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© PREFACE

With‘the-excéption of thé final chapter, this thesis is concerned
with the genéral epidemic:modei ahd’somé»éimple»extensions'of,it. The maiﬁ'
concern is with the stochastic éase and the deterministic model is only of
interest whgﬁ it is uéeful inréonstruqtipgvapprbximétiohs_foithe_stoéhastic,

model or in providing insights into its béhaviour.

‘The model itself is quite old, appearing first in a paper by»Kefﬁédk
and McKendrick (1927). It is the simplésf'of-stochastib models iﬁéofporating
the twélfeatures: 1‘ | - 8
| (1) ~the rate of spread.df infeétidﬂ is a function of the number
df;iﬁfectives and éuscéptibies pfeéént; cand
(ii) :iﬁfectives méy.bé removed‘from fhe proqess‘(c§rresponding'to"»
bdeath, isoiation or recovery Qith‘immunitY).
These two features must be regarded as eSSéﬁtial for any model whicﬁ woﬁld”

hope to describe realistically the spread of infectious disease.

Deépité its condeﬁtdal simplicify, the model presents enormous
mathematical difficﬁlties.which‘we believe have not yet been successfully
overcome aﬁd this has se?erély iimifed an-aﬁalysié of its strengths ahd»ll
_weakneSses_in potehtial‘applications»fo real data. ~This is a very unhappy
situation as sucﬁ a model is ﬁerélybthe-béginﬁing.of a satisfactory
 mathematical fheofy. We have attempted fo éOlve'some of these_difficuities
both by obtaining what theoretical results we could and by utilizing
methods leading to‘approximations whére theoretiéai‘results were eifher

unobtainable or whose complexity rendered them useless.

Inevitably, because of the age of the model, some of these results

come from applications and extensions of techniques and results obtained by
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previous researchers. For instance the approximating model presented in
chapter 3 arises by combining in a new way ideas of Kendall (1956) and
Faddy (1978), resulting in a technique which gives good approximations for
all the mathematical quantities of interest and which may be applied to the
various extensions of the model which are discussed in later chapters.
However, with the exception of chapter 1 which presents a brief survey of
results needed for later work, and with a few exceptions where indicated,

the material in this thesis is to the best of my knowledge original.

The remaining paragraphs of this preface are a brief summary of the

contents of the thesis.

Chapter 2 presents some results of a theoretical nature on the general
stochastic epidemic model. Solutions for the joint probability generating
function (p.g.f.) of the stochastic variables of the general epidemic model
were first found simultaneously by Gani and Siskind (1965). Each used a
transform technique and the solution obtained was in a recursive form and
extremely complicated. More recently, Billard (1973) obtained a solution in
simpler form using matrix methods. Since the process is a finite Markov
chain in continuous time and such processes may be described by a linear

differential equation
p(t) = Ap(¥) ,

where p(t) 1is the state probability vector at time ¢ and A4 1is the
transition matrix, and since the general theory of such processes is well
known, it was felt that this theory could be used to find a solution.' With
the help of a (well-known) partial differential equation satisfied by the
joint p.g.f. this was found to be the case. The solution obtained is in a
simpler form than those already in existence (mentioned above) and we believe

it is the simplest that could be hoped for.




Because of the,Markovian strncture of'the:process renewal—type
arguments may be applied in many situationsf: Forrinstance, simple recufSivea
expressions may be optained for the expected-finallsizerf the epidemic ana"
for its expected auration'time. These tWO,examples are‘known resulte,
however we navevused this technique to deal with the second. moments of the
final size (1n'thls chapter) and w1th vartous quantltles a5181ngv1n
extensions of the model (;n chapters 4 and 5). By purely algebralc methods
we are able: to nse these‘recursiﬁe expresSions_for the moments'Of»the~final
size.to fihdvtheir asymptotic series expaneione as the_population'sizeo |
' becomeé lafge. The expan81ons throw llght on the behav1our ‘of the process, 
partlcularly when its blmodal .nature 1s taken into’ account Theselt
asymptotlc results w1ll be. publlshed 1n a paper to appear in the Jburnal of .
Applied Probability in 1980.A We have also been able to apply thls algebralco
technique to the probablllty of complete 1nfectlon of the populatlon and to
the probablllty of early extlnct;on of the epidemic. While in thls‘flrst
case the pfoof is incomplete, computer calculations indicate the correctness
of the cbnjecture. .HeuriStic reasoning based on these asymptotic reSults
leads to aisimplebtechnique giVing the asymptotic form of the_mean‘dupation

time of the process. =

Because we wish to use this same heuristic technique, as an aside in
this chapter we discuss briefly an extension of the model to include a non-
zero latent period between an individual's becoming infected and becoming

infectious.

We concludebtneAchapter by proving the convergence (as the population
sizesbecomes large) of the general epidemic,model to limit processes under
" two different Sets of initial conditions. The first of these arose from an
attempt to put on a rigofous pasis.the idea of Kendall (1956) of using a

birth and death‘proceSS to approximate the early behaviour of the process.
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The second comes simply from the application of a result of Barbour (1974).

The result is of interest mainly because of its usefulness in an application

in chapter 3,

The form of the solution obtained in chapter 2 is still too complicated
to allow its use except for very small population sizes. The material in
chapter 3 is largely concerned with developing and evaluating an
approximating process. Faddy (1977) found that by replacing a sfochastic
variable in one of the two transition probability rates by its deterministic
equivalent, the resulting process became a member of a general class of
compartment models for which a simple solution was available. However,
numerical results given by Faddy showed that the error introduced by the
resulting loss of randomness was most apparent as a change in the initial
behaviour of the process. We were able to rectify this by combining this
idea with Kendall's (1956) explanation of the bimodal nature of the general

epidemic process,

We evaluate the performance of the resulting approximating process with
a series of graphs comparing real values (based on computer simulations)
with their approximating values for various parameter values. As well as
this we find the joint p.g.f. for the process of Faddy by standard arguments
since the method is more direct and the result in this form is more easily
manipulated to give the quantities that we require, e.g. the distribution of
the duration time of the epidemic. The methods of Kendall (1956) are not
applicable when the population is near critical (i.e. susceptible population
size ~y relative removal rate). A suggestion is made for this situation

which is supported by heuristic arguments and numerical results.

Chapter 4 deals with the application of the general epidemic model to
rumours. The model is identical to that of the general epidemic model

except that attention is directed to the sizes of the individual generations
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of infection. Renewal arguments of the type used in chapter 2 are applied
to find recursive expressions for the mean final generation sizes. TFor the
deterministic model, a simple formula is found for each generation size at
any time, the formula resulting from a simplification of an expression by
Daley (1967). The asymptotic form of the final generation size is found,
thus generalising a result of Daley (1967) whose result is for the case when
the relative removal rate is zero (the simple epidemic model). The rest of
the chapter deals with the application of the approximating method of

chapter 3 and with the limiting result corresponding to that at the end of

chapter 2.

In the general epidemic model it is implicitly assumed that the
population mixes homogeneously. It is this assumption which is most likely
to be unsatisfactory in any particular application. It is natural therefore
to consider a modification of the model which allows for the existence of
subgroups within which mixing is homogeneous but between which it is more
restricted. Such a model is the subject of chapter 5. Mathematical
difficulties are muitiplied by the non-homogeneity, though some interesting
results can still be obtained. The effect on the importapt threshold theorem
is examined both in the stochastic and deterministic cases. The pbobability
of containing infection in the group in which it originates is found
approximately. The usual renewal arguments are applied yielding recursive
expressions for mean final sizes of the epidemic in each subgroup and for
the duration of the epidemic in the whole population. An analogous
approximatiﬁg technique to that of chapter 3 is applied and the limiting

diffusion process is given.

In chapter 6 we look at three models for epidemics in which the

assumption of homogeneous mixing of the population is completely abandoned.
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The first of these is a model applicable to a population with little or no
mobility. The model assumes that the disease is spread only by those
infectives on or adjacent to the boundary of the infected area. The
resulting process is a linear one and we are able to obtain expressions for
the mean numbers of active infectives and also for the probability of

extinction of the process,

The second of the models of chapter 6 is a two-type branching process
model applicable to a population with family structure. Branching processes
are useful in describing the early behaviour of an epidemic process. This
is particularly interesting because it is the behaviour of the epidemic
during its early stages which will determine if the outbreak will be minor
or major, In the model we distinguish between infectives who were infected
by members of their family and those infected by individuals not of their
family. A special case of this model is the model of BartoszyfAski (1972).
Our approach here is different, using branching process theory to obtain

results about the moments of the two types of infective and the probability

that the process will become extinct.

The third is a model for an epidemic in a stratified population.
The model of chapter 5 is very complicated mathematically and by making
some realistic assumptions we are led to qualitative results about the

final size of an epidemic in a stratified population.



- CHAPTER 1

“INTRODUCTION

1.0 Introduction

The~éeneral epidemic model is a mafhematicalkmOdel to‘desCribe*the
spread w1th1n a populatlon of some characterlstlc able to be transmltted
from onerlnd1v1dual “to another. Ve usually amaglne the- characterlstlc to be
;a dlsease although for some appllcatlons 1t may be a rumour or a partlcular
item of information. The model assumes that the populatlon con31sts of ;‘
three f&pes”of indiVLduals: susceptlbles who may become 1nfected by contact
,'with‘infectives; infectimes who have the dlsease and may cause further
infections'by conracf With snsceptibles; pand remoVed individuals'Who.hare,:n
§ or,have‘had, fhe disease and‘play no further part in‘the process because.of
immnnity”or isolation;or death. Infectives become:removed.at a rate
proportional to the size of therinfective population. Members of the
popuiation, exceptAfor removed individuals;»are assumed to mix uniformly,”
and hence susceptibles becomebinfected'at a ratefwhiCh is proportional to

the sizes of the susceptible and'infecfive populations.

The model was first introduced in'aﬂpaper by~Kermack.and McKendrick _'
(1927). No further'workaappears~to have beenidone on the model until Bailey
,(1953) published'a paper on'the final.size of the general epidemic. Shortly
- after, Whlttle (1955) generallsed the threshold theorem»of Kermack and
McKendrick to the stochastic case and Kendall (1956) introduced an
approx1mat1ng process based on the consequences of the threshold theorem.
Gani (1965) and Slsklnd(l965) s1multaneously derlved expressions for the
joint p.g.f. aSSociated With the process and more‘recently Billardf(1972)

found an expression for it in simpler form. The distribution of the number



remeiniﬁg uninfected by the process of the general epidemie model (hereafter
simply’called,"the general epidemic") was investigated by Daniels (1965).
.Ridler;Rowe (1967) found thevasymptotic‘form of the mean duration time of: ‘:
. the process. Asymptoticflimiting'proceeses wefe-the sﬁbject of Work‘by"
Nagaev aﬁd'Stertsev (1970) aﬁd Barbour (19751. 'Abakuks (197é)'investigeted
the eostjof the generalAepi&emiC'and_Wafsen‘(1972)astudiedfe geﬁerelisetien

of the model ihAwhich'the'populafion is assumed to be stratified.

The rest of this ehapter ie,a brief sﬁrVey'of known resuits about the 

genera;_epidemic medel'whichvmustvbe referred to in Subsequent’chabters. o
1.1 The model-
THE STOCHASTIC FORM

 Lét the number of susceptibles and infectives at time ¢ be X(#) and

" Y(t) respectively (for convenience t .will usually be suppressed). The

transitions from the state (X, Y) in the time intervel_ (t, t+8t) are

given by
(X-1, Y+1) with probability uXYSt + o(8t)
1.1 X, ¥) ~ D o |
‘ (X, Y-1)  with probability YY8t + o(8t) ',
as &8t > 0 .
The initial eonditions are '(X(O),:Y(O)) = (n, - a) . (The parameters 1y -

and‘ Y are known as‘the contact rate and the removal pate respectively. It
is more convenient and;ﬁofe common to use the reletive removal ratee p = Y/u
insteae of‘the fwe parameters end -Y . Thus it merei& feduires a change
in time scaieAto write the above infinitesmal transition rates as XY and

pY .)

Y



Let

P, (t) .= pr{(x(t), ¥(£)) = (», &)} ,
p=0,1, ..., n, 8 =0, 1, .1.,bnfa—f“.
Considéring fhevPOSSible-transitionsyin the time interval (¢, t+8¢) and
letting &t > 0 leads to
‘ ;.2 pré(t)_:f_s(r+p)pps(t) + (n+;)(s—l}pr+l’r (t) + p(s+l)pr s+l(t)
r :.0,'1,..;., n, 8=0, 1,»...,ﬂn+a—r .-

where _prs(t)"is defined to be zefo if 8 isvnegative,

Let P(w Z3 t) = ﬁd zy] be the joint p.g. f of (X, Y) . Multiplying

1.2 by rs and summing.over the possible values of r and' s  shows that P

satisfies the partial differential equation

2"

1.3 3T z(z—w) Bwa + p(l z)

where P(w, 23 0) =w z .

Equations 1.2 and 1.3 are well known (see e.g. Bailey '(1954)). Their'ﬁ
solution has pﬁoved to be extremely difficult. Gani (1965) and Siskind
(1965) obtainéd solutions using‘transform_techniques. More recently Billard

(1972) used matrix methods to find aréolution in simpler form.
'THE DETERMINISTIC FORM
From 1.3 it follows easily that

dEX

re = ~EXY ,



.’%%; = EXY —’pEYv,-and
dEz . ..
Ea

where 7 1is the number of removed at time ¢ .

' ASSuming that we may write EXY = EXEY (which holds to a good
;approximation in large‘populationé), and Writing"é, yv‘and' z for EX, EY
and EZ respectiVely, we thaiﬁ?the following équatioﬁs which definé'the

‘déterministié'model corresponding to the stochastic model defined by 1.1: .

.l;ua)‘. © = —xy o,
1.8b) y=ay - oy ,
1l.4¢) y v_py';

N
1]

where (z(0), y(0), 2(0)) = (n, a, 0) .

It ié easily seen that if n < p , Yy 1is always decreasing. This lies
behind the.important-fhreshold theorem of Kermack and McKendrick which'éays

that a major outbreak is only possible if n > p .

‘Combining 1.4%a) and 1.4b) we have
. x ,
1.5 -p ln»ﬁ—: a=n+d-x-Y .
Substituting for y from 1.5 into l.ua)bénd'integrating givés

" .
J .o ds -
. s[n+a—s+p}n(3/n)] .

t,

a result due to D.G. Kendall which defines x(t) implicitly. .Explicif‘

solutions for x, y and &2 .are not available.



From equations 1.4 it follows easily that y(«) =0 .kaence from 1.5

we see that 6 (= x(®)) , the number of susceptibles left after the epidemic-
has become extinct,_ié the unique solution betweeﬁ‘ 0 and 7n of the °

equation

o - ) : _
1.7 c : - -p 1n il n+a — 6 R
and we note that it is readily shown that
1.8 A ’ 8 ~n exp[— 5 ) , @S | > o |
1.2 The distribution of the final size

The fiﬁal size of the epidemic, W , is defined to be the number of
further infections (not counting the initial infections) that have occurred
at the time of extinction of the proceSé. Let
: pr(n, a) = Pri{w = | (x(0), ¥(0)) = (n, @)} .

It is.easily shown by a backwérds,equation argument that for

r =0, 1, .oy m

. S o . S
1.9 _pp(n, a) = 2+ Py 1(n-1, atl) + v pr(n, a-1) , n, a., 1, 2‘, cee s
and
= =" 0 = .. ‘
pr(n,AO) pr( . q) §(r) ,
where

§(a) =



and where we define,,p_l(n, a) 0 , and pr(n, a) =0 if »r >n . Equation

1.9 may be found in Daniels (1965) where it was furthef established that

n-r o (e
110 Py @) = L 4 [m) [m)

cea, M,

ny,a=12, ... , »=0,1,
‘where the Ay  ére defined recursively by
. . n-r n p]n—r . L . ‘
1.11 é(n r) Z: A [r+k}[p+r+k K tn,: 1,2, ... i ?vaoa 1, vy o

Daniels shows that the. Ak are functions of k, r ‘and p.~ohly.

It was shown in Bailey (1954) that

om oy yrta _ A
112 Y [:“”H”—'%TE) R a) = (;‘I) s ML, 2, i, ME0,

Uéing a'heuriStid argument Daniels éonjectured that as n + o
. -n/p\r
1.13 : (n a) ~ p)-J I——————l— exp (-ne /p) .

It is Qell—known that in the supercritical case (n‘>-o) W has a
bimodal diStriBﬁtion. Epidemics of intermgdiate sizé'océur with very low
»probability énd the épidemic will with high probéﬁility affect either a very"
small proportion of the susceptibles in thé population or a very large |

proportion.

TIE MEAN OF THE FINAL SIZE

Let



- : | | n
Cp(n, a) = E(W | (x(0), ¥(0)) = (n, a)) = ¥, rpr(n, a)

r=0

(We shall usually supPPQSS p .) Multiplying 1.9 by » and:Summing over

r=0,1, ..., n yields

1.14 C(n, a} = n+p.Ll+C(ﬂ 1, a+;)].+ n+p.C(n, a-1) , ni a=1, 2, ... 5

"and

C(n, 0) =0, a) =0 .

Substituting éuccessively for the final term gives

. g1 ) . ,
1.15 - cn, a) = —— Z [—9—] [1+C(n-1, a+l-k)] ,

from which it is feadily shown by induction that

' noo 0 nta-k
R L
where theA>ak are defined recursively by
S TN o p n-k )

1.17 .k‘él (k)kak[m} =n, n-= ;, 2, ven .

The results of this section may be found in Abakuks (1973) where 1.16

first appeared. It was later found as a special case in Lefévre (1978).

1.3 The diétributionvof the time to extinction

The epidemic is defined to be extinct when there are no more infectives

left in the population. It is readily shown that the general epidemic will



become extinct with probability one. Let T be the time to extinction and

FT(t) its distribution function. Since
1.18 . F () = rgor Pao(t) = P(1, 0 ;-‘,.t) .

~and. Pz, y; t) ié’known, ih'theory ‘FT(t) is known. . In‘practicé‘however;> 
the existing sQlutions for P(x, y5 t) mentioned in section 1.1 (and see
section 2.1) are so complicated tﬁat.this'expréééion'is complefely_useleSs
,excépt‘for very small values of n-‘and“a-; Barbour (1975)_ha8‘shown.thatj N
in the case where the initial conditions are (X(0), Y(O)),='(n,’hh) , Where
h is C6ﬁstant,vand the contact rate is 1/n ,'then‘asb ha%'w“,
(p-¢)T -~ Inn -k

converges in distribution to the random variable with distributioﬁ function
(-t
exp(-e ) , where ¢ satisfies

1+h - ¢+pln¢d =0,

and

nreo

k = lim [-ln m+(p;¢)J[%[l + E%£E$7), %]]-¥1n[1 - %3" E
where

B- ds
o s(1+h-s+plns)

J(o, B) =.J

The case when the initial number of infectives is constant is also

treated but the result is not presented here because of its length.



THE MEAN OF THE TIME TO EXTINCTION

- Let

-~ Mn, @) = E(T | (x(0), ¥(0)) = (n, @) .
The process may be looked upon as a random walk on the lattice  (r, &) where
r=0,1, «.o,m and & =0, 1, ..., n+a-r . From the stat¢  (r;‘s) the
walk may'go to (r-1, st+l) with probability T/(pr) and to (r, 8-1)
with probabiiity p/(r+p) . The time spent in (r, s) ‘is an éxPonential' -
variate with pabameter s(r+p) . Hence it follows that
X n

.19 = = -1 + — 5 a- : :
A2 MO @) = gy toep MO At 4 g MOt @)

and
M(n, 0) =0 .

This is a well known technique and eqdation 1.19 may be found in Billard .

(1977).

By considering the process as a competition process and using theorems

of Reuter (1957), (1961), Ridler~R§we (19§7) has shown that
1.20 ’>> - “" M(ﬁ; a) mn%iln(n+d) ,: as m o> oo
'whefé a kis not neceésarily a constant.
1.4 The stoéhastié threshold theorem
Let

q,; = PriW < ni} ,
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where 0 <17 < 1.

By conéidering birth and death processes that formed stochastic upper: .
and lower bounds for the general épidemic pfocess»Whittle (1955) was able to

show that for n large enOugh;

e R N
102} _ E%;n(n, li] =q,; = E%ln(n(l'i)’ l{] .
Hence if p Z 7 , with pfobability 1 thelprocess will.become'extiﬁéf
before its size exceeds any given proportion of the initial sUsdeptible
populatibn.‘kThis-is the stochastic threshold theorem corresponding to the

deterministic one of section 1.1,

" Kendall (1956) introduced,an appréxiﬁating‘process By-reasoniﬁg along
-simjlér.lings és folloﬁs. In brder-to déséribe the early developmeﬁt;of‘the
process if'is aséﬁmed that the effect of the deplgtion of the susceptible
popﬁla#ion during these eafxy stages mayvbé neglectéd. When X is held
éonstant at its initial value n thé procéSé becomeé élbirth and death".
process Y'v_with birth rate #»n -‘and death'raté p (in fact Y'.~is a'
stochastic uﬁper bound for k¥ ). If‘ p=n exfinctidn of Y ié

certain éobfew furthéf‘inféctions afe expected and hence Y' - ié used as the
~approximation td Y‘; If' P <n extinetion of Y' occurs with pfobagilify.
(p/n)q in whichAevent it is known thét R behaVes like akbirth'andvdeath
process with birth rate p and death rate n. (see O'N. Wéugh (l9$8)) so
this process is used as'fhe aﬁproximafion for Y . Also in_tﬁe_case p<n,
Y' will not Bécomé exéinct with probability 1 - (o/m)* in which event we
use the detérministicbvériablei y (see equations 1.4) as the approximation

for Y .

In the supercritical case (p < n) the mean final size for this



approximating system, C'(n, a) , is given by

a a
1.22 c'(n, a) = [l‘(%)](n-e) . [.g] 09

n-p °

1.5 A quasi-deterministic approximation

Faddy (1978) considers an approximation to the general epidemic model
as a special case in a more general discussion of a class of stochastic
compartment models. In the infection probability rate the stochastic
variable Y 1is replaced by its deterministic analogue Yy . The resulting

process (X', Y') 1is mathematically tractable and it is shown that

1.23 pe{(x’', 1)) = (v, 5}

n-r-g
1

8
n! Aar 1
" ris (n-r-8)! [p11 (8] [Py (0] " [Py (8)-p) ()]

and
a!l 32 a—SQ
1.24 PI’{_Y2 = 32} = W [pQQ(t)] [l—-p22(t)] s
where
_x(t)

pyy(8) = ==,

P8 = = (y()-ae™)
and

and where

11

9



12

! -
Y' = Yl + Y2 .
The distribution of the number of susceptibles remaining uninfected

after the extinction of the process is a binomial random variable with

mean 6

1.6 The application of the general epidemic model to rumours

In the application of the general epidemic model to the spread of news
or rumours the characteristic transmitted from one individual to another is
thought of as being a particular rumour or item of knowledge. Thus an
infective is an individual who knows the rumour and a removed individual is
one who has heard the rumour and forgotten it. It is important in this
application to consider not only if an indjvidual is infected but to which
generation of infection he belongs. (The a initial infections are regarded
as belonging to the "O0th" generation of infectives, those infected by them
to the 1lst generation etc.) This is relevant because it would be expected

that the distortion of the rumour increases as the generation "distance' from

the source increases.

The model is essentially no different from the general epidemic model.

The only change is that attention is now directed to the individual

generation sizes.

The following stochastic and deterministic models were first formulated

by Daley (1967).

THE STOCHASTIC MODEL

Let X and Yg , g=0,1, ... , be the nunber of susceptibles and

gth generation "knowers" respectively present in the population at time

t L]
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Define

(x, ) = (x, Yo, Yo, coe)

The infinitesimal transition probability rates are given by

(X;l, Y+eg+l) at rate uXYg ,

(X, Y) » Q:O: 1,
, Y-¢ t t Yy
(X g) at rate Y g

where eg » g=20,1, ...,1s the vector with 1 in the (g+l)th place

and zero elsewhere, The initial condition is
(x(0), Y(O) = (n, a, 0, 0, ...) .

Define the final size of the gth generation, Wé s g=0,1, ...,

to be the number of gth generation removed at the time of extinction of

the process.

Let a = (ao, Aps eons am+l) and define
(n, a) = (n, ay, ay,

)

Further, let r = (ro, e e rm+l] , ek be the (k+l1)th row of the

(m+2) x (m+2) 1identity matrix and

p(n, a) = Pr{w =r ,g=0,1, ...,m,

g g
W, =1 | [X(O), Y.(0), vuey Y Y (0)} = (n, a)} .
k=§+1 ko Tmtl 0 k=mtl K

By the usual argument it is shown that for m = 0, 1, ...

2
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o 1.25 pr(n,,a)

.M§% N gé C .
= |{(unty) ) a { unja,p..
| ko K| o ey

_ 1, ey v s 0-6)]

1

- *“”4m+1pr-em+l("'l’,a+em+1)+Y“m+lpr{”’ a"em+l)}-3

n: ]._"2, ..'.7’ ao’al, ."v"‘. am+l = O‘,'_l, ..‘.4"

where -any probability whose subscripts are either zero or whose éum‘exceedé
n . is defined to be zero, and

p(0, a) = 8(r) ,

-where
§(a) =

THE DETERMINISTIC MODEL

Let x and yg , g.=0,1, ... , b§ ﬁhe.deterministic;equivaleﬁts‘be-
X gnd, Yg AéndA zg:, g = 0, l, ..;,;be the nﬁmber of gth. generation
,removed at time vi . The aetérﬁiniSfi¢‘@Qdel corresponding.to the sfochastic >
model is define@ by the equations:»

1.26a) T x = -uxy ,
1-02.613) . yg = nyg_l - ng s g =0, 1, s
" 1.26¢) z =y =0, 1,
where y = Z yg and Y1 is defined to be zero, and where the initial
g=0 -

conditions are (x(O), yO(O), yl(o), ...] =(n, a, 0, ...) , and
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2(0) =0, g=0,1, ce. «
g g =P taree

Daley (1967) showed that

- n n n
o v P v dv | du
.2 t = — e - L — —_
2 A g!,Jxm Juw<v> - J 02 I
wherej
1.28 : - ,w(v)‘= n+a Q'p +p lh %ps

1.7 .The general epidemié in a stratifiéd’pbpd]ation |

1 This is’an impoftéﬁf'extensioh of fhe geﬁéral‘epidemiC’model Which»_‘
attempté to make.évmofé reélistic éssumption'about the miking'of fhe
individuals_in fhe population’than‘thaé made.by”theﬁgeneral épideﬁic.ﬁodel.
The.population is assumed to cénsist bf m distinct groups in.ﬁhiCh
»homogeneoﬁs mixing occufé but between which miking'is restricfea. Thus in
fhe time intérval (t, t+8t) an'iﬁfected“individual of the jth group,
j‘:‘l, cies m.,‘has prgbaﬁility‘ Ujiét +to(6t) , as §t -0 , 6f infectiﬁg
ény susqéptible in the <th group, 2 =1, ..., m , where in geheral

Wos >‘uji , 1T # J . The idea of‘cbnsidéring the population as stratified
_goes;back to Rushton and Mautner (1955) and Haskey (1957). The following
formulation of both ‘the deterministic and stochastic models is due to
Watson (1972).
 THE STOCHASTIC MODEL
. Let ’Xi’ Yi » 7 =1, ..., m, be the number of suséeptibles and
infectives in the <th group at time ¢ . Let X = (X

1° e Xm) b}

Y = (Yl, ees Y ) > Uy be the <th column of the matrix {uji} and e



be the <th row of the m X m- identity_mafrix.

The infinitesimal transition probability rates for the model are given

by

,[X—e., Y+e.) atbrate X.u?-Y 5
7 "1 A

(X¢ Yfei)

1.29 (X, Y) »> v =1, ..,m,
' o at rate Y.Y. , .
‘ e 2

where as in section 1.6 we understand (X, Y) to mean

(x5 ,Xm Y, ‘..ﬁ.,‘v‘ym)

'The:iﬁitial conditions are .(X(O); Y(O)) = (n, a)'5AWhere

n = (”1”m) and a=

(al,‘..f,.aﬁ) . v
Let
p(n-;a){r, s, t) = pr{(X; Y) = (rs) | (%((.o):,"Y(o.)]}.(n, af)} .
where r ;‘(rl,';.., pm}“ahd s ; (sl, “'#'Sﬁ) ;

It follows from the forward equation that this function satisfies

» m . : o
. : - v T, D e 1
}.30A p(n,a)(r’.S"t) = izi [Yiai+niui a]?(n,a)(r’ S, t)

o | |
.. : » (r, s, t)+y.a.p (r, s ti]
i P(n-e,,ate;) > PM5%P (n,a-e,) - B

where any p(n a)(r,‘s, t) having subscripts for which some r., > n. ,
2 .

2 =1, ...y, m , is defined to be zero, and

p(n,a)(r’ s, 0) = &(n-r, a-s)

16



An equation equivalent to 1.30 was first stated by Billard (1976)
where the stochastic model was presented in a form which would enable the

application of her method of solution for the general stochastic epidemic

model (see Billard (1973)).

THE DETERMINISTIC MODEL

Let Tis Yio By s 2 =1, «.., m , be the numbers of susceptibles,

infectives and removed in the <th group at time ¢ in the deterministic

model. The model is described by the equations

1.3la) x; = T ;S ujiyg , =1, eoeym ,
J=1
. m
1.31b) . Y; = % ;; Lﬁiyj - Yy TS 1, e..,m ,
J=1
1.31c) 2y =YY, . L= 1, eeo,m

The initial conditions are Epi(o), yi(o), zi(O)) = (ni, a;, 0) .

T =1, eeuym .

Watson (1972) combines 1l.3la) and 1.31lc) to give

m
1 ‘ .
1.32 -Y., In — = -~ .- =1, «...om.
Y n, le uJ‘b( P ya) ’ ’ ’

As ¢t > » | yi +0, 2.=1, ..., m, so 1.32 becomes

1.33 -y, 1n £ '2=:1 “ji(”jmj"ej) s, 1=, e, m,

where Gi = xi(m) s, T =1, veu,m .

17
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CHAPTER 2

SOME THEORETICAL RESULTS ON THE GENERAL STOCHASTIC EPIDEMIC MODEL

2.0 Introduction

This chapter presents some theoretical results on the general
stochastic epidemic model formulated as a continuous time Markov chain on a
finite state space. With the exception of the first section these results
are asymptotic results valid as the size of the initial susceptible

population increases with other parameters remaining fixed.

In the first section we obtain a solution for the stateiprobabilities
at any time. The solution arises by writing the process in the form of a
one dimensional finite Markov chain in continuous time and then using
theorems from the general theory of linear differential equations. This
method is simpler than existing methods for obtaining either the state
probabilities or the joint p.g.f. (see . Gani (1965), Siskind (1965),
Billard (1973)) and the solution is in simpler form. Inspection of the form
of the solution makes it difficult to imagine that it could be simplified

further. Nevertheless it is still quite complicated.

Because the process is Markovian, simple recursive equations for many
quantities of interest may be found using arguments involving backward
equations. Some of these are well known (e.g. 1.9 and 1.14). We establish
a lemma which enables us to work with such equations to find asymptotic
expansions of the moments of the final size of the process (see Dunstaﬁ
(1980)) the probability of its early extinction, and the probébility that
none escape infection. In this last case, while the proof is incomplete,
the truth of the conjecture is supported by computer calculations. These

asymptotic expansions are particularly informative when the bimodal nature
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" of the process is taken into account.

Aithough simple recursive équations maj also be found fof the mean
duration time of the epidemic, itlﬁas not possible to use the‘samevtedhﬁiQue
to find the asym§totic form. We are able to use'é heuri$tic apgument whiéhi
~may alSo-be‘appliéd,td more éompliéated'models.’ For this purpose wé défine 
“here:a.modificafion>of’the geﬁéral epidemié.model wﬁich’éllbwé for én
érbitréfy latént_peribd between an‘indi§idualfs:bécoming infeCtedbapd.
becoming infectious. We find the aéyﬁ?tdtic form §f the meanlduratidﬁ tiﬁe'

in this modélﬁéhd we also show that fhevdiétributidn‘of fhe.final éiié is. -

the same as that for the usual general epidemic model.

The‘hextvseétion‘presentsfa process which is thé‘limit.of the general
‘epidemic'prdcéss'ﬁﬁder‘éertain cbnditions} Tﬁis ﬁpoceSS»ardsé out of an
attempt té §Utxon é rigorous basis Kendall's idea of using a}bifth and
death process_td"approximate thebgeneral epidemic procésé in its gaﬁly
staées., Another limiting‘process which results yhen a different éequence of

initial conditions is assumed is presented in the last section.

2.1 The state;probabi]itiesb

Any Qr&ered béir (p, 8) where » =0, 1, .,;, n andA”
s =’O, 1, 5..,‘n+a-¥ ; bepreéents_a poséible state of the syétem with »
denoting the number of sﬁsceptibles and s tﬁe number of inféctives. The
procesé is a two’dimehsiohal finite Marko& chain on these'stafes. By
enumerating the possible states uniqﬁély we can rggard’the‘process as a one

dimensional Markov chain. Hence it may be described by the'eqﬁatioh
2.1 : p(£) = Ap(t)

where p(¢) 1is a column vector whose ith element corresponds to one (and
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only one) p (¢) and A4 is the matrix of infinitesimal tranéifion

probability rates. The theory of such a system is well known.

The‘following theorem gives the solution for the state probabilitiés in

our partiédlar case under a mild festficfion on the parameter p .
THEOREM 2.1. If p s such that
J(i+p) #3'(i'+p0)

‘when (1, J) # (i', ") for all integer pairs.repfesenting:a possine_state’ .

of the system, then the eigenvalues of A -are distinct and

: ‘n nta-i Aijt'
Pe(® = L L e K (),

i=1 - j=1 e
r=0,1, ..., m, 8 =0, 1, s nta-ro,
where
xij'z-;j(i+p)'; 120, 1, v.oy M, J=0,1, ..., nta-1 ,

and the K?s(kij)' are determined by the recurrence relation

0(s+1)K Og) - Dy .+'s(p+p)]1<rs () + (r+1)(s-1)K

r,8+1 J =0,

Pfl,S-lQiJ') }

mhére K (X

s ij) =0 24f r>n, s+r>nta, or s <0, and by the initial

condition
prs(O) = v
' 0 otherwise.

Proof. See Appendix A. O
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2.2 The mean final size

The following theorem establishes the first term of an asymptotic

series expansion for C(n, a)
THEOREM 2.2. For p a positive constant and a a positive integer,

—a+2)

n-Cn, a) = o(n , as n > o

Proof. We shall need a lemma, which shall be proved below, giving

uniform convergence of the terms of the series in equation 1.16.

Another result is needed to prove the theorem, namely that the a s

defined in 1.17, are uniformly bounded. This follows from the result of

Gani and Shanbhag (1974) that the a;, are all positive and hence writing

¢

1.17 in the form

) k-1 k-1 0 k-g
ak =1 - z: = a. Tio s
J=1 J- J\Jtp

we see that they are all less than or equal to omne.

From 1.16 we have

n n+a-k
a-2 _ - a-2 n P
n CIn-C(n, a)] = n kgl (k)kak[km]
"
=1 k) \k+p - ktp
2 n-[vnl n n+a-k-1
N Y Y () [k%}
k=1 k=n-[Vnl+l|

where [0] means the greatest integer not greater than

"

o(l) + O(n_%) , by Lemma 2.3. O
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- LEMMA 2.3, For p a positive constant and a a positive integer,

| (k) k+p

; [ ) )n+a—k B o(n_a] if' k<nVn,

1A
N
.

O[n;a]"if n5Vﬁ <k s
as  n‘+‘m ;v‘*'

' Pfoof._ By7Stirling!s inequalities (see e.g. Feller Vol. I, p. 54) we

have for kK = 1, ..., nai y

2.2 n (k)[k+p] S

L1 [ 0 n+a.kﬁa - E el 1 1 :
vy (ko) " kR kR TP(Ton T 12k T 12(n-R)eL

' .k/(n—k),

 Na n-k‘.
< 1 e (nJ ___pi__
G0 RGeS
<J,[m]1'wn n-k
v (kip) \k(n-k)

Consider now the U éases 
(1) k =3pe ,
(ii)*’3pe <k<nn o,
(iiii n-vn < k < n-2pe ,
(ivj ‘n-2p0e < k é n . |
The.lemma‘is trivial fOr cases (i) and (iv). for casei(ii) we have from

2.2, taking Vn = 3pe ,

) 0 A - I
K | k+p - |k+p) |3pe(n-3pe)
< n (%) , n> 9pe .

For case (iii), from 2.2,
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Vi (7 [ p )ma'k < I on ]a{  pem }”"k

k- k+D.> n-Vn+p 2pe(n22pe) .
a 2 é » , , -
<p (X e +1, n>N, some N . o

We~noté»that in the Kendall.approximafing pfOCeSS discussed in.
sectioh l.uafhe mean final size is given by 1.22. From 1.8 we woﬁld_expect
that as 7 > o,

n-Cln, 1) #'p_+ o(l)>;"

This was alsQ Conjectured in Abakuks‘(1973)_ The next théoréﬁ extendg,thé;
asymptotic‘e%pansion*of C(n,'a) and establishes the ‘truth of this

conjecture.
THEOREM 2;4; Under‘the'conditioﬁsAof Theorem 2.2, .
: ya-1 - o .
' C(n, q)'=vn - p[%] 4 o(ﬂ“a+1) , a8 n o>,
Préof{ fromVTheorem ?.2 we may write
2.3 o | ' C(n,.q)*= n - qn(a)

°

where:
- ' a2y t
a(a) =o(n ), as n>e .
Now

c(n, 1) = [l%C(n-l,'Q)][ég—} , from 1.14,
v A n+p ’

Substituting from 2.3 gives

n - an(;) =~[n+an_l(2)][526]
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Therefore
2.4 _ ' an(l)' = p + o0(1) ,as_ n->ow
Substituting 2.3 in 1.14 for a.> 1 gives

n+pj "
Therefore:
o (a) —‘an(a—l)[ﬁ] +o(n™)
o aya-l "
: p[%) BRI Chike INCCRUE N
from 2.4, ‘ 'D

- In prihciple it ié_possible.by the method of establishing Theorem 2.4
toifind'the>expansioh of C(n, a) up to terms of any order. _Howéver the
algebra quickly becomes tedious and we assert without proof the'further
refinementvi

o ya-l 5 a+l |
RN 1) _a(a+l) {p} " "
2.5 | C(n, a) = n p[n} 5

a ‘ a+2 -a-2 '
-5 [(a+3)(a+3@)+2][%) - +o(n ) ,as noe.

s

“ The expected final éiée was calculated using equation 1.14 for various
values of\the parameters o, a, 7 . The following tables compare'fhe trie
values of  n‘-»C(n, a) with the apbroximations calculated from equation 2.5
(shéwﬁ in brackets)., The approximation seems fairly insensitive to-
variation inA thé»parameter a . As we would expecf it is useless for
p/n ~ 1 but surprisingly good for values of ~p/n as large as .5 , even

for small values of »n .



p=1
~ a 1 2 3
5 1.12 (1.84) 0.29 (Q.31) 0.09 (0.09)
10 1.08 (1.03) 0.11 (0.11) 0.01 (0.01)
25 0.00 (1.00) 0.04 (0.04) 0.00 (0.00)
p =2
» a 1 ' 2 3
5 2.16 (3.12) 1.03 (2.07) 0.53 (1.33)
10 2.22 (2.16) 0.57 (0.49) 0.19 (0.12)
25 2.01 (2.01) 0.16 (0.16) 0.01 (0.01)
p=5
> 4 1 2 3
5 3.69 (19.2) 2.77 (42.8) 2.12 (77)
10 5.67 (6.9) 3.48 (5.05) 2.31 (3.69)
25 5,31 (5.15) 1.28 (1.08) 0.42 (0.23)

We note that the approximation for C(n, a)

written

which agrees with 2.5 as far as the term in n?

n

a-1 a+l
c'(n, a) =n - p[%) + a[E-) +

2.3 The second moment of the final size

Let

given by 1.22 may be

25
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' n
D(n, a) = E(W? | (xC0), Y(0)) = (n, a)) = ’Z:‘err(n, a)
» ‘ . . r=0 :

Multiplying equation 1.9 by r? and summing over r = 0, 1, ..., n , we obtain

2.6 D(n, a) = nprC(nfl, a+l}r+ EIB'[lfD(n"l”a*l)] +4E;E?DF@, a—;) s

n,a =1, 2, ....
Substituting su¢cessiVely for thevfinél;term’givesv
a-1 p' koo ‘ (5 )?
2.7 D(n a) = —;E_kzg [ﬁiﬁ] D(n~l? at+l-k) + 2¢(né a) - li+ Lﬁ;g]'f.
From 2.7 we may readily prove by induction that
. . L , o n- n+a-k
2.8 - . D(n, a) = 2nC(n, a) - n° + »Z: [n]b [ } s
o - - C ke KKl

where the bk' are defined by

Cooon n-k .

. . 7 o | B 2 a

2.9 | | kgl (k)_bk['_km] =n", n=1, 2,‘}

We now need the following lemma which gives the ordeb-ofkmagnitude‘of
the bk .
LEMMA 2.5. For n =1, 2, ...,

n+p 2
n[l+p} < b =n° .

Proof. From 2.9 we have" bl =1 and‘k»b2 = 2(2+p)/(1+p) so that the

lower bound holds for n = 1, 2 . ‘Assume that the lower bound holds for

n=m-1, m>1, then from 2.9,
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2.10 b

m-1 m-1-k .
[m"l]b [ p ) g} mp -
& Lk PR Ry

1"
3
N
!
g

Now (m—k)(k%p) for k=1, ..., m-1 ;has its minimum»at (m-1)(1+p) . By

the induction hypothesis all the ;bl, f;., bﬁ—l ‘are positive, thereforéﬁ

b S m2 _ va(m-]_)
m o 1+p

v

; m(m+p)
T 1+p

Hence by induction bn = n(nfp)/(1+p)'l for all positive integers n "'It'
now-follows trivially from 2.10 that bﬁ < n® for all integers n . g

COROLLARY. Under the conditions OfvTheorem'2.2,'

(4 n n p nea-k -a+3 '
Z.ll (2) 'kza (k)bk[ﬁ;a) f o(n B ) , as n > o
' ‘ ’ : a-2 o ya-1 .
2,12 (1) Din, a) = n’ - 02[%] * D_Q(a-'l)[%] +o(n ),

as - n > o,

1

12,13 (iii) WV(n, a) -

QQ.[B] + pz(a—l)i [5—) +.0 (n_a+l] 5 A8 N ™,
where V(n; a) = var(w | (x(0), 7(0)) = (n, a)) .

- Proof. The proof of (%) is exactly the same as that of Theorem 2.2. Y

(i) is arrived at by using (%) together with 2.5 and 2.8 to show that
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2 —a+3)

n -D(n,a)=o[n , as m->®

and then exténding the expansibn using the same method as in Theorem 2.u4.

(iii) is a trivial extension of (%%). -

2.4 The moments conditional on a major outbreak

As étatéd in section 1.2 an important feature of the distribution of' 
the final size ié:thaf it is bimodal. 'The firsf mode of behaviour
correqunds to early extinction of the pfocess‘in'which only‘a sﬁéll
propoftion.of suscéptibleé are infected aﬁd.the éeqond to a_major butbreak_‘
affecting, a large prbpoftvion ovf‘t.he sﬁsceptible popﬁlé‘tion.. The 'discus.sion
in section 1.4 shows that in fhe case n > p , we can‘abproximate the
pf;bability of‘eariy extinction by"(b/n)a (Seé also séction 2.6) and the
process'coﬁditional‘on this eﬁéntuality by a-birth and deafh process having

birth rate Y and death rate- un . Hence, if we let W be the final size,
W' the final size conditional on éarly extinction and W"” ‘the final size
conditional on a major outbreak we have

E(W)-E(W')Pr{early extinction}
1-Pr{early extinction}

fo 2

_a(a+3) '[g)aﬂ B p[p) 2a-1

2 n n -

2.14 By =

using 2.5.

Hence we see that the term p(p/n)a—l appearing in 2.5 is the result
of the probability mass of the first mode of the bimodal distribution of

W . Similarly, working with the second moments we find
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 \2a-2

o . a-1
2.15 ~ Var(W") = p2(a-l)gﬂ * pQE%

Comparlng thls w1th 2.13 we agaln conclude that the’ domlnant term -of the

variance arlses from the blmodal nature of the dlstrlbutlon

2.5 The distribution of the Final size

We may readlly apply the methods of the prev1ous sect1on to other
recurrénce relatlons;v Substltutlng succe351vely for the flnal term 1n o

eQuation 1.9 leads to
- TR ' ' o a
| 2.;6' p (n a) n+p k O’[Z;EJ P l(n l atl-k) + [ZIBJ_G(P) R

which gives

po(n: a) =

1

———
. 3'

+ | O

© .

N’

‘Q
L

p,(n, @)

' a+l ’ al
" P P e
n-1+p - n-1+p |ntp ’

and so on. Rearranging this latter equation we have

i a | S
'n[ﬁliig] po(n, a) + [n é+p

a+l
; J

'7 pl(n5 a) =a "

which is equation 1.12 for m =1 ,‘andbin fact 1.12 follows easily from

- 2.16 by induction-on r .

We now consider equation 1.10. The quantity p (n, a) is of interest
q quantity p, inter

and it is conjectured that pn(n,,a) 1 as n > © ., To justify this

‘conjecture, first let Cy =_-Ak(p/(p+k))k , so that with » = 0 equations
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1.10 and 1,11 become

noo 0 n+a-k
pn(n, a) =1 - kzi (k]ck{aif) , n=1,2, ... , a=0,1, ... ,

where the ¢, are defined recursively for %k =1, 2, ... , by

I e
2.17 e ) =1, n=1, 2, ...
» X1 K"k p+k

Now if it can be shown that the ¢, are uniformly bounded then Lemma 2.3

. . . ~a+l
guarantees that the sum appearing in 2.17 is o(n ) as n > , In the

case p =<1 we may show by induction (proceeding as in Lemma 2.5) that all
the g ‘are between 0 and 1 . For p > 1 a heuristic argument and

computer calculations suggest that this is also true.

The result is readily established however by arguing as follows. (We

are indebted to Dr. M. Faddy for suggesting this approach.)

Equation 4.3 of Daniels (1967) states that

n+a-k

pn_k(n:a:p) = (Z) (pg_k] pn(n‘k3a>p+k) ]

where the extra parameter p for the relative removal rate of the process

has been introduced into the function pr(n,a) .

n
l - 2 pk(n,a’p)

c . pn(naa:p) k_—_l

i

L kgl(z)[B%EJn+a-k

Now since the pn(n—k,a,p+k) are uniformly bounded the result follows.

pn(n-k,a,p+k)

Hence we may use the recurrence relation 1.9 and the method of

Theorem 2.4 to establish that
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a . .
2.18 p,(n, a) =1 - [%) to(n?) ,as n>ow,

2.6 The probability of early extinction

- It has loﬁg:beeh aCcepted, following‘the argdmenfs of‘Kendall (see
Sectioﬁ 1.4), tﬁat.the prpbability of ‘early extinction in a géheréi epideﬁig"
Qith; p<n is;;(p/ﬁ)a . ~E§acfly what ié;ﬁeanf by "eéfly éﬁtihétibn"'of,
its oppoSite "major outbreak" hésjyet fo be definéd. The apbvejmentioﬁedv
v reéult»is bbtained by argﬁing.thaf éariy EXfinction occurs ifbthé;biffhvéﬁd
death_pfocéss witﬁibirth.fate ﬁ ‘énd death rate P ’becomes_extinCt;‘ This
criterion i§ chosen beqaﬁsé Such a préceés approximétes thezgenerql epidemiéf
brocéss in ifg eafiy.sfqges, since iﬁfthe»early;sfages we may ignore thé
effect on the'cbhta¢t’fate of thevémall depietion in theﬁnumber‘of ‘
suScéptibles; It would be more appropfiate thatlfhé finai size be the sole
cfiterionvfér deéidipg Whéther a major 6threak’has7occurrédib Here'we, |

jdisCuss thé}probability of early extinction under such criteria.
‘Let
qun, @) = peiw < » | (x€0), ¥(0)) = (n, a)} .

By the usual argument

(n-1, atl) + L= g (n, a-1) ,

S n
219 q,(n, a) = ntp tr-1 n+p

and.

qp(O, a) = q,(n, 0) =1 -8(r) .



32
These probabilities may easily be calculated from these equations.

Referring to equation 1.21 we see that as long as » = o(n) .as

> 0
n o

qr(ﬁ,‘fl) ~ [%) > as’ n > <'>°‘-. _

It seems very difficult to obtain this result under more general conditions

on r. Equation 2.18 suggests that it is true even for P = n .

 As in Theprém 2.4 we may use the recurrenéé relation 2.19 to find

further terms in the series for vqr(ﬂ,‘a)'} Thus we may shpw.thét.'
I p]a “atar3) [o)? | ( '-,a,_z)' L
_2.20 - qun, a) = A .”_) T+ 20 |n ‘+'o-n » , as n -

2.7 The mean duration time

Equation 1.19 is of the same form.as equations 1.9 and 1.14.

Proceeding in the same manner we find that

2.21 o M, a) == ) — + nM(n-1, a+l—k{] .

It was‘ekpectéd that expressions of the form of l.lOland 1.16 could be

obtained from 2.21 and the asymptotic result of Ridler-Rowe (1967) that.
‘ o o
Mn, a) «ly-ln(n+a) ,as n>w

could be obtained using'the‘algebraic methods of sections 2.2 and 2.3.
Unfortunateiy'this has not been possible, but the following heuristic

argument may be applied.

" From the conjecture of section 2.5 we may reasonably assume that if =n
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is large enoughkho member of the populatiohrescapes infeCtion;f.Lemmé 4.2
indicatesbthat'this mass infection takes place.in a time intérVal which is
arbitrarily émali as vn becomes larger. ‘If éveryoneuwére'to bé‘infegted
‘at time zero the duration of the prOCesé wbuld be the'maximuﬁ'of n o+ d_
exponential variates with paramefer ‘Y'; 1Héhce we would expect‘Suqh a
randoﬁ variatébto have the saﬁe limiting form'as T and if is a.simple

matter to.show~that.itsrﬁean'is

~

R by

n%aﬁ
)
k=1

<=

In(n+a) , as 7+ o .

<=

2.8 'The_generai'epidemic model with a 1atent.pekibd before infectiousness

In many diSéaéés a newly infectéd individgal péssesvfhrough é'}atent‘
periéd beforé2becbﬁing infectiéué. 'vawe modify the generélvepideﬁié4mbdel
to iﬁcorporaté this feature the Peéuiting model is of courSeAmuch more
comﬁlicated.- Néver&helésé S§me;interesting conclusions‘may‘ﬁe drawn from -

it.

’,w@rwill assume that the populatidn is cqmpéséd of individuals whorafe
either susceptible, lateﬁt‘infectiveé; inféctiVes or rémoved and we will
denote the number of sucﬁ individuals af any time ¢ by X;iL,_Y and‘AZ
respectively.‘ In-the time interval (f;'t+6f) ‘an'iﬁfectivé may become .

rémbved_with probability‘ YYSt + O(Gt)‘,,as 8t ; 0 aﬁd aususceptible may
| beéome»a latent iﬁfective witﬁ pfobability uXYSf {.O(Gt) ,;és St >0 . A
latent.infeétiveibeCOmes an ihfeétiVe aftefra time periédb W‘, where W is

an afbitrary random variable independent of the state of the system. .

THE DISTRIBUTION OF THE FINAL SIZE
The final size distribution is not affected by this modification. This

is easily seen by considering the embedded random walk process defined by
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the transitions in which either a susceptible or an infective is changed.

The two possible transitions at time ¢ have probabilities

X . o
o v _ N 7:6-.1f Y+L-> 0,
Pr{(X, ¥, L) + (X-1, ¥, I+1)} = { |
0  if Y+L =0 ,
Cpel(X, ¥, L) > (X, 7-1, D)} = 4
o if L =0.

These are the same transition.probabilities as in the same embedded random
walk process for the general,epidemic,mOdel with zefo lateﬁt‘period; The
fact that some of ‘the infectives are now called latents has made 1o’

diffepence. 

AN EXPONENTIAL»LATENT PERIOD
| The simplest,wéy to incorporate a nqn-zéro latent period into the
"generél'epidémic model ié to make the distribution of the lateﬁt_beriod
indépendent"of_theIState of the éysfem and exponential with»paramefer A
séy,. This‘d%stribution.for tHe latent peridd will preserve‘thévMarkbvian.
natﬁre of the processsli;e. at any time t‘.the‘behaviour of the process is
dependent only on its stafe'at time ¢ .  At any time ¢ the‘modelrhas ‘
infinitésimaltrénsitioqbrobability ratés given by':.

(X-1, ¥, L+1) at rate XY ,‘

2.22 - (X, Y, L) » {(X, Y+1, L-1) at rate AL ,
’ (X, v-1, L) at rate pY ,

where  (X(0), ¥(0), L(0)) = (n, 0, b) .

The corresponding deterministic model is
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e
4]

-XY
Z; = AL - PY
i= xy - AL,

where (x(0), y(0), 2(0)) = (n, 0, b) .

Equations similar to 1.2 and 1.3 may easily be found for this model.
While these would be of little use in practice, approximations of the same

form as those of chapter 3 are readily derived.

THE MEAN DURATION TIME OF THE EPIDEMIC

Let M(n, a, b) be the expected time to extinction of the general
epidemic with exponentially distributed latent period and initial conditions
(x(0), ¥(0), L(O)) = (n, a, b) . Then by the usual argument we have that

M(n, a, b) satisfies the recurrence relation

2.23 M(n, a, b)

L
EZ;EE;XE'[naM(n_l’ a, b+l)+paM(n,‘a—l, b)

+AbM(n, atl, b-1)], n, a, b = 0, 1, ...

2

M(n, 0, 0)

1
o
v
S
"
(@]
-
[
-
.

Using the heuristic argument of section 2.7 we may infer the asymptotic
form of M(n, a, b) as n -+ o , Every individual once infected will stay
infected until its removal after a random period of time equal to J + I ,
where J and I are independent exponential variates with parameters A
and p vrespectively. If everyone becomes infected at time zero, the

duration T of the epidemic will be equal to max (J.+Ii) » where
1<i<n+b

initially we assume (X(O), y(0), L(O)] = (n, 0, b) .

Let

7' =  max (J.+I.] .
1<i<nth ¢
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T'" has distribution function

T 1 —pt AP
CFn(8) = [:‘* X:B'(A?’p -pe il K

where we éssuheAthaf :X £0 . . '
ET! = J ITL - [1_ - '(Ae_fpt;pe—kt)) E]dt[.
Substitute u.=>vt/(lh(n¥b)) , where Vv = min(A, p) .

CvET!
1n(n+b)

R
F‘ l'-%(Mn+b>-“°’”’“—o<n+«b>f(X/\))?)) ]d”

. 1"
—
(@] 8 -

N 4
“ + J l> (n+b) (\(n4b)~ ((D/\)) 1)u p(n+b) ((X/\))—l)u],] E]du )
1 A | : |

1]

Using 1! Hop]tal'° rule we see that for flxed u the 1ntegrand

converges to G(u)- whépre

1, - <1,
Gy = {1 - e HUeAD oy
\O N ‘ u>1
Therefore
. - VET'" _ | e o :
l}mm— 1+ lim 1lim f'(m,n) .
n-oo 7N Mo
where
© flm, n)
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It may be verified by straightforward (though messy) algebra that
f(m, n) converges uniformly to 0 as n + « . Hence

1im 2EL oy
oo 1n(n+b) ?

and so the conjecture is that

In(n+b)

Mn, O, b)fvm s

as n > o

Note that it is not necessary to assume that b 1is a constant for this

result.

2.9 The birth and death process limit

In section 1.4 we discussed an approximating process due to Kendall
which is based on the idea that the initial behaviour of the number of
infectives in the general epidemic process is approximately the same as a

birth and death process with birth rate un and death rate Y . In this

/

section we show that with a plausible modification of the contact rate
parameter we can put this idea on a rigorous basis. We consider the general
epidemic model as defined in section 1.1 but with U replaced by u/n ,

i.e., the infinitesimal transition probability rates are

(X-1, Y+1) at rate %'XY .
2.24 (x, v) »

(X, ¥-1) at rate vYY ,
and the initial conditions are (X(0), ¥(0)) = (n, a) .

This modification represents a restriction in the mixing of the
population where, as the population size increases, the contact rate of any

individual stays the same. In large populations this is a more realistic
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assumption to make.

The following theorem gives the limit of this modified process as

n » « with the other parameters constant.

THEOREM 2.6. For uw and Yy positive constants and a a positive
integer, as n -+ © the process Y defined at 2.24 converges weakly to a
birth and death process with birth rate u and death rate Yy on

t € (0, T) for any fized T .

Proof. Let
M be the event {n-X(1) > Wn} ,
Y’ be the birth and death process with birth rate u , death rate

Y and initial condition Y'(0) = a , and

' . . 1
Y" be the birth and death process with birth rate u[l - V%) , death

0y

rate Y and initial condition Y"(0) = a
Further let P&(z, t), Pé(z, t) and Pg(z, t) be thep.g.f.'s of Y, Y’
and Y" respectively.

Now choose any finite number of time points 0 Stl <t, v.e. < tm <1 . Let

2
Y = (Y(tl),...,Y(tm)} , defining Y' and Y" similarly. Denote their p.g.f.'s
by P&(E;E) (: Pa(zl,...,zm;tl,...,tm)] , Pﬁ’(%;z) and Pé'(EBE) respectively.

Now

Lt

where <d means less than in distribution (see Theorem 4.2.10 of Stoyan (1977))

Hence

2.25 P (z:1) > PUz.B) >

(see e.g. Barlow and Proschan (1975)).

Also Y" <d Y except on a set of probability less than Pr{M} . Hence
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m "
2.26 Pz, t) > E (T x (ti))
I‘f 1=1 v
m ¥(t.)
>E (ma. ¢ }

M1t
> Pa(g, t) - pr{M} .
Let the random variable Ti be the time between the (Z-1)th and <th

infection, < =1, ..., n . Ti is stochastically greater than or equal to

an exponential variate with parameter less than or equal to

u[n—iﬂ]l' iil | < wat)
n k:l

So T’i 7 Ti' , where Té is exponential with parameter u(a+Z) . Therefore

2.27 Pri{M} = Pe{T, + ... + T

1 [Vnl+l < 1}

where [0] means the greatest integer less than or equal to «

<Pe{T] + .oo + Tlpq, < T}

Now

[\/%Hl ) 1 [\/nz]+l 1
E 7)1 = = =0(lnm) as n+ow ,
g1 K| W ogm etk

and

(Vnl+l 1 [Vnl+l 1
Var Z T;< = — =0(1l) as n > o ,
2
k=1 u k=1 (atk)

Hence from 2,27, using Chebychev's inequality we have

/

2.28 P} = 0((lnm)™%) ,as norew.
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Now it is well known that

1

-G
2.29 P'(z, t) = |YA=B)-(y-uzle

W(1-2)-(y-pz)e” FYEl 7

and it is easily shown that

P!z = p! p! rooL. ' ot o
a(i’ E) [z (z.P (zm_lPl(zm,tm tm

q B1F148,0 )3t

-1 m-l’tm-z)"')5tl)
Now it follows that P;(z; t) = Pé(z; t) +0(1) , as n >,

Hence equations 2.25, 2.26 and 2.28 show that

2.30 |P(z, t)-P' (5, t)| = 0(1) , as n > 0

2.10 The diffusion limit

We consider the process defined at 2.24 but with the initial condition
[X(O), Y(O)] = (n, nh) , where h 1is a constant. This modification in the
initial condition ensures that the probability of early extinction is
arbitrarily small as n - © and a different limiting process results. In
this form the process is a special case of a general class of processes
discussed in Barbour (1974) from which the following result is directly

obtainable.
Let

X-ng Y-
231 s v) = 55 L)

where & and n satisfy the equations

JYye
it

-uén ,

3
[l

uén - yn ,

with initial conditions (E(O), n(O)) = (1, h) . The variables & and n

are the deterministic analogues of the stochastic proportions X/n and
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P (u, v; t) = Eu" ")

Then P = lim P satisfies the equation
S T -

dP

3P p [T 0P 32 j
2,32 37 - W In EE‘” o vE-;ﬁ—-v] + YV In v o

':-—%[Lin[ln a}"+;yn(ln U);]P'f 0,
. where P(u,'v;»o) =1 .

From 2.32 we may easily show:that‘thé.meahs 'EU  and  EV arefv
identically zero and that the second mémentsvsatisfy>the.folldwing:systém of .

differential equations

2.‘33a)' - L %— + Qu(nEU2+£EUV) - un =0 ,.
2.3%)  EW o[ (Bv-Ev?) £ (BUV-EV?)] + YEUV + uEn = 0
e v’ 2 |
2.33c) 55 - 2UMEUV - 2(YE-Y)EV = (pf,w)n =0

Ve shall use équations 2.33 in chapter_S to construct an approximating

_ process for}thé general'epidemic,




y2

CHAPTER 3

APPROXIMATING PROCESSES
3.0 Ihtroddction‘}

Theigepefal'stoChastic epidemié modgi.presents.great ggfhematical
diffiéulties. fExpliéif soluti@hs~for the‘sfaterpfbbébilifiés'éssociétedT7
With.the>proéess afe.a§éilabié:(§ée sedtidn'Q;liibﬁt’unforfunétély thesé
_sOlutiéns arersoucqmpiicétéd that théj.afé”ﬁseleSSvin‘préctibe. Hence‘we' 

must look for'gqod approXimétions‘tovthe pfodess.

’Tﬂe‘approiiﬁating procedurés ﬁséd hefé makevﬁsé of'tﬁezwéll—known'fact» 
that the'geﬂerallepidémic exhibits two distinct modes of béhéviourt either
the ?rocessbbééomes extincf‘early or thefe is a maior oufbreak. Thus we
look for apﬁfdximationslfo each of these modes. Thié(approaéh was first.
explpited by Kendall (see secti5h i.u) who used a birth and;death‘process 
for thé first mode and the determiﬁistijsolution for the second mode. In°
sectiph 3.1 we derive a'différenf approximation for the second mode of»the
pfopess which.in~mos£‘cases enables gbod approximations toAbe‘féund fbr the
means of the‘vériablés‘bX(t) and Y(t) , the distribution of the final siZé

and the distribution of the duration time of the process.

In the case of the géneral epidemic being near critical (i.e. p~1n) ,
this approach is not useful. We suggest a way to deal with this situation

and support the idea by heuristic arguments and numerical comparisons.

3.1 A'quaSi;deterministic mode]l

In this section we consider a model which arises by replacing the

stochastic variable Y appearing in the contact probability rate by its
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deterministic analogue ¥y . The use of a deterministic variable as

the contact rate is a reasonéble modification for the following reason: for
many diseases it is difficult to.ascertain’the role played by infected
individualé_in'the spreading of the disease. In general it may ‘be nearer to.
‘the truth to assume that new infections are céused’by the'presencé of
susceptiblés in an infected environment of'which infected iﬁdividuals'aref
only a part. Thus we could regard Y as an indicator of the level of
infection in the environment whose true valﬁe‘is a continuous function like
y(t) .

If we let X' and Y' be the number of susceptibles and infectives at .
time ¢ for this model, the infinitesimal transition probability rates are
given by

.- (X'-1, Y'+1) at rate X'y ,
3.1 - (X', ¥') ~ |
v (X', Y'-1)  at rate pY' ,
where 'LX'(O); Y'(O)) = (n, a) , and where y is defined by equations 1.4,

The forward equatioh for_.pré(t) , the joint felative frequency
function (the state probability function) of X' and Y’ yields for
r=0,1, ...,n and § =0, 1, ..., nia-r ,

3.2 prs(t) =‘—(ry+ps)prs(t) + (r+l)ypp+l,5_l(t) + O(s+l)pr,8+l(t) ,

. where we define pps(f) =0 if either s = -1 , P>n or §> nta-r .

‘ Multiplying 3.2 by W' z® and summing over r = 0,1, ..., » and
§ =0,1, ..., nta-r, we find that P(w, z; t) , the joint p.g.f. of X'

and Y' satisfies the partial differential equation




9P _ T 3P
ar = Y(z-w) =+ p(l—z) R

where P(w, z; 0) :Twnza .

The characteristic equations of 3.3 are

dt'. _do _ _ds
U7 yzw) ~ p(i-2) °

yielding the ihtegralé-,,

oy

2

3.4 : ' o ;  (l-z)e*pt = ki.; const,.

énd

3.5 w expl|- I.,y(s)ds ,+'I y(u){l—klep }exp - J y(8)ds|du = k, = const.
R K R . o )

40 <0

o :
. A L —J'Oy(s-)ds
From equation 1l.4a) we note that e . = x(u)/n -.
'somé elementary algebra we may write 3.5 as
| S o & a _y pt)
3.5 o o ; - (1-w) o kl{n‘ e .}__ k2 .

Hence 'fhé,general solution of 3.3 is of the form
; —ot x 1 oty
n{(l—z)e ,‘l—(l—w) ﬁ»—-ﬁ-(l-z)(y-ae It s
where 7(e, *) is an arbitfarY’function.

Using the initial condition we find that.

Thus with

' n
3.7  Pw, z; t) = [1-(1-z)e'pt]a[.—1-(1—w) = - %(l-@[y—ae'pt]:[. .



We note that this result may also be derived using the different

approach of Faddy (1978) (see section 1.5).

The moments EX' and EY' are easily obtained from 3.7 or directly

from 3.3 and are, as expected,

3.8a) EX' = x ,
and
3.8b) EY'! = Yy .

Similarly, for the second factorial moments we obtain

1y 2
3.8¢c) EX"(X'-1) = [l - ﬁ)x s
1 -
3.8d) EX'y' = [l - ﬁ]xy + %xe pe ,
and
3.8¢e) EY'"(Y'-1) = ae—pt[2y-(a+l)e-pt + [l - L) (y—ae-pt]2 .
!

Numerical results given in Faddy (1977) indicate that this process is .

a good approximation to the general epidemic model as long as the probability
of early extinction, 03 (p/n)a] is small. However, the process shows

systematic variation from true values which increases as (p/n)a increases.
The reason for this is that this modified process has very little chance of
early extinction. The way to correct this shortcoming would be to use the
birth and death process approximation (obtained by holding X constant)
conditional on early extinction of the general epidemic process and use the
quasi-deterministic process conditional on a major outbreak. The resulting
process is discussed in the next section.

Note: We could also have formed an approximation by replacing X by x

in the contact rate. This results in a generalised birth and death process

(see Kendall (1948)). It is easily shown that EX' = x and EY' = y

However, the other quantities of interest are not obtainable in such simple form
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3.2 The approximating process

In the subcritical case (p > n) the approximating process uses a
birth and death process with birth rate »n and death rate p for the

number of infectives Y . If the population is supercritical (p < n) with
probability (p/n)a we use a birth and death process with birth rate p
and death rate n for Y , and with probability 1 - (p/n)a we use the

quasi-deterministic process defined in section 3.1.

If we are using a birth and death process with birth rate o and death

rate B to approximate Y then 7 - X 1is the number of births in this

process by t . The joint p.g.f. @Qw, 3; t) = E(wn_xzy] is given by
z—r2 -la
3.9 Qw,z;t)={ﬁf&ff§[—zquemﬂﬂhawgtﬂ } .

where rl(w) and P2(w) are the larger and smaller roots respectively of

the equation

awr? - (a+8)r +B =0

(see Kendall (18u48)),

Making use of equations 3.8 and 3.9, the first two factorial moments

for the approximating process Y' are easily found to be as follows.

(i) THE SUBCRITICAL CASE

3.10a) EY' = ae-(p—n)t

b

-(p-n)t
Al - o& Y]

3.10¢) EY'(¥'-1) = ae_(p_n)t[[a ) gﬁ)e—(p—n)t * _2_n_:l

3.10b) EX'

. pb-n
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3.10d) EX'Y' = lEi-e’(p'”)t[Lz - Qiz}(l-e-(p—n)t]—Qp%] ,

and

3.10e) EX'(X'-1) = (n-1)|n + 2%2_(3—(p—n)t_li]

2
an pn) ¢ ~(p-n)t 2 (—(p-n)t[ 1 ] l‘P
i 1) 2oy £ =] - 240
"o’ {[a p-n] (e 1 e " on) T pnlf

(ii) THE SUPERCRITICAL CASE

a a
e {0 o
“ a (n-p)t ( a
3.11b) EX' = Eﬂ [; - ﬁé%-(l-e" P j] A Eﬁ ]x ’
—_ 1 \

ntpl - (n-p)t
n-pj

+ [l-— [%]a]{ae"pt[2y—(a+l)e_pt]+[1 - %] (y-ae~"%) 2} ,

3.1lc)  EY'(Y'-1) o~ (n-p)t

"
TN
S|o

N’
Q

Q
T
TS

Q

1

20 |
n-p

a ! .
pa  -(n-p)t , -(n-p)t
3.11d) EX'Y' = [SJ g P [[ - g;g}(l-e (n-0) )-Qn%}
a
+ [l—[—e) )[[l - %]xy + z :Jce_pfj R
and

a
3.1le) EX'"(X'-1) = [%) {(n—l)Ea + =

2 :
Pl 5 [a - e (e—(n*p)t—l] Q—Hnl:e_(n-p)t{t + ~—l~—) - L]
(n-p) "=P) nee o nR




ug

Also in the supercritical case conditional on a major outbreak
occurring, we may find approximations for the second moments of X and

Yy by using the diffusion limit. We assume that 7 is large enough so that

(U V) (0, 1

(see sectioﬁIZIlO),'and then use equations 2,31 and 2.33.
" THE DISTRIBUTION OF THE FINAL SIZE

Letting t;+ © in equatlons 3. 7 and 3.9 we f1nd the dlstrlbutlon of
»the flnal size. for the qua31 determlnlstlc process and the approx1mat1ng
-blrth and death process respectlvely Thus we: may readlly flnd the

dlStPlbutlon of Z' , the final size for the approx1mat1ng process of. thls

sectlon -as follows..
(i) The subcritical case-

b g ‘ S . D,
- Let: Py, (w) =QE(wZ ) be the p.g.f. of Z' . From 3.9 we have"

. o
n+p—V[In+o)2-4pnw
2un ' t

3.12 : ;PZ,(ﬁ) =

It can be shown from‘thj_s»-expr'ess'ion (see Ba'iley_ (119,75),: p- 102) that

R R Y 1y piq
S - Peiz = r} = a;??;ia§2' L
o | ST (i)

2r+a

 Here we are neglecting the event that for this approximation Z' may
be greater than n .v,For some cases, for instance when a is lafge
compared with #n , this event is not negligible (see figures 6a) and 7a) of

Appendix B).
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(ii) The supercritical case
From equation 3.7 we have that conditional on a major outbreak the

number of susceptibles left after the process has become extinet, n - Z' ,

has p.g.f.

n
[:l-(l-w) —eZl .
n

Hence 7n - Z' has the binomial distribution with mean 6 , which is to

say that as n >« it has the Poisson distribution with mean © .
Recalling from 1.8 that

9 ~ ne-(n+a)/p

, a n > o

we have agreement with Daniels' heuristic result given by equation 1.13.

(For this result Daniels assumes that a/p 1s negligible.)

The binomial distribution of the number of susceptibles left has a
simple interpretation. It is the distribution obtained by assuming that at
the beginning of the epidemic and conditional on a major outbreak, each

susceptible independently has probability 6/n of escaping infection.

Hence for‘the p.g.f. of Z' we have

3.14 PZ,(w)

()7 et e el [ (0 i1 - 2) &

a
n+p-\/(n2;p)2—‘+nWJ + Il— [Q]Q} E)—(w—l) g]n .
n n n

Thus using 3.13,
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N ' | t r_ r+a . S 7 '_"r n*—f v
3.15 Pr{Z' = r} calorta-)l mwp +‘[1‘[E'a)(z){l - g).[gl "

! )1 2r+
? (r+a) (n+p) r+a

THE DISTRIBUTION OF THE TIME TO EXTINCTION

Let Ti be the time to extinction of.thé apprbximating prbcéss_qf
this section. The distribution: function of T' isﬁgiven by '
FT,(t) = p(1, b; ﬁ)~. Hence.froﬁ 3.7 and 3.9 we obtain théffollpwihg ,
expressions;
(i) The suberitical case

o o I p_pé_(p—n)t a
3.16 - B Al e I

(i1) The sUperCritiCal"caSe

22 Eper - 9 [—7——;— ) (e[ 0 - 2 ]

. | }p—pe‘(n49)t‘a‘ .'p ¢ -ptya 1 ‘-bt mo
L= ———:(—n—_—p)—z- + [l"[‘ﬁ'} )(l"eb' )E— - Z [y_ae. _ )] .

;n;pe

By the following fheprem‘wé.establish that the asymptotié form of the
‘mean of the approximétion,~T} ’is the same as the asymptotic form of ET

(see equation 1.20).
THEOREM 3.1, For p a positive‘qonstdnt,‘

ET" ~ %»ln(n+a) » a8 n > ®
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Proof. For = > p we have

 Let téf (e > 8) be thé'fimelfor;the'detefminiSticlprocéés‘toffeach_'

x =€ . By Lemma 4.2, te =0(l) as 7n > . Now for t > tE‘ by ﬁékiﬁg

use of equations lgSvand‘l.ub)'we'haVe_fhéf v

} (e- p)t

3;18  ,[n+d-e+p 1n.%)e—9#4<‘y(ti-< [n+a e+p in n

"Letting t :v(uAln(n+a))/p~‘we may wfite the first inequaiity as

o[22 5 (igerp 1n 8] 2
L _ ) (n+a)

as long as: u > {pte)/ln(n+a)

Making the éhange of variable to # in the integration and letting

g,(u) = 1- [f?] {14(n=p) [p-n(naa) (-0Iw/P] 1y

n(n+a)¥

+ [l“[g‘}a”l - l»'u)q[»l _ ”’€+Dln‘(€/nﬂn»,t |

we have k
ot /In(n+a) | . o ‘ ‘ o
pET' ¢ In(n+a)l] , {
Tn(n+a) Jo : [%‘FTr[ 0 '“I]a¥'+'{J + fw}gn(u)du .

pt /In(n+a) J1




Using l'Hapitalis rule we may show that -

11 , u< ,
) ) -1
limg (u) =41 -e = 5, w=1,
n , e ‘
n>e :
, Lo
Thefefqre,
= ;o BT
lim iﬁ%%%&7'>?l + lim lim f(m, n)
where
- flm, n) = J» gn(u)du .

1

The unifonm cénvefgence of f(m,n) to 0 as 7n > may be
eStablished:by‘straighffbrward‘fhdugh-tedious algebra. Hence the order of

taking limits may be reversed and we have

. PET!

N SN
lm’hﬂwm) 1.

Y10
~ Similarly by using the second inequality in 3.18 we may show that

. (p-€)ET"
. Lim An(n+a)

n—}oo

<1 .-

~Since € is an arbitrary number greéter than 6 and 6 > 0 as
n > ® _ the result follows. = O
3.3 Numerical results and discussion

In Appendix B we show comparisons of true values of EX, Var X, EY,

Var Y, FT(t) and the final size distribution with the corresponding

52
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approximating functions calculated from the formulae given in the last
section. The true values were calculated from 10,000 computer simulations
of each epidemic. The initial number of susceptibles, n , takes the values
5, 10, 20, 40 and 80 . The initial number of infectives, a , takes the

values 1 and 5 . In all cases the relative removal rate, p , is 9 .

The quantities shown with a prime are the approximations. The
variances shown with a double prime which appear in the graphs where
n =20, 40 and 80 are derived from the diffusion approximation (i.e.

using equations 2.31 and 2.33).

Another approximation which has been put forward is that of Ludwig
(1973). This approximation gives excellent results for EX, EY and F(%¢) ,
which, for the cases shown, are almost indistinguishable from the real
values. However the approximate solution is itself quite complicated ,
involving the solution of 2(n+a+l) recursive D.E.'s. When this method
was applied even to the case (n,a) = (5,5) and p = 9 , standard double

precision library subroutines using either Runge-Kutta or Hamings modified

predictor corrector method were unable to guarantee accuracy of .01 for

t >.2 .

The main advantage of the approximation presented here is its simplicity.
A simple expression for the p.g.f. of the process is available, enabling
closed form expressions for quantities of interest to be found. Evaluating

these expressions involves only one numerical integration.

The use of the approximation results in an enormous saving in computer
time. On the Univac 1100/42 the total computer time involved in the

simulations was 2,300 seconds whereas the total time involved in calculating

the approximations was 7.0 seconds.
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THE BEHAVIOUR OF THE EPIDEMIC PROCESS GIVEN EARLY EXTINCTION

Figures 1, 2, 6 and 7 of Appendix B show cases in which early
extinction occurs with high probability so that the birth and death process
part of the approximation is dominant. The approximate means EX' and EY'
are seen to deviate wildly from the true values except for the case of
figure 1 where (n, a) = (5, 1) . This has occurred because the assumption
that conditional on early extinction X does not vary much from its initial
value is not true in these cases. Quite clearly we need something other
than 7 with which to estimate the mean of the approximating birth and
death process. The expected final size in a birth and death process with
birth rate u , death rate ¥ and a initial individuals is i%% , so if

¢ (n,
o p(n a)

we choose Y = p and y = , this process will have the same

a + C'p(n,a)
final size as the epidemic process. The resulting approximations are shown
with a double prime on figures 1, 2, 6 and 7. This results in a considerable

improvement, although the approximation to Var X is still poor.

THE EXPECTED FINAL SIZE IN A NEAR CRITICAL EPIDEMIC
It is the near critical (i.e. p * n ) epidemics whose behaviour is most

difficult to describe. In the following we consider the asymptotic properties

of C _(n,a)
n

We know that

3.19 Cn(n,a) = %1 + Cn(n-l,a+l)] + %C%(n,a-l) .

It is readily shown that

3.20 Cn(n,a) < a Cn(n,l) a = 2,3,...
and that
3.21 C (n=l,a) < C (n,a)

n n

Putting a =1 in 3.19 we get
Cn(n,l) =k + %Ch(n-l,?) ,

which with 3.20 and 3.21 gives
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Cn(n, 2) Cn(n, 2) +1
5 < Cn(n, 1) < 5

This may easily be extended by induction to give

C (n,a) C (n, a) + 247t
3.22 .117;.__ <c (n, 1) < n

a

Since Cn(n, a) < n we have

Cn(n, 1) a-1

n
This implies that Cn(n, 1) (and hence Cn(n, a), a = 2,3,...), is o(n)
as n >

We would expect that Cn(n—l, a) and Cn(n, a) are of the same
order of magnitude as n - ® (with a = o0o(n)). Hence from 3.19 we get

a-1 +

Cn(n, a) “‘czan(n, 1) -2 1.

Now Cn(n, 1) must be unbounded as 7n + « , otherwise we could choose
a so that the R.H.S. is negative.

SOME NUMERICAL RESULTS

n Cn(n, 1) loge n L/n

1 .5 0 .5
1.31 1.61 1.12
10 1.89 2.30 1.59
20 2.62 3.00 2.2
50 3.95 3.91 3.54
100 5.29 4.61 5.00
500 9.98 6.21 11.12
1000 12.95 6.91 15.81

These results show Cn(n, 1) to be increasing very slowly with 7= .
The function does not seem to follow a power or logarithm law.
APPLICATION TO OTHER MODELS

The idea behind the quasi-deterministic model of section 3.1 would also
be useful in constructing approximations for other processes which like the
general epidemic process have transition probability rates which are non-
linear in stochastic variables. One such model is the predatory-prey model
(see e.g. Bharucha Reid (1960)). In Appendix C we present a brief study of

the application of a quasi-deterministic approximation to this model.
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CHAPTER 4

THE GENERATION-WISE SPREAD OF INFECTION

4.0 Introduction

In some applications of epidemic models it is important to consider the
individual generations of infection‘(see e.g. Becker (1976), (1980)). 1In
particular }his is useful when applying the model to the spread of rumours
(see section 1.6) in which case we would expect that the rumour becomes more

distorted as the "generation distance" of the hearer from the source increases.

By the source we mean the initial or '"zeroth generation' infectives.

In section 4.1 we find recursive expressions for the mean final sizes
of the individual generations. These expressions would be useful only for
the case of fair;y small population sizes and consequently we turn to the
deterministic model, deriving a simple formula for each generation size at

any time and also an asymptotic result for its final size.

The approximating process of chapter 3 is applied to this situation in
section 4.2. The limiting process analogous to that of section 2.10 is

presented in the final section.

4.1 The mean generation size

Let

‘

, ) = EW X(0), Y.(0), ..., Y, (0)| = (n, )) ,
cg(n a) [ ; I [ (0), ¥,(0) kJ§+l 2 )] (n, a

g=0,1, ..., m,

where (n, a) = (n, Ays covs am+l) .
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Multiplying equation 1.25 by r and summing over ré =0, 1, ceuy 1,

we obtain for g = 1, 2, ..., m ,

wi 7Y ma
fir 3, a0y o 2]

4.1 ¢ (n, a) = |(unty). Y oa |
. g | | k=0,_k

_ *WQmi-ng(n__l’ 'afem+l) s z:‘::o akcg (n, .a'ek).}_'f T

ves @ =0, 1, L.,

0° ‘m+l

‘where e isfthe '(k+l)fh row of the (m+2)‘X (m+2) idéntity métrix,.aﬁd

C'g(O,a) =0 ", 'ao, “aay m+l =

Any Cé(-, ). may be found from 4.1 using a recursive procedure.
(Section 5.4 describes explicitly a similar pfocedure.) 'We note that for
realistic initial conditions we would have a, = aé e =a g = 0 but in

ofdep»to find 'Cg(n, ays 0, «ou, Q) we must also compUté the ‘Cg(!; *) for

more general initial conditions.

Bquatiqn u.l,vthoughrsimilar in forﬁito 1,14, is sufficientiy'more.
complicated:té be useless’fof'the developﬁent‘of expressions analogous to
1.16 énd 1.17'ffom which asymptétic~results liké Theorém ?;2 were derived.
We tufn thereforeitq’thegdetefministic modelAto examiﬁe the behaviouf of the
generation sizes és n > in‘section 2.2 we saw that aSYmptotiéaliy the
expected fiﬁal'size in th¢ stochastic mbdel and the final size in thé quasi-
deterministié-model wéfe vefy close and we expect the Saﬁe tp be tfue with

régard to the final generation sizes.

Before looking at this asymptotic .behaviour we obtain some useful

expressions from equation 1.6.




From'l.6'we‘have

n

_ dv.

. t(u) = ——— ,
4.2 S ‘ (u) = J e
" where

- () nta v__+_u ln_‘n .

Also
4,3 . . . : a’v—‘——l’fuvf
Using 4.2 and 4.3 we obtain

' Py
TR ‘ - J V- vyt o+ 1n L

Substituting 4.4 in 1.27 and uging=4.2 yields

t

R -

0

Hence frdmfl??Gc)'we havei

| 9
| | . a yle)|” -ve
4.5 , Jyg(t)‘. g1 [yt + lpA a_] ? ,
| ot N e
u.6 :’é%.[u J x(T)dT] ekYt , using 1l.4b).

0 s

Equation 4.5 is particularly useful because it shows that since

Y

(E), g =0, 1, .ur .
yg()gv 1

Y(x) , it is only necessary to compute (%) to find all the"
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The asymptotic behaviour (as 7 *+ ®) of the final generation sizes in

the deterministic model is described in the following theorem.

THEOREM 4.1. In the deterministic model defined in section 1.6, if u

and Yy are positive constants and a a positive integer,
4.7 zg(w) «:é%-(ln n)9 sas m>o© . g=0,1, ... .

Proof. We shall make use of two lemmas which we shall prove below.

Let te be the time for x to reach € , where € > 6 . (Note that

since 6+ 0 as n > , ¢ can be arbitrarily small.) Now

zg[tl) + yg(tl) < zg(m) < zg(tl) + yg(tl) + 1

Hence g -yt
o) = a n+a-1-plnn 1
zg( ) = 0(1) + g {Ytl+ln{————a————4) e

using Lemma 4.3 and equation 4.5

m:é%-(ln n¥ ,as no+w ,

from Lemma 4.2. O

We note that this result is the same as that of Daley (1967) for the
final generation sizes in the simple epidemic (Y = 0) .

\

LEMMA 4.2. Under the conditions of Theorem 4.1 and where € 18 a

positive constant,

t. >0, as n =+,
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Proof.
¢ = ™ @
> e uvw(v)-
: Jn + J?’l-—-\/n N J\/n ‘ ," -,dv .
e v €f .up[n+a—v+pln(v/n)]">
Therefore,
” ;_I" . _rf‘V”  oaw
© 7 Luvp Plmarveelnll-GW]] -y, vlma-v-(ordim]
. vinta-v-pln(n/e)] °
as long as n is iarge éh:o{lgh so that each _ihtégrand is vpbs'itive' over its
‘range Qbf inte_gratibh .
Under : this conditi‘;:n .
i < 1 ’:ln Vn+’a+pln.(l‘—(l/\/n)) +‘ l-'vl. n-Vn+a-(p/2)1on) -
We = v arpln(1-(1/Vn)) | * Vi~ Vnta=(p/2)1nn _
| 1 = Va(n-era-pla(n/e)))
n+a-pln(n/e) | n-Vuta-pln(n/c) | °?

+0 ,as n >, a
"LEMMA 4.3, Under the conditions of ‘Theorem 4.1,

?Q(tl] >0 ,as n>e.

‘Proof. If u € [n-Vn, n] then
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" < " dv ,
- ujn+a—v+pln[l—(l/Vh)j

"as long as ‘n -is large enough so that the integrand is

‘positive over its range of integration

= 1n[n+g_?£) +0o(l) ,as n>o

SimilarlY»;by partitioﬁing:the interval  [u, n] as‘infLemma 4.2 we have for

n  large enough, -

T e | A (nta-u=(p/2)1om) L
€ Wn, el = Ju Py l“[ Ta ] ko)

and -

. ’ Soom , ‘ : S :
wetn, 1= [ B s an[MORI) L o) as nae .

u

Henée-l.27 gives for n large enough,

| '(t ] <' n A 1 n+a;uk *]9‘ deqz .a'.‘
2o \8) = ﬁ;th n|——— +a%-A_(ﬁ;E:aja. u

o

. Jn \/n» En [n+§l_-?¢—(p/’2)lnn]+a;]  ge ? du

\/n a ‘ (ﬂm—u)u

. o ' '.‘t ’ a :
S Vn 1, [n+ta-u-plnn g ge ©

+ ln|———————}+a ————— du
S R a 5] (n+ta-wu
where ‘ai,= o(l) as nm+o, 1 =1, ..., 6

>0 ,as n > oo, O

We note that this result means that although when x =1 all except 1
of the-pOSSible infectives has alréady been "born" this has happened so fast

that none has yet '"died".
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4.2 An approximating process

Using the same method as used in the proof of Theorem.QQl it may be -
possible to find aﬁ'expression'fér theujoiht p.g.f. of LX Y _Yl, n},)
, which:isléf similar form. . This expression would however be so ¢Ompli03tédf
that it would be useless for any practical purpose. - Hence we turn to the
methddshofbéhapter 3 for a process whiCh wil1'prbvide workable approximatibns

»tovquéntitieé of interest.

(i) THE _SUBCRI%FICAL CASE
| 'In'the sugqfitiéél caée thé.boundiﬁg'birth and death pfocéséAAY’ hiii
_'becoméveXtinctfwith pfobébility one.  In fhis ¢ventuaLity We“formkfhel. |
appﬁ6ximatihg brbcéSs'by letting X .be éoﬁétant at its initial value n ;.
Thus the proééss has fhe'foliéwing infiniteéimal traﬁsifiéh-prdbabili#y
rates: | B o
| N | (X'-l, Y’+eg+l] ‘atbfate.'unY;', | o
(X', ¥ - | o . o g=0,1, ...,
R (X'; Y'+§g) ‘. at rate YYé ,» '
where ?g ?A'Q ;'6, i,v.;. , is the vecfér‘ﬁith 1 ipffhe (g+l)th
positipn»ana zero elSeWhére._ |

In the usual way we find that‘the.p;g.f.;

S R Y. Y
o : 071
.P'(?o’ TS t) = E[zoigl ..J

satisfies

48 _BP____Z [( 'k)“,"pnz(k.,.l )]3P'.‘

From 4.8 we obtain

dey’

‘ — 9 -
4.9 7

-YEYé + unEYé_l s g :AO, I, oo,

! =
where EY_l = 0.
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It follows that

g _
4.10 EYé =a ﬁggél—-e e s

g =0,1, ...,
and it is easily shown that the expected final size of the gth generation
is given by

g
(oo = un
.11 E(Wg( )) a{—Y)

(ii) THE SUPERCRITICAL CASE

In the supercritical case Y' will become extinct with probability

(p/n)®  in which case it behaves like a birth and death process with birth

rate Y and death rate wn . Thus we assume that with probability

(p/n)a the epidemic process will become extinct early and in this
eventuality we use Y’ as the approximation for Y . It follows from the

above equations that

e—unt

£)9
& 3 s g=0,1, ...,

E(Yé | eariy extinction) =a gl

and
E(w'(w) | early extinction)= a@l-g
g Un '

The epidemic process will become a major outbreak with probability

approximately 1 - (p/n)* and in this eventuality the approximating process
has infinitesimal transition probability rates given by

(X'—l, Y'+e +l] at rate wuX'y ,
(X', V1) + g g
(X', Y'-g ) at rate YY' .
g g



e

The jdint p.g;f.,  P'ﬁn, By 25 .‘;; t) ‘satisfies

| oL 2 o) (8 22 i
4,12 B Tl kzg{%(3k+l_w}yk(?)»fif“+ Y[lfzk) 5Eéj_'

The characteristic equations of 4.12 are"
- d"/ Z Wl 9| 2y 970 b s
| | g
which:yield,theAintegrals
v(l—; ]efYt =‘kf_=;cohstb,“g : 0,~i,v.;.
g g - S
and

(l—zk] + x(t) (1

—w) - 1=k = const ,

=

from which we obtain, with‘the.uSe of the initial condition

” ' . n_a
’ P'@ﬂ, 245 zl, Cee O].: WAy

:14;13 P'w, 24, 2,5 s t)

| | | e y, (7]
- 7. -Yt x(t) , AR
= [}-(1-30)8 J [} (1-w) oy [}fzk) —

k=1

We'easily»obfain the following factorial moments from 4,13:

fu.lué)' A _ EX' = x(t) ,

4.,14b) LB =y (8, g =0, 1, e,
4.1uc) EX'(X'-1) = [1 - —)( ))?,

4.14d) | : EYé(Y6¥l) = a(aal)e—gyt ,
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4. 1he) 'Eyg',(yé-l] [l - i] (y (t)) s g=1, 2, ..
Furthef we have,vb
Cuas o E(®) = (B)dt = 7 (=)
S (W (=) 5 ijo‘yg( )t = z (=)

4.3 A limiting process

We present the llmltlng process Wthh is analogous to that of seetion
2. lO and follows dlrectly from Barbour (l974)

Let X(0) = n and Xg(O)'ﬁ'nhé(g)s, wﬁebe h is a constant,
g=0,1, e o Further,’let E(t) = z(t)/n and .hg(f)i='yg(t)/n ;'
g=0,1, ... ,lwhere x(t) and yg(f), are>defined_by equationll.26=with‘
u replaced by u/n . Then oﬁ dhy fixed”time interval ,(O;sT) , the random

vector

LU(n),~Vgﬁ)slv§n)) ;;.]_: [X%ﬁg, Yo"nno lYl-nnla ..‘)

convefges'weakly'as n > o to the diffusion (U, VO’~V s ;..)v whose joint

p‘-g.:;f' ‘ P(usvog o ; t) Satisfies

3P AL -
16 gy L {“[ln —][“H FTRESIR )
o =1 * R -1

: | 1n v, 22 4 %P‘ E“ l{ln 2é-2+> tl v )2.: =0
B A 2 DS LA} ) B A A §

0 .

where n_l =0 and v




From 4,16 we may readily“shbw that the means EU, EV;
are all identiéaily—Zero andvthe‘second moments satisfy the equations

w2 Y2y e S
4.17a) T+ U i}i n;_p|(2BU°-€) + ng>.2i EUV, | =0,
o T ke=l s T

CdROV, o o® oy e
~4.17b) —-C-i-E—J—+ [Y_ﬂl Z ni-l)EUVj + g Z E-Vi‘-iv'

1]
.H‘
-

.o u[nj;lEU*+EEqV3-l) +'ugnj—l‘— O,’_ g

dEV Vk

u;17é) -+jj%—— u(nk 1 UV +n EUV +gEE N +EV v ]]

i
o

- (u&n. . +yn. 6(k-f)’+ 2’EVvV. =
(uEnJ_l Yﬁalg' §) + 2BV
Assuming that'ln"ié large enough to.také -

Cim ot e .
[U i ?o ., f,.] U, v ),

we may use equatlons 4.17 to flnd an approxlmatlon to Var(X) and

Var(Yg) , g'=.0, 1, ... that would be useful in the event of a major

~ outbreak.

s 1=0,1, ...

, d,k=0,1, ...
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CHAPTER 5

THE GENERAL EPIDEMIC IN A STRATIFIED POPULATION
5.0 Introduction

One_Of fhe:aSéUmptions;médéfin the generai eﬁidemic m;del is théﬁ the
: individuals in aipopﬁlafi§n~(excé§t foﬁ'ﬁhOse that are remévea) mix '
’uniformly; i.e;,vin,éﬁy givenjtimé_iﬁtérval”ééch'pairvof indi&iduals.has an
équal_éhaﬁde.of meetihgf In the‘case Ofva,human pépulatidn of any size this
,is cértainly'not frue;; Iﬁ geﬁéréi ahy»ﬁé@befrof the populafion meets>the;v
same_péOple eacﬂ'déy,  A popﬁlatiOn éan bevéonsidefed as Stratifiedeith'
‘ péopie>mi¥ing:ﬁithin_fheif_pafticﬁlarfétrata or group and-With much_mdfe
restrieted'cdntact betWeeﬁ‘gfoﬁpsw‘,Ih fhié chapter we study a model which' .

incorporates this feature.

_“The firét‘séctiqn deals with the effect of the stratifidétion 6n'thé 3
importaht‘tﬁréshold thedrem.b In_theHstochéstié.Case we may'abplyfknown
resﬁlts 6fbgeﬁebal lineaﬁ processes to find the threshold coﬁditiqﬁ thchk
- arises from‘making aﬂsimplifying assuﬁption‘that is'analOgoﬁs'to one whigh
is reasbhaslé'iﬁvthe caée of fhe generél_epidemic in a homogeneou§. |
,popuiétion,u:EquationsQfor the,pfobability'bf early’extinctiOﬁ (undei.this
assuﬁpfion),aré foqnd'and'sdlvea in a éiﬁplé éase. We alsovfind an
apbroximaté»expréséipn for the probabilify thét infeétipn inifially

_introduced into one subpopulation will not spread to other subgroups.

In the usual way we use renewal arguments to find recursive expressions
for the mean final sizes of the epidemic in each subgroup and also for the

mean duration time of the process.

The final section presents the limiting process analogous to that of

section 2,10.-
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5.1 The thresho]d'theorem

The threshold theorem for the general epidemic in a homogeneous
population does not'heve a simplesanalogue for the case of a general
epidemic in'e‘stratified population. In the latter model a greater range of

behaviour’isﬁpossible.b Thus in the case.of the deterministic model an-
1n1t1al decrease in the number of 1nfect1ves in a partlcular group does not
guarantee that the ;nfectlves.W1ll-alway3‘be decrea31ng. However the usual
thresholds nb . = Yi , =1, ..., m , which we would haVe if the_groUPS»
were to;be'isolatedﬁ (”ji =0, %, j':’l, ceesm ;"i'¢ j]j.do.have-a.bigf
effect on thefsize of the epidemic. ThlS w1ll be demonstrated for both the

o determlnlstlc and stochastlc models.

“THE DETERMINISTIC ‘MODEL

We con51der the case when' m = 2 . Let’ ei =.xi(®)'

, 1= 1; 2.
Equations 1.32 become ‘
: -9 '
5.1 o Yy ;n ZI-z ull(nl+al el) +vu21[n2+a2 62]
-.and
: 0, ' :
75.‘2 . v in - = u22‘(ﬂn2+a2—62] + ulQ[nlm el). .
From 5.1 we have
Bo 1 o, + Il_]
by wy LM 8y
Y
_ 1
= 0 when Bl T




69
pupps < 5 . . . B > N : L o«
Since 0 el nlpvthere can»be no turnlng polnt 1f ‘Yl ”1“11, | Treating
equation 5.2 similarly we may draw the curves defined by 5.1 and 5.2 as

follows.

 The solutions to 5.2 and 5.3 are the points of intersection of the
curves with Horizontal and vertical asymptotes. The effect of the

thresholds ( BT

W T Y , 1 =1, 2} on these points is‘plaiﬁlyISéen,.

THE STOCHASTIC MODEL

in ﬁhe éasé of the general epidemiévpr0cess in a ﬁomogeﬁéous popﬁlation
'thelearly‘béhaviour can be apprqximated:by:assuming’that the.ﬁumbér of
susceptiblésAih fﬁe pdpulation feﬁéins;constantAat itS'initiai Valﬁé‘and N
‘bconéiaebing,the behaviour of the birth‘and déath:proceSS’which results,f?om
this'assumptiéﬁ;‘ Wé éXpect this to be trﬁe for the general epidemic process
) in a stratified population. Letting - Xé‘= ﬁi ;b i‘=bl, .;.3>m ’ the proCess
becomes é‘lineér multiVariate-sirth‘and.death-pppcesé Which;we shall call
Y' . The neéeséary and sufficient condifion for the égtinctioﬁ with
probability .i"of Y! is well knbwn (see e.g. Griffifhsb(1973)) to be that
the cﬁaracteristic roots of the matrix M = A4 - B have negafive real parts,
where in our.case | |

A :.{ai,}.:b{niuji} ,




and

where

0 otherwise.

We take this condition to bethe threshold condition, no major outbreak

‘being possible if it i$:éatisfied; ;
For the case m = 2 the characteristic roots are

d ".ﬁT:‘Y ;”““E =¥, % | (my 1y, -y, =nu v+?»12+un‘ﬁ‘u: W, "
bl U oo B R Klei 2B [ Ao RIS R M Z e M1 R ] I S

The roots are both real and in order that‘théy'both:be,negatiﬁe it is

Tnecessary and sufficient that all of

1“11v“ Y, <0
SU' | | | - 7/‘2“:22 - Y2‘_<: 0,
>and>‘
s | '(”1“ilf71)("2“22‘Y2) ’ n1"2”21ﬁ12"

should be satisfied.

Equations 5.3 and 5.4 are the familiaf threshold conditions for the

case of isolated populations.

When we have two populations interacting in this fashion we mighf.

expect that to a good approximation, “11 =My, T M, AulQV; Moy = qu

70
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where O <‘q <1 ;’and Yl'= Y2 =Y . Hence equation 5.5 shqws that even -

for two subpopﬁlations»which are individually subcritical a major outbreak '

‘kmey occur if
5.6 U [1 -%—Nl - -ﬁY——]< Q.
A PR e 2“”  o

We conclude by notlng that for Y' “to become“extinet'with probability

1 it-is obv1ously necessary that u i i'S Yi',‘

2= 1, ..., m , because . -

otherwise

Ldpy; .
jdt > (uiinieYi]EYi for seme 7

5.2 The probability of early extinction

Wevapprexihate the probability of early extinction of‘the general
 epidemic process in a stratified popﬁlation by the probability of eventual
: extihction of the initial approximating multivariate birth and. death process

Y’
If the characteristie roots of M do not all have negative real ﬁarts

Y' may become extinct with probability less than 1 . In this case let

p; = Pr{e&entuai extinction of Y' | Y’(0) = ei} s T =1, Lo, my
where e is the ith row of the m X m “identity matrix.

Because each infective acts independentlyiof the others we have
- . ‘ 7 ' : ‘ m a
5.7 Pr{eventual extinction of Y’~| Y’'(0) = (ai; ;..,»am]} = [ P L
: , A A | el

By  considering the possible transitions of the embedded random walk process

we have that the p, satisfy the set of equations




m m
B A jgl ni“ji}p_i Yt jg " ugngpv,

which may also be written in the form -

5.8. (nzuu,p—,, Yq,» (p»— ) + Z n; ,71,p (p - \

J#t. B

(thisvresuit is‘esééﬁtially contained in:Griffiths (1973)). }

:fPom’S.vaefsee that (as éxpected)‘for‘isolated‘populatiéhvgfoupéb(i;e;

Mg 0 B#J) we have

In the Simple case m=2 , My = My,

Yy f,Yz = Y: and nl,é n, =mn , we obtain

5.9 L Y

Py =Py *® a(lrq) * -

so that

Pr{earlyvextincfion};; { Y

= U,

nu(1l+q)

5,3 The probability that initial infection does not spread -

" In section 5.1 it was shown that the individual thresholds still

‘exerted a strong influence on the behaviour of the epidemic.

may be classified as subcritical or supercritical depending on whether

n.M.. <Y. or n.Hh., > Y, and we note that a group which is suberitical

1 11 1 1 1T
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Any group ©
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- can never subsequently become supercrltlcal. Any 1nfect10n arising in a
subcrltlcal group will die out qulckly in that. group. If a.major Qutbreak
,were,tc occur in a subcrltlcal,group it muSt‘be mainly due'to'tbe‘acfion of}
»binfectives,fromiother-gfcups'rather’thau,from ifsccwn iufec;iuesj ihe majef.
1influenceﬂcf,subcfitical_grcups in'cauSingvﬁajor cutbreaks is tbus in |

,infecting'supefcritiCal groups.

ASuppose that 1n1t1allybwe haveblnfectlon ‘in one subcrltlcal group whlch
‘we shall call group 1 ; We have seen that the behav1our of subcrltlcal'
pobulatlons can be approx1mated by regardlng the number of susceptlbles in - j’
that~populatlon to. be constant at 1ts;1n1t1al value. Hence we assume that

X =n

1 Further, let -

1

q(a) Pr{no‘lnfectlon occurs oufslde guoup 1 | ¥y (0) ; ‘} .

Siuce,each iufectivevacts lndebendently.understhis assumpficnbwe’baueu'
:q(a) = (q(l}]? ,'.d = 1,‘2; ...V,f

and

q(0) =

Now the backwards equation yields

S Soemo -1 :
. q(1) = [ Z: ulg ] {Ullnlq(2)+qu(O)} R
{ Which'gives_us_a quadratic equation for q(l) . It is easily seen that the

roots of this equation are real and positive and that it is ‘the smaller root

which is required. Hence

10 g (1) = j§l Hig"5 " “jgl “13‘”,7'”1] "‘*“11"1\(1] / Mt o
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Now suppose that initially all infected individuals are contained
solely in a supercritical group whigh we shall now for convenience call
group 1 . We may expect that if a major outbreak occursbin this group the
infection will spread with probability close to 1 . However, we knéw that

with probability approximately (Yl/ullnl]a a supercﬁitical group will

behave like a subcritical group with contact rate Yl and removal rate

My Hence in this case the infection will not spread with probability
approximately
Y a
a 1
q'(a) = (pl(l)) TR s
111

where q'(l) is the same as ¢g(l) in equation 5.10 with Yy and M7y

interchanged. Thus we see that the expressions for ¢'(a) and g(a) are

identical.

5.4 The final sizes

Let W. , ©
i

1, ..., m , be the final size of the epidemic in the

ith group and

pu(n, a) = Pr{Wi =r,,t=1, c.o,m | X, Y) =(n, &)},
where (n, a) = (nl, cees My Ay e, am] , r= (rl, e rm) and
(X, Y) = (X, eees X0 Y0y ess XY

We consider the embedded random walk process with transitions



(n‘-ei,' ate,)

C5.11 (n, a) > {

(n, a-e;) with probavility va

\

Aoa,ls' cer oy 52

. ey ey T . © X . : T . :
_ ,w1th.pro]?ab1‘l;.ty. ["i”i a] igl [Yiqi,mi“v: a) e

Y y.a.n .uT- al|l -
IR SRR B E

=1
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l, e ,m . -

where u; is the <th column of the matrix '{“ji} . éi is:the"ith' row

of the m X m identity matrix, and where no transition_is possible if -

a. =0, "7:Y=.l,‘,.--,m .

Thevbackwards equation yields for ri3=10,

-1

o m m. ‘
o _ : : g _ .
5.12 p}r(nb,» a‘) = [Z [Yiaiﬁzipi'a) Z i _Yv,aipr‘(n s a—ei) -

1z=1

and
3'pr(o,‘é) =8, a; = 0,1, il
Let
vch<",’ a) ,: E(Wh | (X(O) v(g)]

Multiplying 5.12 by ry and summing -over r, =

ko= 1, ..., m , we obtain for h = Ly, weesm y

on
—~
=
- -
Q
~
N—
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" - m 7 Lo B . |
5,13 ’Ch(n, a) = {zi [Yiai+ni"i'a) izi [}ZaéCh(n"a_ei]

Mey @, =0, 1, ver oo T =1, wuuym,
and

(0, a) =0, a =0, 1, .0i 5 2 =1, cunym .
-:The-recursiVe equations'5.12 and 5.13 enable the joihtAdistributiQﬁ of

~ the final sizes or. the individual meanvfinél sizes tb'be*fOUnd for any
initial conditions. The equations are bomplicated‘énd-the_proéedure'té o
folldﬁ‘ié‘nbtkat‘all obvious. We outline the method for findiﬁg”any‘

- Ch(jsfi)

~Suppose we wish to find Ch(Nl; ...,1Nh, Al’ ;wﬂ; Am) 1;‘We c§nsider the

(N)-hyperplanes defined by:'nl ol nm'= r, r=0,1, ... . For each
succéssi&é‘yalue of r we take each point on the '(N)—hypebpiane and

determine 'Ch(-; °) at eaéh-point_on the “(4)-hyperplane defined by

13

a, Toee. # a =8, 8 = 0,1, .., ‘Ai’+ r+1. It is-easily:seen that
for the first (N)-hyperplane (r = O),‘Ch(', «) =0 :fbr each point on each

of the (A)-hyperplanes. We continué in this manner until the point

(Nl’,..-, Nﬁ53Al’ caes Am] is reached.

5.5 Expected time to extinctiOnb

The epidemic is defined to be extinct when there are no more infectives
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left in the populafipn. As in the previous section we consider the embedded
random walk process.

‘Let M(n, @) be the expected.fime‘to reach extinction from the

state- (n, 3) . The expected time spént in’fhiswstate is

.fl

LS

,[Yi“-a:*”i% a],
The,tfaﬁsitionfprobabilitieé from this state are given by 5.11 4nd. the usual

argument gives us

-1,

. : : : om o
. L 7.} -
5.1% M(n, a) = [Yiai+niui ;} 1+ igi _ZiaiM(n’ a ei)

e T
4&,[\43’ -

g ra (e, a+ei]]

This'expression may be used to compute the expected time to extinction
from any initial state by using the procedure outlined in the previous

 section.

5,6 An approximating process

.LétT_P(wl’f;"’ wm, Zl’ ...,»zm; t) be,th¢ joint probability

generating function of (Xi,'..., Xm’ Yl,';.;, Yﬁ) It is readily shown
from 1.30 that P satisfies the partial differential equation

o
. 9 P
5.15 ‘é‘m‘z‘;

\*I"d

m ' A
‘:L‘, Yi[-l_z‘i) + Z w8 (20,
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This equation could be‘solved by the same method as was used in seétieh Q.i
- to solve. the cofrespondingiequation for the generalvstochastie‘epidemic
model; The\soiutiOn weulu.be even‘morefcomplicated aud thus}completely;
useless for. any practlcal purposes.‘.Because oftthisZwe:Will;conSiAer_an'

'approx1mat1ng process analogous to that used 1n chapter 3.

MAJOR OUTBREAK

In the event tuat a major outbreak occurs (see section 5 2) we form an.
‘ approximating-pPOeeSS_by‘replaeing in theacoutaCt prebability.rate the
stechastic yafiables Yi ,_*i.:7i;;;.;;em., byatheir‘dete}miuistic |

analogues Yi . Thus the infinitesimal transition probability rates are

’giventby'

( , ,

om
(X' Y'+e ) at rate X" 5’ MY o s
_ . o1 Jivd
o . . v J=
5.16 (X', Y') ™ 1 Do
. : ’ o ‘L=l,‘...,m.
t VYr_a Y RO e o
(X., Y ei) ’ at rate Yiyi

\

In the usual wathethave that ’P'ﬁdl,r;’_’ Wy B, s 7S t).;vthé;

joint'p.g,f..ofs (X’; vees Xé; Yi, R Y%]a Satisfies’the equation

capt . &
— =y

5,17 =
‘8 1=1

At 8 Z: U

This may be solved in the same way as equation 3.3, but the result follows
more easily»by noting from 5.16 the independence of the process in each

group. Hence we obtain
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_a.
- , E v S . om r"Yit T _ » xi
5.18 P'(wl,‘---s wma Zli '*“s‘gm3‘t)‘: !_[ lf(lhzi)e ‘ -l‘(l-wi) ZT
_ - ~ 1=l : 2l 1
: ‘n.”
N . i .t 1.
— (l -3 )[y -a.e )
7. 7
7. R
Faqtbfial momenté are easiiyvaund‘from 5.18 ‘to be for 'iléfi, .;,;_mi;
5.19 . EBEX! =zx.,
- : T 7
.20 Bl=yp,
5.01 . ‘EX!(X‘!-]_) ='[l —i-]xz, el e
v . “n.)1 A ) , ST
o . ) ") “ S , o
. ' ~2y.t Y.t
ot (71 1) = (L
5,22 EYi(Yibl)‘ a.(a.-1)e + Qal{y a.e }
1 | Y.ty 2
+ {1 - ET- yi-a e R
z .
o o N a. -yt
-5.23 EX!Y! = [l - ik}x,y. + Lxe T,
. _ R n;)7i on, L »

The distribution of the time to extinction, T' ., is given by

5.24 - : FT,(t) P'(1, ..., 1, 0, ..., 03 %)

. . . N N . n.

. , . L -
‘ . _Ytt { ‘_l e _Yit'} .
e e

and the jOlnt p- g f. of the dlstrlbutlon of the number of susceptlbles left

. after the epldemlc has become extinct by

5,25 | Q(wl, “""’m)»: P'(wl,,...,wm, 1, ...y 1 °_°)}
n,
m : 6i v
=TT |1-(1-w,) —~
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which shows that for this approximation.prodéss_the number left after the
epidemic in the <th population is an independent binomial variate with

. parameter 6{ .

“EARLY EXTINCTION _IN THE SUBCRITICAL cASE"_

In tﬁévéveﬁt théf’the hulti?ériéte birth’éndldéath prééegs _Y'?vbeéomes'u
eXtiﬁctvwith'Proﬁability~fl (ééé:séctioh 5.i);Wé ﬁsé it és_dﬁr‘apbeXimétibn' ‘
to Y_. 'Hefe we are'aésuming that-if'thegprbcgéé,becomég extincf:eéfl&ﬂthén :

‘each Xi"willgnotfdedrease much from its initial value ni .

The moments of Y’ are-givéh,by E |

, R R f”dEY'__ i
5.2§ v o . »W"WY_',’{

where ,‘_EZ'(O) = aT'f (ai, .;;,'qm]T, (sge e.g; Mode‘(Lgﬁg));
' The joint p.g.f. of the distribution of the final size (see Appeﬁdix D)
is given by
m o a.
i

) >P‘A(wls 0'-'.9 wm] = i:l (Pei.(wl;"v;;: wm)] ‘ " |

where e is-the <th row of the‘idéhtity matrixfahd the Eé_(') satisfy

7.
“the set»of eqﬁatiéns'
P_e%:'(wf cees wm}
'm -1 m
R ng it {Yfpei [w1’ ’ w’“) jzl Mg ej(wl’ ’ wm))} ’
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5.7 The diffusion Timit

We consider the general epidemic in a stratified population as defined.

in section 1.7 but with the folldwing.modificationsL The ihitial-coﬁditibn.‘

»is‘ (Xi(O)’ Yi(Q)} = (ni, ﬁihi) , 1= },ngfs‘m‘,;Wheré ea§h’ hi,'is a

constant. The,parametérs pji s s d ;ui, RN m ,‘are réplaced by uji/n3 .

. -

where n, = nk. , S 1, e m oo
whe 3 g ) +s d .

As was the caée»in sections 2.lQ aﬁd uﬁsvthis'prOCeSS is a memﬁer of a
- general class of processes discussed in Barboub'(1974)’frcmnwhigh'if leléws:
’that'oﬁ ény_fixed time interval.v(o, ) the‘réndom vector

-_[Jn)- o e

] l 9 LICRE BPY Um s l I, “ ey m ] .
) Xl’"gl_ ; _X’ﬁ-ngm- le.—nnlg - mennm
- Ty ey 2 Ty eeesy T E]
Vi e Ve Ve
Where ,(Ei’_ni) = E;3 I 1 f 1, e m.53conv¢rges weakly as n *>® to

“the diffusioq ,(Ul’ "5’:qw’ Vl,‘.f.,‘Km),;thse joint p.g.f.

'P[ul, voes U 5. D oo vm) satisfies

“m? UL
op L { il e %R gp
5.27 == - 3 A|ln —||u. = Y W..N.4E. Y ULV
a9t e yi 7 Bui i1 Jtd Tt Sz, Jid Bpj
A o v Y2 _
9P 1 L (. 2 -0
RO v | i jzi‘”ji”j+(l“ v g =0

From 5.27 it follows easily that FEU, s, EV. , 1 =1, ..., m, are

identically'zero and the second momentSFSatisfy~the‘equatidns
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. ammy, om o
5.282) —g— + EU; U jgl. (sg s ), + & ng (1 JZEUkV ka : ,7]
gD Y ugnizo, kol=1, ., m,

Z Jzn]—EUZk Lo Magn EZ P JZEUkVJ

5.28b)
, =1 ,7 =1 '7 _ ,7 =1

.dE’UkV - m
x 7 Yz

T ‘dt + EULV
g ',_.Z kE’VJVk + x gkack 2) Z uakn 5ok, l=1, e, m
dEV V moom

5.28¢) . —a?—+ (ysz)mfkvz [‘Ez ’j}=:1 '“_szVij*gk g kEVJVZ] ,

- By, Y n+EUV Y H.n
'["Zf’k.i:l 31" ,kzalfjk )

"X Yt Z Jkn G(k 1)= 0, k=1, c,m.
Thése‘équations~are:usefui in appfoximating  Var[X%]'“aﬁd Vér[Yi) ;

1 =1, .., m , conditional on a major outbreak occurring.
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CHAPTER 6

SOME OTHER MODELS FOR EPIDEMICS

6.0 Introduction

.in‘fhe.intrdduéfibn to'chapfef 5‘w¢ discﬁssédvthe ass;ﬁption'of hnifofﬁ. o
. mixingTOf thé ﬁopﬁléfion.‘ This is perhaps tﬁé:weékést,assumptionbbf{fh§ L"
génefalvepiqe@ié mddél and chéptér 5 sfudieé'éfmddeijin'whiqh the;aséﬁmption
is modified;v:Invtﬁis chapter”weﬂintPOdﬁ¢e aﬁd»Sfﬁ&y two moﬁéis'inighich_a. 5 o

completely different mixing’behaviour:isiaséumed;_

' The first of these is a'deel3for'a“pbpulation'with,very,réStPictéd.'
mobility. We formulate the model and find ekpréssions~forfthe mean number -
of infectiVes.at any time. The probability"of"évehtual extinction.df»the v

process is also found.

Iﬁ4the Second:of the modéls we makéiassumptiohs about.fhe‘mixing-of
fhebﬁopulatiénrthatarebased 6ﬁ‘the-family-étrﬁétube of humah,populéfions.
The pbocéssfwhich'ariéesris a two—typé bfahchiﬁg §rogésé. We discusé the
.‘probability of.eariyiextinctioﬁ‘of the;prdcess,vfind:recurreﬁée rélation§ '
fo? the mean ﬁumbers of the vapioﬁs typéé ofAinfécfive and finallyrwe-

‘discuss the ésfimation of the‘parameters‘OfrtheAmodel.

6.1. A model for an epidemic in a community with very restricted mobility

"1Thi$ model would be applicable’to'a;pbpdlation with little or no.
mobility such as a population of trees in a forest. (In this case we might .

imagihe the epidemic to be the spread of a parasitic growth for example.)

Infection is assumed to be spread by those infectives on or next to the




boundary of the infected érea;

We shall call thése infectives that:égfuaily férm‘j
thé‘boundary of £ﬁe infectedvaréa fhe primafy bouhdéry
infectives‘éhdvthoée~thatbére adjacenf_%o‘fhe‘bqﬁhﬁafy?
shéllvbe,caliéd seqondéﬁy-béundary iﬁfééfiiés. »Tﬁeir'
numbefs.at.aﬁy'fimé_;f‘ éhalijbe denofed by,;Yl and

Y.

5  néspectively;

,In.the time intétyal‘~(t,ft+6t)_:fhéffo;lﬁwihgbtrahSiiibﬁgfmay'ébcﬁré’ i
each'of‘{he ’Y1 vprimérybbouﬁda?y infécfi&es may:producéAaﬁpew briﬁéﬁj
vbéﬁndéry‘infeéfiye wit£ pfpbabilitYf”ﬁlStf aﬁafbégdﬁe itself a Séééﬁdéﬁy;.
: béundary‘infééti&e'(i.e.‘thelbOuhQafy'is nowVAt the new inféctivé)§ ;eachHof.
~fhel Y2 secbndary.infectiVes_hay,pf;duéé a»prihgry infectiYe Qith |
_prébabiiity U0t :aﬁd bécome itself a nog%boundary infectiye; léach' 

’ - : .

'_inféc{ive‘may become removed with probability v&t regardless of type.

. Non—boﬁndéryiand remo&ed'individﬁals are assumed to have norihflUénce on the
behéviéﬁr_of the boundary infectives. We are interested primarily'in théjb
spréad’bf infectibﬁ so the removed and:ﬁon}boundéfy individuals will Be
ignoréd; | | | |

Thus the infiniteéimal transition probability rétes for the mddel are
. given by

,

’(Yl; 12+l] ~at rate u Y.,
:(Yl+l’ Y2¥1)'vat rate u,¥
[Yl—l; YQ}' at rate yY

(¥,, ¥,-1)  atrate vy




g5
and the initial-condiiions are _(Yl(o); YQ(O))‘:‘(Q,.O)Y.

The model may readlly be generallsed to include more types of
Vslnfectlves characterlsed by thelr dlstance from the boundary although the

mathematlcs rapldly becomes tedlous
THE MEANS -

Let P(v, v,3 t) be the joint p.g.f. of ¥ and ¥, . In the usual
way we»may show'ﬁhat P satisfies thevpartial differehtialfequation K

Z.G;lffj_ 8P _ [“1 l(v 1]+Y 1-v ]] Bv“ f [U‘( 7é)fY(i_ué)jl~“_ ;,_f-‘

where..P(.l, 02, O)f='oi .

An expllc1t solutlon for P appears very dlfflcult because of the non-

'k llnearlty of the characteristic equatlons of 6.1. However, puttlng :

, yl = EYl and y2»=, Y2 , it follows ea31ly from 6 1l that the means satlsfy
the equations
6.2) IR PR
where _(yl(O),‘yQCO)),e,(a, 0) .
~ Since the process is a linearkone,~quations‘6.2 also define the

cobresponding deterministic model. The SoIUtionsoto these equations are

readily found by standard methods to be

_ ét[y+U2/2) S
6.3 y,(8) = ae [cosh(%8t)+(u,/8) sinh(5At)]
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‘and

a -t(y+,/2) - ;
~e - 7 sinh(¥A2) ,

B4 - yQ(#) :
"_whereu‘A»ﬁ,Vﬁ;Tﬁ;?EﬁIT : _Itrfollows ffgm é;3’and‘6.u that;the:épiagmic;wiili:V
‘die:oﬁf:if | | |
s sl
| fﬁs PROBABILI&?VQF'EXTINCTiON},v
| 'Létlb‘ -
| "vp<d,,b)':bfr{exfiﬁctionrbf fge.prééééévl:{Yi(b);‘Yz(d));%:(a; £$}l;: 
Sinée»eaéb infeqfivévégté indepehdentiy wé*ﬁavé_
‘5;‘5,4 e by = p(L, oﬁp}@; 1")1?_,/_'a,,ﬂb o, 1,
 Also,;é‘c§nsidefation of fhé émbeddéd Pahdom.wélk_process yields“

1 p(l, 1) + —f—

N 2

i

6.7 . p(1, 0)

and -

1

U .
2_p(1, 0) + Y

6.8 AT p(0, 1) ' .
| Ho*Y Ho®Y

Equations 6.6, 6.7, 6.8 are easily solved to give

Loaf y(y,) = wpu, s
. By =4 | b
0%, P> D)=y () ) (g )

( ] otherwise,
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s0’that-extinction is certain if Y(Y+U2}:3-U1U2 (ef. 6'5)ﬂ

6.2 A .two~type'bran'ching process -ni,ode]. -

'Ih this‘seCtion‘weACOhsideP»a”branchingyorocess'model forlan_epicemic;{
The,theory'oflofanChing,pfocesses lsvmellfdeVeloped (see.elgl,HafriS’
,(1963))g' Tﬂey are especially’useful iﬁlmodelling‘thebspread ofya diséaséyj.
which hasﬁalﬂearly constant latent pefiod so that new "generatlons" of
ilnfectlon may bebregarded asroccurrlng at dlscrete tlme 1ntervals.. If we‘
'restrlct ourselves to the early stages of the development of the epldemlc
'ybefore the depletlon of the susceptlble populatlon becomes 81gn1flcant and
we may take the distribution of the. number of offsprlng (1‘e. new. 1nfect10nslyv
caused by each 1nfect1ve) to be 1ndepeﬁdent of the state of the system, the
mathematlcs 1nvolved is tractable Thls restrlctlon still prov1des
icfofmation of interest since it is the behaV1our of the_process during its

early stages which determines if the outbreak will be minor or major. :

The‘pfocess We shall‘conslder is a multltype Bramching pbocessvbased.on
:the family stfucture of a human populatlon. We assume that,‘outslde
thelr famlly, every infected 1nd1v1dual may pass on the dlsease to any
other’ 1nd1v1dual but w1th1n a famlly only the Ffirst member to. be. 1nfected
may pass on thezdlsease to’other members of’that famlly. ;ThlS is él |
‘reasonable.assumptioa when family units are quite»small'(e.g{ in:many
- middle. and uoper class urban societies)ti Tﬁus.we may classify infectives
into two grouosi type‘ 1 ‘are those infected by contacts outside their
family;’ amd.type'Q are.those infected within their family.' We may also
classify sasceptibles into those from.families wﬁicﬁ already have_lnfected’

members and those from uninfected families.

Further, we regard the number of (both types of) susceptibles to be
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approximately constant. Hence‘wg may assﬁme‘thaﬁ eéch infegtiVe»infécts Il.
type-l'infegtives‘and each tyﬁe 1 infeCtive’infecfs fz:vtypé‘;Q
infectivéé, whgré  Iif ;nd I2ﬂbéfébip§§peﬁdent random Variab;es:with'_
»;p.g.f.'s 'fég) xapd  §(§) fespegtiveiy;"in”the'speciél ééséAWnge Ii::hég
-fhe Poisson?&iétributibnlthis,quel r¢&QéésVtoithéf.of'Earfoszyﬁéki <1972)«“.‘_‘
| L?£ fy:j;’: i, j=1l,2, n= °’ i; "'js,be‘fﬁe'ﬁumberfof7typ§§‘3
’VinfeéfiQesvin:the nth'generation{givéhfdﬁé ihitiéi f&pé  iAviﬁfecfi§e5.§ﬁﬁ'

. let ’Fﬁi)(35't) , ©=1,2, n=0,1, ... ,be the joint p,g;f.,dfn'yzi"

and .YZQ'."Theh we have

6.10 | fﬁl)(s,it)» Fe)glt)

61 o BP6,w

f(e) ,‘>v'

and it is a well known result of branching process theory that

. A RECA G
6.12 F (s, t) =F -[Fn.‘

(s, ), Féz)(s; t))

H
PR i=1,2, n,m=0,1, 2, ...

.THE pRoBABiLITY OF EXTiNCTION

} wé.expect this model to be usefnl'in describing the eafiy beha&iouf,of'
an ebidéﬁic in a population haviﬁg‘family‘structure. If the branéhing
procéss-bedomes extinct it is most‘likely,to dé so within a sﬁdrt peﬁiod‘
éfter its béginning. Thereforé wé»expect.that the probability of eventual
éXfiﬁctiOn of the branching précess will be a good approximation to the

\

probability of early extinction of such an epidemic process.

Let fi = f'(1) and g, = g'(1) be the means of the non-family and
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family offspring distributions, and let

m. o= Pr{Yﬁj =0, g4 =1, 2, for some k} , 1 =1,2,

be the probabilities of eventual extinction of the process. By another well

known theorem, (ﬁl, n2) = (1, 1) if the largest eigenvalue of the matrix

\

o

0
9
not greater than 1 . This condition is easily shown to be equivalent to

6.13 - filiegy) <1,

If this condition is not satisfied then (ﬂl, “2) is the smallest positive

solution of

(L) (2)
(ﬂl,ﬂg = P& hi’ﬂé)’Fl (ﬂl,ﬂg] .

Using 6.10 and 6.11 this condition becomes

6.14 m = flm)g(f(m)) »
and
6.15 Ty = f(“gg(ﬂg]) .

We shall consider 6.14 since it arises from the more realistic initial

condition. The behaviour of the solution m when the process is only

marginally supercritical is of interest.

Suppose the first 3 factorial moments of the distributions of which
f and g are the p.g.f.'s are finite. Then making use of Taylor's theorem

we may write



g0

6.16 f(s)g(f(s)) = 1 + (s-1)f; (1+g,) + (8—1)2[%2(l+gl)+ff(291+92{]
+ (e-1)h(s)

where, since f(s)g(f(s)} 1is a p.g.f.,

-1
3
h(s) |}3 (1+g,) +3f1 £, (29, +9,) 4] [392+g3):[
is a p.g.f. (see Daley and Narayan (1980)), and where fé, g; > 1 = l,b2, 3,

are the <th factorial moments of their respective distributions.

Using 6.14 and 6.16 we obtain

£, (14g,) -1+ (1-m,) %R ()

6.17 l1-m = 5
f2[1+91)+fl[291+92)

1

where R(s) 20, 0=<s8=1.

If 1 - ™y is close to zero we can neglect higher order terms and

write

fi(l+gl]—l

6.18 l - 5
£o(14g,) 477 (29, 49,)

9

1~

and in fact we see from 6.17 that this approximation is a lower bound for

1 - ﬂl .

THE MOMENTS OF THE GENERATION SIZES

Let



and

i3

R ) B T S

From equation 6.12 we obtain the sets of recurrence relatibns.

6.19. M«Z;l =My vmls 4 g

1171 12725 ° l‘;,‘ 2, n=0,1, ive s

where o
O a0
My = Myp =1,
o _,0 _
M12 - M‘21 =0,
and

SRR RS T

22 ’

3
1
Q.
[l

12
Similarly we find that

U TS R ,
6.20 Wy = MmNy ¥ ”7;1{’{7

where

" and where

91
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my = ”21'%wf§-?»
w0
ﬁ12 %'92,?::
o = fl»gl’?
co.

| PARAMETER ESTIMATION

Here we use the technlque of Harrls (1948) who found the max1mum
11kellhood estlmator for the mean of the offsprlng dlstrlbutlon 1n the case
of a »"l type" branchlng process (Galton-Watson process) ?hls technlquev;s
easily extended to-thls case,

Lét_‘ai, b, ¢ =0, 1, ..., n, be the observed number of type 1
and type 2 infectives in the <4th generation of-infection;and 'ai'k"“
: R : ’ SR
bt k s bif= O 1, «oeon, k=0,1, ...; “be the observed number of Lth

generatlon 1nfect1ves that infect k type 1 and ,k 'typep 2 1nd1v1duals

respectively. We.note that

6.2i : | _ kg:o a»i,‘k e b,
6;22_ Z:kai A s
_ em -  o k§; Pix ™%
and
§ Kb, =b.. .




Let

R B .é N AR ,
fle) = go p;s” and 5‘7«;‘,3-)

‘The conditional probability of a, , a

207 7117

 multinomial form

a.+b.! , .
e TT e
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_;;>, givén ‘ai; bi has the

Thus‘usingVS;Ql—SQQH,wé'hayé’thaf the_jbiht’condifional“iik?lihoodfdf.x

ai:k ’ ¢ =‘Q’: vews Moy ko= 0, 1; ‘0.-"0 ais

n © P,
- TT X
L = il [a.+b1]: Z. :

Therefore

. o (n
“In L =>'§: : z: a.
k=0 (i=0 *

% 1n Py, +.£§gvln(ai+bi

) n . .
J1r+ Y Y ina. .
k=0 ¢=0 Tk

Using the method of Lagrange multipliers we find that the maximum 1ikelihood

estimators for the Py are

n w

|
™
Q
Q.
™
™

6.25 o Py =

For ,fi weé have

f
™~
Q
@
XA
e
—~
Q
V\
+
o
\s\
p——
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6.26 Fo= ¥ kb
L/ ¥ (e
= a. a.+b
io T+l iZg V7
Similarly
o b n
q, = b. // a. ,
ko 2o Tk .igo ke
and

6.3 A MODEL FOR AN EPIDEMIC IN A STRATIFIED POPULATION

The model of Chapter 5 is very comp%icated mathematically and very
little can be said about the qualitative‘behaviour of such processes. In
this section we introduce a simplified model for an epidemic in a
stratified population. We use this model in a heuristic discussion of

the size of the epidemic based on assumptions about the social mixing of

the population.

We will consider a population consisting of & household or
"family" groups. We assume that the infection rates within households
are much larger than the between household infection rates so that we can

neglect reinfection of a group once it is infected.
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The final size of an epidemic here shall mean the total number of
individuals that become infected by the outbreak. Let the size of an
epidemic in the it household group given one initial infective be
Wi . We will assume that the W{ are pairwise independent. Let q;

be the probability that infection ever reaches the jth household.

W.
Let fﬁ(s) = E(s J) s, J =1,...,k . Further, let W be the size

of the epidemic in the whole population and f(s) be its p.g.f.

Then
1 1 k . 1-7.) k 7.
6.27 Fe)y = ¥ ... Y lnq.0-q) Y1 £
i,: 3,50 |4=1 7 J g=1 Y
1-1.,
1 1 1 (l ) J 1
= (l-qrqfi(e)) 1 ... 1 1mq; VY I £ 9
1,50 %,=0 j=2 J j=2 Y

I

RS (1—qj+quj(s )} .

The mean and variance of W are easily found to be

K
6.28 EW = ) q.EW,
J’:l J ¢7

and
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k
2
6.29 Var W = ) q. EW: + 2 ) q.q. EW.EW,
j=l'j Jd i‘-‘jig T J
Ii 2
- q. EW.
j:lJ J

k
P

2 2
JEW. - g. .
J:qu{ 5 - aq,(En) )

k 2
jzlqj[Var Wj + (l-qj)(EW3) ]

Families are easily characterised by size. Suppose there are n
households having s members, s = 1l,...,m . We will assume that the
final size of an epidemic in a household is a function of the size of the

household. Let ZS denote the final size of an epidemic in a household

of size s . Then

1
19

1 s J

and 2(8) denotes the sum over all households having s members. The

parameters ai could be thought of as the average infection rate for a

household of size g .
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n
We would expect that as k =+ = | 7§-~ fé , & constant. We would also

expect that the ﬁs are functions of k and that s plays little part in

the asymptotic form of this function, so put as = csq(k) , where Cq is a

constant, § =1l,...,m .
There fore
. m
6. ~ .
30 EW ~ kq(k) Z e fEZ
s=1
We also have
6.31 var W = 0{kq(k))

Using the Chebychev inequality we can show that

6.32 P{3Ckq(k) < W < %l?kq(k)} =1 - 0[(kq(k))-l] ’
m
where C = Szlcsf;EZs .

Hence for any e > 0 , Pr{W > €k} ~ 0 as k > » , unless q(k) is

0(1) .

Thus it is the parameters q; which play the dominant part in the
qualitative behaviour of the process. In general they are functions of k ,

the size of the 7™M households and the geographical and social "distance"

between them.

We now introduce some assumptions about the mixing of the population

in order to gain some insight about the parameters qi . Suppose that infection

spreads initially from the rth  household (qr = l) . Classify all house-
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holds according to their social relations with the rth  household as follows :

(1)

Let S, denote the set of those households having members with whom members

of the rth household mix regularly. Members of Sil) will be said to have

level 1 mixing with the pth household. Households belonging to
5(2)

= u Si/Sp (those who mix with those whom the rth family mix with)
=5
r

have level 2 mixing with the rth family, etc.

Assume that

i < sl
qj p, for g e Sr

(for ease of notation here we are letting J stand for the Jjth family)

From this assumption, and the classification of households follows the

further assumption that

_ .2 . (2)
qj =p , for g e Sp .

From 6.28 we may write

L .
EW=YYp Y, EW.
2 ieS(z) v
r
EW.
[ 7 (2)
= z pn, z — , where n, = n(S )
¢ 2 i=S(l) n, 2 r
~ 57§ p* h B = = IX( EW
; p nz s Wiere = k L 1., .
1=1

In order to find properties of the parameters n, it would be necessary

L
to make further assumptions about the connection between individuals or
groups in the population. Little work appears to have been done along
these lines, however a survey of material of some relevance may be found in

Mollison (1977). It seems very difficult to make assumptions which are both

realistic and lead to a model which is mathematically tractable.
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If there is little "overlap" in the sets Sr’ r =1,...,k , then we
would expect that n, = ni and so major outbreaks would occur if
qny > 1 . We will consider the following model, formulated geometrically,

to demonstrate how overlap may effect the parameters ng -

Let the households be distributed uniformly on the plane. Each house-
i
hold mixes regularly with other households within a radius R . Hence

2

n <~ pmR , where p is the household density.
% 3pmR° = 3
g TSR =
and in general,
n, ~ (252,«1)11l .

So (if k is large) ) pg'nz = 0(1) and major outbreaks are impossible.
L

While neither of these two assumptions about the overlap of the sets
Sr are realistic, the truth would lie somewhere between. It would be rather
2 . . . . P
doubtful that § p n, is 0(k) . Hence the social mixing characteristics

L
of human populations would have the effect of making epidemics of size

0(k) impossible.

It is relevant to note here that the expectéd distance between two points
uniformly distributed on many geometrical shapes of area A 1is proportional
to VA . Hence, if geographical distance apart plays a major role and the
population is fairly uniformly distributed, we might expect that q(k):'k_;5 s

so that epidemics of size 0(vk) would occur.
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THE EFFECT OF THE PROCESS WITHIN FAMILIES

We would imagine that members of a household mix uniformly so that
the general epidemic model may be useful to describe the process within
households. Family sizes are quite small so the threshold condition would
not have a marked effect. However, even in small populations a distinct
feature of the general epidemic model is that the distribution of the
final size may be U-shaped. The effect of convoluting a number of such
distributions will be to produce a multimodal distribution for W . This
effect, however, will be quickly dissipated as k increases. This is
shown by the following graphs of the distribution of W when qj = q = .1

fﬁ(s) = fbs + fssI+ s Jd =1,...,k .

.6
Pr(w)

Pr(w)

9



Pr(w)

Pr(w)

.06 {

'O‘*ﬁ

.02 4
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50

20



102

APPENDIX A

PROOF OF THEOREM 2.1

Suppose A has m distinct eigenvalues Al, vees A with
multiplicities kl, cees km .
2.1 are given by

The set of independent solutions of equation

.t .
e’ [(D+t)‘7K(>\)]|>\=>\. , =1, .e.,m, g
1

R
where K(Ai] is the eigenvector corresponding to A, and D is the

differential operator 9/9A

Theory, p. 194),

(see Bellman (1960), Introduction to Matrix

Hence the general solution of equation 2.1 is

m  A.t ko1

7 .
Y a. [(oee)ROO]]L L,
i1 j=o A=Ay
where the a,, are arbitrary.

Let Kuv(xi) be the element of the vector K(Ai] which corresponds to

the position of (t) . Then we have after rearranging A.l,
P g ,

mooAt kg-1 ;

= K
P, () iéi e jgg aij[§D+t) uv[xii]
so that

?
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~u=0 v=0 <=1

nonta-uomo At kégl j
Pw, 35 t) = ) Y Y e P aijED+t) Kuv()\i)]_ .
Substituting this in 1.3 we get

n nta-u m A.t k-1

1 :
y Y Yet Z {A (D+t)‘7K (X JuaP+g(pet)? g (A )uMe?
u=0 =0 ¢=1 4=0 : w v

~(D+t)jKuv(ki](uvz(z—w)wu—lzv L op(1-2)w%aP” l)} =0 .

Changing the order of summation

where all terms having negative indices are understood to be zero.

Let A be max (Xi] and k its multiplicity. Multiply the above

z
. -k+1 -\t A . .
equation by ¢ e and let ¢ =+ © ., All terms will vanish except the
coefficient of ekt.tk—l . Hence
n nta-u
y % {AKuvw z -K ,(wz(z-ww #rl0Lion(1-z)0 e’ l]} =0,
u=0 v=0

for convenience A is written
( Koy Kpp)

. . r .
The coefficient of w zs is

A.3 p(s+l )X - [A+s(r+p)]%¥ s T (r+1)(s-1)K =0

r,s+l r+l,s-1 i



where Krs =0 if r>n, str>n+ta , r<0 or s

Putting » =0, 8 =n + a we have

_ (n+a)p+d
1,m+a-1 nta-1 ° To,mta

Continuing down the diagonal,

104

<0.

n-1 o
=ATT (n+a-1)(£+p) +A
kna h {i=0 (i+l)(n+a—[i+l])} ’ Ko,n+a :

But putting r»r =n , 8 = a we have

[Ata(n+p)]Xk =0 .
na

So either A = -(n+a-1)(i+p) for some 7 = 0, 1,

in which case all the elements of the top diagonal are

s M, O

v Ko,n+a N

zero. Examining now

each diagonal in turn we see that A must take the value

A = -s(r+p) for some » = 0, ..., m, 8s+r =1

= - = =
We note that A so(r0+p] Krs 0 for r»>r

but Kr s # 0 otherwise the condition of Theorem 2.1
0’0

the zero vector.

s eees NEA .

>
0 and r+s r0+30 .

ensures that K 1is
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-k+28-xt

Now suppose that k > 1 . Multiply equation A.2 by ¢ and
b

kttk—Q

let t > o . The coefficient of e . in A.2 will be the only term

remaining. Hence

& U LU u-1_v-1 u_v
' _ ~x! _ - - - =
Z Z: {[Akuv+(k l)Kthw z Kﬁvfuvz(z ww Tz +pu(l-2)wtz J} =0 .
u=0 =0
The coefficient of w 2z° is
] - . ! - ! - =
A p(s+l)K) - [Ats(rep) 1K) -+ (r+1)(s l)le’s_l + (k-1)K, =0 .
8
n+a C)‘ . . . .
f). . . .
. ..Q' . .
sob . bl .® .
A A é} " . .
ryoo, r
= - 1 >
Suppose A 30(r0+p) » then all Kfs with r+s > rgt8, or r >r,

are zero (which implies from A.4 that the same is true for k;s) , but

Kfo’so # 0 . Putting r = ry s 8 =8, in A.4 gives

which is a contradiction.

If k =1 , take the next largest eigenvalue and repeat the procedure.

Continuing in this way we see that all the ki are 1 .

Hence if the condition of Theorem 2.1 is satisfied we may write
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P,s(t) = Y )Y e v Krs(xij) , r’= 0, veoom, 8=0, ..., nta-r ,

where

Aij = =j(i+p) , ¢ =0, ...om, § =1, ..., nta-i,

and Krs(xij) is the element of K(Aij) corresponding to the position of

pps(t) in p(¢) . All the Krs(xij) may be found from the recurrence

relation A:3, which together with the initial conditions
1 if r=n, s =a ,
Ppg(0) =

0 otherwise,

determine them uniquely.
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APPENDIX B

COMPARISONS OF THE GENERAt EPIDEMIC MODEL
TO THE APPROXIMATION OF CHAPTER THREE

The following pages of graphs compare the general stochastic epidemic
model with the approximations derived in chapter 3. A description of the

graphs and an explanation of the notation is given in section 3.3.



108

EX! _——— = _ .
’
I'e
34 )
vx' 7
| ’
Figure la) /
, e -
’ VXI, .. nc-l”"-.-0§'~. -
2 | ,/ ".,....4..,... ""v
,/ .-...o-"" VX
P o
1 , ..
s -
S
e
2%

.6

.6
Figure 1lc)

(n,a) = (5,1) , p=9




109

3 6

% Figure 2a) T~ L.
| y

|

| 2

1

i

\

!

, vy

Figure 2b) !

-7 2N
Y~ =3 ..
s .
17 AR ~ - .
o - - - -
/A =~ EY".,
. - -
; ) - - :
d ve - - ’
. . -~ e
R LR
3 L gl S
§ =
a ‘s
- .
B e, el
Ve e,
.

F - -7
-
Y. ". -
.8 ', -
y
F'}" Z
Vo
-"‘ (e
!" (4
S
.6« 4
Figure 2c) p
¢
1

j
2

i

I

!
W2 -

T - v A g + v v




110

EX
10 - ————
!
Figure 3a) EX
5.1 M T o= s;'-—_—.'_-_:__":;__.'o
VX 'x 1077
S 6 .7 5

’ vy" x 10

~

Figure 3b)

.8 -

Figure 3¢)
.6 7

1 .2 .3 4.5 6 .7 8 .9 1.0 ¢

(ny @) = (20, 1) , p=g9




111

40 9
\Y
\ EX'
\
30 \ VX" x lO—l
N - T T L N T e e e e
oo VX x 107t
20 <
K\
i N
Figure 4a) / W
N
04 ifr ~
‘: !
Iy -
7 VX' x 10 .
/
v - v ¥ 3 ‘ t
AN 3 8 Lo 4
\3
!/
EY',
12 9 !
!
/ EY
!
10 - A yyix107t
g

Figure 4b)
6 o

Figure uc)

6
4
.2 1

— M 6 8



112
70 4

60‘-"

50 4
40

Figure 5a) i
30 1

&
R

20 440

10 43y \

40

30 7 1

N\ vyt x o107
Figure 5b)

20 1
‘I
\ 7Y x 107t

10 Y. VY' x 10°

Figure 5c)




113

: ¢
2.0

v ¢
2.0

- t
2.0




6
Figure 7a)

u

VX

ce
-
oy

10

6
Figure 7b)

1.0

6
Figure 7c)

2.8

2.8

) v

1.6 2.0

114



20 1

15 A

10 4

Figure 8a)

H
i
5 i
d

VX"

~

A\ VX B e e e

Sesreesiessne

-~

oo

- . e -
’ T e ey e e e e e e W e w e e o o

115

12 9

10 J

Figure 8b)

6 11

8.2

Figure 8c)
IR




116
VXn
L ify
uo ; \,'
i
T
Figure 9a) | i {\
i i
20':5 \ EX
I EXYNE
: M\ 3
H o\ \
lO‘;’V)g"\\ \
17 ™\
’ \
4
NN
\\“"*""-h-'-t.—-»‘._. -_9....-.—-.ag=
T v v ‘ t
.3 . .5 . .7
40
vy, /46
30 4 |
Figure Sb) ,
; e '
20 . : ,\‘\\E‘._Y
LN
EY ™
107 . VY’ - .
1 7 ’.“-'-‘.A
1 2 3 A .5 .6 17
1.0 A
.8.
Figure 9c)
.61
4T
.2
- t
.2




120

100

80 4

Figure 10a)
60 -

40 -

207

117

v t .
A .2
1007 i
Y
80 7
i
\
60—4 “ Yf
y ‘\
Figure 10b) i
i
407 "\._
)
EY
20- /’-\.‘;".s
/P VY! S
/ = _
/
.l 2 "3, QL" .‘6 t
1.0t 9
.8 7
Figure 10c)
.6 1
TR (na a) = (80, l) 2
£=9
.2 4




FQ)

i (ny, a) = (5, 1)

......

118

Figure 1lla)

FV)

.5 L====‘ (n, a)=(10, 1)

| T | st Y

N

Figure 11b)

0 1 2 3 b 5

6

7

8 9 10

F(N)
.5 (n, a) = (20, 1) Figure 1llc)
‘ : . PSS Sl PN
S :—:,Ey"ﬂ_['_'f_— | o
0 1 23 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 v
F(N)
. Figure 11d) 40
5 m,a) = (40, 1) £
0 -39
36 38
FEN)
.5 (n, a) = (80, 1)

79 80

N



‘ 119
F(N)
5 (n, a) = (5, 5)
: Figure 12a)
I e L LR SN ___l
0 1 2 3 L 5 N
F()
5 (n, a) = (10, 5) Figure 12b)
L e =l
0 1 2 3 4 5 6 7 8 9 10 N
F(N)
.5 (ny, a) = (20, 5) Figure 12¢)
—
r" rr
——r 3 | ,
89101112131’4151617181920 N
F(N) E
.5 (n, a) = (40, 5) Figure 12d)
39
38
36 37 || N
F(N)
.5 (n, a) = (80, 5) Figure 12e)
79 80




120

APPENDIX C

APPLICATION OF THE QUASI-DETERMINISTIC APPROXIMATION
TO THE PREDATOR-PREY MODEL

THE MODEL

The predator-prey model is well-known (see e.g. Bharucha-Reid (1960)).

We shall define the model here for the sake of convenience.

Let Xl and X2 be the number of prey and predators respectively at

time ¢ . The infinitesimal transition probability rates are given by

(Xl+l, X2] with rate ule s

(x,-1, X)) with rate y XX, ,

(x5 %,) + S
(x,, X,¥1) with rate WX X, ,

L[Xl, X2—l) with rate Y2X2 .
and the initial conditions are (Xl(O), X2(O)) = (nl, n2)

The deterministic model corresponding to this stochastic one is defined

by the equations

8
1

C.1a) R U ST B

e
|

C.1b) 5 = xQ(UQxl—YQ] s

where (xl(O), x2(0)] = (nl, n2) .

Because of the nonlinear probability rates the stochastic model (like
that of the general epidemic) has been found to be mathematically
intractable. (In fact the predator-prey model is even more intractable

because there is no hierarchical structure i.e. apart from those states
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corresponding to extinction of a population, all states may be revisited.)

THE QUASI-DETERMINISTIC APPROXIMATION
We remove the non-linearity in the probability rates by replacing some
of the stochastic variables by deterministic variables. The approximating

model is defined by the transitions
,(Xi+l, X%) with rate WX s

(Xi—l’ Xé) with rate YyzoX]

. !
(Xi’ Xé+1) with rate u2xlX2 s

L(Xl', X)-1) with rate Y,X} ,

where initially (Xi(O), Xé(O)] = [nl, n2] .

Now Xi and Xé are independent and each is a generalised birth and
death process, the first having birth rate W and death rate YixQ and
the second having birth rate Moy and death rate Y, - The generalised

birth and death process was studied by Kendall (1948).

Letting Pl(z, t) and P2(z, t) be the p.g.f.'s of Xi and X2

respectively, we find from Kendall's results that

n

7
£.+(1-.-n.)2
P.(z, t) = L et , =1, 2,
g
where
_p.
e’l/
gl v, 2,
Z

and



and where

=
il

and

P

Py

From equations C.1l

The first two moments may

! =
EXl

1=
EX2 =

Var Xi =

122

(t)

"

t
JO [leQ(T)—Ul]dT .

(¢)

t
[O [Y2—u2xl( T)] dt .

we see that

n.
_ 1 . _
pi(t) - ln x""'_(t) 9 1 + l, 2 .
7
be shown to be
xl s
Ty s
x t
1 dt :

x {l - — [1-2u.n J ——1

lk 1 11 0 xl(T)

and

t
Var X2

o) ¢ dt
.'L'2 -1 + 7—1—2- l+2’Y27’L2 JO W
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The distributions of the time to extinction, Fé(t) = Pi(O, t) ,

1 =1, 2 , are given by

1
x t -1
1 dt
FI(t) = l—-——[lﬂln J ————] ,
1 nl‘ 110xl(1) 1
and
n
t dt -1 2
' = —
F2(t) = |1 [l+72n2 Io 50—27?7) .
RESULTS

Figure C.1l shows a comparison of real values of EXl, Var Xi, EXQ,,

Var X2 and Fl(t), calculated from 100 simulations,with corresponding

functions from the quasi-deterministic approximation. The parameter values

were nl = 100 , n2 = 10 , “1 = .01 , Yl = .001 , U2 = .001 and
Y2 = .01 . The 100 simulations took 17.0 seconds on the Univac 1100/42

whereas the approximation took 4.2 seconds.

We note that for the range of time shown, the approximations EXi and
EXé are very close to the true values. However, although EXi and EXé

become very small, they never reach zero and in fact are cyclic functions

with period approximately 1400 . On the other hand EXl and EX2 once

close to zero tend rapidly to it. This is because of the more stochastic

nature of the real model. The value of EXl becomes so small that

extinction is almost certain.

Agreement between Fl(t) and Fi(t) is quite good. We note that

F2(t) and Fé(t) are not shown because both are zero for this range of time.
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There is very poor agreement between the real and approximate
variances. It is difficult to think of a simple explanation for this,

especially in the case of the predatar population where Var Xé is an order
of magnitude larger than Var X2 . Perhaps we could conjecture that X2 is

to some extent "self-correcting'" and that this property is lost in the

approximating process,
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APPENDIX D

THE JOINT p.g.f. OF THE NUMBER OF BIRTHS IN EACH SUBPOPULATION
IN A LINEAR MULTIVARIATE BIRTH AND DEATH PROCESS

Let Yi(t) , =1, ..., m , be the number of members of the <th

suPpopulation at time ¢t . (In general the ¢ shall be suppressed.)

Further, let Y denote the vector (Yl, ey Yﬁ) . In the time interval

(t, t+8t) the possible transitions are

Y + e; with probability af-Ydt + o(8¢t) ,

Y » =1, ceosm ,
Y - ei with probability BiYiGt + o(8t) ,

as 6t + 0 , where e is the <Zth row of the identity matrix and a is

b

the <th column of the matrix 4 = {aji
It is well-known (see e.g. Griffiths (1973)) that the necessary and

sufficient condition for the extinction of Y with probability 1 is that

the characteristic roots of the matrix A - B have négative real parts,

where

and

Bi if 7 =4

b]

Jjt
0 if 1 #£ 4 .

Assuming that this condition is satisfied we shall find the joint

p.g.f. of the total number of births in each subpopulation at the time of
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the oxtinction of the process.

Let Wi be the final number of births in population < 7,

£ =1, «e., m , and

Wy

: W
Pa(yl, ceny ym) :E[yl ymm I (yl(O), cees ym(o)] = a) ,

where a = (al, ey aﬁ) .

Since each initial member of each subpopulation acts independently we

have

‘1 . . ]
W. =1 +...+I7'+...+I1'm+...+l'7’m,7,=l,...,m,
al 1 am

where I7Y , k=1, .v., a. , is the final number of births in population
k J ‘
1 that originated from the kth initial member of population j , and

where the Iza are independent random variables. Therefore,

a. i Nj

m I b
1—l|- k k
D.1 Pa(yl’ ooy ym) = I. ll : lE[yl .o ym I (.Yl(o), “o ey Ym(O)) = ej}
J= =

m a
= H [Pei(yl, aees ym)] .

The usual renewal argument, together with D.1 gives

D.?2 Pe.(yl, cees Y )

m
7
) B ) ( )Pe ( )b
= |B. + ) O.. {B.+ S oya.Po(y,s coes Y )Py Wys +os ¥ },
7 ) Jt 7 i J Jt Qi 1 m ej 1 m

es Mo
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Equation D.2 gives a system of equations wpich determine the

Pei[yl, ceos ym]
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