
SOME PROBLEMS IN 
STOCHASTIC MODELS FOR EPIDEMICS

by

R. Dunstan

A thesis submitted to the 
Australian National University 

for the degree of 
Doctor of Philosophy

Department of Statistics 
Research School of Social Sciences 

Canberra 
February 1981

in the



STATEMENT

The material in this thesis is my own original work except where 

specific reference is made.

Ross Dunstan



(ii)

ACKNOWLEDGEMENTS

The work in this thesis was carried out in the Department of Statistics 

(IAS) at the Australian National University. My financial support was 

provided by the Federal Government of Australia in the form of a 

Commonwealth Postgraduate Scholarship and by a supplement to this scholarship 

provided by the Australian National University. To these bodies I extend my 

thanks.

I especially wish to thank my supervisor Dr D.J. Daley for his help at 

all stages in the preparation of this thesis, in particular for always being 

ready to set aside his work when I wished to see him, for many interesting 

and invaluable discussions, and for his friendly and cheerful nature. I 

also wish to thank Professor P.A.P. Moran for his kindly willingness to be 

of any assistance. My thanks go to all the members of the Department for 

providing a relaxed and pleasant atmosphere in which to work.

I am indebted also to Dr A.J. Dobson for her help during my earliest 

attempts at research at the University of Newcastle, and to the Division of 

Mathematics and Statistics of the CSIRO in Canberra where I had a short but 

rewarding visit before beginning my studies at ANU.

Finally, I am very grateful to Mrs B. Geary for her skill and patience

in typing this thesis.



(iii)

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ............................................. (ii)

PREFACE .............................  ......................... (v)

CHAPTER 1: INTRODUCTION ....................................... 1
1.0 Introduction ..................................... 1
1.1 The model ..................................... 2
1.2 The distribution of the final size ............ 5
1.3 The distribution of the time to extinction . . . .  7
1.4 The stochastic threshold theorem ................. 9
1.5 A quasi-deterministic approximation ............. 11
1.6 The application of the general epidemic model to

r u m o u r s ......................................... 12
1.7 The general epidemic in a stratified population .. 15

CHAPTER 2: THEORETICAL RESULTS ON THE GENERAL STOCHASTIC EPIDEMIC
MODEL.................................................  18
2.0 Introduction..................................... 18
2.1 The state probabilities ......................... 19
2.2 The mean final s i z e .............................  21
2.3 The second moment of the final s i z e .............  25
2.4 The moments conditional on a major outbreak . . . .  28
2.5 The distribution of the final size ............ 29
2.6 The probability of early extinction ............. 31
2.7 The mean duration time ..................... .. 32
2.8 The general epidemic model with a latent period

before infectiousness .. .. „................  33
2.9 The birth and death process limit .............  37
2.10 The diffusion limit ............. 0............  40

CHAPTER 3: APPROXIMATING PROCESSES .. . .   42
3.0 Introduction..................................... 42
3.1 A quasi-deterministic model ..................... 42
3.2 The approximating process .. .................  46
3.3 Numerical results and discussion ................. 52



CHAPTER 4 :  THE GENERATION-WISE SPREAD OF INFECTION .................................  56

4 . 0  I n t r o d u c t i o n ..............................................................................................  56

4 C1 The mean g e n e r a t i o n  s i z e ...............................................................  56

4 . 2  An a p p r o x i m a t i n g  p r o c e s s ...............................................................  52

4 . 3  A l i m i t i n g  p r o c e s s  .................... ..  . .  . .  .......................  65

CHAPTER 5: THE GENERAL EPIDEMIC IN A STRATIFIED POPULATION . . . .  67

5 e 0 I n t r o d u c t i o n ............................................................................................  67

5 . 1  The t h r e s h o l d  t h e o r e m  ...............................................................  68

5 . 2  The p r o b a b i l i t y  o f  e a r l y  e x t i n c t i o n  .................................  71

5 . 3  The p r o b a b i l i t y  t h a t  i n i t i a l  i n f e c t i o n  d o es  n o t
s p r e a d  ................................................................    72

5 . 4  The f i n a l  s i z e s  .................................................................................... 74

5 . 5  E x p e c t e d  t i m e  t o  e x t i n c t i o n ......................     76

5 . 6  An a p p r o x i m a t i n g  p r o c e s s ...............................................................  77

5 . 7  The d i f f u s i o n  l i m i t  .................................     81

CHAPTER 6:  SOME OTHER MODELS FOR EPIDEMICS ...............................................  83

6 . 0  I n t r o d u c t i o n ..............................................................................................  83

6 . 1  A m od el  f o r  a n  e p i d e m i c  i n  a communi ty  w i t h  v e r y
r e s t r i c t e d  m o b i l i t y  ..........................................................................  83

6 . 2  A t w o - t y p e  b r a n c h i n g  p r o c e s s  m ode l  ....................................  87

6 . 3  A m od el  f o r  an  e p i d e m i c  i n  a  s t r a t i f i e d  p o p u l a t i o n .  94

APPENDIX A: P r o o f  o f  Theorem 2 . 1 ............................................................. ..  . .  . .  102

APPENDIX B: C o m p a r i s o n  o f  t h e  g e n e r a l  s t o c h a s t i c  e p i d e m i c  model  t o
a p p r o x i m a t i o n s  .................................................................................... ' 107

APPENDIX C: A p p l i c a t i o n  o f  t h e  q u a s i - d e t e r m i n i s t i c  a p p r o x i m a t i o n  t o
t h e  p r e d a t o r - p r e y  m o d e l  0 . . .  .....................................................  120

APPENDIX D: The j o i n t  p . g . f .  o f  t h e  number  o f  b i r t h s  i n  e a c h
s u b p o p u l a t i o n  i n  a  l i n e a r  m u l t i v a r i a t e  b i r t h  an d  d e a t h  
p r o c e s s ................................................................................................................... 126

( i v )

REFERENCES 129



(v)

PREFACE

With the exception of the final chapter, this thesis is concerned 

with the general epidemic model and some simple extensions of it. The main 

concern is with the stochastic case and the deterministic model is only of 

interest when it is useful in constructing approximations to the stochastic 

model or in providing insights into its behaviour.

The model itself is quite old, appearing first in a paper by Kermack 

and McKendrick (1927). It is the simplest of stochastic models incorporating 

the two features:

(i) the rate of spread of infection is a function of the number 

of infectives and susceptibles present; and

(ii) infectives may be removed from the process (corresponding to 
death, isolation or recovery with immunity).

These two features must be regarded as essential for any model which would 
hope to describe realistically the spread of infectious disease.

Despite its conceptual simplicity, the model presents enormous 

mathematical difficulties which we believe have not yet been successfully 

overcome and this has severely limited an analysis of its strengths and 

weaknesses in potential applications to real data. This is a very unhappy 
situation as such a model is merely the beginning of a satisfactory 

mathematical theory. We have attempted to solve some of these difficulties 
both by obtaining what theoretical results we could and by utilizing 

methods leading to approximations where theoretical results were either 

unobtainable or whose complexity rendered them useless.

Inevitably, because of the age of the model, some of these results 

come from applications and extensions of techniques and results obtained by
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previous researchers. For instance the approximating model presented in 

chapter 3 arises by combining in a new way ideas of Kendall (1956) and 

Faddy (1978), resulting in a technique which gives good approximations for 

all the mathematical quantities of interest and which may be applied to the 

various extensions of the model which are discussed in later chapters.

However, with the exception of chapter 1 which presents a brief survey of 

results needed for later work, and with a few exceptions where indicated, 

the material in this thesis is to the best of my knowledge original.

The remaining paragraphs of this preface are a brief summary of the 

contents of the thesis.

Chapter 2 presents some results of a theoretical nature on the general 

stochastic epidemic model. Solutions for the joint probability generating 

function (p.g.f.) of the stochastic variables of the general epidemic model 

were first found simultaneously by Gani and Siskind (1965). Each used a 

transform technique and the solution obtained was in a recursive form and 

extremely complicated. More recently, Billard (1973) obtained a solution in 

simpler form using matrix methods. Since the process is a finite Markov 

chain in continuous time and such processes may be described by a linear 

differential equation

p(t) = i4p(t) ,

where p(£) is the state probability vector at time t and A is the 

transition matrix, and since the general theory of such processes is well 

known, it was felt that this theory could be used to find a solution. With 

the help of a (well-known) partial differential equation satisfied by the 

joint p.g.f. this was found to be the case. The solution obtained is in a 

simpler form than those already in existence (mentioned above) and we believe 

it is the simplest that could be hoped for.
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Because of the Markovian structure of the process renewal-type 
arguments may be applied in many situations. For instance, simple recursive 

expressions may be obtained for the expected final size of the epidemic and 

for its expected duration time. These two examples are known results, 

however we have used this technique to deal with the second moments of the 

final size (in this chapter) and with various quantities arising in 

extensions of the model (in chapters 4 and 5). By purely algebraic methods 

we are able to use these recursive expressions for the moments of the final 

size to find their asymptotic series expansions as the population size 

becomes large. The expansions throw light on the behaviour of the process, 

particularly when its bimodal nature is taken into account. These 
asymptotic results will be published in a paper to appear in the Journal of 

Applied Probability in 1980. We have also been able to apply this algebraic 
technique to the probability of complete infection of the population and to 
the probability of early extinction of the epidemic. While in this first 
case the proof is incomplete, computer calculations indicate the correctness 
of the conjecture. Heuristic reasoning based on these asymptotic results 
leads to a simple technique giving the asymptotic form of the mean duration 

time of the process.

Because we wish to use this same heuristic technique, as an aside in 

this chapter we discuss briefly an extension of the model to include a non­

zero latent period between an individual’s becoming infected and becoming 

infectious.

We conclude the chapter by proving the convergence (as the population 

size becomes large) of the general epidemic model to limit processes under 

two different sets of initial conditions. The first of these arose from an 

attempt to put on a rigorous basis the idea of Kendall (1956) of using a 

birth and death process to approximate the early behaviour of the process.
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The second comes simply from the application of a result of Barbour (1974). 

The result is of interest mainly because of its usefulness in an application 
in chapter 3.

The form of the solution obtained in chapter 2 is still too complicated 

to allow its use except for very small population sizes. The material in 
chapter 3 is largely concerned with developing and evaluating an 

approximating process. Faddy (1977) found that by replacing a stochastic 

variable in one of the two transition probability rates by its deterministic 

equivalent, the resulting process became a member of a general class of 
compartment models for which a simple solution was available. However, 
numerical results given by Faddy showed that the error introduced by the 

resulting loss of randomness was most apparent as a change in the initial 
behaviour of the process. We were able to rectify this by combining this 

idea with Kendall’s (1956) explanation of the bimodal nature of the general 
epidemic process«

We evaluate the performance of the resulting approximating process with 

a series of graphs comparing real values (based on computer simulations) 

with their approximating values for various parameter values. As well as 
this we find the joint p.g.f. for the process of Faddy by standard arguments 

since the method is more direct and the result in this form is more easily 

manipulated to give the quantities that we require, e.g. the distribution of 

the duration time of the epidemic. The methods of Kendall (1956) are not 
applicable when the population is near critical (i.e. susceptible population 

size ~ relative removal rate). A suggestion is made for this situation 

which is supported by heuristic arguments and numerical results.

Chapter 4 deals with the application of the general epidemic model to 

rumours. The model is identical to that of the general epidemic model 

except that attention is directed to the sizes of the individual generations



of infection. Renewal arguments of the type used in chapter 2 are applied 
to find recursive expressions for the mean final generation sizes. For the 
deterministic model, a simple formula is found for each generation size at 

any time, the formula resulting from a simplification of an expression by 

Daley (1967). The asymptotic form of the final generation size is found, 

thus generalising a result of Daley (1967) whose result is for the case when 
the relative removal rate is zero (the simple epidemic model). The rest of 

the chapter deals with the application of the approximating method of 

chapter 3 and with the limiting result corresponding to that at the end of 

chapter 2.

In the general epidemic model it is implicitly assumed that the 

population mixes homogeneously. It is this assumption which is most likely 
to be unsatisfactory in any particular application. It is natural therefore 
to consider a modification of the model which allows for the existence of 
subgroups within which mixing is homogeneous but between which it is more 
restricted. Such a model is the subject of chapter 5. Mathematical 

difficulties are multiplied by the non-homogeneity, though some interesting 
results can still be obtained. The effect on the important threshold theorem 

is examined both in the stochastic and deterministic cases. The probability 

of containing infection in the group in which it originates is found 

approximately. The usual renewal arguments are applied yielding recursive 

expressions for mean final sizes of the epidemic in each subgroup and for 

the duration of the epidemic in the whole population. An analogous 

approximating technique to that of chapter 3 is applied and the limiting 

diffusion process is given.

In chapter 6 we look at three models for epidemics in which the 

assumption of homogeneous mixing of the population is completely abandoned.
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The first of these is a model applicable to a population with little or no 

mobility. The model assumes that the disease is spread only by those 

infectives on or adjacent to the boundary of the infected area. The 

resulting process is a linear one and we are able to obtain expressions for 

the mean numbers of active infectives and also for the probability of 

extinction of the process„

The second of the models of chapter 6 is a two-type branching process 

model applicable to a population with family structure. Branching processes 

are useful in describing the early behaviour of an epidemic process. This 

is particularly interesting because it is the behaviour of the epidemic 

during its early stages which will determine if the outbreak will be minor 

or majoro In the model we distinguish between infectives who were infected 

by members of their family and those infected by individuals not of their 

family. A special case of this model is the model of Bartoszynski (1972). 

Our approach here is different, using branching process theory to obtain 

results about the moments of the two types of infective and the probability 

that the process will become extinct.

The third is a model for an epidemic in a stratified population.

The model of chapter 5 is very complicated mathematically and by making 

some realistic assumptions we are led to qualitative results about the 

final size of an epidemic in a stratified population.
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CHAPTER 1 

INTRODUCTION

1.0 Introduction

The general epidemic model is a mathematical model to describe the 

spread within a population of some characteristic able to be transmitted 

from one individual to another. We usually imagine the characteristic to be 

a disease although for some applications it may be a rumour or a particular 
item of information. The model assumes that the population consists of 

three types of individuals: susceptibles who may become infected by contact
with infectives; infectives who have the disease and may cause further 
infections by contact with susceptibles; and removed individuals who have, 
or have had, the disease and play no further part in the process because of 
immunity or isolation or death. Infectives become removed at a rate 
proportional to the size of the infective population. Members of the 
population, except for removed individuals, are assumed to mix uniformly, 

and hence susceptibles become infected at a rate which is proportional to 
the sizes of the susceptible and infective populations.

The model was first introduced in a paper by Kermack and McKendrick 
(1927), No further work appears to have been done on the model until Bailey 

(1953) published a paper on the final size of the general epidemic. Shortly 
after, Whittle (1955) generalised the threshold theorem of Kermack and 

McKendrick to the stochastic case and Kendall (1956) introduced an 
approximating process based on the consequences of the threshold theorem. 

Gani (1965) and Siskind(1965) simultaneously derived expressions for the 

joint p.g.f. associated with the process and more recently Billard (1972) 

found an expression for it in simpler form. The distribution of the number
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remaining uninfected by the process of the general epidemic model (hereafter 

simply called "the general epidemic") was investigated by Daniels (1965). 

Ridler-Rowe (1967) found the asymptotic form of the mean duration time of 

the process. Asymptotic limiting processes were the subject of work by 

Nagaev and Startsev (1970) and Barbour (1975). Abakuks (1973) investigated 

the cost of the general epidemic and Watson (1972) studied a generalisation 

of the model in which the population is assumed to be stratified.

The rest of this chapter is a brief survey of known results about the 

general epidemic model which must be referred to in subsequent chapters.

1.1 The model

THE STOCHASTIC FORM

Let the number of susceptibles and infectives at time t be X(t) and 

Y(t) respectively (for convenience t will usually be suppressed). The 

transitions from the state (X, Y) in the time interval (t, t+6t) are 

given by

1.1
'U-i, y+i)

(x, y) + ■
lu, y-d

with probability \iXY6t + o(6t) , 

with probability yY&t + o(6t) ,

as 6t -*• 0 .

The initial conditions are (Y(0), Y(0)1 = (n, a) . (The parameters y 

and y are known as the contact rate and the removal rate respectively. It 

is more convenient and more common to use the relative removal rate p = y/y 

instead of the two parameters y and y . Thus it merely requires a change 

in time scale to write the above infinitesmal transition rates as XY and

pY .)
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Let

p (£) = Prf(Z(t), 7(f)) = (r, s)} ,V s

r = 0 , l 9 ...,n, s = 0, 1 , n+a-r .

Considering the possible transitions in the time interval (t, i+6t) and 

letting 6t ->• 0 leads to

1.2 p (t) = -s(r+p)p (t) + 0+l)(s-l)p At) + p(s+l)p (t) ,rrs K rrs rr+l,s-l rr,s+l

r = 0, 1, . .., n , s = 0, 1, ..., n+a-r ,

where p (t) is defined to be zero if s is negative.I1 s

X YLet P(w, z; t) - e [w z ) be the joint p.g.f. of (7, 7) . Multiplying

1.2 by rs and summing over the possible values of r and s shows that P 

satisfies the partial differential equation

1.3 dt = z{z-w) f p _

dh)dz
v 9P + p(i-a) ^

where P(y, z\ 0) = jJ 1 za .

Equations 1.2 and 1.3 are well known (see e.g. Bailey (1954)). Their 

solution has proved to be extremely difficult. Gani (1965) and Siskind 

(1965) obtained solutions using transform techniques. More recently Billard 

(1972) used matrix methods to find a solution in simpler form.

THE DETERMINISTIC FORM

From 1.3 it follows easily that

dEX = -EXYdt



= EXY - pEY , and

where Z is the number of removed at time t .

Assuming that we may write EXY -  EXEY (which holds to a good 

approximation in large populations), and writing x, y and z for EX, EY 

and EZ respectively, we obtain the following equations which define the 

deterministic model corresponding to the stochastic model defined by 1.1:

1.4a) x - -xy ,

where (x(0), y(0), 3(0)) = (n, a, 0) .

It is easily seen that if n 5 p , y is always decreasing. This lies 

behind the important threshold theorem of Kermack and McKendrick which says 

that a major outbreak is only possible if n > p .

Combining 1.4a) and 1.4b) we have

1.4b) y = xy - py ,

1.4c) ^ = py ,

1.5 - p i n — - z - n + a - x - y  . n a

Substituting for y from 1.5 into 1.4a) and integrating gives

1 . 6 ds
= ,

x
s[n+a-s+pln(s/n))

a result due to D.G. Kendall which defines x(t) implicitly. Explicit 

solutions for x , y and z are not available.
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From equations 1.4 it follows easily that y(°°) = 0 . Hence from 1.5 

we see that 0 (= (̂°°)) , the number of susceptibles left after the epidemic 

has become extinct, is the unique solution between 0 and n of the 

equation

1.7 n 0 0 -p In — - n \ a - 0

and we note that it is readily shown that

1.8 0 ~ n exp as n c° .

1.2 The distribution of the final size

The final size of the epidemic, W , is defined to be the number of 

further infections (not counting the initial infections) that have occurred 

at the time of extinction of the process. Let

. p (ft, a) - Prj(7 = r | (x(0), y(0)] = (n, a)] •

It is easily shown by a backwards equation argument that for 

v - 0,1,

1.9 p (n, a) - —7—  p^ An-1, a+1) + —*7— p (n, a-1) , n, a - 1, 2, ... , rr n+p r^-l n+p rr

and

p (n, 0) = p (0, a) - 6(r) ,r r Y*

where

'l if a = 0 ,
6(a) = 1

0 if a t 0 ,
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and where we define p ^(n, a) = 0  , and p^(«, a) - 0 if r > n . Equation 

1.9 may be found in Daniels (1965) where it was further established that

n-r r ^

1-10 £Vr(n’ a) = A k n ~fc=0 r+k) [p+r+k

n+a-r

n, a = 1, 2,..., ** = 0, 1,...,«,

where the A^ are defined recursively by

n-r ( n-r
1.11 6 (n-r)Ak {T,k) p+r+k) , « = 1, 2,..., ** = 0, 1,...,«..

Daniels shows that the A* are functions of k, r and p only.

It was shown in Bailey (1954) that

m
1.12 V

r=0
n-r
{n-mJ » >  ■ o  •

n = 1, 2, ... , m - 0, ..., n

Using a heuristic argument Daniels conjectured that as n 00 ,

1.13 p («, a) rn-r i-(£)n
a- fne~n / p )] 

r\ cp(-ne-n/p>

It is well-known that in the supercritical case (n > p) W has a 

bimodal distribution. Epidemics of intermediate size occur with very low 

probability and the epidemic will with high probability affect either a very 

small proportion of the susceptibles in the population or a very large 

proportion.

THE MEAN OF THE FINAL SIZE
Let
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n
C (n, a) = E[w I (7(0), 7(0)) = (n, a)) = £ a) •
p r=0 r

(We shall usually suppress p .) Multiplying 1.9 by r and summing over 

v -  0, 1 , . .., n yields

1.14 C(n. a) = [1+C(n-1, a+l)] + — - C(n9 a-1) , n, a = 1, 2, ... ,9 n+p ’ n+p 9 5 5 9 9 9

and

C(n, 0) = 67(0, a) = 0 .

Substituting successively for the final term gives

a-1
1.15 C(n, a) = — —  Y,-n Lsn+9 k=0 n+p^ [1+C'(n-1, a+l-Zc)] ,

from which it is readily shown by induction that

1.16 C(n9 a) = n - £  $ kak 
k -1

n+a-k

where the \ are defined recursively by

1.17
n
I
fc=i O k+p,

n-/c
= n n = 1

The results of this section may be found in Abakuks (1973) where 1.16 

first appeared. It was later found as a special case in Lefevre (1978).

1.3 The d i s t r i b u t i o n  of the time to e x t i n c t i o n

The epidemic is defined to be extinct when there are no more infectives 

left in the population. It is readily shown that the general epidemic will
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become extinct with probability one. Let T be the time to extinction and 

Fy(t) its distribution function. Since

n
1-18 F (t) = £  Pr0U )  = F(l, 0; t) ,

v-0

and P(x, y ; t) is known, in theory t) is known. In practice however,

the existing solutions for P(x, y\ t) mentioned in section 1.1 (and see 

section 2.1) are so complicated that this expression is completely useless 

except for very small values of n and a . Barbour (197 5) has shown that 

in the case where the initial conditions are (y (0), Y(0)) = (n, nh) , where 

h is constant, and the contact rate is 1/n , then as n -*■ 00 ,

(p-<J>)T - In n - k

converges in distribution to the random variable with distribution function 

exp [-e , where <j) satisfies

1^+ h - (J> + p In <J) = 0

and

k = lim 
m ^°°

-In m+( p—(J))c7 1 + m{ p-(p)J + In 1 -

where

J(a, B)
r B

•'a
______ds______
s(1+^-s+plns)

The case when the initial number of infectives is constant is also 

treated but the result is not presented here because of its length.
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THE MEAN OF THE TIME TO EXTINCTION 

Let

M(n, a) = e {t | p(0), Y(0)) = (n , a)) .

The process may be looked upon as a random walk on the lattice (r, s) where 

r - 0, 1, n and s = 0, 1, n+a-r . From the state (r, s) the

walk may go to (r-1, s+1) with probability r/(r+p) and to (r, s-1) 

with probability p/(r+p) . The time spent in (r, s) is an exponential 

variate with parameter s(r+p) . Hence it follows that

1.19 M(n, a) 1
a(n+p) M(n-1, a+1)n+p + ——  M(n, a-1) n+p

n  = 0 , 1 ,.. a = 1, 2,

and

M(n, 0) = 0 .

This is a well known technique and equation 1.19 may be found in Billard 

(1977) .

By considering the process as a competition process and using theorems 

of Reuter (1957), (1961), Ridler-Rowe (1967) has shown that

1.20 M(n, a) r \ s — In(n+a) Y as n -+ °° ,

where a is not necessarily a constant.

1.4 The stochastic threshold theorem

Let

^ni - Pr{f7 5 ni} ,
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where 0 5 f < 1 .

By considering birth and death processes that formed stochastic upper 

and lower bounds for the general epidemic process Whittle (1955) was able to 

show that for n large enough,

Hence if p > n , with probability 1 the process will become extinct 

before its size exceeds any given proportion of the initial susceptible 

population. This is the stochastic threshold theorem corresponding to the 

deterministic one of section 1.1.

Kendall (1956) introduced an approximating process by reasoning along 

similar lines as follows. In order to describe the early development of the 

process it is assumed that the effect of the depletion of the susceptible 

population during these early stages may be neglected. When X is held 

constant at its initial value n the process becomes a birth and death 

process Y' with birth rate n and death rate p (in fact Y' is a 

stochastic upper bound for Y ). If p > n extinction of Yr is 

certain so few further infections are expected and hence Y1 is used as the 

approximation to Y . If p < n extinction of Yr occurs with probability

(p/n)° in which event it is known that Y1 behaves like a birth and death 

process with birth rate p and death rate n (see O'N. Waugh (1958)) so 

this process is used as'the approximation for Y . Also in the case p < n , 

Y* will not become extinct with probability 1 - (p/n)a in which event we 

use the deterministic variable y (see equations 1.4) as the approximation

1 o 21

for Y

In the supercritical case (p < n) the mean final size for this
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approximating system, C t(,ni a) , is given by

1.22 C'(n, a) = R-(£fl(n-e) + (sT -BZ-_ KnJ J  [nj n-p

1.5 A quasi-deterministic approximation

Faddy (1978) considers an approximation to the general epidemic model 

as a special case in a more general discussion of a class of stochastic 

compartment models. In the infection probability rate the stochastic 

variable Y is replaced by its deterministic analogue y . The resulting 

process (X', Y') is mathematically tractable and it is shown that

1.23 Pr{(r, yp = p, sj)

n-r-s1
r!s^!(rc-r-ŝ J !

and

1.24

where

Pn(t) =x(t)
n

pi2(t) = k (y(t)-ae~pt) >

and

and where
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The distribution of the number of susceptibles remaining uninfected 

after the extinction of the process is a binomial random variable with 

mean 0 .

1.6 The app lica tion  o f the general epidemic model to rumours

In the application of the general epidemic model to the spread of news 

or rumours the characteristic transmitted from one individual to another is 

thought of as being a particular rumour or item of knowledge. Thus an 

infective is an individual who knows the rumour and a removed individual is 

one who has heard the rumour and forgotten it. It is important in this 

application to consider not only if an individual is infected but to which 

generation of infection he belongs. (The a initial infections are regarded 

as belonging to the "Oth" generation of infectives, those infected by them 

to the 1st generation etc.) This is relevant because it would be expected 

that the distortion of the rumour increases as the generation "distance" from 

the source increases.

The model is essentially no different from the general epidemic model. 

The only change is that attention is now directed to the individual 

generation sizes.

The following stochastic and deterministic models were first formulated 

by Daley (1967).

THE STOCHASTIC MODEL

Let X and Y , ^ = 0 , 1 , . . .  , be the number of susceptibles and
d

gth generation "knowers" respectively present in the population at time

t .
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Define

(X, Y) 2 Y0, r r  . . . )  .

The inf initesimal transition probability rates are given by

U ,  Y) + {
fX-1, Yte , ] at rate \iXY , v 2+1' 9

fl, Y-e ) ̂ 9J

9  -  0, 1,...
at rate YY ,

9

where e , £ = 0, 1, , is the vector with 1 in the (^+l)th place

and zero elsewhere» The initial condition is

(x(0), Y(0)) = (n, a, 0,0, ...) .

Define the final size of the gt\\ generation, W , g - 0, 1, ,
9

to be the number of gth generation removed at the time of extinction of 

the process.

Let a = fa„, a,, ..., a .1 and define v O’ 1* 5 m+lJ

(n, a) = [n , a^, •

Further, let r = fr_, ..., r 1 , e7 be the (fc+l)th row of thev 0 m+lJ k

(m+2) x (m+2) identity matrix and

Pjri, a) = Pr-jfv̂ = rgi g - 0,1, ..., m,

I, V  V i  I *(0)> V 0)’ •••’ D y°>K=m+1  ̂ K=m+1
(n, a )\ .

By the usual argument it is shown that for m - 0, 1, ...
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1.25 p (n, a)

(yn+y)
m+1
I
k=o

f1 I Un[a^p (n-1,
r - e k + i a+efcJ+YV>

+yna ,p (n-1, a+e _)+ya _p («, a-e .1 f , M m+rr-e 5 m+l' ' m + r r '  ’ m+r1 Jm+1 ;
Y l  ~  1 J 2, ... , CZq 5 (2̂  5 • • • •) ~  ^ 5 ^ * * * • 5

where any probability whose subscripts are either zero or whose sum exceeds 

n is defined to be zero, and

pr(0, a) = 6(r) ,

where

6(a)
'l if a = 0 , 

0 if a y 0 .

THE DETERMINISTIC MODEL

Let x and yg , g = 0, 1, ... , be the deterministic equivalents of

X and Y and z , g - 0,1, ... , be the number of gth generation w 3

removed at time t . The deterministic model corresponding to the stochastic 

model is defined by the equations:

1„26a) x = -Vxy ,

1.26b)
•
y = yxv . - yy , g = o, 1, •• • 5

1.26c)
•
z = yy ,
0 T y 0 = 0» 1» •• * 5

where y = ]T y and y is defined to be zero, and where the initial
<?=o ' 3

conditions are (x(0), y^( 0), y (0), . . .) = (n, a, 0, ...) , and
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3 ( 0 )  = 0 , g - 0 , 1 , . . . .

Daley (1967) showed that

1.27

where

3 (t)
g

p n \n dv
g jdv

gJ x(t) • ip(v)u
exp ip(v) u

1. 28 iJj(v) = n + a - V + p i n  —n

1.7 The general epidemic in a stratified population

This is an important extension of the general epidemic model which

attempts to make a more realistic assumption about the mixing of the

individuals in the population than that made by the general epidemic model.

The population is assumed to consist of m distinct groups in which

homogeneous mixing occurs but between which mixing is restricted. Thus in

the time interval (£, t+6t) an infected individual of the Jth group,

j = 1, . m , has probability y . .St + o(6t) , as 6t -* 0 , of infecting
O '^

any susceptible in the ith group, £ = 1, ..., m , where in general
> ^ ’£ 5 f ^ J • The idea of considering the population as stratified

goes back to Rushton and Mautner (1955) and Haskey (1957). The following 

formulation of both the deterministic and stochastic models is due to 

Watson (1972).

THE STOCHASTIC MODEL

Let AT., AT , i - 1, . .. , m , be the number of susceptibles and 

infectives in the ith group at time t . Let X = (A^, ..., A^) ,

Y = (y , ..., Y } , y . be the ith column of the matrix {p..} and e.X  777 is J u  is
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be the ith row of the m x m. identity matrix.

The infinitesimaltransition probability rates for the model are given

by

(X-e .̂, Y+ê .) at rate ,
1.29 (X, Y) ■( i = 1, ..., m ,

(X, Y-e )̂ at rate ,

where as in section 1.6 we understand (X, Y) to mean

[X, , . .. , X , Y. , .. ., Y ) . v 1 m l m-

The initial conditions are (X(0), Y(0)) = (n, a) , where

n = [n. , . n ) and a = fa,, ..., a ) . v 1 K 1 mJ

Let

P(n a)(r, s, t) = Pr{(X , Y) = (r, s) | (X(o), Y(o)) = (n, a)} , 

where r = fr, , ..., r ) and S = fs. , ... , s ) .

It follows from the forward equation that this function satisfies

1 ’30 p (n,a)( r ’ s ’ t) ' .1^=l
y .a ,+n .u . • az z z z p (n,a) (r,  s,  t)

* W aP(n-ei ,a+ef ) ( r * S’ t)+W ( n , a - e , ) ( r ’ s ’ 4)_

0» b, ... , 0,1, ..., ,

= 0, 1, ..., n^+a^-r^ , £ = l, ..., m ,

where any p (n,a) (r,  s ,  t) having subscripts for which some v . > n z

T = 1, ,.,, m , is defined to be zero, and

P(n a ) (r, s, 0) = 6(n - r , a-s) .



An equation equivalent to 1.30 was first stated by Billard (1976) 

where the stochastic model was presented in a form which would enable the 

application of her method of solution for the general stochastic epidemic 

model (see Billard (1973)).

THE DETERMINISTIC MODEL

Let ar., , i = 1, ..., m , be the numbers of susceptibles ,

infectives and removed in the tth group at time t in the deterministic

17

model. The model is described by the equations

1.31a)
m

x^ - -x^ £  s i ~ 1 s • • •» m ,

1.31b)
m

yi = xi Z  ~ yiyi ’ •••> m  >
0 — 1

1.31c) 'zi = yiyi ’ 1 = X’ *•* ’ m ‘

The initial conditions are (x^(0), ŷ .(0), 2^(0)] = o) ,
i - 1, ..., m .

Watson (1972) combines 1.31a) and 1.31c) to give

1.32
a:. m

ln s : = ^  vji{nj+af xf yß  ’ * = ••• ’ m •

As t h► °o , -> 0 , £ = 1, ..., m , so 1.32 becomes

1.33
0. m

iln «7 = ^  ’

where 0£ = x̂ (°°) , £ = 1, .. ., m .
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CHAPTER 2

SOME THEORETICAL RESULTS ON THE GENERAL STOCHASTIC EPIDEMIC MODEL 

2 o0 Introduction

This chapter presents some theoretical results on the general 

stochastic epidemic model formulated as a continuous time Markov chain on a 

finite state space. With the exception of the first section these results 

are asymptotic results valid as the size of the initial susceptible 

population increases with other parameters remaining fixed.

In the first section we obtain a solution for the state probabilities 

at any time. The solution arises by writing the process in the form of a 
one dimensional finite Markov chain in continuous time and then using 
theorems from the general theory of linear differential equations. This 
method is simpler than existing methods for obtaining either the state 
probabilities or the joint p.g.f. (see Gani (1965), Siskind (1965),
Billard (1973)) and the solution is in simpler form. Inspection of the form 

of the solution makes it difficult to imagine that it could be simplified 

further. Nevertheless it is still quite complicated.

Because the process is Markovian, simple recursive equations for many 

quantities of interest may be found using arguments involving backward 
equations. Some of these are well known (e.g. 1.9 and 1.14). We establish 

a lemma which enables us to work with such equations to find asymptotic 

expansions of the moments of the final size of the process (see Dunstan 

(1980)) the probability of its early extinction, and the probability that 

none escape infection. In this last case, while the proof is incomplete, 

the truth of the conjecture is supported by computer calculations. These 

asymptotic expansions are particularly informative when the bimodal nature
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of the process is taken into account.

Although simple recursive equations may also be found for the mean 

duration time of the epidemic, it was not possible to use the same technique 

to find the asymptotic form. We are able to use a heuristic argument which 

may also be applied to more complicated models. For this purpose we define 

here a modification of the general epidemic model which allows for an 

arbitrary latent period between an individual's becoming infected and 

becoming infectious. We find the asymptotic form of the mean duration time 

in this model and we also show that the distribution of the final size is 

the same as that for the usual general epidemic model.

The next section presents a process which is the limit of the general 

epidemic process under certain conditions. This process arose out of an 

attempt to put on a rigorous basis Kendall's idea of using a birth and 

death process to approximate the general epidemic process in its early 

stages. Another limiting process which results when a different sequence of 

initial conditions is assumed is presented in the last section.

2.1 The s ta te  probabi l i t ies

Any ordered pair (r, s) where r = 0, 1, ..., n and 

s - 0, 1, ..., n+a-r , represents a possible state of the system with r 
denoting the number of susceptibles and s the number of infectives. The 

process is a two dimensional finite Markov chain on these states. By 

enumerating the possible states uniquely we can regard the process as a one 

dimensional Markov chain.. Hence it may be described by the equation

2.1 pU) = Ap(t) ,

where p(t) is a column vector whose Tth element corresponds to one (and
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only one) p (£) and A is the matrix of infinitesimal transition
I O

probability rates. The theory of such a system is well known.

The following theorem gives the solution for the state probabilities in 

our particular case under a mild restriction on the parameter p .

THEOREM 2 01. If p is such that

j(£+p) p)

when (£, j) t- { i j') /or all integer pairs representing a possible state 

of the system, then the eigenvalues of A are distinct and

p (t) ^rs

n+a-i A . .t
l I
i= 1 J=1

r - 0, 1 s = 0, 1, ..., n+a-r ,

where

- -j(i+p) , i - 0, 1, ..., n , j = 0, 1, n+a-i ,

and the K fx. .1 are determined bu the recurrence relation rs v ; ü

p(stl)*r,s+l M  * t V s(r+p)]T Sbi^ + (r+1)(s-l)Xr+ljS-ih^) = 0 ,

where (A_̂ .) =0 if r > n , s+r > n+a or s < 0 ard by tbe initial 

condition

p (0) f rs

1 1/ r = n j s - a 3
1

0 otherwise.

Proof. See Appendix A, □
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2.2 The mean f i n a l  s ize

The following theorem establishes the first term of an asymptotic 

series expansion for C(rc, a) .

THEOREM 2 02. For p a positive constant and a a positive integer.

n - C(n, a) = o(n a+2) , as n •*■<*> ,

Proof .  We shall need a lemma, which shall be proved below, giving 

uniform convergence of the terms of the series in equation 1.16.

Another result is needed to prove the theorem, namely that the ,

defined in 1.17, are uniformly bounded. This follows from the result of 

Gani and Shanbhag (1974) that the are all positive and hence writing

1.17 in the form

k-1= 1- I
J=1

k-l]

J -1 JU+Pj
k-j

we see that they are all less than or equal to one.

From lol6 we have

a-2[n-C(n, a)] = n1 2 £  Q ka^
k=1

n+a-k

- na-2 I ©
fc=l k+P,

k+pj

n+a-k-1 ka^p 
k+p

si 1 1—1 Si ; _1 S 1

a-2< n p I + I
k-1 k=n-lVn]+10 p>+p.

n+a-k-1

where [a] means the greatest integer not greater than a

= <9(1) + 0{n ) , by Lemma 2.3.
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LEMMA 2 . 3 .  For p a positive constant and a a positive integer3

(n) _P_
W  [fc+p̂

n+a-k o [n i f  k < n-Vn 3 

o[n a) i f  n-Vn < k < n 3

as n 00 .

Proof. By Stirling’s inequalities (see e.g. Feller Vol. I, p. 54) we 

have for k - 1 ,  . . . ,  n - 1 ,

2.2 n % )
n+a-k

V(2rr) *+P
n+a-k n+%

n SXP
1 1 1

12« 12&+1 12(n-fc)+l

VtT

Ä7rf

pn
k+pj
pn

©
k / { n -k ) pn

k+p

k (n -k )

ci( \ n - k

n-k

/ pen 
\fc~(n-k)

Consider now the 4 cases

(i) fc < 3pe ,

(ii) 3pe < k 5 n-Vn ,

(iii) n-Vn < k < n - 2pe ,

(iv) n -2 p e  < k < n .

The lemma is trivial for cases (i) and (iv). For case (ii) we have from 

2.2, taking Vn > 3pe ,

VwnaQ n+a-k

} < + p j
pn

k+pj

a t pen n-k

/  a ( v W n< n (%)

|3pe(n-3pe)

n > 9pe .

For case (iii), from 2.2,
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r \n+a-k a r N
p < p n 1 pen [

U + p J n-Vn+p \2pe{n-2pe)J
a 2pe P (%) + 1 n > N , some /V

We note that in the Kendall approximating process discussed in 

section 1.4 the mean final size is given by 1.22. From 1.8 we would expect 

that as n -*■ 00 ,

n - C(n, 1) = p + o(i) .

This was also conjectured in Abakuks (1973). The next theorem extends the 

asymptotic expansion of C(n, a) and establishes the truth of this 

conj ecture.

THEOREM 2.4. Under the conditions of Theorem 2.2,

C(n, a) = n - p P
n
a-1

+ o [n , as n -* «>

Proof. From Theorem 2.2 we may write

2.3 C(n, a) = n - ot (a) ,
n

where

a (a) = o(n a + 2] , as n 00 .

Now

C(n, 1) = [1+C(n-1, 2)] n from 1.14.

Substituting from 2.3 gives

n a  ( 1 )  =  [rc+a ( 2 ) 1  f - ^ - 1  w L rc-1 J [n+pj
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Therefore

2.4 a (1) = P + ° ( D  , as ft -*■ 00 .

Substituting 2.3 in 1.14 for a > 1 gives

n - a (a) n = 0!- < v 1(a+i>] [n+pj + [ft-a (a-l)l L n J l̂ +Pj

Therefore

a (a) = a (a-1) n n
P 
n̂ + o ( -a+l'v

l”' J

\a-1P r -a+l\\n) + ° ln J , as n -> 00 ,

from 2.4.

In principle it is possible by the method of establishing Theorem 2.4 

to find the expansion of C(n, a) up to terms of any order. However the 

algebra quickly becomes tedious and we assert without proof the further 

refinement

2.5 C(n, a) - n - pfpr a(a+1)[ftj 2
■\CL +1
P

a
P [(a+3)(a+3p)+2]

a\2
as n 00 .

The expected final size was calculated using equation 1.14 for various 

values of the parameters p, a, n . The following tables compare the true 

values of n - C(n, a) with the approximations calculated from equation 2.5 

(shown in brackets). The approximation seems fairly insensitive to 

variation in the parameter a . As we would expect it is useless for 

p/n ~  1 but surprisingly good for values of p/ft as large as .5 , even

for small values of ft .
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P = 1
a 1 2 3

5 1.12 (1.84) 0.29 (0.31) 0.09 (0.09)
10 1.03 (1.03) 0.11 (0.11) 0.01 (0.01)
25 0.00 ( 1.00) 0.04 (0.04) 0.00 (0.00)

P = 2
1 2 3

5 2.15 (3.12) 1.03 ( 2.07) 0.53 (1.33)
10 2.22 (2.16) 0.57 (0.49) 0.19 (0.12)
25 2.01 (2.01) 0.16 (0.16) 0.01 (0.01)

P = 5
1 2 3

5 3.69 ( 19.2) 2.77 ( 42.8) 2.12 (77)
10 5067 ( 6.9) 3.48 (5.05) 2.31 (3.69)
25 5.31 (5.15) 1.28 ( 1.08) 0.42 (0.23)

We note that the approximation for C(n, a) given by 1.22 may be 
written

C'(n, a) = n - p Pka-1
+ a P

,n ,

a+1
+ o [n a , as n

which agrees with 2.5 as far as the term in n-a-1

2.3 The second moment of the final size

Let
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O ' fr
D(n,  a)  = t f ( j r  I ( j ( 0 ) ,  Y( 0))  = ( n ,  a ) ]  = £  r p  ( n ,  a )  .

r=0

M u l t i p l y i n g  e q u a t i o n  1 .9  by r  and summing o v e r  r  - 0 , 1 ,  . . . ,  ft , we o b t a i n

2n u o
2 .6  Z?(n, a )  = —  C{n-1 ,  a + l )  + —  [1+D (n-1 ,  a+1 ) ]  + D{n , a - 1 )  ,

n ,  a  = 1 ,  2,

S u b s t i t u t i n g  s u c c e s s i v e l y  f o r  t h e  f i n a l  t e rm  g i v e s

a-1  r \ k
2 .7  D (n ,  a)  = X 7T~x D(n- 1 ,  a+l- fc)  + 2C(m , a )  - 1 +

n+P fc=0 l«+PJ

From 2 .7  we may r e a d i l y  p rove  by i n d u c t i o n  t h a t

2 .8  Z?(n, a )  = 2nC(n,  a)  - r?  + £
Zc=l

P
n+a-k

where  t h e  b-, a r e  d e f i n e d  by

2 .9
n
l

k - 1 fc+p.

w-Zc 2n , n 1 , 2

We now need t h e  f o l l o w i n g  lemma which g i v e s  t h e  o r d e r  o f  m a g n i tu d e  o f

t h e  b, . k

LEMMA 2.5.  For n = 1 ,  2, . . .  ,,

n < b 5 n 2 .
( l +p j  w

Proof. From 2 .9  we have  = 1 and b^ = 2 ( 2 + p ) / ( l + p )  so  t h a t  t h e

lo w e r  bound h o l d s  f o r  n -  1 ,  2 . Assume t h a t  t h e  l o w e r  bound h o l d s  f o r  

n - rn -  1 , m > 1 , t h e n  from 2 . 9 ,
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2.10 b - m‘ m 1 '"»‘«tel
m-k

- m
m -1I
k=1

m-1
k

r \m-l-k P
fe+pj

m p
(m-k)(k+p)

Now (m-k)(fc+p) for k - 1, m-1 , has its minimum at (w-l)(l+p) . By

the induction hypothesis all the ..., b^  ̂ are positive, therefore

b > m2 - m l+p

m(m+p) 
l+p

Hence by induction b^ > n(n+p)/(l+p) for all positive integers n . It

2now follows trivially from 2.10 that b^ < n for all integers n 4 □

COROLLARY. Under the conditions of Theorem 2.2^

2.11 (i) I Q b
k=1 * fc + P,

n+a-k
= c>f -a+3^[n J as n 00 j

2„12 (YiJ Z?(w, a) - n - p‘ P a-2
+ p (a-1) p)a 1 r -a+l>i»J +  )

as n 00

2.13 fiiij F(n, a) = p‘ P
nj
a-2

+ p (a-1)
r ,»a:-l

* °(m ) . as n -*■ 00 j

where V{n, a) = Var(V | (l(0), 7(0)) = (w, a))

Proof. The proof of (i) is exactly the same as that of Theorem 2.2,

(ii) is arrived at by using (i) together with 2.5 and 2.8 to show that
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ft2 - D(n, a) - o[n a+3) , as n -* 00 , 

and then extending the expansion using the same method as in Theorem 2.4. 

(iii) is a trivial extension of (ii).

2 A  The moments conditional on a major outbreak

As stated in section 1.2 an important feature of the distribution of

the final size is that it is bimodal. The first mode of behaviour

corresponds to early extinction of the process in which only a small 

proportion of susceptibles are infected and the second to a major outbreak 

affecting a large proportion of the susceptible population. The discussion 

in section 1.4 shows that in the case n > p , we can approximate the

probability of early extinction by (p/n)a (see also section 2.6) and the

process conditional on this eventuality by a birth and death process having 

birth rate y and death rate pn . Hence, if we let W be the final size,

W' the final size conditional on early extinction and W" the final size 

conditional on a major outbreak we have

2.14 hO-#(W )Pr{early extinction} 
1-Pr{early extinction}

E( W) -
\a - rP ap

■

1 -

>
P

[nj n-p_ l n J j

= n a(a+3) 
2

( ^a+l P 
n.j

2a-1

using 2.5.

Hence we see that the term p(p/n)a  ̂ appearing in 2.5 is the result 

of the probability mass of the first mode of the bimodal distribution of 

W . Similarly, working with the second moments we find
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2.15 VariW") - p ( a - 1 )
a-1

+ p P
1n>

2a-2

Comparing this with 2.13 we again conclude that the dominant term of the 

variance arises from the bimodal nature of the distribution.

2.5 The distribution of the final size

We may readily apply the methods of the previous section to other 

recurrence relations. Substituting successively for the final term in 

equation 1.9 leads to

2.16 p^(n, a) n
n+p

a-1I
k=0

( \ P
*+P.

k
p An-1 , a+l-k) r r - 1

a
Sir)

which gives

pQ(n, a) |n+pj

P-̂ in, a) - n
Yl-l + P

a+1
n-l+p tn+pj

and so on. Rearranging this latter equation we have

n-l+p
l P J 0

p_(n, a) +
. 'i a + 1n-l+p . .— -—  p1(n, a) = a ,

which is equation 1.12 for m = 1 , and in fact 1.12 follows easily from 

2.16 by induction on v .

We now consider equation 1.10. The quantity p^(n, a) is of interest 

and it is conjectured that pyin, a) -* 1 as n -> 00 . To justify this

conjecture, first let c^ (p/(p+/c)) ̂  , so that with r - 0 equations
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1 .1 0  and 1 .1 1  become

Pn (n, a)  = 1 -  I
rC ~ -L

f \

p+k
n+a-k

5 ^ 1 » 2 , . . .  , (2 0 , 1 , . . . ,

w here  th e  c .  a r e  d e f i n e d  r e c u r s i v e l y  f o r  k = 1 , 2 , . . .  , by

2 .17
1L

X 0
fc=l IP+̂ J = 1 , w = 1 ,  2,

Now i f  i t  c an  be shown t h a t  t h e  o^ a r e  u n i fo r m ly  bounded th e n  Lemma 2 .3

g u a r a n t e e s  t h a t  t h e  sum a p p e a r in g  i n  2 .17  i s  o[n a+ >̂j as n  -y oo # i n  t h e  

c a s e  p -  1 we may show by i n d u c t i o n  ( p ro c e e d in g  a s  i n  Lemma 2 .5 )  t h a t  a l l  

t h e  a r e  be tw een  0 and 1 . For  p > 1 a h e u r i s t i c  a rgum en t and

com puter  c a l c u l a t i o n s  s u g g e s t  t h a t  t h i s  i s  a l s o  t r u e .

The r e s u l t  i s  r e a d i l y  e s t a b l i s h e d  however by a r g u i n g  a s  f o l l o w s .  (We 

a re  i n d e b t e d  t o  Dr. M. Faddy f o r  s u g g e s t i n g  t h i s  a p p r o a c h . )

E q u a t io n  4 .3  o f  D a n ie l s  (1967) s t a t e s  t h a t

n+a-k
Pn_k(n, a , p )  = $ ( p+fe) pn(n-k,a ,e+k)  ,

where th e  e x t r a  p a r a m e te r  p f o r  th e  r e l a t i v e  rem oval r a t e  o f  t h e  p r o c e s s  

h a s  been  i n t r o d u c e d  i n t o  th e  f u n c t i o n  p (n , a )  .

p ( n , a , p )  = 1 -  I  p A n , a , p)
k-1

= 1 -  1 0
k-1 ,P+k

n+a-k
p ^ ( n - k 9a , p+k)

Now s in c e  t h e  p ^ ( n - k , a  ,p+/c) a r e  u n i fo r m ly  bounded th e  r e s u l t  f o l l o w s

Hence we may use  th e  r e c u r r e n c e  r e l a t i o n  1 .9  and t h e  method o f  

Theorem 2 .4  t o  e s t a b l i s h  t h a t
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2.18 Pn(n, a) = 1 - + o(w a) , as

2.6 The probability of early extinction

It has long been accepted, following the arguments of Kendall (see 

section 1.4), that the probability of early extinction in a general epidemic

its opposite "major outbreak" has- yet to be defined. The above-mentioned 

result is obtained by arguing that early extinction occurs if the birth and 

death process with birth rate n and death rate p becomes extinct. This 

criterion is chosen because such a process approximates the general epidemic 

process in it's early stages, since in the early stages we may ignore the 

effect on the contact rate of the small depletion in the number of 

susceptibles. It would be more appropriate that the final size be the sole 

criterion for deciding whether a major outbreak has occurred. Here we 

discuss the probability of early extinction under such criteria.

with p < n is (p/n)a . Exactly what is meant by "early extinction" or

Let

qr(n, a) = Pr{^ < r | (*(0), 7(0)) = (n, a)} .

By the usual argument

2.19 q (ft, a) -

n, a = 1 , 2 , . . . ,  r = 1, ,. ., n ,

q (0, a) - q in, 0) = 1 - 6(r) .

and
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These probabilities may easily be calculated from these equations.

Referring to equation 1.21 we see that as long as r = o(n) as 

n •+ 00 ,

q (n, a) ~  —  , as n ■+ 00 .nj

It seems very difficult to obtain this result under more general conditions 

on r . Equation 2.18 suggests that it is true even for r = n .

As in Theorem 2.4 we may use the recurrence relation 2.19 to find 

further terms in the series for q^{n^ a) . Thus we may show that

2.20 qr(n, a) = [4 a(a+3) 
2p (£)[nj

a+2
( -a-2\+ o[n J , as n

2.7 The mean duration time

Equation 1.19 is of the same form as equations 1.9 and 1.14. 

Proceeding in the same manner we find that

1 12.21 M(n, a) = — —  Y — j- + nM(n-l9 a+l-k)
n+P J

It was expected that expressions of the form of 1.10 and 1.16 could be 

obtained from 2.21 and the asymptotic result of Ridler-Rowe (1967) that

M(n, a) —  In(n+a) 
Y

as n 00 ,

could be obtained using the algebraic methods of sections 2.2 and 2.3. 

Unfortunately this has not been possible, but the following heuristic 

argument may be applied.

From the conjecture of section 2.5 we may reasonably assume that if n
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is large enough no member of the population escapes infection. Lemma 4.2 

indicates that this mass infection takes place in a time interval which is 

arbitrarily small as n becomes larger. If everyone were to be infected 

at time zero the duration of the process would be the maximum of n + a 

exponential variates with parameter y . Hence we would expect such a 

random variate to have the same limiting form as T and it is a simple 

matter to show that its mean is

1 n+a i 1
- Y, 77 ~ — ln(n.+a) , as n 00 .
Y KY

2.8 The general epidemic model with a la te n t period before infectiousness

In many diseases a newly infected individual passes through a latent 

period before becoming infectious. If we modify the general epidemic-model 

to incorporate this feature the resulting model is of course much more 

complicated. Nevertheless some interesting conclusions may be drawn from 

it.

We will assume that the population is composed of individuals who are 

either susceptible, latent infectives, infectives or removed and we will 

denote the number of such individuals at any time t by X, L, Y and Z 

respectively. In the time interval (t, t+St) an infective may become 

removed with probability yYSt + o(St) , as St -> 0 and a susceptible may 

become a latent infective with probability pXYSt + o(St) , as St ■+ 0 . A 

latent infective becomes an infective after a time period W , where W is 

an arbitrary random variable independent of the state of the system.

THE DISTRIBUTION OF THE FINAL SIZE
The final size distribution is not affected by this modification. This 

is easily seen by considering the embedded random walk process defined by



t h e  t r a n s i t i o n s  i n  which e i t h e r  a s u s c e p t i b l e  o r  an  i n f e c t i v e  i s  changed .  

The two p o s s i b l e  t r a n s i t i o n s  a t  t im e  t  have p r o b a b i l i t i e s

P r { ( J ,  Y, L) + ( Y - 1 ,  Y, L + l ) }

0 i f  Y+L = 0 ,

P r ( U ,  I ,  L) + U ,  y - 1 ,  L)}  = «

0 i f  Y+L = 0 .

These  a r e  t h e  same t r a n s i t i o n  p r o b a b i l i t i e s  a s  i n  t h e  same embedded random 

walk  p r o c e s s  f o r  t h e  g e n e r a l  ep idem ic  model  w i t h  z e r o  l a t e n t  p e r i o d .  The 

f a c t  t h a t  some o f  t h e  i n f e c t i v e s  a r e  now c a l l e d  l a t e n t s  h a s  made no 

d i f f e r e n c e .

AN EXPONENTIAL LATENT PERIOD

The s i m p l e s t  way t o  i n c o r p o r a t e  a  n o n - z e r o  l a t e n t  p e r i o d  i n t o  t h e  

g e n e r a l  e p id e m ic  model  i s  t o  make t h e  d i s t r i b u t i o n  o f  t h e  l a t e n t  p e r i o d  

i n d e p e n d e n t  o f  t h e  s t a t e  o f  t h e  sys tem and e x p o n e n t i a l  w i t h  p a r a m e t e r  X 

s a y .  T h i s  d i s t r i b u t i o n  f o r  t h e  l a t e n t  p e r i o d  w i l l  p r e s e r v e  t h e  Markovian 

n a t u r e  o f  t h e  p r o c e s s ,  i . e .  a t  any t im e  t  t h e  b e h a v i o u r  o f  t h e  p r o c e s s  i s  

d e p e n d e n t  o n l y  on i t s  s t a t e  a t  t im e  t  . At any t im e  t  t h e  model  h a s  

i n f  i n i t e s i m a l  t r a n s i t i o n  p r o b a b i l i t y  r a t e s  g i v e n  by

2 . 22

(Y-1 ,  y ,  L+ l )  a t  r a t e  YY ,

( X , Y+l ,  L- 1)  a t  r a t e  XL ,

( X , Y - 1 ,  L ) a t  r a t e  pY ,

where  (y ( 0 ) ,  Y( 0 ) ,  L( 0 ) ]  = ( n ,  0,  b ) .

The c o r r e s p o n d i n g  d e t e r m i n i s t i c  model  i s
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x  = -xy ,

y - XI -  py ,

t  - xy -  XI ,

where (x(0), z/(0) , 1(0)) = (n, 0, b)  .

Equations similar to 1.2 and 1.3 may easily be found for this model. 

While these would be of little use in practice, approximations of the same 

form as those of chapter 3 are readily derived.

'HIE MEAN DURATION TIME OF THE EPIDEMIC
Let Af(n, a, b) be the expected time to extinction of the general 

epidemic with exponentially distributed latent period and initial conditions 

(/(0), 1(0), L(0)) = (n, a, b) . Then by the usual argument we have that 

Min,  a ,  b) satisfies the recurrence relation

2.23 M(n, a, b) = na+pa+Xb a -> ^>+l)+P^(n 5 a-1, b)

M(n, 0, 0) = 0 , n = 0,l, ... .

Using the heuristic argument of section 2.7 we may infer the asymptotic 

form of Mi n, a, b) as n 00 . Every individual once infected will stay 

infected until its removal after a random period of time equal to J  + I  , 

where J and I  are independent exponential variates with parameters X 

and p respectively. If everyone becomes infected at time zero, the

+XbM(n, a+1, b - D ] ,  n, a, b = 0, 1, ..

duration T of the epidemic will be equal to max
1<i<n+b

, where

initially we assume (z(0), Y(0), L(0)) = (n, 0, b) .

Let

T 1 - max
l<i<n+ii
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Tr has distribution function

FT f(t) =
, 1 (, -pt -Xt\ n+b

where we assume that A / p .

ET’ =
rOO /

1 -

•’ 0
1 - 1 (, -pt -At

X-p (xe-pU pe-«)
n+b~

dt

Substitute u - \)t/(ln(n+b)) , where V = min(A, p)

VET' 
In(n+b)

1 -

1
+

0

1 - (X(n+i>)-(p/V)u-p(n+b y (X/X>)u1)
n+b

du

1
1 - 1 - taffi (X(n+fc)-((P/v)-l)«.p(n+fcr((Vv)-l)^' n+b

du

Using l’llopital’s rule we see that for fixed u the integrand 

converges to G{u) where

1 , u < 1 ,
G(u) = - j l - e 1/(lp X l) , u - 1 ,

1° > u > 1 .

Therefore

lim 
n-*»

vbT'
ln(n+b) = 1 + lim lim f(m9 n) ,

n-*» m-*»

where

/(m, n)

•m
1 -

1
i  - tatp (x(n+&)d(p/v)-1b_p(n+fc)-((Vv)-i)^' n+b
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It may be verified by straightforward (though messy) algebra that 

f(m, n) converges uniformly to 0 as n 00 . Hence

lim
n-*00

v ET’ 
ln(n+b) = 1 5

and so the conjecture is that

0, b) ln(rt+b) 
min(A,p) 9 as n -+ 00 .

Note that it is not necessary to assume that h is a constant for this 

result.

2.9 The b irth  and death process lim it

In section 1.4 we discussed an approximating process due to Kendall 

which is based on the idea that the initial behaviour of the number of 

infectives in the general epidemic process is approximately the same as a 

birth and death process with birth rate \in and death rate y . In this

section we show that with a plausible modification of the contact rate 

parameter we can put this idea on a rigorous basis. We consider the general 

epidemic model as defined in section 1.1 but with p replaced by \i/n , 

i.e. the infinitesimal transition probability rates are

2. 24 (Z, Y) + '
(X-l, Y+l) at rate —  XY , 9 n

Y-l) at rate yY ,

and the initial conditions are (y (0), 7(0)) = (n, a)

This modification represents a restriction in the mixing of the 

population where, as the population size increases, the contact rate of any 

individual stays the same. In large populations this is a more realistic
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assumption to make.

The following theorem gives the limit of this modified process as 

n -*■ 00 with the other parameters constant.

THEOREM 2.6. For y and y positive constants and a a positive 

integer, as n -* 00 the process Y defined at 2.24 converges weakly to a 

birth and death process with birth rate y and death rate y on 

t i (0, t ) for any fixed t 0

PrOOfo Let

M be the event {n-Y(t) > Vn} ,

Y ’ be the birth and death process with birth rate y , death rate 

y and initial condition Y'(0) - a  , and

Yn be the birth and death process with birth rate 1 - Hn death

rate y and initial condition Y"(0) = a .

Further let t) , P^(s9 t) and P"(b , t) be the p.g.f.'s of Y, Y'

and Y" respectively.

Now choose any finite number of time points 0 < t. < t„ ... < t < t . Let1 2  in

Y - (y (t ),... ,Y(£ )) , defining Y f and Y" similarly. Denote their p.g.f.’s

by P (2 ) (=P (2,...,2 ;£,...,£)} , P ' (2 ;£) and P ” (2\t) respectively. a ---  ̂ a 1 m l m J a ~ ~ a ~ ~ r
Now

Y < Y 1~ d ~ 5

where means less than in distribution (see Theorem 4.2.10 of Stoyan (1977))

Hence

2.25 P (2 ,*) > P'(z,t) ,<2 ~ ~ a ~ ~

(see e.g. Barlow and Proschan (1975)).

Also Y" Y except on a set of probability less than Pr{A/} . Hence
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2.26 £> > E { n a/"(V)
if i=l 1

> e  J n  z, i )M°V = 1 1
> P Q ( z - >  t )  -  P r { M }

Let the random variable 21 be the time between the (i-l)th and ith

infection} i - 1, ..., n . 21 is stochastically greater than or equal to 

an exponential variate with parameter less than or equal to

n-i+1 [i-1I \
k-1

< \i(.a+i)

So 21 21/ , where T^ is exponential with parameter p(a+f) . Therefore

2.27 Pr{W} = Prfq + ... + T[vW+1 < t}

where [a] means the greatest integer less than or equal to a

<  l }  •< Fr{T  ̂ + ... + 21'[Vn]+1

Now

[Vn]+1I
k=1

, [Vn]+1
= t £y fc=l a+x = 0(ln w) as n ■+

and

fCVnJtl I
Var I

k=l
T 'k

[vVz]+i
I

p2 k-1 (at/c)2
= 0(1) as n ->

Hence from 2027, using Chebychev’s inequality we have

2.28
__ 2

Pr{A/} = o((ln n) ] , as n -*■ 00 .
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Now i t  i s  w e l l  known t h a t

2. 29 P ' ( s ,  t )  = y( l - s ) - (y - \ i z )e  ^
n a

y(l-a)-(Y-ps)e ( y - y ) t

and i t  i s  e a s i l y  shown t h a t

P ' ( 2 ;  t )  = ? ' k P , V ;  . . . ( 3  ,P '< Z  ; i  - t  ) ; t  - t
a ~ ~  a K 1 1  2 1  m-1 1 m m  m- 1 w-1 m-2 ’ l ;

Now i t  f o l lo w s  t h a t  P " ( s ;  t )  = P f( s :  t )  + o ( l )  , a s  n -> 00 .a ~ ~ a ~ ~

Hence e q u a t i o n s  2 . 2 5 , 2 . 26  and 2 . 28  show t h a t

2. 30 | p ( z ,  t ) - P ' ( z , t ) |  = o ( l )  , as n + 00 .

2.10 The diffusion l imit

We c o n s id e r  th e  p r o c e s s  d e f i n e d  a t  2 .2 4  b u t  w i th  t h e  i n i t i a l  c o n d i t i o n  

(y ( 0 ) ,  y ( 0 ) ]  = ( n ,  nh)  , w here h i s  a  c o n s t a n t .  T h is  m o d i f i c a t i o n  in  th e  

i n i t i a l  c o n d i t i o n  e n s u r e s  t h a t  t h e  p r o b a b i l i t y  o f  e a r l y  e x t i n c t i o n  i s  

a r b i t r a r i l y  s m a l l  a s  n 00 and a d i f f e r e n t  l i m i t i n g  p r o c e s s  r e s u l t s .  In  

t h i s  form th e  p r o c e s s  i s  a s p e c i a l  c a s e  o f  a g e n e r a l  c l a s s  o f  p r o c e s s e s  

d i s c u s s e d  in  B a rbou r  (1974) from w hich th e  f o l l o w in g  r e s u l t  i s  d i r e c t l y  

o b t a i n a b l e .

L e t

2 .31
X-nE, y-nn '|

Vn ’ Vn J 5

where £ and r\ s a t i s f y  t h e  e q u a t i o n s

k = -y£o , 

n = uCn -  yn ,

w ith  i n i t i a l  c o n d i t i o n s  ( ^ ( 0 ) ,  q ( 0 ) )  = ( 1 ,  h)  . The v a r i a b l e s  £ and q 

a r e  th e  d e t e r m i n i s t i c  a n a lo g u e s  o f  t h e  s t o c h a s t i c  p r o p o r t i o n s  X/n and
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U V
P (u9 V; t) - e [u nv n) n J

Then P - lim P satisfies the equation 
n->°°

2 »32 9P 
91

, v y In —  u
9 P r 9 P + yv In v 9P 

dv

-% y£n In iq + y n d n  v) P = o ,

where P(w, i>; 0) = 1 .

From 2.32 we may easily show that the means EU and EV are 

identically zero and that the second moments satisfy the following system of 

differential equations

2.33a) dEUz
dt + 2y(n£7/2+pw) - y£n = 0 ,

dEUV2.33b) + \i[x][EUV-EU )-^{EUV-EV )] + yEUV + y£q = 0 ,

2.33c) -fä- - 2mEUV - 2(y£-y)EV* - (y£+y)n = 0

We shall use equations 2.33 in chapter 3 to construct an approximating 

process for the general epidemic.
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CHAPTER 3

APPROXIMATING PROCESSES

3.0 Introduction

The general stochastic epidemic model presents great mathematical 

difficulties. Explicit solutions for the state probabilities associated 

with the process are available (see section 2.1) but unfortunately these 

solutions are so complicated that they are useless in practice. Hence we 

must look for good approximations to the process.

The approximating procedures used here make use of the well-known fact 

that the general epidemic exhibits two distinct modes of behaviour: either

the process becomes extinct early or there is a major outbreak. Thus we 

look for approximations to each of these modes. This approach was first 

exploited by Kendall (see section 1.4) who used a birth and death process 

for the first mode and the deterministic solution for the second mode. In 

section 3.1 we derive a different approximation for the second mode of the 

process which in most cases enables good approximations to be found for the 

means of the variables X(t) and Y(t) , the distribution of the final size 

and the distribution of the duration time of the process.

In the case of the general epidemic being near critical (i.e. p ~ n) , 

this approach is not useful. We suggest a way to deal with this situation 

and support the idea by heuristic arguments and numerical comparisons.

3.1 A quasi-deterministic model

In this section we consider a model which arises by replacing the 

stochastic variable Y appearing in the contact probability rate by its
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deterministic analogue y . The use of a deterministic variable as 

the contact rate is a reasonable modification for the following reason: for

many diseases it is difficult to ascertain the role played by infected 
individuals in the spreading of the disease. In general it may be nearer to 

the truth to assume that new infections are caused by the presence of 

susceptibles in an infected environment of which infected individuals are 

only a part. Thus we could regard Y as an indicator of the level of 

infection in the environment whose true value is a continuous function like 

y(t) .

If we let X ’ and Y' be the number of susceptibles and infectives at 

time t for this model, the infinitesimal transition probability rates are 
given by

'U'-i, y f+i) at rate x ’y ,

■+ -

1—1 1X ^̂ at rate P Y ’ ,

where [Xf(0), Y'(0)) = (n, a) , and where y is defined by equations 1.4.

The forward equation for p (£) , the joint relative frequency
Y*S

function (the state probability function) of Xr and Y' yields for 

v - 0, 1, ..., n and s = 0, 1, ..., n+a-r ,

3.2 p (t) = ~(ry+ps)p (t) + (r+l)yp At) + p(s+l)p At) ,rrs rrs ^rr+l,s-l ^r,s+1 ’

where we define p (£) = 0 if either s = -1 , r > n or s > n+a-r . r rs

Y> QMultiplying 3.2 by W z and summing over r - 0, 1, ..., n and 

s = 0, 1, ..., n+a-r, we find that P(u, 2; t) , the joint p.g.f. of X' 

and Y f satisfies the partial differential equation
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3.3 dP . , 3 P , 9P
3i ~ - y { z ~W) 3W + p(1-2) 3¥ •

where P(w, 2 ; 0) = W™z2 .

The characteristic equations of 3.3 are

dt dw dz
1 y(z-w) p(l-2 ) 5

yielding the integrals

3.4 (1-z)e P  ̂- & = const,

and

-t •t r ^ \
r U

3.5 w exp - y(s)ds + y(u) l - / c  epw j exp 
l 1 J

- y(s)ds
J0 ■0 J0

d w  = fc,

From equation 1.4a) we note that e 

some elementary algebra we may write 3.5 as

-\U0y(s)ds
- x(u)/n . Thus

3.6 1 - (1-w) - + k, n
£ _ a ept) =
n n J1 [n n

Hence the general solution of 3.3 is of the form

Tr|(l-s)e'pt, l-(l-w) ^ ~ \ (1-2) (y-ae'pt)| ,

where tt( • , •) is an arbitrary function.

Using the initial condition we find that

3.7 P(w, z; t) = [l-(l-2)e P ]pt-ia l-(l-w) — - — (1-z)[y-ae pc) n n ^ J
•P -t n

const.

with



We note that this result may also be derived using the different 

approach of Faddy (1978) (see section 1.5).

The moments EX' and EY' are easily obtained from 3.7 or directly 

from 3„3 and are, as expected,

3.8a) EX’ - x ,

and

3.8b) EY' = y •
Similarly, for the second factorial moments we obtain

3.8c) EX'(X’-l)

3.8d) EX' Y 1 - nj
a -p txy + — xe J n

and 

3.8e) £T'(Y'-1) = ae~pt[2ij-(a+l)e pt] + 1 -
n.

[y-ae pt)2

Numerical results given in Faddy (1977) indicate that this process is 

a good approximation to the general epidemic model as long as the probability

of early extinction, (p/n)a) is small„ However, the process shows

systematic variation from true values which increases as (p/n)° increases. 

The reason for this is that this modified process has very little chance of 

early extinction. The way to correct this shortcoming would be to use the 

birth and death process approximation (obtained by holding X constant) 

conditional on early extinction of the general epidemic process and use the 

quasi-deterministic process conditional on a major outbreak. The resulting 

process is discussed in the next section.

Note: We could also have formed an approximation by replacing X by x

in the contact rate. This results in a generalised birth and death process 

(see Kendall (1948)). It is easily shown that EX' - x and EY ’ - y .

However, the other quantities of interest are not obtainable in such simple form
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3.2 The approximating process

In the subcritical case (p > n) the approximating process uses a 
birth and death process with birth rate n and death rate p for the 

number of infectives Y . If the population is supercritical (p < n) with

probability (p/n)a we use a birth and death process with birth rate p

and death rate n for Y , and with probability 1 - (p/n)a we use the 

quasi-deterministic process defined in section 3.1.

If we are using a birth and death process with birth rate a and death 

rate 3 to approximate Y then n - X is the number of births in this

process by t . The joint p.g.f. Q(w, z; t) = E[w 1 ^2^1 is given by

3.9 2 ; t ) =
z-r
z-r

2

1
exp (-a(rl~r2) t)

where r^(u) and r^(w) are the larger and smaller roots respectively of 

the equation

2awr - (a+3)r + 3 = 0

(see Kendall (1948))0

Making use of equations 3.8 and 3.9, the first two factorial moments 

for the approximating process Yr are easily found to be as follows.

(i) THE SUBCRITICAL CASE 

3.10a) EY' - aer _ _-(p-n)t

3.10b) EX' - n a r, -(p-n)t>1 - - 2 -  fl-p-n y

3.10c) £Y'(7'-1) = ae-(p-n)t a - p+n
P-nj

-(p-n)t 2 n
e  + p-n
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3.lOd) Ex’r  = - 2 2 - e - < p - n >*p-?l a -
p+n
p-rcj [l-e-(p-n)t)-2pt

and

3. lOe) EX’(X'-l) = (n-1)

2

2an r -(p-n)t > n + -—  [e y -1J

+ an

p-n

p+na ----p-nj(P-n)

(ii) THE SUPERCRITICAL CASE 

3.11a)

fe-(p-n)t_ll2_4n -(p-n)£

r~r—1 ■—1e v + --  - ---[ P-nJ p-n

EY' = +}aae-(n-p)t 1-
r
£nJ w  j

3.11b)
( > p a

n.
n - ap -̂(n-p)tj'

n-p 1 -

3.11c) ET'(Y'-l) = P a
a 'a n+pV (n"p)t | 2p[nj X n-pj n-p_

,-(n-p)t

1- P
[n ae pt[2y-(a+±)e P ]̂ + 1 - — [y-ae P^)2J ,

3elld) E X ' X 1 = ip|a pa_ -(n-p)t
( \ 

n+p 
a - —— [l-e-(n-p)t)-2nil

[nj n-p

Q?1s

1- pla'

"h
Ii•H

V. W  j l nj
a -pt xy + — xe v n

and

3.lie) EX'(X’-l) =

ap‘

r \a( P1 1
nj |(w-1) n + ̂  (e-(n-p)t-l)"

(n-p)

n-p

a - 2_4„n-pj v
-(n-p)t t + n-pj n-p_

+ 1 - m [i-i)W J
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Also in the supercritical case conditional on a major outbreak 
occurring, we may find approximations for the second moments of X and 

Y by using the diffusion limit. We assume that n is large enough so that

fV ~ (y> F) ’

(see section 2.10), and then use equations 2.31 and 2.33.

THE DISTRIBUTION OF THE FINAL SIZE

Letting t + °° in equations 3.7 and 3.9 we find the distribution of 

the final size for the quasi-deterministic process and the approximating 
birth and death process respectively. Thus we may readily find the 

distribution of Z r , the final size for the approximating process of this 
section, as follows.

(i) The subcritical case
Z fLet Pßt(w) = E(w } be the p.g.f. of Z' . From 3.9 we have

3.12 PZ , M  =

It can be shown from this expression (see Bailey (1975), p. 102) that

n+p-V(n+p)(i) 2-i\pnu
2 wn

3.13 Pr(Z' r} a(2r+q-l)! 
r !(r + a)!

r r+a n p
(n+p) 2 r+a

Here we are neglecting the event that for this approximation Z' may 

be greater than n . For some cases, for instance when a is large 

compared with n , this event is not negligible (see figures 6a) and 7a) of 
Appendix B).
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(ii) The supercritical case

From equation 3.7 we have that conditional on a major outbreak the 

number of susceptibles left after the process has become extinct, n - Zr , 

has p.gof.

l-(l-w) - .n_

Hence n - Z' has the binomial distribution with mean 0 , which is to 

say that as n -+ 00 it has the Poisson distribution with mean 6 .

Recalling from 1„8 that

0 ~ ne-in+a)/p , as n •+ 00 ,

we have agreement with Daniels' heuristic result given by equation 1.13. 

(For this result Daniels assumes that a/p is negligible.)

The binomial distribution of the number of susceptibles left has a 

simple interpretation. It is the distribution obtained by assuming that at 

the beginning of the epidemic and conditional on a major outbreak, each 

susceptible independently has probability 0/n of escaping infection.

Hence for the p.g.f. of Z’ we have

Thus using 3.13,
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3.15 Pr(Z' = p} = g( 2p+g-l) ! 
p!(p+g)!

p p+a n p
(n+p) 2p+a (l- t n  n fi - i]

P V
l nj J 1p j nj -n >

n-p

THE DISTRIBUTION OF THE TIME TO EXTINCTION

Let T' be the time to extinction of the approximating process of 

this section. The distribution function of T 1 is given by 

F ,(t) = p(1, 0; t) . Hence from 3.7 and 3.9 we obtain the following

expressions.

(i) The subcritical case

3.16 v (t) = p-pg

fi-ne

-(p-n)t' 
■( p-n)t

(ii) The supercritical case

3,17 Ft ,U) [fi-T
n>

n-ne -(n-p)t

p-pe

„ -(n-p)t 
[n-pe

-(n-p)t}a

+  1 -

n-pe
-(n-p)t +  1 - P

nj ( l - ' T l i  - i

-in

By the following theorem we establish that the asymptotic form of the 

mean of the approximation T r is the same as the asymptotic form of FT 

(see equation 1.20).

THEOREM 3.1. For p a positive constants

E T f ~  —  In (n+g) , as n -► 00 . P



51

Proof. For n > p we have

ET’ =
>oo f f \apJo I If 1 + n-p

p-ne(n-p)t

1- [l-e-pt]a 1 - — [y-ae p )̂
n

n) n v J >dt

Let (e > 9) be the time for the deterministic process to reach

x - E . By Lemma 4.2, t = o(l) as Now for t > by making

use of equations 1.5 and 1.4b) we have that

3.18 n+a-E + p In — n e < y(t) < n+a-E+p In — nj
,(e-p )t

Letting t - [u ln(n+a))/p we may write the first inequality as

uln(n+a) n+a-e+p In £-1 — i-

n* (n+a)u *

as long as u > (pt )/ln(n+a) .

Making the change of variable to u in the integration and letting 

{l+(n-p) [p-n(n+a)^,1~p û/()] ~ ' }ag (u) = 1 -
r \C lP 
n

1- £)”](w 1 1 - 1
(n+a)

1 - n-e+pln(e/n)
n(n+a)

we have

p ET'
pt /In(n+a)

li\(n+a)
1 „ fin(n+a)
EFr l~i— j,Jdu t a

J - Jpt /ln(n+a) J1 E

t j \g^(u)du
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U sing  l ’H o p i t a l ’s r u l e  we may show t h a t

T h e r e f o r e ,

where

f t - * »

1 U < 1
- 1

H 1 1 U - 1

0 u > 1

l im
f t - * »

p ET'
I n (n+a) > 1 + l im  l im  f ( m ,  f t) ,

f t - * »  nr*00

f ( m , ft) = q ( u)du  . vn

The u n i fo rm  c o n v e rg e n c e  o f  ft) t o  0 a s  ft -* 00 may be

e s t a b l i s h e d  by s t r a i g h t f o r w a r d  though  t e d i o u s  a l g e b r a .  Hence th e  o r d e r  o f  

t a k i n g  l i m i t s  may be r e v e r s e d  and we have

lim
f t - * »

pET' 
I n (n+a) > 1  .

S i m i l a r l y  by u s in g  t h e  second  i n e q u a l i t y  in  3 .18  we may show t h a t

l im
f t - * »

( p - e ) ET '  < 
I n (n+a)

S in c e  £ i s  an  a r b i t r a r y  number g r e a t e r  th a n  0 and 0 •* 0 as 

ft -* 00 , t h e  r e s u l t  f o l l o w s .  □

3.3 Numerical resu l t s  and discussion

In  Appendix B we show c o m p a r iso n s  o f  t r u e  v a lu e s  o f  EX, Var X, EY, 
Var Y, Fpi t )  and th e  f i n a l  s i z e  d i s t r i b u t i o n  w i th  t h e  c o r r e s p o n d in g
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approximating functions calculated from the formulae given in the last 

section. The true values were calculated from 10,000 computer simulations 

of each epidemic. The initial number of susceptibles, n , takes the values 

5, 10, 20, 40 and 80 . The initial number of infectives, a , takes the 

values 1 and 5 . In all cases the relative removal rate, p , is 9 .

The quantities shown with a prime are the approximations. The 

variances shown with a double prime which appear in the graphs where 

n - 20, 40 and 80 are derived from the diffusion approximation (i.e. 

using equations 2.31 and 2.33).

Another approximation which has been put forward is that of Ludwig 

(1973). This approximation gives excellent results for EX, EY and Fit) , 
which, for the cases shown, are almost indistinguishable from the real 

values. However the approximate solution is itself quite complicated , 

involving the solution of 2(n+a+l) recursive D.E.'s. When this method 

was applied even to the case in,a) = (5,5) and p = 9 , standard double 

precision library subroutines using either Runge-Kutta or Hamings modified 

predictor corrector method were unable to guarantee accuracy of .01 for 

t >.2 .

The main advantage of the approximation presented here is its simplicity. 

A simple expression for the p.g.f. of the process is available, enabling 

closed form expressions for quantities of interest to be found. Evaluating 

these expressions involves only one numerical integration.

The use of the approximation results in an enormous saving in computer 

time. On the Univac 1100/42 the total computer time involved in the 

simulations was 2,300 seconds whereas the total time involved in calculating 

the approximations was 7.0 seconds.
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THE BEHAVIOUR OF THE EPIDEMIC PROCESS GIVEN EARLY EXTINCTION
Figures 1, 2, 6 and 7 of Appendix B show cases in which early

extinction occurs with high probability so that the birth and death process

part of the approximation is dominant. The approximate means EX’ and EY’

are seen to deviate wildly from the true values except for the case of

figure 1 where (n, a) = (5, 1) . This has occurred because the assumption

that conditional on early extinction X does not vary much from its initial

value is not true in these cases. Quite clearly we need something other

than n with which to estimate the mean of the approximating birth and

death process. The expected final size in a birth and death process with
aybirth rate y , death rate Y and a initial individuals is

we choose Y = p and y =
PC (n,a) P

Y-y , so if

, this process will have the samea + C (rc,a)P
final size as the epidemic process. The resulting approximations are shown 

with a double prime on figures 1, 2,6 and 7. This results in a considerable 

improvement, although the approximation to Var X is still poor.

THE EXPECTED FINAL SIZE IN A NEAR CRITICAL EPIDEMIC
It is the near critical (i.e. p ~ n ) epidemics whose behaviour is most

difficult to describe. In the following we consider the asymptotic properties

of C (n.a) . n

We know that

3.19 C (n,a) = ^[1 + C (n-l,a+l)] + hC (rc,a-l) .n n n

It is readily shown that

3.20 C (n,a) < a C (n,1) a - 2,3,... ,n n

and that

3.21 C (n-l,a) < C (n,a) .n n

Putting a - 1 in 3.19 we get

C in, 1) = h + hC {n-1,2) ,

which with 3.20 and 3.21 gives
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C ( n ,  2) n
2 < C (rc, 1) n

C ( n,  2) + 1 n
2

Th is  may e a s i l y  be  e x t e n d e d  by i n d u c t i o n  t o  g ive

C { n, a)  C (rc, a)  + 2a_1 - 1
3.22  —---------  < C ( n ,  1) < — ------------------ •----------  , a = 2 , 3 , . . .  .a r c ’ a

S ince  C ( n , a)  < n we have n

Cn ( n ,  1) x 2a - l -  1
------------—  < — + — . ------------- , a = 2 , 3 , . . .  .n a n  a

T h i s  i m p l i e s  t h a t  C ( n ,  1) ( a n d  hence  C ( n ,  a ) ,  a  = 2 , 3 , . . . )  , i s  o ( n )n n
a s  n 00 .

We would e x p e c t  t h a t  C ( n - 1 , a )  and C (?i, a )  a r e  o f  t h e  samen n
o r d e r  o f  magni tude  as  n -* 00 ( w i t h  a  = o ( n ) ) .  Hence from 3.19 we g e t

C ( n,  a)  ~ a C (n,  1) -  2a_1 + 1 . n n

Now C ( n , 1) must be unbounded a s  n 00 , o t h e r w i s e  we c o u ld  choose  n
a  so t h a t  t h e  R.H .S.  i s  n e g a t i v e .

SOME NUMERI CAL R E S U L T S

n cn (n * lo g e n h’/n

1 .5 0 .5

5 1 .3 1 1 .6 1 1 .12

10 1.89 2 .30 1.59

20 2 .62 3.00 2 .24

50 3.95 3.91 3.54

100 5 .29 4 .6 1 5.00

500 9 . 9 8 6 .2 1 11 .12

1000 12 .95 6 .9 1 15 .81

These r e s u l t s  show C ( n ,  1) t o  n be i n c r e a s i n g  ve ry  s lo w ly  w i th

The f u n c t i o n  does n o t  seem t o  f o l l o w  a power o r  l o g a r i t h m  law .

A P P L I C A T I O N  TO OTHER MODELS

The i d e a  b e h i n d  t h e  q u a s i - d e t e r m i n i s t i c  model o f  s e c t i o n  3 .1  would a l s o  

be u s e f u l  i n  c o n s t r u c t i n g  a p p r o x i m a t i o n s  f o r  o t h e r  p r o c e s s e s  which l i k e  t h e  

g e n e r a l  e p id e m ic  p r o c e s s  have t r a n s i t i o n  p r o b a b i l i t y  r a t e s  which a r e  n o n ­

l i n e a r  i n  s t o c h a s t i c  v a r i a b l e s .  One such  model i s  t h e  p r e d a t o r y - p r e y  model

( s e e  e . g .  Bharucha  Re id  ( I 9 6 0 ) ) .  In  Appendix C we p r e s e n t  a b r i e f  s t u d y  o f  

t h e  a p p l i c a t i o n  o f  a q u a s i - d e t e r m i n i s t i c  a p p r o x i m a t i o n  t o  t h i s  model .
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CHAPTER 4

THE GENERATION-WISE SPREAD OF INFECTION

4c0 Introduction

In some applications of epidemic models it is important to consider the 

individual generations of infection (see e.g. Becker (1976), (1980)). In 

particular this is useful when applying the model to the spread of rumours 

(see section 1.6) in which case we would expect that the rumour becomes more 

distorted as the "generation distance" of the hearer from the source increases. 

By the source we mean the initial or "zeroth generation" infectives.

In section 4.1 we find recursive expressions for the mean final sizes 

of the individual generations. These expressions would be useful only for 

the case of fairly small population sizes and consequently we turn to the 

deterministic model, deriving a simple formula for each generation size at 

any time and also an asymptotic result for its final size.

The approximating process of chapter 3 is applied to this situation in 

section 4.2. The limiting process analogous to that of section 2.10 is 

presented in the final section.

4.1 The mean generation size

Let

C (n, a) = E W 
9 l 9

f 00 1«0), I (0), X  v ° >
k = m +1 K  J

(n, a) ,

g = 09 1> .••, m ,

0 *where (n, a) = [n, a
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Multiplying equation 1.25 by r and summing over v = 0, 1, n ,
9 9

we obtain for <7 = 1,2, . .. , 7?? ,

4.1 C (n, a) = 
9

777+1
(yn+y) £ a

k=0 K

- r - 1
f 777+1< |vw z ak-i )+^g (n-i»a+ê)l/c—1

m ^
a+em+l)+Y J 0 a* V ” * a-ed )  ’

71 1, 2, ... , <2 q , 0,1,

where is the (k+l)th row of the (tt?+ 2) x (777+ 2) identity matrix, and

C^(0, a) 0 , aQ, a^+1 0, 1, ... .

Any C (•, •) may be found from 4.1 using a recursive procedure.

(Section 5.4 describes explicitly a similar procedure.) We note that for

realistic initial conditions we would have a, = = ... = a , = 0 but in1 2 777+I

order to find C (tt, a , 0, .. . , o) we must also compute the C (•, •) for
9 9

more general initial conditions.

Equation 4.1, though similar in form to 1.14, is sufficiently more 

complicated to be useless for the development of expressions analogous to 

1.16 and 1.17 from which asymptotic results like Theorem 2.2 were derived.

We turn therefore to the deterministic model to examine the behaviour of the 

generation sizes as n -* °° . In section 2.2 we saw that asymptotically the 

expected final size in the stochastic model and the final size in the quasi- 

deterministic model were very close and we expect the same to be true with 

regard to the final generation sizes.

Before looking at this asymptotic behaviour we obtain some useful 

expressions from equation 1.6.
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From 1.6 we have

4.2 t(u) - dv
\iv\p(v) 9

where

ip(v) - n + a + 1 ln 2.

Also

4.3 dip = , , X  yu

Using 4.2 and 4.3 we obtain

4.4 _ 2 n _  = y * + l n  a i d .
ip(v) Y a

Substituting 4.4 in 1.27 and using 4.2 yields

3 (*) =21 
9 9'- J YX + m  Ulll

a

Hence from l«26c) we have

4.5

4.6

y (t) = — r
y9 g-

a

n d i i ] 1Yt t In — -| e
' a J

-Yt

rt
x(T)<iT] e , using 1.4b) 

J

Equation 4.5 is particularly useful because it shows that since 

y = ip(x) , it is only necessary to compute x(t) to find all the

yjt), g - 0,1, ...
Z)
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The asymptotic behaviour (as n -* 00) of the final generation sizes in 

the deterministic model is described in the following theorem.

THEOREM 4.1. In the deterministic model defined in section 1.6_, if y 

and y are positive constants and a a positive integer,

4.7 z (00) ̂  -TL (in n)3 as n
g 9! 0 3 0 = 0 , 1 , . . . .

Proof. We shall make use of two lqmmas which we shall prove below

Let t be the time for x to reach £ , where £ > 0 . (Note that

since 0 0 as n 00 , £ can be arbitrarily small.) Now

+ S V") £ V V + + 1
Hence
z («) = 0(1) +

9'-
n + a - l - p l n n ' ly r ^ + r n l a J J

g -rt1

using Lemma 4.3 and equation 4.5

9'-
(In n ) ^  , as n 00 ,

from Lemma 4.2.

We note that this result is the same as that of Daley (1967) for the 

final generation sizes in the simple epidemic (y = 0) .

LEMMA 4.2. Under the conditions of Theorem 4.1 and where £ is a 

positive constant,

t 0 , as n -*■ 00 .
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Proof.

te
m dv.e ywKi>)

rn-Vn •Vn dv
T

•Vn £ yy (n+a-y+pln(y/n))

Therefore,

rn
yt < e

dv
^ v (n+a-y+pln(l-(1/Vn)) J v[n+a-v-(p/2)lnnj

i-Vn <fy

+
•Vn 

' e
_____ <iy______

y (n+a-y-pln(n/e)) 5

as long as n is large enough so that each integrand is positive over its 

range of integration.

Under this condition,

Mt < — rr-e n-vn
In Vn+a+pln (l-(l/Vn))l 1

a+pln (l-( 1/Vn)) J + Vn in
n-Vn+a-(p/2)Inn
Vn+a-(p/2)Inn

1
n+a-pln(n/e) In Vn[w-£+a-pln(w/e) V

-Vn+a-pln(n/e)

0 , as n

LEMMA 4.3. Under the conditions of Theorem 4. 1 3

z [t, 1 0 . as n 00
9 ■ 1

Proof. If u £ [n-Vn, n] then



dv
ip(v)

dv
n+a-v+pinfl-(1/Vn)J

as long as n is large enough so that the integrand is 

positive over its range of integration

= In n+a-n t o ( l ) as n -* 00 .

Similarly, by partitioning the interval [u, n] as in Lemma 4.2 we have for 

n large enough,

u € [ V n, n-Vn] =*
■n

*VL

dv
i ft(v)

In n+a-u- (p/2)lnnj t o(l)

and

C [1, Vn] dv
ip(v) < In n+a-u-plnn t o(l) n -> 00

Hence 1.27 gives for n large enough,

z [ t,) <
9  1 *

rn

n-Vn
In n+a-n ;+a_a 1

 ̂ ae
(n+a-n)n

rn-Vn r- r ✓ >n+a-w-(p/2)InnIn
Vn -

•Vn
In

•'1 -

ae
(n+a-u)u

n+a-u-plnn
0t_<7 6 y ae

(n+a-u)u du

where or. = a(l) as n -* 00 , i = 1, .. ., 6

0 , as n

We note that this result means that although when x - 1 all except 1

of the possible infectives has already been "born" this has happened so fast 

that none has yet "died".
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4.2 An approximating process

Using the same method as used in the proof of Theorem 2.1 it may be 

possible to find an expression for the joint p.g.f. of (Y, YQ, , ...)

which is of similar form. This expression would however be so complicated 

that it would be useless for any practical purpose. Hence we turn to the 

methods of chapter 3 for a process which will provide workable approximations 

to quantities of interest.

(i) THE SUBCRITICAL CASE
In the subcritical case the bounding birth and death process Y' will 

become extinct with probability one. In this eventuality we form the 

approximating process by letting X be constant at its initial value n . 

Thus the process has the following infinitesimal transition probability 

rates:

P'-i, r +t g+1) at rate \inYr
g

( X’ , Y r) -► -
h ' .  V ' - e ? ) at rate Y Yf ,

Y g

where e  , q - 0n ° , 1, ... , is the vector with 1

position and zero elsewhere.

In the usual way we find that the p.g.f.,

g -  o ,  i , 5

in the (^+l)th

■ it)
Y Y 0 1
*0 *1

satisfies

4.8 5P' dP’
dz1 k

From 4.8 we obtain

4.9
dEY'
St- = -yEIg + vnEZg-1 » 9 °’ *■’

where EY’ - 0 .
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It follows that

4.10 EY' = 
9

(ynt)y „-yt
9'- g - o , i ,

and it is easily shown that the expected final size of the g'th generation 

is given by

4.11

(ii) THE SUPERCRITICAL CASE

In the supercritical case Y1 will become extinct with probability

(p/n)a in which case it behaves like a birth and death process with birth 

rate y and death rate \m . Thus we assume that with probability

(pln)a the epidemic process will become extinct early and in this 

eventuality we use Y' as the approximation for Y . It follows from the 

above equations that

e [y ' I early extinction) = (Y t)9 -Wit ---i—  e
9 '

0, 1

and

9
early extinction) = a ~ |

The epidemic process will become a major outbreak with probability

approximately 1 - (p/n)a and in this eventuality the approximating process 

has infinitesimal transition probability rates given by

(Z'-1, Y f+e ) at rate Vx 'lJg >
) at rate yY’ .
9J 9
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The joint p.g.f., P f(w, s , ...; t) satisfies

4.12 9Pf 
91

CO

1

k-o
9P'
9 s7

The characteristic equations of 4.12 are

dt
- du) lQ W k(*k+i-w)

(is
y ( l - 3  Jv 9J

, g = 0, 1, ... ,

which yield the integrals

(i- )e - y t  = = const 9 = °> 1»

and

°° , r(t)
I — —  + “TP* (1_w) " 1 = k = const »fc=l

from which we obtain, with the use of the initial condition 

P ’{w, zQ, 21# . ; o) = wnSq ,

4.13 P' (w, sQ, sl? ; t)

y t

'I a r . N  00 P7(£)!_(!_„) 5ii)_ Z (1-3J *
c-rtt

fc = l n

We easily obtain the following factorial moments from 4.13:

4.14a) EX' = x(t) ,

4.14b) EY' = 
9 f g W  > P =

4.14c) EX'(X'-l) = 1 -

4.14d) PY^(y^-l) = a(a-l)e 2yt ,
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4,14e) py'fy'-i] 
gK g '

l  -  -
n .
(;y (*)) 9 r  i»2,

Further we have

4.15 E[W (oo)l = Y 2/ (t)dt = 2 (°°) 
0 ^ ^

4.3 A l im i t in g  process

We present the limiting process which is analogous to that of section 

2.10 and follows directly from Barbour (1974).

Let Y(0) = n and Y (0) = nh&(g) , where h is a constant, 

g - 0,1, ... . Further, let £(£) ■= x(t)/n and n (£) = y (£)In ,
g g

g -  0, 1 , ... , where x(t) and are defined by equation 1.26’with

p replaced by p/tt . Then on any fixed time interval (0, x) , the random 

vector

h (n) F ( n ) VM  1 r * . « e  Y o - n r i o  Yi-nni ]
f  * /0 9 y \Zn ’ Vn 5 Vn 5k y

converges weakly as n -*■ 00 to the diffusion ([/, , 7^, ...) whose joint

p.g.f. p(u, y , .o.; t] satisfies

9P4.16 II- X  7
Ul

( v 
m  -±u

9 P r 9P
ny-lw 9u + ^i-1 9y

^ ln i r + %p
9P_
>.

i-lJ

In
V .\2

+Yni (in = 0 ,

where q  ̂r 0 and v  ̂ = 0 .



From 4.16 we may readily show that the means EU, EVb , i - 0,1, 

are all identically zero and the second moments satisfy the equations

, irf , dEU 4.17a) + y
•i=l

I  V i  (2£,£,2-5) + 2P? I  w - . ,  = o ,
i-1 i-1

dEUV.

4-17b) - a t * Y+y S n. J o t . + yC I  £V.
i-1 J J i=l  ̂ J

- y n EU +%EUV. \ + ŷ n = o , j = o, 1 ,J J- J J 0 t

dEV.V,J k4.1?c) - ä P  - yt ^ E U V . ^ E U V ^ [ )

- (y£n- T+yn .]6(k-j) + 2^7-7. = 0 , J, fc = o, 1,J--L J' K J

Assuming that n is large enough to take

yn) > yOO
• • • )  >

we may use equations 4.17 to find an approximation to Var(y) and

Var(y ) , g - 0,1, ... , that would be useful in the event of a major

outbreak.
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CHAPTER 5

THE GENERAL EPIDEMIC IN A STRATIFIED POPULATION 

5.0 Introduction

One of the assumptions made in the general epidemic model is that the 

individuals in a population (except for those that are removed) mix 

uniformly, i.e., in any given time interval each pair of individuals has an 

equal chance of meeting. In the case of a human population of any size this 

is certainly not true. In general any member of the population meets the 

same people each day. A population can be considered as stratified with 

people mixing within their particular strata or group and with much more 

restricted contact between groups. In this chapter we study a model which 

incorporates this feature.

The first section deals with the effect of the stratification on the 

important threshold theorem. In the stochastic case we may apply known 

results of general linear processes to find the threshold condition which 

arises from making a simplifying assumption that is analogous to one which 

is reasonable in the case of the general epidemic in a homogeneous 

population. Equations for the probability of early extinction (under this 

assumption) are found and solved in a simple case. We also find an 

approximate expression for the probability that infection initially 

introduced into one subpopulation will not spread to other subgroups.

In the usual way we use renewal arguments to find recursive expressions 

for the mean final sizes of the epidemic in each subgroup and also for the 

mean duration time of the process.

The final section presents the limiting process analogous to that of

section 2,10.
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5.1 T h e t h r e s h o l d  t h e o r e m

The threshold theorem for the general epidemic in a homogeneous 

population does not have a simple analogue for the case of a general 

epidemic in a stratified population. In the latter model a greater range of 

behaviour is possible. Thus in the case of the deterministic model an 

initial decrease in the number of infectives in a particular group does not 

guarantee that the infectives will always be decreasing. However, the usual 

thresholds n^\i^ - , i - 1, ..., m , which we would have if the groups

were to be isolated ( y^ = 0 , £, j = 1, . .. , m , i ? j] do have a big

effect on the size of the epidemic. This will be demonstrated for both the 

deterministic and stochastic models.

THE DETERMINISTIC MODEL

We consider the case when m - 2 . Let 0. = cc.(°°)^ z z = 1, 2 .

Equations 1.32 become

5.1
0^- n  + n,, (w,+a,-e0) ,

and

5. 2
e2

-b ln tt2 = u22K +a2-0^ + b 2K +ar ei)

From 5.1 we have

dQ2 1
d6l y21

Y
-p n  + e ”ij

1 M11
- 0 when 0
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Since 0 $ 0^ < there can be no turning point if . Treating

equation 5.2 similarly we may draw the curves defined by 5.1 and 5.2 as 

follows.

The solutions to 5.2 and 5.3 are the points of intersection of the 

curves with horizontal and vertical asymptotes. The effect of the

ii =

THE STOCHASTIC MODEL
In the case of the general epidemic process in a homogeneous population 

the early behaviour can be approximated by assuming that the number of 
susceptibles in the population remains constant at its initial value and 

considering the behaviour of the birth and death process which results from 
this assumption. We expect this to be true for the general epidemic process

in a stratified population. Letting , i = 1, ..., m , the process

becomes a linear multivariate birth and death process which we shall call 

Y ' . The necessary and sufficient condition for the extinction with 
probability 1 of Y' is well known (see e.g. Griffiths (1973)) to be that

the characteristic roots of the matrix M - A - B have negative real parts,

where in our case

thresholds ŷ. , i - 1, 2j on these points is plainly seen.

A = = ’
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and

B  = K - ] ’

where

 ̂r 3 ,
= <

0 otherwise.

We take this condition to be the threshold condition , no major outbreak 

being possible if it is satisfied.

For the case m  - 2 the characteristic roots are

%1Vll-W22-V k l Ull"Yl'n2tJ22+Y2^2+4nin2ll2lyX2

The roots are both real and in order that they both be negative it is 

necessary and sufficient that all of

5.3 Vu - Yi 4 0 *

5.4 n2U22 - Y2 < ° ’

and

5.5 K yil-Yl H « 2W22-Y2) > W 2 l yl2 ’

should be satisfied.

Equations 5.3 and 5.4 are the familiar threshold conditions for the 

case of isolated populations.

When we have two populations interacting in this fashion we might 

expect that to a good approximation, y = ^ 5 ^12 = ^21 = ^  ’
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where 0 < q < 1 , and = y . Hence equation 5.5 shows that even

for two subpopulations which are individually subcritical a major outbreak 

may occur if

5.6 1 - 1 -
no VJ

We conclude by noting that for Y ' to become extinct with probability 

1 it is obviously necessary that , {, = 1, m , because

otherwise

dEY .
for some 1 •

5.2 The probability of early extinction

We approximate the probability of early extinction of the general 

epidemic process in a stratified population by the probability of eventual 

extinction of the initial approximating multivariate birth and death process

Y' .

If the characteristic roots of M do not all have negative real parts 

Y' may become extinct with probability less than 1 . In this case let 

= Prjeventual extinction of Y ' | Y'(0) = ê .} , i - 1, ..., m ,

where is the ith row of the m * m identity matrix.

Because each infective acts independently of the others we have

5.7 Prjeventual extinction of Y' | Y'(0) = [â , a )}

By considering the possible transitions of the embedded random walk process 

we have that the p̂  satisfy the set of equations



72

m \ mY; + E VüJPf + Y; + nivjipopi - 0 , £ - 1, ..., m ,

which may also be written in the form

5.8 K u;;prY;} k;'1) + £«7=1jV£
= 0, £ = 1 j ... , m ,

(this result is essentially contained in Griffiths (1973)).

From 5.8 we see that (as expected) for isolated population groups (i.e 

IN . = 0 , £ ^ j] we have

?£ = min f Y;
Lttii J> 1 1 »  £ = 1, ... , m .

In the simple case m = 2 , y = p22 = y , y = y = q\i , 

= Y2 = Y and - n , we obtain

5.9 P1 P2 ny(l+<7) ’

so that

Pr{early extinction} ~
a1+a2

ny(1 + q)

5 03 T h e p r o b a b i l i t y  t h a t  in itial i n f e c t i o n  do es n o t  s p r e a d

In section 5.1 it was shown that the individual thresholds still 

exerted a strong influence on the behaviour of the epidemic. Any group £ 

may be classified as subcritical or supercritical depending on whether 

n^y^ < y ̂ or n^y^ > y^ and we note that a group which is subcritical
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can never subsequently become supercritical. Any infection arising in a 

subcritical group will die out quickly in that group. If a major outbreak 

were to occur in a subcritical group it must be mainly due to the action of 

infectives from other groups rather than from its own infectives. The major 

influence of subcritical groups in causing major outbreaks is thus in 

infecting supercritical groups.

Suppose, that initially we have infection in one subcritical group which 

we shall call group 1 . We have seen that the behaviour of subcritical 

populations can be approximated by regarding the number of susceptibles in 

that population to be constant at its initial value. Hence we assume that 

^1 = nl ° Further, let

q(a) = Prjno infection occurs outside group 1 | 7^(0) = a} .

Since each infective acts independently under this assumption we have

q{a) = (<?(l))a , a = 1, 2, ... ,

and

q(0) = 1 .

Now the backwards equation yields

q( 1) hi -n  -+Yi3 1
-1
{ h n^i1? (2)+Yi (̂°)}

which gives us a quadratic equation for q(l) . It is easily seen that the 

roots of this equation are real and positive and that it is the smaller root 

which is required. Hence

m
l

U =1
p, .n ,+v - lj J 1

m
l

j =i W Yi - ^ n V i
%

2un ni5.10 ?(1) =
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Now suppose that initially all infected individuals are contained 

solely in a supercritical group whiqh we shall now for convenience call 

group 1 . We may expect that if a major outbreak occurs in this group the 

infection will spread with probability close to 1 . However, we know that 

with probability approximately (y /y n a supercritical group will

behave like a subcritical group with contact rate y^ and removal rate

y «1 . Hence in this case the infection will not spread with probability 

approximately

q'(a) = (p'(l))' y n M11 1

where q'(l) is the same as q{1) in equation 5.10 with y^ and y

interchanged. Thus we see that the expressions for q'(a) and q{a) are 

identical.

5c4 The f ina l  sizes

Let fvf. , i - 1, o.., m , be the final size of the epidemic in the 

fth group and

Pr (n ,  a) = P r f ^  = r^9 i = l ,  . . 0, m | (X, Y) = (n, a)} ,

where (n, a) = [n^ . . . ,  a±i . . . ,  aj , r = rj and

(X, Y) = [Xl9 Xm9 Yv  . . . ,  J j  .

We consider the embedded random walk process with transitions
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'( n -e ^  a+e^]

5.11 (n, a) -> <
with probability rc .y .• a

m
l
i-1

-t-1
y .a .+n .y. *a% v t t

(n, 3-e .) with probability y .ai i
m
1
i-1

- f - 1
y .a . \n  .y . *at  ̂ t t

5 0 , 1 ,  ••• » t - 1, • • •, rii ,

where ŷ. is the ith column of the matrix {y^} » is the £th

of the m * m identity matrix, and where no transition is possible if 
= 0 , i - 1, ..., m .

row

The backwards equation yields for r  ̂= 0, 1, ,

£ = 1, ..., m ,

5.12 pr(n, a) I
i-1

—r-1
y .a . -m .y . • a

£=1I YiaiPr(n> a"e,-)

+n̂ i ’aPr-e>-ei> a+ed 5 n£5 a£ 0 , 1 ,

and

P r ( 0 ,  a) = 6(r) , - 0, 1 ,  , i - 1 ,  m

Let

CA n, a) = e [w I (X(o), Y(o )) = (n, a))

Multiplying 5.12 by r̂  and summing over = 0, ... , ,

k - 1, . .., m , we obtain for = 1, ..., m ,
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5.13 ch (n, a) =
m
l
i=1

— r -1

Y . a .+ n .u .•az z z ̂z z-lt Z:aich(n’a-ed
m

+ni\ii -di{ch [n-ei , a+ê .) +6(h-i))

0 , 1 9 ... j d 1, . ,

and

C^(0, a) = 0  , = 0, 1, ... , i - 1, m .

The recursive equations 5.12 and 5.13 enable the joint distribution of 

the final sizes or the individual mean final sizes to be found for any 

initial conditions. The equations are complicated and the procedure to 

follow is not at all obvious. We outline the method for finding any

< V - ’ °  •

Suppose we wish to find C-,[N , N , A , . . . , A ) . We consider the

( N)-hyperplanes defined by + .. . + = v , r = 0, 1, ... . For each

successive value of r we take each point on the (N)-hyperplane and

determine C, (•, *) at each point on the (A)-hyperplane defined by n

+ ... + = s , s = 0, 1, . .. , Y  A^ + r + 1 . It is easily seen that
U l

for the first (N)-hyperplane - 0), Cy{ •, •) - 0 for each point on each

of the (.4)-hyperplanes. We continue in this manner until the point

(n . .... N , A - . ..., A 1 is reached, l'q’ ’ m' 1 ’ m J

5.5 Expected time to extinction

The epidemic is defined to be extinct when there are no more infectives
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left in the population. As in the previous section we consider the embedded 

random walk process.

Let M(n, a) be the expected time to reach extinction from the 

state (n, a) . The expected time spent in this state is

The transition probabilities from this state are given by 5.11 and the usual 

argument gives us

5.14 M(n, a) =

T
+ni V aM(n-e V

This expression may be used to compute the expected time to extinction 

from any initial state by using the procedure outlined in the previous 

section.

5 06 An approximating process

Let p(w , •••, ..., 2^; t) be the joint probability

generating function of [A' , ..., A 1^, ..., J ) . It is readily shown 

from 1.30 that P satisfies the partial differential equation

5.15 3P 
dt

m
- I

i-1 L - 2,-)
3 P m
32. ' £

i J=1
p . .2 . [z .-w .)
O'L i i''

3 2P
dw .32 .^ J
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This equation could be solved by the same method as was used in section 2.1 

to solve the corresponding equation for the general stochastic epidemic 

model. The solution would be even more complicated and thus completely 

useless for any practical purposes. Because of this we will consider an 

approximating process analogous to that used in chapter 3.

MAJOR OUTBREAK

In the event that a major outbreak occurs (see section 5.2) we form an 

approximating process by replacing in the contact probability rate the 

stochastic variables Y ̂ , i - 1, ..., m , by their deterministic

analogues y^ 0 Thus the infinitesimal transition probability rates are

given by

m

5.16 (X ', Y ') + '
i - 1, . . . , m .

(X f, at rate y^Y^ •

In the usual way we have that P'(w , . . . , z ; t] , the1 m 1 . m }

joint p.g.f. of (ZjY, ..., satisfies the equation

5.17

This may be solved in the same way as equation 3.3, but the result follows 

more easily by noting from 5.16 the independence of the process in each 

group. Hence we obtain
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.is p'fw,, v  v  •••. v> 0 = FT
i =1

-v£2 • n  t

n

nTt
y .-a .e

n .“T t

Factorial moments are easily found from 5.18 to be for i = 1, . m ,

5.19

5.20

t

sr:

= a:i 5

5 e 21 e x :fy:-il i  -  —n ■

5.22 ^(l^-l) = r i ‘2Va^ja^-lje + 2 a y .-a .e f

+  1  -  —

V
y .-a .e ^f f

" V  I2

5.23 EX’.Y \ =F f 1 - li " V
i •%J

x .y . + —  x .e f f  f

The distribution of the time to extinction, T' , is given by

5.24 FT ,(t) = P'(l, 1, 0, ..., 0; t)

m -Y•f a .FT [l-e 1 ) *
i-1

1 - y .-a .e 0 f f
■Yit'V

n .'I f

and the joint p.g.f. of the distribution of the number of susceptibles left 

after the epidemic has become extinct by

Q[w  9 • • • 5 ^  ) ~ P ' ( ^ 1  » ' • • 5 9 1  5 • • • 9 1  9 °°)

m
- FT
i-1

1- (l-W .)n

5.25
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which shows that for this approximation process the number left after the 

epidemic in the ith population is an independent binomial variate with 

parameter 0^ .

EARLY EXTINCTION IN THE SUBCRITICAL CASE

In the event that the multivariate birth and death process Y f becomes

extinct with probability 1 (see section 5.1) we use it as our approximation

to Y . Here we are assuming that if the process becomes extinct early then

each X. will not decrease much from its initial value n. . z z

The moments of Y ' are given by 

5.26 = MEY ' ,

m rp
where £Tf(0) = a = [â 9 ...» a ) , (see e.g. Mode (196 2)).

The joint p.g.f. of the distribution of the final size (see Appendix D) 

is given by

P*ilV “0 = TT he > r^=l z

where e . is the Yth row of the identity matrix and the P (•) satisfy 
% ez

the set of equations

P (w, , . .. , w ] ̂1 m-

- I  - 1

^  + I  «4J. •
^  j  — I  (J

f m
\ Yi +pe . K  * • • • • MJ  1 1  n/ ; / / e . K  • • • • • wJ

 ̂ J - 1 J

i  - 1, ..., m .
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5.7 The diffusion limit

We consider the general epidemic in a stratified population as defined 

in section 1.7 but with the following modifications. The initial condition 

is (Xh(0), YX 0)1 = [n^, •> £ = 1, .. ., m , where each is a

constant. The parameters y.. , £, j = 1, . .., m , are replaced by \i../n.J7- J
where n . = nX. , j = 1, .... m .J J

As was the case in sections 2.10 and 4.3 this process is a member of a 

general class of processes discussed in Barbour (1974) from which it follows 

that on any fixed time interval (0, t ) the random vector

r(n) Tl(n) (n) An)
1 m l m

Vn

Y -nE, Y -nrp m m 1 1
Vn~ Vn"

Y -nnm m
Vn

where , nj  =
x . n ._L _L n . ’ n . , £ = 1, .. ., m , converges weakly as n °° to

the diffusion fp. , .... i/ , VP, .... 7 ] whose joint p.g.f.v 1 m l ’ m- J r &

Pin, , .o. , u , y, , o.., y ) satisfies '“ l m l

5-27 J
£=1

In 9P V  r V 9Pm . x—  ) y..n.+£. X y . .y . — ̂ 9m . jt j t j 9y.t j=i d d «7=1 47 j,

-Y .y . In y 1 ✓£ £ £ By. 2X. In h  ui ;V (ln P5 YA = 0

From 5.27 it follows easily that EU •> EV , £ = 1, ..., m , are ̂ £
identically zero and the second moments satisfy the equations
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dEU'U1 k l
5-28a) It + EUlVk £ + 5Z ^ j l EUkVj+vjkEUlVß

- Y~ ^k6^k~l) £  yjfcnj = 0 ’ k, l = 1, m 9
J=l

dEU.V-j
5-28b) - a k -  + Eh vi

\

yi +£ w
w m

- Euiuk £  £  ^ EVi

+ S*. _Z vjkEVj Vk + T~ h 6<‘k~l) £ 'Uz-'U = 0 ’ k, l = l, ..., m ,
tJ «7=1 jfe'j

5-28c) - a r ^ + - ^  £  V*F/ ^  £  W * .
m m

EUi\ l=1 Vji^+Eukvi |x VI
TW  £ W^-1 J

&(k-l) = 0 , k , Z- = 1, ..., m

These equations are useful in approximating Var(^) and Var(Ŷ .) , 

£ = 1, ..., m , conditional on a major outbreak occurring.
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CHAPTER 6

SOME OTHER MODELS FOR EPIDEMICS

6.0 Introduction

In the introduction to chapter 5 we discussed the assumption of uniform 

mixing of the population. This is perhaps the weakest assumption of the 

general epidemic model and chapter 5 studies a model in which the assumption 

is modified. In this chapter we introduce and study two models in which a 

completely different mixing behaviour is assumed.

The first of these is a model for a population with very restricted 

mobility. We formulate the model and find expressions for the mean number 
of infectives at any time. The probability of eventual extinction of the 

process is also found.

In the second of the models we make assumptions about the mixing of 
the population that are based on the family structure of human populations. 

The process which arises is a two-type branching process. We discuss the 

probability of early extinction of the process, find recurrence relations 
for the mean numbers of the various types of infective and finally we 

discuss the estimation of the parameters of the model.

6.1. A model for an epidemic in a community with very restricted mobility

This model would be applicable to a population with little or no 

mobility such as a population of trees in a forest. (In this case we might 

imagine the epidemic to be the spread of a parasitic growth for example.)

Infection is assumed to be spread by those infectives on or next to the
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boundary of the infected area.

We shall call those infectives that actually form 

the boundary of the infected area the primary boundary 

infectives and those that are adjacent to the boundary 

shall be called secondary boundary infectives. Their 

numbers at any time t shall be denoted by Y^ and

Y^ respectively.

In the time interval (£, t+6t) the following transitions may occur: 

each of the Y^ primary boundary infectives may produce a new primary

boundary infective with probability and become itself a secondary

boundary infective (i.e. the boundary is now at the new infective); each of. 

the Y2 secondary infectives may produce a primary infective with

probability and become itself a non-boundary infective; each

infective may become removed with probability ySt regardless of type. 

Non-boundary and removed individuals are assumed to have no influence on the 

behaviour of the boundary infectives. We are interested primarily in the 

spread of infection so the removed and non-boundary individuals will be 

ignored.

Thus the infinitesimal transition probability rates for the model are 

given by

(y. vd at rate y p i  ,

(y+i, y2-i) at rate
V 2 Y 7  ’

h r 1’ at rate 9—1 
>
-

i—i iCslc\i—1 at rate y Y 2 *
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and the initial conditions are (y (0), Y^O)) = (a, 0) .

The model may readily be generalised to include more types of 

infectives characterised by their distance from the boundary although the 

mathematics rapidly becomes tedious.

THE MEANS

Let p(y^, v2; t) be the joint p.g.f. of Y^ and Y^ • In the usual 

way we may show that P satisfies the partial differential equation

6-1 H = tViK-1)vU-vJ] §- + ,

where p(y , v 2; o) = .

An explicit solution for P appears very difficult because of the non­

linearity of the characteristic equations of 6.1. However, putting 
zy 1 = EY  ̂ and y^ - EY ̂ , it follows easily from 6.1 that the means satisfy

the equations

6-2a) y± = - yy± ,

6-2b) y2 = -(y+P2)y2 + v1y1 ,

where (0) 9 zy2(0)) = (a, 0) 0

Since the process is a linear one, equations 6.2 also define the 

corresponding deterministic model. The solutions to these equations are 

readily found by standard methods to be

-t (y+p /2)
6.3 y^it) - ae [cosh(%A£) +(p 2/A) sinh(%A£)] ,
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and

2y a -t [y+p /2)
6.4 y 2(t) = — ^— e sinh(%At) ,

where A = [y^+4p^ J . It follows from 6.3 and 6.4 that the epidemic will

die out if

6.5 P1P2 < y (y +U2) •

THE PROBABILITY OF EXTINCTION
Let

p(a, b ) = Pr{extinction of the process | (Y (0), Y2(0)) = (a, b)} .

Since each infective acts independently we have

n h6.6 p(a, b) - p(l, 0) p( 0, 1) , a, b - 0, 1, ... .

Also, a consideration of the embedded random walk process yields

6.7 p(l, 0) =
p -l+y p(l, 1) + Px+Y

and

6.8 p(0, 1) Po+Y p(l, 0) + Y
p 2+y

Equations 6.6, 6.7, 6.8 are easily solved to give

6.9

1 if y (y +P2) - PpP2 5

p(a, b)
y (y +u 2)' a y (p1+p 2+y )>

V2V  J u-lUv P otherwise,
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so that extinction is certain if y Iy +I^) - ^1^2 Ĝf' 6.5).

6.2 A two-type branching process model

In this section we consider a branching process model for an epidemic. 

The theory of branching processes is well developed (see e.g. Harris 

(1963)) o They are especially useful in modelling the spread of a disease 

which has a nearly constant latent period so that new ’’generations" of 

infection may be regarded as occurring at discrete time intervals. If we 

restrict ourselves to the early stages of the development of the epidemic 

before the depletion of the susceptible population becomes significant and 

we may take the distribution of the number of offspring (i.e. new infections 

caused by each infective) to be independent of the state of the system, the 

mathematics involved is tractable. This restriction still provides 

information of interest since it is the behaviour of the process during its 

early stages which determines if the outbreak will be minor or major.

The process we shall consider is a multitype branching process based on 

the family structure of a human population. We assume that, outside 

their family, every infected individual may pass on the disease to any 

other individual, but within a family only the first member to be infected 

may pass on the disease to other members of that family. This is a 

reasonable assumption when family units are quite small (e.g. in many 

middle and upper class urban societies). Thus we may classify infectives 

into two groups: type 1 are those infected by contacts outside their

family; and type 2 are those infected within their family. We may also 

classify susceptibles into those from families which already have infected 

members and those from uninfected families.

Further, we regard the number of (both types of) susceptibles to be
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approximately constant. Hence we may assume that each infective infects I 

type 1 infectives and each type 1 infective infects I  ̂ type 2 

infectives, where I and Î  are independent random variables with 

p.g.f.'s f(s) and g(s) respectively. In the special case where I has 

the Poisson distribution this model reduces to that of Bartoszynski (1972).

Let 7.., i, j = 1, 2 , n = 0, 1, ... , be the number of type j 

infectives in the nth generation given one initial type 7 infective, and
( n  ̂ Yllet F^ (s, t) , 7 = 1, 2 , n = 0, 1, ... , be the joint p.g.f. of 7

and 7. ̂ . Then we have ^2

6.10 F ^ i s , t) = f(s)g(t) ,

6.11 (2)F̂  \s, t) = /(s) ,

and it is a well known result of branching process theory that

6.12 F^\s, t) =n+m m n1)(s’ 4)’ Fn2)(s’ «
7 = 1 , 2 ,  n, m = 0, 1, 2, ... .

THE PROBABILITY OF EXTINCTION
We expect this model to be useful in describing the early behaviour of 

an epidemic in a population having family structure. If the branching 

process becomes extinct it is most likely to do so within a short period 

after its beginning. Therefore we expect that the probability of eventual 

extinction of the branching process will be a good approximation to the 

probability of early extinction of such an epidemic process.

Let = /'(l) and g - g T{l) be the means of the non-family and
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family offspring distributions, and let

. = 0

be the probabilities of eventual extinction of the process. By another well 

known theorem, (tt , u^) =(1,1) if the largest eigenvalue of the matrix

j = 1, 2, for some k i = 1, 2

not greater than 1 . This condition is easily shown to be equivalent to

6.13

If this condition is not satisfied then (it̂ , tt̂ ) is the smallest positive 

solution of

Using 6.10 and 6.11 this condition becomes

6.14
and
6.15 TT2 = f{ T^hj)) •

We shall consider 6.14 since it arises from the more realistic initial 

condition. The behaviour of the solution tt̂  when the process is only

marginally supercritical is of interest.

Suppose the first 3 factorial moments of the distributions of which 

f and g are the p.g.f.'s are finite. Then making use of Taylor’s theorem 

we may write
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6.16 f(s)g(f(s)) = 1 + (s-l)/1(l+3 1) + (s-1)2 f2(ltff1)+f^(2gf1+ff2)

+ (s-l)3k(s) ,

where, since /(s)g,(/‘(s)) is a p.g.f.,

is a p.g.f. (see Daley and Narayan (1980)), and where /., , z = 1, 2, 3 ,

are the fth factorial moments of their respective distributions.

Using 6.14 and 6.16 we obtain

6.17 1 - IT =  - - - - - -  - 5 —   —  ,
f2(1+91)+fi(291+92)

where i?(s) > 0 , 0 5 s < 1 .

If 1 - it is close to zero we can neglect higher order terms and

write

/hl+sj-l
6.18 1 - TT ~ - - - - - - - - - - - -- - - - - - - -  ,

~  f2(1+91)+f1(291+92)

and in fact we see from 6.17 that this approximation is a lower bound for

THE MOMENTS OF THE GENERATION SIZES

Let

a/! . = e/ 1. . , i - 1,2 n - 0,1, ..
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and

/t . - EY71. . 
1C ^0

y?.-i i v
, i = l , 2 ,  n = 0, 1,

From equation 6.12 we obtain the sets of recurrence relations

6.19 C  = mi A j  + mi & j  ’ n =0,1,

where

and

Similarly we find that

M° = M° = 1 11 22 ’

/lf° = /if0 =o 12 21 5

mil = m21 = h  ’

m22 = 0 •

"12 = <?1 •

6.20 1 = ra. /V? . + n. . + 2o .til . + m. j f l  . + n . .] ,tl lj tl[ lJJ t ^  2j t2 2j "t2 [ 2jJ

i, j = 1, 2 , w = 0, 1,

where

,70 „70 *70 ,t° „
^11 "  ^12 "  ^21 “  N 2 2

and where
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^Ll ”21 ’

n22  ~  ° ’

^2 Ö2 5

°1 "  4^1 ’

PARAMETER ESTIMATION
Here we use the technique of Harris (1948) who found the maximum 

likelihood estimator for the mean of the offspring distribution in the case 

of a "l-type" branching process (Galton-Watson process). This technique is 

easily extended to this case.

Let a_£, , { = 0, 1, k , be the observed number of type 1

and type 2 infectives in the £th generation of infection and I • 1 ' 9

b. , , i = 0, 1, n , fc = 0, 1, ... , be the observed number of ith ̂9 rC
generation infectives that infect k type 1 and k type 2 individuals 

respectively. We note that
OO

= a . + b . s6.21 X «k- 0

6.22 I ka
k-0

= ai,k i+1 5

6.23 1  b ik = >
k=0 ^  1

and

I kb- t --b
k =0 i Xk i+1
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Let

/(S) = Z Vjs and gA's) - Zi=0 t i=0 1

The conditional probability of ‘ " 5 S^ven a^, b  ̂ has the

multinomial form

li 9k

w*! 2 fT
Thus using 6.21-6.24 we have that the joint conditional likelihood of 

k , i = 0, ft , Zc = 0, 1, ... , is

n
L - IT 

i-0

i 9k

(“A)'G tT f
Therefore

ln L - l
k-0

nZ at = 0 £,Zc ln Pj- + Z lnK +̂ )! + Z Z ln£ = 0 k=o i=o £,fc

Using the method of Lagrange multipliers we find that the maximum likelihood 

estimators for the p^ are

6.25
n / 00 n

pk = I y / x E ^
i = 0 7'’̂  / fe=0 i=0

= I a- , / E (a-+fc.)i=0 i=o

For f, we have J1



94

6.26

Similarly

and

A
00

£  bi+1 i= o

6.3 A MODEL FOR AN EPIDEMIC IN A STRATIFIED POPULATION
The model of Chapter 5 is very complicated mathematically and very}

little can be said about the qualitative behaviour of such processes. In 

this section we introduce a simplified model for an epidemic in a 

stratified population. We use this model in a heuristic discussion of 

the size of the epidemic based on assumptions about the social mixing of 

the population.

We will consider a population consisting of k household or 

"family" groups. We assume that the infection rates within households

are much larger than the between household infection rates so that we can 

neglect reinfection of a group once it is infected.
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The f i n a l  s i z e  o f  an e p id e m ic  h e re  s h a l l  mean th e  t o t a l  number o f  

i n d i v i d u a l s  t h a t  become i n f e c t e d  by th e  o u t b r e a k .  L e t  th e  s i z e  o f  an 

e p id e m ic  in  t h e  h o u se h o ld  group  g iv en  one i n i t i a l  i n f e c t i v e  be

Ŵ  . We w i l l  assume t h a t  t h e  AL. a r e  p a i r w i s e  in d e p e n d e n t .  Let 

be t h e  p r o b a b i l i t y  t h a t  i n f e c t i o n  e v e r  r e a c h e s  t h e  h o u s e h o ld .

W.
L et / . ( s )  = E[s  , 3 = 1 . F u r t h e r ,  l e t  W be th e  s i z e

J
o f  t h e  e p id e m ic  in  t h e  whole p o p u l a t i o n  and  / ( s )  be  i t s  p . g . f .

Then

6 . 27 /<e) = .
V °

1
I

V °

k i  . i - i  y
n  <? • J  ( i - < 7  • )  J

U '= i  J  3

k i  . 
n f . h s )

j =i  3

V °

1 - i  .
1 k i  .f \ J k i  .

■ l  n a . ^ - V  l  f  H e )  
i  =0 3=2 d 3=2 J

k
= n

j =i
(1-W V (8)) •

The mean and v a r i a n c e  o f  A/ a r e  e a s i l y  found  t o  be 

k
6 .28  EW = ) q . EW.

A 3 3

and



96

6.29 Var W y q . EW2 + 2 V q.q . EW .EW . 
j= 1 J J iSj *  ̂ ^

k
l <7 •

U=1 J

2̂
£W.
0

k
- l<
J=l

2sw: -
j

k f
- u
J=1

Far 17 . 
J

Families are easily characterised by size. Suppose there are ns

households having s members, s = l,...,m . We will assume that the 

final size of an epidemic in a household is a function of the size of the 

household. Let Z ̂ denote the final size of an epidemic in a household 

of size s . Then

EW - y n q EZ , where q - —  ] S q . srx s nQ L

( Q )
and I ° denotes the sum over all households having s members. The 

parameters q. could be thought of as the average infection rate for a 

household of size s .
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We would e x p e c t  t h a t  a s  k °° , -r---- , a c o n s t a n t .  We w ould  a l s o/c s

e x p e c t  t h a t  t h e  q^ a r e  f u n c t i o n s  o f  k and t h a t  s  p l a y s  l i t t l e  p a r t  in  s

t h e  a s y m p to t i c  form o f  t h i s  f u n c t i o n ,  so  p u t  q^ - c q ( k ) , where c i s  as s s

c o n s t a n t ,  s -  1 , . . . 9m .

There  f o re

6 .30 EW ~ kq(k)  \  a f  EZ 
8=1 S S S

We a l s o  have

6 .3 1  Vav W = o [kq(k ) )  .

Using th e  Chebychev i n e q u a l i t y  we can  show t h a t

6 .32 P{hCkq( .k)  < W< i .C  kq(,k)) = 1 -  o M fc q W )  1

where C = V o f  EZ .
L , 8  8  S  

S - l

Hence f o r  any e > 0 , Pr{W > ek} ->-0 a s  k 00 , u n l e s s  q(k )  i s

0 ( 1 ) .

Thus i t  i s  th e  p a r a m e te r s  q^ which p l a y  th e  dom inant p a r t  i n  t h e  

q u a l i t a t i v e  b e h a v io u r  o f  t h e  p r o c e s s .  In  g e n e r a l  th e y  a r e  f u n c t i o n s  o f  k , 

th e  s i z e  o f  th e  h o u s e h o ld s  and th e  g e o g r a p h i c a l  and s o c i a l  " d i s t a n c e "

betw een them.

We now i n t r o d u c e  some a s su m p t io n s  a b o u t  t h e  m ix ing  o f  th e  p o p u l a t i o n  

in  o r d e r  t o  g a in  some i n s i g h t  a b o u t  t h e  p a r a m e te r s  q^ . Suppose t h a t  i n f e c t i o n  

s p re a d s  i n i t i a l l y  from th e  2’̂  h o u s e h o ld  [q = l )  . C l a s s i f y  a l l  h o u s e -
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holds according to their social relations with the household as follows

Let denote the set of those households having members with whom members

of the r^h household mix regularly. Members of S will be said to have 

level 1 mixing with the r^1 household. Households belonging to

= u S JS (those who mix with those whom the family mix with)
r i--s 1 r

V

have level 2 mixing with the family, etc.

, (1 )

Assume that

for j e S(1)V r
(for ease of notation here we are letting j stand for the family)

From this assumption, and the classification of households follows the

further assumption that

£ c . c(£) = P , for J e s r

From 6.28 we may write

E W - l p l
£ ieS

EW
1 P^n Q 1 — ~ » where n = rc(SAX';)£ £ ̂ ĵ U)  ̂r J

r

xn-

EW I pZn , where EW = \ \ EW. .
£ Ä K i=l V

In order to find properties of the parameters n  ̂ it would be necessary 

to make further assumptions about the connection between individuals or 

groups in the population. Little work appears to have been done along 

these lines, however a survey of material of some relevance may be found in 

Mollison (1977). It seems very difficult to make assumptions which are both 

realistic and lead to a model which is mathematically tractable.
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I f  t h e r e  i s  l i t t l e  " o v e r l a p "  i n  th e  s e t s  £  , v -  , th e n  we

~  £would e x p e c t  t h a t  n^  ~ n and  so m a jo r  o u tb r e a k s  would o c c u r  i f

qn^  > 1 . We w i l l  c o n s i d e r  t h e  f o l l o w i n g  m odel,  f o rm u la te d  g e o m e t r i c a l l y ,

t o  d e m o n s t ra te  how o v e r l a p  may e f f e c t  t h e  p a ra m e te r s  n .

L et th e  h o u s e h o ld s  be d i s t r i b u t e d  u n i fo rm ly  on th e  p l a n e .  Each h o u s e ­

h o ld  m ixes r e g u l a r l y  w i th  o t h e r  h o u s e h o ld s  w i t h in  a r a d i u s  R . Hence

n

n

1

2

~ piri?2 where p i s  t h e  h o u s e h o ld  d e n s i t y .

and i n  g e n e r a l ,

~ ( 2 £ - l ) n 1 .

So ( i f  k i s  l a r g e )  \  ~ 0 (1 )
£

and m ajo r  o u tb r e a k s  a r e  i m p o s s ib l e .

While n e i t h e r  o f  t h e s e  two a s su m p t io n s  a b o u t  t h e  o v e r l a p  o f  t h e  s e t s

S a r e  r e a l i s t i c ,  th e  t r u t h  would l i e  somewhere b e tw e en .  I t  w ould be r a t h e r  r
r £d o u b t f u l  t h a t  i  p"n  i s  0 ( k)  . Hence th e  s o c i a l  m ix ing  c h a r a c t e r i s t i c s  
£ 1

o f  human p o p u l a t i o n s  would have th e  e f f e c t  o f  making e p id e m ic s  o f  s i z e  

0 (k)  im p o s s ib l e .

I t  i s  r e l e v a n t  to  n o te  h e r e  t h a t  th e  e x p e c t e d  d i s t a n c e  be tw een  two p o i n t s  

u n i fo rm ly  d i s t r i b u t e d  on many g e o m e t r i c a l  s h a p e s  o f  a r e a  A i s  p r o p o r t i o n a l  

t o  SÄ . H ence , i f  g e o g r a p h i c a l  d i s t a n c e  a p a r t  p l a y s  a m ajo r  r o l e  and th e  

p o p u l a t io n  i s  f a i r l y  u n i fo r m ly  d i s t r i b u t e d ,  we m igh t e x p e c t  t h a t  q ( k ) -  k  , 

so t h a t  e p id e m ic s  o f  s i z e  0 ( / k )  would o c c u r .
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THE EFFECT OF THE PROCESS WITHIN FAMILIES
We would imagine that members of a household mix uniformly so that 

the general epidemic model may be useful to describe the process within 

households. Family sizes are quite small so the threshold condition would 

not have a marked effect. However, even in small populations a distinct 

feature of the general epidemic model is that the distribution of the 

final size may be [/-shaped. The effect of convoluting a number of such 

distributions will be to produce a multimodal distribution for W . This 

effect, however, will be quickly dissipated as k increases. This is 

shown by the following graphs of the distribution of W when q . = q = .1 ,
J

Pr(zj)

■*---- 1---- 1----* ■ »
1 2 3 4 5 W

Pr(w)

.1

. 2

.3
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Pr(w)

Pr(w) . 08 •

.04 ,
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APPENDIX A

PROOF OF THEOREM 2 .1

Suppose A has m distinct eigenvalues A^, . .., A^ with 

multiplicities , . .., k  ̂ . The set of independent solutions of equation 

2.1 are given by

A . t
e 1 [(ZHipKU)] |x=x , i = 1, , = 0, fc -1 ,

i

where K (A^) is the eigenvector corresponding to A^ and D is the

differential operator 9/9A (see Bellman (1960), Introduction to Matrix 

Theory, p. 194).

Hence the general solution of equation 2.1 is

m , . k.-lm Â. t y
A.l Z e Z ai .[(£+t)JK(A)] \ ,

i-1 j =0 J i

where the . are arbitrary.

Let K [Xj be the element of the vector K(A^) which corresponds to 

the position of p (t) . Then we have after rearranging A.l.

•v , k.-l m \.t i
p (t) = z ö Z a

i=l «7=0
(D+t^K (A.)

so that



P(w, 2 ; t) -
, . k.-in n+a-u m A.t %Z Z Z « * I«

u=0 y=0 £=1 J=0 (D+t)\ A )

Substituting this in 1.3 we get

, , k.-ln n+a-u m A .t  ̂ r
Z I Z e 1 Z ai7-lXi(C+<:)Jx— (A-)0“*1
u=0 y=0 i=l j=0 ^ 0 ' ̂ v ^y *uvv'iJ

u-1 D-l. /n v w y-l>~(D+t)JK (A.) (mv;s(3“W)&?M zV +yp(l-z)wUz° ) [ = 0UV Is

Changing the order of summation

m X-t^i  ̂ ( n n+a-u
•2 Z e 1 i Z ai A  Z Z .A.(D+t)Jtj(D+t)J 1 K  [x.)wuzv

i=1 {j=0 Vu=0 v=0 U  I ) uv v

(D+t)̂ K (A.) [uvz{z-w )w u 1zV 1+py(l-z)wuzv

where all terms having negative indices are understood to be zero.

Let A be max (A.) and k its multiplicity. Multiply the above

equation by t ^  and let t •+ 00 . All terms will vanish except the

coefficient of  ̂. Hence

n n+a-u r , , ^Z Z \)Kwuz*-K [uvz(z-w)wu zV +̂py(l-z)wuzV ) !■ = 0 , 
u-0 y=0  ̂ uV uv '

(for convenience K (A) is written K J •  ̂ uv uvJ

nsThe coefficient of w z is

A.3 P(«+l*r 1 - [X+s(r+p)]Kr>s + ('■tl)(s-DVliS.1 = 0 .
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where K - 0 if r > n , s+r > n+a , r < 0 or s < 0 .

Putting r = 0 , s = n t a we have

K _ (tt+a)p+A
Jl,n+a-l rc+a-1 * o,rc+a

Continuing down the diagonal,

7 _ f-|— r (n+a-'C) (£+p) +A \ 7.

"na l|-o J * ^0,n+a

But putting r - n , s - a we have

[A+a(rc+p)]£ = 0 .
na

So either A. = -(w+a-£)(£+p) for some i = 0, 1, .... n , or L  = 0 ,0,n+a

in which case all the elements of the top diagonal are zero. Examining now 

each diagonal in turn we see that A must take the value

A = —s (2a+p) for some v - 0, ..., n , s+r = 1, m-a .

We note that A = -s^fr^+p] =* K = 0  for r > and r+s > ,0 ^ 0  ' rs 0 0 0

but K ^ 0  otherwise the condition of Theorem 2.1 ensures that K isr ,s„

the zero vector.
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-fc+2 -XtNow suppose that k > 1 . Multiply equation A.2 by t e and

let t -* 00 . The coefficient of  ̂ in A.2 will be the only term

remaining. Hence

n n+a-u r _
^ V ■! [Aa ' +(fc-l)A Jz/^-A' [uvz(z-w)wU zV~l+pu(l-z)wUzV] f = 0
zfl HlH v Ju-0 y=0

p gThe coefficient of W z is

A.4 p(s+l)A' - [A+s(r+p)]A' + (r+l)(s-l)Af + (k-l)K , = 0
2 2 P+JL 5S - -L  P S

n+a ()

. -q  .

x '-0

0 n

Suppose A = -s 0(p q+p) , then all X g with r+s > p q+s q or r > tq

are zero (which implies from A.4 that the same is true for A ^ ) , but

A 1 0 . Putting r = r , s = s. in A.4 givesro,sQ & O ’ 0 &

V S0
= 0

which is a contradiction.

If k = 1 , take the next largest eigenvalue and repeat the procedure 

Continuing in this way we see that all the are 1 .

Hence if the condition of Theorem 2.1 is satisfied we may write
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n n+a-i X. .t
P„QU) = I  X  e tJ Z rs(Xij) ’ r = 0 , .... n , s = 0, n+a-r ,£=o t/=i

where

X̂  . = -j(i+p) , £ = 0, n , j = 1, n+a-i ,

and is the element of K (X^.) corresponding to the position of

p t) in p(t) . All the K (X. may be found from the recurrence rs j o

relation A.3, which together with the initial conditions

p (0) = - ^rs

1 if r = n , s = a ,

0 otherwise,

determine them uniquely.
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10 7

COMPARISONS OF THE GENERAL EPIDEMIC MODEL 
TO THE APPROXIMATION OF CHAPTER THREE

The following pages of graphs compare the general stochastic epidemic 

model with the approximations derived in chapter 3 0 A description of the 

graphs and an explanation of the notation is given in section 3.3.



Figure la)

Figure lb)

Figure lc)

(w, a) = (5, 1)



109

Figure 2a)

Figure 2b)

Figure 2c)

(w, a) - (10, 1) P  ̂9
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Y ,EY"
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Figure 7a)

Figure 7b)

Figure 7c)

(rc, a) - (10, 5) P = 9
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Figure 8a)

Figure 8b)

Figure 8c)

r~ \  ^  _  n
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V X "

a ) = ( 4 0 ,  5)  , p = 9
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Figure lib)
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Figure 12a)

Figure 12b)

Figure 12c)
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Figure 12d)
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Figure 12e)

79 80



120

APPENDIX C

APPLICATION OF THE QUASI-DETERMINISTIC APPROXIMATION 
TO THE PREDATOR-PREY MODEL

THE MODEL

The predator-prey model is well-known (see e.g. Bharucha-Reid (I960)). 

We shall define the model here for the sake of convenience.

Let X and be the number of prey and predators respectively at

time t . The infinitesimal transition probability rates are given by

'(V1’ with rate ylXl ’

(V1* X2* with rate W 2 •
( v  *2) •

(*!> v d with rate y2"̂ 1̂ 2 *

S*v  xwith rate V 2 ’

and the initial conditions are (0), ii/—\ oCM K >  n 2) •

The deterministic model corresponding to this stochastic one is defined 

by the equations

C. la) x± = x± (Vq-Yjxj ,

C.lb) = * 2(y2Xl”Y2' 5

where (a; (0), ^(O)) = n̂ ) .

Because of the nonlinear probability rates the stochastic model (like 

that of the general epidemic) has been found to be mathematically 

intractable. (In fact the predator-prey model is even more intractable 

because there is no hierarchical structure i.e. apart from those states
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corresponding to extinction of a population, all states may be revisited.)

THE QUASI-DETERMINISTIC APPROXIMATION

We remove the non-linearity in the probability rates by replacing some 

of the stochastic variables by deterministic variables. The approximating 

model is defined by the transitions

Ppl, X} ) with rate Vi •
X} ) with rate Yl̂2̂1 5

Up Xpl) with rate 2̂*1̂2 9
1—1 1- CM 
>< with rate V2 ’

where initially (X|(0), ^,'(0)) = [n̂ , n^) .

Now and are independent and each is a generalised birth and

death process, the first having birth rate pp and death rate and

the second having birth rate p^p and death rate . The generalised

birth and death process was studied by Kendall (1948) „

Letting P (a, t) and P^Cs, t) be the p.g.f.'s of X^ and X^ 

respectively, we find from Kendall's results that

P̂ .(s, t)

n

i_ni3
i = 1, 2 ,

where

h 1 -
-P ,

i = 1, 2 ,

and



and where

and

\  - 1 - h i = 1 , 2 ,

-P At) rt p,(T)
- 1 + e y e  dx ,

•*0

-P At) r£ P9(t )
W2 = e 1 +

J Y 9e ^x
0 2

pl(t)

P2(^)

■t
[y X (x)-M ]c?T ,

i0 1  ̂ -1-

■t
[y -y x (T)](iT .j0

From equations C.l we see that

p.u) In x .(t) 5 t ; l ,  2 .

The first two moments may be shown to be

and

= a:1 >

EX'2 = x 2 ,

Var = * U  - 1"2y1W1
dT

0 X1(T)

Var X’2 x J - 1  + —  2I n 
K 2

rt
1 + 2Y 2^ 2

dl
0 X 2(t)



The distributions of the time to extinction, F^(t) = PA 0, t) ,

i - 1 , 2 ,  are given by

F|(t) X 1 r r *  d T  r 1!1  -  —  " l 1 + y i n i o x i ( t ) J
and

F'(t) 1+Y2w 2
t

0 X2( T ) J
RESULTS

Figure C.l shows a comparison of real values of EX̂ , Var EX^

Var Yo and F̂ (t) , calculated from 100 simulations, with corresponding

functions from the quasi-deterministic approximation. The parameter values 

were n = 100 , = 10 , y = .01 , = -001 , P2 = .001 and

Y2 = .01 . The 100 simulations took 17.0 seconds on the Univac 1100/42

whereas the approximation took 4.2 seconds.

We note that for the range of time shown, the approximations EX̂  and

EX'2 are very close to the true values. However, although EX  ̂ and EX1

become very small, they never reach zero and in fact are cyclic functions 

with period approximately 1400 . On the other hand EX^ and EX̂  once

close to zero tend rapidly to it. This is because of the more stochastic 

nature of the real model. The value of E X becomes so small that

extinction is almost certain.

Agreement between F̂ it) and F^(£) is quite good. We note that

F̂ it) and F̂ (t) are not shown because both are zero for this range of time.
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There is very poor agreement between the real and approximate 

variances. It is difficult to think of a simple explanation for this, 

especially in the case of the predator population where Var is an order

of magnitude larger than Var X^ . Perhaps we could conjecture that X^ is

to some extent "self-correcting" and that this property is lost in the 

approximating process0



Figure C .lb)

/ r\

Figure C.lc)



126

APPENDIX D

THE JOINT p . g . f . OF THE NUMBER OF BIRTHS IN EACH SUBPOPULATION 
IN A LINEAR MULTIVARIATE BIRTH AND DEATH PROCESS

Let Y .(t) , i - 1, . .., m , be the number of members of the ith t

subpopulation at time t . (In general the t shall be suppressed.) 

Further, let Y denote the vector (f, » • Y ) • In the time interval

(t, t+St) the possible transitions are

Y +
Y + e
Y - e

with probability ou*Y6t + o(St) 
with probability $A\St + o(6t)

i = 1, m ,

as St ^ 0 , where e. is the £th row of the identity matrix and ou is 

the ith column of the matrix A - {a..} ,

It is well-known (see e.g. Griffiths (1973)) that the necessary and 

sufficient condition for the extinction of Y with probability 1 is that 

the characteristic roots of the matrix A - B have negative real parts, 

where

B - M  -
and

if *m>ii

0̂ if i * 3 •

Assuming that this condition is satisfied we shall find the joint 

p.g.f. of the total number of births in each subpopulation at the time of
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th e  e x t i n c t i o n  o f  t h e  p r o c e s s

L e t W. be t h e  f i n a l  number o f  b i r t h s  in  p o p u l a t i o n  i  ,

i  = 1 , . . . ,  m , and

W, W
l  m

b i (0)’ •••> V 0)) = a) ,

where a = fa ,  , • • • ,  a  ) . ̂ 1 mJ

S in c e  each  i n i t i a l  member o f  each  s u b p o p u la t i o n  a c t s  in d e p e n d e n t ly  we

have

4
-

1—
1

M
 

H
 

Hii Ti  i. . . +  I
a l

■ij k 
k ’ K = 1 »  • • • 5

Jim. t  I  + Jim . _
t i  ,  ̂ = 1 , . . . ,  mam

i  t h a t  o r i g i n a t e d  from th e  kt h  i n i t i a l  member o f  p o p u l a t i o n  j  , and

i iwhere t h e  I d a r e  in d e p e n d e n t  random v a r i a b l e s .  T h e r e f o r e ,K.

b • b ^ a (^i>  • ’ r̂r)
j = l  k =l t

J.■tj jtnj
. . .  y k I ( y , ( 0 ) ,  am 1 v 1

= 1 7  fp e . ^ i *  • • • ’ f t
«7=1 *1

a .
0

Y (0)1 = e. m j

The u s u a l  r e n e w a l  a rg u m e n t ,  t o g e t h e r  w i th  D . l  g iv e s

D. 2 P ftv. , „ . . , y  1 e . w l  amJ

m - l r ™ 'I
3 . + v  a ..
7  a  j  i ii_

j7 + 7 l % pe > r  • yJ Pe 7 l ’ •
J ••• V /

i  -  1 ,  . . . ,  m
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Equation D.2 gives a system of equations which determine the
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