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ABSTRACT

This thesis examines methods for detecting structural
change in parametric time-series models. This detection
is accomplished through the use of random walk models of
the parameter variation. Although the model of main interest
18 the transfer function model, the methods developed are
largely adaptations of procedures used for regression models,
as the exact theory for the time-series casé i8 generally
too complex. An instrumental variable smoothing algorithm
for estimating parametric change is developed, and is shown
to provide good estimates of the variation. Other aspects
of the procedure are also discussed,including the estimation
of the statistics of the parameter variation. Finally, some
computer simulations and analyses of real data are provided.
These illustrate some of the main points discussed in the

thesis.



CHAPTER 1 : INTRODUCTION

1.1 The Model

In the following, we will be examining the fitting of
models to data where it is both meaningful and useful to consider
the measured data as being generated by a parametric model, whose
parameters may be either constant over the observation period or
functions of time. Suppose initially that the parameters are
constant. Then it is hoped that, for a sample of size N, a model

of the form

for some f, n, will explain the relationship between the m scalar
inputs, u£1), i=1,2,...,m; and the scalar output Y- The
p-dimensional parameter vector 6 is unknown, and it is the

~

estimation of the elements of this vector which concerns us.

In equation (1.1.1) e, is a random quantity which cannot
be measured. It is assumed to represent the lumped effect of
measurement error-and other stochastic disturbances interfering
with the exact establishment of the noise-free output xkéf(.).
Although the question of the form which f should take in

various situations is of great importance, it will not be

discussed here : it is assumed that f has a known form.

(1.1.1)



To be more specific, two basic models will be considered.
They could be generalized into the one model. However for the

“purposes of this exposition, they will be examfned separately.

(I) The regression model

In (1.1.1), let
(1) )

- T T
- f(.) = Uy 0, where Uy -(uk sees

6 is then an m-vector of unknown parameters : in this case p = m.

(II) The transfer function model

In (1.1.1), let

Here it is assumed that there is only one input, Uy, -

1+ a z—1+...+ anz—n

A(z_1) 1

-1 -n
b +b121+...+ an ’

B(z_l) 0

where 271 1s‘the backward shift operator z'lxk = X1

defined on all functions of the integers; z | = (z—l) 1.




0 (al""’an’bo""’bn) is the vector of unknown parameters.

In this case, p = 2n+l. Where the meaning is unambiguous.these

polynomials in 21 may be abbreviated to A,B.

Although the transfer function %-is strictly only defined

as a quotient in the Laplace domain, where z'-1 = e'St

, t being
the sampling interval, we can consider X, as the'solution to
the difference equation A(z'l)xk = B(z-l)uk., This eliminates
any possible objections to the usage‘of %a
In both models, the e, are independent and indentically

distributed (i.i.d.) random variables, with mean‘zéro and

variance o%; they are uncorrelated with the inputs u(i), 1=1,2,..

k

A number of generalizations can be made to both of the
models. For example, correlation amongst the ek's could be
introduced; the numbér of inputs Uy in model II, or the number
of outputs Y in both models could be increased;_ér the
explanatory variables in model I could be assumed to be measured
with error. It will be indicated shbsequently how some of the
modifications affect what is to follow. However at this stage,

the simpler models set out above will suffice.

« 5.



1.2 Parameter Variation

The estimation of the unknown parameters in both the
models 1 and II has been dealt with extensively in the
statistical and other literature. Kendal]‘énd Stuart (1961),
for model I, and Box and Jehkins (1970) and Young (1974; 1976)
“for model II, are some of mahy references. However, most of the
work in the area has been carried out'under the aséumption that
the barameters remain constant over the observation interval. |
Often, in situations whefe the measurements are made at shccessive_
poiﬁts in time,‘it is reasonable to suppose that the relationships
do change over time;.or at least it would bé df interest to
‘ascertain <f they do, particulakly where theré is some a priori
reasdn to believe this to be the case. As a result, it is
useful to generalize the two models given, by rep1acing 6 by Qk’
and A, B by Ak, Bk_in model II. We are still intereéted
in estiméting Qk’ k = 1,2,...,N, but the problem has now become
more complex. The number of unknown parameters is now pN + 1,
which is a monotoni¢a11y increasing function of the sample
size N. From the point of view of statistical analysis, such a
situatioﬁ is unsatisfactory, since there are more'parametérs to

estimate than there are observations.

Of course it must be emphasised that the problem may not be
as complicated as this in practice. For example, if the estimation
procedure used indicated some specific pattern of parameter

variation with time, this variation could be related to some other



variable. The re]ationshﬁp would then be built into the model,
eliminating the need for a different parameter at each time pofnt,
possibly using a similar approach to the intervention analysfs of
Box and Tiao (1975). Other simplifications may occur, as in Young
(1969), whére the variatﬁon of a highly-time-varying parameter is

*
largely accounted for by modelling the parameter Qk as Qk = Tkg K

where Tk is a matrix of highly varying, but measurable, state
N * . -
variables, and 0 is a very slowly, and hence more easily modelled,

time varying parameter.

In general, however, there will be a problem of estimating
time varying -parameters, and we now consider a number of ways of
approaching this problem. Before doing so it is useful to
distinguish between off-1ine (or b1ock) and on-line (or recursive)
pfocedures. An on-line procedure is one where the estimate of a
parameter at a given point in timertan‘be obtained directly from
the current data, ahd the éstimate at the previous point in time.
Block procedures are those where all data must be pchessed at |

each time point to obtain the estimate at that time point. We

" will now discuss a number of estimation methods for time varying

parameters.

1.2.1 Non-uniform data weighting

This procedure has been used in engineering app]icationsf

(Young, 1969; Jazwinski, 197Q). In an off-line estimation for a

parameter vector assumed constant, all data carry equal weight



with reépect to the estimatioh, in the above two models. If,
however, we wanted to assume that the parameter may be different
at each time point, we can, at the expense of estimation error
variance, consider 'current' data as carrying more weight in thév‘

estimation, in some way.

There are various ways in which this can be accomplished.
The simpliest is to estimate the parameters at a given time only
using the data in a certain interval about that time. Thus, the
estimate ét time k would be obtained only from data in the time o
interval (k—t,‘k+t), where k-t>1, and k+t < N. A more
sophisticated altefnative is to expongntia]]y weight past data,
so that they carry less weight as they become 'older'. The main
difficulty with this'type of scheme is the arbitrary nature of the
weighting which will, of necessity, result in general. Furthermore,
a.stationary weighting procedure, that is, one which weights in the
same pattern about each time point, may be foo restrictive to
detect all types of parameter vériation. On the other hand, it

js difficult to develop any non-stationary procedure.

1.2.2. Stationary stochastic parameters

This approach has been considered quite extensively
in the econometric 1iterature-(Hi1dreth and Houck, 1968;

Swamy, 1971; Rosenberg, 1972; Pagan, 1978). It has been



applied mostly in econometric models, which are, generally,
mu]tivariatevregressions with some explanatory variables (inputs)
measured with error. The procedure is to suppbse that the

values of the unknown paraheter gk, k =1,...,N are a

realization of a stochastic process Qk =0+ Ek, where gk is

a mean-zero, wide sense stationary’stochastic process. The
earlier work (Swamy; Hildreth and Houck) took the £ s i.i.d.,
while more recently, they have been mdde]]ed as'an'autoreéression
(Pagan) . Although this allows time dependence, it still |
implies that the parameters are estimated with an identical
distribution at eachbtime point, so that large devfations may
not be detected very clearly.  Our aim here is to ehp]oy some

" methods where such detection is accomplished.

1.2.3 Non-stationary stochastic parameters

This‘is the method which we shall be concerned with
in the remainder of this thesis. No rigorous attempt will
be made at this stage to define the type of variation we could
hope to model in this way. However the following general

assumptions (based on Bennett, 1976) will prove helpful.

(1) The parameter variation follows some sort of ‘pattern’
which is not totally random, whether stochastic or
deterministic. Thus the parameters are not a

realization of a white noise process.



(ii) The parameter variation is independent of the

observation error ek, in the two models I and IT.

Taking these assumptions into consideration, it is
appropriate to choose a stochastic process which 1s.not too
restrictive. Here once again, it is difficult tb be'rigorous.
Nevertheless what fs meant, roughly, is that conceivable
parameter variation (i.e. sample pathé) does not 1lie too far
into the tails of the distribution of the stochastic process.
At the same time, the process should have some memory, so that

past data is not a]togethef discarded. The first requirement

‘leads us to a non-stationary process, while the second,

combined with the»need for simplicity , suggests the use of a
Markov process. The class of processes we choose are the
random walks : Markov processes with state-space
p-dimensional Euclidean space, and variance unbounded1y.

increasing with time.

The major aim of this thesis js to consider the
estimation of iime variable paramefer (non-stationary)
dynamic systems in which the parameter variatioh can be
described by a random walk of some kind. In Chapter 2,
the random walk méde] will be examined in more detail, and'
various approaches\to the estimation of the parameters |
will be considered. In Chapters 3 and 4, algorithms will be

derived for estimating the parameters as a realization of a

random walk in the models I and II, respectively. A

number of additional details concerning the utilization of



the algorithms wiIl be discussed in Chapter 5. In Chapter 6,
" the results of some simulations and analyses of real dafa are
reported, and Chapter 7 mentions some extensions to the
procedures discussed in the thesis, and outlines some

possible future wokk that could be carried out.

It may be noted that throughout the fo]]owing chapters,
there is a dichotomy in the approach being taken. In places,
it will appear that the aim of the methodology being developed
is to track any pafametric variation which may occuf. Elsewhere,
a more rigorous statistical approach will be taken, and the
underlying parametric variation will be assumed to be a random
walk. Of course, it may be sa1d~that any stétistica] mode]}ing’.
implicitly involves such a dichotohy. However it is preferred

here to make it explicit.

Young (1969; 1974), Norton (1975) and Garbade (1977)
are the most important sources for, and are most closely

related to, this thesis.



CHAPTER 2 : THE RANDOM WALK MODEL

2.1 Background

The use of the random walk in the context of varying
parameter models appears to have been first suggested by
Kopp and Orford (1963), who used it to track parameters in
an adaptive control system using a re-linearized ok extended
Kalman Filter. Lee (1964) applied a random walk to obtain
estimates of parameters varying in time, and Young (1965;
1969) expanded on this in an instrumenta]‘variable context.
As mentioned in Section 1.2.2, autoregressive type schemes
have appeared in the econometric Titerature. However, in

this area Garbade (1977) seems to be the first to track

variation of regression parameters, rather than model them in

a stationary manner. Norton (1975) introduced the added
advantage of smoothing (see Section 2.3) in a set-up

similar to model II.

2.2 Types of Random Walk

The simple random walk (RW) has appeared in the
context of Section 2.1 most frequently (Lee, 1964;»YoUng,
1965; 1969; Bennett, 1976; Norton, 1975; Garbade, 1977).

Here we take as the model of parameter variation

Ok = %1t %

10



N
where {vk}k=l is an i.i.d. sequence of random vectors with

mean zero, and variance-covariance matrix Q. This model has

the advantage of simplicity, both in concept and implementation.

However, the model has a definite restriction in situations
whére large changes may occur over small time intervals. The
~value of Q required to track such changes may mean that the
random walk is very 'jagged' (See Section 6.1 ). To overcome
this difficulty, Norton (1976) has employed the integrated
random walk (IRW). Here it is sUpposed that the first
difference of the process is a simple randomlwaTk. It is
necessary to augment the parameter vector 6 by the 1ncfement

vector S, , so that the number of parameters is doubled. The 7

model is now

% k-1 J
=0 F Iy, (2.2.1)
Sk Sk-1
where .
I 1 0
P P
o = r =
01, I

~

Vi is as above, and Ip is the pXp identity matrix.

Clearly, it would also be possible to use random walks
where the second or even higher difference was a random walk,
with a corresponding increase in the size of the

parameter vector.

11



Something of a compromise between the IRW and the RW is the
smoothed random walk (SRW) (Young and Kaldor, 1978). Here the
effect of the random walk increments occurring in the IRW is
éomewhat diminished.by the inclusion of the coefficients di’
which are typically in the range 0.9 - 1.0. Then the model of

parameters variation is as in (2.2.1), with now

a B
o =
0 I
p
where
a = diag(al,az,...,ap)
g = diag(l—al,l—az,...,l-up)

The three types of random walk all have zero mean, and if

we assume 90 =0, S0 = 0, the random walks héve variancesf,

respectively
vie, (M) = k7
k-1

v(e, (1) = (57 iz

- ‘ i=1

(SRW) _ , k-1 . K k- k-1, K ko

V(e = ( + 2 B)Q(a™ ~ + I o 'B)

~ i=3 =1

K k.. kL.
+ 5 (2 o)l £ oK Tp)
j=3 i:j 1=j

T Here, and subsequently, we may use the word 'variance'

to ‘denote the variance-covariance matrix of a vector
random variable, if the meaning is unambiguous.

12



The use of any particular one of these models should
depend on the context. In general, because of the 'parameter
tracking' approach being taken here, a selection of these models
can be employed, and further in?estigations carried out in accord
with the results. This point is considered in more detail in

Chapter 6.

2.3 Parameter Estimation in a Random Walk Model

As a result of the discussion in Section 1.1 and 2.2,

the model we now consider is an observation equation
Y = Xt e (2.3.1)

where all quantities are defined as in Section 1.1, with 6

replaced by 6, in (1.1.1); and a parameter evolution equation
Ok 7 g F I (2.3.2)

where all quantities are defined as in Section 2.2, ek being
augmented to include Sk in the IRW and SRW models, and &, T

depending on the random walk chosen.

There are a number of different approaches that can
be taken to estimate Qk' Since it has been postulated that
the parameters are random variables, the most complete knowledge
one can have of them is their exact density function, if we
assume distributions absolutely continuous with respect to

Lebesque measure throughout. This requires knowledge of the

13
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density functions of 80, and v Vo € for k = 1,2,...,0. We will

k
denote densities by p(.) where the argument is the random
variable whose density is being represented. Now the Chapman-

Kolmogorov equation (Jazwinski, 1970) gives

PU&) = Ip(8 18y 1 )P(8)_1)d8y 4

as the equation of evolution with time of the densities

p(ek), = 1,2,...,0. While the process {6, }k 1 is not observed,

k
whose realization is denoted by Yi in (2.3.1). Thus, without

a re]ated process {Yk}k 1 is observed. Y,  is the random variable

additional a priori information, the best that can be done is

to obtain information about p(ek) from some subset of {yl,yz,..,,yN}.

It is clear at this stage that the problem is cast in
exactly the same framework as the discrete—tjme state estimation
problem (Kalman, 1960). The latter situation is concerned with
estimating the value (state) of a discrete time stochastic
proces§ {fk}E=1' The major difference between the fWo problems
afises ffom the fact that the states have physical meaning,,
and the stochastic process describing their evolution is usually
derived from physical principles, In the present situation,
however, the parameter evolution is described by the random walk,
which it is hoped will accommodate the true behaviour of the
parameter, even though a 'typicé]' realization of the random

walk may not resemble the parameter variation at all.

Because of this, the choice of the subset of‘{yl,yz,.;.,yN}



to be used in the estimation of Qk’ is constrained. For example,
in a state estimation problem it may be possib]e,tq make some
inference about p(&z) on the basis of {yl,yz,...,yg} where

k < £ (this is the prediction problem considered‘byiKa1man,

-1960) if physical knowledge of the fk processvprov}des
information on p(§k+1),...;p(§2). In the parameter estimation -
situation, however, the use of the random walk means that the
most that can be known about p(gg) on the basis of {yl,yz,...,yk}»

is containéd in p(Qk).

Therefore, we will always restrict attentionbto.the,problem
of making inferences about p(gl) on the basis of {yl,yz,...,yk},»
where k > 2. It should be noted fhat if k = &, this corresponds |
to the filtering problem of state estimation. If k >.2 it

corresponds to the smoothing problem (Kalman, 1960).

| - Taking a Bayesian approach because only one realization
of the observation process {Yk}rkl=1 is available, the density
function of interest is now p(ellYk) where now we define

y T
~k

= (Yl’YZ""’Yk)’ This gives all obtainable ‘information
concerning the density conditional on‘the observed data, and
constitutes the complete (Bayesian) solution to fhe problem
(Cox, 1964). This density is called the a posteriori density,
and is given by Bayes theorem as |
(oI, - p(Y, 10,) p(0,)

p(!k)




It now remains to be decided what will be called an estimate
of eg, if p(62|Yk) is known. The choice can be made by minimizing

T It can be shown

the expected value of some loss function L.
(Sherman, 1955; quoted in Cox, 1964), that if p(gQIXk) is symmetric
about its mean, and unimodal, then E(L) is minimized by taking as
an estimate the conditional meaﬁ E(Q Izk). On the other hand,

Sage and Melsa (197f) show that, for a quadratic loss function,
the expected loss is minimized by the~conditionaT mean, and for

a loss function uniform in a symmetric interval about the origin
and zero elsewhere, the expected loss is minimized as the interval

size +~ 0 by .6, such that p(leYk) = max P(GQ!Yk) - the maximum a
| )
postertori estimate. Then if p(92|!k) is unimodal and symmetric,

these two estimates will coincide. In particular, this occurs

when p(elek) is Gaussian.

One of the main difficulties in evaluating any solution to
the problem of pérameter tracking lies in the choice of estimation
criteria. If the parameters were actually varying as a random
walk, and the density p(92|!k) cou]d be obtained exaét]y;'thenr

the conditional mean estimate 5g will be unbiased, since
E(9,-0,) = E(E(8,[Y)) - 0,) = E(8,) - E(8,) =0

It will also be minimum variance, since it minimizes the quadratic

loss function. Pagan (1978) considers the Tikelihood obtained

¥ That is, some function L of the difference between the estimate
and the true value of the parameter, such that L(0) = 0, and
for convex p, p(a)>p(B)>0 implies L(a)>L(B)>O0.

16 -



under Gaussian assumptions on Vo € and 90, with pérameters
following a stationary autoregression, in model I. He asserts
that thevmaximum likelihood estimates of E(QO), V(QO), Q, o®

“and ¢ are consistent and obey a central Timit theorem. However
his proof does not include the non-stationary random walk
considered here. Moreover, since the true parémeter va?iation is
not gehera]]y assumed known, these prbperties are not necessarily
useful. It may be that the best criteria available in general |
is a sum of squared or absolute deviations. For simulated data,
these deviations can be the differéncé betWeen estimates and known
vé]ues of time-varying parameters. For rea]-déta, they can be -

j-stép ahead prediction errors.

Because parameter estimation is usually done off-line, wé'
have the opportunity to make use of as much data as possible. Thus
the estimate 62, based on p(QQIYN), should be used wherever possible.

In the case where we have a quadratic loss function, and an estimate

el is required which is linear in Yo¥oseeesYys the advantage of this

can be seen very clearly using the 'innovations approach' (Kailath

and Frost, 1968; Aasnaes and Kailath, 1973).

As before, we take Y T. (Y.,Y,s.0.sY

12°2° L
Y, can be orthogonalized by defining the linear imnovations

)}) fOY‘ 2/ = 1,2,.--,N.

£y ='Yk - Yklk—13 k=1,2,...,N, where Y1|0 =0 (2.3.3)
§k[k-1 denotes the minimum quadratic loss, linear estimate

of Yk based on‘{yl,yz,...,yk_l}. If we define an inner product on Qk’
the Tinear space spanned by {Yl’YZ""’Yk}’ by EXY, then

17



~
e
~ o~

~

{ _
lek can be seen asl the orthogonal projection of 6 - onto Qk.
It is given by !

~ k

Qzlk'= z {E(o 0, ) /E(e | )} €, (2.3.4)

(suppose k > 2).

Let

= )7
R(2) = E(9,-0 ~z|k %, ~sL|k ’

the variance of the smoothed estimate;

. ' \
- S(2) = E(Qz Qzlz 9 ~z|z ’

the variance of the filtered estimate.

Then : : ‘
= B s {E(8e ) E(e )
0 Z /E } e
~llk ~2I2 t=0+1 ~2 t t
so that
, A k |
~Q ~£|2 92 - Qllk t X {E (NQ t)/E(E )} €

t=2+1

Multiplying each side by its transpose, and taking expectation gives

: k .
S(2) = R(2) + E (9,0, )( 2 (8 (8,6,)/E(e ) 1)

kK k .
+ E( ¢ {E(6,e,)/E(e.®)}e )T  E(6,e,)/E(e.2)}e
Ll s MR e U R Egegd R e T ey)

| k - k T
R(2) + 0+ E( 3 JE ) )z {E(8 e, )/E( 2)}e
+ R(L) + 0+ o (Mzet) (e €, L 0,61)/E(e ) }ey)
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since the error in the orthogonal projection onto Qk'is orthogonal to Qk.

. Furthermore

k T
S(2) = R(2) + ¢ {E(e )/E(e, %) HE(6 JE(e,.2)} E(e,?

from the orthogonality of €0+1° g2 &

Thus

k .
S(2) = R(2) + 5 (e )E(e) /E(e, )

Therefore S(2) > R(%), since the second term is a symmetric,
positive definite matrix. Thus the filtering error variance is

at least equalled, and normally decreased, by smoothing.



CHAPTER 3 : ALGORITHMS FOR ESTIMATION IN MODEL I

3.1 Introduction

In this chapter we will derive a number of algorithms for‘

the computation required in the estimation.procedures discussed -

in the previous chapter. Some other algorithms will also.be discussed.

Referring to equation (2.3.1), (2.3.2), we have

YUl 0 te ~ (3.1.1)
B = 90, _1 * Ty, (3.1.2)

It is possible to distinguish two sets of (posSib]y over]apping)
conditions which will result in the same estimation procedures

in model I.

1) The densities p(go), p(ek), p(yk), k=1,2,...,N are all

Gaussian, and the estimate required is either the maximum a

postériori or the conditional mean estimate. Then, because 6
is linearly related to 950 and s Yo k= 1,2, .,N,the
conditional density p(en|Yk) will also be Gaussian. It is

thus completely characterized by its mean and variance,
and the mean also gives the maximum of the density. The
conditional mean, which is to be used as an estimate, will be

Tinear in Yys¥oseeasYys SO that a generalisation of the condition

js to suppose that the conditional expectation E(0,]Y ) s

20



linear in Yys¥ooee oYy
2) The densities are not necessarily Gaussian; a linear function
of ¥1s¥pseesyy is required to estimate 6,; and the loss

function is quadratic.

3.2 Fi]tering Algori thms

Under each of the sets of conditions (1) and (2) above,

and the assumption that Q and o? are known (see Sections 1.1, 2.2)

a recursive algorithm can be obtained which provides estimates

~

lel, successively, for 2=1,2,...,N. This algorithm corresponds

directly to the well known Kalman filter of state estimation theory:

Poiou,
A _ A . k ka ‘ T A
O = ®0yq * ""167"(yk T Uy 90y ) (3.2.1)

P

- T T ‘
Pklk—l = ka-1|k—1® + TQr _ ; (3.2.3)

_ A ~ 0T it
Here Pk|2 = E(Qk'lez)(Qk'9k|z) for 2 = k-1,k,

where lek—l =90, 4

We usually assume 6, is a mean zero random variable (Gaussian

under conditions (1)), with a large diagonal variance-covariance

i s, T 1T
Kk Prgien ™ PO F WPt Y Prik-r (3.2.2)



matrix, to indicaté very little confidence in the initial estimate

60 (see Section 5.3). This represents an approximately uniform

prior distribution.

Many derivations of this algorithm have appeared since

- Kalman's original solution (ka]man, 1960) which was under condition

(2) (Rauch, Tung aﬁd Striebel, 1965; Kailath and Frost, 1968;
Young, 1965; 1969; Duncan and Horn,v1972). The derivation of
Bryson and Ho (1969) possibly gives the most lucid solution under
condition (1). Thése authors derive equations of evolution for
the conditional mean and variance in the densities P‘?glfg)-
Although there are some alternative forms of this algorithm,

they are very similar with respect to the criteria of computational

efficiency and numerical stability.

3.3 Smoothing Algorithms

In the case of obtainihg an estimate of 6 on the basis
of !Q, for k>% (the smoothing problem) under either conditions
(1) or (2), the solution is not so'clear1y defined. HNorton ﬁ1975)'
has exémined a number of different solutions to the problem, each
of which has Qarious»advantages and disadvantages in terms of the
two criteria of computational efficiency and numerical étabi]ity.
Nevertheless, it should be noted that theoretically they é]]l‘
providé the same result, and are obtainable from each other,
although by fair1y lengthy manipulation. Once again Q and ozvare

assumed known.
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The simplest form of the algorithm is obtained by
maximizing the Gaussian density p(eo,el,...,eNlYN) with respect
to eo,el,...,eN to give the conditional mean (or equivalently,

the maximum a posteriori) estimate -under condition (1). By

Bayes' theorem

~

POW19s-- 20y )P(80-87s - -5 8y)

P890+ -8y V) - -
p N)

o~

N N

T p(Y, l8,) T p(e,le, )p(6y)
- k2l k=1 ' o (3.3.1)
| p(Yy)

using the Markov property of {6, } N

™ k=0
Therefore, the maximization of this density is equivalent to |
maximizing

N .

N |
F= mop(Y |6,) 1 p(6, |6, -)p(6,), with respect to 6,,6,,...,6, . (3.3.2)
oq Kk o ek k=170 | 2072177 RN

. e T »
Now 8, 6, ; has density which is N(@Qk_l,PQF ), and Yklgk has
density which is N(g Tek,dz). Therefore the sum of the quadratic
~forms in the exponents of the densities in (3.3.2) is
N

X |
3 (yk‘BkTQk)z *7 (9k‘¢9k-1)T(FQPT) 1(9k‘¢9k-1)

J=21
T k=1 k=1 i

+ 6 )T

(89-00) Py (8g-8y) (3.3.3)

where eo.and P0 are the initial estimates as in the filtering case.
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Typically

o = - 106
o4 0, PO 10 Im'
J can be minimized by differentiating with respect to
0, and W where the constraint o, = gt W k= 1,2,...,N
is introduced via Lagrange multipliers Ak’ k=1,2,...,N. Then we

have to differentiate

N
1 T 1 Ta-1
J° = 5= Z (v,-u, 8, ) +5 Zw Q w
207 ke 2k T2 kY
1, A T =1, -2
+ 7 (80-89) Py "(85-84)
-1
+ kil ﬁk (9k+1 - ¢9k_— Pwk) . (3.3.4)
with respect to Wk’gk’ﬁk‘
Doing this results in the equations
0 = 00,y - TQr A g (3.3.5)
ka1 N = %N A | S
u n '
M T Pyt ;Z(yk+1‘5k Oern) Kk = 01, 0N-1 - (3.3.6)
x =P N6 -6, | (3.3.7)
217 "o oonT s
éN = 9 (3f3.8)

These equations constitute a two-point boundary value problem,

with split initial conditions (3.3.7) and (3.3.8). We can solve |

the problem by obtaining 6N|N from a filtering run as described

in Section 3.2 to give terminal conditions on both A, and eNIN’



and hence solve the equation backwards in time. Norton shows,

however, that the resulting algorithm is potentially numerically

unstable, by writing the solution in the form

A A+

~k’

A A

Ok|N O+1|N

where tk does not involve Ak or Q'IN. Then it can be shown that

P haé eigenva]ues outside the unit circle.

Rauch, Tung and Striebel (1965) maximize the marginal density
p(o k’ek+1|YN w1th respect to ek Okt This is equivalent to the
f1rst‘procedure, s1nc¢ the random variables gk’9k+1’ condifioha] on
!N have expected value equal to the corresponding part of the
expectation of 6 ~0’~1"“’9N conditional on YN’ and these expectat1ons
maximize the corresponding dens1t1es Manipulating the dens1t1es

once aga1n yields a quadrat1c form to be m1n1mwzed and the

resulting algorithm is

2 : T -1 2

Ok N~ ~k|k P Pkt (ek+1|N Bk (3-3.9)
with notation as in equations (3.2.1), (3.2.2), (3.2.3). This
‘form avoids the use of the adJo1nt var1ab1e Ak, but introduces the
numerical comp]1cat1ons of 1nvert1ng Pk+1|k at . each step. The
storage requirements of this algorithm are also higher, because

~

lek’ k|k and Pk+1|k need to be saved from the}f11ter1ng fun.



Norton concludes that the most useful form of the smooﬁhing
algorithm in this case is that derived by Bryson and Ho (1975)
under condition (1). The algorithm can also be derived from the

~general form of the smoothing solution under condition (2), given

in equation (2.3.4). Evaluating the covariances in this equation,

and defining the variable A recursively by

u ~
~k

u "y |
M V(@ - 57 g - Y 9y (8-3.10)

M ™ U= Pratien o7

M =0

we can obtain the smoothed estimates recursive1y backwards either

from : ‘ :
0,1 =0, 1 =P 0 A (3.3.11)
SKIN T Zklk T Tk|K kK | o

or
0, . = @’1(5 + rQrTx ) (3 3 12)
2k | N “k+1|N Nk | e

Nokton shows that in this case, the backward recursion is stable.

@ther derivations are éTso considered by Norton, but are
rejected because they provide a]gorithms which either involve
matrix inversion or require greater storage space than the
a]gorithhs given above by (3.3.10), and either (3.3.11) or
(3.3.12).

The varianée-covariance matrix of the error O - éklN in
fhe smoothed estimate can also be obtained in a number of ways.

Rauch, Tung and Striebel (1965) give
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Pen = P Pk|k¢Pk+1|E1(Pk+11N" Pk+1|k)Pk+1|i1¢Pk|k3

| Bryson and Ho (1975) avoid the matrix inversion with a slightly
lengthier algorithm. In gehera], however, it is notAésséntiaT to
compute this covariance, since, unlike in the casé of the filtering
algorithm, it is not needed to generate the pakameter estimate -
SklN. Of course, this will mean that the exact error covariance
properties of the smoothed estimate will not be available to the
analyst. However, since PkIN is bounded above by Pklk’ it may

well be that if Pklk is "small enough", then this will be

sufficient information for most practical purposes.

It should be noted that in all the algorithms in this
chapter, all the matrices, Pk]z’ % = k,k-1, k=1,2,...,N, and Q
can be divided through by o? as a normalizing factor, and the
algorithms when processed using the normalized form. This

eliminates the need for o?, but of course P will not then

k|
be the true error variance-covariance matrices.



CHAPTER 4 : ALGORITHIMS FOR ESTIMATION IN MODEL II

4.1 Introduction

* Once again-We refer to equations (2.3.1), (2.3.2).

For model II, we have

By
Yy = Ki'uk + e . (4.1.1)
O 7 k-1 T I (4.1.2)

In this case, the relationship between 6 and €
k=1,2,...,N, is not linear. Therefore under conditioh (1) of
Chapter 3, while p(ek) is still Gaussian, not all conditional
densities are now necessarily Gaussiah. This can be clearly
illustrated by taking a simp]e case.

If Bk(z'l)_/=3 by = by and A 12 1

-1, . .
k(z )y =1+ a1, 2 = 1+az7,

then Yypr = Prareer = ek * Sk

= Drartirr ~ A1 OV = %) * g

Therefore the density p(!k), being the sum of random variables
some of which are products of Gaussian random variéb]es, is not -
itself Gaussian. Hence conditional means and variances cannot

be obtained so easily. Procedures based on condition (2) also
encounter difficulty because of the non-linearity : the quantities
E(6,e.)> E(e.®) in (2.3.4) cannot be evaluated easijy as they

could be for model I.
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It can be seen that there is not onc. general prbcedure for
deriving algorithms to estimate 0, in this case. Moféover, not all
methods produce the same estimate, as was the situation in the
previous chapter. A Targe numbcr of eslimation algorithms have
been employed in general non-linear state estimation problems.

For example Sorenson and Stubberud (1968) obtain (appfoximate) _ .
equations of evolution for conditional means and variances by
assuming that the conditional densities at each time point are
Gaussian, and computing their means and variénces. The context
under consideration is one where second-order non-linearities are
the only non-negligible higher order effects. Another general
solution can be obtained under condition (1), with the required
estimate being the maximum a posteriori estimate. Then following

Cox (1964) we can proceed from an equation analogous to (3.3.1),
to obtain

N N -
1 e 18) 1 PO 18.1)p(8)

P(B5075..50y]Yy) =
~01P T TN : p(!N)

Here, once again assuming Q, o* known, the exponent in the densities

of interest is

(y,-x,(6,))% + = 2 (6, - 06 )T(FQPT)*l(e - %0, .)
YK 2k 2 op ok T k-1 Sk T k-l

1

N
202

J =
k=1

1 I D
+ 5 (89-99)Pg " (8g-8¢) (4.1.3)
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where, for model 11

a8 (27
xk(gk) = S uk, (4.1.4)
Ak(z )
and PO’ 0, are defined as in (3.3.3).
The minimization of J with respect to 0 can be

~0’~1’...,~N
accomplished by introducing the Lagrange multipliers as before

in (3.3.4) to convert the problem into one of minimizing‘,

N N

1 1 T.-1
=2 T (y, -x.(6))2+% T w Q w

207 2 Yk T MKk 2 ek
1. AL ~

+ 7 (85 - 89)Pg "(8y - 85)
N-1 o

bk (1 = 98y = T )

with respect to 5k’9k’ k=0,1,...,N and Wi

Setting the derivative of J° with respect to these quantities

k=1,2,...,N.

equal to zero gives the discrete non-linear two point boundary

value prob]em+
6 = %6 - rQrTA (4.1 5)»
“k+1|N “k|N g : .1.
ox, . .
k T1 - 4
A, = O - (5518 —n ) = (y - x, (0 ))  (4.1.6)
~k  TRk+l T tagy o, 9k+1|N o? Vk+l k*~k+1|N |
with boundary conditiqns on 90|N and %N'

T A similar two point boundary value problem can be obtained by
applying the discrete maximum principle (Sage and Melsa, 1971)
to (4.1.3).



It is not possib]e to convert (4.1.5)-(4.1.6) into a one-
‘sided boundary value probiem by obtaining 9N|N from a filtering run,
as was done to solve (3.3.5)-(3.3.8). This is because the filtering
maximum a posteriori solution cannot be obtained in closed form.
There is a Vast armoury of numerical techniques éyai]ab]e to solve
the boundafy value problem, but they are cumbersome
and do not guarantee a solution, particularly when a good initial
estimate is not available (Sage and Me]sa,'19712). Sage and Ewing

(1970) demonstrate one example of such a procedure.

Because of these difficulties in obtaining algorithms for
model II, we now turn to examine procedures which take advantage
of the special nature of the non-linearity in (4.1.1). We continue

to assume Q and o2 known.

4.2 Least Squares Estimation

Although it is true that many of the estimation methodé
described in this thesis can be placed in a least équares context,
the term is'used here to refer.to the approximating of a corre]ated
sequence of random variables by an i.i.d. sequence. If we

write (4.1.1) as

Ay = Bkuk + Akek (4.2.1)

- J 2.2

then | Yy * Bkuk - (Ak-l)yk te (4. .‘)
%

where
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Equation (4.1.2) now provides a form for the problem, such
that if e: is assumed i.i.d., with mean zero and variance o?, the
filtering and smoothing algorithms from Chapter 3 can be applied,
with u T

~

= (-yk_l,...,-yk_n,uk,...,uk_n). For negative j, uj and Y;
may be taken as zero. This will be discussed in more detail in
_Section 5.2. The disadvantages of this scheme is that biased

estimates of the parameter values may result (see Section 6.1).

- 4.3 Extended Least Squares Estimation

This procedure is used by Norton (1975) in the estimation

of 8, in the model
Ak = Bl * Cyey . | (4.3.1)

Here all quantities are defined as in Sectioh 1.1, with

A

k(zfl) =1+ ¢ -1 -n

lkZ .0t anz

The parameter evolution equation is as in Section 2.2, with

ek now defined as

T :
,Qk - (alk,..-gank,bok,...,bnk,c1k,...gcnk)

Applying Norton's method to (4.2.1) there is some redundancy,
since the parameters a1k;...,ank are estimated twice. The concept,

however, can still be used. Rewriting (4.3.1) as

Vi = By * (A-Dy + (Cp-l)ey + ey
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the model is once again in a form where the algorithms of

Chapter 3 can be applied, except that the terms (Ck—l)ek involves

the unknown noise terms ek-l’ek-Z"“’ek—n'v These terms can,

nevertheless, be estimated recursively via

A ~ ~

€-r = Yk-r ~ Ek-r?k-r|k-r

where now
T A ~

Uor © ('yk—r—l"'""yk—r-n’uk—r""’uk-r-n’ek-r~1"f"ek-r-h)'

Noise terms with negative indices are taken at their mean value,

~ zero, or can be estimated in other ways (see Section 5.2).

This procedure corresponds, in the case of constant
parameters, to the RELS algorithm of Soderstrom et al., (1974) or

the AML algorithm of Young et al.,(1971), or Young (1974), who

-a]so use the method with time-varying parameters. While it is-
‘quite satisfactory in many situations, difficulties may arise.

These may be due firstly to the abovementioned redundancy arising

in the model under consideration here, and Secondly to possible

large inaccuracies in early noise estimates.

4.4 Instrumental Variab}e Estimation

We once again rewrite the equation (4.1.1), this time in

the form

Yy = By - (Ak-l)xk te (4.4.1)
where B

- Kk
xk = Ak Ug» as before.



Then, if X2 the noise free output, were known, the model
would once again.be in a form where the algorithms of Chapter 3
could be applied. Now since esfimates of Ak and Bk,-k = 1,2,...,N,
can be provided by either least squares (Section 4.2) or extended
least squares (Section 4.3), it is possible to also estimate

Xi> via

Substituting in (4.4.1), this gives an observation.equation of
the form

Yy = By - (Ak-l);k +oep.
We can estimate Ak and Bk again from this equation, taking
ukT'= (';k-l""’";k-n’uk""’uk-n) (4.4.2)

~

This procedure can be iterated until there is no

significant change in the estimates.

I't would be difficult to justify this analytically, and
indeed, there is no guarantee that the iterative procedure would
even improve estimates. However,‘the method is closely related to
that of Young (1969; 1974), which is devé]oped in the instru-
mental variables framework. Considering first the constant

parameter situation, we can write, as before,

*
Yy = Buk - (A—1)yk toe o (4.4.3)

where,eE> = A ey It is known that the least squares estimate of
’ *
A and B in (4.4.3) is biased, due to the correlation between ey

and Yio but that the use of an instrumental variable can remove
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this problem (Kendall and Stuart, 1961). The instrumental

variable vector chosen by Young et al., (1971) is

T _ ~ A N !
= (—xk_l,...,-xk_n,uk,...,uk_n)

which satisfies thé criteria of being highly correlated with
- .
X =

The estimates X; arc obtained from a previous cstimate of the

- . 3 . ) *
Xk—l”"’Xk-n’uk""’uk-n) while being uncorrelated with e, .

parameters, via Xj = (B/A)uj. The resulting (recursive instrumental

variable) algorithm is

~ o ~ |
0 = Opr ¥ P 2 P Ty - g 0y (A44)
i . T, T, | |
Pl ™ Pret ™ Pk ¥ 2 P 5 Py | (4.4.5)
where
2,7 = (- \- u u, )
Zk Yk-12 > Vken? Y2 Yn’

and the procedure is iterative as before.

The extension of the a]gokithm (4.4.4)-(4.4.5) to time
varying parameters is made in Young (1965; 1969) with the
resulting algorithms differing from the filtering form‘of the
algorithm outlined above only in that z is replaced by gkj
throughout. The method of updating thé auxiliary model
gklﬁk also differs. In Young (1969) , the auxi]iary model is

kept constant during each iteration+.' In the formulation

T This was due to limitations on the analog equipment used in the
hybrid (analog-digital) mechanisation of the corresponding
algorithm in the estimation of differential equation models.
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implemented as above, the auxiliary model is taken from the

smoothed estimate obtained in the previous iteration, for
each time point. It should nevertheless be pointed dut that quite

reasonable results can be obtained, in many cases, if the auxiliary

model remains constant (see Young, 1969).

4.5 Refined Instrumental Variable Estimation

One of the moét frequently-app1ied methods of overcomihg
problems of non-linearity in state estimation contexts is through
the use of a linearization of the observation and system equatiohs
about some reference trajectory, which may either be a successively
updated state estimate or an appropriate estimate obtained by
some other means.  For examp]e; we could obtain an approximate
(fj]teréd) estimate in model II by proceeding as follows.
Under condition (2) of Chapter 3, we can write, in a similar
manner to (2.3.4),

. Koo |

lek.: tzl{E(let)/E(etz)} €t

t
can be expressed recursively as :

where e, are the linear innovations defined in (2.3.3). This

A A

Ok = Skjk1 * E@e/Ele ) g (4.5.1)

The covariance quantities in (4.5.1) cannot be easily evaluated
eXact]y for model II, so that the innovations cannot be obtained

exactly either. It is possible to approximate € by
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€ = Yy - xk(¢9k-1|k-l)’ where xk(.) is as in (4.1.4). Also put

AN

,lek—l = ¢9k—1|k—1' To obtain the covariances we take a first

order Taylor expansion of xk(ek) about ek|k 1

“~

~ v (8 T
*O) = X (O ppag) + My (90 ~k|k L
axk ‘
where Hk 0 |0 - . We can then obtain approximations
~k'<k ~k|k 1 :

to the expressions in (4.5.1) which yield a fijtering a]gorithmv
identica] to (3.2.1)-(3.2.3) except that up is replaced by Hk'

It should be noted that Pklz’ % = k-1,k are no longer true |
variance-covariance matrices, but approx1mat1ons The approximate
smoothing so]ution can also be obtained from the algorithms of

Sect1on 3.3, with Uy replaced by Hk'

Upon examination, it can be seen that

A ’ A

wT = (e k]k " kel 1 1,
K k=107 T ken® T e g k-n
k!k 1 k|k-1 Ak k-1 k|k-1

In the terminology of Young (197€) Hk is therefore a vectoerf

' pre—fi]tered variables, as compared with the unfiltered variables
given by (4.4.2) in the instrumental variable algorithm. The
algorithm corresponds, in the cohstant paraméter case, to a
smoothing version of the symmetric form of the refined IV
algorithm (Young and Jakeman, 1978). It cqn’a]so be compared
with the RML algorithm of Soderstrdm et al., (1974), in which

a similar linearization produces an algorithm for estimating

the parameters in (4.3.1). A form corresponding to the

asymmetric refined IV a]gorithmb(Young, 1976) can also be derivéd.



Once again, it would be difficult to theoretically
substantiate any claims of increased benefit gained from this
refined algorithm, as compared with the instrumental variable form
of Section 4.3. However it has been demonstrated by Young and
Jakeman (1978) in simu]ations,,ahd by Solo (1978) in a plausibility-
argument, that the refined form produces asymptotically efficient |
estimates of‘constant A and B parameters; and there is often a
clear reduction in estimation error variance to be gained over the |
IV algorithm. Therefore, when the parameters are varyiﬁg in a
manner c1ose1y approximating a random walk, improved ﬁerformance

may be gained from the refined form.

It should be noted that in practice, the pre-filters and
auxiliary model would hot be updated at each step. Rather they

| would bé given by a previous estimation run as .is done with the

auxiliary model in the instrumental variable form. This eliminates

stability problems which haVe been found to occur in the fully

recursive form for constant parameters (Young and Jakeman, 1978),

and so would presumably be even mofe likely to occur in the

varying parameter situation. An iterative proéedure as in the

recursive IV case could also be applied here.

4.6 Conclusion

While we have not obtained a definite solution to the
problem of estimating time varying parameters for model II

(assuming Q and o? known), it has been shown that for this
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purpose there are a number of satisfactory approximations which
can be applied. Most of these relate to methods used extensively
for estimating constant parameters, and avoid.the comp]icationé
which may be encountered when applying general non-Tinear state

estimation algorithms.



CHAPTER 5 : UTILIZATION OF THE ALGORITHMS

5.1 Introduction

Thus far we have considered means by which one might model

parametric variation in the models I and II, and estimate parameters -

in these models. There remain, however, some difficulties to be
overcome in the practical implementation of the algorithms we have

obtained. In Section 5.2, the process which méy lead to the

adoption of a time-varying parameter model is discussed. This can

be thought of as 'identification of structure', in the sense of |
Box and Jenkins (1970). Section 5.3 15 concerned with Ways of
obtaining values of the program parameters . These are the
variances, Q and o2, and the ihjtia1 condi tions 90,P0|0, (@s
defined in Chapters 2, 3 and 4) which have been so far assumed
known . FinaTiy in Section 5.4, some asymptotic properties of the.

estimation procedures are considered.

5.2 Identification of Time-Varying Structure

We can recognize three possible stages in the process of
adoptiné a time-varying parameter model. Firstly, examination |
of constant parameter results; sgcond]y, hypothesis testing
Aconcernihg the possibility of parametric change, and thifd]y,-
the estimation of a time varying parameter model. The third
stage has been considered in somé detail already, so we will

here briefly consider some aspects of the first two stages.
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5.2.1 Examination of constant parameter results

The use of recursive estimation methods in constant

parameter time series and regression models has come into favour

recently (Young, 1974; Soderstrom et al., 1974). Not only have
they been found to provide computationally attractive means of
obtaining consistent, efficient, parameter estimates (Young,
1976), but also covergence characteristics can be conVenient]y '
examined by reference to graphical outputs of the recursive
parameter estimates. In this way, it is possible to ascertain
whether the estimates are slow in converging, or if, indeed

they fail to converge.

Slow convergencé or fai]uré to converge can occur for a
number of reasons. Firstly, there could be an identifiabi]ity+
problem associated with the model. In the case of model I, this
could arise through_multicp]]inearity of the‘inputs (regressors
in this case) uk(i), = 1,2,...,M. Tests to detect this, such
as the multiple correlation test, are well known (Kendé]] and
Stuart, 1961). Multicollinearity is manifeéted’in near- -

singularity of the information matrix UTU, where

see Hannan (1971) for a general discussion of identifiability.
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which leads to a high (normalized) estimation error covariance 4
matrix SN. In model II, an identifiability problem could arise
through pole-zero cancellation in the transfer function %3
indicating that’a model of too high an order is being fitted to
the data. Once again, this is manifested in a large estimation
error covariance matrix, and a number of proéedures can Be

used to test whether this is the case (Young et al., 1978). Again

identifiability problems can arise because the input signal U

is not 'sufficiently exciting' (Astrom and Bohlin, 1966). For -

- example, a second order system is not identifiable when perturbed

only by a single sinusoidal input : at least two different
frequency components are required to avoid identifiability problems

(see Young et al., 1971).

If the possibility of non-identifiability has been
eliminated, then the reason for slow convergence of the parameters

is that a single model is not appropriate at all time points,

and that there appears to be some variation in the parameters.

An examination of plotted residuals (Draper and Smith, 1967;

for model I) or innovations (Harvey and Phillips, 1976, for model II) .

in a constant parameter model, may also corroborate evidence-
of this kind, since certain types of parametric variation may
appear as.a»syétematic component in residuals or innovations.
If there is such evidence of parametric variation, then we may
proceed fd the second stage outlined above,; provided the

indicated variance appears to be physically meaningful.
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5.2.2 Testing the hypothesis of parametric change

This stage in the procedure.outlined at the start of this
section is not considered by the author to be essential in the

context of the present work. In situations where the me thods

of this thesis may'be applied, we are concerned with examining

the plausibility of some types of parameter variation, by

reference to thevresults obtained.in the estimation, in

-conjunction with physical knowledge of the system being studied.

Therefore, while. it may be claimed that an assertion concerning

a statistical model must be accompanied by an appropriate test
of étatistiéa] significance, it is considered that the
‘positive or negative' result obtained from a hypothesis test
may be too.restrictive to be generally useful. Nevertheless,
various authors have discussed methods of carrying out a formal
hypothesis test concerning parametric charge, and we make

brief mention of some of these here.

Brown et al. (1975),appear‘to have‘suggestéd the first
test for general non-constancy of barameters in model I, the
regression model; they derive approximate distributions fof the
sum of, and sum of squares of, recursive residuals (or
filtered innovations, in dur término]ogy), under the null
hypothesis of constant parameters. For the samé model,

Garbade (1977) suggests using a likelihood ratio test of.
the null hypothesis Q = 0 against the a]ternativé:Q # 0, with
Q as in Section 2.3, and taking @ =T = Im in (2.3.2).
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He then goes on to compare the two tests, using simulations of

three different types of parametric change in a sfmp]e

regression model. The latter test is shown to be superior in a

number of respects.

More recently, Pagan (1978) and Salmon (1978) have
suggested the use of a Lagrange‘mu1t1p1ier test. However, therée
are no studies as yet available to demonstrate the use of this
test in practice, or to compare it with other hypothesis tests

in this context.

5.3 The Choice of Program Parameters

In order to implement the a]gorfthms of Chapters 3 and
4, it is necessary to choose values of the program parameters
mentioned in Séction 5.1. It Will become clear that there is a
certain amount of freedom associated with the values of. these
parameters. Nevertheless, it is useful both to understand
the effect of using different values of these parameters,
and to have an analytic method of choosing va]ués, should this

be called for.

5.3.1 Parameter variance Q and measurement variance o2

Here, the corresponding state estimation problem,
(that is, one of obtaining values of system and measurement

noise levels in order to implement a filtering or smoothing
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algorithm) has received attention in recent years (Mehra, 1971;
Neethling and Young, 1974, among others). However, no solution
could be c]aimed aé generally appropriate in the state estimation
context. The respective advantages and disadvantages of some‘of ‘
the solutions are discussed by Neethling (1974), and, in a parameter
estimation context, by Bénnett (1976). Most of these methods

are aimed at the estimation‘of the values of Q and o2 (or Q and

R, a matrix, in multi-output estimation situationé) concurrently
with the estimation of the stafe Variab]es; that is, adaptive
estimation of Q and ¢ (or Q and R). In the context of time-
variable parameter estimation, sﬁch a procedure would be

neither necessary nor appropriate. The Q matrix does not have

a physical interpretation, as it does in the state estimation
problem. In the context being considered here, it may be

thought of as a quantification of the expected rate of

parameter variation between samples, so that when using an
adaptive procedure for estimatiﬁg Q, it would e]ear]y be hard.

to distinguish between changes in Q and changes in the parameters
themselves. It is also noteworthy_thét the methods of Mehra

- (1971), Neethling (1974) and others rely on the assumption that =
the process being estimated is in steady state, so that |
asymptotic values of the ;ovariance matrices Pklk; £ = k-1,k, . f
have been attained. As we shall see in Section 5.4, it is not
possible to obtain these asymptotic values in the case of

models I and II without placing further assumptione on the

processes involved.
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There is also a difficulty in using constant.Q and o? for
an estimation run. This difficulty arises when the true parameter
variation is not actually a random walk, and the rate of variation
- changes markedly during the observation period. Then the value
of Q which is appropriate for one portion of tHe‘data may “tend
to exaggerate parameter variation in another part of the data.
where the variation is sma]]er,:due to observation noise effects.
Conversely, if a Q matrix is used which is appropriate for_the'
portion of the data where the variation is sma11ér,-the}section
of larger variation will be obscured, because the estimation
procedures will consider that this is merely a noise effect,
and therefore 'smooth' the estimate too much. This pfob]ém
js particularly marked when the situation is one of trying to
detect a step change in a parameter, particularly if the
step is quite small ih relation to the sample size N (see Section 6.1).
Then a Q matrix which is able to accommodate the step’adequate1y
~will amplify observation noise effects on the section where
the parameter is consfant, while the use of é Q matrix which
estimates smoothly over the constant‘section will track the
step slowly, and will not indicate its size‘or position very

clearly.

As was mentioned in Sectﬁon 3.3, 0% can be removed from
all the a]gorithms‘obtained in»Chapters 3 and 4, resulting in
normalized varfance—covariance matrices (or approximations to
these in model II). This reduces the problem of choosing

appropriate Q and o? to one of obtaining the value of

16
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A
W = Q/o”, which is most appropriate in some sense. The effect

of different values of Q and o2 can be illustrated by using the

following simple model : take model I with

m= 1, U = 1, k=1,2,...,N

(5.3.1)
¢ =T =1

(referring to equation (2.3.1),(2.3.2)).A
Then the filtered estimate of the parameter 0, is obtained

from (3.1.1)—(3.1.3;) as

~ ~ ‘ P

_ k| k ~
Op ™ %1pk-1 ¥ o7 W 8qqian)
P
2
P k-1
2
k-1 O
2
o+ Pk

Therefore,'the weight (the 'Kalman-gain') given to the

A

innovation or one-step ahead prediction error Y = eklk—l is

SN . + W .v : :
- k-1[k-1 ' (5.3.2)
LH Secak-1 H o

K

» - 2
where Sk-l]k-l = Pk-1|k-1 /o
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It can be seen from (5.3.2) that Ky is a strictly
monotonically increasing function of W; that is, strictly
monotonically 1ncreasing'in Q, and strictly monotonically
decreasing in o%?. This confirms the intuitive notions
regarding the use of Q, discussed above,' It is also of:
note that Kk-+ 1 as W~ », Thus above a certain level, large
changes in the value of W used do not affect the estimation

greatly. -Also,

Sk-1]k-1
1+

K, ~

K as W->20

k-1]k-1

which corresponds, in the 1imit (W = 0), to the constant

parameter recursive least squares estimator (Plackett, 1950).

For the smoothed estimate in this model,: the algorithm

(3.3.9) yields

A A A

_ -1 s
B = Ok T PkkPren ke Crenn T Bk
| P |
A _klk 5 -0 .
O ik * (O = Oiqi).
4 Ppe #0700 |

From this, it can be seen that the smoothing procédure adjusts
the filtered estimate at time k by the weighted difference
between the one step ahead prediction from eklk and the smoothed -

estimate at time k+l. The weighting here is a strictly



monotonically decreasing function of Q.. This indicates that
for large values of Q, the adjustment obtained by smoothing
is small, so that the smoothed estimate 'follows' the filtered

estimate closely. On the other hand,

p .
.___‘S_I.k_. +~ 1 as Q > 0
Pk|k + Q

50 that, for Q = 0, the constant parameter situation,

Ok gkt Crrny ™ Ok

O 1N

= NN
- Thus, as expected, for a parameter assumed constant, the
smoothed estimate is constant over the observation period, and

equal to the final filtered estimate GNIN'

Using either IRW or SRW models for the parameter
variation, or more general versions of models I or II, similar
behaviour is exhibited. However, the analysis is somewhat more

complicated, and will not be pursued here.

Now bearing in mind the effect of using different values

of W in the estimation, it is possible to employ a non-analytic
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procedure for choosing W. If we use the interpretation of Q
as an a priori quantification of the rate of parametric change,
then the diagonal elements have immediate meaning as the rates of

individual parameter change. However, the off-diagonal elements

are harder to interpret. Therefore one possibi]ity would be to

estimate the parameters Ok'with diagona1,w, and using a number of
different combinations of values of the diagonal elements. The

résu1ts could then be examined, with the criteria for establishing

the 'correct' value of W being largely based on the physical

‘plausibility of the results obtained (Norton, 1975). Another

possibility for .choosing W would be to use W = aSN, for various
values of the scalar a, where SN is as defined in Section 5.2.1.
This has been the approach taken to estimating parametric Change

when using recursive IV methods (Young et al., 1971).

Although these procedures may appear somewhat ad hoc
they provide a large amount of freedom for the experiménter to
examine various hypotheses relating to the parameter movements,
through the use of different values of W. At the same time,
the results obtafned_in this way ére subject to automatic constraints,
so that it is not possibTe to obtain arb%trary estimates for
the paramefers. For example in the model (5.3.1) in which we
are in effect estimating a time-varying mean of a series of
observations, the range of possible trajectories for

SN

{Gk is between
k=1
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0, giving a constant mean)

D >
1]
<D

k’N =y (W1th Q
and ekIN = Yy (with Q = ~, giving the mean at time k as Yieo

the mean of a sample of size one at each time

_point)

It is also possible to deve]bp‘ahalytic means for obtaining
Q and o (or w).‘ For this purpose, it is necessary to assume
that the true parameter variation is of the form (2.3.2). If this
is not the case, the same methods can still be ehp]oyed, although

their validity is largely diminshed. We first consider'mpde] I.

Under condition 1 of Chaptér 3, that is, the Gaussian
assumption on QO; Vi o k¥1,2,;..,N, the Tikelihood function
for the sample Y1s¥ps---syy €an be obtained as jn Schweppe (1965).
Following that author, we define A(k) = log p(!k), the log-

Tikelihood function. We can then put

L k T, -1 _ i,
2x(k) ]og(Zj) det Gk - Yy Gk Yo k=1,2,...,N

Here G, s the variance covariance matrix of Yi- Now the joint

density of Y, can be written as

P(Y) = P _PY 1Y)

so that, taking logs, we obtain

(k) = A(k-1) + Tog p(Yk]!k_l)



The mean of the random variable Yk|Yk-1 is the conditional

expectation E(Ylek_l); so that we obtain

2

P 1Y p) = == exp (- L)
- [emv, 2V,

where Ck is the Tinear innovation first introduced in (2.3.3)

and Vk = V(ek), the innovations variance.

~ Thus

- - = - ' - P
2(A(k) - x(k-1)) log ZﬁVk € /Vk
~ which finally yields ’
N N
- 2x(N) = - ¢ Tlog 2V - 2 ekz/Vk (5.3.3)
' k=1 k=1 -

This has, in fact, achieved a diagonalization of the quadratic
form XNTGN_lzN’ through the use of the innovations process.

From Kailath and Frost (1968)

N P 2
Ve = U Prparti F 0

so that finally, we have

N
z

-A(N) = 5 {N log 2m +
- k=1

= 2
5 log (o +u

.
U P k=19

‘ N . .
2 T -
+ kil € /(c? + U Pklk-lgk)} (5.3.4)

Since the innovations e, and their variancebvk,_fok k=1,2,.

can be obtained by successively e§t1mat1ng 81|1, 62[2""’8N|N

with only a knowledge of W (Section 3.2), the Tog—]ike]ihood

.o

52



(5.3.3) can be expressed as a function of o® and W.

Then, to a constant,

, N N .
AN) = - %‘k§1 109.02Tk - kzl ekz/osz (5.3.5)

where T = Vk/oz, an implicit function of W. Garbéde (1977)

considers the forms (5.3.5) of the log-1ikelihood, and setting

AA(N) _

0, obtains the concentrated log-Tikelihood function

3(o?)
s e N : |
A =Nlogo-5 I Tog Ty (5.3.6)
k=1
- ¢ 1 2
where 0 = (& I g /Tk)

k=1

A* is now only a function of W, and in theory can be maximized
with respect to this matrix, to obtain a maximum likelihood
estimate for W. However, as Garbade points out; this fs not a
simple matter in practice. The difficulties aré,twofo]d :
firstly, the‘severe1y non-]ihear_occurrence of W in A*; and
secondly, the requirement that the maximization of the
Tikelihood take place over all symmetric, non-negative definite
(n.n.d.) mxm matrices W, While the former problem can generally
be overcome via numerical techniques, the latter canndt, except‘
of course when m = 1. Thus, once again, we seek a smaller class

_ from which to choose W.

The obvious choice is to restrict W to be a diagonal,

n.n.d. matrix, as above in this section. Then a 'drid search'




procedure, for example, may obtain, to sufficient accuracy, the |

*
values of W, ;, 1 =1,2,...,m which maximize A . The data can
then be processed using this value of W to provide the filtered

and smoothed estimates of the parameters 6, .

For model II, the innovation representation (5.3.3) of the
Tikelihood is not exact, nor are the innovations obtained from a

filtering run using any of the methods discussed in Chapter 4.

However, they may be used as an approximation, and the likelihood

thus obtained once again maximized with respect to W.

Norton (1975) outlines an alternative method of choosing
W, and, once again, the task is simplified by restricting to a

diagonal W. For such W, the quantities d

K énd fk’ k=1,2,...,N

are calculated from

T~
k™ Yk Y o1y

[oN
|

- T
e = Y ™ Y Bk

'dk and fk may be thought of, as respectively, the smoothed

innovations and the smoothed residuals.”

Finally, the sum of squares of smoothed innovations, and

the sum of squares of smoothed residuals are calculated, and the

T Although Norton (1975) simb]y refers to innovations and

residuals ('noise') so that there is some ambiguity, he has
indicated in a personal communication (1978) that the smoothed
versions of these quantities are used.
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following statistics formed :

N 2 N 2
R.=1-(1zxf2)/(z%d?
s k=1 K k=1 K
N oy N A 2)
Ry=1-(2d?)/(x
0 k=1 K k=1 K
where e =y, - u TQ, the residual obtained from a model with

constant parameters.

Under the assumption of a random walk model, with the correct
value of W used to estimate the pakametérs, RS is a measure of the
proportion of the error in the one-step ahead smoothed prediction
that is due to pérameter variation rather than observation or
estimation error. Ro-indicates the proportioh, of the prediction
error in a constant parameter model, not accounted for by

estimating the paraméters as a random walk.

Now,>as indicated for the mode1 (5.3.1), the estimated
noise free output EkakIN wi11‘tend to follow the obsefved data
exactly, in the limit as W » ». Therefore R_ ~ 1
as W > . Ry, on the other hand, may attain a maximum value with
respect to wN Indeed, the behaviour.with resbect td'w is determined

by that of I d 2. Thus if the true value of W, say W

, 1s greater
k=1 K 0 ‘

than zero, values of W which are too small will tend to give larger

prediction errors than the true value, because the parameter
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variation is not being allowed for. Conversely, values of W

which are larger than wo will tend to alter the parameter esfimate
at time k-1 by combining noise effects with the parameters, so
there will once again be large prediction errors. Hence we might
reasonably expect a maximum in RO' This possibility is nbt made
c]ear'by‘Norton, (1975), who recommends choosing W so that R0

is as large as possible, with RS 'below a specified limit'. He
suggests that for small W, RS is near zefo; and then, at a éertain
point, as w is increased, Rs increases rapidly. It is this level

which is taken as the 'specified limit' (Norton, 1978).

This procedure for obtaining estimates of W is obviously -
not rigorous, as wasvthe case with the maximum 1ikelihood>
estimation. There is, however, a relationship between the two
procedures. Upon examination of (5.3.3), it can be seen that
the Tikelihood is given by
Ly N

v exp {- % = ¢/2/V,} (5.3.7)

L(Q,0?) = (2n) -

nN|=
==

k=1

A 'genéra]ized'least squares' procedure for obtaining Q ahd o?
Wou]d be one where the exponent in (5.3.7) is maximized with
respect to Q and ¢?, while an 'ordinary»least squares procedure'
would be one where the samebduantity is maximized, under the
assumption Vk =1, k=1,2,...,N. Therefore Norton's

approach in maximizing RO is approximately an ordinaryAleast

squares procedure.
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The justification for such a simplification is well known.
in the case of constant O However, simulation results indicate
that.the least squares approximatioh as used by Norton does not
perform as well as the maximum 1ikelihood estimate in the

estimation of Q and o? (see Section 6.1 ).

While maximizing RO can be interpreted_é$ an approximation
to the maximum 1ike1fhood proceddre, the use of Ry is not so
clearly defined. Norton's observation of a sharp rise in Rs at a
certain value of W may be possible ‘to corroborate analytically,

although the analysis would presumébly be quite difficult.

The above arguments would appear to indicate that the mdst»
4 satisfactory theoretical ﬁeans ofkobtaining‘w is via the maximiz-
. ation of the concentrated lbg-likelihood with respect to a
dfagona] W. However, even with such a W, this maximization may
not be easy, if there are a large number of parameters to be
estimated. The likelihood is not necessarily unimodal, so

that in a high-dimensioné] parameterbspace, numerical procedures
may be'computationa]1y expensive, and may not even give the

true maximum.

For the applications to real data where the methods of
estimating time-varying parameters are to be used, the aim
of the procedures is to examine parametrié change. The exact
size of the change may not‘bevcrucial, as long as it is

detected. Therefore, in general, there may not be a need for




very accurate estimation of W. As will be seen in Section 6.1

in the l-parameter case, both R0 and A* appear to exhibit sharp‘
increases as functioné of W. Although after a certain point,

A* decreases sharply, while RO remains flat, values of W which
éive RO or x* in the upper paft of this reéion of sharp increase
should provide estimates'of the parameters 6 whiéh do not over]y‘
exhibit spurious variation due to the effect of the observation
noise e Therefore, a reasonable procedure, which avoids some
computational effort, for the.estimation of W is to cé]culate

N |

2
L d, for each value of wi

., 1i=1,2,...,m; . then increase each
k=1 K |

o1

of these in turn until there is comparatively little change in

N ‘ .
T dk , and use this final value of wi ; in estimation.
k::]_ . . >

5.3.2 Initialization parameters

In Section 3.1, it was indicated that the algorithms could
be initialized with virtually any value of the parameters, and a
large initial estimation error covariance matrix.  In most

situations, the convergence to near the.true parameter value
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during the filtering run is rapid, with accompanying decrease in the -

estimation error covariance matrix. There is, in theory, a small
bias resulting from initialization in this way. However, it is
insignificant, and may be neglected_asymptotica]]y. Nevertheless,

in situations where the ratio of N, the sample size, to p, the

number of parameters in the model, is small,such as in econometric -



models, it may be desirable to initialize the algorithms in a more
specific manner. This can be accomplished either by a maximum
likelihood procedure, or via a block initialization. We will

consider each of these in turn.

The log-1ikelihood (5.3.3) can be considered as a function
of % and POIO' It can then be maximized with respect to
these parameters, as was done for W and o?. The .consistency
result of Pagan (1978) mentioned in Section 2.3Aprovides a
theoretical justification for ﬁhis procedure. However, even if
his method of proof extended to the random walk model, the procedure
may be difficult to implement. The computational problems associated
with maximum Tikelihood estimation of W and o alone would

certainly be increased with the highér dimensions parameter space.

For model II, it may be possible to extend the parameter
space still further, to include initial conditions on the model

variables. Then the input, output and noise terms, with negative

indices, which were all taken as zero in Sections 4.2 and 4.3, would

be estimated as unknown parameters. This has been achieved for
constant parameter time-series models (Néwbo]d, 1974), and, in
small samples, there is apparently some advantage to be gained.
Once agéin, however, the added complexity would appear to

counteract any benefits which might be obtained.

BTock initialization may be used if the parameter variation

is quite smooth. This involves estimating the parameters as .

59



constant from the first p samples. The remaining N-p samples are

then processed as before, using the initial conditions ep’Pp’
the estimate and error covariance matrix obtained from the first

p samp]es.

It should be noted here that for the maximum likelihood
estimation of W out]fned in Section 5.3.2, it may be advjsab]e
to use a block estimate to initialize, and then ca]cu]afe the
1ikelihood for the remaining N-p samples only. This eliminates
possible large deviations which may arise in ear]y values of,ek,
the filtered innovations, in (5.3.3). Garbade (1977) suggests
an alternative block initialization procedure to accomplish
this task, while in Norton (1975), the use of smoothed

innovations performs the same function.

5.4 Stability of the Estimation Procedure

¥

It»has been shown so far that, under certain assumptions'
on (2.3.1).and (2.3.2), we can obtain minimum variénce linear -
unbiased estimates (approximate for model II) of the parameters
6y in a random walk model. We have hot,uhoweVer,’made'any mention
of the behaviour of the estimation procedures under consideration,

for large sample size.

- To investigate asymptotic properties, we once again turn

to the state estimation literature. Jazwinski (1970) discusses

sufficient conditions under which the estimation error covariance
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matrix Pklk’ for @ Tinear state estimator fklk"is uniformly
bounded. These conditions are firstly, the positive definiteness
of POIO’ and secondly, the conditions of uniform compzete
observability (UCO) and wniform complete controllability (UCC).
These latter are that the matriées O(K,k—Nl),‘for some Nl’ ’
and C(k,k-N;) for some N, can be bounded above and below uniformly

in k, where for the model (3.1.1)-(3.1.2),

k‘ .
O(k,,k.) = (@t'kl)Tu u ot Ry
1°%0 L Upde
; t=k _
0
k=1
Clkook) = & o1 t1goky~t-1)T
1°%0 . |
t=k,

(see Cooley and Wall, 1976).

Jazwinski then shows that under the same conditions, the linear

system obtained from (3.2.1)-(3.2.3) is uniformly asymptotically

stable : that is, rewriting the equation (3.2.1) in the form-

~

Ok = Ykt 0

Kk
we have ”W|| ~ 0 exponentially. This property ensures that

for bounded Yy the filtered estimate @P

If, in (3.2.2)-(3.2.3) (the so-called Ricatti equations)

K is also bounded.

up
were not dependent on k, it would be possible to obtain the
asymptotic values of Pklk and Pklk—l’ by setting

Pk = Prefk-1 = Ro says and Py g = Py qppp = 55 Ay
and then solving (3.2.2) and (3.2.3) for R and S (Kailath

and Ljung, 1976). The values R and S are the error covariance



matrices for the corresponding steady state process. However,
if Uy is not constant, as is normally the case, there appears
to be no proven result regarding the asymptotic values of

Pklk—l and Pklk' ~Indeed, it is likely that such a result-would

be difficult to obtain because of the comp1exity of the problem.

Note that if Q = 0, then Pk|k = Pk]k-i’ and Pklk ~ 0 as k >, -

providing

N T

L ouu >
k=1"K~K

For the model (5.3.1), the Ricatti equations may then be solved,
to yield R = (-W +JW?+4W)/2, S = (W + JW?+4W)/2. Thus as might
be expected, both asymptotic values are monotonically increasing

functions of W.

By analogy with these examples, it seems reasonable to
expect that, under certain conditions, the matrices Pklk’ Pklk#l

will exhibit some limiting behaviour. Certainly, results from

simulations would suggest that such behaviour does occur in many

cases (see Fig. 5.1).

Kaifath and Aasnaes (1974) have demonstrated sufficient
conditions for stability which are weaker thén the UCO and UCC
conditions. However, it should be noted that neceésary and
sufficient conditions have not been obtained by any author, as
yet. Therefore, in practice it may be found that a system which

fails to even satisfy these weaker conditions does not in fact .



lead to unstable estimation.

The following provides an example of instability which may

occur. The system (3.1.1), (3.1.2) was simulated, with

(i) m=2, N=100

(i) uél) =1, k=1.2,....N, o =1

(i1i) q=[0-001 0 )
| 0 0.001 (5.4.1)
r =1 2 |

(2)

U’ was simulated
(a) as pseudo-random binary noise : that is, equally probab]e

occurrences of -1 and 1;

(b) as Tlinearly increasing : up = k, k=1,2,...,N.

2) was as in (a), Pklk

It was found that when the input ué

decreased rapidly from its initial value of 10°1,. (see Fig. 5.1).

However, for the input uéz) as-in (b), Pk[k increased steadily,
5 x 10° -5 x 107
with P

100 100 (;5 x 107 5 x 10°

The reason for this instability appears to be the violation

of the UCO condition, when the input is as_ih (b);

For model II, it is nqt strictly possible to discugs
stability in terms of the UCO and UCC conditions. However
if we consider equation (4.4.1) as a linear observation equation,
With‘xk assumed known, then the UCO and UCC conditions canfbe |

written down. If the system is unstable (in the sense that the
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estimated model has zeroes of A(z_l) = 0 inside the unit circle)
then Xy will become unbounded, and in this casevthe UCO condition
wii] not be satisfied. Béhqviour similar to that of the above
example (5.4.1) méy occur, causing the estimation to beconie

unstable.

There is, ih theqry, a non-zero probability of such an
instability océurring, since thekparameters are assumed to be
norma]Ty distribufed ét any time point. However, this wi]l
not necessarily cause problems. If the true parameter variation
is non-stochastic, and if it is such that the output of the .
system remains bodnded,-then A s Tikely to be estimated such
)

that the zeroes of A(z *) = 0 lie outside the unit circle.

Moreover, even if the true parameter variation is such that X

eventually becomes unbounded while the noise level remains constant,

improved parameter estimates may be obtained for a time because

of the increased signal to noise ratio (see Lee, 1964).

Convergence of PJ 1
in (5.4.1)(a) ?

36.8
38.8
24.0 -
18.9

12.8
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L e e TN B e S s S S

205 .
SAMPLE
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CHAPTER 6 : EXAMPLES

6.1 Simulation Results

In this section, some of the more important points discussed .
in earlier chapters will be exemplified using computer simulations.
The presentatidn of the results will mostly take graphical form, as

this appears to convey the relevant features most lucidly.

6.1.1 The random walk models for parameter variations

In order to consider the 'natural' properties of the three
types of random walk models (RW, IRW, SRW) for parameter variation
proposed in Section.2.2, each was simulated over 100 samp]eé, with p=1.
The same sequence'vk,.k=1;2,...,100 (as in (2.3.1)) was used in
each simulation. Fig. 6.1 shows the resulting RW, Fig. 6.2 the
IRW, and Figs. 6.3 and 6.4 show the SRW with, respectively,

@ =0.9, and @ = 0.99. It is clear that the RW exhibits 'jagged’
variation, while the IRW appears to have a great deal of

- 'inertia’ _ once it is moving either up or down, it does not
change direction, for a relatively long period. As o - 1, the
SRW follows the IRW in shépe, although of course not in dimension.
The SRW with‘a = O.9_éppears to be a useful model for frackihg
smooth parametric change. While it exhibits smooth variations,‘

it does have the ability to change direction relatively quickly.
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The Random Walk Models

. ) 500.8 -
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FIGURE 6.1 . FIGURE 6.2

—r—r—rr ) -2.5.
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FIGURE 6.3 , 4 FIGURE 6.4

6.1.2 Instrumental variable estimation in model II

It wou]d be possible to use many different exémp]es to illustrate
the filtering/smoothing a]gorithms of chapters 3 and 4. However, as a
number of such simulations have'been pubTlished (Lée, 1964; Young, 1969;
Norton, 1975; 1976) we will restrict attention here to the results
obtained from the new instrumental variable smoothing method of

parameter tracking suggested in the present dissertation (Section 4.4).
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The model chosen was as in (4.1.1), with

B(Z—i = boﬁ '2 (6.1.1)
A(z ) 1+ Az Tt A,z

This‘system was simulated over 100 samples, with o2 adjusted to give
a signal to noise ratio of approximately 10 : 1. Initially, the

true parametric variation was set as

1

bOk = 0.15 + 0.05 cos (wk/100)

A = -0.4 + 0.05 cos (mk/100)

a2k 0.5

k =1,2,...,100.

Both the IRW (Fig. G.QFand the SRW (Fig. 6.6) were used to track
the parameter variation. As can be seen, in both cases the 1east
squares estimate (Section 4.2) provided a biaéed estimate of the
variation in the parameter 2y, - However this estimate was Targely
improved by the use of the instrumental variable estimation.

It was found that the iterative procedure mentioned in

Section 4.4 had re]atjve]y little effect after the first
iteration. Although pargmeter.bog wa§ also tracked very well,

‘the results obtained are not presented, because the Teast

squares estimate is not biased in this case.

Figure 6.7 shows a refined instrumental variable
estimation of the same model (see Section 4.5) using the SRW..
It can be seen that only a slight improvement over the least

squares estimate (Fig.6.6) is obtained. The additional
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Instrumental Variable Estimation - The parameter a, in (6.1.1)

1
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3 SRW, Wl = 20.0



complexity of the refined form appeared to have a detrimental
effect on the estimation, and it was found that the ordinary
instrumental variable method was much more robust for general

applications.

Figure 6.8 shows an instrumental variable estimation of the

model (6.1.1) using an IRW, with now

bOk = 0.15 k=1,2,..,100
A T -0.35 k=1,2,...,50
-0.45 k=51,52,...,100

A = 0.5 k=1,2,..,100.

The signal to noise ratio was once again 10:1. bThe difficulties
inherent in tracking the step change in a3 cah be clearly seen.
here. While there is definite evidence of such a change, it appears
to have been 'smoothed' to a ]arge.extent. Once again, the bias in
the least squares estimate is apparent. Thevsame variation was also
- tracked with the SRW; Fig. 6.9 shows the result for two different
levels of W, . When W, = 0.1, the parameter is tracked too
smoothly, as occurred for the IRW. For w1 = 20.0, spurious

variation is estimated due to noise effects, although the step

appears more acutely.

The results shown in Figs. 6.5 - 6.9.are typical of those
“obtained from a number of simulations of parametric variation in
model II. They usefully illustrate a number of the main -
features of the instrumental variable smoothing method of pafameter

tracking.
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Estimation of W
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6.1.3. Estimation of W

The model (5.3.1) was simulated over 100 and 1000 samples. For

- convenience, the model (5.3.1) will be repeated:

Y = O * ey

V(ek) =1, V(vk) = 0,01, 0y = 0 were used here.
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The full Tikelihood A* in (5.3.6), and the statistic RO of
Norton (1975) were calculated, for a grid of values of W.

As can be seen.in Fig. 6.10, there is a distinct peak in A*,
a1though the maximum likelihood estimate of W is somewhat
~biased. With 1000 sémp1es (Fig. 6.11) the peak is even more
distfnct, and the bias has been reduced. On the other hand,
Fig. 6.12 shows that R attains a badly defined maximum. In the
1aﬁger sample (Fig. 6.13) there appears to be very little

improvement. Difficulties encountered with the maximum Tikelihood

choice of W for real data will be illustrated in Section 6.2.

6.2 Analyses_of Real Data

The range éf possible applications of the methods discussed
in this thesis is clearly very wide. Young (1969) has app]ied.the
techniques to the tracking of parameters in aerospace vehicle and
chemical process models, and later (1974) in hydrological models.
Norton (1975) has estimated time-varying_response characteristics
in a rainfa]]-rundff model. Finally, Garbédé (1977) has used
the procedures in an analysis of the demand for money fn the
United States. Some further simple anaiyses'are presented here,

with the accent on the use of the smoothing algorithms.

6.2.1 Rainfall trend analysis

There has been much discussion, in recent years, concerning

the trends in rainfall patterns in south-eastern Australia. While



Rainfall Data Analysis
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some meteorologists (e.g. Pittock; 1975) suggest that a sharp
increase in mean annual rainfall occurred in this area around 1945,

conventioha] stétistica] testing (Gani, 1975) has tended to repudiaté

this theory.

In order to examine possible trends in the rainfall, annual
records from a number of stations were examined. At each station,

the annual rainfall was modelled as

Yie T 0% T8



where 0y follows a random walk (2.3.2), and ék'is as in (1.1.1).

The results obtained for Station 65 (Dubbo area) are typical of those

obtained, and will be Used to.illustrate the ané]ysis. The record
available in this case was 62 years 16ng, starting from 1913. The
maximum Tikelihood method of Sectioh 5.3 was used to estimate W,

and the filtered and smoothed estimates of ek obtained using this

choice of W are shown in Figs. 6.14 and 6.15 for, respectively, the

RW and the IRW model of parameter variation. Fig. 6.14 shows a
clear increase in the estimated (smoothed) mean around 1945.'}

For the IRW, however, the maximum 1ikelihood method appears to
obtain a value of W which is too small : because the variation

in the meanbis_apparently step-Tike, the 'averagé variation'

over the whole sample is very small, so that the m&ximum likelihood
estimaté‘of W gives oversmoothing of the mean estimate. In fact,
it appears that the increment Sk is estimated as constant, thus
providing the result of Fig. 6.15. Figure 6.16 acain shous the IRW
estimates, this time with a much larger value 6f W chosen..
C]eak]y,}this result is more physically plausible, even though the
result of Fig. 6.15 was obtained by the more rigorous maxinum
likeTihood method. This demonstrates the dangers invd]ved in
placing too much faith in theoretically ‘optfma]' methods which

may be restricted by the assumptions required in their development.

'6.2.2 A simple air quality model

Half-hourly data on carbon monoxide concentration levels

and wind speed were available for a station in the Canberra
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metropolitan area, and the simple model
Yie ™ O T8

was proposed, where

il

Yy carbon monoxide concentration in ppm

Uy inverse of wind speed in m/sec.
Again, e is as in (1.1.1).
Estimating O in this model as an IRW, using data for one week |
(starting 0000 hours, Monday) produced a smoothed estimate as in
Fig. 6.17. A]thoﬁgh no. traffic flow data were available for the
corresponding time period, it is appareht that the parameter is
related to some variable of this kind. This suggests, as we would
expect from physical princip1es, that an adequate model of carbon
monoxide concentration would need to inc]ude traffic flow rate.
Although in this case such a conclusion may‘be considered obvious,
it is apparent that the concept ban be used in many similar situations
to ascertain relationships Between variables, or to .suggest whether

data on additijonal variables should be collected (see Young, 1977).

Air Quality Model
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CHAPTER 7 : CONCLUSION

In the precéding SiX chapters,lwe have systematically
worked towards thevdeve1opment of a framework for the detection
and estimation of parametric change in the transfer function
time-series model. The regression model, which has been the
object of most of the earlier work in this area, has provided
methods which have.then been‘ektended for use with the transfer
function MOdei. Similarly, existing filtering algorithms for
estimating parametric change in the transfer function model have
guided the way to the development of the smoofhing algorithms
for this model. Subordinate to this primary aim has been the
secondary objective of unifying a number of techniques - sore
analytically based, some ad hoc - which can be employed in the

detection of parametric change;

Thére are a number of areas where future work could be-
carried out. In order to investigate parametric change in
multivariable mode]s,vor models with coloured observation noise,
the refined IV-AML procedure of Jakeman and‘Youﬁg (1978)7
could be adapted to incorporate a random walk model of parameter .
evolution. However, because of the increased complexity, it
is doubtful whether uséfu] results could be obtained in this
framework . Ratﬁer, the simpler models discussed in this thesis
could be used to suggest whether a meaningful multivariable dr

coloured noise model of the system under -study could be obtained.



Another area of possible future interest is in the selection
of the matrix W. As described in Section 5.3, the rigorous methods
-available have quite severe practical limitationsin a number of '

- situations.

Finally, sﬁmp1e'models with tihe-varying pafameters-may_ i
provide useful approximations to more complex, non-linear models.
The dominant modes of behaviour may still occur in the simpler
model, while avoiding difficuTties associated with the more

complex models.
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