problem. Before doing so i t  is useful to 

d is tingu ish  between o f f - l in e  (or block) and on-line  (or recursive) 

procedures. An on-line procedure is one where the estimate of a 

parameter at a given point in time can be obtained d ire c t ly  from 

the current data, and the estimate at the previous point in time. 

Block procedures are those where a l l  data must be processed at 

each time point to obtain the estimate at that time po int. We 

w i l l  now discuss a number of estimation methods fo r  time varying 

parameters.

1.2.1 Non-uniform data weighting

This procedure has been used in engineering applications 

(Young, 1969; Jazwinski, 1970). In an o f f - l in e  estimation fo r  a 

parameter vector assumed constant, a l l  data carry equal weight
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with respect to the estimation, in the above two models. If, 

however, we wanted to assume that the parameter may be different 

at each time point, we can, at the expense of estimation error 

variance, consider 'current' data as carrying more weight in the 

estimation, in some way.

There are various ways in which this can be accomplished.

The simplest is to estimate the parameters at a given time only 

using the data in a certain interval about that time. Thus, the 

estimate at time k would be obtained only from data in the time 

interval (k-t, k+t), where k-t > 1, and k+t < N. A more 

sophisticated alternative is to exponentially weight past data, 

so that they carry less weight as they become 'older ' .  The main 

difficulty with this type of scheme is the arbitrary nature of the 

weighting which will , of necessity, result in general. Furthermore, 

a stationary weighting procedure, that is,  one which weights in the 

same pattern about each time point, may be too restrictive to 

detect all types of parameter variation. On the other hand, i t  

is d iff icult  to develop any non-stationary procedure.

1.2.2. Stationary stochastic parameters

This approach has been considered quite extensively 

in the econometric li terature (Hildreth and Houck, 1968;

Swamy, 1971; Rosenberg, 1972; Pagan, 1978). I t  has been



applied mostly in econometric models, which are, generally, 

mu l t iva r ia te  regressions with some explanatory variables (inputs) 

measured with error .  The procedure is to suppose that the 

values of the unknown parameter 0^, k = 1 , . . . ,N  are a 

rea l iza t ion  of a stochastic process 6^ = 6 + where ^  is 

a mean-zero, wide sense stat ionary stochastic process. The 

e a r l ie r  work (Swamy; Hi ldre th  and Houck) took the ^  as i . i . d . ,  

whi le more recent ly, they have been modelled as an autoregression 

(Pagan). Although th is  allows time dependence, i t  s t i l l  

implies that the parameters are estimated with an identical 

d is t r ib u t io n  at each time po int,  so that large deviations may 

not be detected very c lea r ly .  Our aim here is to employ some 

methods where such detection is accomplished.

1.2.3 Non-stationary stochastic parameters

This is the method which we shal l be concerned with 

in the remainder of th is  thesis. No rigorous attempt w i l l  

be made at th is  stage to define  the type of var ia t ion we could 

hope to model in th is  way. However the fol lowing general 

assumptions (based on Bennett, 1976) w i l l  prove he lp fu l .

( i )  The parameter var ia t ion  fol lows some sor t  of 'pa t tern ' 

which is not t o t a l l y  random, whether stochastic or 

determin ist ic . Thus the parameters are not a 

rea l iza t ion  of a white noise process.



( i i )  The parameter va r ia t ion  is  independent of the

observation e rro r e^, in the two models I and I I .

Taking these assumptions in to  consideration, i t  is 

appropriate to choose a stochastic process which is not too 

re s t r ic t iv e .  Here once again, i t  is d i f f i c u l t  to be rigorous. 

Nevertheless what is meant, roughly, is that conceivable 

parameter var ia tion  ( i . e .  sample paths) does not l ie  too fa r  

in to  the ta i ls  of the d is t r ib u t io n  o f the stochastic process. 

At the same time, the process should have some memory, so tha t 

past data is not altogether discarded. The f i r s t  requirement 

leads us to a non-stationary process, while the second, 

combined with the need fo r  s im p l ic i ty  , suggests the use o f a 

Markov process. The class o f processes we choose are the 

random walks : Markov processes with state-space 

p-dimensional Euclidean space, and variance unboundedly 

increasing with time.

The major aim of th is  thesis is to consider the 

estimation of time variable parameter (non-stationary) 

dynamic systems in which the parameter va r ia tion  can be 

described by a random walk o f some kind. In Chapter 2, 

the random walk model w i l l  be examined in more d e ta i l ,  and 

various approaches to the estimation of the parameters 

w i l l  be considered. In Chapters 3 and 4, algorithms w i l l  be 

derived fo r  estimating the parameters as a re a liza t ion  o f a 

random walk in the models I and I I ,  respective ly. A 

number of additional de ta ils  concerning the u t i l i z a t io n  of



the algorithms w i l l  be discussed in Chapter 5. In Chapter 6, 

the results o f some simulations and analyses of real data are 

reported, and Chapter 7 mentions some extensions to the 

procedures discussed in the thes is , and outlines some 

possible fu ture work that could be carried out.

I t  may be noted tha t throughout the fo llow ing chapters, 

there is  a dichotomy in the approach being taken. In places, 

i t  w i l l  appear that the aim o f the methodology being developed 

is to track any parametric va r ia t ion  which may occur. Elsewhere, 

a more rigorous s ta t is t ic a l  approach w i l l  be taken, and the 

underlying parametric va r ia t ion  w i l l  be assumed to be a random 

walk. Of course, i t  may be said that any s ta t is t ic a l  modelling 

im p l ic i t l y  involves such a dichotomy. However i t  is  preferred 

here to make i t  e x p l ic i t .

Young (1969; 1974), Norton (1975) and Garbade (1977) 

are the most important sources fo r ,  and are most c losely 

re lated to , th is  thesis.
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CHAPTER 2 : THE RANDOM WALK MODEL

2.1 Background

The use of  the  random walk in the  c o n t e x t  of  vary ing  

param ete r  models appears  to  have been f i r s t  sugges ted  by 

Kopp and Orford (1963) ,  who used i t  to t r a c k  param ete rs  in 

an a d a p t iv e  c o n t ro l  system us ing a r e - l i n e a r i z e d  o r  ex tended  

Kalman F i l t e r .  Lee (1964) a p p l i e d  a random walk to  o b t a in  

e s t i m a t e s  of  param ete rs  vary ing  in t ime ,  and Young (1965; 

1969) expanded on t h i s  in an in s t ru m e n ta l  v a r i a b l e  c o n t e x t .

As mentioned in  S ec t ion  1 . 2 . 2 ,  a u t o r e g r e s s i v e  type schemes 

have appeared in the econom etr ic  l i t e r a t u r e .  However, in 

t h i s  a rea  Garbade (1977) seems to  be th e  f i r s t  to  t r a c k  

v a r i a t i o n  o f  r e g r e s s i o n  p a ra m e te r s ,  r a t h e r  than model them in 

a s t a t i o n a r y  manner. Norton (1975) in t ro d u ced  the  added 

advantage o f  smoothing ( see  S ec t ion  2 .3 )  in a s e t - u p  

s i m i l a r  to  model 11 .

2.2 Types of  Random Walk

The sim ple random walk (RW) has appeared  in  the  

c o n t e x t  of  S ec t ion  2.1 most f r e q u e n t l y  (Lee ,  1964; Young, 

1965; 1969; B enne t t ,  1976; Nor ton ,  1975; Garbade,  1977).

Here we take as the  model o f  param ete r  v a r i a t i o n



N
where is an i . i . d .  sequence of random vectors with

mean zero, and variance-covariance matrix Q. This model has 

the advantage of simplic i ty , both in concept and implementation. 

However, the model has a defin i te  r e s t r ic t io n  in s i tuations 

where large changes may occur over small time in te rvals .  The 

value of Q required to track such changes may mean that  the 

random walk is very 'jagged' (See Section 6.1 ). To overcome 

th is  d i f f ic u l ty ,  Norton (1976) has employed the in tegrated  

random walk (IRW). Here i t  is supposed that  the f i r s t  

difference of the process is a simple random walk. I t  is 

necessary to augment the parameter vector 0  ̂ by the increment 

vector S^, so that  the number of parameters is doubled. The 

model is now

M / ° k - i \

=  $

\ h l U k - i j

+ Tv, ( 2 . 2 . 1)

where

( 1 ' 0  \P P
$ = r  =

V0 InV PJ . ! pj

is as above, and I is the pxp identi ty  matrix

Clearly, i t  would also be possible to use random walks 

where the second or even higher difference was a random walk, 

with a corresponding increase in the size of the 

parameter vector.



Something of  a compromise between the IRW and the RW i s  the 

smoothed random walk (SRW) (Young and Kaldor,  1978). Here the 

e f f e c t  of  the random walk increments occur r ing in the IRW is  

somewhat diminished by the i nc lus ion  of  t he  c o e f f i c i e n t s  a.. ,  

which are t y p i c a l l y  in the  range 0.9 - 1.0.  Then the model of  

parameters v a r i a t i on  i s  as in ( 2 . 2 . 1 ) ,  wi th now

fa ß ^

where

a = d i ag(a

ß = diag( l - a ^ l - a ^  . . .  , 1 - a )

The three  types of  random walk a l l  have zero mean, and i f
4 -

we assume 6Q = 0,  SQ = 0,  the random walks have var iances  , 

r e sp ec t i ve ly

V(Gk(IRW)
k-1

( S  i 2 ) Q
i = l

V(e k(SRW)
i=3

k"1ß)Q(ak_1 + E a k-1ß) 
i = l

+ E ( E a k_1ß)Q( E a k_1ß) 
j=3 i=j  i=j

t Here,  and subsequent ly ,  we may use the word ' var i ance  
to denote the va r i ance-covar i ance  matr ix of  a vec tor  
random v a r i a b l e ,  i f  the meaning is  unambiguous.



The use of any p a r t ic u la r  one o f these models should 

depend on the context. In general, because o f the 'parameter 

t ra ck in g ’ approach being taken here, a selection of these models 

can be employed, and fu r th e r investigations carried out in accord 

with the resu lts . This po in t is considered in more de ta il in 

Chapter 6.

2.3 Parameter Estimation in a Random Walk Model

As a re su lt  o f the discussion in Section 1.1 and 2.2, 

the model we now consider is  an o b s e rv a t io n  e q u a tio n

y k = x k + ek (2.3.1)

where a l l  quantit ies are defined as in Section 1.1, with 6 

replaced by 0^ in (1 .1 .1 ) ;  and a param ete r e v o lu t io n  e q u a tio n

6k = + rv k (2.3.2)

where a l l  quantit ies are defined as in Section 2.2, 0^ being 

augmented to include Ŝ  in the IRW and SRW models, and $, r 

depending on the random walk chosen.

There are a number o f d i f fe re n t  approaches that can 

be taken to estimate 0^. Since i t  has been postulated that 

the parameters are random variab les, the most complete knowledge 

one can have of them is th e ir  exact density function , i f  we 

assume d is tr ib u t io n s  absolutely continuous w ith respect to 

Lebesgue measure throughout. This requires knowledge o f the



density functions of 6^, and v^, for k = 1 ,2 , . ..,N. We will 

denote densities by p(.) where the argument is the random 

variable whose density is being represented. Now the Chapman- 

Kolmogorov equation (Jazwinski, 1970) gives

= /p(?kl?k-i)p(!k - i )d?k-i

as the equation of evolution with time of the densities
M

p(0k) > k = 1,2,.. . ,N. While the process ( ö k ^ i  1S n°t  observed,
M

a related process ( Y ^  is observed. Yk is the random variable 

whose realization is denoted by yk in (2.3.1). Thus, without 

additional a priori information, the best that can be done is 

to obtain information about p ^ )  from some subset of (y^,y^,. .. ,y^

I t  is clear at this stage that the problem is cast in

exactly the same framework as the discrete-time state estimation

problem (Kalman, 1960). The la t te r  situation is concerned with

estimating the value (state) of a discrete time stochastic 
Nprocess The major difference between the two problems

arises from the fact that the states have physical meaning, 

and the stochastic process describing their evolution is usually 

derived from physical principles. In the present situation, 

however, the parameter evolution is described by the random walk, 

which i t  is hoped will accommodate the true behaviour of the 

parameter, even though a 'typical* realization of the random 

walk may not resemble the parameter variation at al l .

Because of this, the choice of the subset of (y^y^, • • • *ŷ }
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lo be used in the estimation of 0^, is constrained. For example, 

in a state estimation problem i t  may be possible to make some 

inference about p(xp) on the basis of (y  ̂^ 2» • • • »y )̂ where

k < £ (this is the p r e d ic tio n  problem considered by Kalman,
.

1960) i f  physical knowledge of the x, process provides
~ K  i

information on p(x^+-̂ ) , . . .  ,p(x^). In the parameter estimation 

situation, however, the use of the random walk means that the 

most that can be known about p(O^) on the basis of ( y ^ >• • •»y l̂ 

is contained in p(G^).

Therefore, we will always res tr ic t  attention to the problem 

of making inferences about p(o^) on the basis of (y  ̂,y^, . . . »y^l, 

where k > £. I t  should be noted that i f  k = £, this corresponds 

to the f i l t e r i n g  problem of state estimation. If k > £ i t  

corresponds to the smoothing  problem (Kalman, 1960).

Taking a Bayesian approach because only one realization
M

of the observation process {Y^}^ is available, the density 

function of interest is now ple^jY^) where now we define 

Y|^ = (Yj jY^,. . .  ,Y|^). This gives all obtainable information 

concerning the density conditional on the observed data, and 

constitutes the complete (Bayesian) solution to the problem 

(Cox, 1964). This density is called the a p o s te r io r i  density, 

and is given by Bayes theorem as

p(?jy p(vkl»P p(°P



I t  now remains to be decided what w i l l  be cal led an estimate

of 0£, i f  p(0^IY^) is known. The choice can be made by minimizing
•T-

the expected value of some loss function L .  I t  can be shown 

(Sherman, 1955; quoted in Cox, 1964), that i f  p(0^|Y^) is symmetric 

about i t s  mean, and unimodal, then E(L)  is minimized by taking as 

an estimate the conditional mean E( 0^ | Y . On the other hand,

Sage and Melsa (19711) show tha t ,  fo r  a quadratic loss function, 

the expected loss is minimized by the condit ional mean, and fo r  

a loss function uniform in a symmetric in terval about the o r ig in

and zero elsewhere, the expected loss is  minimized as the interval
/ \

size -+ 0 by 0^ such that p(0^|Y^) = max p(0^|Yk) - the maximum a
h

posteriori estimate. Then i f  p(0^|Y^) is unimodal and symmetric, 

these two estimates w i l l  coincide. In pa r t icu la r ,  th is  occurs 

when P (9 £ I  ̂̂ ) ‘>s Gaussian.

One of the main d i f f i c u l t i e s  in evaluating any solut ion to 

the problem of parameter tracking l ies  in the choice of estimation 

c r i t e r i a .  I f  the parameters were actual ly  varying as a random

walk, and the density P(ö£ I^p) cou^  be obtained exactly,  then
/ \

the condit ional mean estimate 0^ w i l l  be unbiased, since 

E ( 0 £ -O£ ) = E ( E ( 0 £ | Yk ) -  0£ ) = E ( 0 £ ) -  E ( 0 Ä) = 0

I t  w i l l  also be minimum variance, since i t  minimizes the quadratic

loss function. Pagan (1978) considers the l ike l ihood obtained

1 That i s ,  some function L of  the dif ference between the estimate 
and the true value of the parameter, such that L(0) = 0, and 
fo r  convex p, p(a)>p(ß)>0 implies L(ot)>L(3)>0-



under Gaussian assumptions on and Oq, with parameters

following a stationary autoregression, in model I. He asserts 

that the maximum likelihood estimates of E(0q), V(0q), Q, g2 

and <I> are consistent and obey a central limit theorem. However 

his proof does not include the non-stationary random walk 

considered here. Moreover, since the true parameter variation is 

not generally assumed known, these properties are not necessarily 

useful. I t  may be that the best criteria  available in general 

is a sum of squared or absolute deviations. For simulated data, 

these deviations can be the difference between estimates and known 

values of time-varying parameters. For real data, they can be 

j-step ahead prediction errors.

Because parameter estimation is usually done off-line, we 

have the opportunity to make use of as much data as possible. Thus
A

the estimate 6 , based on p(0^|Y^), should be used wherever possible. 

In the case where we have a quadratic loss function, and an estimate 

0 is required which is linear in y^,y£ , . . . , y^, the advantage of this 

can be seen very clearly using the 'innovations approach1 (Kailath 

and Frost, 1968; Aasnaes and Kailath, 1973).

As before, we take Y (Y15Y2........Ya) , for £ = 1,2, ... ,N.

Ŷ  can be orthogonalized by defining the linear innovations 

ck = Yk " Yk I k-p *<=1,2,...,N, where Y^q = 0 (2.3.3)

YkIk i denotes the minimum quadratic loss, linear estimate 

of Ŷ  based on (y  ̂,y2> • • • »ŷ  1̂ ♦ If we define an inner product on 

the linear space spanned by (Y ,Y^, . . . , Ŷ }, by EXY, then



18

0 0 1u can be seen as the orthogonal  p ro j ec t i on  of  0^ onto:*|k
I t  is  given by 

k
®£|k = /  {E(8^, ) /E(et 2)} e

t=1 f
(suppose k > z ) . }

Let
t

R(«,) -  ’

(2 .3 .4)

the var iance  of  the smoothed e s t i mate ;

the var iance of  the f i l t e r e d  es t i mate .

Then

2*|k = +t =£+1{E(®aet )/E(et 2)} £t

so t h a t

?£ ?£ |£  ?£ " ? £ I k + t ^£+1^E^?£et ^ E^ t 2^  e t

Mul t iplying each s ide  by i t s  t r anspose ,  and taking expec ta t ion  gives

S U )  = R(A)  + E ( e „ - e „ ,.  ) ( £ { E ( 0 „ e .  ) / E ( e .  2) } e ^ ) T(5, ~a| k' t-£+l .£ t

+ E( E ( E (0 e J / E ( c  2) }e  )( E E( 0pe , ) /E(e  2) k  ) T 
t=£+l ~ u L t=£+1 t L L

+ R(£) + 0 + E( E {E(Ope , ) / E ( e  2) } e J ( E {E( 0 pe . ) / E ( e . 2) }e ) T
t=£+l t=£+l ~ L L
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since the error  in the orthogonal project ion onto ft. is orthogonal to 

Furthermore

S(£) = R(£) +
k
E

t=£+l
{E(0s,£t;)/E(£t 2)} {E(0Jlet )/E(£t 2) } TE(Ei

from the orthogonal i ty of c ^ ,  ’ • • * > -

Thus

SU) = R (0  + E E(0 £ )E(0 £ )T/E (e .2) 
t=£+l ~

Therefore S(£) > R(£), since the second term is a symmetric, 

posit ive de f in i te  matr ix.  Thus the f i l t e r i n g  error variance is 

at least equalled, and normally decreased, by smoothing.



CHAPTER 3 : ALGORITHMS FOR ESTIMATION IN MODEL I

3.1 In t roduct ion

In th is  chapter we w i l l  der ive a number o f  algori thms fo r  

the computation required in the es t im a t ion , procedures discussed 

in the previous chapter. Some other  algori thms w i l l  also be discussed.

Referr ing to equation (2 .3 .1 ) ,  ( 2 .3 .2 ) ,  we have

* k = 2kT '2 k + ek (3.1 .1)

2 k = $2 k - i + (3 .1 .2 )

I t  is possible to d is t in g u ish  two sets of (poss ib ly  overlapping) 

condi t ions which w i l l  r e s u l t  in the same est imation procedures 

in  model I .

1) The dens i t ies  p(0Q), p U ^ ) ,  p (v ^ ) ,  k = 1 , 2 , . . . ,N are a l l

Gaussian, and the estimate required is  e i t h e r  the maximum a 

p o s t e r i o r i  or the condi t ional  mean estimate. Then, because 0^

is  l i n e a r l y  re la ted  to 0 , and e^, v^, k = 1 , 2 , . . .  ,N,the

condi t iona l  dens i ty  p(0o|Y.) w i l l  also be Gaussian. I t  is
~  S j  IN

thus completely character ized by i t s  mean and var iance, 

and the mean also gives the maximum of the dens i ty .  The 

cond i t iona l  mean, which is  to be used as an est imate, w i l l  be 

l in e a r  in y ^ , y ^ . . . j y ^ ,  so tha t  a genera l isa t ion  of the cond i t ion

is to suppose th a t  the cond i t iona l  expectat ion E(0^|Y^) is



l inear  in y ,y2» . . . ,yk -

2) The densities are not necessari ly Gaussian; a l inear  function
A

of y^ ,y2, . . .  ,yk 1S squ i red  to estimate 0^; and the loss 

function is quadratic.

3.2 F i l te r in g  Algorithms

Linder each of the sets of conditions (1) and (2) above, 

and the assumption that Q and a2 are known (see Sections 1.1, 2.2) 

a recursive algori thm can be obtained which provides estimates
/ s

0£|£, successively, fo r  £=1,2 , . . . ,N .  This algorithm corresponds 

d i re c t ly  to the well known Kalman f i l t e r  of state estimation theory

$?k-i+ -kĴ  (̂ k - “kT*®k-i) (3.2.1)

PkIk PkIk-1 '  Pk I k - l ~ d ° 2 + ~k Pk|k - l~k)  ~k Pk|k-1 (3.2.2)

k | k - l  “  * Pk - l | k - l * T + rqr (3.2.3)

Here Pk|H = E(!k'2k|S.) ( ?k '?k|£)T fo r  * = k- 1>k>

/V  /N

where ®k|k- l  = $®k-i

We usual ly assume is a mean zero random variable (Gaussian 

under conditions (1 ) ) ,  with a large diagonal variance-covariance



matr ix , to indicate very l i t t l e  confidence in the i n i t i a l  estimate 

Oq (see Section 5.3). This represents an approximately uniform 

p r io r  d is t r ib u t io n .

Many derivat ions of th is  algori thm have appeared since 

Kalman's o r ig ina l  solut ion (Kalman, 1960) which was under condition 

(2) (Rauch, Tung and S t r ie b e l , 1965; Kai lath and Frost, 1968;

Young, 1965; 1969; Duncan and Horn, 1972). The derivat ion of 

Bryson and Ho (1969) possibly gives the most luc id solut ion under 

condit ion (1). These authors derive equations of  evolut ion fo r  

the conditional mean and variance in the densit ies p(6^|Y^) .  

Although there are some a l te rnat ive forms of  th is  algorithm, 

they are very s im i la r  with respect to the c r i t e r i a  of computational 

e f f ic iency  and numerical s t a b i l i t y .

3.3 Smoothing Algorithms

In the case of obtaining an estimate of 0^ on the basis 

of  Y^, fo r  k>£ (the smoothing problem) under e i ther  conditions 

(1) or (2) ,  the solu t ion is not so c lea r ly  defined. Morton (1975) 

has examined a number of d i f fe re n t  solut ions to the problem, each 

of which has various advantages and disadvantages in terms of the 

two c r i t e r i a  of  computational e f f ic iency  and numerical s t a b i l i t y .  

Nevertheless, i t  should be noted that theo re t ica l ly  they a l l  

provide the same re su l t ,  and are obtainable from each other, 

although by f a i r l y  lengthy manipulation. Once again Q and o2 are

assumed known.



The simplest form of the algori thm is obtained by

maximizing the Gaussian density p( Oq, 0 ^ , . . . , 0 ^ |Y^) with respect 

to 0q »61 > • • • »0|yj to give the conditional mean (or equivalently , 

the maximum a pos te r io r i )  estimate under condit ion (1). By 

Bayes' theorem

’ ?N I ~N ̂
P(~N ^-1 * * * * ? 0 ’ ’ * * ’ ~N̂

p'In)
N N
n p ( Y k | e k ) n p ( g k I g k _ a ) p ( g0 ) 

k-1 k 1

P(fN>
(3.3.1)

using the Markov property of {6^} N
k=0

Therefore, the maximization of  th is  density is equivalent to 

maximizing

F =
N N
n P( Yk I 2 k ) n P ( ? k l ? k - 1 ^ ? 0 ^  * w i t h  r e s Pe c t  t 0  20 ’ ? r  **

Now GjJ g^ j has density which is N($G^ ^,TQr^), and Y^16^ has 

density which is N(u^G^,o2). Therefore the sum of the quadratic 

forms in the exponents of the densit ies in (3.3.2) is

J
N
E (yk_U k=l K ~ !d2 + i  ( e k - $ e . 1) T ( r Q r T ) ' 1 

k=l

+ ( ! o '? o ) po (3.3.3)

where Gq and are the i n i t i a l  estimates as in the f i l t e r i n g  case.



Typ ica l ly

J can be minimized by d i f fe re n t ia t in g  with respect to 

0^ and w , where the constraint 0^ = $0^  ̂ + l’ŵ  k = 1 ,2 , . . . ,N  

is  introduced via Lagrange m u l t ip l ie rs  Â > k = l ,2 , . . . ,N .  Then we 

have to d i f fe re n t ia te

1 ^ T 1 t  - 1
2a1 ^  ^ k - “k °k> + 2 ^  Sk Q ^k

+ 2 ^°.0“ °0^ P0 ^ 0 _(V

N-l T
+ * h  (?k+i  - - rwk}k=l

(3.3.4)

with respect to Ŵ ,0^,A^.

Doing this results in the equations

°k+l|N = *°k|N - (3-3 ' 5)

A. k = * Ak+i ^ yk + r l!kT?k+i|N) k = o a , - - - ’ N' 1 ( 3 -3 -6)

~-l = P0 ^?0 '?0|r f  (3.3.7)

An = 0 (3.3.8)

These equations consti tute a two-point boundary value problem, 

with s p l i t  i n i t i a l  conditions (3.3.7) and (3 .3 .8) .  We can solve 

the problem by obtaining 0 ^  from a f i l t e r i n g  run as described 

in Section 3.2 to give terminal conditions on both Â  and 0^.^,



and hence solve the equation backwards in time. Morion shows, 

however, that the resulting algorithm is potentially numerically 

unstable, by writing the solution in the form

P has eigenvalues outside the unit circle.

Rauch, Tung and Striebel (1965) maximize the marginal density

Yjj have expected value equal to the corresponding part of the 

expectation of 0^,0^, . . . ,0^ conditional on Ŷ , and these expectations 

maximize the corresponding densities. Manipulating the densities 

once again yields a quadratic form to be minimized, and the 

resulting algorithm is

with notation as in equations (3.2.1), (3.2.2), (3.2.3). This 

form avoids the use of the adjoint variable Â , but introduces the 

numerical complications of inverting at  each step. The

storage requirements of this algorithm are also higher, because

/  ~ k \  /  ~ k + l  \

n ( A A lY i wi  t! i  r o c n o r t  t n  A A This is equivalent to the



Norton concludes that the most useful form of  the smoothing

algorithm in th is  case is that derived by Bryson and Ho (1975) 

under condit ion (1). The algori thm can also be derived from the 

general form of the smoothing solut ion under condit ion (2),  given 

in equation (2 .3 .4 ).  Evaluating the covariances in th is  equation, 

and defining the variable X  ̂ recursively by

:k "  V1rn '  r k+! 1 k+1 ^ - ) T ( « k+1 - d r  (yk - HkT« !k | k) (3.3.10)K  = (C  - P,

~N = 9
we can obtain the smoothed estimates recurs ively backwards e i ther 

from

2kIN = °k |k  - pk | k * k \ (3.3.11)

2k IN = * _1(ök+l|N + (3.3.12)

Norton shows that in th is  case, the backward recursion is stable

Other derivat ions are also considered by Norton, but are 

rejected because they provide algorithms which e i ther  involve 

matrix inversion or require greater storage space than the 

algorithms given above by (3 .3.10), and e i ther  (3.3.11) or 

(3.3.12).

/ \

The variance-covariance matrix of the error  0^ - 0 ^  in 

the smoothed estimate can also be obtained in a number of ways. 

Rauch, Tung and Str iebel (1965) give



k |N PkIk + PkI k<iPk+lIk ^Pk+1|N '  Pk+11HPk+l|k ‘1>Pk |k ;

Bryson and llo (1975) avoid the matrix inversion with a s ligh tly  

lengthier algorithm. In general, however, i t  is not essential to 

compute this covariance, since, unlike in the case of the f i l te r in g  

algorithm, i t  is not needed to generate the parameter estimate
/ s

O^i^. Of course, this w i l l  mean that the exact error covariance 

properties of the smoothed estimate w i l l  not be available to the 

analyst. However, since P ^  is bounded above by | ^ , i t  may 

well be that i f  is "small enough", then this w i l l  be 

suffic ient information for most practical purposes.

I t  should be noted that in a ll the algorithms in this 

chapter, a ll the matrices, P ^ ,  & = k ,k - l ,  k= l,2 ,. . . ,N , and Q 

can be divided through by o2 as a normalizing factor, and the 

algorithms when processed using the normalized form. This 

eliminates the need for o2, but of course P^j^ w i l l  not then 

be the true error variance-covariance matrices.



CHAPTER 4 : ALGORITHMS FOR ESTIMATION IN MODEL I I

4.1 In t roduc t ion

Once again we re fe r  to equations ( 2 .3 .1 ) ,  (2 .3 .2 ) .  

For model 11, we have

Bk
y k = uk + ek (4.1.1)

®k = $?k- l + r ^k (4.1.2)

In th is  case, the re la t io n sh ip  between 0^ and e^, 

k = l , 2 , . . . , N ,  is  not l i n e a r .  Therefore under condi t ion  (1) o f  

Chapter 3, whi le p ( )  is  s t i l l  Gaussian, not a l l  cond i t iona l  

dens i t ies  are now necessar i ly  Gaussian. This can be c le a r l y  

i l l u s t r a t e d  by taking a simple case.

_ I A i A
I f  Bk (z ) = bQK = bk ; and Ak(z ) = 1 + al k z = 1 + akz ,

then y k+l = bk+ luk - l  '  ak+ lxk + ck+l

= bk+ luk+l " ak + f bkuk ‘  akxk -P  + ek+l

Therefore the density  p (Y^) ,  being the sum o f  random var iab les 

some o f  which are products o f  Gaussian random va r iab les ,  i s  not 

i t s e l f  Gaussian. Hence condi t ional  means and variances cannot 

be obtained so e a s i l y .  Procedures based on cond i t ion  (2) also 

encounter d i f f i c u l t y  because of the n o n - l i n e a r i t y  : the quan t i t ies  

E(0ket ) *  ^ et ^  in  (2 .3 .4)  cannot be evaluated eas i ly  as they

could be fo r  model I .
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I t  can be seen lhal: there is not one general procedure for

deriv ing algorithms to estimate 0^ in tin's case. Moreover, not a l l  

methods produce the same estimate, as was the s itua t ion  in the 

previous chapter. A large number of estimation a lgori thins have 

been employed in general non-linear state estimation problems.

For example Sorenson and Stubberud (1968) obtain (approximate) 

equations of evolution fo r  conditional means and variances by 

assuming that the conditional densities at each time point are 

Gaussian, and computing th e ir  means and variances. The context 

under consideration is one where second-order n o n - l in e a r it ie s  are 

the only non-neglig ib le higher order e ffec ts . Another general 

so lu tion can be obtained under condition (1 ), w ith the required 

estimate being the maximum a po s te r io r i  estimate. Then fo llowing 

Cox (1964) we can proceed from an equation analogous to (3 .3 .1 ),  

to obtain

p ( ? 0 * ? 1 ’ ‘ * '

N N
n P(Yk l? k } n p(G.k | 2 k - i ) p (?o)k-1 k-1

P(V

Here, once again assuming Q, o2 known, the exponent in the densities 

of in te re s t  is

0 = k 2 j ^ k - V S k » 2 + I  kE=1( ®k - $® k-i)T(rQrT)' 1(®k - *2k-i>

+ 2 ( ? o ' V po ( 2o '? o ) (4.1.3)



where, fo r  model I I

A M z " 1)
*k<?k> = Js— V  f 4 - 1-4»

V z >

and Pq, Oq are defined as in (3 .3 .3 ) .

The minimization of J with respect to 0 ^ ,0 ^ , . . . , 0 ^  can be 

accomplished by introducing the Lagrange m u l t ip l ie rs  as before 

in (3.3.4) to convert the problem into  one of  minimizing

J° = k 2 k̂ (yk - xk(5k))2 + k̂ k TQ' lv?k

+ 2 %  V P0 ^ 9  ‘

N-l T
+ E V (0k+lk = r K 1

with respect to A^,Q^, k = 0 , l , . . . ,N  and w^, k = l , 2 , . . . ,N .

Sett ing the derivat ive of J° with respect to these quant i t ies 

equal to zero gives the discrete non-l inear two point boundary
4-

value problem

?k+l IN = % | N  ‘  rQF kk 

3x.
4  A,

~k " *~ k+1 ‘  ( 3!kl?k=?k+l |N '  ° 2 " k+1
/ \

with boundary conditions on 0q |^ and A^.

x T  1 () T2 (yi

(4.1.5)

xk(ek+i lN)) (4.1.6)

A s im i la r  two point boundary value problem can be obtained by 
applying the discrete maximum pr inc ip le  (Sage and Melsa, 1971) 
to (4 .1 .3) .



I t  is not possible to convert (4 .1 .5 ) - (4 .1.6) in to  a one­

sided boundary value problem by obtaining from a f i l t e r i n g  run,

as was done to solve (3 .3 .5 ) - (3 .3 .8 ) . This is because the f i l t e r i n g  

maximum a pois Lcvior i  solut ion cannot be obtained in closed form. 

There is a vast armoury of numerical techniques avai lable to solve 

the boundary value problem, but they are cumbersome 

and do not guarantee a so lu t ion,  p a r t i c u la r ly  when a good i n i t i a l  

estimate is not avai lable (Sage and Melsa, 1S71 ).  Sage and Ewing 

(1970) demonstrate one example of such a procedure.

Because of these d i f f i c u l t i e s  in obtaining algorithms fo r  

model I I ,  we now turn to examine procedures which take advantage 

of the special nature of  the non- l inear i ty  in (4 .1 .1) .  We continue 

to assume Q and o2 known.

4.2 Least Squares Estimation

Although i t  is true that many of the estimation methods 

described in th is  thesis can be placed in a least squares context, 

the term is used here to re fer  to the approximating of  a correlated 

sequence of  random variables by an i . i . d .  sequence. I f  we 

wr i te  (4.1.1) as

Vk = V k + Akek (4.2.1)

then yk= Vk - + ek > (4.2.2)

ek * = V vwhere
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Equation (4.1.2) now provides a form fo r  the problem, such
■k

that i f  e^ is assumed i . i . d . ,  with mean zero and variance a2, the 

f i l t e r i n g  and smoothing algorithms from Chapter 3 can be appl ied,

with h  = ( "y k - l ” , ' ’ "y k -n ’ V “ * ,Uk -n ^  For ne9ative uj  and Yj 

may be taken as zero. This w i l l  be discussed in more detai l  in

Section 5.2. The disadvantages of th is  scheme is that biased

estimates of the parameter values may resu l t  (see Section 6.1).

4.3 Extended Least Squares Estimation

This procedure is used by Norton (1975) in the estimation 

of 0^ in the model

Aky k = Bkuk + Ckek (4.3.1)

Here a l l  quant i t ies are defined as in Section 1.1, wi th

Ck = Ck(z_1) = 1 + c l k z_1 cnkz' n

The parameter evolut ion equation is as in Section 2.2, with 

0^ now defined as

(a I k ’ ,ank,b0k’ ,bnk’ cl k ’ ,cnd

Applying Norton's method to (4.2.1) there is  some redundancy, 

since the parameters a - |^ , . . . ,a   ̂ are estimated twice. The concept, 

however, can s t i l l  be used. Rewriting (4.3.1) as

y k = V k + (Ak_1)yk + (V 1)ek + ek
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the model is once again in a form where the algorithms of

Chapter 3 can be appl ied, except that the terms (C^-l)e^ involves

the unknown noise terms e. , ,e. 0, . . . , e ,  . These terms can,k-1 k-2 k-n
nevertheless, be estimated recursively via

e, = y, - u, 0, I, k - r  • 'k-r  ~k - r~k - r |k - r

where now
1" A A

~k-r ^ k - r - l ’ * ' ‘ *”^ k - r - n ’ uk-r*  ,uk - r - n ,ek - r - l *  ”  * ,ek-r-n^ * 

Noise terms with negative indices are taken at the i r  mean value,

zero, or can be estimated in other ways (see Section 5.2).

This procedure corresponds, in the case of constant 

parameters, to the RELS algorithm of Söderström et a l . ,  (1974) or 

the AML algori thm of Young et  a l . , (1971) ,  or Young (1974), who 

also use the method with time-varying parameters. While i t  is 

quite sa t is fac tory  in many s i tua t ions ,  d i f f i c u l t i e s  may ar ise. 

These may be due f i r s t l y  to the abovementioned redundancy ar is ing 

in the model under consideration here, and secondly to possible 

large inaccuracies in early noise estimates.

4.4 Instrumental Variable Estimation

We once again rewr ite the equation (4 .1 .1 ) ,  th is  time in 

the form

yk = V k  - ( V 1)xk + ek (4-4- 1)
where D

KXi = -n— u, , as before, k A. k k



Then, i f  x^, the noise free output, were known, the model 

would once again be in a form where the algorithms of  Chapter 3 

could be appl ied. Now since estimates of and B^, k = 1 ,2 , . . . ,N ,  

can be provided by e i the r  least squares (Section 4.2) or extended 

least  squares (Section 4.3) ,  i t  is possible to also estimate

Substi tut ing in (4 .4 .1 ) ,  th is  gives an observation equation of 

the form

We can estimate and again from th is  equation, taking

This procedure can be i te ra ted u n t i l  there is  no 

s ig n i f ic a n t  change in the estimates.

I t  would be d i f f i c u l t  to j u s t i f y  th is  a n a ly t i c a l l y ,  and 

indeed, there is no guarantee that the i te ra t i v e  procedure would 

even improve estimates. However, the method is  closely related to 

that  of  Young (1969; 1974), which is developed in the in s t ru ­

mental variables framework. Considering f i r s t  the constant 

parameter s i tua t ion ,  we can w r i te ,  as before,

where e^ = A e^. I t  is known that the least squares estimate of 

A and B in (4.4.3) is biased, due to the corre lat ion between e^ 

and y^, but that  the use of an instrumental var iable can remove

h = V k  - (Ak_1)xk + v

(4.4.2)

y k = Buk - (A-1)yk + ek (4.4.3)



this problem (Kendall and Stuart, 1961). The instrumental 

variable vector chosen by Young et a l ., (1971) is

y
x, = ( - X .  . . . . . .  ,-x, ,u.~k v k-1 k-n k i.k-n

wliich satisfies the c r ite r ia  of being highly correlated with
T *

xk = ^xk i» * * , »xk n,uk* “  ‘ ,uk-n^ ŵ11̂ e being uncorrel ated wi th e^.
/\

The estimates x̂  are obtained from a previous estimate of the

parameters, via x. = (B/A)u..
J J

variable) algorithm is

The resulting (recursive instrumental

/\
0 , = 0 ,

k k-1 " k-l~k 

where

I k  Pk - l V  fy k '  ?k ~ k - l J (4.4.4)

T„ ~ i - l  Td 
Z. P, .X .  } Z, P,~k k-l~k ~k k-1 (4.4.5)

?k  ̂ yk -1 ’ ‘ ‘ ’ ^ k - n ,uk ’ ’ ‘ * ,uk -n^ ’

and the procedure is itera tive as before

The extension of the algorithm (4.4.4)-(4.4.5) to time 

varying parameters is made in Young (1965; 1969) with the 

resulting algorithms d iffe ring from the f i l te r in g  form of the
/s

algorithm outlined above only in that is replaced by x^ 

throughout. The method of updating the auxiliary model
/N  / \

B^/A^ also d iffe rs . In Young (1969), the auxiliary model is 

kept constant during each iteration . In the formulation

This was due to lim itations on the analog equipment used in the 
hybrid (analog-digital) mechanisation of the corresponding 
algorithm in the estimation of d iffe rentia l equation models.

•4 *



implemented as above, the aux i l ia ry  model is taken from the 

smoothed estimate obtained in the previous i te r a t io n ,  for  

each time point.  I t  should nevertheless be pointed out that quite 

reasonable results can be obtained, in many cases, i f  the aux i l ia ry  

model remains constant (see Young, 1969).

4.5 Refined Instrumental Variable Estimation

One of the most frequently applied methods o f  overcoming 

problems of  non- l inear i ty  in state estimation contexts is through 

the use of a l inear iza t ion  of  the observation and system equations 

about some reference t ra jec to ry ,  which may e i th e r  be a successively 

updated state estimate or an appropriate estimate obtained by 

some other means. For example, we could obtain an approximate 

( f i l t e r e d )  estimate in model I I  by proceeding as fol lows.

Under condit ion (2) of Chapter 3, we can w r i te ,  in a s im i la r  

manner to (2.3.4) ,

2kIk = t ^ {E(?ket ) /E(ct 2)} ct

where are the l inea r  innovations defined in (2 .3 .3 ) .  This 

can be expressed recursively as :

2 k I k  = 2 k  1 k - 1  + { E ^ ? k e k ^ / E * e k ^  e k (4.5.1)

The covariance quant i t ies in (4.5.1) cannot be easi ly  evaluated 

exactly fo r  model I I ,  so that the innovations cannot be obtained 

exactly e i the r .  I t  is possible to approximate by



t k - y k - xk^<1)~k- l  I k-1 ̂  ’ wtlGro is as in (4 -1-4)* Alsü i3LJt
/ s  / \

° k I k - 1 = ^ k  i I k  1* °^^ain the covariances we take a f i r s t
A

order Taylor expansion of xk( ° k) about 0k | k ^ :

xd (’d  = xd ? k I k - f  + Hk ^ k ' ? k | k - f

3x,
where H, . We can then obtain approximations

k a~k12k ~k |k - l  
to the expressions in (4.5.1) which y ie ld  a f i l t e r i n g  algori thm

identica l  to (3 .2 .1 ) - (3 .2 .3 )  except that uk is replaced by Hk .

I t  should be noted that Pk |y, & = k- 1 , k are no longer true

variance-covariance matrices, but approximations. The approximate

smoothing solut ion can also be obtained from the algorithms of

Section 3.3, with uk replaced by Hk<

Upon examination, i t  can be seen that

m T , bkIk-1
k = ( '  r i —  uk - i ” " ’ 

AkIk-1

1 1k [ k - l
^ ? uk-n * ^ u, , . .  . , ^

AkIk-1 AkIk-1 AkIk-1

In the terminology of Young (1976) Hk is therefore a vector of 

p re - f i l t e re d  var iables, as compared wi th the un f i l te red  variables 

given by (4.4.2) in the instrumental var iable algori thm. The 

algori thm corresponds, in the constant parameter case, to a 

smoothing version of  the symmetric form of  the ref ined IV 

algori thm (Young and Jakeman, 1978). I t  can also be compared 

with the RML algorithm of Söderström et a l . ,  (1974), in which 

a s im i la r  l inea r iza t ion  produces an algorithm fo r  estimating 

the parameters in (4 .3 .1) .  A form corresponding to the 

asymmetric ref ined IV algori thm (Young, 1976) can also be derived



Once again, i t  would be d i f f i c u l t  to th e o re t ic a l ly  

substantiate any claims o f increased benefit gained from th is  

refined algorithm, as compared with the instrumental variable form 

of Section 4.3. However i t  has been demonstrated by Young and 

Jakeman (1978) in simulations, and by Solo (1978) in a p la u s ib i l i t y  

argument, that the refined form produces asymptotically e f f ic ie n t  

estimates o f constant A and B parameters, and there is often a 

c lear reduction in estimation erro r variance to be gained over the 

IV algorithm. Therefore, when the parameters are varying in a 

manner closely approximating a random walk, improved performance 

may be gained from the refined form.

I t  should be noted tha t in p rac tice , the p r e - f i l t e r s  and 

a u x i l ia ry  model would not be updated at each step. Rather they 

would be given by a previous estimation run as is  done w ith the 

a u x i l ia ry  model in the instrumental variable form. This eliminates 

s ta b i l i t y  problems which have been found to occur in the fu l l y  

recursive form fo r  constant parameters (Young and Jakeman, 1978), 

and so would presumably be even more l ik e ly  to occur in the 

varying parameter s i tu a t io n . An i te ra t iv e  procedure as in the 

recursive IV case could also be applied here.

4.6 Cone!usion

While we have not obtained a d e f in i te  so lu tion to the 

problem of estimating time varying parameters fo r  model I I  

(assuming Q and o2 known), i t  has been shown th a t . fo r  th is



purpose there are a number of sa t is fac to ry  approximations which 

can be applied. Most o f these re la te to methods used extensively 

fo r  estimating constant parameters, and avoid the complications 

which may be encountered when applying general non-linear state 

estimation algorithms.



CHAPTER 5 : UTILIZATION OF THE ALGORITHMS

5.1 In t roduct ion

Thus f a r  we have considered means by which one might model 

parametr ic  v a r i a t i o n  in the models I and I I ,  and es t im ate  parameters 

in these  models. There remain,  however, some d i f f i c u l t i e s  to be 

overcome in the p r a c t i c a l  implementation o f  the  algorithms we have 

ob ta ined .  In Section 5 .2 ,  the  process which may lead to the 

adoption of a t ime-varying parameter model i s  d iscussed .  This can 

be thought of as ' i d e n t i f i c a t i o n  of s t r u c t u r e ' ,  in the sense of 

Box and Jenkins (1970). Sect ion 5.3 is  concerned with ways of 

ob ta in ing  values of the program parameters . These are the  

va r ian ces ,  Q and a 2 , and the i n i t i a l  cond i t ions  0q >Po |O’ (as 

defined in Chapters 2, 3 and 4) which have been so f a r  assumed 

known. F ina l ly  in Section 5 .4 ,  some asymptotic  p ro p e r t i e s  of the 

e s t im at ion  procedures are  considered .

5.2 I d e n t i f i c a t i o n  of Time-Varying S t ru c tu re

We can recognize  th ree  poss ib le  s tages  in the process of 

adopting a t ime-vary ing parameter model. F i r s t l y ,  examination 

of  cons tan t  parameter r e s u l t s ;  secondly ,  hypothesis  t e s t i n g  

concerning the p o s s i b i l i t y  of parametr ic  change, and t h i r d l y ,  

the  es t im at ion  of a time varying parameter model. The th i r d  

s tage  has been considered in some d e t a i l  a l r e ad y ,  so we w i l l  

here b r i e f l y  cons ider  some aspects  of the  f i r s t  two s tag es .



5.2.1 Examination of constant parameter resul ts

The use of recursive estimation methods in constant 

parameter time series and regression models lias come into favour 

recently (Young, 1974; Söderström et a l . ,  1974). Not only have 

they been found to provide computational ly a t t ra c t ive  means of 

obtaining consistent, e f f i c i e n t ,  parameter estimates (Young, 

1976), but also covergence characte r is t ics  can be conveniently 

examined by reference to graphical outputs o f  the recursive 

parameter estimates. In th is  way, i t  is possible to ascertain 

whether the estimates are slow in converging, or i f ,  indeed 

they f a i l  to converge.

Slow convergence or fa i lu re  to converge can occur fo r  a
4.

number of  reasons. F i r s t l y ,  there could be an i d e n t i f i a b i 1i t y 1 

problem associated with the model. In the case of model I ,  th is  

could arise through mult icol  1inea r i ty  of  the inputs (regressors 

in th is  case) u ^ 1*^, = 1 ,2 , . . . ,M .  Tests to detect th is ,  such 

as the mult ip le  corre lat ion tes t ,  are well known (Kendall and 

Stuart,  1961). Mult icol  1inear i ty  is manifested in near­

s ingu la r i ty  of the information matrix U^U, where

/u o> u <mh
i • • •  i

lU (1) u M
' l l  • ■ • N /

See Hannan (1971) fo r  a general discussion of i d e n t i f i a b i 1i t y .
4-
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which leads to a high (normalized) est imation error  covariance 

matrix S^. In model I I ,  an i d e n t i f i a b i 1i t y  problem could arise
ß

through pole-zero cancel lat ion in the t ransfe r  function 

ind icating that a model of too high an order is being f i t t e d  to 

the data. Once again, th is  is manifested in a large estimation 

error  covariance matr ix, and a number of procedures can be 

used to tes t  whether th is  is the case (Young et a l . ,  1978). Again 

i d e n t i f i a b i l i t y  problems can arise because the input signal u^ 

is not ' s u f f i c i e n t l y  exc i t ing '  (Aström and Bohlin, 1966). For 

example, a second order system is not id e n t i f i a b le  when perturbed 

only by a single sinusoidal input : at least  two d i f fe re n t  

frequency components are required to avoid i d e n t i f i a b i 1i t y  problems 

(see Young et  a l . ,  1971).

I f  the p o s s ib i l i t y  of  n o n - id e n t i f i abi 1i t y  has been 

eliminated, then the reason fo r  slow convergence of  the parameters 

is that a single model is not appropriate at a l l  time points, 

and that there appears to be some var ia t ion in the parameters.

An examination of p lotted residuals (Draper and Smith, 1967; 

fo r  model I)  or innovations (Harvey and P h i l l i p s ,  1976, fo r  model I I )  

in a constant parameter model, may also corroborate evidence 

of th is  kind, since certain types of parametric var ia t ion may 

appear as a systematic component in residuals or innovations.

I f  there is such evidence of parametric va r ia t ion ,  then we may 

proceed to the second stage outl ined above, provided the 

indicated variance appears to be physical ly  meaningful.



5.2.2 Testing the hypothesis of parametric change

This stage in the procedure outlined at the s tar t  of this 

section is not considered by the author to be essential in the 

context of the present work. In situations where the methods 

of this thesis may be applied, we are concerned with examining 

the plausibility of some types of parameter variation, by 

reference to the results obtained in the estimation, in  

co n ju n c tio n  w ith  p h y s ic a l knowledge o f  th e  system  being  s tu d ie d .  

Therefore, while i t  may be claimed that an assertion concerning 

a s ta tis t ical  model must be accompanied by an appropriate test  

of s ta t is t ica l  significance, i t  is considered that the 

'positive or negative' result obtained from a hypothesis test  

may be too restrictive to be generally useful. Nevertheless, 

various authors have discussed methods of carrying out a formal 

hypothesis test  concerning parametric charge, and we make 

brief mention of some of these here.

Brown et  a l . (1975) appear to have suggested the f i r s t

test  for general non-constancy of parameters in model I,  the 

regression model; they derive approximate distributions for the 

sum of, and sum of squares of, recursive residuals (or 

fi ltered innovations, in our terminology), under the null 

hypothesis of constant parameters. For the same model,

Garbade (1977) suggests using a likelihood ratio test  of 

the null hypothesis Q = 0 against the alternative Q i 0, with 

Q as in Section 2.3, and taking $ = T = I in (2.3.2).
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He then goes on to compare the two tes ts , using simulations of 

three d i f fe re n t  types of parametric change in a simple 

regression model. The la t t e r  tes t is  shown to be superior in a 

number o f respects.

More recently , Pagan (1978) and Salmon (1978) have 

suggested the use of a Lagrange m u lt ip l ie r  te s t .  However, there 

are no studies as yet available to demonstrate the use o f th is  

test in practice , or to compare i t  w ith other hypothesis tests 

in th is  context.

5.3 The Choice of Program Parameters

In order to implement the algorithms o f Chapters 3 and 

4, i t  is necessary to choose values o f the program parameters 

mentioned in Section 5.1. I t  w i l l  become c lear tha t there is a 

certa in amount of freedom associated w ith the values o f these 

parameters. Nevertheless, i t  is useful both to understand 

the e f fe c t  of using d i f fe re n t  values o f these parameters, 

and to have an ana ly t ic  method of choosing values, should th is  

be called fo r .

5.3.1 Parameter variance Q and measurement variance a2

Here, the corresponding state estimation problem, 

( th a t is ,  one o f obtaining values o f system and measurement 

noise levels in order to implement a f i l t e r i n g  or smoothing



algorithm) has received attention in recent years (Mehra, 1971; 

Neethling and Young, 1974, among others). However, no solution 

could be claimed as generally appropriate in the state estimation 

context. The respective advantages and disadvantages of some of 

the solutions are discussed by Neethling (1974), and, in a parameter 

estimation context, by Bennett (1976). Most of these methods 

are aimed at the estimation of the values of Q and a2 (or Q and 

R, a matrix, in multi-output estimation situations) concurrently 

with the estimation of the state variables; that is ,  a d a p tive  

estimation of Q and o2 (or Q and R). In the context of time- 

variable parameter estimation, such a procedure would be 

neither necessary nor appropriate. The Q matrix does not have 

a p h y sic a l  interpretation, as i t  does in the state estimation 

problem. In the context being considered here, i t  may be 

thought of as a quantification of the expected rate of 

parameter variation between samples, so that when using an 

adaptive procedure for estimating Q, i t  would clearly be hard 

to distinguish between changes in Q and changes in the parameters 

themselves. I t  is also noteworthy that the methods of Mehra 

(1971), Neethling (1974) and others rely on the assumption that 

the process being estimated is in steady state, so that 

asymptotic values of the covariance matrices P^j^, & = k-1,k, 

have been attained. As we shall see in Section 5.4, i t  is not 

possible to obtain these asymptotic values in the case of 

models I and II without placing further assumptions on the 

processes involved.
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There is also a d i f f ic u l ty  in using constant Q and o2 for 

an estimation run. This d i f f ic u l ty  arises when the true parameter 

variation is not actually a random walk, and the rate of variation 

changes markedly during the observation period. Then the value 

of Q which is appropriate for one portion of the data may tend 

to exaggerate parameter variation in another part of the data 

where the variation is smaller, due to observation noise effects. 

Conversely, i f  a Q matrix is used which is appropriate for the 

portion of the data where the variation is smaller, the section 

of larger variation w il l  be obscured, because the estimation 

procedures w il l  consider that this is merely a noise effect, 

and therefore 'smooth' the estimate too much. This problem 

is particularly marked when the situation is one of trying to 

detect a step change in a parameter, particularly i f  the 

step is quite small in relation to the sample size N (see Section 6 . l) .  

Then a Q matrix which is able to accommodate the step adequately 

w i l l  amplify observation noise effects on the section where 

the parameter is constant, while the use of a Q matrix which 

estimates smoothly over the constant section w i l l  track the 

step slowly, and w i l l  not indicate i ts  size or position very 

clearly.

As was mentioned in Section 3.3, o2 can be removed from 

all the algorithms obtained in Chapters 3 and 4, resulting in 

normalized variance-covariance matrices (or approximations to 

these in model I I ) .  This reduces the problem of choosing 

appropriate Q and a2 to one of obtaining the value of



A
W = Q/o2, which is most appropriate in some sense. The effect  

of d i f ferent  values of Q and o2 can be i l l us t r a t ed  by using the 

following simple model : take model I with

m = 1, uk = 1, k=l , 2 , . . .  ,N

$  = r  = i

(referr ing to equation (2.3.1) , (2 .3 .2) ) .

Then the f i l t e r ed  estimate of the parameter 0  ̂ is obtained 

from (3.1 .1) - (3 .1 .3 . )  as

(5.3.1)

° k - i i k - i

Therefore, the weight (the 'Kalman gain' )  given to the

= Sk-1Ik-1 (5.3.2)
1 + S

Sk-11k-1 Pk -11k-1where /  o2



I t  can be seen from (5.3.2) that is a s t r ic t ly  

monotonically increasing function of W; that is , s t r ic t ly  

monotonically increasing in Q, and s t r ic t ly  monotonically 

decreasing in a2 . This confirms the in tu it ive  notions 

regarding the use of Q, discussed above. I t  is also of 

note that > 1 as W + °°. Thus above a certain level, large 

changes in the value of W used do not affect the estimation 

greatly. Also,

K — k - l j k - l—  as W + 0

1 + Sk-1Ik-1

which corresponds, in the l im it  (W = 0), to the constant 

parameter recursive least squares estimator (Plackett, 1950).

For the smoothed estimate in this model, the algorithm 

(3.3.9) yields

°kIN = 9k|k + Pk IkPk+l Ik  ( 0k+l|N '  6k | 0

A I |y ^  A

= ®k|k + p + Q (0k+l|N - ° k |k ) 
k I k 4

From th is , i t  can be seen that the smoothing procedure adjusts 

the f i l te re d  estimate at time k by the weighted difference 

between the one step ahead prediction from 0 ^  and the smoothed 

estimate at time k+1. The weighting here is a s t r ic t ly



monotonically decreasing function of Q. This indicates that 

fo r  large values of Q, the adjustment obtained by smoothing 

is small , so that the smoothed estimate ' fo l lo w s 1 the f i l t e r e d  

estimate c lose ly. On the other hand,

-----—  -»1 as Q ■+ 0
Pk|k + Q

so tha t ,  fo r  Q = 0, the constant parameter s i tua t ion ,

°kIN = °kIk + (°k+l|N ‘ °k|U

= 0k+l|N 

= ®N|N

Thus, as expected, fo r  a parameter assumed constant, the 

smoothed estimate is constant over the observation period, and
A

equal to the f ina l  f i l t e r e d  estimate 0 ^ .

Using e i ther  IRW or SRW models fo r  the parameter 

var ia t ion ,  or more general versions of models I or I I ,  s im i la r  

behaviour is exhibited. However, the analysis is somewhat more 

complicated, and w i l l  not be pursued here.

Now bearing in mind the e f fec t  of using d i f fe re n t  values 

of W in the est imation, i t  is possible to employ a non-analytic
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procedure for choosing W. If we use the interpretation of Q 

as an a p rio ri quantification of the rate of parametric change, 

then the diagonal elements have immediate meaning as the rates of 

individual parameter change. However, the off-diagonal elements 

are harder to interpret. Therefore one possibility would be to 

estimate the parameters O.'with diagonal W, and using a number of 

different combinations of values of the diagonal elements. The 

results could then be examined, with the cr i teria  for establishing 

the 'correct' value of W being largely based on the physical 

plausibility of the results obtained (Norton, 1975). Another 

possibility for ,choosing W would be to use W = aS^, for various 

values of the scalar a, where is as defined in Section 5.2.1.

This has been the approach taken to estimating parametric change 

when using recursive IV methods (Young et a l ., 1971).

Although these procedures may appear somewhat ad hoc 

they provide a large amount of freedom for the experimenter to 

examine various hypotheses relating to the parameter movements, 

through the use of different values of W. At the same time, 

the results obtained in this way are subject to automatic constraints, 

so that i t  is not possible to obtain arbitrary estimates for 

the parameters. For example in the model (5.3.1) in which we 

are in effect estimating a time-varying mean of a series of 

observations, the range of possible trajectories for

~ n
(0, } is between 

K k=l



and 0k|N = yk

(with Q = 0, giving a constant mean)

(with Q = °°, giving the mean at  time k as y^, 

the mean of a sample of size one at each time 

point)

I t  is also possible to develop analy t ic  means fo r  obtaining 

Q and o2 (or W). For th is  purpose, i t  is necessary to assume 

that the true parameter var ia t ion  is o f  the form (2 .3 .2 ) .  I f  this 

is not the case, the same methods can s t i l l  be employed, although 

th e i r  v a l i d i t y  is la rgely  diminshed. We f i r s t  consider model I .

Under condition 1 of  Chapter 3, that  i s ,  the Gaussian 

assumption on 0Q; v^, e^, k = l , 2 , . . . , N ,  the l ike l ihood function 

fo r  the sample can be obtained as in Schweppe (1965).

Following that author, we define X(k) = log p(Yk) ,  the log- 

l ike l ihood function. We can then put

2A(k) = 1 og ( 2 tt ) k det Gk - y ^ G ^ 1̂ ,  k = l ,2 , . . . ,N

Here Ĝ  is the variance covariance matrix of Y^. Now the j o i n t  

density of can be wr i t ten  as

p(y = p(X k - i )p(Yk 'X k - i )

so tha t ,  taking logs, we obtain
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The mean o f  Lhe random var iab le  YR|Yk  ̂ is 

expectat ion E(Y^|Y^ ^ ) ,  so tha t  we obtain

i^kUk-i» 1 exp ( -  - - - -  )

the condi t ional

where c, is the l in e a r  innovat ion f i r s t  introduced in (2 .3 .3 )  

and VR = V(ck ) ,  the innovations variance.

Thus

2(A(k) - A ( k - l ) ) = - log 2 ^  -  ck 2/VR 

which f i n a l 1y y ie ld s

N N
2A(N) = - E log 2ttV, - E e. 2/V, (5 .3 .3)

k=l K k=l k K

This has, in f a c t ,  achieved a d iagonal iza t ion  o f  the quadrat ic  

form y^ G ^  through the use of the innovat ions process.

From Kai la th  and Frost (1968)

Vk = “ kTpk | k - Ä  + ° 2’ 

so tha t  f i n a l l y ,  we have

1 N T
-A(N) = y  {N log 2 tt + E log (o2 + pk | k - l ~ k)

k - 1

+ £k / ( ° 2 + “ kTpk | k - A )} ( 5 -3-4)

Since the innovations cR and t h e i r  var iance VR, fo r  k = l , 2 , . . . , N  

can be obtained by successively est imating 0 ^ ,  02 12 ’ ' * * ,0N | N 

with  only a knowledge of W (Section 3 .2 ) ,  the l o g - l i k e l ih o o d



(5.3.3) can be expressed as a function of a 2 and W. 

Then, to a constant,

. N N
A(N) = - «- E log o2T, - E e. 2/ o 2T 

L k=l K k=l K
(5.3.5)

where = V^/o2, an im p l i c i t  function of W. Garbade (1977) 

considers the forms (5.3.5) of the log - l ike l ihood ,  and set t ing

— = 0, obtains the concentrated log - l ike l ihood function
9 ( a 2 )

A is now only a function of W, and in theory can be maximized 

with respect to th is  matr ix , to obtain a maximum l ike l ihood 

estimate fo r  W. However, as Garbade points out, th is  is not a 

simple matter in pract ice. The d i f f i c u l t i e s  are twofold :

f i r s t l y ,  the severely non-l inear occurrence of W in A ; and 

secondly, the requirement that the maximization of the 

l ike l ihood take place over a l l  symmetric, non-negative de f in i te  

(n .n .d .)  mxm matrices W. While the former problem can general ly 

be overcome via numerical techniques, the l a t t e r  cannot, except 

of course when m = 1. Thus, once again, we seek a smaller class 

from which to choose W.

The obvious choice is to r e s t r i c t  W to be a diagonal, 

n.n.d. matr ix,  as above in th is  section. Then a 'g r id  search1

(5.3.6)

^  -j

where o = ( ^ E ek2/Tk) 
k - 1



procedure, fo r  example, may obtain, to s u f f ic ie n t  accuracy, the
• k

values of Ŵ. ^ , i = 1 ,2 , . . .  ,m which maximize X . The data can 

then be processed using th is  value of W to provide the f i l t e r e d  

and smoothed estimates o f the parameters 0^.

For model I I ,  the innovation representation (5.3.3) of the 

l ike l ihood  is not exact, nor are the innovations obtained from a 

f i l t e r in g  run using any o f the methods discussed in Chapter 4. 

However, they may be used as an approximation, and the like lihood  

thus obtained once again maximized w ith respect to W.

Norton (1975) outlines an a lte rna t ive  method of choosing 

W, and, once again, the task is s im p li f ie d  by re s t r ic t in g  to a 

diagonal W. For such W, the quantit ies  d^ and f^ ,  k = l ,2 , . . . ,N  

are calculated from

dk = - “ Ä - hn

fk = yk - “A in

d  ̂ and f^ may be thought o f ,  as respective ly , the smoothed
+

innovations and the smoothed residuals.

F in a l ly ,  the sum of squares o f smoothed innovations, and 

the sum of squares o f smoothed residuals are calcu lated, and the

qi
Although Norton (1975) simply refers to innovations and 
residuals ('noise') so that there is some ambiguity, he has 
indicated in a personal communication (1978) tha t the smoothed 
versions o f these quantit ies  are used.



following s t a t i s t i c s  formed :

N N

N N .

where e^ = ŷ
■p

u, 0, the residual obtained from a model with~k ~
constant parameters.

Under the assumption of a random walk model, with the correct  

value of W used to estimate the parameters, is a measure of the 

proportion of the error  in the one-step ahead smoothed prediction 

that  is due to parameter variation rather  than observation or 

estimation e rror .  indicates the proportion, of the prediction 

error  in a constant parameter model, not accounted for by 

estimating the parameters as a random walk.

Now, as indicated for the model (5 .3 .1) ,  the estimated

exactly, in the l imit  as W -> «>. Therefore Rg -*■ 1

as W -* co . r on the other hand, may a t ta in  a maximum value with

respect to W. Indeed, the behaviour with respect to W is determined 
N

by that  of E d^2. Thus i f  the true value of W, say WQ, is greater
k=l

than zero, values of W which are too small will tend to give larger  

prediction errors than the true value, because the parameter



var ia t ion is not being allowed fo r .  Conversely, values of W 

which are larger than Wq w i l l  tend to a l te r  the parameter estimate 

at time k-1 by combining noise ef fects  with the parameters, so 

there w i l l  once again be large predict ion errors. Hence we might 

reasonably expect a maximum in Rq. This p o s s ib i l i t y  is not made 

clear by Norton, (1975), who recommends choosing W so that Rq 

is as large as possible, with 'below a specif ied l i m i t 1. He 

suggests that fo r  small W, R̂  is near zero; and then, at a certain 

point,  as W is increased, R̂  increases rap id ly .  I t  is th is  level 

which is taken as the 'speci f ied l i m i t '  (Norton, 1978).

This procedure fo r  obtaining estimates of  W is obviously 

not rigorous, as was the case with the maximum l ike l ihood 

estimation. There i s ,  however, a re la t ionship between the two 

procedures. Upon examination of (5 .3 .3 ) ,  i t  can be seen that 

the l ike l ihood is given by

N N t- NL(Q,a2) = (2tt) - f  II V, " 2 exp { -  h  £ b. 2/V. } (5.3.7)

A 'general ized least squares' procedure fo r  obtaining Q and o2 

would be one where the exponent in (5.3.7) is maximized with 

respect to Q and o2, whi le an 'ordinary least  squares procedure' 

would be one where the same quanti ty  is maximized, under the 

assumption = 1, k = 1 ,2 , . . . ,N .  Therefore Norton's 

approach in maximizing Rq is approximately an ordinary least 

squares procedure.



The j u s t i f i c a t i o n  fo r  such a s im p l i f i ca t ion  is well known 

in the case of constant 0^. However, simulation results indicate 

that the least squares approximation as used by Norton does not 

perform as well as the maximum l ike l ihood estimate in the 

estimation of Q and o2 (see Section 6.1 ).

While maximizing can be interpreted as an approximation 

to the maximum l ike l ihood procedure, the use of is not so 

c lear ly  defined. Norton's observation of a sharp r ise in R̂  at a 

certain value of W may be possible to corroborate a n a ly t i ca l l y ,  

although the analysis would presumably be quite d i f f i c u l t .

The above arguments would appear to indicate that the most 

sa t is fac to ry  theoretical  means of  obtaining W is via the maximiz­

ation of  the concentrated log - l ike l ihood  with respect to a 

diagonal W. However, even with such a W, th is  maximization may 

not be easy, i f  there are a large number of parameters to be 

estimated. The l ike l ihood is not necessarily unimodal, so 

that in a high-dimensional parameter space, numerical procedures 

may be computational ly expensive, and may not even give the 

true maximum.

For the appl icat ions to real data where the methods of 

estimating time-varying parameters are to be used, the aim 

of the procedures is to examine parametric change. The exact 

size of the change may not be c ru c ia l ,  as long as i t  is 

detected. Therefore, in general, there may not be a need fo r
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very accurate estimation of W. As w i l l  be seen in Section 6.1
■a-

in the 1-parameter case, both R~ and A appear to exh ib i t  sharp 

increases as functions of W. Although a f te r  a cer tain point,
■A

A decreases sharply, whi le Rq remains f l a t ,  values of W which 
• ★
give Rq or A in the upper part of th is  region of sharp increase 

should provide estimates of  the parameters 0^ which do not overly 

exh ib i t  spurious var ia t ion due to the e f fec t  of the observation 

noise e^. Therefore, a reasonable procedure, which avoids some 

computational e f f o r t ,  fo r  the estimation of W is to calculate 

N 2
£ d, fo r  each value of W. . ,  i = l , 2 , . . . , m ;  then increase each 

k=l K 1 ,n

of  these in turn un t i l  there is comparatively l i t t l e  change in 

N 2
£ d, , and use th is  f ina l  value of W. . in estimation. 

k=l k 1,1

5.3.2 I n i t i a l i z a t i o n  parameters

In Section 3.1, i t  was indicated that the algorithms could 

be i n i t i a l i z e d  with v i r t u a l l y  any value of the parameters, and a 

large i n i t i a l  estimation e r ro r  covariance matr ix. In most 

s i tua t ions ,  the convergence to near the true parameter value 

during the f i l t e r i n g  run is rapid, with accompanying decrease in the 

estimation error  covariance matr ix. There i s ,  in theory, a small 

bias resu l t ing  from i n i t i a l i z a t i o n  in th is  way. However, i t  is 

in s ig n i f i c a n t ,  and may be neglected asymptotical ly. Nevertheless, 

in s i tuations where the ra t io  of N, the sample size, to p, the 

number of parameters in the model, is small,such as in econometric



models, i t  may be desirable to i n i t i a l i z e  the algorithms in a more 

spec i f ic  manner. This can be accomplished e i the r  by a maximum 

l ike l ihood procedure, or via a block i n i t i a l i z a t i o n .  We w i l l  

consider each of these in turn.

The log - l ike l ihood (5.3.3) can be considered as a function 

of  0q and Pq |q. I t  can then be maximized with respect to 

these parameters, as was done fo r  W and a2. The consistency 

resu l t  o f  Pagan (1978) mentioned in Section 2.3 provides a 

theoretical  j u s t i f i c a t i o n  fo r  th is  procedure. However, even i f  

his method of  proof extended to the random walk model, the procedure 

may be d i f f i c u l t  to implement. The computational problems associated 

with maximum l ike l ihood estimation of W and o 2 alone would 

cer ta in ly  be increased with the higher dimensions parameter space.

For model I I ,  i t  may be possible to extend the parameter 

space s t i l l  fu r the r ,  to include i n i t i a l  conditions on the model 

var iables. Then the input, output and noise terms, with negative 

indices, which were a l l  taken as zero in Sections 4.2 and 4.3, would 

be estimated as unknown parameters. This has been achieved fo r  

constant parameter t ime-series models (Newbold, 1974), and, in 

small samples, there is apparently some advantage to be gained.

Once again, however, the added complexity would appear to 

counteract any benefi ts which might be obtained.

Block i n i t i a l i z a t i o n  may be used i f  the parameter var ia t ion 

is quite smooth. This involves estimating the parameters as



constant from the f i r s t  p samples. The remaining N-p samples are 

then processed as before, using the i n i t i a l  conditions 6 ,Pp, 

the estimate and error  covariance matrix obtained from the f i r s t  

p samples.

I t  should be noted here that fo r  the maximum l ike l ihood 

estimation of W outl ined in Section 5.3.2, i t  may be advisable 

to use a block estimate to i n i t i a l i z e ,  and then calculate the 

l ike l ihood fo r  the remaining N-p samples only. This el iminates 

possible large deviations which may arise in early  values of c^, 

the f i l t e r e d  innovations, in (5 .3 .3 ) .  Garbade (1977) suggests 

an a l te rna t ive  block i n i t i a l i z a t i o n  procedure to accomplish 

th is  task, whi le in Norton (1975), the use of smoothed 

innovations performs the same function.

5.4 S ta b i l i t y  of the Estimation Procedure

I t  has been shown so fa r  tha t ,  under certain assumptions 

on (2.3.1) and (2 .3 .2 ) ,  we can obtain minimum variance l inear  

unbiased estimates (approximate fo r  model I I )  of the parameters 

0^ in a random walk model. We have not, however, made any mention 

of the behaviour of the estimation procedures under considerat ion, 

fo r  large sample size.

To investigate asymptotic propert ies, we once again turn 

to the state estimation l i t e r a tu r e .  Jazwinski (1970) discusses 

s u f f i c ie n t  conditions under which the estimation error  covariance



matrix P^^,  for a linear state estimator x^^,  is uniformly 

bounded. These conditions are f i rs t ly ,  the positive definiteness 

of PqIq, and secondly, the conditions of uniform complete 

observability  (UCO) and uniform complete controllability  (UCC). 

These la t ter  are that the matrices 0(K,k-N^), for some N̂ , 

and C(k,k-N2) for some N2 can be bounded above and below uniformly 

in k, where for the model (3.1.1)-(3.1.2),

0(k1,kQ)

c (ki , kQ)
k i - i

l
t=k„

(*t - kl ) Tut utT*t -kl

4>k r t " 1 Q ( <t> k i " t " 1 ) T

(see Cooley and Wall, 1976).

Jazwinski then shows that under the same conditions, the linear 

system obtained from (3.2.1)-(3.2.3) is uniformly asymptotically 

stable  : that is ,  rewriting the equation (3.2.1) in the form

!k|k + V k

we have ||T|| -* 0 exponentially. This property ensures that
A

for bounded y^, the f i l tered estimate 6 ^  is also bounded. 

If,  in (3.2.2)—(3.2.3) (the so-called Ricatti equations) û  

were not dependent on k, i t  would be possible to obtain the 

asymptotic values of P ^  and P ^  by setting

Pk|k = Pk- l |k- l  = R’ sa^ ’ and Pk|k-1 = Pk-1Ik-2 = S’ sa* ; 
and then solving (3.2.2) and (3.2.3) for R and S (Kailath

and Ljung, 1976). The values R and S are the error covariance



matrices fo r  the corresponding steady state process. However,

i f  u^ is n o t constant, as is normally the case, there appears 

to be no proven resu l t  regarding the asymptotic values of

and P ^ .  Indeed, i t  is l i k e l y  that such a resu l t  would 

be d i f f i c u l t  to obtain because of  the complexity of the problem. 

Note that i f  Q = 0, then = P ^  ^ , and P ^  ^  0 as k -* °°, 

providi ng

TZ u.u. -> °°k_ i~K~K

For the model (5 .3 .1 ) ,  the R icat t i  equations may then be solved, 

to y ie ld  R = (-W +JW2+4W)/2, S = (W + J w2+ 4 W ) / 2 . Thus as might 

be expected, both asymptotic values are monotonically increasing 

functions of  W.

By analogy with these examples, i t  seems reasonable to 

expect tha t ,  under cer tain condit ions, the matrices P ^ ^ ,  P^j^  ̂

w i l l  exh ib i t  some l im i t in g  behaviour. Certa in ly , results from 

simulations would suggest that  such behaviour does occur in many 

cases (see Fig. 5.1).

Kai lath and Aasnaes (1974) have demonstrated s u f f i c ie n t  

conditions fo r  s t a b i l i t y  which are weaker than the UCO and UCC 

condit ions. However, i t  should be noted that necessary and 

s u f f i c ie n t  conditions have not been obtained by any author, as 

yet.  Therefore, in pract ice i t  may be found that a system which 

fa i l s  to even sa t is fy  these weaker conditions does not in fac t



lead to unstable estimation.

The fo l lowing provides an example of i n s t a b i l i t y  which may

occur. The system (3 .1 .1 ) ,  (3.1.2) was simulated, with

( i ) m = 2, N = 100

( i i ) U i u ; l ,  *<=1, 2 , . . .  ,N, a2 = 1

( i i i ) Q = ( °
.001 010 0.001/ (5.4.1)

r = i 2

( 2 )u, '  was simulated k
(a) as pseudo-random binary noise : that  i s ,  equal ly probable 

occurrences of -1 and 1;

(b) as l in e a r ly  increasing : u^ = k, k = l ,2 , . . . ,N .

( 2 )I t  was' found that when the input u  ̂ ' was as in (a),  P ^ ^

decreased rapid ly  from i t s  i n i t i a l  value of 10612- (see Fig. 5.1).
( 2 )However, fo r  the input û . ' as in ( b ) , Pk | k increased s tead i ly ,

/  5 x 109 -5 x 107
wi th P100 |100 1-5 x 107 5 x 105/

The reason fo r  this i n s t a b i l i t y  appears to be the v io la t ion  

of the UCO condi t ion, when the input is as in ( b ) .

For model I I ,  i t  is not s t r i c t l y  possible to discuss

s t a b i l i t y  in terms of the UCO and UCC condit ions. However

i f  we consider equation (4.4.1)  as a l inea r  observation equation,

with x, assumed known, then the UCO and UCC conditions can be k
wr i t ten  down. I f  the system is unstable ( in  the sense that the
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~  -1estimated model has zeroes of A(z ) = 0 inside the unit c irc le)

then X. will become unbounded, and in this case the UCO condition k
will not be s a t i s f ie d .  Behaviour similar to that of the above 

example (5.4.1) may occur, causing the estimation to become 

unstable .

There i s ,  in theory, a non-zero probability of such an 

i n s t a b i l i t y  occurring, since the parameters are assumed to be 

normally d is tr ibuted  a t  any time point. However, this  will 

not necessarily cause problems. I f  the true parameter variation 

is non-stochastic,  and i f  i t  is such tha t  the output of the 

system remains bounded, then is l ikely to be estimated such 

that the zeroes of A(z ) = 0 l ie  outside the unit c i rc le .

Moreover, even i f  the true parameter variation is such that  

eventually becomes unbounded while the noise level remains constant, 

improved parameter estimates may be obtained for a time because 

of the increased signal to noise ra t io  (see Lee, 1964).

Convergence o f  P , 
in  ( 5 . 4 . 1)  (a)

r :—I----- r -
I 05

" -i---~-r==f==T== i — 
2 05  . 305

FIGURE 5 . 1
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CHAPTER 6 : EXAMPLES

6.1 S imu la t ion  Results

In t h i s  s e c t io n ,  some o f  the more im por tan t  po in ts  discussed 

in  e a r l i e r  chapters w i l l  be exem p l i f ied  using computer s im u la t ions .

The p resen ta t ion  o f  the re s u l t s  w i l l  most ly  take graph ica l  form, as 

t h i s  appears to convey the re lev a n t  fea tures most l u c i d l y .

6 .1 .1  The random walk models f o r  parameter v a r ia t i o n s

In order  to cons ider  the ' n a t u r a l '  p rope r t ie s  o f  the three

types o f  random walk models (RW, IRW, SRW) f o r  parameter v a r i a t i o n

proposed in Sect ion 2 .2 ,  each was s imula ted over 100 sampless w i th  p= l .  

The same sequence v^ ,  k = l , 2 , . . .  ,100 (as in  ( 2 .3 .1 ) )  was used in  

each s im u la t io n .  F ig .  6.1 shows the r e s u l t i n g  RW, F ig .  6.2 the 

IRW, and F igs .  6.3 and 6.4 show the SRW w i t h ,  r e s p e c t i v e l y ,  

a = 0 .9 ,  and a = 0.99.  I t  i s  c le a r  t h a t  the RW e x h ib i t s  ' jagged '  

v a r i a t i o n ,  w h i le  the IRW appears to have a grea t  deal o f

' i n e r t i a '  - once i t  is  moving e i t h e r  up o r  down, i t  does not

change d i r e c t i o n ,  f o r  a r e l a t i v e l y  long pe r iod .  As a -* 1, the 

SRW fo l low s  the IRW in  shape, al though o f  course not in  dimension.

The SRW w i th  a = 0.9 appears to be a usefu l  model f o r  t ra c k in g  

smooth parametr ic  change. Whi le i t  e x h ib i t s  smooth v a r i a t i o n s ,  

i t  does have the a b i l i t y  to change d i r e c t i o n  r e l a t i v e l y  q u i c k l y .
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The Random Walk Modeln
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6.1.2 Instrumental variable estimation in model II

I t  would be possible to use many different examples to i l lustrate  

the filtering/smoothing algorithms of chapters 3 and 4. However, as a 

number of such simulations have been published (Lee, 1964; Young, 1969; 

Norton, 1975; 1976) we will res tr ic t  attention here to the results 

obtained from the new instrumental variable smoothing method of 

parameter tracking suggested in the present dissertation (Section 4.4).



The model chosen was as in (4 .1 .1 ) ,  with

B(z-1 )
A(z_1)

( 6 . 1. 1)

This system was simulated over 100 samples, with a 2 adjusted to give 

a signal to noise ra t io  of  approximately 10 : 1. I n i t i a l l y ,  the 

true parametric var ia t ion was set as

k = 1 ,2 , . . . ,1 00 .

Both the IRW (Fig. 6.5) and the SRW (Fig. 6.6) were used to track 

the parameter var ia t ion .  As can be seen, in both cases the least 

squares estimate (Section 4.2) provided a biased estimate of the 

var ia t ion in the parameter a ^  However th is  estimate was largely

improved by the use of the instrumental variable estimation.

I t  was found that the i te r a t i v e  procedure mentioned in 

Section 4.4 had re la t iv e ly  l i t t l e  e f fe c t  a f te r  the f i r s t  

i te ra t io n .  Although parameter b ^  was also tracked very we l l ,  

the results obtained are not presented, because the least 

squares estimate is not biased in th is  case.

Figure 6.7 shows a ref ined instrumental variable 

estimation of  the same model (see Section 4.5) using the SRW.

I t  can be seen that only a s l ig h t  improvement over the least 

squares estimate (F ig .6.6) is obtained. The addit ional

bQk = 0.15 + 0.05 cos (n k /100)

alk = + 0.05 C0S (^7100)

a2k 0.5
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In s tru m e n ta l Variable E stim a tio n  -  The parameter a^ in  (6 .1 .1 )
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complexity of the refined form appeared to have a detrimental 

effect on the estimation, and i t  was found that the ordinary 

instrumental variable method was much more robust for general 

applications.

Figure 6.8 shows an instrumental variable estimation of the 

model (6.1.1) using an IRW, with now

k=l,2 , . . ,  100 

k=l,2,. . .  ,50 

k=51,52,...,100 

k=l,2,..,100.

The signal to noise ratio was once again 10:1. The difficult ies 

inherent in tracking the step change in a ^  can be clearly seen 

here. While there is definite evidence of such a change, i t  appears 

to have been 'smoothed' to a large extent. Once again, the bias in 

the least squares estimate is apparent. The same variation was also 

tracked with the SRW; Fig. 6.9 shows the result for two different 

levels of Wj . When Ŵ = 0.1, the parameter is tracked too 

smoothly, as occurred for the IRW. For Ŵ = 20.0, spurious 

variation is estimated due to noise effects, although the step 

appears more acutely.

The results shown in Figs. 6.5 - 6.9 are typical of those 

obtained from a number of simulations of parametric variation in 

model II. They usefully i l lus tra te  a number of the main 

features of the instrumental variable smoothing method of parameter 

tracking.

0.15

a ik f-0.35 

(-0.45

a2k = °-5
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E stim a tion  o f  W

0. 8 -

- 4 . 0 -

- 6 . 0  -

- 6 . 0 -

- 7 0 . 0  - .

- 8 5 .0  -

- 1 3 0 .0  -

- 1 4 5 .0  -

0 .3 7 6

FIGURE 6.10 FIGURE 6.11

0 . 60-1

0 . 6 0  -

0 . 3 8 -

0 . 2 0 -

0 .1 0 -

0 .2 6 0 .7 6

1. 2 -,

1 . B -

0 . 6  -

0 . 6  -

0 . 2  -

FIGURE 6.12 FIGURE 6.13

6.1.3. Estimation of W

The model (5.3.1) was simulated over 100 and 1000 samples. For 

convenience, the model (5.3.1) will be repeated:

= ek + e k

6k = ek-i + vk

V(ek) = 1, V(vk) = 0.01, e0 0 were used here.



The f u l l  l ike l ihood X in (5 .3 .6 ) ,  and the s t a t i s t i c  Rq of 

Norton (1975) were calculated, fo r  a gr id of values of  W.
•k

As can be seen in Fig. 6.10, there is a d is t in c t  peak in X , 

although the maximum l ike l ihood estimate of W is  somewhat 

biased. With 1000 samples (Fig. 6.11) the peak is even more 

d i s t i n c t ,  and the bias has been reduced. On the other hand,

Fig. 6.12 shows that Rq atta ins a badly defined maximum. In the 

larger sample (Fig. 6.13) there appears to be very l i t t l e  

improvement. D i f f i c u l t i e s  encountered with the maximum l ike l ihood 

choice of W fo r  real data w i l l  be i l l u s t r a te d  in Section 6.2.

6.2 Analyses of Real Data

The range of possible appl icat ions of the methods discussed 

in th is  thesis is c lear ly  very wide. Young (1969) has appl ied the 

techniques to the tracking of parameters in aerospace vehicle and 

chemical process models, and la te r  (1974) in hydrological models. 

Norton (1975) has estimated time-varying response character is t ics  

in a r a in f a l1-runof f  model. F ina l ly ,  Garbade (1977) has used 

the procedures in an analysis of the demand fo r  money in the 

United States. Some fu r the r  simple analyses are presented here, 

with the accent on the use of  the smoothing algori thms.

6.2.1 Rainfal l  trend analysis

There has been much discussion, in recent years, concerning 

the trends in ra in fa l l  patterns in south-eastern Austra l ia .  While
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Rain f a l l  Data Analysis
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some meteorologists (e.g.  Pittock, 1975) suggest that  a sharp 

increase in mean annual ra in fa l l  occurred in this  area around 1945, 

conventional s t a t i s t i c a l  tes t ing (Gani, 1975) has tended to repudiate 

this  theory.

In order to examine possible trends in the r a i n f a l l ,  annual 

records from a number of s ta t ions were examined. At each s ta t ion ,  

the annual ra infa l l  was modelled as



where 0, fol lows a random walk (2 .3 .2 ) ,  and e^ is as in (1 .1 .1 ) .

The resul ts obtained fo r  Stat ion 65 (Dubbo area) are typ ical of those 

obtained, and w i l l  be used to i l l u s t r a t e  the analysis. The record 

avai lable in th is  case was 62 years long, s ta r t ing  from 1913. The 

maximum l ike l ihood method of Section 5.3 was used to estimate W, 

and the f i l t e r e d  and smoothed estimates of  0^ obtained using th is  

choice of W are shown in Figs. 6.14 and 6.15 fo r ,  respective ly , the 

RW and the IRW model of parameter va r ia t ion .  Fig. 6.14 shows a 

clear increase in the estimated (smoothed) mean around 1945.

For the IRW, however, the maximum l ike l ihood method appears to 

obtain a value of  W which is  too small : because the var ia t ion 

in the mean is apparently s tep - l ike ,  the 'average va r ia t ion '  

over the whole sample is very small, so that the maximum l ike l ihood 

estimate of W gives oversmoothing of the mean estimate. In fac t ,  

i t  appears that the increment is  estimated as constant, thus 

providing the resu l t  o f  Fig. 6.15. Figure 6.16 again shows the IRW 

estimates, th is  time with a much larger value of W chosen.

Clearly, th is  resu l t  is  more physical ly  p lausib le, even though the 

resu l t  of Fig. 6.15 was obtained by the more rigorous maximum 

l ike l ihood method. This demonstrates the dangers involved in 

placing too much fa i th  in theo re t ica l ly  'opt imal '  methods which 

may be res t r ic ted  by the assumptions required in th e i r  development.

6.2.2 A simple a i r  qu a l i ty  model

Half -hourly  data on carbon monoxide concentration levels 

and wind speed were avai lable fo r  a sta t ion in the Canberra
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metropolitan area, and the simple model

h = V k + e k
was proposed, where

y  ̂ = carbon monoxide concentration in ppm 

û  = inverse of wind speed in m/sec.

Again, e  ̂ is as in (1.1.1).

Estimating 0  ̂ in this model as an IRW, using data for one week 

(starting 0000 hours, Monday) produced a smoothed estimate as in 

Fig. 6.17. Although no traff ic  flow data were available for the 

corresponding time period, i t  is apparent that the parameter is 

related to some variable of this kind. This suggests, as we would 

expect from physical principles, that an adequate model of carbon 

monoxide concentration would need to include traffic  flow rate. 

Although in this case such a conclusion may be considered obvious, 

i t  is apparent that the concept can be used in many similar situations 

to ascertain relationships between variables, or to suggest whether 

data on additional variables should be collected (see Young, 1977).

Air Quality Model

1 6 . 0 -

FIGURE 6 . 1 7



CHAPTER 7 CONCLUSION

In the preceding s i x  chap te rs ,  we have s y s te m a t i c a l l y  

worked towards the development o f  a framework f o r  the de tec t ion  

and es t im a t ion  o f  parametr ic  change in  the t r a n s f e r  fu n c t io n  

t im e -s e r ie s  model. The regress ion  model, which has been the 

o b je c t  o f  most o f  the e a r l i e r  work in  t h i s  area, has provided 

methods which have then been extended f o r  use w i th  the t r a n s fe r  

fu n c t io n  model. S i m i l a r l y ,  e x i s t i n g  f i l t e r i n g  a lgor i thms f o r  

es t im a t in g  parametr ic  change in  the t r a n s fe r  f u n c t io n  model have 

guided the way to the development o f  the smoothing a lgor i thm s 

f o r  t h i s  model. Subordinate to t h i s  pr imary aim has been the 

secondary o b je c t i v e  o f  u n i f y i n g  a number o f  techniques - some 

a n a l y t i c a l l y  based, some ad hoc -  which can be employed in  the 

d e tec t ion  o f  parametr ic  change.

There are a number o f  areas where f u tu re  work could be 

c a r r ie d  ou t .  In order  to i n v e s t i g a te  parametr ic  change in  

m u l t i v a r i a b le  models, o r  models w i th  coloured observa t ion  no ise,  

the r e f i n e d  IV-AML procedure o f  Jakeman and Young (1978) 

could be adapted to in co rpo ra te  a random walk model o f  parameter 

e v o lu t i o n .  However, because o f  the increased com plex i ty ,  i t  

is  doubtfu l  whether useful  r e s u l t s  could be obta ined in t h i s  

f ramework. Rather,  the s im p le r  models discussed in  t h i s  thes is  

could be used to  suggest whether a meaningful m u l t i v a r i a b le  or  

coloured noise model o f  the system under study could be obta ined.



Another area of  possible future in te res t  is in the select ion 

of the matrix W. As described in Section 5.3, the rigorous methods 

avai lable have quite severe pract ica l  1im i ta t ions in  a number of 

s i tu a t io n s .

F ina l ly ,  simple models with time-varying parameters may 

provide useful approximations to more complex, non-l inear models. 

The dominant modes of behaviour may s t i l l  occur in the simpler 

model, whi le avoiding d i f f i c u l t i e s  associated with the more 

complex models.
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