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Abstract

This thesis investigates the coherence properties of the hyperfine transitions of the 151Eu3+

ions in Eu3+:Y2SiO5 and evaluates the potential of developing quantum memories using

these transitions.

Quantum memories for light with long storage times are required for quantum commu-

nication applications. For these memories to be useful they need to have storage times

long compared to the transmission times across the communication network. For a global

optical communication network this requires storage time longer than 100 ms. Rare-earth

doped crystals have been identified as a suitable storage material. The storage time of

these systems is limited by the coherence time of the hyperfine transitions of the optically

active rare-earth ions. In previous work it had been demonstrated that coherence times

as long as 1.4 seconds could be achieved for hyperfine transitions in Pr3+:Y2SiO5 by ap-

plying a particular magnetic field such that the first order Zeeman shift of the transition

nulled. This technique is known as zero first-order Zeeman (ZEFOZ). Due to the relatively

large second order Zeeman efficient of the transitions in Pr3+:Y2SiO5, an extension of the

coherence time, significantly beyond the 1.4 second mark using ZEFOZ, is not expected.

However, it has been predicted that coherence times more than two orders of magnitude

longer could be achieved in Eu3+:Y2SiO5 due to the smaller second order Zeeman shifts

associated with the relevant hyperfine transitions.

The dominant decoherence mechanism for the hyperfine transitions in diluted

Eu3+:Y2SiO5 is the magnetic field perturbations caused by the random spin reconfigu-

ration of the Y3+ ions in the host. By applying the ZEFOZ technique, previously used

in Pr3+:Y2SiO5, the sensitivity of the transition’s frequency to environmental magnetic

field perturbations was significantly reduced. Further, this strong ZEFOZ magnetic field

was also shown to induce a frozen core around the Eu3+ ion, which resulted in a signifi-

cant suppression of the reconfiguration of the nearby Y3+ spins. The combined effect of

the reduced sensitivity and frozen core effect allowed a decoherence rate of 8 × 10−5 s−1

over 100 milliseconds to be demonstrated. The observed decoherence rate is at least an

order of magnitude lower than that of any other system suitable for an optical quantum

memory. Furthermore, by employing dynamic decoherence control, a coherence time of

370 ± 60 minutes was achieved. This 6 hour coherence time observed here opens up the

possibility of distributing quantum entanglement via the physical transport of memories

as an alternative to optical communications.

It was found that even at the critical point alignment the observed coherence times

showed that the Y3+ spin flips remain the dominant decoherence mechanism. To aid in

the development of future strategies to further extend the coherence time beyond 6 hours,

a study of the Y3+ spin dynamics in the frozen core was conducted. Four of the Y3+

sites were resolved and a complete mapping of all frozen-core Y3+ sites was limited by the

inhomogeneity of the applied magnetic field. The Rabi frequency, the coherence time and

lifetime as well as the interaction strength with the Eu3+ ion of one of these Y3+ ions were

measured. The observed lifetime of the Y3+ ion is 27 s, which is four orders of magnitude

longer than the low field value. With the technique developed, a detailed understanding
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of the frozen-core dynamics is possible, which would allow an extension of the hyperfine

coherence time of the Eu3+ ion towards the lifetime limit.

In summary, this thesis provides a detailed characterisation of the decoherence mecha-

nisms of the hyperfine transitions in Eu3+:Y2SiO5. The potential of using rare-earth doped

crystals for the long-term storage of quantum information with applications to long-range

quantum communications is identified. The demonstrated long coherence time of the

quantum transitions for information storage allows a new way of entanglement distribu-

tion: entanglement is transported by physically transporting the memory crystal rather

than the light. This approach opens a new regime for both quantum communication and

fundamental tests of quantum mechanics.
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Chapter 1

Backgound and Motivation

The establishment of quantum entanglement over a space-like distance is a critical oper-

ation for fundamental tests of quantum mechanics and for quantum communication ap-

plications. Seminal papers in the field envisaged entanglement distribution as the process

of locally entangling two material systems, such as spin-1/2 particles, and then separat-

ing them [1–4]. Although conceptually appealing, this proved impractical because of the

losses due to the rapid decoherence rates of otherwise suitable quantum systems. Thus,

researchers nowadays have turned to using photons to distribute entanglement because it

is easier to generate and transmit photon pairs than spin-1/2 particles. However, losses

associated with scattering, diffraction and absorption of the light still limit the effective

range of this direct distribution to a few hundred kilometres [5, 6].

A proposal to overcome this range limitation and build a worldwide quantum network

is the quantum repeater protocol [7, 8], which involves the distribution of entangled pairs of

optical modes between many quantum memories stationed along the transmission channel.

To be effective, the memories must store the quantum information encoded on the optical

modes for times that are long compared to the direct optical transmission time of the

channel.

There is significant interest in developing suitable memories based on mapping optical

quantum states onto the hyperfine states of rare-earth optical centres in crystals [9–15].

Rare-earth doped crystals possess properties that make them well suited for ensemble-

based quantum memories for light. They have optical transitions with homogeneous line

widths close to the lifetime limit [16], high optical depths [11], long-lived hyperfine states

accessible via optical excitation [17] and no spatial diffusion [12]. The latter is an important

distinction from atomic-based ensembles.

There have been major advances in developing rare-earth ion based quantum memo-

ries including the demonstrations of the spin-wave storage of the quantum entanglement

[18], multimode storage of coherence quantum states [19], memories operating with large

efficiencies [11, 20], and storage for single photons and quantum entanglement [13, 14].

Among the many rare-earth-ion-based energy levels studied for quantum memory applica-

tions, nuclear spin states of europium-ion dopants in yttrium orthosilicate (Eu3+:Y2SiO5)

are particularly attractive due to their extremely long observed lifetime of 23 days [17] and

their optical accessibility. The focus of this thesis is the characterisation of the decoher-

ence mechanisms affecting the ground 7F0 state hyperfine transitions of low concentration
151Eu3+ ions in Eu3+:Y2SiO5 in order to extend the coherence times.

The approach used to extend the coherence time is known as the zero first-order

Zeeman (ZEFOZ) technique, which works by applying a particular magnetic field at which

the transition of interest undergoes a critical point. At the critical point, the sensitivity

1



2 Backgound and Motivation

of the transition is not sensitivity to field fluctuation to first order leading to an extension

of the coherence times. The ZEFOZ technique was first implemented in Pr3+:Y2SiO5 and

resulted in an extension of the hyperfine coherence time of Pr3+ from 500 µs to 1.4 s

[21]. A further increased coherence time of greater than 40 s was demonstrated due to the

combination of the ZEFOZ technique and dynamic decoherence control (DDC) [10, 12].

DDC is a strategy of fighting decoherence by applying a sequence of controlling pulses to

alter the dynamic of the system and refocus the system-environment evolution (Section

3.1.4). Given this coherence time is approaching the limit imposed by the lifetime of the

spin stats as well as the transition’s second order magnetic field sensitivity, a significant

increase in coherence time is unlikely in Pr3+:Y2SiO5 [10, 12]. It was predicted by Longdell

et al. that hour-long coherence time should be achievable in Eu3+:Y2SiO5 using the

ZEFOZ technique and DDC [22]. This is because the hyperfine transitions in Eu3+:Y2SiO5

have much smaller second order magnetic field sensitivity.

The expected hour-long coherence time would satisfy the storage time requirement of

the quantum repeater protocol for building a worldwide quantum network. In addition,

it would also allow revisiting some very early approaches to entanglement distribution

through local entanglement and transport of quantum memories [3, 23].

1.1 EPR paradox and entanglement

Entanglement is one of the most counterintuitive physical phenomena of the quantum

world. It occurs when multiple particles are linked together in such a way that the mea-

surement on the quantum state of one particle determines the quantum states of the other

particles. A entangled multi-particles system is described by an overall wavefunction that

cannot be factored to be the product of the individual functions for each particle. Thus,

a measurement of any observables such as position, momentum, spin, or polarisation on

either one particle or the whole system would simultaneously collapse this wavefunction

such that each particle is in an eigenstate of the measurement operator.

The concept of entanglement originates from a paper published by Albert Einstein,

Boris Podolsky and Nathan Rosen (EPR) in 1935 [1]. The EPR paper concluded that the

accepted formulation of quantum mechanics (Niels Bohr’s Copenhagen interpretation) is

incomplete, with missing “hidden variables” [2]. This is known as the EPR paradox, and

triggered heated debate in the physics community at the time [2–4, 24].

The EPR paradox can be described using Figure 1.1(a). We have a source that emits

electron-positron pairs and we have two separated observers Alice and Bob. The electron

is sent to Alice and the positron is sent to Bob. Each pair from the source occupies a spin

singlet state so the electron and the positron are entangled. Alice and Bob each chooses a

coordination axis to measure the spin state of their received particles. For example, Alice

might choose the z axis and find the electron is in the spin up (+z) state. Then, if Bob

also chooses the z axis, he would find a spin down (−z) state for his positron. Conversely,

if Alice gets −z, Bob will measure +z. The same result will hold true whenever Alice

and Bob choose the same measurement axis: they will always record opposite results.

According to the Copenhagen interpretation of quantum mechanics, there is no way to

know the state of the electron-positron pairs before a measurement, but if you measure

one of them, you will know the state of the other simultaneously because they have a

shared wavefunction.

The correlation between their measurements can be described more generally when

Alice and Bob do not use the same coordination frame. As shown in Figure 1.1(b), Alice
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Figure 1.1: A setup that illustrates the EPR paradox. A spin singlet source emits entangled

pairs of electron and positron going in opposite directions to observers Alice and Bob. (a), Alice

and Bob perform their measurements using the same coordination frame. (b), Alice and Bob use

different frames.



4 Backgound and Motivation

measures her electron along an axis zA, which is defined by an angle ϕ from the z axis.

Bob measures his positron along an axis zB, which is defined by an angle θ from zA.

Alice and Bob have four possible combination for their results, that is (+zA, +zB), (+zA,

−zB), (−zA, +zB) and (−zA, −zB). The correlation is that no matter what value of ϕ

is chosen by Alice, among the many measurements for a fixed ϕ and θ, the percentage of

their results being (+zA, −zB) or (−zA, +zB) is always cos2θ.

There are two explanations for the correlation. One is that the two particles instanta-

neously communicate with each other and they somehow ‘feel’ which axis is chosen to be

measured on their counterpart (entanglement argument). The other explanation is that

there is information, like DNA, embed within each particle at the moment it was created

that governs every outcome of a measurement performed on the system (‘hidden variable’

argument). In the EPR paper, Einstein and his coworkers support the ‘hidden variable’

theory because they thought that the first explanation violates the theory of relativity,

which claims that information cannot be transmitted faster than light.

The term ‘entangled’ did not appear until 1936, when Erwin Schrödinger published

his cat paradox paper [24] in which he described the quantum state of two interacting

systems in the following way:

When two systems, of which we know the states by their respective represen-

tatives, enter into temporary physical interaction due to known forces between

them, and when after a time of mutual influence the systems separate again,

then they can no longer be described in the same way as before, viz. by endow-

ing each of them with a representative of its own. I would not call that one

but rather the characteristic trait of quantum mechanics, the one that enforces

its entire departure from classical lines of thought. By the interaction, the two

representatives have become entangled.

Though he used the word ‘entangled’, Schrödinger was a supporter of the ‘hidden variable’

theory like Einstein.

The EPR paradox was not resolved until 1964, when John Bell formulated the ‘hid-

den variable’ theory mathematically and showed that it violates the statistical predic-

tions of quantum mechanics [4]. Since Bell’s original paper, many experiments have been

performed [25, 26][27, 28] and their results overwhelmingly supported the Copenhagen

interpretation of quantum mechanics. However, until recently, all these experiments rely

on additional assumptions and resulted in so-called “loopholes”. One significant loop-

hole, known as the locality loophole, is that the correlated events were not separated with

a space-like distance when the measurement was carried out, thus the experimental out-

comes could have been influenced by subliminal communication [29, 30]. This loophole was

eliminated by Hensen and co-workers in 2015 when they reported a loophole-free Bell test

[31]. Without any additional assumptions, they were able to observe robust entanglement

correlation between spins that had a space-like separation.

An interesting aspect involving the present work is to test Bell’s theorem more thor-

oughly. The Eu3+ hyperfine transitions in Eu3+:Y2SiO5 have a lifetime of 23 days, imply-

ing a limitation of the possible coherence time of 46 days. An exploration of the coherence

time towards this limit might allow us to revisit the idea of locally entangling two mate-

rial systems and separating them. For example, we set up the entanglement between two

crystals, and observe their correlation after putting one of them on a satellite orbiting the

Earth, and leaving the other one on the ground.
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1.2 Quantum communication

Besides the intriguing applications in the study of fundamental physics theories, quantum

entanglement has become the foundation of modern quantum information science. One

of the ultimate technological goals of modern quantum information science is building a

quantum computer in which entangled quantum states are used to perform computations

in parallel. This should allow computation for particular tasks to be performed dramat-

ically faster than conventional computers [32]. As a result, certain problems, such as

factorisation of large integers, that are intractable with conventional computers become

solvable. In the past decade, there has been tremendous progress in the experimental

development of a quantum computer, such as the realisation of fourteen quantum bits or

‘qubits’ [33]. However, a large-scale quantum computer is still an extremely ambitious

goal, appearing to us now as classical computers must have seemed a century ago.

An intermediate realisation is quantum communication in which entangled particles

are used to transmit signals that cannot be eavesdropped upon without leaving a trace.

Before introducing more details on quantum communication, I first discuss the security

risks inherent in the current communication system. In order to avoid eavesdropping,

a message containing secret or confidential information is encoded before transferring it

between two parties. The technique involving the encoding of the information is known

as cryptography. Information cryptography is widely employed by governments, military

organisations, and by almost every ordinary individual of the modern society. For example,

financial organisations use cryptography in their computer security systems to prevent

fraud in electronic transactions. One of the most commonly used encryption systems is

public key encryption whose security is based on the mathematical difficulty of solving

certain problems using current computers. The security of such an encryption scheme relies

on two assumptions, that the eavesdropper does not have a sufficiently efficient algorithm

for solving the problem and that they have a limited computing power. Not only is there

no mathematical proof that such an algorithm does not exist, there is evidence that a

functional quantum computer will put public key encryption under challenge [34, 35].

This inevitably leads us to look for alternative ways to encrypt information with a

higher degree of security. In quantum communication, information is encoded in quantum

states, or qubits, as opposed to bits that are used in classical communication. Photons

are usually used as the media for these quantum states. By exploiting certain properties

of these quantum states, quantum key distribution (QKD) provides a reliable method for

transmitting secret keys across public channels without the risk of undetected eavesdrop-

ping by third parties.

1.2.1 Quantum key distribution

As discussed before, the information is usually encoded in the quantum states of photons

in quantum communication. QKD enables two parties to produce a shared random secret

key by measuring the quantum properties of the photons. The shared key is then used to

encrypt and decrypt information.

The security of QKD relies on a basic rule of quantum mechanics known as indeter-

minacy: an eavesdropper (usually referred to as Eve) cannot avoid disturbing a quantum

system by performing a measurement on it. Eve must in some way measure the quantum

state if she wants to steal a copy of the key, so will inevitably be detected by the two

communication users (Alice and Bob).
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QKD is only used to generate and distribute a private key and not for transmission of

any message data. The message containing confidential information can be encoded with

the key based on an encryption algorithm prior to transmission over a public communica-

tion channel.

There are different schemes that have been demonstrated for performing QKD de-

pending on the quantum properties they exploit. Here I present two examples. The first

scheme is based on quantum measurements on single particles. It was proposed by Ben-

nett and Brassard in 1984 [36, 37] and thus, is known as the BB84 protocol. Alice at one

site sends Bob at another site the qubits for constructing the encryption code via a shared

quantum channel. This channel is generally either an optical fibre or simply free space

in the case of using single photons as qubits. In addition, the encrypted information is

transmitted through a public classical channel, such as broadcast radio or the internet.

Though theoretically appealing, the experimental execution of BB84 protocol was not

possible due to the lack of any single-photon source within a decade after this protocol

was proposed [38, 39][40, 41].

Alternatively, Ekert proposed another protocol in 1991, the Ekert91 protocol [42].

The basic principles of this protocol are equivalent to the BB84 protocol, but it does not

require single photons. It is based on the quantum properties of entangled particles which

are used as resources for quantum key distribution. The protocol is illustrated in Figure

1.2. Entangled photon pairs emitted from a light source travel in opposite directions to

two observers, Alice and Bob. A series of measurements are performed by Alice and Bob

on their received photons, choosing the polarisation measurement basis randomly and

independently. Alice and Bob then exchange the bases for their measurements over the

classical communication channel. A shared key between them can be constructed due

to the entanglement properties of the shared particles. Such a protocol does not protect

against attacks from Eve but it provides a fail-safe way for knowing when the message has

been intercepted in accordance with Bell’s inequality [4].

Photon pair source

Quantum channel Quantum channel

Classical channel

21

0°, 45°, 90°, ... 45°, 135°,0°, ...

Bob Alice

Figure 1.2: An illustration of the ‘Ekert91’ QKD protocol based on reference [43]. Alice and Bob

share the photon pairs emitted from a EPR pair source via a quantum channel. They perform

measurements based on arbitrarily chosen polarisation bases and communicate their bases over a

classical (public) channel.

The entanglement-based Ekert91 protocol stands out by the feasibility of extending

its distribution via entanglement swapping [44]. Thus it offers a possibility for secure

long-distance quantum communication and for worldwide quantum network.
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1.3 Torwards long-distance quantum communication

QKD provides an unconditionally secure method for communicating information. How-

ever, the distribution of QKD over long distances is limited by several obstacles. The first

one is the photon loss during transmission with optical fibres. Consider a typical type

of optical fibre with an attenuation rate of a = 0.2 dB/km. It allows a probability of

p = 10aL/10 to distribute entanglement successfully over a distance of L (reference [45]).

This probability is 0.1 at L = 50 km and rapidly drops to 10−20 at L = 1000 km. The

other obstacle is the decoherence during transmission of quantum states, which reduces

the purity of the distributed entanglement exponentially with the transmission length.

For these reasons, the range of quantum communication when using direct entanglement

is limited to a few hundreds of kilometres at most.

1.3.1 A quantum repeater

A feasible method to extend the range of quantum communication is to use a quantum

repeater, initially proposed in 1998 by Briegel and co-workers [7]. A quantum repeater

is not a single piece of equipment but a protocol for distributing entanglement, with

which remote communication partners can be connected by shorter entangled sections

via entanglement swapping [44] as shown in Figure 1.3. The length of each section is

decided by the attenuation rate of the transmission channel. Experimental realisations of

quantum repeaters were demonstrated soon after the theoretical proposal [46]. However,

these earlier demonstrations had a limited range and the realisation of larger scale, real-

world quantum communication was challenged by the lack of a quantum memory.

Quantum memories are crucial for a quantum repeater as the initial distribution

of entanglement is a probabilistic process. Quantum memories allow for storage of the

established entanglement in a given segment until the adjacent segment has also set up

the entanglement. Hence the entanglement-establishing process of each segment can be

operated independently. If there was no memory, the processes would have to succeed

simultaneously [7]. For a segment length of 50 km, the photon loss allows a probability

of p = 10aL/10 = 0.1 for successful entanglement distribution. The probability for ten

segments to set up entanglement simultaneously is only 10−10, the same as for direct

transmission.

A milestone in the implementation of quantum repeaters and long-distance quantum

communication, which fundamentally changed the above situation, is the so-called DLCZ

protocol [8]. Proposed in 2001 by Duan, Lukin, Cirac and Zoller, the DLCZ protocol

integrates atomic quantum memories into the linear optical system. It uses photons as

‘flying qubits’ and atomic states for local storage. The conversion between these two

different states can be performed with high efficiency. Stationary qubits stored in the

atomic quantum memories that are separated at a distance are connected by photons

distributing entanglement. To be effective, these memories must store the qubits for times

that are long compared to the direct optical transmission time of the channel, which is

1 ms for a 300 km link and 100 ms for 30,000 km.

1.3.2 Satellite-based free-space quantum communication

The DLCZ quantum repeater suggests a promising future for long distance quantum com-

munication. However, when it comes to global-scale quantum communication, another
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BSM

Photon lossBSM

EPR pair source

Multimode 
quantum memories

(a) Step 1: Trigger photon sources simultaneously

(b) Step 2: Entanglement was set up and swapped 

(c) Step 3: Entanglement was further distributed 

Node A Node B

Node A Node B

Node A Node B

Entangled

Entangled

Entangled

Figure 1.3: A schematic illustration of entanglement setup process between two adjacent nodes in

a simplified version of quantum repeater. There are 2N (here N=3) sources of EPR photon pairs and

two quantum memories allowing storage of N modes each. (a) All sources are triggered at once, with

one photon of each pair sent towards the neighbouring node and the other stored in the quantum

memory. (b) Entanglement is swapped via performing a Bell state measurement (BSM) on the

two photons that remain. (c) Once adjacent quantum memories have both stored one excitation,

entanglement is swapped to further nodes by subjecting them to a Bell state measurement. This

process is repeated until entanglement is set up across the length of the desired link. The figure is

reproduced with permission from [47]
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promising scheme is satellite-based free-space quantum communication for which an or-

biting satellite is deployed to act as a “node” [48]. The implementation of free-space

quantum communication relies on the fact that there is a transmission window around

700 nm in the atmosphere where the light transmission rate is higher than 80% [49, 50].

One way to implement the scheme is shown in Figure 1.4.

Satellite
Quantum memory

Atmosphere

Bob Alice

Figure 1.4: Schematic representation of a scheme of satellite based free-space quantum commu-

nication. The photonic quantum states are first sent through the atmosphere by Alice from one

ground station to the satellite, where there is a quantum memory to store the quantum states,

then the satellite moves. The quantum states were converted to photonic states and sent back to

Bob, who is on the other site on the Earth.

The effective thickness of the atmosphere is on the order of 5-10 km (i.e., the whole

outer-space atmosphere is equivalent to 5-10 km ground atmosphere) [49]. Researchers

have experimentally proven the capability of preserving quantum entanglement well with a

distance beyond this effective thickness [51, 52]. If the quantum state remains after pene-

trating the atmosphere, outer space, where the photon loss is negligible, provides the ideal

environment for quantum communications. Combined with satellite technology, the free-

space optical transmission allows the probability of establishing quantum communication

between any two points on the globe.

The satellite-based quantum communication stepped forward by a giant step to reality

in August 2016, when China launched the world’s first quantum satellite. This satellite,

known as QUESS (quantum experiments at space scale) satellite, contains a cryostat that

produces entangled photon pairs [53].

Besides the quantum repeater and satellite links, other schemes for long distance

quantum communication are possible. In particular, it would be possible to physically

transport a quantum memory via the commercial transport system if many hours or even

weeks of storage time is available. In this thesis, I show that this method is feasible by

experimentally demonstrating a several hours long coherence time in the rare-earth solid

state system Eu3+:Y2SiO5.
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1.4 Quantum memory

A quantum memory, in broad terms, is a device to store a quantum state. In the past

decade, most research work on developing a quantum memory has aimed to fill the require-

ments of quantum communication and linear-optical quantum computation applications.

Thus in this work I take the narrow definition of quantum memory, that is an ‘optical’

quantum memory, which is an absorber that can store and retrieve the quantum informa-

tion on demand by interacting with light at optical frequencies. We can consider an ideal

quantum memory as a ‘sealed box’ allowing for storing and recalling of the same input

quantum state with 100% efficiency at any time. In reality, the sealing of the box is never

perfect and there is always leakage to the rest of the universe, destructively disturbing

the fragile quantum state in which the information is encoded. This process is known as

decoherence of the system. Though there is no system in nature that is completely free

of decoherence, certain systems have relatively energy levels that are less senstive to the

environmental perturbations, allowing for a long coherence time. In particular, this is

true for the internal electronic levels of atomic ensembles and the 4f-levels of rare-earth

dopants in solid state hosts.

1.4.1 Atomic systems

The internal electronic levels of neutral atoms and ions provide a set of well-characterised

quantum states whose interactions with the surrounding environment are well understood

[54, 55]. The transitions between these levels can be manipulated via microwave or optical

fields. As the ions or the atoms are weakly coupled to the environment, their electronic

or hyperfine transitions, which serves as qubits for storage of quantum information, can

exhibit good coherence properties.

The main challenge of working on an atomic system involves controlling the system

and isolating the internal levels from the motional states. Researchers have developed

a variety of techniques to tackle this challenge, laser cooling and trapping of atoms for

instance. The laser cooling and trapping approach works by confining charged ions in an

electromagnetic trap and using Coulomb repulsion between the ions to balance the strong

external trapping potential. As the trapped ions or atoms are well separated from each

other, it can be difficult to achieve strong and controllable interactions between them.

However, an ensemble of individually trapped ions in a single trap is coupled by the

motional states, which provides a way to set up strong interactions between them [56].

Laser cooled atomic ensembles are currently one of the most well-studied systems

for light-matter interaction at the quantum level and a lot of impressive work has been

demonstrated [47] following the influential DLCZ quantum repeater proposal [8]. Recent

work showed a storage time of classical light for 16 s by making use of a microwave dynamic

decoupling protocol [57] (dynamic decoupling protocols are discussed in Chapter 6). This

work was performed in ultra-cold Rb atoms confined in a one-dimensional optical lattice,

for which the ultimately achievable storage time is limited by the lifetime of the optical

trap, which was measured to be 20 s.

Besides cold atomic systems, there is also significant progress towards quantum stor-

age in room-temperature atomic systems by using dilute hot atomic vapours as described

in the review paper by Bussières et al. [47]. One of the primary concerns with this system

is that the atoms always have a non-zero velocity and move around in the optical field,

eventually leaving the interaction region. This drifting causes the atoms to experience an
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inhomogeneous driving field (phase and amplitude) and it imposes a limit on the longest

storage time on the system.

1.4.2 Rare earth dopants in solids

Compared to atomic systems, quantum memories based on solid state systems provide

advantages from the point of view of fundamental properties and as well as engineering

feasibility. Atomic motion, which causes many challenges in working with atomic systems

and ultimately limits their storage time, can be completely avoided in a solid state system.

These systems can also use much larger numbers of optical centres for data storage. In

addition, the properties of the solid can be tuned by adjusting the chemistry, and modern

fabrication technology can be used to machine solids into a desired shape. It is also

easier to integrate solid-state systems with other systems such as cavities and resonators

or classical circuitry [58, 59].

The solid state system has its own disadvantages. Unlike trapped atoms or atomic

gases, each atom in the solid has a different environment from each other. This causes

inhomogeneous broadening on the optical transitions, which makes it more difficult to

coherently manipulate the atoms. More importantly, the coherence times of optical and

spin transitions are shortened in these systems due to the strong coupling to the dynamic

environment. However, there is a very particular solid system, rare earth dopants in solids,

which possess all the above advantages of being ‘solid’ but in which it is also possible to

have very long coherence time for both optical and hyperfine transitions. In this system,

the optically active 4fN levels are used to store and manipulate the quantum information.

The 4fN electrons are tightly-bonded and shielded by the outer 5s2 and 5p6 orbitals (see

Chapter 2). This means that the 4fN levels are atom-like, even in a crystalline solid at

doping densities as great as 1018/cm3 [45].

There has been remarkable progress in the development of rare-earth-based quantum

memories as outlined in the review papers of Tittel in 2010 [45] Bussières in 2013 [47]. The

primary achievements include storage with a retrieval efficiency of 69% [11], storage for

more than 40 s [12] and the development of a rare-earth-based quantum repeater protocol

[60, 61].

In this work, I focus on a particular rare-earth system, Eu3+:Y2SiO5, a promising

candidate for quantum memory applications. In our case, the quantum information is

mapped on its nuclear spin states, the transition between which is expected to have an

extremely long coherence time due to the measured lifetime of 23 days [17].

1.5 Thesis outline

The goal of this thesis was to study the decoherence mechanisms of the hyperfine transi-

tions in Eu3+:Y2SiO5 and to extend the coherence time, aiming to achieve a sufficiently

long coherence time that the crystal could be used for a persistent quantum memory.

A persistent quantum memory is a key component in either quantum computation or

distribution of entanglement over long distance. The thesis is arranged as follows:

Chapter 2 first gives a brief introduction on the spectroscopic properties of the rare

earth ions with a focus on transitions between the 4fN levels. Then a more detailed

description of the hyperfine energy levels structure in Eu3+:Y2SiO5 is given. This is

followed by a discussion on the spectral broadening mechanism for rare-earth ensembles,

with a focus on the broadening mechanisms of the hyperfine transitions in Eu3+:Y2SiO5.
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Finally, the last section is an analysis of the mechanisms resulting in decoherence of the

hyperfine transitions in Eu3+:Y2SiO5 and the approaches that can be used to extend the

coherence times.

Chapter 3 begins with an introduction of the Bloch sphere representation of a two-

level system, with which the two pulse spin echo technique for measuring the coherence

time was illustrated. After that, an analysis of two echo decay shapes is presented, which

is followed by an introduction to DDC, a strategy for fighting decoherence. The final

section talks about two methods for measuring hyperfine coherence time via the optical

transition. These two methods are spectral holeburning and Raman heterodyne detection.

Chapter 4 first describes the experimental setup with a focus of the critical field

alignment. Then the measurements of the coherence time using the ZEFOZ method are

presented. This is followed by a demonstration of the coherence time measurements by

combing the ZEFOZ and DDC. Finally, I provide a detailed analysis of the experimental

results and a discussion of the possible limit of the experiments.

Chapter 5 is a detailed study on the frozen core created around an Eu3+ site in

an applied magnetic field, aiming to work out the remaining mechanisms that still limit

the coherence time of Eu3+ hyperfine transitions. Measurements of the Rabi frequency,

coherence time, lifetime and Zeeman-transition spectrum of the frozen-core Y spins are

reported.

Chapter 6 concludes the thesis and discusses the possible applications of the achieved

results, the limitation of the present experiment and the potential for longer coherence

time in this system.



Chapter 2

The optical spectroscopy and the

hyperfine transitions of

Eu3+:Y2SiO5

The rare-earth (RE) elements have been the focus of experimental investigation for many

decades. This has led to the development of many applications, including fluorescent

lamps, laser materials and optical amplifiers for telecommunications.

The observation of narrow optical lines [62, 63] was a key property that motivated

the study and technological development of the rare-earth ions. The optical lines are from

transitions between the electronic states within a 4fN configuration of divalent (RE2+)

or trivalent RE ions (RE3+) doped into transparent host materials, such as Y3Al5O12,

Y2SiO5 (YSO) and Y2O3. The 4fN configuration for RE ions is unique in solids because

the 4f electrons are shielded from the crystalline environment by the outer 5s and 5p

electrons and couple only weakly to ligand electrons and lattice vibrations. Thus RE ion

doped solids have spectral properties more akin to trapped ions than other optical centres

in solid state hosts. The 4fN transitions exhibit excellent coherence properties, and unlike

trapped ions, large optical depths are readily achieved.

Because of these characteristics, there has been interest in using rare-earth doped

solids as a physical system for quantum memory applications. The storage time of a

quantum memory is limited by the coherence time of the transition on which information

is stored. In RE doped solids, the longest coherence time observed for optical transitions

is 4.8 ms in Er3+:Y2SiO5 [64]. This optical coherence time is long compared to many other

systems that are considered for developing quantum memories, but much longer coher-

ence time can be achieved for hyperfine transitions. Previous experiments involving Pr3+

doped into Y2SiO5 have demonstrated hyperfine coherence times exceeding 40 seconds

[10, 12]. This thesis investigates the hyperfine decoherence mechanisms of Eu3+:Y2SiO5,

in an attempt to achieve still longer coherence times. While the above coherence time

(40 seconds) of Pr3+:Y2SiO5 is already very close to being lifetime limited, the hyperfine

lifetime of Eu3+:Y2SiO5 is up to 23 days [17]. This gives a significantly longer upper limit,

and makes Eu3+:Y2SiO5 a promising candidate of the development of long-term quantum

memories.

At the beginning of this chapter, a brief review of the spectroscopic properties of

rare-earth ions is presented. This is followed by a more detailed description of the hy-

perfine structure and spin Hamiltonian parameters of Eu3+ in Y2SiO5. Then I present a

discussion on the spectral broadening mechanisms for rare-earth ensembles with a focus

on the broadening mechanisms of the hyperfine transitions in Eu3+:Y2SiO5. Finally, in

13
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the last section, a detailed analysis on the feasible methods to suppress the mechanisms

that broaden the homogeneous linewidth of the hyperfine transitions in Eu3+:Y2SiO5 is

presented. Then the expected coherence time is presented according to this analysis.

2.1 Introduction to rare earths

The rare earths, or lanthanides, are a group of elements with very similar chemical and

physical properties. They comprise the 15 elements in the periodic table from lanthanum

(57) to lutetium (71). These elements all exhibit strong electropositivity and the most

stable oxidation state is generally RE3+, resulting in the electronic configuration 4fN as

shown in Table 2.1. scandium and Y3+ are often included in the class of rare earths

because they share their trivalent oxidation state and have a similar ionic size.

Atomic number Element Electronic configu- Ground state Ionic radius (pm)

21 Sc 3d0 1S0 87.0

39 Y 4d0 1S0 101.9

57 La 4f05s25p6 1S0 116.0

58 Ce 4f15s25p6 2F5/2 114.3

59 Pr 4f25s25p6 3H4 112.6

60 Nd 4f35s25p6 4I9/2 110.9

61 Pm 4f45s25p6 5I4 109.3

62 Sm 4f55s25p6 6H5/2 107.9

63 Eu 4f65s25p6 7F0 106.6

64 Gd 4f75s25p6 8S7/2 105.3

65 Tb 4f85s25p6 7F6 104.0

66 Dy 4f95s25p6 6H15/2 102.7

67 Ho 4f105s25p6 5I8 101.5

68 Er 4f115s25p6 4I15/2 100.4

69 Tm 4f125s25p6 3H6 99.4

70 Yb 4f135s25p6 2F7/2 98.5

71 Lu 4f145s25p6 1S0 97.7

Table 2.1: The electronic configuration and ground states of the trivalent rare earth ions RE3+.

The ionic radii are from [65].

The rare earth ions distinguish themselves by their partially occupied 4f orbitals.

The 4fN shell sits inside the 5s and 5p sub-shells, both of which are completely filled.

Hence the electrons in the 4fN shell have atomic-like localised states, being shielded from

interacting with the crystal field. Figure 2.1 shows, with Gd+ as an example, the radial

distribution of electrons in the outer four shells. It is obvious that the 4f shell is deeply

imbedded inside the 5s and 5p shells.

While the 4f electrons are well shielded from the crystal field, they are not well

shielded from the nucleus. The effective charge of the nucleus grows as the atomic number
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Figure 2.1: The calculated radial probability distribution for the 4f, 5s, 5p and 6s orbitals of

Gd+. This figure is reproduced based on [66].

increases, which enhances the attraction to the outer electrons. This results in a gradual

decrease in the radius across the lanthanide ions, known as the lanthanide contraction.

Thus, as shown in Table 2.1, while lanthanum has a larger radius than Y3+, the radius of

erbium is similar to Y3+.

2.1.1 Energy levels of 4f electrons

An exact solution of the Schrödinger equation is not possible for a multi-electron system.

However, due to the well-shielded crystalline environment, the Hamiltonian of the 4f

electrons of rare earths in solids is very similar to that of the free ion. Thus, we can use

a free-ion approximation in which the electron-nucleus, electron-electron and the spin-

orbit interactions are described by a free-ion Hamiltonian while the remaining effect of

the crystal field is treated as a perturbation to this Hamiltonian. The energy level scales

corresponding to different interaction mechanisms of rare earths in solids is listed in Table

2.2 and the method for solving the Schrödinger equation to get these splittings, using the

free-ion approximation, is briefly described in the following paragraphs.

The free-ion energy levels are formed through three steps. First, a Hamiltonian is

formed in the central field approximation, composed of two components. One is the

Coulomb attraction between the electrons and the nucleus. The other is the central part

of the Coulomb repulsion between the electrons. In the framework of this approximation,

all the n = 4 energy levels are degenerate. The degeneracy in n is then lifted by the non-

central part of the Coulomb repulsion. At this stage, the energy levels can be specified

by the definite orbital angular momentum L =
∑N

i=1 li and the spin angular moment

S =
∑N

i=1 si, where li and si are the orbital angular and spin angular momentum for the

i-th electron. Degeneracy of these energy levels is further lifted by the spin-orbit coupling,

which mixes states whose L and S are different, but whose total angular momenta J are

identical. As this mixing is significant, the orbital (L) and spin (S) angular momentum
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are no longer good quantum numbers. The energy levels of the free ion are labelled

according to the total angular momentum J = L + S. This brings about the familiar

Russell-Saunders symbol 2s+1LJ where each J level is 2J + 1 degenerate. The L and

S values are approximations by using the numbers with the largest contribution. While

the S and L values are specified numerically, the L values are specified using letters as

L = S,P ,D,F ,G,H, corresponding to L = 0,1,2,3,4,5.

Interaction mechanism Energy splitting Energy splitting

(cm−1) (Hz)

Configuration splitting (4fN → 4fN−15d) 105 1015

Splitting within a 4fN configuration:

Non-central Coulomb 104 1014

Spin-orbit interaction 103 1013

Crystal field interaction 102 1012

Hyperfine splitting (nuclear spin) 10−3 − 10−1 107-109

Superhyperfine splitting(ion-host nuclear spin) 10−4 − 10−2 106-108

Table 2.2: Approximate scale of the Hamiltonian contributions for rare-earth ions in solid hosts.

This table is reproduced from [67].

The (2J + 1) degeneracy of the energy levels is lifted or partially lifted by the crystal

field for a rare earth ion in a solid. The degree to which the degeneracy in J is lifted

depends on the symmetry of the ion site and the number of electrons the ion has. For ions

with an even number of electrons (non-Kramers ions), the degeneracy is completely lifted

in sites of less than axial symmetry, such as the Y3+ sites in Y2SiO5. The rare-earth ions

in this case have no electronic magnetic moment to first order and hence are much less

sensitive to magnetic fields. For ions with an odd number of electrons (Kramers ions), the

crystal field levels remain doubly degenerate even in the case of a low-symmetry site, which

is known as Kramers’ degeneracy. The doublet states are split by an external magnetic

field.

Figure 2.2 is the famous Dieke diagram of energy levels of the trivalent rare-earth ion

in a solid. First created by Dieke in 1963 [68], it was extended by Carnall et al. in 1989

[69]. The Hamiltonian for these energy levels consists of the free-ion and crystal field. The

splittings due to crystal field interaction are not resolved in this diagram, and the scale of

splitting is indicated by the thickness of the lines. Though the levels shown in the diagram

are for RE3+:LaF3, the splittings are similar for different host materials.

Transitions between the levels in Figure 2.2 are electric or magnetic dipole transition.

For free rare-earth ions, the 4f-4f transitions are parity forbidden because the electric

dipole operator only links states with different parity. However, once the rare-earth ions

are placed in non-centrosymmetric sites in a solid, the states of configurations with opposite

parity, such as 4fN−15d or 4fN−15p, are mixed into the 4fN configuration [67]. Thus the

4f-4f transitions become weakly allowed.
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Figure 2.2: The classic Dieke chart of energy levels in RE3+:LaF3 based on calculated free-ion

and crystal-field splittings [70]. The 7F0 → 5D0 transition of Eu3+ studied in this thesis is indicted

by the orange arrow.



18 The optical spectroscopy and the hyperfine transitions of Eu3+:Y2SiO5

2.2 Spectral properties of Eu3+:Y2SiO5

The experiments described in this thesis were conducted in Eu3+:Y2SiO5. This section

describes properties specific to the host crystal Y2SiO5 and for the Eu3+ ion in this

material.

The host crystal Y2SiO5 is monoclinic and belongs to the C6
2h space group with four

formula units per unit cell. The detailed crystal structure and cell parameters are listed

in Table 2.2. Being monoclinic, the crystal is optically biaxial and the optical extinction

axes are commonly used to orient the crystal in an experiment. As shown in Figure 2.3,

one extinction axis coincides with the crystallographic b axis, which has C2 symmetry,

while the other two, labelled D1 and D2, lie in the a-c plane, with D1 23.8◦ from the c

axis, 78.7◦ from the a axis and perpendicular to the D2 axis [71].

Cell parameters: a = 10.419 Å, b = 6.726 Å, c = 12.495 Å, β = 102◦39′

Schoenflies: C6
2h (no. 15 in inter. labels of cryst.)

Element x/a y/b z/c

Y(1) 0.30657 0.37701 0.14154
Y(2) 0.42839 -0.25506 -0.03701

Table 2.3: The crystal structure and cell parameters of Y2SiO5 [71]. The constants a, b, c and

β are the cell parameters, with β the angle between a and c. The Y3+ positions listed are to be

used in Section 2.5.

X

b, C2

D2

D1
c

a
β = 102°39'

23.8°

Figure 2.3: The orientation of the D1, D2 and C2 axes relative to the crystallographic axes (a,

b, and c) in Y2SiO5 with C2 along b axis and the other two axes in the a− c plane [71].

Eu3+ ions can substitute the Y3+ ions in Y2SiO5 in one of two crystallographically

inequivalent sites of C1 symmetry. These two sites, referred to as Site 1 and Site 2, have

different frequencies for the same transition. The transition of interest in this work is the
7F0 → 5D0 transition, which occurs at 579.879 nm for Site 1 and 580.049 for Site 2 [67].

Each crystallographically identical site consists of a pair of magnetically inequivalent sites,

related by a rotation about the crystal’s C2 axis. The work reported in this thesis focus

on one of the magnetic site of Site 1.
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The 7F0 → 5D0 transition of Eu3+ is unique among all the 4f → 4f transitions of

the rare earths in that both the ground and excited states are J = 0 singlet levels. These

levels have very weak magnetic and crystal field interactions with the lattice. In many

symmetries, the J = 0 to J = 0 transition is completely forbidden according to the Judd-

Ofelt theory [72, 73]. Such a transition can become weakly allowed for sites belonging

to the polar point groups [74], which comprise C1, Cs, Cn and Cnv (for n = 2, 3, 4, 6).

In these symmetries, the 0 → 0 transition becomes allowed because the J = 2 levels are

mixed into the J = 0 ground state. However, the oscillator strength is generally weaker

than other rare-earth systems, and is dependent on the host material. For the 7F0 → 5D0

transition in Eu3+:Y2SiO5, the oscillator strength is 10−8 [17].

2.3 Hyperfine energy levels of Eu3+:Y2SiO5

2.3.1 Spin Hamiltonian

The hyperfine structure of Eu3+:Y2SiO5 is determined by a number of interactions and is

often described by introducing the Hamiltonian [75]

H = [HFI +HCF ] + [HHF +HQ +HZ +Hz]. (2.1)

In this equation, the six terms are the free-ion Hamiltonian HFI , the crystal field Hamilto-

nian HCF , the hyperfine interaction HHF , the nuclear electric quadruple interaction HQ,

the electronic Zeeman interaction HZ and the nuclear Zeeman interaction Hz. The first

group [HFI+HCF ] are of a much larger order than the second group [HHF +HQ+HZ+Hz],

and determine the electronic energy levels. The four terms of the second group in Equation

2.1 are of similar magnitude and it is the perturbation from these terms that determines

the hyperfine structure to the electronic levels.

In most non-Kramers’ ions in a non-centrosymmetric site, the crystal field quenches

the electronic angular momentum, so that there is no first order but there is a second order

contribution from the hyperfine interaction HHF and the electronic Zeeman interaction

HZ due to interactions with nearby crystal field levels. But this is not the case for the
7F0 and 5D0 levels of Eu3+, since these levels are true electronically singlets so there

are no other J multiplets to interact with. However, Eu3+ does have admixtures with

other J states contributing to the Hamiltonian of the J = 0 states, which gives rise to

a similar Hamiltonian to that seen in other non-Kramers’ systems. The behaviour of a

single electronic level can then be described by a reduced spin Hamiltonian [75, 76]

H = (B · (g2
Jµ

2
BΛ) ·B)Ê +B · (γNE + 2AJgJµBΛ) · Î + Î · (PQ + 2TQ) · Î, (2.2)

where the tensor Λ and the tensor PQ are determined by the admixtures between the

J = 0 and the nearby J 6= 0 states. In particular, for the 7F0 state, the mixing is with the
7F1 and 7F2 state. Also

• gJ is the Lande g-value, gJ = 3
2 −

L(L+1)−S(S+1)
2J(J+1)

• µB is the Bohr magneton,

• B is the vector of the magnetic field,

• γN is the nuclear gyromagnetic ratio,
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• Î is the vector nuclear spin operator,

• E is the 3× 3 identity matrix,

• Ê is the identity operator,

• AJ is the magnetic hyperfine interaction parameter for a given J state,

• TQ is the tensor describing the nuclear quadrupole interaction, also known as the

true quadrupole tensor.

The first term of Equation 2.2 is the quadratic electronic Zeeman shift which is due to the

second order hyperfine interaction. The term 2AJgJµBB ·Λ · I has the same form as the

nuclear Zeeman interaction γNB · I, both of which are linear with magnetic field and can

be combined to be described by an enhanced nuclear Zeeman tensor. The PQ tensor and

the true quadrupole tensor TQ have the same format and can be combined into a total

quadrupole tensor. This leads to a simplified form of Equation 2.2:

H = (B ·Z ·B)Ê +B ·M · Î + Î ·Q · Î. (2.3)

The quadratic electronic Zeeman term is described by Z, the quadratic Zeeman tensor.

The second term is the enhanced nuclear Zeeman Hamiltonian where M is the effective

Zeeman tensor. The tensors Z and M are anisotropic and share the same principal axes

given by the tensor Λ. The tensor Q = PQ + TQ is the effective quadrupole tensor,

including the true quadruple and the admixture interactions. Because the system investi-

gated has less than axial symmetry, the tensor Q does not have the same principal axes

as PQ, TQ or M . For the ground state 7F0 and excited state 5D0, because the tensor Λ

and the tensor PQ in Equation 2.2 are different, the tensor Q or M have different values

and principal axes.

2.3.2 Hyperfine structure

As mentioned earlier, the electronic 7F0 → 5D0 transition of Eu3+ involved in this thesis

is a special case among 4f − 4f transitions of rare earth ions in solids as both the ground

and excited states are electronically non degenerate J = 0 levels. This results in a very

weak coupling between the transition and the magnetic and crystal field of the host lattice.

The remaining weak interaction is due to slight mixtures of the nearby J = 1, 2 states.

As the 7F0 → 7F1 separation (≈ 10 THz) is much smaller than 5D0 → 5D1 separation

(≈ 30 THz), the admixture is larger in the 7F0 state than the 5D0 state. Though the

admixture of the nearby J = 1, 2 states is larger in 7F0 than that in 5D0, the magnitude

of the hyperfine quadrupole splittings in the ground 7F0 state is significantly smaller than

those in the excited 5D0 state. This is because the different contributions to the effective

quadruple tensor Q of 7F0 have opposite signs and they cancel each other [67].

Natural Eu3+ has two isotopes, 151Eu and 153Eu, with roughly equal abundance.

Both isotopes have a nuclear spin of 5/2. At zero field, the J = 0 singlets are split by

the nuclear quadrupole interactions into three doubly degenerate hyperfine levels. The

zero field hyperfine splitting frequencies of the 7F0 and 5D0 states in Eu3+:Y2SiO5 are

listed in Table 2.4. The transitions involved in this work are the splittings of 151Eu3+ ions

occupying Site 1 Y3+ positions as shown shown in Figure 2.4.

In an external magnetic field, the degeneracy of the nuclear spin states is lifted and the

three pairs of hyperfine levels are split into six levels as shown in Figure 2.4. The quadratic
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75 MHz

102 MHz

±3/2

±1/2

±5/2

±1/2

±3/2

±5/2

7F0

5D0

579.879 nm

Quadrupole Nuclear Zeeman 

46.175 MHz

34.533 MHz

Figure 2.4: Hyperfine energy levels for Site 1 Eu3+ ions in 151Eu3+:Y2SiO5. This thesis focusses

on the hyperfine transitions of the 7F0 state, but it involves the optical transition, as marked,

during measurements. The hyperfine splitting are from [67]. Though the hyperfine levels are

labelled with the spin states (±5/2, ±3/2 and ±1/2), this labelling is not accurate due to the

mixture between different spin states.
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151Eu, Site 1 153Eu, Site 1 151Eu, Site 2 153Eu, Site 2

(MHz) (MHz) (MHz) (MHz)

7F0 34.533[a] 90.0 29.527[a] 76.4

46.175[a] 119.2 57.254[a] 148.1

5D0 75 191 63 160

102 260 108 274

Table 2.4: Hyperfine splittings for Eu3+:Y2SiO5. The transition frequencies labelled as [a] are

from Könz [17] and other values are from Yano et. al. [77, 78]. This table is reproduced from [67].

Zeeman term in Equation 2.3 does not contribute to the hyperfine splittings as it causes

the same shift for different nuclear spin states. This term is ignored when discussing the

hyperfine splittings. So the spin Hamiltonian of Equation 2.3 can be simplified as

H = B ·M · Î + Î ·Q · Î. (2.4)

For the non-axial sites of Y2SiO5, tensors M and Q have different orientation and can be

written

M = R(αM , βM , γM )

γ1 0 0

0 γ2 0

0 0 γ3

RT (αM , βM , γM ), (2.5)

Q = R(αQ, βQ, γQ)

−E 0 0

0 E 0

0 0 D

RT (αQ, βQ, γQ), (2.6)

where R(α, β, γ) is the rotation matrix defining the orientation between an external co-

ordination system and the principal axes of the tensors, and is described by three Euler

angles

R(α, β, γ) =

cosα − sinα 0

sinα cosα 0

0 0 1

×
 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

×
cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 . (2.7)

As shown in the above equations, the ground state 7F0 and the excited state 5D0 each

have six parameters determining the tensor M and five parameters determining the tensor

Q. These tensors are different for the two magnetically inequivalent subsites contributing

to a single crystallographic site. The tensors for one subset can be obtained by rotating

the tensors of the other subset around the C2 axis. For example, for the tensor M :

M1 = RC2 ·M2 ·R′C2
, (2.8)

where RC2 is the rotation matrix about C2-axis while M1 and M2 are the M tensors

for the two magnetic subsets respectively. Since the tensors are different, the hyperfine

splittings are different for the two subgroups in the presence of a magnetic field, thus,

there is a pair of lines corresponding to the same transition as shown in Figure 4.9(b).

The parameters defining theQ andM tensor and the C2 axis of the ground state hyperfine

levels for crystallographically Site 1 on 151Eu3+:Y2SiO5 were worked out by Longdell et
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al. [22] and are listed in Table 2.5.

Quantity Value Fit uncertainty Units

αM 144.9 0.1 degrees

βM 34.9 0.1 degrees

γM 98.1 0.6 degrees

γ1 4.43 0.02 MHz/T

γ2 5.682 0.007 MHz/T

γ3 11.183 0.010 MHz/T

C2θ 10.11 0.03 degrees

C2φ 165.2 0.2 degrees

αQ -39.3 0.2 degrees

βQ 76.49 0.06 degrees

γQ 149.9 0.1 degrees

E 2.73500 0.00007 MHz

D 12.3797 0.0001 MHz

Table 2.5: Spin hamiltonian parameters for 151Eu3+:Y2SiO5 hyperfine ground 7F0 state. These

parameters are defined in the coordinate frame of the magnetic field used during the experimental

determination [22]. C2θ and C2φ are the elevation and azimuth angle of the C2 orientation.

2.4 Broadening of spectral lines

An ensemble system of rare earth ions can never be made completely isolated so there is

always interaction between the ion of interest and the surrounding environment, which re-

sults in the broadening of the transition. This broadening can be classified on the basis of

the time scale it occurs over into inhomogeneous broadening, homogenous broadening and

spectral diffusion. Inhomogneous broadening is due to interactions with the environment

that are static with time, while homogeneous broadening is a dynamic process happening

on a time scale that is much faster than the measurement. Spectral diffusion is a process

mid-way between the two, which occurs on a time scale comparable to that of the mea-

surement. This section talks about the broadening mechanisms for rare earth solid state

systems and the focus is on the broadening of the hyperfine transitions in Eu3+:Y2SiO5.

2.4.1 Inhomogeneous broadening

In a doped solid, there are static variations in the strain, electric or magnetic field expe-

rienced by a dopant ion from site to site, which results in an inhomogeneous distribution

of the dopant’s transition frequencies. As shown in Figure 2.5(a), different ion subgroups

have different transition frequencies. The frequencies from the whole ensemble forms an

inhomogneneous broadening profile as shown in Figure 2.5(b). The variation of the crys-

talline environment causing this static frequency broadening is generally due to crystal

defects such as vacancies, interstitials, impurities, growth defects, ions in different valence

states or trapped electrons or holes.
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Figure 2.5: (a), Three ion subgroups are used to illustrate the homogeneous and inhomogeneous

broadening. The inhomogeneous broadening is that the transition frequency for each ion subgroup

is different. It is ω1, ω2 and ω3 for Ion 1, Ion 2 and Ion 3 respectively. The homogeneous

broadening is that the frequency for each ion subgroup is altered dynamically within the identical

region of ∆ν. (b), The inhomogeneous absorption profile of an ensemble of ions is the sum of the

homogeneous profile of the different individual ions. The transition frequencies of the three ions

are indicated in the inhomogeneous profile. This diagram is not to scale, the actual ratio between

inhomogeneous linewidth Γinh and homogeneous linewidth Γh is much larger.
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The rare earths in solids have an inhomogeneous linewidth ranging from 10 MHz to

more than 100 GHz for optical transitions. This linewidth is dominated by the static strain

in the lattice for the system under consideration [67], and, for non-singlet levels, by static

magnetic fields as well [79]. In zero magnetic field, only the second-order contributions

to the quadruple tensor from the electronic states cause inhomogeneous broadening on

hyperfine transitions. The inhomogeneous linewidth of hyperfine transitions is typically

at the kHz to 100kHz scale, which is much narrower than that of optical transitions. In

the presence of an external magnetic field, the field inhomogeneity can contribute to both

the optical and the hyperfine inhomogeneous linewidth.

Both the optical and the hyperfine inhomogeneous linewidths are dependent on the

host material, growth conditions and dopant concentrations. For instance, the dopants

are usually mismatched in size with the ions they replace, causing distortion in the lattice,

which results in strain in the crystal environment. The lattice distortion grows as the

concentration is increased. In order to minimise the strain, a common choice is to replace

a host ion of similar size and at low concentration. Thus, it is common to use Y3+ hosts,

such as Y2SiO5 and Y2O3, for rare earth ions, given that the Y3+ ions, which are to be

substituted, have a similar ionic radius with the rare earth ions as shown in Table 2.1.

2.4.2 Lifetime

While the inhomogeneous broadening is static, the homogeneous and spectral diffusion

are dynamic processes. To understand these dynamic processes, I will first give a brief

discussion of the lifetime T1 of the excited state of the transition. The lifetime T1 can be

written [79]:
1

T1
= Γr +

∑
i

Γnr,i . (2.9)

T1 includes both radiative and non-radiative processes. For optical transitions within

the 4fn configuration, the radiative decay rate is generally very low, in the kHz or sub

kHz regime, due to the weak oscillator strength. This is because these transitions are

parity, and often angular momentum forbidden in the free ion, but become weakly allowed

when occupying dopant sites in a solid of low symmetry. Non-radiative decay involves

the coupling between the electrons and phonons. The phonon processes involved include

the direct one-phonon process and higher order processes where two or multiple phonons

are involved [80, 81]. The direct phonon decay rate is dependent on the energy gap [82]

and the energies of the phonon modes [83]. For the lowest states in J multiplets, the
5D0 level of Eu3+ for instance, there is a large energy gap (∼ 10,000 cm−1) beneath it to

the next lowest energy level (7F6). Hence, the contribution to the lifetime of the direct

phonon process can be neglected [17]. Higher order processes dominate dephasing at room

temperature, but exhibit temperature dependence as T 2 at temperatures higher than the

Debye limit and as T 7 at temperatures much lower than the Debye limit [17, 67]. These

processes are generally negligible at temperatures below 4 K.

For hyperfine transitions, the radiative decay rate is extremely low and can be ignored.

The direct one-phonon process is also very slow because phonons of low-frequency modes,

though strongly populated, have a small coupling constant with quadruple coupling due

to their long wavelengths. The main spin-lattice relaxation mechanisms, then, are the

Orbach process [80] and inelastic Raman scattering of phonons [81]. The system under

consideration in this thesis is the ground state hyperfine levels in Eu3+:Y2SiO5, the spin-

lattice relaxation mechanism of which has been well studied by Könz et al. [17]. By
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measuring the hyperfine lifetime at different temperatures from 2 K to 17 K as shown in

Figure 2.6, they showed a temperature dependence given by

T1 =

[
A

eδE/kT − 1
+BT 7

]−1

. (2.10)

The first term in the right describes the Orbach process which involves absorbing a

phonon from 7F0 to 7F1 and then re-emitting to a different hyperfine level. The intensity

of the Orbach process is dependent on the number of phonons with energy equal to the 7F0

→ 7F1 energy gap δE = 201 cm−1 [17]. The second term on the right is the Raman process

which describes the inelastic scattering of phonons, scaling with temperature as T 7. The

Orbach coefficient is A = 3.7×108 Hz and the Raman coefficient is B = 1.1×10−10 Hz/K7.

It was demonstrated that the Orbach process dominates at temperatures higher than

∼12 K while the Raman process takes over below 12 K. At 2 K, the measured lifetime

is up to 23 days for Site 1, which is much longer than the optical lifetime of ∼2 ms [84].

Könz et al. performed the lifetime measurements of Figure 2.6 in samples with several

different concentrations and they indicated that the hyperfine lifetime is not dependent

on the concentration.

Temperature (K)

Li
fe

tim
e 

(s
)

Figure 2.6: Hyperfine lifetime as a function of temperature corresponding to Site 1 and Site 2

in Eu3+:Y2SiO5. The solid lines are the theoretical fit according to Equation 2.10. This figure is

reproduced with permission from [17]

2.4.3 Homogeneous broadening

While inhomogeneous broadening is the static distribution in the transition frequency of

an ensemble, homogeneous broadening is caused by dynamic processes experienced by all

the ions in the same way as shown in Figure 2.5. The homogeneous linewidth Γh is related
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to the coherence time T2 by

Γh =
1

πT2
=

1

2πT1
+ Γφ . (2.11)

The first term 1
2πT1

, describes the mechanisms that reduce the lifetime of the excited state

of the transition. The second term Γφ is the contribution of pure dephasing processes,

due to interactions that change the transition frequency by shifting the upper and lower

energy levels without affecting their lifetimes. The pure dephasing processes can results

in both homogeneous broadening and spectral diffusion. Homogeneous broadening is dis-

tinguished from spectral diffusion in that the characteristic frequency of the perturbation

is large compared to the magnitude of the shifts. As a result, it is not possible to fol-

low the evolution of the transition frequency. For spectral diffusion, the frequency of the

perturbation is comparable or smaller than the magnitude of the perturbations, making

it possible to follow the evolution of the transition frequency. Importantly, the linewidth

observed will now depend on the time-scale of the measurement.

The coherence time is ultimately limited by the lifetime of the excited level, that is

T2 6 2T1. However, when the system is cooled down to cryogenic temperatures and thus

phonon processes are suppressed, there are usually still various Γφ mechanics preventing

the coherence time from reaching the lifetime limit. Generally, Γφ processes involve dy-

namic changes in the transition frequency of the rare earth ion due to the fluctuating

electric or magnetic field in the surrounding environment. The electric field shifts the

frequency via the Stark shift and the magnetic field shifts the frequency via the Zeeman

effect.

At cryogenic temperatures, interactions causing dephasing generally include dopant-

dopant interactions and dopant-host interactions. Dopant-dopant interactions depend

largely on the density of excited ions in the system [67]. The density of excited ions can

be reduced by shifting the driving frequency from the centre of the absorption line, de-

creasing the intensity of the driving field or employing samples with low concentration.

In the limit of low excitation density, for the system investigated in this thesis, the re-

maining dominant Γφ dephasing source is the dopant-host interactions which is mostly

magnetic. This involves the random flips of host spins constantly perturbing the sur-

rounding magnetic field of the dopant ions thereby shifting their transition frequencies. In

Eu3+:Y2SiO5, there is no first order electronic magnetic moment and the magnetic field

sensitivity of the 7F0 → 5D0 originates from the magnetic field sensitivity of the hyperfine

levels through the quadratic Zeeman and linear Zeeman effect (Equation 2.3). For the

hyperfine transitions, only the linear Zeeman effect is important.

Y2SiO5, like some other Y3+ crystals, such as Y2O3, is a good host for coherence

experiments because it is a “low noise” host with small magnetic field fluctuations at the

dopant ion site. The magnetic perturbation on the dopant ion mainly originates from the

100% abundant of 89Y. 89Y has a nuclear spin of I = 1/2 and a small nuclear magnetic

moment of −0.14µN , where µN is the nuclear magneton. The other constituent elements

with non-zero magnetic moment are 29Si and 17O, with a nuclear magnetic moments of

−0.56µN and −1.89µN respectively. However, both these two isotopes have a very low

abundance, 4.7% for 29Si and 0.04% for 17O. To make a comparison, hosts containing Al

ion, such as YAlO3 and Y3Al5O12 (YAG) are not “low noise” hosts, because the 100%
27Al has a much larger magnetic moment of 3.64µN .
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2.4.4 Spectral diffusion

In the previous sections, I talked about the inhomogeneous and homogeneous broadening

mechanisms. Inhomogeneous broadening is due to the static variation of the crystalline

environment while the homogeneous broadening is due to dynamic fluctuations from the

crystalline environment that occur on a time scale much faster than that of a possible

measurement. The spectral diffusion, to be discussed in this section, is a dephasing process

that occurs at a time scale comparable to that of the measurement. Spectral diffusion

can be observed in an experiment measuring the homogeneous linewidth using the two-

pulse photon echo for optical transitions and two pulse spin echo for hyperfine transitions

(Section 3.1.2). An exponential decay of the echo amplitude with the total evolution

time indicates a constant dephasing rate which is the characterisation of homogeneous

broadening. The spectral diffusion process, however, can lead to non-exponential decay of

the echo. It occurs when the dephasing rate grows with time.

A typical example of a spectral diffusion phenomenon in rare earth doped solids is the

frozen core effect [85]. The frozen core effect occurs in many different systems, and here I

illustrate it with the Pr3+ : LaF3 system [86]. In Pr3+ : LaF3, the F spins flips randomly,

causing dephasing of Pr3+ ions. The dominant spin flip process involves spin exchange

between two or more F nuclei. As shown in Figure 2.7, in the region far away from the

Pr3+ ion, all the F nuclei have the same spin frequency and easily exchange energy so

the spin flip rate is fast. As these spins are far away from the Pr3+ ion, their flipping

produces frequency shift on the Pr3+ transition which is small compared to the flipping

rate. Hence, the effect of the dynamics of the F spins in this region on the Pr3+ transition

can be treated as the source of homogeneous broadening. In the nearby region, the Pr3+

ion produces a local field acting on the F nuclei. Due to the asymmetrical placement and

the distance of the nuclei with respect to the Pr3+ ion, their spin frequencies are detuned

differently. The region in which the frequency of the F spins is detuned is called a frozen

core. As a result of the varied spin frequencies, the F nuclei in the core, which produce

the largest perturbation on the Pr3+ ion, flip at a suppressed rate, which is low compared

to the resulting frequency shift induced on the Pr3+ transition. Thus, the Pr3+ ion does

not have a uniform dephasing time. At short time scales, the perturbation is small as

it is caused by the bulk F spin flips. As time evolves, the frozen-core F spins gradually

flip, which continuously expands the distribution of magnetic perturbation field across the

Pr3+ ensemble. The resulted increasing dephasing rate is the spectral diffusion, which

presents as an non-exponential decay of the echo amplitude in a coherence measurement

(Section 3.1.2). Other systems which demonstrated spectral diffusion related to a frozen

core effect are Cr3+ in ruby [87], Er3+ in YLiF4 and LaF3 [88, 89], Tm3+ in LaF3 and

Y3Al5O2 (YAG)[90] and Pr3+ in Y2SiO5 [21].

The frozen core is formed because the dopant ion produces a local field, whose magni-

tude is proportional to the magnetic moment of the dopant ion. For hyperfine transitions

in Eu3+:Y2SiO5, the frozen core effect is negligible in zero field as the Eu3+ has a rela-

tively small nuclear magnetic moment, which is ∼ 700 Hz/G according to the parameters

of M tensor in Table 2.5. However, an external applied magnetic field induces a magnetic

moment through the quadratic Zeeman tensor (Equation 2.3). The induced moment does

not directly change the hyperfine transition frequencies, but it induces a frozen core, the

extent of which scales with the applied field. This is detailed in the following section.
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Frozen core F3+

Bulk F3+:

Pr3+

Figure 2.7: Illustration of the frozen core effect for Pr3+:LaF3. The Pr3+ magnetic moment

changes the Larmor frequency and quantisation axis of the nearby F nuclei, creating a frozen core

of F ions that can not readily exchange spin with the bulk F nuclei.
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2.5 Methods for extending hyperfine coherence time of

Eu3+:Y2SiO5

The focus of this thesis is studying the decoherence mechanism (homogeneous broadening

mechanism) of the ground state hyperfine transitions in Eu3+:Y2SiO5, with an aim to

extend the coherence time. It was demonstrated in the previous sections that, at cryogenic

temperatures, the dominant decoherence mechanism for the hyperfine transitions in a

sufficiently diluted Eu3+:Y2SiO5 sample is random spin flips of the Y3+ ions in the host.

This section investigates the details of this mechanism and explores methods to extend

the coherence times.

2.5.1 ZEFOZ method

The random spin flips of the bulk Y3+ ions produce a fluctuating magnetic field on the

Eu3+ ion, which Zeeman shifts its hyperfine transition frequency and causes decoherence.

Assuming that the magnetic field fluctuations occur much faster than the coherence time

T2 of the Eu3+ hyperfine transition, T2 can be estimated according to:

1

πT2
= S1 ·∆B + ∆B · S2 ·∆B, (2.12)

where ∆B, a column vector, is a distribution describing the magnetic field fluctuation

while S1 and S2 are the gradient (first order term) and curvature (second order term)

respectively of the transition frequency f with respect to magnetic field B = (Bx, By, Bz)
′

[21]. The gradient S1 and curvature S2 are given by

S1 =
∂f

∂Bx
î+

∂f

∂By
ĵ +

∂f

∂Bz
k̂, (2.13)

and

S2 =


∂2f

∂Bx∂Bx

∂2f
∂Bx∂By

∂2f
∂Bx∂Bz

∂2f
∂By∂Bx

∂2f
∂By∂By

∂2f
∂By∂Bz

∂2f
∂Bz∂Bx

∂2f
∂Bz∂By

∂2f
∂Bz∂Bz

 . (2.14)

The values of S1 and S2 can be worked out using the reduced spin Hamiltonian of

Equation 2.4 and the parameters listed in Table 2.5. The unit vectors î, ĵ and k̂ are for the

coordination system used to define the applied magnetic field B. With this Hamiltonian

and the parameters, the electronic ground (7F0) state hyperfine energy levels of 151Eu3+

ion occupying a Site 1 Y3+ position in Y2SiO5 [77] were also calculated and are shown in

Figure 2.8.

In the presence of an external magnetic field, as shown in Figure 2.8, level anti-

crossings occur when the linear Zeeman splitting approaches the magnitude of the

quadrupole splitting. In this regime, S1 and S2 are strongly dependent on the applied

field magnitude and direction. The sensitivity of the hyperfine transition to ∆B can be

significantly reduced by applying a particular field so that the transition frequency is at a

critical point such that the first order field sensitivity vanishes, namely(
∂f

∂Bx

)2

+

(
∂f

∂By

)2

+

(
∂f

∂Bz

)2

= 0. (2.15)
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Figure 2.8: Illustration of a ZEFOZ transition. The graph shows the calculated hyperfine ground

state energy levels of 151Eu3+:Y2SiO5 as a magnetic field is increased from zero in a ZEFOZ

direction. The calculation is performed using the reduced spin Hamiltonian in Reference [22]. At

the field magnitude as marked, the transition experiences a critical point, at which the transition

is no longer sensitive to small field perturbations in any directions to first order.

This zero first-order Zeeman (ZEFOZ) method is analogous to a clock transition in

atomic spectroscopy [91]. At the ZEFOZ field, T2 can be extended because the transition

frequency is insensitive to first order Zeeman shifts in all three directions. Only the

second-order Zeeman coefficient S2, that is the curvature at the critical point, couples the

transition to magnetic fluctuations. This method was first implemented in Pr3+:Y2SiO5,

which resulted in an extension of the hyperfine coherence time of Pr3+ from 500 µs to

1.4 s [21, 22]. The latter corresponds to a decoherence rate (1/T2) of 0.7 s−1.

The studies of hyperfine decoherence in Pr3+:Y2SiO5 indicate that the achieved stor-

age times are reaching the limit imposed by S2 [10, 12]. Although a significant increase

in current coherence times is unlikely in Pr3+:Y2SiO5, it was predicted by Longdell et

al. that coherence times much longer than 1.4 s should be achievable in Eu3+:Y2SiO5

using the ZEFOZ technique [22]. This is because the critical points in Eu3+:Y2SiO5 have

much smaller second-order Zeeman coefficient as shown in Figure 2.9. This assertion is

based on the assumption that the magnetic field fluctuations causing dephasing should

have the same origin in both Pr3+:Y2SiO5 and Eu3+:Y2SiO5 which is reasonable because

the fluctuation arises from the host rather than the dopant.

For both Pr3+:Y2SiO5 and Eu3+:Y2SiO5, there are a number of critical points with

different magnetic fields and curvature values as shown in Figure 2.9. The circled point

labelled as ‘A’ is the ZEFOZ transition used in Pr3+:Y2SiO5 for which the coherence

time was extended from 550 us to 1.4 s. This critical point occurs at a field of 780 G

and has a curvature value of 60 Hz/G2. The point labelled as ‘B’ is the critical point

for Eu3+:Y2SiO5 to be investigated in this thesis, which has a field magnitude of around

1.3 T and a curvature of 0.217 Hz/G2. This curvature value is 276 times smaller than the

‘A’ transition in Pr3+:Y2SiO5, implying possible coherence times of ∼400 s according to
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Equation 2.12. At higher fields, critical points with even lower curvature are available in

Eu3+:Y2SiO5, such as the one marked with ‘C’ in Figure 2.9, occuring at a field magnitude

of 4.6 T and with a curvature of 0.154 Hz/G2. At this point, the coherence time is expected

to be even longer.
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Figure 2.9: Comparison of ZEFOZ values in two different systems, Eu3+:Y2SiO5 and

Pr3+:Y2SiO5, performed by Londell et al. [22]. Each point in the diagram represents a criti-

cal point identified in the material. The curvature tensor S2, as shown in Equation 2.14, is a

tensor valued quantity but is reduced here to a single number by taking the largest of the absolute

values of the eigenvalues. The magnitude of the ZEFOZ field is plotted against the second order

Zeeman dependence. The critical point marked with ‘A’ was the one investigated in [21, 22], with

‘B’ the one to be studied in this thesis and with ‘C’ the critical point in Eu3+:Y2SiO5 having the

smallest curvature.

2.5.2 Calculation of the field perturbation

The distribution describing the magnetic field fluctuation ∆B can be estimated using

the Monte-Carlo simulation procedure described in [92]. The calculation is performed by

considering one Eu3+ ion occupying a Site 1 Y3+ position in Y2SiO5 [77] being surrounded

by a host which does not contain any other Eu ion. The bulk Y spins are randomly

orientated then the field on the Eu ion from the magnetic dipole of each Y spin is summed:

∆B =
µ0

4π

n∑
i=1

(
3(mY · ri)ri
|ri|5

− mY

|ri|3

)
, (2.16)
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where mY is the nuclear magnetic dipole moment of Y3+ ions, given by

mY = γhI. (2.17)

The constants in these two equationss are listed as follows:

• µ0 is the vacuum permeability, µ0 = 4π × 10−7 T·m/A,

• ri is the displacement of the i-th Y3+ ion relative to the Eu ion,

• γ is the gyromagnetic ratio of Y3+ ions, γ = 2.09× 106 Hz/T,

• h is Planck’s constant, h = 6.626× 10−34 J·s,

• I is the nuclear spin state vector of Y ions, |I| = 1/2.

The Y positions were calculated by Ahlefeldt [93] using the Y2SiO5 crystal structure

listed in Table 2.2, which was provided by Scientific Materials Corp. (Bozeman, Montana).

The nearest 2000 ions were included in the Monte-Carlo calculation and it was found that

only the nearest 60 ions make a significant contribution to the field. After 5×105 iterations

of randomisation of the spin states, a histogram of magnetic field values at the Eu site was

produced as shown in Figure 2.10. The full width at half maximum (FWHM) linewidth

of the field perturbation ∆B was calculated to be 8.0 µT .
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Figure 2.10: Magnetic field distribution along x axis at the Eu site due to randomly orientated

Y spins in Y2SiO5 host. The distributions along y and z axes are identical, which also present a

field distribution (FWHM) of 8.0 µT .

With this field perturbation, according to Equation 2.12, for a perfect field alignment

at the critical point (S1 = 0) in Pr3+:Y2SiO5, marked ‘A’ in Figure 2.9, the coherence time
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is estimated to be 0.8 s, which is slightly under the experimentally measured value of 1.4 s

[92]. This is most probably because, besides the ZEFOZ effect, there was a frozen core of

Y3+ spins produced by the Pr3+ magnetic moment, which also contributed to extend the

coherence time to 1.4 s in Pr3+:Y2SiO5. For Eu3+:Y2SiO5, if there is no frozen core, using

Equation 2.12, an aligned critical point, marked ‘A’ in Figure 2.9, is expected to have a

coherence time of 229 s. However, the applied ZEFOZ field would induce a frozen core on

Eu3+, which means the coherence time might be expected to be longer than 229 s. The

frozen core effect in Eu3+:Y2SiO5 is to be discussed in the following section.

2.5.3 Frozen core effect

The Eu3+ hyperfine ground state has a nuclear magnetic moment comparable to that of

a Y3+ ion, thus the frozen core effect is expected to be very small at zero field. The Y3+

ions around the Eu ions easily exchange spins with each other and flip fast, which limits

the Eu hyperfine coherence time to the order of 10 ms [67]. However, in the presence of

an external magnetic field, due to the quadratic Zeeman interaction, a magnetic moment

is induced on the Eu ion. The induced magnetic moment of Eu can be written:

mEu = Z ·B, (2.18)

where Z is the quadratic Zeeman tensor as shown in Equation 2.3 and B the applied

magnetic field. The induced moment is linearly dependent on the magnetic field, with a

gradient given by the quadratic Zeeman tensor. I have measured the quadratic Zeeman

coefficient along the three principal axes of polarisation for the crystal to be Z(D1, D2, C2)

= (-0.56, -0.53, -1.58) Hz/G2 (Appendix A). Then the quadratic Zeeman tensor can be

worked out using the parameters in table 2.5 because the quadratic Zeeman tensor and

the Zeeman tensor have the same principal axes (RZ = RM , Section 2.3.2).

As the magnetic field is increased, the induced magnetic moment on Eu3+ detunes

the nearby Y3+ ions from the bulk and produces a frozen core. It then becomes difficult

for the Y3+ ions around the Eu ion to exchange spins with each other and therefore they

flip at a suppressed rate. This results in a decreased value of the field fluctuation ∆B

acting on the Eu ion over short time intervals, thereby extending the coherence time of

its hyperfine transitions.

The size of the frozen core can be estimated by determining the distance by which the

Eu-Y interaction exceeds the Y-Y interaction. Similar to the calculation for ∆B described

in Section 2.5.2, the detuning frequencies and the frozen core size can be calculated using

the Hamiltonian 1:

HDD =
µ0

4π|r|3
(mEu ·mY −

3(mEu · r)(mY · r)

|r|2
), (2.19)

where the magnetic moment for Y3+ is defined in Equation 2.17. For Eu3+, at the moment,

I neglect the non-induced component (the nuclear magnetic moment), which is dependent

on the hyperfine states, and only consider the induced moment by the magnetic field

on the electronic states. This is because, when the applied field is higher than 0.1 T,

the induced moment is much larger than the nuclear magnetic moment. With the field

ramping up in the direction of the critical point field marked ‘B’ in Figure 2.9, the result of

1For the frozen core size calculation, as we are only interested in the scale of the dipole-dipole interaction
strength, the angle-dependent term of the following Hamiltonian is not included.
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the calculation is shown in Figure 2.11. The detuning on each of the Y3+ ion in the frozen

core is different depending on the Eu-Y displacement, and it is shown in Figure 2.11(a)

that the second-nearest Y3+ ion has its frequency detuned the most. For each ion, the field

detuning increases linearly with the magnetic field. In Figure 2.11(b), it is shown that the

number of the ions included in the frozen core also increase linearly with the magnitude

of the field. At a field of 1 T, more than 200 Y3+ ions are included in the frozen core, and

the frequency of one of the nearest Y3+ ion is detuned more than 1000 Hz, which is much

larger than the linewidth of the bulk Y3+ ions’ spin transition. Given by field distribution

|∆B| = 8.0µT, the bulk-Y3+ linewidth can be calculated using ∆ν = γ|∆B| = 16 Hz.

It is reasonable to conclude that, at a high magnetic field, the flipping of the nearest Y3+

spins is largely suppressed, thus, the field perturbation on Eu3+ at short time intervals is

significantly decreased.
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Figure 2.11: This figure shows the increase of the detuning frequencies of the nearest three Y3+

ions in (a) and the number of Y3+ ions included in the Y3+ frozen core in (b) as the magnetic field

magnitude is ramped up in the direction of the critical point field marked ‘B’ in Figure 2.9.

2.5.4 The effects of driving Eu3+ transitions on the Y3+ bath

In the previous section, the discussion focused on the impact of the Y3+ transitions on a

Eu3+ transition. In fact, driving an Eu3+ transition can also influence the dynamics of the

Y3+ spins. This means that driving a Eu3+ transition will disturb the environment which

will have a back action on Eu3+, inducing excess dephasing. The reason is that changing

the state of the Eu3+ ion will change the magnetic environment seen by the Y3+ spins.

This slightly changes the quantisation axis of the Y3+ spins, causing a small probability of

Y3+ spin flips. A small change in the quantisation axis can also induce Y-Y spin flip-flop

process, which conserve energy, resulting in near degenerate initial and final magnetic field

configurations as investigated by Pryde in Pr3+:LaF3 [94].

The impact of driving an Eu3+ transition on the Y3+ bath originates from the change

of the magnetic moment of Eu3+, which changes the magnetic environment at Y3+ sites.

The magnetic fields acting on a Y3+ due to the magnetic moment of the ground and



36 The optical spectroscopy and the hyperfine transitions of Eu3+:Y2SiO5

excited state Eu3+ can be written as:

Bg =
µ0

4π

(3(mg · r)r

|r|5
− mg

|r|3
)
, (2.20)

Be =
µ0

4π

(3(me · r)r

|r|5
− me

|r|3
)
, (2.21)

where µ0 = 4π × 10−7 T·m/A is the magnetic constant, r is the displacement of the Y3+

ion relative to the Eu ion. mg and me are the magnetic moments of the Eu3+ at ground

state |g〉 and excited state |e〉 respectively. The change of the magnetic field on the Y3+

by driving the Eu3+ transition is then written:

∆BEu =
µ0

4π

(3(∆m · r)r

|r|5
− ∆m

|r|3
)
, (2.22)

where ∆m = me −mg is the difference in the magnetic moment of Eu3+ between the

ground and excited hyperfine states. To work out ∆m, we start with the Hamiltonian for

the hyperfine energy levels of Equation 2.3:

H = (B ·Z ·B)Ê +B ·M · Î + Î ·Q · Î.

If the applied field is B = Bxî+By ĵ +Bzk̂, then the magnetic moment mg and me can

be written:

mg =
〈
g
∣∣∣ ∂H
∂Bx

∣∣∣g〉î+
〈
g
∣∣∣ ∂H
∂By

∣∣∣g〉ĵ +
〈
g
∣∣∣ ∂H
∂Bz

∣∣∣g〉k̂, (2.23)

me =
〈
e
∣∣∣ ∂H
∂Bx

∣∣∣e〉î+
〈
e
∣∣∣ ∂H
∂By

∣∣∣e〉ĵ +
〈
e
∣∣∣ ∂H
∂Bz

∣∣∣e〉k̂. (2.24)

The values formg andme can be calculated using theM -tensor andQ-tensor parameters

in Table 2.5 as well as the Z-tensor parameters presented in Section 2.5.3. With a field

increased in the direction of the critical field marked ‘B’ in Figure 2.9, the absolute values

of mg, me and ∆m are shown in Figure 2.12.

The first term of Equation 2.3, which determines the induced moment, is independent

of the spin state I. Thus the induced moment has the same value for both hyperfine ground

and excited levels. However, the non-induced term of the moment, the nuclear magnetic

moment term, given by the second and third terms of Equation 2.3, causes the mixing

between the hyperfine levels. As a result, the total moments for the two levels depend on

the applied field in different ways as shown in Figure 2.12(a).

It was discussed in Section 2.5.1 that there are critical points of the transition where(
∂f
∂Bx

)2
+
(
∂f
∂By

)2
+
(
∂f
∂Bz

)2
= 0 (Equation 2.15), which is equivalent to me = mg, namely

∆m = 0 (Footnote 2). It means, according to Equation 2.22, driving a Eu3+ transition at

2 The field perturbation δB from the Y3+ bath shifts the hyperfine ground and excited energy levels
of Eu3+ by:

δEg = hmg · δB, (2.25)

δEe = hme · δB, (2.26)

where h is the Planck constant. This leads to a frequency shift of the hyperfine transition :

δf =
1

h
(Ee − Eg) = ∆m · δB. (2.27)
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Figure 2.12: (a) The absolute value of the ground and excited hyperfine state magnetic moment

of Eu, plotted against the magnetic field, which is increased along a critical field direction. (b) The

absolute value of the difference in the magnetic moment between the ground and excited hyperfine

states of Eu3+, which is plotted against the same field values as (a).
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a critical point does not change the magnetic field, thus does not disturb the Y3+ system.

When the field is detuned from the critical moment, as shown in Figure 2.12, the

moment for Eu3+ is different for the hyperfine ground and excited states. Hence, driving

an Eu3+ transition results in a change in the magnetic moment of Eu3+, which disturbs the

Y3+ system. This disturbance in the environmental Y3+ system will have a back action

on Eu3+, again through ∆m, inducing excess dephasing. This is particular important

for techniques that involves driving a Eu3+ transition with many pulses, such as with

dynamic decoherence control (DDC, detailed in Section 3.1.4), which is designed to reduce

dephasing. The interactions discussed above means that DDC, when applied at a magnetic

field where ∆m is non-zero, will introduce an extra source of depahsing, thereby reducing

its effectiveness.

From the above discussion, driving a Eu3+ transition at a critical point has two

benefits. First, it largely suppress the sensitivity of the Eu3+ transition to the magnetic

field perturbation arising from the random spin flips in the Y3+ bath, which extend the

coherence time. Further, at the critical point where ∆m = 0, driving a Eu3+ transition

does not disturb the Y3+ system. The latter allows the possibility to use a large number of

DDC pulses to the Eu3+ system to fight decoherence, without concerns about accumulation

of errors induced by this dynamic reconfiguration of the environment. The combination

of the ZEFOZ technique and DDC was used in Pr3+:Y2SiO5 and extended the hyperfine

coherence time from 1.4 s to 30 s [10]. Recently, the combination of ZEFOZ and DDC was

applied to the storage of images using electromagnetically induced transparency, allowing

storage times greater than 40 s [12]. The 40 s is 28 times longer than 1.4 s. Assuming

that the DDC has the same effectiveness in Eu3+:Y2SiO5 as that in Pr3+:Y2SiO5, the

coherence time in Eu3+:Y2SiO5 is expected to be a few hours (229 s×28 = 6412 s).

2.6 Summary

Rare-earth doped solids are promising candidates for quantum memory applications due to

their good coherence properties. The reason for these good coherence properties is because

their transitions within the 4fN configuration have weak coupling to the magnetic and

crystal field of the hosts. Among the many rare-earth systems, the hyperfine transitions

in Eu3+:Y2SiO5 are particular attractive, given the extremely long lifetime of up to 23

days [17].

At cryogenic temperatures, the dominant decoherence mechanism for Eu3+ hyperfine

transitions in Y2SiO5 is the magnetic field fluctuation due to the random Y3+ spin flips.

An extension of the coherence time can be achieved using the ZEFOZ method. This

works by applying a special magnetic field, at which the hyperfine ground and excited

levels experience the same magnetic moment, such that the transition’s sensitivity to the

field perturbation is largely decreased. Such a field is called a critical point.

Applying such an external magnetic field also results in an extra extension of the

coherence time due to the creation of a frozen core of Y3+ ions. This occurs because

the applied field induces a magnetic moment on Eu3+, which detunes the spin frequency

of the nearby Y3+ ions. The frozen core effect largely suppresses the spin flips of these

ions, thereby reducing the field perturbation acting on the Eu3+ ion, and thus extend the

coherence time.

Hours-long hyperfine coherence time are expected in Eu3+:Y2SiO5 through the com-
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bination of the ZEFOZ effect and the frozen core. The possible coherence time is different

for each of the many critical points in Eu3+:Y2SiO5 with different curvatures and mag-

netic field. It is better to choose those with smaller curvature and larger field magnitude,

because smaller curvature means lower field sensitivity at the ZEFOZ transition while a

larger field magnitude means a larger volume of the frozen core, namely a smaller field

perturbation.

There is additional benefit of using the ZEFOZ transitions when techniques involving

driving the Eu3+ transition with large number of pulses, such as the dynamic decoherence

control, are applied to the system to fight decoherence. This is because driving an Eu3+

transition at critical point will not change the Eu3+ magnetic moment, thus it does not

disturb the Y3+ bath. This allows the application of many pulses on Eu without inducing

extra dephasing due to reconfiguration of the environment.
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Chapter 3

Techniques for coherence

measurements

An ensemble system of rare earth ions can never be made completely isolated from the

environment and the interaction between the system and the surrounding environment

results in broadening of a transition. This broadening can be classified as inhomogeneous

broadening, homogeneous broadening and spectral diffusion based on the time scale it

occurs on. If the transition is not lifetime limited, the broadening is mainly due to a

frequency shift of the transition caused by system-environment interactions. Inhomoge-

neous broadening corresponds to a static frequency shift while homogeneous broadening

and spectral diffusion correspond to a dynamic frequency shift. In Section 2.4, the mech-

anisms contributing to these different broadening types were analysed in detail. In this

chapter, I review the techniques to observe the effect of these broadening mechanisms have

on the ensemble coherence.

These broadening effects can be measured by observing the behaviour of the system

driven by resonant radiation. The system investigated in this thesis is the hyperfine

transitions in Eu3+:Y2SiO5, which occur at radio frequencies (RF). If a resonant pulse is

applied to the system, coherence emission dephasing at a rate given by the inhomogeneous

broadening is obtained. This inhomogeneous contribution can be removed by using the two

pulse spin echo technique, which allows a measurement of the homogeneous broadening.

Dynamic dephasing sources, either homogeneous broadening or the spectral diffusion,

causes the size of the echo to decay as a function of the total evolution time. If the

dephasing is due to homogeneous broadening, then the dynamic perturbation from the

environment is fast and involves a small frequency shift. This results in an exponential

echo decay which can be characterised using a constant coherence time T2. Spectral

diffusion, however, involves slow and large frequency shifts. It corresponds to a non-

exponential decay of the two pulse spin echo signal and accordingly can not described by

a uniform T2.

While the two pulse spin echo removes the decoherence due to static dephasing, it does

not remove the decoherence due to dynamic dephasing. A strategy of fighting decoherence

is known as dynamic decoherence control (DDC). It works by applying a large number

of resonant pulses to refocus the dephased ensemble repeatedly and extend the coherence

time.

This chapter begins with an introduction of the Bloch sphere representation of a two-

level system, with which I then illustrate the two pulse spin echo technique. After that, I

present an analysis of the two echo decay shapes as given above, which is followed by an

introduction to DDC. I then talk about two methods for measuring hyperfine coherence

time via the optical transition. These two methods are spectral holeburning and Raman

41
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heterodyne detected coherence transients.

3.1 Decoherence of two-level spin ensemble systems

The focus of this thesis is on the hyperfine decoherence mechanisms in Eu3+:Y2SiO5, which

involves the interactions of a two-level ensemble system with radiation. A typical example

of such interactions occurs between a nuclear spin-half system with a RF field in the field

of nuclear magnetic resonance (NMR) spectroscopy. The interactions between a spin-half

system with a driving RF field are usually illustrated using a coordination frame rotating

about the z axis at the rate of the resonant frequency. Such a rotation frame is represented

with a Bloch sphere, which can be used to describe any closed two level systems including

a subspace of the spin 5/2 system discussed in this thesis. The Bloch sphere provides

an excellent tool to visualise the evolution of the magnetic moment vectors of a two-level

ensemble system interacting with a resonant driving field.

In this section, I first introduce the Bloch sphere representation of quantum states.

Using the Bloch sphere, I then illustrate the concepts of free induction decay (FID) and

two pulse spin echo. After that, I present an analysis of the spin echo decay. Finally, I

introduce the concept of dynamic decoherence control (DDC).

3.1.1 The Boch sphere representation of quantum states

The Bloch sphere provides a graphical representation of the wavefunction of a two level

system as a vector in a unit sphere. An arbitrary vector r in a unit sphere, as shown in

Figure 3.1, has the form:

r = cosφsinθx̂ + sinφsinθŷ + cos θẑ. (3.1)

A general state of two-level system is described by |ψ〉 = c1|1〉+c2|2〉 with |c1|2 + |c2|2 = 1.

This equation is mapped to the unit sphere by rewriting it as:

|ψ〉 = sin
θ

2
|1〉+ eiφ cos

θ

2
|2〉, (3.2)

where the angles θ and φ in this equation are identical to those in Equation 3.1. In

the Bloch sphere, the ground state |1〉 and the excited state |2〉 correspond to the south

pole and the north pole respectively. Other points on the surface of the sphere represent

superpositions of states |1〉 and |2〉. In particular, the states in the xy plane are 50:50

superposition states, with:

x̂ =
1√
2

( |1〉+ |2〉 )

ŷ =
1√
2

( |1〉+ i|2〉 ) (3.3)

3.1.2 Two pulse spin echo

A two-level ensemble system in the ground |1〉 state has the ensemble vector along the

−z axis on the Bloch sphere. Typically the transition frequency of an ensemble system
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Figure 3.1: Bloch sphere representation of the state of a two level system.

is inhomogeneous broadened and the ensemble can be broken into different subgroups of

ions with each subgroup having a different resonant frequency. Then the ensemble Bloch

vector can be described as:

M0 =
∑
j

M0,j , (3.4)

where M0,j is the Bloch vector for the j-th subgroup of ions.

In a two-pulse echo sequence, as shown in Figure 3.2, a resonant π/2 pulse along the

x axis is applied to the system, which rotates the ensemble Bloch vector from −z axis to

the +y axis. The rotation axis is decided by the phase of the pulse. The Bloch vectors of

the individual spins then precess around the z-axis in the xy-plane. In an inhomogeneously

broadened ensemble, the spin subgroups precess at different rates. In the rotating frame

of the Bloch sphere, each spin vector rotates at a rate equal to its detuning from the

frequency of the driving field, resulting in a total Bloch vector (total moment) at a time

t after the end of the pulse [85]:

Mx+iy(t) =
∑
j

M0,j exp(i∆ωjt), (3.5)

where the detuning ∆ωj is described by

∆ωj = ωj − ω0. (3.6)

In this equation, ωo is the frequency of the driving field while ωj is the transition frequency

for the j-th subgroup of ions. It is clear that Mx+iy is the Fourier transform of the spin

moment distribution M0,j , which defines the inhomogneous line shape. In the lab frame,

Mx+iy precesses at the resonant frequency near ω0 and generates a RF signal which is

known as the Free Induction Decay (FID). If the spectral line shape of the inhomogeneously

broadened transitions is Lorentzian, then Equation 3.5 corresponds to an exponential FID

decay, with the decay rate proportional to the inverse of the inhomogeneous width of the
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transition, given by the following relation:

Γinh =
2π

T ∗2
, (3.7)

where Γinh is the inhomogeneous linewidth of the transition and T ∗2 is the time taken for

Mx+iy to reach 1/e of the value when the driving pulse is ended.

The above FID model is based on the assumption that the lifetime T1 and the co-

herence time T2 is much longer than T ∗2 . In addition, though both the inhomogeneous

broadening and the dynamic effect dephase the FID signal, the inhomogeneous broaden-

ing is large and dominates. Hence, the decay given by the constant T ∗2 is unrelated to true

decoherence processes which act to dephase an individual spin of the ensemble.

(b)  

z

y

x

(c) 

z

y

x

(a)  

z

y

x

(d)   

P
ol

ar
iz

at
io

n 
D

en
si

ty

TIme

FID

π 
2

Figure 3.2: Bloch sphere representation of an ensemble placed in a 50-50 superposition state

undergoing a Free Induction Decay (FID). (a) The ensemble is driven into a 50-50 superposition

state by a π
2 -pulse. (b) The Bloch vectors of individual subgroups start to precess around the

Bloch sphere with a rate and direction decided by their detunings. This causes the ensemble Bloch

vector (projection on the y axis) to decay exponentially, radiating the FID signal. (c)The radiation

ceases when the ensemble polarisation dephases completely. (d) The FID signal.

Spin echoes on hyperfine transitions were first demonstrated by E. L. Hahn in 1950[95],

and provide an effective way to completely remove the effect of inhomogeneous broadening

on a transition and measure the true coherence properties. The spin echo technique allows

to reverse the free induction signal long after it has disappeared completely. The optical

analogue of spin echoes, photon echoes on optical transitions, were first observed in 1964

(shortly after the invention of the laser) by Kurnit, Abella, and Hartmann [96].

The spin echo pulse sequence is outlined in Figure 3.3. Initially, we apply a π/2

pulse to an ensemble which results in an FID signal. A period τ/2 after the initial pulse,

a π-pulse is applied, rotating the Bloch vector of each ion around the +x axis by 180◦.

The π-pulse effectively reverses the evolution of the spin vectors. After a further delay τ
2 ,

the spin vectors return to a macroscopic coherence and radiate a signal, the echo of the

original FID. The delays before and after the π pulse are referred to as the dephasing and

rephasing periods respectively.
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Figure 3.3: The Bloch sphere representation of the two pulse spin echo technique. (a) The

ensemble is driven into a 50-50 superposition state by a π
2 -pulse. (b) The Bloch vectors of individual

subgroups start to precess around the Bloch sphere with a rate and direction decided by their

detunings. (c) The ycomponents of the Bloch vectors are inverted by a π-pulse and the vectors

begin to refocus. The ensemble starts to radiate an echo signal. (d) The individual Bloch vectors

are all aligned and the echo signal reaches its maximum value. (e) The pulse sequence and the

echo signal.

Similar to Equation 3.5, the Bloch vector Mx+iy for each subgroup of ions at the

echo point is dependent on the phase accumulation over the total evolution time τ, which

is decided by the frequency detuning ∆ωj [85, 85]

Mx+iy(τ) =
∑
j

M0,j exp

[
i

∫ τ

0
s(t)(∆ωs,j + ∆ωj(t))dt

]
(3.8)

where ∆ωs,j is the static perturbation originating from the inhomogneous broadening

mechanisms while ∆ωj(t) is the dynamic perturbation involving homogneous broadening

and spectral diffusion. The function s(t) is the step describing the phase reversal caused

by the π pulse, which is defined by

s(t) = +1 if t < τ/2 (dephasing period) (3.9)

= −1 if t > τ/2 (rephasing period)

The phase accumulation due to the static detuning during the dephasing and rephasing

intervals cancels, thus the echo amplitude is governed by the dynamic contribution. Then

Equation 3.10 can be reduced to

Mx+iy(τ) =
∑
j

M0,j exp

[
i

∫ τ

0
s(t)∆ωj(t)dt

]
(3.10)

The dynamic contribution results in a difference in phase accumulation between the de-
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phasing and rephasing periods. The amount of the phase accumulate for different sub-

groups are not identical, thus the Bloch vectors are not aligned at the echo point. This

decreases the size of the total Bloch vector and accordingly decreases the echo amplitude.

With a longer delay, the differences in the phase accumulation among subgroups increase,

resulting in a smaller size of the total Bloch vector. Changing the delay τ sequentially al-

lows the phase shift due to the environment to accumulate over different periods, providing

a way to work out the decay rate 1/T2.

In the above discussion, the state evolving over a pulse period is describe by only

considering the action of the pulse on the initial state and the evolution during the pulse

is neglected. In order to make this approximation valid, the Rabi frequency Ω of the driving

field for spin echoes, must be significantly larger than the linewidth of the transition:

Γinh � Ω. (3.11)

In this equation, γ is the gyromagnetic ratio and Ω = γB1 for spin echoes, where B1 is

the amplitude of the RF driving field. Under this assumption, the action of the driving

field for all ions is the same and a pulse of such a driving field is called a hard pulse.

3.1.3 Spin echo decays

The two pulse spin echo decay in Equation 3.10 is based on the assumption that the

lifetime of the excited state is much longer than the coherence time. In this case, the T1

process which tends to degrade an individual Bloch vector is considered to occur long after

the ensemble loses coherence. This assumption holds true for the hyperfine transitions in

Eu3+:Y2SiO5, the system investigated in this thesis. The coherence time at cryogenic

temperature of a diluted sample is at the order of 10 ms, which is much shorter than the

lifetime of 23 days [17].

For hyperfine transitions in Eu3+:Y2SiO5, the dephasing of Eu3+ Bloch vectors are

due to the fluctuating magnetic field caused by the random spin flips of host Y3+ spins.

In order to work out the decay function of the echo amplitude in Equation 3.10, this can

be treated by considering the problem to be about the echo decay of the spins of interest ,

or A spins, in the presence of a random magnetic field due to an array of spin-1/2 B spins.

In this model, the concentration of the A spins is assumed to be sufficiently low that A-A

interactions can be ignored. Such a problem of the echo decay of the A system in a bath

of B spins was studied by Mims et al. [85, 85, 97]. The rest of this section provides a brief

review of these studies.

I start the discussion from Equation 3.10. For a spin echo, the rephasing for different

subgroups will be the same. The echo amplitude decay shape is then given by the phase

factor of the A spins due to the phase accumulation over the total evolution time τ [85, 85].

The effect of the B spin bath can be understood by considering how it affects a single

subgroup. For the j-th subgroup, the phase accumulation is written

ϕj(τ) =

∫ τ

0
s(t)∆ωj(t)dt. (3.12)

The phase accumulation is due to the dynamic frequency shift caused by the magnetic

dipolar interaction of the A spin with the array of B spins. The dynamic frequency shift
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∆ωj(t) can, therefore, be written

∆ωj(t) = γA
∑
k

[mk(t)−mk(0)](1− 3 cos2 θk)/|rk|3, (3.13)

where γA is the gyromagnetic ratio of the A spin1, rk is the distance between the A spin

and the k-th B spin and θk is the angle between rk and the z axis of the Bloch vector.

The sum is taken oven all B spins in the lattice. mk(t) is the time-varying z component

of the k-th B-spin magnetic moment, i.e.,

mk(t) = γBS
k
z (t), (3.14)

where γB is the gyromagnetic ratio and Sk
z is the nuclear spin of B spins. As B ions are

a spin-1/2 system,

|Sk
z | = 1/2. (3.15)

The effect of the dynamics of the B spin bath on an A spin is due to the various B spin

lattice configurations and the time-varing magnetic moment mk(t) for each B spin. From

Equation 3.10 and Equation 3.12, the echo amplitude of the ensemble A spin for a given

total evolution time τ is then written [85]

E(τ) =

〈〈
exp i

∫ τ

0
s(t)γA

{∑
k

[
mk(t)−mk(0)

]
(3.16)

×(1− 3 cos2 θk)/r
3
k

}
dt

〉
Av(1)

〉
Av(2)

,

where Av(1) is the average of different subgroups of A spins while Av(2) is the average

over the possible configurations of B spins surrounding an A spin.

An exact solution of Equation 3.16 is not possible and statistical models describing

the reconfiguration of the B spin bath are needed to find suitable averages. In all statistical

models, the decay rate of the A spin is directly related to two parameters, one is the B spin

bath reconfiguration rate R, which is equivalent to the inverse of the population lifetime,

R = 1/τ1 of the bath. The other is the magnitude of the frequency shift caused by the

reconfiguration of the B spin bath as defined in Equation 3.13.

Herzog et al demonstrated it is reasonable to assume that the average over all bath

configurations results in a Gaussian lineshape independent of time [97]. They also assumed

that all B spins are the same and therefore can be averaged over using the same probability

distribution. When the spin B bath configuration rate is fast compared to the total

evolution time τ of spin A, namely Rτ � 1, a large number of randomly selected B

spins reverse their orientation over the time τ. These randomly selected elements of the

Gaussian distribution also forms a Gaussian distribution. Then, an average of Equation

3.16 results in a single exponential decay of the two pulse spin echo amplitude

E(τ) ∝ exp

(
−

∆ω2
Aτ

2R

)
, Rτ� 1, (3.17)

1I explain the concept by considering that A spins are isotropic to simplify the explanation, though
typically, the rare earth spins in our system are not isotropic.
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where ∆ωA is the averaged frequency shift of an A spin due to the reconfiguration of

B spin bath and R, as defined in the last paragraph, is the B spin configuration rate.

Equation 3.17 can be reformulated as

E(τ) ∝ E0 exp(−τ/T2), (3.18)

where

T2 = 2R/∆ω2
A (3.19)

If the configuration rate of B spins is slow compared to the evolution time τ, such

that Rτ� 1, then over the period of τ only a small number of B spins flip. Though, over

a long time scale, the average over all bath configurations is assumed to be a Gaussian

lineshape, it is not possible to argue that a small number of randomly selected elements

of a Gaussian distribution also form a Gaussian distribution [98]. A different method

was used to average Equation 3.16 by Klauder and Anderson [99] in this limit, where the

B-spin flips were considered to result in a “diffusion” of the distribution of the local field

perturbation. In a time period ∆t � 1/R, there is a small number of randomly selected

B spins flips, which is equivalent to the insertion of nBR∆t additional spins, each with

magnitude of γB, at random sites in the lattice. Here nB is the total number of the B

spins in the bath. An average over the A spins that independently experience such a

B configuration results in a Lorentzian distribution of the A transition frequencies [98].

That is, an A spin subgroup with an initial transition frequency ωa will broaden into a

distribution [100]

K(ω − ωa,∆t) =
(2R∆ω1/2∆t)/π

(ω − ωa)2 + (2R∆ω1/2∆t)2
(3.20)

where ∆t = t − t0 and ∆ω1/2 is the full width at half maximum of the A spin frequency

deviation defined by the distribution of all possible bath configurations and ∆t. The

concept of ∆ω1/2 is equivalent to ∆ωA in Equation 3.17, but were labelled differently in

the corresponding papers. Klauder and Anderson [99] show that this results in the echo

decay function:

E(τ) ∝ exp
[
−(τ/TM )2

]
, Rτ� 1 (3.21)

where

TM = 1.41(R∆ω1/2)−1/2. (3.22)

In this equation, TM , the phase memory time, is used rather than the coherence time

T2, because the decay rate is time dependent. TM is defined as the evolution time which

brings about a 1/e attenuation of the echo amplitude.

In between these two extremes, when Rτ ≈ 1, there is no simple statistical approxi-

mation [85] and consequently no decay functions have been derived.

The two distinctly different spin echo decays, Equation 3.18 and Equation 3.21, are

derived depending on the relative time scale of the echo and B spin bath reconfigurations.

In the coherence measurement, as we are only concerned with the delay for the echo am-

plitude drops to 1/e of the maximum value, the evolution time τ is generally chosen to be

comparable to the inverse of the perturbation magnitude caused by the bath reconfigura-

tion. Thus, the limiting conditions for the two different echo envelopes can be reformulated

in terms of the static local field broadening ∆ω1/2. The condition Rτ� 1 is equivalent to

R � ∆ω1/2 and the condition Rτ � 1 is equivalent to R � ∆ω1/2. The two echo decay
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formulas can then be summarized as : the echo decay has an exponential format when the

B spin bath reconfigures at a rate fast compared to the frequency perturbation it causes

on the A spins and the echo decay has a non-exponential format when the reconfiguration

rate is slow compared to the frequency perturbation.

3.1.4 Dynamic decoherence control

The two pulse spin echo technique described above completely removes the decoherence

due to static broadening in an ensemble, but it does not remove the decoherence due

to dynamic broadening. Dynamic decoherence control (DDC) is a strategy for fighting

decoherence due to dynamic broadening. It works by applying a sequence of control fields

periodically, usually fast and strong pulses in cycles, to alter the dynamics of the system

and refocus the dephased ensemble Bloch vectors. In contrast to quantum error correlation

(QEC), for example, DDC does not require additional measurement or memory resources.

Hence it can be integrated with other error-avoiding or error-correcting techniques in a

straightforward manner to help achieve fault-tolerant control.

The DDC technique works effectively only if the reconfiguration time τ1 (= 1/R) of

the dephasing bath is longer than the time scale τc at which pulses can be applied to the

system. Then the frequency detunings due to the dephasing environment remain effectively

static during each pulse period and are therefore rephased. If the decoherence contribution

is rapidly fluctuating, with a correlation time much shorter than the time required for the

application of refocusing pulses, then this type of noise cannot be refocused by a DDC

pulse sequence.

The discussion above shows that, in order to fight decoherence, DDC repetition rate

needs to be faster than the reconfiguration rate R of the dephasing bath. However, there

are practical challenges if the DDC pulse rate is too fast. First, in order to make the pulses

hard pulses such that the evolution during the pulses is neglected, the DDC pulse rate is

required to be lower than the Rabi frequency while the Rabi frequency is often limited by

the possible RF power supply. Secondly, a high pulse rate means that the pulse number is

huge. Since the precision of any experimentally accessible operation is finite, the number

of pulses that can be applied without degrade the signal is limited by the pulse errors. For

these two reasons, to realise the DDC effective, it is necessary to keep the pulse rate low,

which is only possible when the reconfiguration rate of the dephasing bath is low .

For the system discussed in this thesis, hyperfine transitions in Eu3+:Y2SiO5, the

decoherence is dominated by the magnetic field perturbation due to the random spin flips

of the host Y3+ ions. Though the Y3+ spins flip at a very fast rate at zero field, this flipping

rate can be largely reduced in the presence of an external field principally because the field

induces a frozen core as discussed in Section 2.5.3. The frozen-core effect divides the host

Y3+ ions into two groups, that are bulk Y3+ ions, far away from Eu3+ ions, producing

small amplitude but rapid magnetic field perturbations, and frozen core Y3+ ions, near

the Eu3+ ions, generating large but slow magnetic field perturbations. If, in addition,

the applied field is chosen such that the transition of interest is a ZEFOZ transition, the

rapid and small magnetic field perturbations originating from the bulk Y3+ ions have a

negligible effect on the hyperfine transition frequency due to the small field sensitivity.

The remaining decoherence contribution is the large field perturbations from the frozen

core Y3+ ions. Since the frozen core reconfigures at a suppressed rate, a DDC sequence

with relatively low repetition rates should be quite effective in removing the decoherence.

To summarize, ZEFOZ removes the small and fast decoherence effect of the bulk Y3+ and
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DDC removes the large and slow decoherence effect of the frozen-core Y3+. As we can

consider ZEFOZ technique as a high frequency decoherence filter and DD technique a low

frequency decoherence filter, their combination is likely to be very effective.

Applying DDC pulses at a ZEFOZ transition have another benefit. If the field is

detuned away from a ZEFOZ field, driving a Eu3+ transiton using a DDC pulse will

slightly change the magnetic moment of Eu3+. As discussed in Section 2.5.4, a change in

the europium magnetic moment would accordingly cause a reconfiguration of the Y3+ bath,

which will have a back action on Eu3+. When a large number of DDC pulses are applied,

the accumulated error due to this issue can decrease the DD effectiveness. Whereas, if

the DDC pulses are applied at a ZEFOZ transition of Eu3+, as discussed in Section 2.5.4,

driving the Eu3+ transition does not change its magnetic moment, thus will not disturb

the Y3+ system. This means that, the combination of ZEFOZ, the frozen core, and DDC

can result in significant extension of the coherence times in this system.

Two different DDC pulse sequences were used in the experiments presented in this

thesis. The first sequence implemented was the CPMG(Carr-Purcell-Meiboom-Gill) [101]

spin echo sequence, which is commonly used in NMR experiments. It provide a simple

and effective way to test the DDC effectiveness. As shown in Figure 3.4, the pulse

sequence has the following format:

(π/2)x − τc/2− πy − τc − πy − τc − πy − ...πy − τc/2− echo.

π/2 π
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τ
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Figure 3.4: CPMG and KDDx pulse sequences. Here ωt is the frequency of the driving field, N

is the repetition number of the indicated pulse sequence, τc is the pulse interval and τ is the total

evolution time.

Although the CPMG sequence is commonly used to extend coherence, the method

is only effective in preserving quantum states that possess a particular phase. Hence,

it is not suitable for use in a practical quantum memory, which is required to store

arbitrary quantum states. To test the suitability of the Eu3+:Y2SiO5 system for arbitrary

quantum state storage, another DDC sequence, known as KDDx, was also used. The

KDDx sequence is effective in preserving arbitrary states and is robust against errors due

to pulse area and off-resonant excitation [102]. It has the general format:

(π/2)π/2+φ − τc/2− ππ/6+φ − τc − πφ − τc − ππ/2+φ − τc − πφ − ππ/6+φ...− ππ/6+φ −
τc/2− echo,
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which is equivalent to a π pulse rotation around the axis defined by φ followed by a

−π/3 rotation around the z axis in the Bloch sphere. In our case, the rotation axis is set

to φ = 0 axis and the pulse sequence is shown in Figure 3.4.

3.2 Optical preparation and readout

While this thesis is concerned with the spin coherence time on hyperfine levels, optical

frequencies are used for experimental preparation and echo readout. Prior to each RF

pulse sequence in any coherence time measurement, spectral holeburning was used to to

prepare a population difference between the two hyperfine levels of interest. To read the

echo, Raman heterodyne detection was used to detect the echo signal optically. This

section provides a brief introduction of these two techniques.

3.2.1 Spectral holeburning

Spectral holeburning is an optical pumping progress that uses a narrow-band laser to

selectively excite a small subset of ions in the ensemble. In order to introduce the spectral

holeburning process, the following conditions are imposed based on the sample and the

laser used in the experiments presented in this thesis:

• The zero-field hyperfine structure of the ion is composed of three doubly degenerate

hyperfine states for both ground and excited electronic states.

• The hyperfine transition frequencies, ω1,2,3,4 as shown in Figure 3.5 are 10-100 MHz,

which is in the range of RF frequencies.

• The optical inhomogeneous linewidth is Γinh ' 1 GHz, and it is much broader than

the homogeneous linewidth which is Γh ' 100 Hz.

• The linewidth of laser is narrow with a linewidth Γlaser ' 1 kHz, which is much

narrower than the optical inhomogeneous linewidth. This allows the possibility to

burn a narrow feature.

• The lifetime of the spin states is many orders of magnitude longer than that of the

electronic excited state so there is no spin decay during the pulse sequences.

As shown in Figure 3.5(a), the three hyperfine ground states are equally occupied

by the ions initially. A narrow-band laser at fixed frequency ωb is used to excite a small

subgroup of ions to the electronic excited state. The ions in the excited state can then

decay to any of the hyperfine ground states by spontaneous emission. Some ions end up in

the same hyperfine ground state from which they originated while others decay to different

states. The former are excited again as the laser is on continuously, while the latter are

no longer resonant with the laser. After many optical cycles, all the ions initially resonant

to the laser field have been pumped to a different spin state and no longer interact with

the laser at this frequency (Figure 3.5(c)). By sweeping the laser over the inhomogeneous

line, a decrease of absorption at ωb is seen due to the reduced ground state population

of ions that are resonant at that frequency. This appears as a hole in the inhomogeneous

absorption spectrum (Figure 3.5(d)).

In Eu3+:Y2SiO5, there are several factors that can affect the depth of the hole, in-

cluding the optical pumping rate, the relative optical oscillation strengths of the different
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Figure 3.5: Illustration of spectral hole-burning. (a) All three hyperfine ground state are equally

populated and a laser with frequency ωb is used to pump the ions in the middle state to the

optically excited state. (b) The excited ions can decay to any of the hyperfine ground states, but

only those that decay to the middle state can be pumped by the laser again. (c) After many

iterations of excitation and decay, there are no ions that are still resonant with the laser. All the

ions end up in the non-resonant ground states. (d) A ‘hole’ is burned in the inhomogeneous profile.

Only one subgroup of ions is considered here to simplify the illustration. In the actual holeburning

experiment, the optical field drives multiple subgroups. Also, there are sideholes and antiholes in

actual experiment, which is not shown in this figure because it is not relevant to my experiments.
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transitions and the hyperfine lifetime. The return of the ions in Figure 3.5(c) to the initial

ground state is through spin-lattice relaxation and the rate is different for each system.

Rare-earth solids typically have long hyperfine lifetimes, in the present case is a few weeks

[17], so a spectral hole can persist for a long period.

3.2.2 Raman heterodyne detection

3

ω

Ω Ω'

2

1

Figure 3.6: An illustration of Raman heterodyne detection. An optical field with frequency Ω

sets up coherence between |2〉 and |3〉 and an RF field with frequency ω sets up coherence between

|1〉 and |2〉, which results in coherence between all three levels |1〉, |2〉 and |3〉.

Raman heterodyne detection is an RF-laser double-resonance technique, introduced

by Mlynek et al. in 1983 [103]. It is a method for optically detecting NMR. It employs

heterodyne detection to measure the coherent Raman emission stimulated by a resonant

RF field and a laser field in a three-level quantum system. The technique is illustrated in

a system with three ground and excited hyperfine states in Figure 3.6. An optical field

with frequency Ω resonantly drives the electronic transition 2 → 3 and simultaneously a

RF field with frequency ω drives the transition 1 → 2 between the nuclear spin states.

This stimulates an optical field with the frequency Ω′ = Ω + ω by establishing coherence

between states |1〉, |2〉 and |3〉. With a photodetector to detect the transmitted optical

field, the two frequency components Ω and Ω′ will result in a heterodyne beat signal

ω = |Ω′ − Ω|.
The size of the beat signal is proportional to the ion population difference between

the two hyperfine ground state |1〉 and |2〉. If necessary, this population difference can be

prepared using spectral holeburning as discussed in the previous section. The magnitude

of the signal is also dependent on the oscillator strengths of all three transitions involved

as well as the intensity of both the RF field and optical field.

Raman heterodyne spectroscopy is similar to the method of optical detection of mag-

netic resonance (ODMR). The ODMR technique works by using a laser field to burn a

spectral hole in a optical transition and then using a RF field to sweep slowly through

a hyperfine transition. This hyperfine transition is driven when the RF field becomes
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resonant, resulting in the return of the ions to the original ground state with which the

laser is resonant. The hole is unburned, so the laser absorption is increased. The main

difference is that Raman heterodyne detects coherent emission, and so is faster and has

higher resolution than ODMR, which detects incoherent emission.



Chapter 4

Hyperfine coherence time

extension in Eu3+:Y2SiO5

Mechanisms for hyperfine decoherence in Eu3+:Y2SiO5 were discussed in Chapter 2. The

dominating source for dephasing of the coherence of the hyperfine transition is the fluctu-

ating magnetic field at the Eu3+ site caused by the random spin flipping of the Y3+ ions

in the host. An effective way to minimize this dephasing is to employ the ZEFOZ method

(Section 2.5). The ZEFOZ method works by applying a magnetic field with a specific field

magnitude and orientation such that a hyperfine transition is not sensitive to the field

perturbation to first order.

The goal of the experiments reported in this chapter was to use the ZEFOZ method

to extend the coherence time of the hyperfine transitions in Eu3+:Y2SiO5. The ZEFOZ

transitions in Eu3+:Y2SiO5 occur at field magnitudes of a few tesla. Applying such a

high magnetic field has the added benefit of inducing a frozen core which should largely

suppress the flipping of the yttrium spins. This is expected to result in a decreased field

fluctuation at the Eu3+ sites and accordingly further increases the coherence time (Section

2.5). In addition, the reduced yttrium flipping rate allows the possibility of applying DDC

pulses to fight decoherence and extend the coherence time. As stated in the previous

chapter, a significant extension of hyperfine coherence time in Eu3+:Y2SiO5 is expected

with the combined effect of ZEFOZ, frozen core and DDC pulses.

In this chapter, I first introduce the ZEFOZ transition to be investigated and the

experimental set-up for the measurements. Then I introduce the method used to precisely

align the magnetic field for achieving a ZEFOZ transition. After that, I present the

experimental coherence results. Finally, a discussion of the results is presented.

4.1 ZEFOZ transition

The ZEFOZ magnetic fields for Eu3+:Y2SiO5 were calculated using the reduced spin

Hamiltonian determined by Longdell. et al [22] and are shown in Figure 2.9. The in-

vestigation here focuses on a critical point of the 3/2↔ −3/2 transition that is predicted

to occur at an applied field of 1.35± 0.07 T (Figure 4.1). This point was chosen because

it has low curvature and occurs at a low magnetic field, which is experimentally simpler

to work with. The field orientation of this point relative to the D1, D2 and C2 axes is

shown in Figure 4.2. At this field, the transition frequency is 12.45 MHz and the max-

imum curvature |S2| = 21.7MHz/T2. Using the calculated value of the field fluctuation

|δB| = 8.0 µT (Section 2.5.2), and according to Equation 2.12, the expected coherence

time is 229 s for a perfectly aligned magnetic field, which corresponds to a decoherence

55
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rate (1/T2) of 4.4× 10−3 s−1.
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Figure 4.1: This graphs shows the ZEFOZ transition investigated. It is a critical point of the

3/2 ↔ −3/2 transition of the 7F0 state. The energy levels, calculated using the reduced spin

Hamiltonian in [22], were plotted as a function of the magnetic field magnitude increased from

zero in the ZEFOZ field direction.
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Figure 4.2: The calculated field orientation of the critical point investigated in the coordinate

frame of [D1, D2, C2].

4.2 Experimental setup

Coherence measurements of the system were performed using two pulse spin echoes. The

echo signals were observed optically, using Raman heterodyne detection (Section 3.2.2),

via the 7F0 → 5D0 ‘site1’ transition at 579.87985 nm (air) [77]. The optical and RF pulse

sequences used in the spin echo experiments are shown in Figure 4.3.

Prior to each spin echo pulse sequence, the system was prepared with an optical burn

and re-pump scheme to isolate the transition of interest. First, the laser frequency was

swept over 45 MHz on the low-frequency side of the −3/2(7F0)↔ +3/2(5D0) transition
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Figure 4.3: (a), Pulse sequences used in the experiments. The optical burn frequency ωb was

used to prepare a population difference between the +3/2 and −3/2 states prior to the RF pulses,

and to optically detect the spin echo signal. The re-pump frequency ωr = [(ωb − 45 MHz)→ ωb],

scanning over 45 MHz, was used to pump ions back to the ±3/2 states at the end of the sequence.

RF1 shows the RF pulses for two pulse spin echo detection. The indicated polarity reverse of

δB/2 was for phase sensitive detection (Section 4.3.4), which was used for the final field alignment.

Phase sensitive detection works by observing the phase shift of the echo by reversing the polarity

of a perturbing magnetic field (δB/2) prior to the echo detection period. The polarity change

of B/2 was realized by reverse the current driving the pertubing coil. RF2 is for measuring the

frozen core Y3+ dynamics where a perturbing πY-pulse, resonant with the spin frequency of the

yttrium ions, was applied just prior to the Eu3+ π-pulse. (b) The hyperfine transition frequencies

as labelled are the theoretical values at the ZEFOZ field investigated.

for 2 s (ωr). The effect of the sweep was to optically re-pump ions in this subgroup to the

+3/2 ground state, while ions in other subgroups were shelved to the ±1/2 ground states.

A further pulse resonant with the −3/2(7F0)↔ +3/2(5D0) transition (ωb) ensured that

the −3/2 ground state was emptied. Both the re-pump (ωr) and burn (ωb) were repeated

a second time to achieve the desired population distribution amongst the ground-state

hyperfine levels. This preparation scheme was used because it allowed the transition of

interest to be initialised independent of the exact magnitude and direction of the applied

magnetic field as long as it was close to the ZEFOZ field.

Once the ensemble was prepared in the +3/2 ground state, an RF pulse sequence

(RF1,2) was applied depending on the measurement of interest. In all cases, the resultant

spin coherence was read out with Raman heterodyne detection by applying a further

optical pulse at ωb at the time of rephasing.

The schematic diagram of the experimental setup to achieve and measure the long

coherence times is shown in Figure 4.4. A 0.01% doped Eu3+:Y2SiO5 crystal from Scientific

Materials Corp., rectangularly shaped with dimensions of 5× 5× 3 mm along the D1, D2

and C2 axes respectively, was used for the experiment. The crystal was maintained at

2.0 K during the measurements in a Oxford SM-2000 bath cryostat that incorporates

a superconducting magnet. The superconducting magnet, capable of providing stable

magnetic fields of up to 15 Tesla, was used as the source of a DC field for the ZEFOZ

transition. The RF signal on the sample was produced by a six turn RF coil with a

diameter of 6 mm. The RF coil was driven by a 40 dBm RF amplifier, which resulted

in a Rabi frequency ΩRF = 7.9 kHz. The RF pulse was generated by a Spincore Radio

Processor, and controlled by RF switches. The RF coil was aligned perpendicular to
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the main axis of the superconducting magnet so as to eliminate the interaction with the

magnet.

The optical transition was driven by a highly frequency stabilized dye laser (sub-kHz

linewidth), which was directed at the sample from below the magnet. The light was then

reflected by a mirror, passing through the crystal a second time, and finally detected by

a 125 MHz bandwidth Si photo-receiver. The laser power incident on the crystal was

30 mW, gated by a double pass 80 MHz acousto-optic modulator (AOM) to avoid laser

radiation on the sample during the RF pulse period. The AOM was driven by a purpose-

built Direct Digital Synthesis (DDS) RF source, built by the RSPE (Research School of

Physics and Engineering of ANU) Electronics Unit, referred to by the project number

as J850. It was controlled by the TTL channels from a Spincore Pulse Blaster through a

series of RF switches. The J850 DDS unit is capable of providing scannable RF frequencies

which enabled implementation of the re-pump pulse sequence. Synchronization of the RF

pulses was realized by using a computer to control the Radio Processor, J850 unit, and

the Pulse Blaster.

The diagram in Figure 4.4 shows that the Raman heterodyne signal, detected as a

beat, was amplified and split into two signal channels and mixed respectively with two

local oscillators. In this case both phases, different by 90◦, of the signal were observed.

Such a reading strategy was set up for the phase sensitive detection used for the field

alignment, where the phase of the echo signal was concerned, as discussed in the next

section. While the phase of the echo was of interest during the phase sensitive detection,

for coherence measurement, only the echo amplitude was of interest. Thus a single local

oscillator channel was used during the coherence measurements.
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Figure 4.4: Experiment set-up for spin echo measurements. ‘HWP’ and ‘QWP’ stand for half

wave plate and quarter wave plate respectively while ‘PBS’ is the polarising beam splitter. The

box ‘Delay Box DB463’ is a device used to adjust the phase of the input RF signal by extending

the length of the cable, where ‘ϕ = 90◦’ means that the phase of an input signal is changed by

90◦. The rectangular area indicated with the red dotted line is the signal reading strategy during

the final ZEFOZ field alignment using phase sensitive detection (PSD, Section 4.3.4). In the PSD,

both phases of the echo signal were observed. During the spin echo measurements, however, only

the echo amplitude was recorded.
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4.3 ZEFOZ magnetic field alignment

4.3.1 Challenges in field alignment

Before any spin echo measurement could be performed, the field had to be aligned such that

the transition investigated was at the critical point, and this was the major challenge of

ZEFOZ. The principle of ZEFOZ requires that the error in the applied magnetic field value

should be within the magnetic field fluctuations, which is ∼0.08 G for Y2SiO5 (Section

2.5.2). This number is only 2.6×10−4% of the ZEFOZ field magnitude of 1.35 T. One way

of aligning the field is to look at the hyperfine structure and match it to the theoretical

values at the ZEFOZ field. This method, however, can only be used for coarse alignment

of the field, and is insufficient to align the magnetic field with the high accuracy required

(with error less than 2.6 × 10−4%). This is because at this small field perturbation, the

frequency change is very small compared to the transition’s inhomogeneous linewidth, and

does not produce a visible change in the hyperfine structure. The hyperfine inhomogneous

linewidth of the sample used is 10 kHz. As shown in Figure 4.6 (a), when the Zeeman

splitting approaches the ZEFOZ transition, even with a field detuning of 4 G from the

ideal critical point, the frequency changes only by a few hertz. This frequency shift is

less than 0.1% of the inhomogenous linewidth so it would not create visible change in the

hyperfine structure, but would reduce the coherence time by two orders magnitude.
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Figure 4.5: Calculated first order Zeeman coefficient |S1| against magnetic field when the field is

adjusted off the ideal ZEFOZ field value along z axis by ±4 G.

One of the other challenges of aligning a critical point field is that the turning points

along three dimensions need to be achieved simultaneously. Any field offset in any one of

these three directions will lead to a substantial first-order component in the field sensitivity

in all directions as demonstrated in Figure 4.6 (b) and (c). Figure 4.6 (b) is a two-

dimensional spectrum in the xy-plane while the magnetic field along z is fixed at the

critical point. In Figure 4.6 (c), the magnetic field along the z axis is detuned by 0.5 G,

it is obvious that the frequency gradient along the x and y axis changes significantly as

well. Moreover, as shown in Figure 4.6 (a), the ZEFOZ point investigated is a saddle

point with a maximum along the x axis and minimums along the two other dimensions.
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It is much easier to work with an absolute maximum or an absolute minimum critical

point. For instance, if it was an absolute maximum critcal point, it is efficient to simply

maximize the frequency. Hence, being a saddle point, it increases the degree of difficulty

in approaching the critical point by observing the hyperfine structure. In addition, the

theoretical ZEFOZ value is just a rough reference with its accuracy limited by the fitting

error of the Hamiltonian parameters which is up to ∼4%, or 5 G.
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Figure 4.6: Frequencies of the −3/2→ +3/2 transition around the ZEFOZ point at 1.35 T. (a),

Plot of the transition frequency when the magnetic field is shifted from the ZEFOZ field value along

one axis by ±4 G, while the field along two other axes are set at the ZEFOZ field value. (b), Two-

dimensional spectrum (xy plane) when the field is at the ideal ZEFOZ field. (c), Two-dimensional

spectrum (xy plane) when the magnetic field along the z axis is adjusted by 0.5 G.

From the above discussion, even aligning a field with a misalignment of 0.02◦ is al-

ready a technical challenge because the turning points need to be achieved along three

orthogonal directions simultaneously. In addition, the field misalignment was required to

be much less than 0.02◦ to get the expected long coherence time in this system. Compared

to Fraval’s Pr3+:Y2SiO5 system [21], this magnetic field alignment was substantially more

complicated. In Pr3+:Y2SiO5, the fine alignment of the magnetic field was achieved by

optimising T2 directly. This method works because the hyperfine T2 for the ZEFOZ tran-

sition in that system was relatively short, of the order of seconds. For Eu3+:Y2SiO5, the
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ZEFOZ transition T2 was expected to be hours (Section2.5.4). The direct T2 optimisation

method was not practical because the system could not be kept stably cold for that long.

Furthermore, the ZEFOZ transitions for Pr3+:Y2SiO5 happen at reasonably small fields,

of the order of a few hundred Gauss, and the magnetic field was provided by a set of

superconducting XY Z-coils. With an XY Z-coil, it is easy to adjust the field direction

by independently changing the current driving the X, Y or Z coils. However, XY Z-coils

cannot reach the ∼ 1 T fields required to perform ZEFOZ in Eu3+:Y2SiO5. The reason

for this is that the huge torque would distort the coils if a very strong magnetic field is

applied. As an alternative, an Oxford SM-2000 superconducting magnet, capable of pro-

viding stable magnetic fields of up to 15 Tesla along one direction, was used as the source

of a DC field.

4.3.2 Introduction to the sample mount

The magnetic field from the superconducting magnet is along a locked Z direction

while the ZEFOZ transition happens at a particular field orientation. We designed

a special sample mount, capable of rotating the crystal such that the fixed field was

aligned along the desired critical point field direction. The sample mount was designed

to have the ability to coarsely align the angle easily until a point when a set of two

nano-positioning goniometers (from Attocube) could be used. As shown in Figure 4.7, it

includes a wedge, a rotation plate and the two goniometers. Because the spin Hamiltonian

characterisation determines the C2 direction much more accurately than the D1 and

D2 [22], the wedge was designed to align the C2 axis correctly, while the rotation plate

allows the D1 and D2 orientation to be coarsely adjusted. Once the field misalignment

along all directions came into the range of the Hamiltonian fitting error (∼ 3◦), the two

goniometers were used to perform the fine alignment by using phase sensitive detec-

tion. The detail of the coarse and fine alignment will be discussed in the following sections.

4.3.3 Rough alignment of the field

Rough alignment of the field was realized by measuring the hyperfine structure using Ra-

man heterodyne spectroscopy. In Figure 4.8, an example of a measured Raman-heterodyne

spectrum is presented, showing how an applied magnetic field results in Zeeman splitting

of the ±1/2→ ±3/2 transition, which happens at 34.5 MHz at zero field (Section 2.3.2).

In order to work out the field orientation, the known Hamiltonian parameters were used to

fit the measured spectra. Because the zero-field hyperfine levels are doubly degenerate, in

the presence of the external field, each zero-field line should split into four lines. However,

in fact, as shown in Figure 4.9 (b), each zero-field line was split into eight lines by the

applied field. This is because there are two magnetically inequivalent sites for each crys-

tallographically equivalent Eu3+ site [22] (Section 2.3.2). Only transition frequencies of

the ‘site 1a’ are investigated in this thesis. Once the field orientation was determined from

the fitting, the sample rod was removed from the magnet, then the orientation between

the sample and the wedge was adjusted by rotating the rotation plate. The spectrum was

remeasured to work out the updated field orientation. This process was repeated until the

fitting showed that the error in the alignment was less than 3◦, an offset in the range of

the Hamiltonian fitting error. The achieved field at this stage, from the fitting, was within

3◦ of the direction [-0.535, -0.634, 0.558] in the [D1, D2, C2] coordinate frame.
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Figure 4.7: Illustration of the sample mount. (a), The sample mount consists of a wedge,

a rotation plate and two electrically driven goniometers. The wedge, attached to the bottom

goniometer, was designed to align the C2 axis correctly. (b) The rotation plate was fitted to the

wedge with three screws and the sample was glued on the rotation plate in roughly the right

orientation in the (D1, D2) plane. The orientation of the sample relative to the field could be

adjusted by rotating the plate on the wedge. (c), The two goniometers can tilt the sample a small

amount along a pair of orthogonal directions by ±3.6◦ and ±2.9◦ respectively. The angles θ and φ

are the theoretical calculated ZEFOZ field orientations relative to the coordinate frame (D1, D2,

C2), as demonstrated in Figure 4.2.
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Figure 4.8: An example of the measured Raman-heterodyne spectrum of the ±1/2 → ±3/2

transition (34.5 MHz at zero field) in the presence of an applied external magnetic field. Because

of the magnet’s residual field, the 34.5 MHz transition splits even in the case of ‘B = 0’.

4.3.4 Fine alignment of the field: phase sensitive detection

The final alignment of the sample with respect to the magnetic field was achieved by carry-

ing out phase sensitive detection, which works by applying external magnetic perturbations

and measuring the resulting phase shift on the echo signal. The external perturbations,

of the order of 10 G, were produced by three sets of coils mounted along three orthogonal

directions outside the cryostat.

With these coils, the phase sensitive detection allows a measurement of the field sensi-

tivity of the investigated transition with high accuracy. The field sensitivity was measured

by observing the phase shift of a two-pulse Hahn echo that occurred when the perturbation

field was reversed after the rephasing π-pulse (see sequence RF1 in Figure 4.3). This phase

shift was observed by mixing the echo signal with two separate local oscillator channels

separated in phase by 90◦ (see Figure 4.4). With the information obtained from the phase

sensitive detection, the crystal was reorientated using the goniometers such that the field

was better aligned with the critical point. Besides the field alignment, the field magnitude

was also adjusted to achieve a smaller field sensitivity of the transition. As the Oxford

superconducting magnet has a low field precision of 0.01 T, an external DC offset coil was

mounted by winding the wire outside the cryostat. This offset coil is capable of providing

a field along the z-axis up to 20 G, with a precision higher than 0.1 G, limited by the

current supply.

The method of phase sensitive detection can be illustrated by using the Bloch sphere

as shown in Figure 4.10. A driving RF π/2-pulse rotates the Bloch vector of the ensemble

to the y axis (marked as M0). After some time for precessing, a π-pulse inverts the y-
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Figure 4.9: Zeeman splitting of the hyperfine ground state in the presence of an external field.

The figure was plotted with the transition frequencies vs. the field magnitude. ( a), The calculated

transition lines as the magnetic field increased along the ideal ZEFOZ field orientation. (b), The

measured hyperfine spectra as a function of the field. Each vertical slice is one spectrum with colour

indicating the intensity of the Raman heterodyne signal. The fitting on the lines of magnetically

‘site 1a’, shown as solid red lines, demonstrates that the field orientation for this spectrum is

about 4◦ off the optimal ZEFOZ field direction. This 4◦ misalignment results in a difference in the

measured spectrum from a spectrum for the theoretically ideal ZEFOZ field as indicated in the

dotted red rectangle.
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Figure 4.10: Illustration of phase sensitive detection using the Bloch sphere. ‘M0’ is the ensemble

Bloch vector of the transition after a π/2 pulse and ‘M1’ is where the rephased Bloch vectors of the

ensemble are supposed to focus some time after the π-pulse (echo). However, when the polarity of

the DC perturbation field δB is reversed prior to the echo detection period (RF1 in Figure 4.3), the

resonant frequency of the transition would be shifted. This causes the rephased ensemble Bloch

vector to shift by δθ and focus at M2. With a fixed δB, δθ is a measurement of the field sensitivity

of the transition.
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component of the vector and the polarization of the ensemble is supposed to refocus at the

−y axis (marked as M1). With a sudden perturbation (applied by reversing the polarity

of the perturbing magnetic field) prior to the echo detection period (RF1 in Figure 4.3),

the frequency of the transition is shifted by δω. This causes the ensemble Bloch vector to

refocu at a different position (marked as M2) with a phase shifted by δθ relative to M1.

The phase shift δθ is dependent on the frequency shift δω and the total evolution time τ,

δθ = δωτ, (4.1)

where the frequency shift δω is given by the field sensitivity S1 and the strength of the

applied field perturbation δB 1:

δω = 2π(S1 · δB).

From the above equations, with a fixed delay τ and δB, the measured phase shift δθ is a

measure of the field sensitivity S1.

By iteratively measuring the field sensitivity, adjusting the field magnitude and

tilting the sample with the goniometers, the first-order Zeeman coefficient |S1| was

reduced to be below 1× 10−3 MHz/T. This alignment was achieved at a field magnitude

of 1.29± 0.01 T. As discussed before, this uncertainty of 0.01 T is determined by the

precision of the main superconducting magnet while the field during the alignment can

be changed with much higher precision given by offset DC coil. From the measured

field sensitivity |S1| = 1 × 10−3 MHz/T, the field misalignment is less than 0.004◦ from

the ideal critical point field orientation. This alignment is labelled as Bcp, for which a

decoherence rate of 2.9 × 10−2 s−1 is expected based on the measured S1 according to

Equation 2.12.

During the field alignment, one issue with those external perturbation coils is that

while the field produced by the two sets of the horizontal coils (orthogonal to the supercon-

ducting magnet) is the same as that was expected, the field produced by the vertical coils

was along the opposite direction to that expected. This is because when the perturbation

field was applied parallel with the superconducting magnet the magnet acts to maintain

the flux through the coil. In this experiment, this results in a change in the total field

in the opposite direction to the applied perturbation field. This also makes it hard to

evaluate accurately the changed value of the magnetic field. Because the DC offset coil

also provides a field parallel with the superconducting magnet, it has the same problem

as the vertical perturbation coil.

4.4 Results

4.4.1 Two pulse spin echo decay

Once the field was well aligned to Bcp, two pulse spin echoes were used to measure the

coherence time. The measured decay of the two-pulse spin echoes as a function of the

delay τ is shown in Figure 4.11. Three data sets are presented corresponding to the fields

|Bcp|, (|Bcp|+ 0.005 T) and (|Bcp|+ 0.05 T). These show a dramatic decrease in the echo

decay rate as the field alignment brings the transition closer to the critical point. The

1Only the first-order field sensitivity is considered here.
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Figure 4.11: Two pulse spin echo decay with the echo amplitude E plotted against the total

delay τ. Open circles show echo decays at magnetic fields |Bcp| (blue), (|Bcp|+ 0.005) (orange)

and (|Bcp|+ 0.05) T (green) as labelled. Each set is fitted using Equation 3.21 with phase memory

times TM equal to 47 s, 3.5 s and 0.8 s respectively.

echo decay curve at Bcp has a non-exponential form and cannot be properly described by

a standard relaxation time T2 because the decoherence rate changes with delay time τ.

The decay is accurately described by Equation 3.21:

E(τ) ∝ exp
[
−(τ/TM )2

]
, (4.2)

which incorporates decoherence due to spectral diffusion (see Section 3.1.3). In this model,

E is the echo amplitude as a function of τ. The phase memory time TM is used to describe

the coherence decay of the system. This was determined to be 47 s at Bcp.

For τ� TM the decoherence rate, given by 2τ/TM
2 (the gradient of the echo decay),

is extremely slow. For example, at τ = 100 ms, the fit to Equation 4.2 predicted the

decoherence rate to be 9.1× 10−5 s−1 , which is significantly slower than the rate of

4.4× 10−3 s−1 for a perfect field alignment predicted by equation 2.12, and here the field

was not perfectly aligned. This is attributed to the reduced local spin-reconfiguring rate

due to the frozen core induced by the applied magnetic field (Section 2.5.3).

Compared to the ZEFOZ transition in Pr3+:Y2SiO5 [21], the frozen core effect in

Eu3+:Y2SiO5 is much stronger. This is because the induced magnetic moment in that

system was more than an order of magnitude smaller than that in the current experiment.

For example, in Pr3+:Y2SiO5, at the 0.1 T critical point studied in [21], the Pr3+ ions

possessed a magnetic moment of 600 Hz/G. However, in Eu3+:Y2SiO5, due to the induced

component, the total magnetic moment of the Eu3+ ion at the investigated critical point

(1.35 T) is 15.5 kHz/G as shown in Figure 2.12.
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Figure 4.12: The Eu3+ two pulse spin echo amplitude plotted against the frequency of an applied

π-pulse driving the Y3+ spin transition. This data set was measured at a magnetic field which was

detuned by 10 G from Bcp, so that the Eu3+ transition was more sensitive to the perturbation

caused by the πY -pulse.

4.4.2 Investigation on the frozen core

The effect of the frozen-core Y spins was investigated by intentionally ‘thawing’ the core

during the echo using pulse sequence RF2 shown in Figure 4.3. A π-pulse resonant with

the Y Zeeman splitting at 2.7 MHz (πY pulse) was applied just before the Eu π-pulse.

The optimal frequency of the πY pulse was achieved through minimising the Eu echo size,

at a fixed delay τ, by scanning the yttrium frequency (Figure 4.12). The πY pulse aims to

invert the Y spins to maximize their contribution to the decoherence rate. The observed

increase in decoherence rate is shown in Figure 4.13. If the inversion of the frozen-core was

complete, the echo decay should have become exponential. The non-exponential decay for

τ < 10 s is attributed to the fact that the πY-pulse possessed an insufficient bandwidth

(200 Hz) to achieve total inversion of the inhomogeneously broadened Y3+ spins and hence,

could not maximally perturb the Eu3+ ions. Rather, the perturbing pulses were tuned

to be resonant with the frozen core Y spins with the lowest flipping rate. For τ > 10 s,

the frozen core had completely thawed and the Hahn echo decay was exponential. The

decoherence rate of the exponential decay is 5.3× 10−2 s−1, which is within a factor of two

of the predicted decoherence rate (2.9× 10−2 s−1) from the directly measured transition

sensitivity. This confirms that the decoherence at Bcp is still dominated by the interaction

between the Eu3+ ions and the Y spin bath. Hence, Mims’ model of Equation 4.2 allows

TM to be related to the flipping rate R of the local Y spins and ∆ω1/2, the half width

of the spectral broadening on the Eu hyperfine transition due to the distribution of the
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static local field [85] (Section 3.1.3):

TM = 1.41(R∆ω1/2)−1/2 (4.3)

0 10 20 30 40 50 60 70
−2.5

−2

−1.5

−1

−0.5

0

|Bcp|

τ (s)

N
or

m
al

iz
ed

 s
ig

na
l (

lo
g 

sc
al

e)

with πY pulse 

Figure 4.13: Comparison of the echo decays at |Bcp| with and without a perturbing πY-pulse.

Open circles show two pulse spin echo decay at magnetic fields |Bcp| (blue). ‘+’ symbols show the

two-pulse spin echo decay with the perturbing πY-pulse (sequence RF2 in Figure 4.3). At τ > 10 s,

the decoherence rate is 5.3 × 10−2 s−1 from an exponential fit to the ‘πY’ data set.

When the frozen core has been removed, the decoherence rate (5.3× 10−2 s−1) is a

measure of the half width ∆ω1/2 (∆ω1/2 = π∆f = 1/T2). Therefore, from Equation 4.3,

the spin flip rate of the frozen core Y spins is R = 1.7× 10−2 s−1. This corresponds to a

correlation time of 59 s for the transition frequency fluctuations, which is four orders of

magnitude longer than the low field value of 3.5 ms measured by Arcangeli et al.[104].

4.4.3 Dynamic decoherence control (DDC) results

Owing to the very small amount of decoherence, the signal to noise ratio of the two-pulse

spin echo measurements shown in Figure 4.11 was not sufficient to accurately measure the

decoherence for τ� TM . Therefore, DDC pulse sequences, as introduced in Section 3.1.4,

were used, which allow measurements of the decoherence rate at 100 ms< τ <10,000 ms,

as well as allowing extension of the slow decoherence rates at this short time zone to longer

evolution times.

Ideally, application of a DDC sequence with a pulse interval τc would result in a

hyperfine decoherence rate equal to the gradient of the two pulse spin echo curve at

τ = τc, namely the tangent (Figure 4.14) [92]. According to the Equation 4.2, the expected

coherence time T2 from a DDC measurement, given by the tangent of the theoretical fitting
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Figure 4.14: An illustration of the tangent of the two pulse spin echo decay at Bcp.

for the two pulse spin echo decay curve is written:

T2(τc) =
T 2
M

2τc
, (4.4)

where the phase memory time TM at Bcp was determined to be 47 s.
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Figure 4.15: (a), DDC pulse sequence used in the experiment. RF1 is the CPMG pulse sequence.

RF2 is the KDDx pulse sequence. The laser pulses and the hyperfine transition frequencies in (b)

are identical to what was used in the two pulse spin echo measurement as illustrated in Figure 4.3.

The first DDC pulse sequence used was a CPMG pulse sequence (RF1 in Figure 4.15),

which provides a simple way to test the DDC effectiveness. The main results of the CPMG

measurement are shown in Figure 4.16. The echo decays exponentially against the total

evolution time and the coherence time was prolonged as the time τc between the π-pulses

was decreased. In Table 4.1, I list the coherence times measured with a CPMG pulse

sequence and the estimated value from the gradient of the two-pulse spin echo curve. The
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decoherence rates measured by the CPMG pulse sequence are in good agreement with the

gradient of the Hahn echo decay curve with a discrepancy within 15% for τc < 1000 ms.

For DDC measurements, a realignment of the field was required after finishing collecting

each data set. Hence, the slightly longer coherence time of the CPMG results than those

from the Hahn echo decay curve for τc ≥ 1000 ms is probably due to better alignments.
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Figure 4.16: Measured coherence times at Bcp with a CPMG pulse sequence. Four data sets are

displayed, with the echo amplitude E plotted against the total delay τ, corresponding to different

pulse intervals τc.

Table 4.1: Expected coherence times calculated from the tangent of the two pulse spin echo decay

compared to the experimental measurements with a CPMG sequence for different pulse rates.

τc (ms) Expected value (min) CPMG (min)

100 184.0 200.0± 50.0

200 92.0 80.4± 20.0

400 46.0 52.0± 5.0

1,000 18.4 32.3± 5

2,000 9.2 22.0± 2.0

10,000 1.8 12.1± 0.5

Although the CPMG sequence is commonly used to extend coherence, the method is

only effective in preserving quantum states that possess a particular phase. Hence, it is

not suitable for use in a practical quantum memory, which is required to store arbitrary

quantum states. As an example, the coherence time of 200 min, achieved with CPMG

decreased to less than 10 s when the phase of the initial π/2-pulse was rotated by 90◦.

To test the suitability of the Eu3+:Y2SiO5 system for arbitrary quantum state storage,

a further experiment was performed using a DDC sequence known as KDDx (RF2 in Figure

4.15). The KDDx sequence is effective in preserving arbitrary states and is robust against

errors due to pulse area and off-resonant excitation [102].

The KDDx results are shown in Figure 4.17. A coherence time of 370±60 min (6±1

hours) was observed for a decoupling period τc of 100 ms. This slightly longer coherence
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Figure 4.17: Measured coherence times with KDDx pulse sequences. The figures present the

echo amplitude plotted against the total delay. (a), Three data sets corresponding to DDC pulse

intervals τc of 50 ms, 100 ms and 200 ms. (b), A repeat of the long coherence time data set with

error bars for τc = 100 ms. The error bars correspond to the shot-to-shot variations in the echo

amplitude due to the preparation sequence that were observed at short delays. The uncertainty in

the calculated T2 is obtained from the uncertainty in the linear fit.
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time compared to the result of the CPMG experiment is attributed to the day-to-day

alignment variation of the magnetic field on the order of 0.001◦.

When using DDC, decreasing τc should increase the coherence time until τc is shorter

than the time scale of the dominant decoherence mechanism at which point no further

improvement is seen. Such a trend was observed for both the CPMG and KDDx sequences

for 100 ms< τ <10000 ms. However, we observed a decrease in coherence time when τc
was decreased from 100 ms to 50 ms when using the KDDx sequence even though the bulk

Y flipping rate is 3.5 ms. This is because the electrical mains supply has a frequency of

50 Hz and no particular effort was made to shield the crystal from AC magnetic fields.

For τc = 100 ms, 50 Hz fluctuations are rephased because 100 ms is an integer multiple

of the 20 ms period of the mains supply. In contrast, for τc = 50 ms, the transition is

maximally sensitive to mains pick-up because 50 ms is a half-integer multiple of the supply

period. In spite of this, even in the absence of magnetic shielding, the insensitivity of the

transition to magnetic fluctuations still allowed a coherence time of 216 min to be achieved

for τc = 50 ms.

4.5 Discussion

The application of the critical point field allowed a phase memory time of 47 s to be

achieved on the 3/2 ↔ −3/2 hyperfine transition of 151Eu3+:Y2SiO5. This resulted from

the combination of two effects. The first effect was the reduction of the transition’s sensi-

tivity to magnetic perturbations to the order of 1× 10−3 MHz/T. The second effect was

the reduction in the Y spin flipping rate by four orders of magnitude to R= 1.7× 10−2 s−1

due to the formation of a frozen core. The consistency of the experimental results with

Mims’ model for decoherence in the presence of slow spectral diffusion is strong evidence

that the Y spin bath fluctuations remain the dominant decoherence mechanism. Hence,

a further decrease in the decoherence rate could be achieved by improving the decoupling

of the Y-spin bath from the Eu ion.

Equation 2.12 predicts that the coherence time could be improved by an order of

magnitude by improving the alignment of the applied field such that |S1| = 0. However,

the current alignment is already close to the limit imposed by the ensemble inhomogeneity.

Each ion possesses a slightly different critical point magnetic field so they cannot be aligned

accurately simultaneously. This is mainly due to the strain broadening of the hyperfine

transitions, which was measured to be 10 kHz at zero field. The crystal field broadens the

transition via the quadrupole moment tensor Q, which is comprised of two parameters

E and D (Section 2.3). If we use a simple model where we consider the quadrupole

inhomogeneity as the only source of the hyperfine inhomogeneous broadening and presume

that there is no correlation between the two quadrupole splittings at zero field (34.5 MHz

and 46.2 MHz), we can calculate the inhomogeneity at the critical point field. As shown in

Figure 4.18(a), this can be done by sampling a frequency pair ‘(f1,f2)’ from the frequency

distributions of the two transitions decided by the linewidth ∆f , then calculating the

new quadrupole parameters E and D which would gives these frequencies. E and D can

then be used to calculate the critical point of that ion. The distribution of the critical

points in Figure 4.18(b) is a result after sampling through the transition broadening 10000

times. The measured 10 kHz linewidth for the hyperfine transitions results in a critical

field inhomogeneity of 4 G. This means that, while we align one subgroup of the Eu3+

ions at their critical field, some subgroups would still be off their critical point by 4 G,

corresponding to a decoherence rate of 0.25 s−1 or T2 = 4 s according to equation 2.12
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(The frozen core effect is not included in this model). Repeating the calculation by setting

the linewidth ∆f to be 5 kHz and 1 kHz leads to a reduced critical field broadening of

2 G and 0.5 G respectively. A field detuninig of 0.5 G from the critical point corresponds

to 0.03 s−1. That is to say, a decrease of the quadrupole inhomogeneity by an order of

magnitude could leads to an increase of the coherence time by an order of magnitude.

The quadrupole broadening is due to the strain broadening within the crystal, which

is not intrinsic to the site and can be reduced by improving the crystal growth process. A

reduction in strain broadening by over an order of magnitude has been achieved in analo-

gous materials [105] through reducing the dopant concentration and using isotopically pure

materials. In Eu3+:Y2SiO5, the strain broadening was also demonstrated to be dependent

on the Eu3+ concentration where an increase in Eu3+ concentration from 0.02% to 7%

produced an increase in the inhomogeneous linewidth from 0.5 GHz to 150 GHz(reference

[17]). Repeated annealing of the crystal has demonstrated a reduction in optical linewidth

from 2.4 GHz to 0.5 GHz for Eu3+:Y2SiO5 (reference [106]). Though all these inhomo-

geneous linewidth observations were for optical transitions, we would expect a similar

reduction in hyperfine linewidth at the critical point if the quadrupole inhomogeneity is

the main source of broadening.

Refining the crystal growth technique is a long term procedure, but an immediately

feasible strategy for tackling the inhomogeneous broadening is creating a narrow feature

inside the hyperfine broadening through the spectral holeburning. Figure 4.19 presents a

simple technique for creating a narrow feature such that the RF pulse sequence talks to a

frequency-selected subgroup of Eu3+ ions.

A reduced linewidth of the transition would also improve the effectiveness of DDC.

The coherence time of 6 hours was obtained with a reasonably low pulse rate. An increased

pulse rate is expected to extend the coherence time. However, as stated before, a reduction

of the coherence time was observed by increasing the decoupling rate from 10 Hz to 20 Hz

(τc = 50 ms) when using the KDDx sequence. Though this is mainly due to the detected

noise of 50 Hz from the electrical mains supply, pulse errors can also contribute to decreased

coherence times with higher decoupling rates. A higher decoupling rate means a larger

number of DDC pulses, thus the pulse errors become increasingly important.

The inhomogeneous linewidth of the transition is one of the sources of DDC pulse er-

rors. The inhomogeneous linewidth causes different subgroups in the ensemble to respond

differently to the DDC pulses and leads to errors in the rephasing process. Ideally, we

want the DDC pulses to have the same action on every individual ion in the ensemble.

This would require the bandwidth of the pulse to be much greater than the inhomogeneous

linewidth of the ions. However, the bandwidth of the applied RF pulse is often limited by

the feasible RF power. An alternative is to reduce the inhomogeneous linewith, either by

refining the crystal growth process or by preparing a narrow feature of the transition by

using spectral holeburning as discussed above.

The other source of DDC pulse errors is the inhomogeneity in the RF intensity across

the sample arising from imperfect design and positioning of the RF coils. As shown in

Figure 4.20, those ions in the centre of the coil (‘M’ ions) experience a stronger RF field

while those at the sides (‘N’ ions) of the coil experience a weaker RF field. For a fixed

pulse duration, the pulse area, which is the product of the Rabi frequency(proportional

to the RF amplitude) with the pulse duration, will be different for atoms at ‘M’ ions

and ‘N’ ions. Hence there will be errors in pulse area for some subgroups of the ensemble.

Inhomogeneity in RF intensity can be reduced by either using thinner samples or designing

a better RF coil.
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Figure 4.18: Illustration of the calculation of the inhomogeneity of the critical point field due

to the quadrupole inhomogeneity. (a), Based on the hyperfine inhomeneous linewidth, Gaussian

distributions corresponding to the broadening of the two zero-field transitions (34.5 MHz and

46.2 MHz) were formed. Pairs of frequency (f1,f2) were sampled randomly from the two dis-

tributions, with which the parameters E and D, which forms the quadrupole Q tensor, can be

calculated. With the formed Q tensor and the other known Hamiltonian parameters, the critical

point field investigated was calculated. (b), The inhomogeneity in the critical point magnitude

calculated from randomly sampling the frequency through the two distributions for 10000 times.

Three data sets are shown, corresponding to different linewidths of 10 kHz, 5 kHz and 1 kHz. This

simulation is based on two assumptions. One is that the quadrupole inhomogeneity is the only

source of the transition’s inhomogeneous broadening. The other is that there are no correlations

between the two zero-field transitions.
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Figure 4.19: Achieving long coherence times by creating a a narrow feature in the hyperfine

transition using spectral holeburning. (a), The pulse sequence used. A coherence measurement

using the two pulse spin echo pulse sequence is performed after creating a narrow feature in the

inhomogeneous line of the transition. The narrow feature is created using spectral holeburning

by applying the pulses in the dotted red rectangle. (b), Illustration of the process of creating the

narrow feature. Because of the optical preparation, all the ions are initialised in the ground state

and are driven to the excited state by a strong and short RF π-pulse. A long and weak RF pulse

is then applied, which drives only the ions with near zero detuning, represented with red circles,

back to the ground state. Those off-resonant ions remaining in the excited state, represented with

green circles, are burned away by an optical burning pulse at ωb. This creates a narrow feature in

the inhomogeneous line as shown in (c). In (c), the red line with red ions represents the narrow

feature created and the blue lines with blue ions represents the inhomogeneous broadening.
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Figure 4.20: Illustration of RF inhomogeneity. Ions at M and N are on the path of the laser,

which means they will contribute to the signal. If the coils are not perfectly implemented, there

will be a difference in RF intensity between M and N.
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Even without using any of the above approaches, the coherence time could be extended

by moving to a critical point with a lower |S2|. There are many critical points that

occur for ground state transitions in 151Eu3+:Y2SiO5, and a number of these have slightly

smaller values of |S2| than the point studied in this thesis. In addition, the |S2| values for

critical points in 153Eu3+:Y2SiO5, the other naturally occurring Eu isotope, are smaller

still by approximately a factor of two. Furthermore, many of these critical points occur

at magnetic field values up to five times larger than the field applied in this work. By

increasing the magnetic field, the increased magnetic moment induced on the Eu3+ ion

would extend the volume of the frozen core. The direct benefit would be a reduction of

the Y spin flip rate R, which significantly reduces the rate at which DDC rephasing pulses

would need to be applied. While the bulk Y spin flips remain the dominant decoherence

mechanism, these refinements of the ZEFOZ technique would allow advances towards the

lifetime limit of 23 days in this material [17].

4.6 Summary

In this chapter, the ZEFOZ method was used to extend the hyperfine coherence time

in Eu3+:Y2SiO5. The critical point investigated occurs at a field magnitude of 1.35 T

and has a maximum curvature of S2 = 21.7 MHz/T2 from the theoretical calculation.

For a perfect field alignment, the expected coherence time is 229 s, corresponding to a

decoherence rate of 4.4× 10−3 s−1.

The major challenge of the ZEFOZ method is to align the magnetic field, especially

when the field source, provided by a superconducting magnet, is along a fixed direction.

Good alignment was achieved using applied field perturbation to performing the phase

sensitive detection. The best field alignment achieved had a misalignment within 0.004◦

from the ideal critical point direction. The aligned critical point was found to occur at a

field magnitude of 1.29 T.

Once the field was aligned, a two pulse spin echo pulse sequence was used to measure

the hyperfine coherence time. The recorded echo decay had a non exponential shape which

could be perfectly fitted by the spectral diffusion model of Equation 3.21. From the fitting,

the phase memory time TM was determined to be 47 s.

Because of the non-exponential shape, at short delays, the echo decay rate is much

slower than the rate given by TM . For example, at a delay of 100 ms, the fit predicts

a decoherence rate of 9.1 × 10−5 s−1, which is two orders of magnitude slower than the

predicted rate for a perfect field alignment presented above. This is due to the frozen core

induced on the Eu3+ by the applied strong magnetic field, which largely suppressed the

spin flipping of the Y3+ ions in the host.

The frozen core effect was investigated using a πY pulse to intentionally flip the Y3+

and thaw the core. An increased echo decay rate of 5.3× 10−2 s−1 was observed when the

frozen core was removed. This measurement allowed the frozen core Y3+ spin lifetime to

be estimated to be 59 s. This number is four orders magnitude longer than that of the

bulk Y3+ ions.

The slow decoherence rates of the two pulse spin echoes at short delays were measured

and extended to longer delays by using DDC pulse sequences. With a pulse interval of

100 ms, the KDDx pulse sequence resulted in a coherence time of 370±60 min, which is

the longest coherence time observed in a solid state system.

The achieved 6 hour coherence time is the combined result of ZEFOZ, frozen core and

DDC. However, the achieved phase memory time of 47 s is much shorter than the predicted
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coherence time of 229 s for a ideal ZEFOZ transition. This is believed to be because the

field was not perfectly aligned due to the limitation imposed by the inhomogeneity of

the critical field values in the ensemble. Such an inhomogeneity issue could be improved

by using samples with narrower inhomogeneous broadening, creating narrow features by

spectral holeburning and designing a better RF coil. Even without using any of these

approaches, the coherence time could be extended by moving to a critical point with a

lower S2 and higher field magnitude.

The non-exponential spin echo decay shape and the investigation on the frozen core

shows that the hyperfine coherence time in Eu3+:Y2SiO5 is still limited by the spin-

reconfiguration of the Y3+ ions in the host. Hence, in the next chapter, the study focuses

on the dynamics of these spins.



Chapter 5

Dynamics of the frozen-core Y3+

spins in Eu3+:Y2SiO5

The study in the previous chapter showed that spin flips of the frozen-core Y3+ nuclei

in the host is the dominant decoherence mechanism for ZEFOZ hyperfine transitions in

Eu3+:Y2SiO5. The goal of this chapter is to study the dynamics of these frozen-core Y3+

spins, with the aim of achieving longer coherence times through better control of the spins.

The Y3+ dynamics are studied in this chapter by perturbing the frozen-core Y3+

spins and measuring the effect on the Eu3+ ion. The main difference with the method

used in Section 4.4.2 is that here the Y3+ ions are excited with narrowband pulses so

that individual Y3+ sites in the frozen core can be addressed. The pulse sequence used to

achieve this is shown in Figure 5.1.

τ
Eu3+ :

πY Y3+:

Figure 5.1: The RF pulse sequence used in this chapter. All the optical preparation and readout

processes are identical to those discussed in the previous chapter and are not shown here. During

the two pulse spin echo of Eu3+, a πY pulse was applied prior to the Eu3+ π pulse and the effect

on the echo amplitude was observed. The πY pulse is resonant with the spin transition of one

frozen-core Y3+ ion.

In this chapter, I first present an introduction to the theory of the interactions between

the Eu3+ and Y3+ ions. This is followed by a measurement of the resonant frequencies

of the frozen-core Y3+ spins. Then a measurement of the Rabi frequencies of the Y3+

ions is presented, which is followed by a presentation of a coherence time measurement

on one particular individual frozen-core Y3+. Finally, I also present a measurement of the

frequency shift of the Eu3+ hyperfine transition when the Y3+ spin is flipped.

5.1 Introduction: interactions between the Eu3+ and Y3+

ions

The study presented in this chapter aims to resolve the dynamics of individual frozen-core

Y3+ ions. It includes measurements of the resonant frequencies of the Y3+ spins and the

79
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frequency shift of the Eu3+ hyperfine transition when a Y3+ spin is flipped. The results of

both measurements are dependent on the magnetic dipole-dipole interactions between the

Eu3+ and Y3+ ions. Hence, before presenting the measurements, in this section, a theory

on how these interactions relate to each measurement is introduced.

In this theory, the magnetic dipole-dipole interactions between the Eu3+ and the Y3+

ions are treated as a perturbation on the reduced spin Hamiltonian of the Eu3+ (Equation

2.3), with which the magnetic dipole moment of the Eu3+ ion can be calculated. Then the

magnetic dipole-dipole interaction can be calculated with this magnetic dipole moment.

5.1.1 The spin frequencies of the frozen-core Y3+ ions

The resonant frequency of the i-th frozen-core Y3+ spin is given by:

νY = γ|B + dBi|, (5.1)

where γ = 2.09 × 106 Hz/T is the gyromagnetic moment of Y3+ ions, B is the applied

magnetic field and dBi is the field due to the Eu3+ ion. The value of B is defined

dBi =
µ0

4π

(
3(mEu · ri)ri

|ri|5
− mEu

|ri|3

)
, (5.2)

where µ0 = 4π × 10−7 T·m/A is the vacuum permeability, ri is the displacement of the

i-th Y3+ ion relative to the Eu3+ ion and mEu is the magnetic moment of the Eu3+ spin.

The Eu3+ magnetic moment mEu has two different contributions in the presence

of an external magnetic field, which are the induced moment and the nuclear magnetic

moment. As detailed in Section 2.5.3, the induced moment is linearly dependent on the

field magnitude. All measurements presented in this chapter are near the critical field

Bcp, which is of the order of 1 T, where the induced moment is much larger than the

nuclear magnetic moment and thus the latter can be ignored. To summarise, the value

dBi is determined by the induced moment of the Eu3+, which is linearly dependent on

the applied magnetic field.

For different Y3+ ions, the relative positions with respect to the Eu3+ are different,

namely the ri value in Equation 5.2 is different, thus they have different dBi. Hence, the

resonant spin frequencies of the frozen-core Y3+ ions are detuned from each other. The

detuning frequency of an frozen-core Y3+ from the bulk can be calculated:

dνY = γ(|B + dBi| − |B|). (5.3)

The calculated values of dνY at a given field for some of the nearest frozen-core Y3+ ions

are listed in Table 5.1 and the measurement of the spin transition frequencies for these

Y3+ ions is presented in Section 5.2.

5.1.2 The frequency shift of the Eu3+ hyperfine transition when flipping
an Y3+ spin

While the resonant frequency of the frozen-core Y3+ ions is dominated by the induced

moment of the Eu3+ ion, the frequency shift of the Eu3+ hyperfine transition resulting

from flipping an Y3+ spin is related to the nuclear magnetic moment. The spin flip of

the i-th frozen-core Y3+ ion produces a magnetic field perturbation δBi at the Eu3+ site,
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resulting in a frequency shift of Eu3+ hyperfine transition given by:

δf = S · δBi, (5.4)

where S is the field sensitivity of the transition 1. As discussed in Section 2.5.4, S = ∆m,

where ∆m is the difference in the Eu3+ magnetic moment between the hyperfine ground

and excited states. The induced moment is independent of the hyperfine state, thus ∆m

is given by the difference in the nuclear magnetic moment of the two hyperfine states. At

a critical point, as shown in Figure 2.12, ∆m = 0, and so flipping a Y3+ spin does not

produce any frequency shift in the Eu3+ hyperfine transition. When the field is detuned

from the critical point, there is a non-zero value of ∆m. The magnitude of ∆m is

dependent on the amount of field detuning from the critical point.

A measurement of this frequency shift is presented in Section 5.5. This measurement

was performed by applying a resonant πY pulse to drive the spin flip of one individual

Y3+ ion, as shown in Figure 5.1, and recording the two pulse spin echo amplitude of the

Eu3+ ion.

In a two pulse spin echo measurement of the Eu3+ ion, a frequency shift δf during

the echo sequence results in a phase shift of the echo signal:

δα(τ) = 2π δf τ (5.5)

= 2π(S · δBi)τ,

where τ is the total delay. Thus, when a πY pulse is applied resonant with one of the

frozen core Y3+ spin frequency, a well defined phase shift of the Eu3+ echo signal might

be expected. In fact, applying a πY pulse leads to a modulation of the echo amplitude,

and no phase shift. As explained below, this is a consequence of the random distribution

of the initial Y3+ state on the Bloch sphere.

To understand the modulation, it is first necessary to determine the phase shift of

an individual Eu3+ ion when the frozen core Y3+ ion nearby, which is in an arbitrary

state, is flipped. In particular, we are interested in the phase shift on the Eu3+ ion at

the time of the echo. The dipolar interaction between Eu3+ and Y3+ ions means they

constitute a coupled system and their states are entangled. A complete treatment of this

problem involves solving the full coupled Hamiltonian. However, since the interaction is

purely diagonal (it only leads to shifts in energy levels), it is possible to understand the

appearance of amplitude modulation by just considering the action of the Y3+ on the

Eu3+ state.

In the absence of the πY pulse, assume that at the time of the echo the Eu3+ ion is

along the −x axis of the Bloch sphere,

M0 =

[
u0

v0

]
=

[
−1

0

]
; (5.6)

When the πY pulse is applied, this leads to a phase shift on this Bloch vector that accumu-

lates over the evolution time τ. At the time of the echo, the phase shift can be described

by a rotation of the vector about the z axis:

Mflip = R(τ)M0 (5.7)

1Only the first order field sensitivity is considered.
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To work out the phase shift for an arbitrary state, we first consider the phase shift

when the Y3+ is in one of its stationary states |g〉 and |e〉. If the Y3+ is in |g〉, then the

πY pulse flips it to |e〉. Assume that this leads to a positive frequency shift on the Eu3+

ion and hence a positive phase shift:

R+(τ) =

[
cos(δα(τ)) sin(δα(τ))

− sin(δα(τ)) cos(δα(τ))

]
; (5.8)

If the Y3+ starts in the excited state, flipping it will lead to an opposite frequency shift

and hence a negative phase shift:

R−(τ) =

[
cos(−δα(τ)) sin(−δα(τ))

− sin(−δα(τ)) cos(−δα(τ))

]
. (5.9)

If the Y3+ starts in an arbitrary state, the phase shift will be between these two extremes.

An arbitrary Y3+ state can be written in terms of the two stationary states as (See Section

3.1.1):

|YB〉 = sin
θ

2
|g〉+ eiφ cos

θ

2
|e〉. (5.10)

By considering the full coupled system, it can be shown that the phase shift of the Eu3+

Bloch vector for an arbitrary Y3+ state is

R(τ, θ) = sin2 θ

2
R+(τ) + cos2 θ

2
R−(τ). (5.11)

This equation shows that the phase shift of an individual Eu3+ Bloch vector as a

function of the Y3+ state. To work out the echo amplitude, it is necessary to consider

the entire Eu3+ ensemble. Since the Y3+ ions can be assumed to be completely randomly

distributed, the total echo amplitude can be obtained by integrating over all possible Y3+

states:

M(τ) =

∫ 2π

0

∫ π

0
R(τ, θ)M0 sin(θ)dθdφ (5.12)

=

∫ 2π

0

∫ π

0
(sin2 θ

2
R+(τ) + cos2 θ

2
R−(τ))

[
−1

0

]
sin(θ)dθdφ

= 4π cos(α(τ))

[
−1

0

]
= 4π cos(α(τ))M0

= 4π cos(2πδfτ)M0 (5.13)

This gives an echo signal dependent on the evolution time τ as:

E(τ) ∝ cos(2πδfτ). (5.14)

Thus, the echo amplitude has a modulation over the evolution time τ. A measurement of

such an echo modulation is presented in Section 5.5.

According to Equation 5.5, the frequency shift δf is dependent on S and δBi. The

field sensitivity S is determined by the amount of field detuning from the critical point,
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Figure 5.2: Bloch sphere illustration of the A spin coherence emission. (a), If A is not coupled

to B, the Bloch vector of A spin can be represented using M0 as marked. (b), If A is coupled to

the B spin system, which is prepared purely in the |g〉 state, a positive phase shift is produced,

the Bloch vector of the A spin is rotated from M0 to M(τ). (c), If A is coupled to the B spin

system, which is prepared purely in the |e〉 state, a negative phase shift is produced instead.

or the field alignment. The field perturbation δBi for an individual Y3+ ion is determined

by its position with respect to the Eu3+ ion. Flipping each frozen-core Y3+ spin results

in a different value of δBi on the Eu3+ ion. This means that each individual frozen-core

Y3+ site has its unique echo modulation frequency, which is a measure of the interaction

strength δf (Equation 5.4) between this Y3+ ion and the Eu3+ ion. In other words, for a

fixed field alignment and fixed delay τ, resonantly driving the spin flip of different Y3+ ions

using the narrowband πY pulse should result in different echo amplitudes, as demonstrated

in the measurement presented in Section 5.2.

This modulation effect is only observable in a particular magnetic field regime: close

to, but not exactly on, a critical point. In the above discussion, the focus was on one

individual frozen-core Y3+ ion while the echo decay due to the reconfiguration of other

Y3+ ions was ignored. This is only true when the measurement is performed near a

critical point where the effect of the bulk Y3+ spin flips is negligible due to the small

field sensitivity. Otherwise, if the field is completely away from a critical point, the echo

signal decays quickly to zero due to the fast spin flips of the bulk Y3+ ions before a slow

modulation caused by a frozen-core Y3+ ion can be observed. Equally, however, if there

is a spontaneous spin flipping of the frozen-core Y3+ spin during the modulation period

1/(δf), an echo modulation for an individual Y3+ ion produced by the πY pulse will not

be observable, thus, the echo modulation period must be made sufficiently short. In order

to shorten the modulation period 1/(δf) such that it is shorter than the lifetime of the

frozen-core Y3+ spins, the field sensitivity needs to be increased by detuning the field from

the critical point. Hence, the field alignment should be made such that:

1

Rb
� 1

δf
� 1

Rf
, (5.15)

where 1/Rb = 3.5 ms is the correlation time of the bulk Y3+ ions [104] and 1/Rf is the

correlation time of the frozen-core Y3+ spins. In the previous section, at the investigated

critical point Bcp, 1/Rf was measured to be 59 s. To satisfy Equation 5.15, all the mea-

surements to be discussed in this chapter were performed at a field detuned by (16±10) G

from the critical point Bcp. The reason for this large field uncertainty is explained in Sec-



84 Dynamics of the frozen-core Y3+ spins in Eu3+:Y2SiO5

tion 4.3.4. The interaction strength δf at this field value can be calculated according to

Equation 5.4. The calculation of the field sensitivity S = ∆m at a given field is detailed

in Section 2.5.4. The field perturbation δBi acting on the Eu3+ produced by flipping a

Y3+ spin can be calculated using

δBi =
µ0

4π

(
3(mY · ri)ri
|ri|5

− mY

|ri|3

)
, (5.16)

where mY is the magnetic moment of the Y3+ spin.

The calculated δf , at the experimental magnetic field, corresponding to different Y3+

sites is listed in Table 5.1. These values all satisfy Equation 5.15. In addition, the frequency

detunings of the spin transition for these frozen-core Y3+ ions at this field, calculated using

the method detailed in Section 5.1.1, are also listed in the Table 5.1.

Label of Y site Y position |r| (Å) δf (Hz) dνY (Hz)

Y1 3.403 0.2±0.3 -461±1

Y2 3.525 0.5±0.3 1458±1

Y3 3.651 0.4±0.3 -373±1

Y4 3.735 0.4±0.3 324±1

Y5 3.775 0.4±0.3 1070±1

Y6 4.022 0.18±0.05 70±1

Y7 4.162 0.11±0.05 -225±1

Y8 4.689 0.14±0.05 -329±1

Y9 4.937 0.13±0.05 -207±1

Y18 6.248 0.04±0.03 -139.4±0.1

Y30 7.295 0.05±0.03 18.94±0.1

Table 5.1: The calculated coupling strength δf between the Eu3+ and different frozen-core Y3+

ions, as well as the frequency detuning dνY of the spin transition for these Y3+ ions. The ‘Y

position’ is the distance between the Eu3+ ion and the Y3+ ion. The calculation was performed at

a field along Bcp, with a magnitude detuned from |Bcp| by (16± 10) Hz.

5.2 Spectrum measurement of the frozen-core Y3+ sites

In order to investigate the dynamics of an individual Y3+ site, it is necessary to work

out its spin transition frequency. As discussed in the previous section, the resonant spin

frequencies of the different Y3+ sites are detuned from the bulk and each other. This

section describes the measurement of the spectrum for these resonant spin frequencies.

The measurement was performed using the RF pulse sequence in Figure 5.1. The

required frequency of the πY pulse was estimated based on the field applied (1.29 T) and

the gyromagnetic ratio of the Y3+ ion (2.09 MHz.T−1). This frequency is the value for

the bulk Y3+ ions and in order to find the frequency for a frozen-core Y3+, the Eu3+

echo was observed by adjusting the frequency of the πY pulse for a fixed delay until a

minimum value of the echo amplitude was achieved, indicating a large perturbation to the
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Eu3+ ion. Then the frequency of the πY pulse was fixed and the total delay of the Eu3+

pulses was adjust until the echo amplitude was further minimized. This minimization

process was performed because the echo signal is dependent on both the frequency of

the πY pulse and the total delay τ. This process identified the spin transition frequency

and the modulation period of one of the Y3+ sites. After that, with the delay fixed, the

frequency of the πY pulse was scanned over 9 kHz and the Eu3+ echo amplitude was

record to identify other Y3+ frequencies. Because each Y3+ ion corresponds to a different

echo modulation frequency, at this fixed delay, they would not all experience a maximal

echo modulation. However, because the minimisation process was performed on an Y3+

ion that has a median modulation frequency, for most other frozen-core Y3+ ions, some

amount of decrease in the echo amplitude was expected when the πY frequency becomes

resonant with their spin transitions.

The measured Y3+ spectrum is shown in Figure 5.3(a), with the Eu3+ echo amplitude

plotted vs. the frequency of the πY pulse. Each of the five peaks (p1 to p5) shown in the

spectrum represents a frozen-core Y3+ site. Although the frequencies for these peaks are

determined by the frozen-core effect, the amplitude of each peak is not directly related to

the frequency detuning caused by the frozen core, The amplitude of each is determined

by the coupling strength δBi and the echo delay τ. Hence, the peaks with the largest

modulation depth (p1 and p5) may not necessarily have the strongest coupling strength.

In this initial measurement of the frequency shifts, the delay was chosen to give a clear

spectrum, and in doing so a value was picked which maximised the signal from p1 and p5.

At this delay, driving p1 and p5 Y3+ sites produced a phase shift of the echo signal close

to π.

The experimental peaks (p1 − p5) were assigned to the frozen-core Y3+ sites by com-

paring the experimental results with the calculated frequency detuning. The calculation

was discussed in the previous section and the spectrum of the calculated frequency detun-

ing of the 20 nearest frozen-core Y3+ ions is presented in Figure 5.3(b). The difference in

the frequency detuning between the two Y3+ sites with maximum plus detuning (Y1) and

minus detuning (Y2) is ∼1.9 kHz, in good agreement with the separation between the peak

p1 and p5 of the measured spectrum. Hence, the peaks p1 and p5 were assigned to these

two Y3+ sites respectively. Then peaks p2 was assigned to Y18 and p3 to Y4. However, in

the calculated spectrum, there is no frequency that matches the peak p4. This is probably

because peak p4 is a mixture of signals from multiple Y3+ sites. The different Y3+ sites

in the crystal corresponding to the experimental peaks are shown in Figure 5.3(c).

The theoretical simulation shows that there are more than five frozen-core Y3+ sites,

which means that Figure 5.3 is not a complete mapping of all frozen-core Y3+ sites. This is

due to the poor resolution of the measured spectrum. One possibility limiting the spectral

resolution was thought to be the Rabi frequency of the applied πY pulse, 111 Hz, was not

narrow enough to resolve all the Y3+ sites in the frozen core. Based on this hypothesis

the measurement was repeated by using narrower πY pulses, but the resolution of the

spectrum was not significantly improved. Hence, it is likely that the spectral resolution

is limited by the inhomogeneity in the applied magnetic field, which is on the order of

1 G. This 1 G field inhomogneity results in a 100 Hz inhomogenous broadening of the spin

transition of the Y3+ spin bath. Once the inhomogeneity in the field is improved, using a

πY pulse with a narrower bandwidth should lead to better spectral resolution.
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Figure 5.3: (a), The measured spectrum of the frozen-core Y3+ spin transitions near the critical

point Bcp, with the Eu3+ echo amplitude plotted against the frequency of the πY -pulse. (b), The

calculated detuning of the spin transition for the nearest 20 frozen core-Y3+ ions. Each vertical

line represents the frequency detuning for a Y3+ site. The lines in green represent those Y3+ sites

which are assigned with the experimental peaks as marked. (c), The crystal information for the

resolved Y3+ sites. The Y3+ sites ‘Y1’, ‘Y2’ and so on are named based on the distances between

the Eu3+ and the Y3+ ions. For example, the ‘Y1’ is the closest Y3+ site.
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5.3 Nutation measurements for the frozen-core Y3+ spins

In the previous section, the spin transition frequency for different Y3+ ions was resolved.

With this information, the dynamics of one individual Y3+ ion can be studied by setting

the frequency of the πY pulse resonant with that site. This section presents measurements

of nutation for two of the frozen-core Y3+ spins. A nutation measurement can provide a

simple illustration of the effect of a πY pulse on the Eu3+ ion and it also gives the Rabi

frequency of the πY pulse, which is required in the coherence time and echo modulation

measurements in the next two sections.

The nutation measurement was performed by setting the frequency of the πY pulse

to be resonant with one of the Y3+ sites and observing the Eu3+ echo amplitude when

scanning the length of the πY pulse. Again, the RF pulse sequence used is shown in

Figure 5.1, and the total Eu3+ delay was set to maximise the echo modulation. The echo

amplitude was then recorded as the length of the πY pulse was varied from 0.25 ms to 55

ms. Nutation measurements were performed at two frequencies, at peaks p1 and p5.
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Figure 5.4: (a) and (c), The nutation measurements at p1 and p5 respectively, with the Eu3+

echo amplitude plotted against the length of the πY -pulse. (b) and (d), Fourier transforms of the

nutation signals. The frequencies of the Fourier transform plots are the Rabi frequencies for each

site. The broadening of each Fourier transform plot represent the decay of the nutation.
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The measured nutations are shown in Figure 5.4, with the Eu3+ echo amplitude

plotted against the length of the πY pulse. For both p1 and p5 Y3+ sites, clear nutations

were produced as expected. The Rabi frequencies measured from the nutation are (176±
1) Hz and (189± 2) Hz respectively for for sites p1 and p5 respectively. The uncertainty is

from the the difficulty in determing the centre frequencies. The Rabi frequencies for the

two Y3+ sites agree. This is expected because the same RF intensity of the πY pulse was

used for the two sites and they have almost the same spin transition frequency 2.

The nutation decay is due to the inhomogeneous broadening of the Y3+ spin tran-

sition, which, as discussed earlier, is mainly caused by the inhomogeneity of the applied

magnetic field. In this case, as different Y3+ spins experience the same inhomogeneous

broadening, the same decay rate for p1 and p5 might be expected. However, as demon-

strated in Figure 5.4, the nutation of p5 decays much slower than p1. The faster nutation

decay of p1 is likely due to the off-resonant excitation of other sites, which could be the

nearby p2 site or other unresolved sites. As shown in the measured spectrum (Figure 5.3),

p5 is relatively isolated compared to the other peaks.

5.4 Coherence time measurement for the frozen-core Y3+

spins

The homogeneous linewidth of the frozen-core Y3+ spins is an important parameter in

calculating the cross relaxation rate of the frozen-core spins [107]. In order to determine

this homogeneous linewidth, in this section, a measurement of the coherence time for a

frozen-core Y3+ spin is presented.

The applied pulse sequence is shown in Figure 5.5(a). Rather than a single πY -pulse,

two different three-pulse sequences were applied prior to the Eu3+ π pulse. One of the

Y3+ pulse sequences was π/2, π and π/2 (RFY a) while the other was π/2, π and −π/2
(RFY b). The frequency of these pulses was set to be the resonant frequency of the p5 site.

In Figure 5.5(b), the effect of these two Y3+ pulse sequences is illustrated using the

Bloch sphere by assuming that the Y3+ ions are initialised in the ground state. For both

Y3+ sequences, the first π/2-pulse rotates the Y3+ spins to the 50-50 superposition state,

then the Bloch vectors of the individual frequency subgroups start to precess around the

Bloch sphere with a rate corresponding to their detunings. A π-pulse is then applied

and the Bloch vectors of the frozen-core Y3+ ensemble gradually refocus. For the RFY a
sequence, a third π/2-pulse drives the refocused Bloch vector to the initial ground state

while for RFY b squence, the third −π/2-pulse drives the refocused Bloch vector to the

excited state. This means that the RFY a sequence would recover the spin state while the

RFY b sequence would flip the spins. However, this is only true when the total evolution

time of the Y3+ pulse sequences is much shorter than the coherence time of the frozen

core Y3+ ions, namely τY � T2Y . As shown in Figure 5.5(c), when τY � T2Y , the frozen-

core Y3+ ensemble Bloch vectors would have already lost coherence completely before the

second π-pulse was applied and would not be refocused. After either the RFY a or RFY b
sequence, there would be half of the spins in the upper hemisphere and half in the lower

hemisphere of the Bloch sphere.

The previous section has discussed that flipping a Y3+ spin will cause an attenuation of

the echo amplitude if the Eu3+ delay was set at the minimum value of the echo modulation.

2As the spin transition frequency for Y3+ ions at the applied strong field is a few MHz, when considering
the Rabi frequency, the kHz scale frequency detuning due to the frozen-core is negligible.



§5.4 Coherence time measurement for the frozen-core Y3+ spins 89

From the above discussion, by applying pulse sequences RFY a and RFY b and observing

the Eu3+ echo amplitude, the coherence time of the resonant frozen-cor Y3+ spin can

be measured. To work out this coherence time, the Eu3+ echo amplitudes was recorded

sequentially for both sequences for each Y3+ delay τY , from 10 ms to 800 ms.

The result is shown in Figure 5.6 with the Eu3+ echo amplitude plotted against

τY . Two data sets were recorded, corresponding to pulse sequence RFY a and RFY b as

marked. At short τY , for the data set RFY a, the Eu3+ echo amplitude was not attenuated

because the pulse sequence recovers the spin state. As τY increases, the frozen-core Y3+

spins gradually lose coherence, and sequence RFY a is less effective at recovering the spins,

resulting in decreasing Eu3+ echo amplitude. The echo amplitude kept decreasing until

τY reached the value at which the frozen-core Y3+ spins completely lose coherence. After

that, the Eu3+ echo amplitude stayed constant as τY was lengthened. This is because,

when the coherence disappeared, half of the spins are in the upper hemisphere and half

in the lower hemisphere of the Bloch sphere as stated above. The measured data set for

RFY a, then, is in complete agreement with the theory.

The pulse sequence RFY b reverses the Y3+ spin state completely at τY � T2Y , hence,

a minimum Eu3+ echo amplitude is expected initially, and then the echo amplitude is

expected to increase until the frozen-core Y3+ spins lose coherence completely. However,

for the data set marked RFY b, an initial decrease of the Eu3+ echo amplitude was observed.

After this initial drop, the echo amplitude increased in the way expected until it reached

the same constant value as the data set RFY a. The cause of the initial drop of the echo

amplitude is not completely understood, although it seems to be due to the fact that the

Eu3+ delay was not set correctly to maximize the echo modulation (see Section 5.5).

From the above discussion, an exponential fit to the echo decay for sequence RFY a
is a measure of the frozen core Y3+ coherence time. The fit resulted in a coherence time

T2Y = 1.6 s.
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Figure 5.5: (a), The pulse sequence used to measure the coherence time of frozen-core Y3+ spins.

Two different Y3+ pulse sequences, RFY a and RFY b, were applied prior to the Eu3+ π pulse. The

Eu3+ delay was kept constant and the Eu3+ echoes were recorded at different Y3+ delays τY .

(b), The Bloch sphere representation of the Y3+ spins driven by RFY a and RFY b for τ � T2Y .

The RFY a sequence recovers the spin state while RFY b sequence flips the spins. (c), The Bloch

sphere representation of the Y3+ spins driven by the RFY a and RFY b sequences for τ � T2Y .

The frozen-core Y3+ ensemble Bloch vectors lose coherence completely before the second π-pulse

is applied and are not refocused. After either a RFY a or RFY b sequence, half of the spins are in

the upper hemisphere and half in the lower hemisphere.
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Figure 5.6: The result for frozen-core Y3+ coherence time measurement with the Eu3+ echo

amplitude plotted as a function of the Y3+ delay. Open circles show echo decay with the applied

RFY a and RFY b sequences respectively as marked. The solid line is an exponential fit for the

RFY a data set, which resulted in a coherence time of 1.6 s.

5.5 Measurement of the Eu3+-Y3+ ion-ion interactions and

Y3+ spin lifetime

Although I explained theoretically in Section 5.1.2 that an Eu3+ echo amplitude modu-

lation against the total delay τ is expected when flipping an Y3+ spin, all measurements

demonstrated in the previous sections were performed with a fixed Eu3+ delay. In this

section, by varying the Eu3+ delay, an echo modulation was experimentally demonstrated.

The measurement was performed using the pulse sequence shown in Figure 5.1, with

the frequency resonant with the peak p5 Y3+ site. Based on the nutation measurement,

the length of the πY -pulse was set to be 2.75 ms. With this fixed πY pulse, the Eu3+

echo amplitude was recorded by varying the total delay of the Eu3+ pulse sequence. To

observe the effect of the πY pulse on the Eu3+ echo decay, for each delay, the Eu3+ echo

amplitude with and without a πY -pulse were recorded sequentially.

The measured Eu3+ two pulse spin echo amplitude as a function of the total delay is

shown in Figure 5.7(a). The data set in orange is a two pulse spin echo decay without a

πY -pulse while the one in blue is a two pulse spin echo decay perturbed by the πY -pulse.

The echo decay without a πY pulse has a contribution from the spontaneous spin flips of

all the Y3+ ions. For the echo decay with a πY pulse, this contribution remains, and there

is an additional contribution from the spin flips of the p5 Y3+ ion. In order to get rid of the

effect of the spontaneous spin flips of the other Y3+ ions, the data set with the πY pulse

was normalised using the data set without a πY pulse, which results in the normalised

data set as shown in Figure 5.7(b). The normalised data shows a clear modulation of

the echo amplitude. This modulation is the result of the Eu3+ ion coupling to the p5

frozen-core Y3+ ions. The beat frequency of the modulation, δf = 0.25 Hz, is a measure of

the interaction strength, namely the frequency shift of the Eu3+ hyperfine transition when

the p5 Y3+ spin is flipped. The p5 peak was assigned to the Y2 Y3+ site according to the

spectrum measurement presented in Section 5.2. The theoretically calculated interaction
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Figure 5.7: (a), Open circles in orange shows the Eu3+ echo decay without a πY -pulse. The

data in blue circles shows the Eu3+ echo decay in the presence of perturbing πY -pulse. (b), The

normalised Eu3+ echo decay of the orange data set using the blue data set.
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strength for this Y2 is δf = 0.5 ± 0.3 Hz, as listed in Table 5.1. Hence, the measured

δf = 0.25 Hz is in reasonable agreement with the theoretical value.

The envelope decay of the normalised data set in Figure 5.7(b) is a measure of the

lifetime of the p5 Y3+ spin, which is 27±10 s. There is no inconsistent between this number

and the measured correlation time of the Y3+ spins in the frozen core, 59 s, from the two

pulse spin echo decay at Bcp (Section 4.4). For distinction, the former (27 s) is the lifetime

of one particular individual Y3+ spin while the latter, the correlation time of 59 s, is an

averaged lifetime over all the frozen-core Y3+ spins.

5.6 Discussion

This chapter studied dynamics of the frozen-core Y3+ spins in Eu3+:Y2SiO5. A better

understanding of these dynamics allows the possibility to extend the hyperfine coherence

time of the Eu3+ ions by decoupling the Y3+ ions from Eu3+ using more sophisticated pulse

sequences. In addition, this study showed that it is possible to re-orient the polarisation

of the Y3+ spins in a particular well-defined crystalline site. This implies the potential of

spin cooling the frozen-core and using it as a resources to perform quantum computing.

The frozen core effect results in detuned spin transition frequencies of the Y3+ ions

in the core. A spectrum of these frequencies was measured and the frequencies were

preliminarily assigned to Y3+ sites in the crystal. However, fewer frozen-core Y3+ sites

were experimentally observed than predicted. This was due to the poor resolution of the

experimental spectrum which was caused by the inhomogeneity in the applied magnetic

field. Hence, a complete mapping of all the frozen-core Y3+ sites might be achieved by

improving the field inhomogeneity.

The above method of mapping the frozen-core Y3+ sites is based on the fact that

the frozen-core Y3+ have spin transition frequencies detuned from each other. We can

also assign the frozen-core Y3+ sites by measuring their different interaction strength δf

with the Eu3+ ion. In this chapter, the interaction strength of one of the Y3+ site was

successfully measured. By repeating this measurement on other sites it will be possible to

measure the interaction strength of all the Y3+ sites, and by comparing the experimental

results and the theoretical results, a complete assignment of all the frozen-core Y3+ sites

is possible.

The lifetime of the Y3+ spin in one of the frozen-core sites was measured, and was

in reasonable agreement with the measured correlation time of the frozen-core Y3+ ions

demonstrated in the previous chapter. One of the major spin relaxation mechanism is

cross relaxation. The cross relaxation rate 1/TCR of two nuclear spins can be calculated

using a model developed by Bloembergen et al. in 1958 [107]:

ωij =
2π

TCR
=
|〈ϕi|Hint|ϕj〉|2√

2πh2

[
exp

{ −(ν1−ν2)2

(∆ν1)2+(∆ν2)2

}√
(∆ν1)2 + (∆ν2)2

]
(5.17)

where Hint is the dipolar interaction Hamiltonian, ν1 and ν2 are the transition frequencies

and ∆ν1 and ∆ν2 are the FWHM homogeneous linewidths of the spin transitions for

the ions investigated. The value of the cross relaxation rate can be estimated from the

measurements in this chapter. As shown in Figure 5.3, the measured detune |ν1 − ν2| for

two frozen-core spins is of the order of 100 Hz. The homogeneous linewidth ∆ν1 = ∆ν2 =

1/(πT2Y ) = 0.2 Hz, where T2Y = 1.6 s is the measured coherence time demonstrated in

Section 5.4. The detuning is three orders magnitude larger than the linewidth, resulting
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in very small exponential part in Equation 5.17. From this calculation, a much longer

frozen-core spin lifetime (TCR) than the experimentally measured 27 s was expected. One

explanation for this is that the frozen-core Y3+ ions might experience a cross-relaxation

process more complicated than a direct mutual interaction between two spins: it might

involved multiple ions at the same time. Then, Equation 5.17, a model describing the cross

relaxation that involves only two spins, is no longer appropriate. Another explanation for

the failure of the above model is that there might be other unknown sources limiting the

lifetime of the frozen-core Y3+ spins, which are independent of the frequency detunings

In order to better understand the frozen-core Y3+ bath, and in particular, to under-

stand the mechanisms that limit the lifetimes of these frozen-core Y3+ spins, it would be

useful to measure the lifetimes of the spins at each site. With such a measurement, the

dependency of the lifetime on the interaction strength (δf) could be studied. Further,

as mentioned in the Section 4.5, there are critical points in Eu3+:Y2SiO5 that occur at

higher fields. Since the frequency detuning of the Y3+ sites increases at higher field, a

significant change in the cross-relaxation process is expected. Hence, the dependency of

the Y3+ lifetime on the cross-relaxation process might be understood by repeating the life-

time measurement of the frozen-core Y3+ spins, as well as other measurements presented

in this chapter, at one of these higher field critical points.



Chapter 6

Conclusion and future work

Quantum memories with long storage times are essential for communication of quantum

information over long distances. To achieve this, the quantum transitions of the memory

material system need to have long coherence times and be optically accessible. This

thesis has investigated the potential of developing such memories using the rare earth ions

in solids, which are promising candidates due to the good coherence properties of their

optically addressable quantum transitions. The research in this theses was performed on

the hyperfine transitions of a Eu3+:Y2SiO5 crystal because these transitions have extremely

long life times (23 days). A coherence time of 6 hours on one of these transitions was

reported.

Employing the ZEFOZ technique was crucial in achieving this long coherence time.

The ZEFOZ technique works by applying a static magnetic field such that the Zeeman

shift of the Eu3+ hyperfine transition of interest experiences a critical point. At the critical

point, the transition has no first order component, which nulls the decoherence caused by

the magnetic interactions with the host to first order. In addition, as the magnetic field of

the chosen critical point was of the order of 1 T, a further extension of the coherence time

occurs as this field induces a frozen core on the Eu3+ ions. The frozen core suppressed the

spin flipping of nearby host Y3+ ions. As the field sensitivity of the transition is extremely

low at the ZEFOZ point, the transition is only affected by large perturbations caused by

the slow spin flips of these nearby Y3+ ions, and not the small, fast perturbation caused

by the spin flips of more distant bulk Y3+ ions. Thus, the slow spin flips of the frozen-core

Y3+ ions are the dominant decoherence mechanism of the Eu3+ hyperfine transition. A

decreased spin flipping rate of these nearby host ions resulted in a decoherence rate of

8× 10−5 s−1 over 100 milliseconds.

The above decoherence rate was measured using the two pulse spin echo technique.

At longer evolution times of the two pulse spin echoes, the decoherence rate increases

because the frozen-core Y3+ spins gradually flip. In order to extend the slow decoherence

rate to longer evolution times, DDC pulse sequences were used. The application of the

KDDx sequence resulted in a coherence time of 6 hours.

While the achieved 6 hour coherence time dwarfs the previously achieved 10 ms in

this material, there is great promise to increase this further. An analysis of the measured

two pulse spin echo decay confirmed that the decoherence at the aligned critical point is

still dominated by the magnetic dipole dipole interactions between the Eu3+ ions and Y3+

spin bath. Hence, a further increase in the coherence time can be achieved by further

decreasing the field sensitivity of the transition and better control of the Y3+ spin bath.

The field sensitivity of the transition can be decreased through a better alignment of the

magnetic field using the strategies discussed in Section 4.5. Because the frozen-core Y3+

ions dominate the Eu3+ decoherence of a ZEFOZ transition, better control of the Y3+
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bath means a better control of the frozen-core Y3+ ions. In Chapter 5, techniques were

developed to investigate the dynamics of the frozen core. A detailed investigaion of these

dynamics would allow the possibility to extend the hyperfine coherence time of the Eu3+

ions by decoupling the Y3+ ions from Eu3+ using more sophisticated pulse sequences.

The 6 hour coherence time achieved via the KDDx sequence demonstrated that the
151Eu3+:Y2SiO5 system is suitable for a long-term quantum memory to store arbitrary

quantum states. Similar storage times have been observed for the nuclear spin transition

of ionized 31P dopants in isotopically pure 28Si (reference [108]). However, there are

important distinctions between the 31P+:28Si system and the rare-earth-ion doped crystal

investigated in this thesis. The first distinction is the method used to decouple the storage

transition from external perturbations. The long coherence times achieved by Saeedi et

al. were possible because the dominant source of magnetic perturbations, the 29Si spins,

was removed [108]. Contrastingly, in the current work the transition of interest was made

insensitive to magnetic fluctuations. Thus, long coherence times were achieved in a crystal

stoichiometric in perturbing spins. The second aspect that distinguishes the two materials

is the ability to optically access the storage transition. The mapping of light onto the

hyperfine transitions of 151Eu3+:Y2SiO5 has been previously demonstrated [15], whereas

a suitable optical transition to access the transition of interest in 31P+:28Si has not been

identified. In addition, the extreme insensitivity of the europium ions to their environment

allows relatively high ion densities to be achieved, which enables high optical depths for

efficient absorption. It is precisely the suitability of 151Eu3+:Y2SiO5 for an optical quantum

memory that separates the observed hours-long storage from other demonstrations of long

coherence times in systems such as 31P+:28Si [108] and cooled, nuclear-spin polarised

gaseous systems [109].

Although nuclear spins in Eu3+:Y2SiO5 stand out among the candidate systems that

are suitable for quantum memories due to the observed long coherence time, more work is

needed in the future before practical quantum memories for applications such as quantum

repeaters can be made with this system. This is because there are other requirements

for quantum memories such as large efficiency, high fidelity, multimode storage. High

fidelity multimode storage in this system has been demonstrated by Laplane et al. [19].

Further, in Pr3+:Y2SiO5, high efficiency quantum memory has been demonstrated [11]. It

is slightly more difficult to achieve high efficiencies in Eu3+:Y2SiO5 than Pr3+:Y2SiO5 be-

cause of its lower optical depth[67]. However, the optical depth can be improved by using

impedance-matched cavities [110] or longer crystals. With impedance-matched cavities,

comparable efficiencies have been achieved in Eu3+:Y2SiO5 [111] and Pr3+:Y2SiO5 [20].

In addition, Eu3+:Y2SiO5 possess advantages over Pr3+:Y2SiO5 including narrower homo-

geneous linewidth for optical transitions, larger hyperfine splittings and longer hyperfine

lifetimes. It is, therefore, reasonable to expect an efficiency in Eu3+:Y2SiO5 similar to, or

exceeding, that in Pr3+:Y2SiO5. Incorporating large efficiency, high fidelity, and multi-

mode storage with the long coherence time achieved in this thesis would allow the building

of quantum memories that are useful in real-world quantum communication.

In practical quantum communication with the quantum repeater protocol, a com-

mon challenge is to interface a quantum memory with an entangled photon source. For

rare earth-based quantum memories, an elegant solution to this challenge, based on

rephased amplified spontaneous emission (RASE), has been successfully demonstrated

in Pr3+:Y2SiO5 [18, 112]. As discussed above, compared to Pr3+:Y2SiO5, Eu3+:Y2SiO5

has narrower homogeneous linewidth for optical transitions and larger hyperfine splitting.

These properties would lead to larger temporal multiplexing capacity of this system and
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hence a better performance for RASE is expected. In future work, this will be experimen-

tally demonstrated.

It has been almost universally assumed that light is the best long-distance carrier

for quantum information. However, the coherence time observed here is long enough

that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower

decoherence with distance than light in an optical fibre. This opens up the possibility of

an intriguing alternative to entanglement distribution: the physical transport of memory

crystals, in which case the crystals can be considered as persistent quantum memories.

For example, a carrier of such a memory can be a satellite, then it is theoretically possible

to set up entanglement between any two spots on the globe. One way to achieve this

is the following: Alice, at one point on the earth, sends an optical photon through the

atmosphere to the memory on the satellite, where it is held as the satellite moves until

it can be sent on to the receiver Bob. In this case, the quantum information encoded in

the optical signal is transferred from Alice to Bob. To develop such a memory that can

work efficiently in real wold quantum communication, however, it needs to have a high

data storage capacity, which will be the main challenge in this field in future work.

In summary, an experimental investigation of the development of quantum memories

using rare earths in solids was presented in this thesis. I have demonstrated coherence

time of rare earths in solids that are long enough to set up a global quantum network

using quantum repeater protocol. Moreover, I also demonstrated the suitability of the

rare earths in solids for developing persistent quantum memories, which can enable a new

way for entanglement distribution: entanglement is transported by physically transporting

the memory crystal rather than the light. This approach presents a new regime for both

quantum communication and fundamental tests of quantum mechanics.
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Appendix A

Measurements of the quadratic

Zeeman tensor in Eu3+:Y2SiO5

A.1 Theory

This appendix presents the measurements on the quadratic Zeeman parameters of the

hyperfine ground state in Eu3+:Y2SiO5. To understand this measurement, I begin with the

spin Hamiltonian, which had been discussed in detail in Section 2.3. The spin Hamiltonian

is

H = (B ·Z ·B)Ê +B ·M · Î + Î ·Q · Î. (A.1)

The first term is the quadratic Zeeman term with Z the quadratic Zeeman tensor. The

quadratic Zeeman term does not affect the hyperfine transition frequencies, but it affects

the electronic energy levels, which results in frequency shifts of the optical transitions

in the presence of a magnetic field. The quadratic Zeeman tensor that determines the

second-order field sensitivity of the frequency of the optical transition (7F0 → 5D0) is

given by:

Zo = Ze −Zg, (A.2)

where Zg and Ze are the quadratic Zeeman tensor for the ground state 7F0 and the

excited state 5D0 respectively. These quadratic Zeeman tensors describe the effect on the

spin Hamiltonian due to admixture of the other J states with the J = 0 state. Because

the 5D0 → 5D1 separation (≈ 50 THz) is much larger than the 7F0 → 7F1 separation

(≈ 10 THz) [67], the contribution of Ze to Zo can be ignored. This leads to Zg = −Zo

and thus Zg can be measured by observing the second-order field senstivity of the optical

transitions.

A.2 Experiment

The measurement of the parameter Zo along a fixed direction is shown in Figure A.1. With

the crystal aligned along a fixed field direction (with an uncertainty of 10◦), the optical

absorption spectrum was recorded at different field magnitudes from 0 T to 3.9 T. Then

a quadratic fitting of the transition frequency at the maximum value of the spectrum as a

function of the field magnitude gave the quadratic Zeeman parameter along that direction.

As shown in Figure A.2, the parameters of Zo along D1, D2 and C2 axes of the crystal

were measure to be 0.56 Hz/G2, 0.52 Hz/G2 and 1.58 Hz/G2 respectively. From the above

discussion, the quadratic parameters of Zg along D1, D2 and C2 axes are -0.56 Hz/G2,

-0.52 Hz/G2 and -1.58 Hz/G2 respectively. With these parameters, the quadratic Zeeman
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tensor Zg can be calculated as illustrated in Section 2.5.3.
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Figure A.1: The measured optical absorption spectrum for 7F0 → 5D0 transition corresponding

to different field magnitude as marked while the field was applied along the D1 axis of the crystal.

The label of the x-axis is the optical frequency offset from the centre frequency of the zero field

spectrum.



§A.2 Experiment 103

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

D1 : 0.56 ± 0.03 Hz/G2

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

D2 : 0.52 ± 0.03 Hz/G2

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

C2 : 1.58 ± 0.03 Hz/G2

Magnetic field (T)

F
re

qu
en

cy
 (

G
H

z)

F
re

qu
en

cy
 (

G
H

z)

Magnetic field (T)

Magnetic field (T)

F
re

qu
en

cy
 (

G
H

z)

Figure A.2: The measured frequency of 7F0 → 5D0 transitions plotted as a function of the field

magnitude. The cross symbols are data from measurements while the solid lines are the quadratic

fits. The three data sets corresponds to the field direction as marked and the quadratic Zeeman

parameters from the fitting are marked in the figure as well. The uncertainties were obtained from

the fitting.
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[31] Bas Hensen, H Bernien, AE Dréau, A Reiserer, N Kalb, MS Blok, J Ruitenberg, RFL

Vermeulen, RN Schouten, C Abellán, et al. Loophole-free bell inequality violation

using electron spins separated by 1.3 kilometres. Nature, 526(7575):682–686, 2015.

(Cited on page 4.)

[32] Daniel R Simon. On the power of quantum computation. SIAM journal on comput-

ing, 26(5):1474–1483, 1997.

(Cited on page 5.)

[33] Thomas Monz, Philipp Schindler, Julio T Barreiro, Michael Chwalla, Daniel Nigg,

William A Coish, Maximilian Harlander, Wolfgang Hänsel, Markus Hennrich, and

Rainer Blatt. 14-qubit entanglement: Creation and coherence. Physical Review

Letters, 106(13):130506, 2011.

(Cited on page 5.)



108 BIBLIOGRAPHY

[34] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

(Cited on page 5.)

[35] Daniel J Bernstein. Introduction to post-quantum cryptography. In Post-quantum

cryptography, pages 1–14. Springer, 2009.

(Cited on page 5.)

[36] C.H. Bennett and G. Brassard. Quantum cryptography: public key distribution

and coin tossing. IEEE International Conference on Computers Systems and Signal

Processing, Bangalore India, 1984.

(Cited on page 6.)

[37] Charles H Bennett, François Bessette, Gilles Brassard, Louis Salvail, and John

Smolin. Experimental quantum cryptography. Journal of cryptology, 5(1):3–28,

1992.

(Cited on page 6.)

[38] Brahim Lounis and Michel Orrit. Single-photon sources. Reports on Progress in

Physics, 68(5):1129, 2005.

(Cited on page 6.)

[39] Hugues De Riedmatten, Julien Laurat, Chin-Wen Chou, EW Schomburg, Daniel

Felinto, and H Jeff Kimble. Direct measurement of decoherence for entanglement be-

tween a photon and stored atomic excitation. Physical review letters, 97(11):113603,

2006.

(Cited on page 6.)

[40] DN Matsukevich, T Chaneliere, SD Jenkins, S-Y Lan, TAB Kennedy, and

A Kuzmich. Deterministic single photons via conditional quantum evolution. Phys-

ical review letters, 97(1):013601, 2006.

(Cited on page 6.)

[41] Shuai Chen, Yu-Ao Chen, Thorsten Strassel, Zhen-Sheng Yuan, Bo Zhao, Jörg

Schmiedmayer, and Jian-Wei Pan. Deterministic and storable single-photon source

based on a quantum memory. Physical review letters, 97(17):173004, 2006.

(Cited on page 6.)

[42] Artur K Ekert. Quantum cryptography based on bell?s theorem. Physical review

letters, 67(6):661, 1991.

(Cited on page 6.)

[43] M. Fox. Quantum Optics. Oxford University Press, pages 296–297, 2006.

(Cited on page 6.)

[44] Marek Zukowski, Anton Zeilinger, Michael A Horne, and Aarthur K Ekert. Event-

ready-detectors bell experiment via entanglement swapping. Physical Review Letters,

71(26):4287–4290, 1993.

(Cited on pages 6 and 7.)

[45] Mikael Afzelius, Thierry Chaneliere, Rufus L Cone, Stefan Kröll, Sergey A Moiseev,
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