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Abstract 
 

This thesis describes the study of tungsten complexes bearing phosphorus-

functionalised carbyne ligands. The development of two generalised synthetic routes 

towards phosphinocarbyne complexes is presented. The further functionalisation and 

derivatisation of these phosphinocarbyne complexes highlights their synthetic 

versatility. 

 

The bromocarbyne complex [W(≡CBr)(CO)2(Tp*)] was found to undergo a lithium-

halogen exchange reaction with butyllithium to generate the lithiated carbyne 

[W(≡CLi)(CO)2(Tp*)], which reacts in situ with a range of chlorophosphines to provide 

phosphinocarbyne complexes [W(≡CPRR')(CO)2(Tp*)] (R = Cl, R' = Cl, Cy, Ph, NEt2, 

NiPr2; R = Ph, R' = Cl, Ph). Alternatively, [W(≡CBr)(CO)2(Tp*)] reacts with secondary 

and primary phosphines in the presence of base and a palladium catalyst, yielding 

phosphinocarbyne complexes [W(≡CPRR')(CO)2(Tp*)] (R = H, R' = Cy, Ph; R = Ph, R' 

= H, Ph) bearing aryl, alkyl and hydro substituents. Both of these methods represent 

scalable, one-pot preparations compatible with a variety of phosphorus substituents. 

 

The tertiary phosphinocarbyne complex [W(≡CPPh2)(CO)2(Tp*)] has been found to 

undergo reactions with a wide range of electrophiles. With most electrophiles (E = O, 

Se, BH3, Me+, [RhCl2(Cp*)]) addition to the phosphine was observed, yielding 

[W(≡CPEPh2)(CO)2(Tp*)], and calculations suggest that this preference is steric in 

origin. The reaction with sulfur provided both the phosphine sulfide 

[W{≡CP(=S)Ph2}(CO)2(Tp*)] and the η2-thioacyl complex [W{η2-

SCP(=S)Ph2}(CO)2(Tp*)]. Addition of sulfur to isolated [W{≡CP(=S)Ph2}(CO)2(Tp*)] 

does not proceed, demonstrating that oxidation of the phosphorus deactivates the 

tungsten-carbon triple bond towards electrophilic addition, as also observed for the 

complexes [W(≡CPEPh2)(CO)2(Tp*)] (E = BH3, Me+, AuCl), which similarly failed to 

react with sulfur. However, [AuCl(SMe2)] was found to add to this site, affording 

[W{η2-C(AuCl)P(=S)Ph2}(CO)2(Tp*)]. Addition of AuCl to [W(≡CPPh2)(CO)2(Tp*)] 

proceeds in a stepwise manner; first at the phosphine, generating 

[W(≡CPPh2AuCl)(CO)2(Tp*)], and then via coordination to the W≡C bond to provide 

[W{η2-C(AuCl)PPh2AuCl}(CO)2(Tp*)]. In the case of HBF4, kinetic protonation at the 
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phosphine was observed, yielding [W(≡CPHPh2)(CO)2(Tp*)]BF4, followed by a rapid 

rearrangement to the η2-phosphinocarbene [W{η2-C(H)PPh2}(CO)2(Tp*)]BF4, the 

thermodynamic product of protonation. Calculations suggest that this isomerisation 

proceeds via an intermolecular, solvent-mediated proton transfer. 

 

Chlorophosphinocarbyne complexes [W(≡CPClR)(CO)2(Tp*)] (R = Cl, Cy, Ph, NEt2, 

NiPr2) bearing halo, alkyl, aryl and amino substituents are accessible via the 

lithium/halogen exchange protocol. Subsequent nucleophilic substitution of chloride in 

[W(≡CPClPh)(CO)2(Tp*)] proceeds with a range of organometallic carbon-based and 

alkoxy nucleophiles LiMe, LiPh, LiC≡CPh and KOPh, providing access to the further 

functionalised phosphinocarbyne complexes [W(≡CPPhR)(CO)2(Tp*)] (R = Me, Ph, 

C≡CPh, OPh). Reactivity also ensues at the P−Cl bond of the amino-substituted carbyne 

[W{≡CPCl(NiPr2)}(CO)2(Tp*)], in which the chloride could be substituted by LiMe to 

afford [W{≡CPMe(NiPr2)}(CO)2(Tp*)], or abstracted using AlCl3 to afford the 

phosphenium carbyne salt [W{≡CP(NiPr2)}(CO)2(Tp*)]AlCl4, or the phosphirenium 

derivative [W{≡CP(NiPr2)(CPhCPh)}(CO)2(Tp*)]AlCl4 if performed in the presence of 

diphenylacetylene. 

 

Reduction of chlorophosphinocarbyne complexes with borohydride reducing agents 

afforded the first examples of terminal secondary phosphinocarbyne complexes 

[W(≡CPHR)(CO)2(Tp*)] (R = Cy, Ph). These complexes can also be prepared using a 

palladium-catalysed phosphination reaction of [W(≡CBr)(CO)2(Tp*)] with PH2R. 

Attempts to generate a secondary amino-substituted phosphinocarbyne via reduction of 

[W{≡CPCl(NiPr2)}(CO)2(Tp*)] with Li[BHEt3] resulted in a mixture of the desired 

product [W{≡CPH(NiPr2)}(CO)2(Tp*)] and the Et-transfer product 

[W{≡CPEt(NiPr2)}(CO)2(Tp*)]. Deprotonation with potassium hydride yielded the 

extremely sensitive phosphidocarbyne complexes K[W(CPR)(CO)2(Tp*)], examples of 

hereto unknown terminal phosphaisocyanide complexes. 

 

The synthetic strategies developed herein have been extended to the preparation of bi- 

and trimetallic phosphinocarbyne complexes [W2(µ-C2PR)(CO)4(Tp*)2] (R = Cl, Cy, 

Ph) and [W3(µ-C3P)(CO)6(Tp*)3]. These bimetallic phosphinocarbynes undergo a 

thermal rearrangement to the highly unusual bridging carbyne-tungstaphosphirene 

species [W2{µ:η1-C;η2-C,P-CC(PR)}(CO)4(Tp*)2] (R = Cl, Ph). Electrophilic addition 
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of [AuCl(SMe2)] to [W2(µ-C2PPh)(CO)4(Tp*)2] produced a mixture of mono-, bi- and 

tri-aurated complexes [W2(µ-C2PPhAuCl)(CO)4(Tp*)2], [W2{µ-

(CAuCl)2PPh}(CO)4(Tp*)2] and [W2{µ-(CAuCl)2PPhAuCl}(CO)4(Tp*)2], 

demonstrating that, in contrast to the monometallic analogue [W(≡CPPh2)(CO)2(Tp*)], 

the W≡C units of [W2(µ-C2PPh)(CO)4(Tp*)2] compete more effectively with the 

phosphine as the preferred sites of electrophilic attack. 
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CHAPTER 1: Introduction 
The chemistry of transition metal carbyne complexes began in 1973 when Fischer 

reported the first examples of complexes containing a metal-carbon triple bond.1* This 

seminal work was an extension of his prior discovery of the first transition metal 

carbene complexes less than ten years earlier.2 Before this time, isolated 'free' carbene 

and carbyne species were unknown, mentioned only as transient intermediates, but 

widely employed in organic synthesis.3-7 Although later research has shown that the 

synthesis and reactivity of transition metal carbynes bear little resemblance to free 

carbynes, Fischer's work nevertheless demonstrated the pivotal role transition metals 

can play in stabilising reactive molecules, which has since been extended to many 

otherwise unisolable species such as cyclobutadiene and carbon monosulfide. 

 

Fischer's carbene synthesis was initially achieved by nucleophilic attack of 

methyllithium on a carbonyl ligand of [W(CO)6]. The initial acylate salt that forms can 

be protonated to generate an unstable hydroxycarbene, which is then esterified by 

treatment with CH2N2 to provide the carbene complex [W{=C(OMe)Me}(CO)5] 

(Scheme 1.1).2 In the interim, this approach has been extended to alkyl, alkenyl and 

alkynyl nucleophiles in addition to a small range of heteroatom nucleophiles including 

amino, imino and silyl derivatives. However, thiolate, phosphido and arsenido 

nucleophiles result in carbonyl substitution. The synthetic versatility of the original 

alkoxycarbenes lies in the facile nucleophilic substitution of the alkoxide by carbon, 

nitrogen, phosphido, thiolato, selenolato and arsenido groups, greatly broadening the 

possible range of accessible carbenes. This protocol, with various refinements, has been 

extended to vanadium, all the elements of groups 6 and 7, iron, cobalt and nickel, and 

also proceeds in some cases for heterocarbonyl ligands (CS, CNR).  

 

                                                
* The terms alkylidene/alkylidyne and carbene/carbyne are used interchangeably in the literature, though 
IUPAC recommends the former. The former reflects the covalency of the group bound to another 
element, whilst the latter recalls (questionable) parallels with the free species. 
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Scheme 1.1. Fischer's synthesis of the first carbene complex. 

 

In an attempt to generate halocarbene complexes, treatment of these alkoxycarbene 

species with BX3 instead resulted in abstraction of the alkoxide group to generate the 

carbyne complexes [M(≡CR)(X)(CO)4] (X = Cl, Br, I; M = Cr, Mo, W; R = Me, Ph) 

(Scheme 1.2).1 This route was later modified by Mayr to provide facile, high-yielding 

syntheses of a range of group six complexes of the form [M(≡CR)(X)(CO)2(L)2] (X = 

Cl, Br, O2CCF3; M = Cr, Mo, W; R = Me, Ph; L2 = (pyridine)2, tmeda, bipyridine, dppe, 

(PMe3)2, (CO)(PPh3)) through the use of thionyl chloride, phosphine dihalides, 

phosgene, oxalyl halides or trifluoroacetic anhydride for the direct oxide abstraction 

from the preliminary acylate intermediate.8,9 The stability of such derivatives relative to 

the thermolabile intermediate tetracarbonyl species lies in the mutually compatible 

facial disposition of three strong π-acceptors, each trans to good donor ligands. This 

approach has since been extended to provide rhenium and iron carbyne complexes.† 

 

M C

OC

OC CO

OC

CO

O

R

Me BX3
M C

OC

OC CO

X

CO

R
– CO

– BX2OMe  
Scheme 1.2. Fischer's synthesis of the first transition metal carbyne 

complexes (M = Cr, Mo, W; R = Me, Ph; X = Cl, Br, I). 

 

As the first example of metal-carbon triple bonding, these complexes created much 

excitement and opened up the door to a whole new field of chemistry that would 

                                                
† A caveat of this approach is that for metals towards the right hand side of the periodic table, the higher 
d-occupancies and lower coordination numbers make the metal centre an increasingly attractive 
alternative site for electrophilic attack. This is a kinetic issue rather than a reflection on the stability of 
late transition metal carbynes, for which alternative synthetic strategies have proven effective. 



4  Chapter 1: Introduction 

 

 

flourish in the years to come.10-20 Metal-carbon multiple bonding continues to attract 

much attention in the scientific community,21-27 as evidenced by the award of the 2005 

Nobel Prize to Chauvin, Grubbs and Schrock for the development of the olefin 

metathesis method in organic synthesis. 

 

The demand for active alkyne metathesis and polymerisation catalysts has driven 

research towards carbyne complexes bearing organic substituents.17,22,27,28 In this 

respect, an extensive body of work featuring M−C multiple bonding emerged which 

initially appeared distinct to the 'Fischer-type' complexes. Whilst the Fischer protocol 

begins with low valent metal centres ligated by strong π-acceptors (hence 

coordinatively saturated and EAN-adherent), Schrock and Wilkinson were exploring the 

synthesis of high-valent metal homoleptic alkyls employing alkyl groups devoid of β-

hydrogen atoms (so-called kinetically stabilised alkyls, CH3, CH2Ph, CH2
tBu, 

CH2SiMe3). Having averted the usual β-metal-hydride decomposition route, alternative 

avenues opened up for alkyls bound to highly coordinatively unsaturated metal centres, 

i.e. through α-H elimination or abstraction. The isolation of [Ta(=CHtBu)(CH2
tBu)3] 

from the attempted synthesis of [Ta(CH2
tBu)5]29 (inspired by Wilkinson's isolation of 

[W(CH3)6]),30 followed by its deprotonation to provide [Ta(≡CtBu)(CH2
tBu)3][Li(dmp)] 

(dmp = N,N'-dimethylpiperazine)31 presaged an enormous field of 'Schrock-type' 

carbene and carbyne complexes. This Fischer-Schrock dichotomy survives, yet as 

complexes between these two extremes emerged (e.g. [W(≡CH)Cl(PMe3)4] from 

Schrock,32 [Re(=CHPh)(CO)2(Cp)] from Fischer,33 oxidation of Fischer's 

[W(≡CPh)Br(CO)4] to Schrock's [W(≡CPh)Br3(dme)],34 and Roper's low-valent 

nucleophilic carbynes [Os(≡CR)Cl(CO)(PPh3)2]35 and carbenes 

[Os(=CH2)Cl(NO)(PPh3)2]),36 more unified and comprehensive bonding schemes were 

developed to cover the observed reactivity spectrum (vide infra). 

 

As noted, carbynes bearing σ-organyl substituents have dominated the focus of research 

groups, in part because of the interest in alkyne metathesis, but also because neither the 

Fischer nor Schrock protocols are well suited to the installation of heteroatom 

substituents. In the case of the Fischer approach, nucleophilic attack by heteroatom 

nucleophiles (e.g. RS−, R2P−, R2As−) at a carbonyl is disfavoured (with the exception of 

aminocarbyne syntheses) or the requisite nucleophile is simply not available (e.g. R2B−, 



 Chapter 1: Introduction 5 

 

 

R2Al−).‡ For the Schrock protocol, a high degree of coordinative unsaturation is 

required at the metal centre for the α-elimination/abstraction process to proceed, 

typically via an α-agostic C−H−M interaction. If the alkyl concerned bears a heteroatom 

capable of interacting with the metal centre (e.g. MCH2SR, MCH2PR2), then this is 

likely to compete effectively with the necessary agostic C−H−M interaction.§ 

 

These synthetic caveats notwithstanding, carbyne complexes bearing heteroatom 

substituents represent a significant component of the chemistry of carbynes. Indeed the 

first example [W(≡CSMe)I(CO)4] was reported not long after Fischer's archetype.38 In 

the interim, alkoxy carbynes remain rare, whilst amino- and thiolatocarbynes represent 

by far the largest groups of heteroatom-functionalised carbynes. The virtual absence of 

phosphorus from this 'quartet' is therefore curious, but may be traced to synthetic 

hurdles, rather than any reflection on their viability. 

 

Phosphines are ubiquitous in organometallic chemistry and have played vital roles in 

the development of the field. The organometallic chemistry of unsaturated 

organophosphorus species has grown enormously over the last two decades, fuelled in 

part by the demise of the 'double bond rule' and the conceptual link between isolobal 'P' 

and 'CH' fragments.39 Nevertheless, simple C1P1 ligands that incorporate combinations 

of metal-carbon multiple bonds and phosphino groups are uncommon. This thesis 

describes research directed towards the synthesis and reactivity of carbyne complexes 

bearing phosphorus substituents. An introduction to the bonding of carbyne complexes 

is first presented, followed by an overview of MC1P1Rn-type complexes, and some 

comparisons to work on other pnictogen-functionalised carbyne complexes. 

 

1.1 Bonding in carbyne complexes 

As noted above, different groups consider the bonding of carbyne ligands from different 

perspectives, though a unified description has emerged to accommodate the apparent 

continuum. One approach is to consider the carbyne ligand as a [CR]+ fragment (CF+ 

being isoelectronic with CO and NO+). The metal-carbon bond in carbyne complexes 

comprises three components: a triple bond consisting of one σ bond and two orthogonal 

π bonds. The σ bond can be considered as a dative bond from the lone pair of electrons 
                                                
‡ Boryl anions have recently been isolated, but the considerable steric bulk required for their generation 
makes them unlikely candidates for nucleophilic attack at metal carbonyls.37 
§ For an illustrative example of the associated thermodynamics, see Section 2.6. 
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on the carbyne carbon into an empty dσ orbital on the metal centre (Figure 1.1(a)). The π 

bonds arise from retrodonation from the filled metal dπ orbitals into the empty p-type 

orbitals on the carbon atom (Figure 1.1(b)). 

 

LnMLnM C R C R

(a) (b)  
Figure 1.1. Bonding in carbyne complexes is composed of (a) a dative σ 

bond and (b) two orthogonal retrodative π bonds. 

 

Alternative bonding descriptions appear in the literature in which the neutral carbyne 

fragment CR is considered as a doublet [(sp)2px
1] for Fischer carbynes and a quartet 

[(sp)1px
1py

1] for Schrock carbynes. The net result of these interactions is always a metal-

carbon triple bond comprised of one σ and two π bonds, and the extent to which the 

spin-states of these hypothetical fragments is relevant to the nature of the actual metal-

carbon multiple bond is questionable given that, in contrast to NHC chemistry, carbyne 

ligands are never installed by simple ligand addition. Far more important are the orbital 

energies of the metal-ligand fragment, how these match with those of the carbyne 

ligand, and how this determines the character of the resulting M≡C bond. Figure 1.2 

below illustrates the π-bonding molecular orbitals for Fischer- and Schrock-type 

carbynes, focussing on the electron localisation in the resultant complexes, without 

artificially assigning of electrons to the theoretical MLn and CR fragments. 

 

Historically, distinctions have been made between Fischer-type and Schrock-type 

carbynes. Fischer-type carbynes typically contain low-valent metal centres, the π-

basicity of which is attenuated by competitive π-acidic CO co-ligands such that the 

carbyne carbon is comparatively electron poor and prone to attack by nucleophiles.** 

Schrock-type carbynes typically involve higher-valent metal centres, devoid of π-acidic 

co-ligands such that the carbyne carbon displays nucleophilic character. In reality these 

are two extreme descriptions that border a spectrum of bonding scenarios. Assignment 

of complexes into one of these two classes is often not clear-cut and numerous 

examples of carbyne complexes with ambiphilic character have been described. 
                                                
** Because Fischer-type carbynes typically adhere to the EAN rule, the metal centre is not attacked 
directly by nucleophiles. 
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Independent of the notional origin of the electrons involved or spin-states of the 

hypothetical fragments, the key discriminating factor in the Fischer-Schrock dichotomy 

is the energy of the orbitals presented by the metal centre. The reactivity of the M−C 

bond is primarily concerned with nucleophilic or electrophilic attack at the M−C π-

bonds. For a given carbyne group, the closer in energy the metal t2g-type orbitals are to 

the px/py orbitals of the carbyne fragment, the greater the overlap and the higher the 

degree of covalency. In the case of Fischer-type metal centres, where interaction with π-

acidic co-ligands stabilises the t2g-type orbitals, the energy match (and resulting 

overlap) is not so favourable such that the bonding combination is substantially metal 

based, whilst the anti-bonding combination has considerable carbon character (Figure 

1.2). Accordingly, in frontier orbital controlled reactions, the carbyne carbon is the 

preferred site of nucleophilic attack rather than the coordinatively saturated metal 

centre. 

 

R

R

R

R

R R

E+

E+

Nu–

co
nt
in
uu
m

CR MLnLnMCR MLn LnMCR CR

Fischer-type Schrock-type  
Figure 1.2. Molecular orbital description of π-bonding in Fischer- and 

Schrock-type carbyne complexes.  
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In contrast, for metal centres within the Schrock-type regime, the metal orbitals are 

typically higher in energy (in some cases elevated by π-donor co-ligands) and better 

matched for effective overlap with the carbyne px/py orbitals. This leads to greater 

covalency and increased contributions from carbon to the bonding combination (Figure 

1.2). Although this more equitable contribution of both metal and carbon orbitals also 

applies to the anti-bonding combination, the metal centre, being typically coordinatively 

unsaturated, presents alternative orbitals for incoming nucleophiles (i.e. ligands). Thus 

electrophilic attack is encouraged at the carbyne carbon and nucleophilic attack may 

occur at the metal centre. For higher valent metal centres, direct electrophilic attack at 

the metal centre may also be precluded based on formal oxidation state limitations. 

These descriptions should be seen as extremes separated by a continuum that can be 

populated by tuning the nature of the metal centre (oxidation state, co-ligands, degree of 

coordinative unsaturation). Thus, for example, simply varying the nature of co-ligands 

in a classical Fischer-type carbyne may result in activation of the carbyne carbon 

towards electrophilic attack. Tuning the energies of the metal-based orbitals is the 

classic approach. The work detailed in this thesis focuses on the alternative approach of 

tuning the energies of the ligand-based orbitals by modifying the nature of the carbyne 

substituent and studying the effect this has on the chemistry of such complexes. 

 

As noted above, for simple hydrocarbon carbyne substituents the M≡CR π-orbitals are 

either degenerate (R = H, alkyl, alkynyl) or near degenerate (R = aryl, alkenyl), whereas 

heteroatom substituents bearing lone pairs may alleviate the π-orbital degeneracy. This 

is most dramatic in the case of aminocarbynes, for which a 2-azavinylidene canonical 

description is occasionally invoked (Figure 1.3). Crystal structures of aminocarbynes 

display trigonal planar nitrogen atoms, and contracted carbon-nitrogen bonds 

accompanied by elongated carbon-metal bonds. This may in turn be manifest in 

conformational substituent preferences and an increased trans influence and/or trans 

effect. Spectroscopically, aminocarbynes display downfield M≡C 13C NMR shifts and 

lower νCO infrared frequencies due to the increased electron density at the metal centre. 

Chemically, these compounds are considerably less reactive than carbyne complexes 

bearing hydrocarbon substituents. Given the usual decrease in efficiency for pπ-pπ 

orbital overlap on descending the main-group elements, it remains to be seen to what 

extent such factors apply to carbynes bearing heavier pnictogen substituents. This issue 

will be addressed in the work to follow. 
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LnM C N LnM C N

aminocarbyne
R

R

R

R

2-azavinylidene  
Figure 1.3. Resonance descriptions of aminocarbyne complexes. 

 

Carbyne complexes with a multitude of substituents are known. This project focuses on 

those bearing phosphorus substituents, a remarkably small subset considering the 

important role of phosphorus in coordination, organometallic and organic chemistries. 

The majority of the known phosphorus-functionalised carbyne complexes are 

phosphoniocarbynes [M(≡CPR3)(L)n], but examples of a number of other bonding 

modes exist. An overview of the literature encompassing carbyne complexes bearing 

phosphorus substituents is detailed below. 

 

1.2 Phosphinocarbyne complexes 

To date only three reports exist in the literature describing phosphinocarbyne complexes 

[M(≡CPR2)(L)n]. Cummins prepared the first examples of phosphinocarbyne complexes 

[Mo(≡CPClR)(X)3] (X = NtBu(3,5-C6H3Me2); R = Cl, Ph), arising from the synthetic 

sequence shown in Scheme 1.3,40,41 as part of a wider study into novel chemistry 

supported by the sterically congested molybdenum triamide platform.42-53 

Deprotonation of a terminal methylidyne complex using KCH2Ph gave the potassium 

dimer [Mo(≡CK)(X)3]2 which undergoes nucleophilic halide substitution reaction with 

organophosphorus halides to provide phosphinocarbyne products.  
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K
C

K
CX3Mo MoX3X3Mo C H

KCH2Ph PCl2R X3Mo C P

Cl
R

X3Mo COX3Mo C OCOtBu

(i) Na/Hg
(ii) tBuCOCl

(i) Na/THF
(ii) CH3CN

CO

C
H

Cl
+ +

MoX3

MoX3 TiX3

 
Scheme 1.3. Cummins' synthesis of phosphinocarbyne complexes (X = 

NtBu(3,5-C6H3Me2); R = Cl, Ph).  

 

Investigations into the reactivity of the phosphinocarbyne complex [Mo(≡CPClPh)(X)3] 

were undertaken. Reduction with excess sodium amalgam in the presence of a 

coordinating solvent (Et2O, THF) gave the dimer [Mo(≡CPPhNa)(S')2(X)3]2 (S' = Et2O, 

THF) (Scheme 1.4).40 The crystal structure shows a tight ion pair interaction between 

phosphorus and sodium. The observed bond lengths favour the phosphidocarbyne 

formalisation [Mo(≡C−PPh)(X)3]−, rather than an anionic complex of a 

phosphaisocyanide [Mo(=C=PPh)(X)3]−, although there is some suggestion of carbon-

phosphorus multiple bonding due to the slightly contracted C−P bond length (1.771(5) 

Å).  

 

X3Mo C P

Cl
Ph

X3Mo C P
Ph MoX3CP

Ph

Na
S'

P

S'

P

Na

S'
S' Ph

C

Ph

CX3Mo
MoX3Na/Hg

S'

X3MoCPClPh

Na/Hg
S'

TiX3

 
Scheme 1.4. Reactivity of the phosphinocarbyne complex 

[Mo(≡CPClPh)(X)3] (X = NtBu(3,5-C6H3Me2); S' = Et2O, THF).  
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Attempts to synthesise a neutral phosphaisocyanide complex [Mo(CPPh)(X)3] led 

instead to the phosphinocarbyne dimer [Mo2(µ-CPPh)2(X)6] (Scheme 1.4), either via 

chlorine abstraction from [Mo(≡CPClPh)(X)3] or reaction of [Mo(≡CPClPh)(X)3] with 

the phosphido complex [Mo(≡CPPhNa)(S')2(X)3]2.40 The dimer [Mo2(µ-CPPh)2(X)6] 

could be cleaved by reduction with sodium amalgam to regenerate the phosphido 

species [Mo(≡CPPhNa)(S')2(X)3]2. DFT studies on the hypothetical model 

[Mo(CPPh)(NH2)3]– reveal a degree of C−P multiple bond character and predict a 

chemical shift (δP 132) close to the limiting value of δP 126.1 observed in the presence 

of ion-pair disrupting 12-crown-4.40 It may therefore be concluded that the ligand does 

indeed show some phosphaisocyanide character, but that it is the exceptionally electron-

rich nature of the 'MoX3
–' group that is responsible for the activation of the C−P bond, a 

feature that underpins the activation of CO earlier in the synthetic sequence. Thus, 

whilst entirely unequivocal examples of terminal phosphaisocyanides remain elusive, it 

may be anticipated that if these emerge based on less π-basic metal centres, more 

pronounced phosphaisocyanide character will become evident. 

 

The single other example of a phosphinocarbyne complex, [Mo(≡CPPh2)(CO)2(Tp*)],54 

also utilised nucleophilic halide substitution to install the phosphorus-carbon bond, but 

in a shorter synthetic sequence (Scheme 1.5). The one-pot procedure involved a lithium-

halogen exchange reaction of Lalor's bromocarbyne complex [Mo(≡CBr)(CO)2(Tp*)]55 

with nBuLi to generate the nucleophilic lithiocarbyne complex [Mo(≡CLi)(CO)2(Tp*)] 

for use, in situ, with a range of electrophiles. As in Cummins' work, addition of the 

corresponding phosphine halide afforded the phosphinocarbyne complex. Interestingly, 

synthesis of [Mo(≡CPPh2)(CO)2(Tp*)] via nucleophilic substitution rather than 

electrophilic substitution was unsuccessful. Treatment of [Mo(≡CBr)(CO)2(Tp*)] with 

LiPPh2 did not result in the desired phosphinocarbyne, and the only identifiable product 

from the reaction was the benzylidyne complex [Mo(≡CPh)(CO)2(Tp*)]. No subsequent 

investigations into the chemistry of this or Cummins' phosphinocarbynes have been 

reported. 
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Scheme 1.5. Phosphinocarbyne synthesis via lithium-halogen exchange. 

 

1.3 Other phosphorus-functionalised carbyne complexes 

In contrast to aminocarbynes, which constitute by far the largest class of nitrogen-

functionalised carbynes, phosphinocarbynes are rare, while the more prevalent 

examples of phosphorus-functionalised carbyne complexes are those based on exotic 

phosphorus variants. The literature hosts reports of a number of other phosphorus-

functionalised carbyne systems, the most common being phosphoniocarbynes 

[M(≡CPR3)(L)n]. There are a couple of one-off examples,56-61 along with more 

comprehensive studies by Templeton,62-67 Weber,68-72 and Sundermeyer and Li.73-79 A 

summary of this chemistry is given below. 

 

The first example of a phosphorus-functionalised carbyne was that of Schrock and co-

workers in 1984. In an attempt to oxidise the methylidyne species [W(≡CH)Cl(PMe3)4] 

to [W(≡CH)Cl3(PMe3)3] using AlCl3 and C2Cl6, the dimeric phosphoniocarbyne 

complex [W(≡CPMe3)Cl2(PMe3)2]2[AlCl4]2 was obtained (Scheme 1.6).58 The 

mechanism of formation remains unclear, and no further studies have been undertaken. 
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Scheme 1.6. Schrock's phosphoniocarbyne synthesis. 
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A novel strategy utilised by Hillhouse and co-workers to access phosphoniocarbynes 

involved cleavage of carbon suboxide O=C=C=C=O and triphenylphosphoranylidene 

ketene Ph3P=C=C=O.59-61 Reaction of [WCl2(PMePh2)4] with carbon suboxide cleaves 

one of the C=C bonds providing a CO and a CCO ligand (Scheme 1.7). Subsequent 

PMePh2 migration to the CCO ligand affords the η2-ketenyl complex [W{C,C':η2-

C(O)CPMePh2}Cl(CO)(PMePh2)2]. This complex is thermally unstable and loses CO 

over two days at 35°C to give a phosphoniocarbyne complex 

[W(≡CPMePh2)Cl2(CO)(PMePh2)2]. This reaction appears irreversible, as addition of 

carbon monoxide (1 atm) to [W(≡CPMePh2)Cl2(CO)(PMePh2)2] does not regenerate 

[W{C,C':η2-C(O)CPMePh2}Cl(CO)(PMePh2)2], though carbonyl-carbyne coupling to 

form ketenyl ligands is common in other systems.80 The related PPh3 analogue 

[W(≡CPPh3)Cl2(CO)(PMePh2)2] was obtained from the direct reaction of 

[WCl2(PMePh2)4] with Ph3P=C=C=O at 35°C. Unfortunately, this exciting sequential 

cleavage of CO does not appear to be a general strategy to access phosphorus-

substituted carbynes, as no further reports of such reactivity have been published, 

despite extensive studies on the coordination chemistry of R3P=C=C=O.81,82 

 

Cl W
L

LCO
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C PPh3

L W
L

LCl
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L Cl W
L

LCO

Cl
C

C

L

O
35°C

Cl W
L

LCO

Cl

C L

Ph3P=C=C=O
35°C

O=C=C=C=O

 
Scheme 1.7. Synthesis of phosphoniocarbynes through cleavage of carbon 

suboxide and triphenylphosphoranylidene ketene (L = PMePh2). 

 

Templeton and co-workers have utilised nucleophilic substitution to access cationic 

phosphoniocarbynes [W(≡CPR3)(CO)2(Tp*)]PF6 bearing a range of R groups (R3 = 

Me3, Et3, Cy3, Ph3, Me2Ph).62,66 Treatment of the chlorocarbyne [W(≡CCl)(CO)2(Tp*)] 

or the thiocarbyne [W(≡CSMe)(CO)2(Tp*)] with the requisite phosphine in the presence 

of MPF6 (M = NH4, K) provides the corresponding phosphoniocarbyne as the 

hexafluorophosphate salt (Scheme 1.8).  
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Scheme 1.8. Templeton's synthesis of phosphoniocarbynes by nucleophilic 

displacement of chloride or SMe− by phosphine (X = Cl, M = K, R3 = Cy3, 

Ph3, Me2Ph; X = SMe, M = NH4, R = Me, Et). 

 

Templeton has demonstrated the reactivity of these complexes with a broad range of 

nucleophiles.62-67 These reactions proceed via nucleophilic attack at the carbyne carbon, 

or at the carbonyl co-ligand, in some cases followed by rearrangement often involving 

loss of the phosphine. A particularly interesting example is the reaction of 

[W(≡CPR3)(CO)2(Tp*)]PF6 with aryloxide nucleophiles KOC6H4R'-4 (R3 = Ph3, 

Me2Ph; R' = H, Me, OMe, CN, Cl, NO2).67 When the aryloxide employed is electron-

rich (R' = H, Me, OMe), the phosphonium moiety is substituted to yield 

aryloxycarbynes [W(≡COC6H4R-4')(CO)2(Tp*)]. When electron-poor aryloxides (R' = 

CN, Cl, NO2) were used, a mixture of products resulted due to the weaker 

nucleophilicity of the aryloxide. As well as the aryloxycarbyne, 

phosphoranylideneketene complexes [W{O(4-C6H4R')}{C,C':η2-

C(O)CPR3}(CO)(Tp*)] were produced. This results from attack of the aryloxide 

nucleophile at the metal centre accompanied by coupling of the carbyne moiety with 

one of the carbonyl ligands. In contrast, the reaction of [W(≡CPPh3)(CO)2(Tp*)]PF6 

with Li[BHEt3] proceeds initially by nucleophilic attack at a carbonyl co-ligand to 

generate a transient formyl complex which rearranges to a labile 

phosphoniomethylidene followed by extrusion of phosphine to afford the parent 

methylidyne complex [W(≡CH)(CO)2(Tp*)].64 
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Scheme 1.9. Reactivity of phosphoniocarbyne complexes with aryloxide 

nucleophiles (PR3 = PPh3, PMe2Ph; Ar = 4-C6H4R'; R' = H, Me, OMe, CN, 

Cl, NO2). 
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Weber has comprehensively studied the chemistry of the novel tungsten and 

molybdenum phosphaalkenylcarbyne complexes [M{≡CP=C(NR2)2}(CO)2(Tp*)] (M = 

Mo, W; R = Me, Et) along with their arsenic analogues.68-72 Reaction of the 

chlorocarbyne [M(≡CCl)(CO)2(Tp*)] with Me3SiP=C(NR2)2 eliminates SiClMe3 to 

generate the phosphaalkenylcarbyne (Scheme 1.10). A crystallographic study of the 

tungsten tetraethyl example confirmed the structure as a phosphaalkenyl-functionalised 

carbyne. The WCPC spine is bent at phosphorus so as to present a nucleophilic lone 

pair. A range of electrophiles were shown to add to the phosphorus, although in the case 

of protonation a rearrangement to the metallaphosphirene complex ensues, the only 

example of reactivity at the M≡C bond among this work. Addition of 'AuCl' (from 

[AuCl(CO)]) proceeds not once but twice to afford the trimetallic species 

[M{≡CP(AuCl)2C(NMe2)2}(CO)2(Tp*)]. These complexes can also be oxidised by air 

or pressurised O2 to form the only examples of phosphinate-functionalised carbyne 

complexes [M{≡CPO2C(NR2)2}(CO)2(Tp*)]. 
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Scheme 1.10. Weber's synthesis of phosphaalkenylcarbyne complexes and 

subsequent reactivity (M = Mo, W; R = Me, Et). 

 

A single example of a phosphonatocarbyne complex, 

[Mo{≡CP(=O)(OEt)2}(CO)2(Tp*)], has been reported to arise via palladium-catalysed 

C−P bond formation using a halocarbyne complex54 in place of more conventional aryl 

halides.83-85 Treatment of the bromocarbyne [Mo(≡CBr)(CO)2(Tp*)] with 

HP(=O)(OEt)2 and NEt3 in the presence of 5 mol% [Pd(PPh3)4] generates the 

phosphonatocarbyne in 64% yield (Scheme 1.11). The reaction is believed to proceed 

via oxidative addition of Pd(0) to the C−Br bond, nucleophilic substitution of the 

bromide by P(=O)(OEt)2, then reductive elimination of the product. 
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Scheme 1.11. Palladium-catalysed synthesis of a phosphonatocarbyne 

complex. 

 

Following Schmidbaur's demonstration that binuclear phosphoniocarbyne complexes 

arise from transylidation reactions involving phosphorus ylides and TiCl4,56 Li and 

Sundermeyer published a number of reports of d0 phosphoniocarbyne complexes of 

tungsten, rhenium, niobium and tantalum (Figure 1.4).73-79 These complexes might also 

be described by a heteroallenic M=C=PR3 canonical form, in addition to the 

zwitterionic phosphinocarbyne resonance depiction −M≡C−PR3
+ (shown below in 

Figure 1.4). As with Schmidbaur's approach, the syntheses of these complexes proceeds 

via transylidation reactions of R3P=CH2 with a metal halide precursor, eliminating 

[R3PCH3]X and forming both CHPR3 and CPR3 ligands.  
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Figure 1.4. Resonance descriptions of MCP bonding in Li and 

Sundermeyer's complexes (Ar = 2,6-C6H3
iPr2, 2,4,6-C6H2Me3; R = tBu, 

adamantyl; L = CHPPh3; Cp' = Cp, Cp*). 

 

As is evident from these examples, a broad range of synthetic pathways for the 

installation of phosphorus substituents on carbyne ligands exists. However, most of 

these studies represent isolated syntheses or cover a fairly narrow scope of complexes 

and their analogues. The unpredictability of some of these results highlights current 
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limitations in our understanding of the reactivity of phosphorus substituted carbyne 

complexes, calling for further research into this area.  

 

1.4 Other MC1P1Rn systems 

To understand the chemistry of phosphorus-functionalised carbyne complexes, it is 

pertinent to consider the chemistry of other MC1P1Rn systems beyond that of transition 

metal carbyne complexes. A selection of relevant MC1P1Rn chemistry is given here, 

focusing on previous work on cyaphide and phosphaisocyanide species, as well as an 

overview of phosphorus-functionalised carbene complexes. 

 

1.4.1 Cyaphide complexes 

The simplest conceivable carbon-phosphorus ligand is cyaphide, 'CP'. Although cyanide 

C≡N– is commonly encountered both as a free salt and as a ligand complexed to 

transition metals, the phosphorus analogue cyaphide C≡P– is extremely rare.86 The first 

report of a terminal cyaphide ligand was that of Angelici and co-workers from the 

reaction of trans-[Pt{η1-C(X)=PMes*}(X)(PEt3)2] (X = Cl, Br; Mes* = 2,4,6-C6H2
tBu3) 

with [Pd(PEt3)4]. This reaction produced trans-[Pd(Mes*)(X)(PEt3)2] and a second 

species which was postulated to be trans-[Pt(C≡P)(X)(PEt3)2] (Scheme 1.12).87,88 This 

complex was observed by in situ 31P NMR spectroscopy of the reaction mixture which 

showed a triplet at δP 68.0 (JPP 9.16 Hz), straddled by platinum-195 satellites showing a 

relatively small coupling constant (JPtP 303 Hz), suggesting a two-bond cis-platinum-

phosphorus interaction. Attempts to isolate this species led to decomposition but it 

could be trapped by addition of [Pt(PEt3)4] to afford the first binuclear bridging 

cyaphide complex [Pt2(µ:η1-C;η2-C,P-C≡P)X(PEt3)4]. The bonding mode, atypical of 

cyanide bridging, was confirmed by a single crystal X-ray diffraction study which 

showed η1-C coordination to one platinum, η2-C≡P coordination to a second platinum 

and no Pt−Pt interaction. The carbon-phosphorus distance (1.666(6) Å) is similar to that 

seen in η2-coordinated phosphaalkynes.89 
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Scheme 1.12. Angelici's synthesis of platinum cyaphide complexes (R = 

Mes*, N(SiMe3)2; X = Cl, Br; MLnL' = [W(CO)5(THF)], [PtCl2(PEt3)2]). 

 

This bridging cyaphide complex [Pt2(µ:η1-C;η2-C,P-C≡P)X(PEt3)4] has also been 

prepared by the reduction of trans-[Pt{η1-C(Cl)=PN(SiMe3)2}Cl(PEt3)2] with 

sodium/benzophenone in the presence of [PtCl2(PEt3)2] (Scheme 1.12).90 This reduction 

appears to be specific to the PEt3 co-ligand set as no reaction was observed using 

[PtCl2(PPh3)2], [PtCl2(PCy3)2], [PtCl2(PiPr3)2] or [PtCl2(depe)]. This complex is able to 

coordinate a third metal centre via the phosphorus atom, as shown in the synthesis of 

[Pt2{µ:η1-C;η1-P;η2-C,P-C≡P(MLn)}Cl(PEt3)4] (MLn = PtCl2(PEt3), W(CO)5).90 

Interestingly, X-ray crystallography showed very little deviation in the cyaphide ligand 

upon complexation of a third metal centre. The nucleophilicity of this phosphorus was 

also exploited in a reaction with methyl iodide. In this case, rearrangement of the 

C≡PMe ligand occurs to give a bridging phosphaisocyanide ligand [Pt2(µ:η1-

C=PMe)ClI(PEt3)3].90 The mechanism for this transformation was established using 

sequential Me+ and I− addition using MeOTf and NaI. Initial methylation at the 

phosphorus occurs, followed by iodide addition to platinum, then elimination of PEt3 

and an accompanying rearrangement to the bridging complex. Unfortunately, this 
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intriguing transformation again appears to be very limited in scope as alkylation 

attempts using other alkylating and arylating agents were largely unsuccessful.  

 

The first example of an isolated complex containing a terminal cyaphide ligand came as 

recently as 2006.91 Grützmacher and co-workers devised a synthesis of a ligated C≡P 

ligand from the triphenylsilylphosphaalkyne Ph3SiC≡P. This phosphaalkyne could not 

be isolated but could be obtained in situ via double dehydrohalogenation of 

Ph3SiCH2PCl2 using DABCO (1,8-diazabicyclo[2.2.2]octane). The presence of AgOTf 

is required in the dehydrohalogenation reaction to scavenge chloride from the liberated 

[HDABCO]Cl as it was suspected that chloride was aiding the decomposition of 

Ph3SiC≡P to produce Ph3SiCl. Coordination of Ph3SiC≡P to [RuH(dppe)2]OTf yielded 

the phosphaalkyne complex [RuH(P≡CSiPh3)(dppe)2]OTf in over 80% yield. At this 

stage, abstraction of the silyl group using fluoride sources did not proceed cleanly, 

impeded by nucleophilic attack of fluoride at the phosphorus atom of the phosphaalkyne 

ligand. Attempted desilylation with alkoxide and hydroxide reagents was also 

complicated by nucleophilic attack at phosphorus. Excitingly, when sodium phenoxide 

was used as the desilylating agent the desired cyaphide complex [RuH(C≡P)(dppe)2] 

was obtained in 71% yield (Scheme 1.13).  
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Scheme 1.13. Grützmacher's synthesis of the first isolated terminal 

cyaphide complex. 

 

The cyaphide ligand was characterised by a broad peak at δP 165.0 (THF-d8) and a 

multiplet at δC 287.1 in the 13C{1H} NMR spectrum. The C≡P stretching frequency was 
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identified in the infrared spectrum at 1228 cm−1 at considerably lower frequency than 

those of alkyl-substituted phosphaalkynes (νCP  >  1500 cm−1). The identity of 

[RuH(C≡P)(dppe)2] was confirmed crystallographically. The long carbon-phosphorus 

bond (1.573(2) Å) was attributed to retrodonation from ruthenium into the cyaphide π* 

orbitals.  

 

Recently, the second example of an isolable terminal cyaphide complex was reported by 

Crossley and co-workers.92 This work extended Grützmacher's strategy, wherein the 

hydride ligand was replaced by a σ-alkynyl ligand, to produce alkynyl cyaphide 

complexes in which the cyaphide ligand is incorporated in a conjugated π system. 

Chloride abstraction from [RuCl(C≡CR)(dppe)2] (R = CO2Me, 4-C6H4OMe) by silver 

triflate and addition of P≡CSiMe3 gave the cationic σ-phosphaalkyne complex [Ru(η1-

P≡CSiMe3)(C≡CR)(dppe)2]+. Desilylation using potassium tert-butoxide effected the 

rearrangement to the C-coordinated cyaphide species [Ru(C≡P)(C≡CR)(dppe)2] 

(Scheme 1.14). 
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Scheme 1.14. Crossley's synthesis of alkynyl cyaphide complexes (R = 

CO2Me, 4-C6H4OMe). 

 

The presence of the cyaphide and alkynyl ligands was supported by C≡P and C≡C 

stretching frequencies in the infrared spectra at νCP 1255, νCC 2040 cm–1 (R = CO2Me) 

and νCP 1261, νCC 2032 cm–1 (R = 4-C6H4OMe), shifted to higher frequency than that of 

the hydride complex (νCP 1228 cm−1).91 A crystallographic study of the para-

methoxyphenyl derivative indicated a shorter C−P bond (1.544(4) Å) and slightly 

longer Ru−C bond (2.065(4) Å) than [RuH(C≡P)(dppe)2]. This reflects the decreased 

retrodonation from ruthenium into the cyaphide π* orbitals as a result of the competing 
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π-acidic alkynyl ligand. UV/Vis spectroscopy revealed both complexes possessed 

strong ligand-ligand π (C≡P/C≡C) → π* (dppe) charge transfer absorptions around 250 

nm. 

 

Attempts by Russell and co-workers to generate molybdenum cyaphide complexes 

using analogous nucleophilic desilylation procedures to those employed in ruthenium 

chemistry have been largely unsuccessful. The formation of 

[Mo(C≡P)(P≡CSiMe3)(dppe)2]− was proposed based on 31P NMR data (δP 197.8, 

multiplet), but further characterisation is required.93 

 

Russo and co-workers have analysed a series of phosphaalkynes, cyaphide and cyaphide 

complexes computationally through DFT studies.94 These calculations confirmed that 

the carbon-phosphorus bond in free CP−, trans-[PtCl(C≡P)(PMe3)2] and 

[RuH(C≡P)(dppe)2] is a formal triple bond through natural bond orbital (NBO), electron 

localisation function (ELF) and atoms in molecules (AIM) approaches. However, in the 

case of the bridging cyaphide complex [Pt2(µ-C≡P)Cl(PMe3)4] the phosphorus-carbon 

bond order can be described as either a double or triple bond depending on the analysis 

in question and the basis set used. This is not surprising as π-coordination of Pt(PMe3)2 

to the C≡P bond should result in a decrease in the bond order, as observed for 

conventional phosphaalkynes. 

 

1.4.2 Phosphaisocyanide complexes 

Akin to the analogy between cyanide CN− and cyaphide CP−, phosphaisocyanides 

C≡P−R are much rarer than their nitrogen based analogues isocyanides C≡N−R (Figure 

1.5). While both cyanides and isocyanides are well known species, the same cannot be 

said in the case of phosphorus. Phosphaalkynes, which may in many cases be isolated as 

free molecules, have been extensively researched, yet phosphaisocyanides are extremely 

rare. A review detailing previous efforts towards the preparation of phosphaisocyanides 

and their complexes has been published,95 and only selected illustrative examples will 

be included here. 
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Figure 1.5. Compounds featuring C−P and C−N triple bonds. 

 

A free phosphaisocyanide (also referred to a an isophosphaalkyne or a 

phosphaisonitriles) has yet to be isolated. Efforts to obtain phosphaisocyanides have 

mainly involved α-elimination of lithium halides from the corresponding 

phosphaalkenylidene carbenoids (Scheme 1.15).95 No phosphaisocyanides have been 

isolated or observed using these routes, although they have been proposed as 

intermediates in the decomposition process. This decomposition tends to lead to 

phosphaalkynes, but in some cases C−H activation of the R group is observed.96-102 
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C PR
+ 

other decomposition products  
Scheme 1.15. Generalised route used in attempted syntheses of 

phosphaisocyanides (R = Mes*, 2,4,6-C6H2(C5H11)3; X = Cl, Br; X' = H, Cl, 

Br). 

 

A true terminally ligated phosphaisocyanide is also unknown, the closest example being 

the phosphidocarbyne complex [Mo(≡CPPhNa)(S')2(X)3]2 (X = NtBu(3,5-C6H3Me2); S' 

= Et2O, THF) prepared by Cummins (Scheme 1.4).40 This species contains the desired 

atom connectivity. However, inspection of the bond lengths found in the crystal 

structure reveal that the Mo−C) distance of 1.762(5) Å is consistent with a 

molybdenum-carbon triple bond, and the C−P distance of 1.771(5) Å is consistent with 

a carbon-phosphorus single bond, such that the bonding localisation is best described as 

Mo≡C−P (Figure 1.6 (a)), rather than the desired Mo=C=P (b). Similarly, the 
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complexes synthesised by Weber [M{CPC(NR2)2}(CO)2(Tp*)] (M = Mo, W; R = Me, 

Et) were found to be best represented by the phosphaalkenylcarbyne resonance 

description M≡C−P=C(NR2)2 (c) rather than a zwitterionic phosphaisocyanide 

resonance description M=C=P−C(NR2)2 (d).68 
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Figure 1.6. Resonance descriptions of [M(CPR)(L)n] complexes (X = 

NtBu(3,5-C6H3Me2); M = Mo, W; R = Me, Et). 

 

Although no true terminal phosphaisocyanide complexes are known, bridging 

phosphaisocyanide ligands have been reported for platinum and iron. The first 

examples, discussed above, were reported by Angelici through the oxidative addition of 

[Pt{C(X)=PMes*}X(PEt3)2] to [Pt(PEt3)4] to afford [Pt2(µ-C=PMes*)X2(PEt3)3] (X = 

Cl, Br) (Scheme 1.16).87,88,103-105 The X-ray structure revealed that the 

phosphaisocyanide ligand is asymmetrically positioned between the two platinum 

centres with Pt−C bond lengths of 1.86(1) and 2.107(9) Å. The P−C bond length of 

1.67(10) Å is typical of a phosphorus-carbon double bond, although the low precision 

of the structural model does not allow for definitive categorisation. Unfortunately, 

limitations to this methodology (the metal centre, availability of the 

dichlorophosphaalkene starting material and the extreme steric bulk required for the 

substituent) have restricted its applicability. Angelici has also prepared a platinum 

phosphaisocyanide complex through alkylation of a bridging cyaphide species (Scheme 

1.16), as discussed in Section 1.4.1.90 
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Scheme 1.16. Synthesis of bridging phosphaisocyanide complexes (X = Cl, 

Br). 

 

Iron bridging phosphaisocyanide complexes have been prepared by addition of 

silylphosphines PH(Ar)(SiMe3) to [Fe2(µ-CSMe)(µ-CO)(CO)2(Cp)2]OTf in the 

presence of base (DBU) to give [Fe2(µ-C=PAr)(µ-CO)(CO)2(Cp)2] (Ar = 2,4,6-C6H2R3; 

R = Me, iPr, tBu, CF3) (Scheme 1.17).106,107 The crystal structure of the mesityl 

derivative showed that the phosphaisocyanide ligand is close to symmetrically 

positioned between the two metal centres (Fe−C 1.954(16), 1.927(15)Å; Fe−C−P 

147.2(10), 129.7(9)°). The phosphorus-carbon distance (1.683(17) Å) is consistent with 

a double bond and the angle at phosphorus is indicative of the development of a lone 

pair, as is also often observed for electron rich bridging isocyanide ligands. 

Unfortunately, this method also appears fairly limited in the scope of substituents, 

requiring very bulky aryl substituents. Using the smaller phosphine PH(tBu)(SiMe3) in 

the reaction led to the bridging phosphinocarbyne complex [Fe2{µ-CPH(tBu)}(µ-

SMe)(CO)2(Cp)2] (Scheme 1.17).108 
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Scheme 1.17. Synthesis of a bridging diiron phosphaisocyanide complex 

(Ar = 2,4,6-C6H2R3; R = Me, iPr, tBu, CF3). 

 

These ligated phosphaisocyanides display nucleophilicity at phosphorus and can 

coordinate to metal complexes to form µ3-C=PR complexes (Scheme 1.18).107 

Oxidation with elemental sulfur or selenium forms the corresponding phosphine sulfide 

or selenide, while treatment with methyl triflate leads to the phosphonium salt [Fe2(µ-

C=PMeMes)(µ-CO)(CO)2(Cp)2]OTf.108  
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Scheme 1.18. Electrophilic additions to [Fe2(µ-C=PMes)(µ-

CO)(CO)2(Cp)2] (M(CO)nL = [Cr(CO)5(COE)], [Fe2(CO)9]; E = S, Se). 
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1.4.3 Phosphorus-functionalised carbene complexes  

Although phosphorus-functionalised carbyne complexes are fairly uncommon, carbene 

complexes bearing phosphorus substituents are better known,109-112 with a large, albeit 

recent, portion of these based on phosphorus(V) chelates.110-112 Most relevant to the 

work contained in this thesis is the chemistry of phosphinocarbene complexes,109 and to 

a lesser extent that of phosphoniocarbenes. Accordingly, selected illustrative highlights 

are presented here. 

 

Examples of η1-phosphinocarbene complexes are scarce, although η2-phosphinocarbene 

complexes are more commonly encountered,113-125 – for example, through addition of a 

PR2 unit to the M≡C bond of carbyne complexes,115,116,126 or the cyclometallation of 

alkylphosphines118 – and further complexes of this type will be described in Section 2.6. 

Initial attempts to synthesise η1-phosphinocarbene complexes by Fischer led to the 

isolation of [W{=C(NEt2)PMePh}(CO)4L] (L = CO, PHMePh) in very low yields (3 – 

4%). These carbene complexes arose from nucleophilic attack of K[PMePh] on the 

carbyne carbon atom of [W(≡CNEt2)(CO)5]BF4, with the major product [W2{µ-

(CNEt2)2}(CO)10] being that resulting from reductive coupling of two carbyne moieties 

(Scheme 1.19).113  
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Scheme 1.19. Fischer's preparation of the first phosphinocarbene complexes 

(L = CO, PHMePh). 

 

Mehrkhodavandi and co-workers found that nucleophilic attack of K[PPh2] upon the α-

carbon of the isocyanide salt [Fe{C≡N(CH2)3PPh2}(CO)(Cp)]BF4, followed by 

protonation, gave the cationic η1-phosphinocarbene 

[Fe{=C(PPh2)NH(CH2)3PPh2}(CO)(Cp)]+ (Scheme 1.20).127 Unfortunately, 

spontaneous PHPh2 extrusion occurs to regenerate the isocyanide precursor. Recently, 

Schrock and co-workers utilised alkene metathesis to prepare the high oxidation state 

molybdenum η1-phosphinocarbene complex [Mo(=CHPPh2)(=NDipp){O(C6HPh4-

2,3,5,6)}{N(C(Me)CH)2}] from [Mo(=CH2)(=NDipp){O(C6HPh4-

2,3,5,6)}{N(C(Me)CH)2}] and diphenylvinylphosphine.128 
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Scheme 1.20. Synthesis of an iron phosphinocarbene cation. 

 

Unlike phosphinocarbynes, phosphinocarbenes can be prepared in their free state (i.e. 

R2PCR).109,129 Indeed the first carbene to be isolated in the free state was 

(iPr2N)2PCSiMe3, prepared by thermolysis of the corresponding α-diazophosphine 

(iPr2N)2PC(=N)SiMe3, predating the enormous growth in NHC chemistry.130 Bertrand 

and co-workers have demonstrated that rhodium η1-phosphinocarbene complexes 

[Rh{=C(C6H3(CF3)2-2,6)P(NiPr2)2}Cl(L2)] (L2 = COD, norbornadiene) can be generated 

through complexation of the free ligand (iPr2N)2PC{C6H3(CF3)2-2,6} by an appropriate 

metal precursor (Scheme 1.21).131 Although the conceptual simplicity of this 

methodology makes it very attractive, the availability of stable free phosphinocarbenes 

is a severe limitation, requiring considerable steric encumbrance or captodative 

substituent combinations to impart sufficient stability – both factors that may in 

principle compromise the subsequent coordination chemistry.129  

 

P
C NiPr2

NiPr2CF3

CF3

P
C NiPr2

NiPr2CF3

CF3

Cl

L

LRh

[RhCl(L2)]2

 
Scheme 1.21. Bertrand's synthesis of phosphinocarbene complexes by 

ligation of a free phosphinocarbene (L2 = COD, norbornadiene). 

 

Lugan and co-workers have extended their studies of cationic manganese carbynes to 

deliver phosphinocarbene complexes through the deprotonation of 

phosphoniocarbenes.132,133 The reaction of [Mn(≡CR)(CO)2(Cp)]BX4 (R = Me, Ph; X = 

Cl, Ph) with primary and secondary phosphines gave the thermolabile 

phosphoniocarbenes [Mn{=C(R)PHR'R''}(CO)2(Cp)]BX4 (R' = R'' = Ph, NiPr2; R' = Me, 
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R'' = Ph; R' = H, R'' = Mes), which can be deprotonated to yield phosphinocarbene 

complexes [Mn{=C(Ph)PRR'}(CO)2(Cp)] (Scheme 1.22). Again, the stability of the 

resultant phosphoniocarbenes is limited; the transient phosphinocarbenes 

[Mn{=C(Ph)PRR'}(CO)2(Cp)] (R = R' = Ph, NiPr2; R = Me, R' = Ph) rapidly isomerise 

to the η3-phosphinoketene complexes [Mn{η2-C(O)C(Ph)PRR'}(CO)(Cp)], resulting 

from CO insertion into the Mn=C bond. Use of a mesityl substituent at phosphorus 

conferred kinetic stability upon these species, enabling isolation of the η1-

phosphinocarbenes [Mn{=C(R)PHMes}(CO)2(Cp)] (R = Me, Ph), which nevertheless 

rearrange within hours (1.5 hours R = Me, 36 hours R = Ph) to give a mixture of η3-

phosphinoketene and η1-phosphaalkene [Mn{η1-P(Mes)=CHR}(CO)2(Cp)] products. 
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Scheme 1.22. Lugan's preparation of phosphinocarbene complexes (R = 

Me, Ph; R' = R'' = Ph, NiPr2; R' = Me, R'' = Ph; R' = H, R'' = Mes; base = 

NEt3, DBU). 

 

As has been seen, the instability and lack of widely applicable synthetic routes has 

severely hampered progress in the area of η1-phosphinocarbene complexes. In contrast, 

η1-phosphoniocarbene complexes are often stable and can be prepared in a relatively 

straightforward manner by nucleophilic addition of phosphines to carbyne complexes. 

Phosphoniocarbene complexes of group 6 and 7 metals have been prepared via this 

route, representative examples of which are outlined in Scheme 1.23.134-136 Addition of 

phosphines to [W(≡CX)(CO)2(Tp*)] (X = Cl, SMe) generates phosphoniocarbynes 

[W(≡CPR3)(CO)2(Tp*)]+ (see Section 1.3), but interestingly, when R = Me the 

phosphoniocarbyne formed actually exists in equilibrium with the 

di(phosphonio)carbene cation [W{=C(PMe3)2}(CO)2(Tp*)]+, and addition of PMe3 or 
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methyl iodide can be used to favour formation of the carbene or carbyne species, 

respectively.62  
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Scheme 1.23. Synthesis of phosphoniocarbene complexes via phosphine 

addition to carbynes (M = Cr, L = L' = CO; M = Mo, L = CO, L' = PMe3; M 

= W, L = L' = PMe3; X = Cl, Br, I; R = Me, Ph, CH2Ph, Tol, Mes, SiPh3; M' 

= Cr, L'' = C6H6, 1,4-C6H4Me2, 1,3,5-C6H3Me3, R = Ph; M' = W, L'' = Tp*, 

R' = PMe3; M' = Mn, Re, L'' = Cp, R' = Ph). 

 

Piers and co-workers found that protonation of the ruthenium carbido complexes 

[Ru(≡C)Cl2(PR3)(NHC)] (R3 = Cy3, EtCy2, MeCy2, (C5H9)3, iPr3, EtiPr2, MeiPr2; NHC = 

C(NR'CH2)2, R' = Mes, Dipp, 2,6-C6H3Et2) triggers phosphine migration to the carbido 

ligand, yielding phosphoniocarbene salts [Ru(=CHPR3)Cl2(NHC)]BX4 (X = F, C6F5) 

(Scheme 1.24).137-140 If HCl is used, [Ru(=CHPR3)Cl3(NHC)] forms, from which 

chloride abstraction with B(C6F5)3 provides the corresponding BCl(C6F5)3
− salt.138,140 

The 14-electron complexes [Ru(=CHPR3)Cl2(NHC)]+ are very active alkene metathesis 

catalysts as the presence of the requisite vacant coodination site cis to the carbene 

ligand circumvents the dissociative initiation step required by more conventional 

Grubbs-type mediators.  
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Scheme 1.24. Piers' synthesis of ruthenium phosphoniocarbene complexes 

(R3 = Cy3, EtCy2, MeCy2, (C5H9)3, iPr3, EtiPr2, MeiPr2; R' = Mes, Dipp, 2,6-

C6H3Et2; X = F, Cl, C6F5).  

 

1.5 Comparisons to other group 15 substituted carbyne complexes 

Aminocarbyne complexes have been well studied in comparison to their heavier group 

15 analogues, with a range of synthetic routes known for their preparation. The two 

most general approaches to aminocarbyne complexes involve either conventional 

Fischer alkoxide abstraction from amino(alkoxy)carbenes or oxide abstraction from 

carbamoylate precursors.141-144 Alternatively, isocyanides coordinated to electron-rich 

metal centres may be activated towards electrophilic attack at nitrogen,145 provided the 

metal centre itself does not present a site for electrophilic attack.146,147 This latter 

approach mirror's Angelici's synthesis of thiolatocarbynes via alkylation of electron rich 

thiocarbonyl ligands38,148 and was developed extensively by the Chatt-Richards-

Pombeiro groups.12,13,149-156  

 

Fischer demonstrated that the alkoxide abstraction protocol could be extended to the 

preparation of amino-functionalised chromium and tungsten carbyne complexes 

[M(≡CNR2)X(CO)4] (M = Cr, W; R = Me, Et; X = Cl, Br, I) via reaction of the 

corresponding ethoxy(amino)carbene complexes [M{=C(OEt)(NR2)}(CO)5] with boron 

trihalides (Scheme 1.25).141,142 Alternatively, thionyl chloride was found to effect oxide 

abstraction from the carbamoylate salt Li[W{C(O)NEt2}(CO)5], providing the 

aminocarbyne [W(≡CNEt2)Cl(CO)4].143 Variation of the Lewis acids used (BX3, 

X2PPh3, (CF3CO)2O) has enabled preparation of a range of mononuclear chromium, 

molybdenum, tungsten and iron aminocarbyne complexes.144,157-163 
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Scheme 1.25. Fischer's syntheses of aminocarbyne complexes via alkoxide 

or oxide abstraction (M = Cr, W; R = Me, Et; X = Cl, Br, I). 

 

Isocyanides ligated to electron-rich metal centres may be activated towards β-

electrophilic attack, and protonation or alkylation occurs at the nitrogen atom to provide 

aminocarbyne complexes (Scheme 1.26).12,149-156,164,165 This strategy was utilised to 

access the first examples of primary aminocarbynes [Re(≡CNH2)Cl(dppe)2]X (X = Cl, 

BF4) via protonation of the parent isocyanide complex [Re(C≡NH)Cl(dppe)2].12,155,156 

This methodology has led to rare examples of bis(carbyne) complexes such as 

[W(≡CNHMe)2(dppe)2]2+.166-169 Bis(aminocarbyne) complexes can undergo carbyne-

carbyne coupling reactions to afford η2-di(amino)acetylene complexes,167,170 and 

coupling of aminocarbyne ligands has been induced by protonation,171-173 nucleophilic 

addition166,169,174 or oxidative addition.166,169  
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Scheme 1.26. Illustrative examples of protonation and alkylation of 

electron-rich isocyanide complexes to yield aminocarbynes (M = Mo, W; R 

= Me, tBu; R' = H, Me, Et; X = HBF4, HSO4, FSO3). 

 

Filippou and co-workers have comprehensively studied the chemistry of group 6 

aminocarbyne complexes, incorporating both Lewis acid-assisted oxide 

abstraction157,158 and β-alkylation of activated isocyanide147,172,173,175-178 methodologies 

to install aminocarbyne functionalities, of which some representative examples are 

depicted in Scheme 1.27. Oxide abstraction using oxalyl halides affords aminocarbyne 

complexes, which can be further derivatised through replacement of the carbonyl and 

halide co-ligands with a variety of ligands (e.g. picoline, CNtBu, Cp).157,158 Alkylation 

of zero-valent molybdenum and tungsten isocyanide complexes generates 

aminocarbyne ligands, and this process has been undertaken with a variety of metal 

environments and co-ligands.147,172,173,175-178 Extensive studies have shown that a wide 

variety of ligand substitution reactions are possible for these classes of compounds, 

allowing incorporation of phosphine, phosphite, picoline, halo, isocyanide and carbonyl 

ligands as well as multidentate ligands such as dithiolate, cyclopentadienyl and 

tris(pyrazoyl)borate derivatives.168,179-188  
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Scheme 1.27. Illustrative examples of Filippou's aminocarbyne syntheses 

utilising (a) oxide abstraction (M = Cr, W; R = iPr, Cy; X = Cl, Br); (b) 

alkylation of a coordinated isocyanide (M = Mo, W); (c) alkylation of a 

coordinated isocyanide (M = Mo, W; L = Cp, Cp*, Tp*; L' = CO, CNEt).  

 

The attempted synthesis of chlorocarbene complexes, in failing, set the stage for the 

development of the new area of carbyne chemistry.1 In the interim, halocarbene ligands 

have been isolated and studied.189 Amongst these, the use of phosgene iminium salts has 

proven useful in accessing haloamino carbenes, and the reaction of Na2[Cr(CO)5] with 

[Me2N=CCl2]Cl to afford the complex [Cr{=CCl(NMe2)}(CO)5]190 is particularly 

noteworthy as the thermally induced rearrangement to the aminocarbyne 

[Cr(≡CNMe2)Cl(CO)4] has been demonstrated.191 

 

Iminocarbynes, [M{≡C−N=C(Ph)R}(CO)5]BF4 (M = Cr, W; R = NMe2, tBu) and 

[Mn{≡C−N=CR2}(CO)(L)(Cp)]BF4 (L = CO; R2 = Ph2, (C6H4)2O, tBu2; L = PTol3; R2 = 

Ph2) have been described by Helmut Fischer, and in contrast to Weber's phospha- and 

arsaalkenyl examples, there is definitive evidence for the delocalisation of the π system 

along the essentially linear MCNC spine.192,193 Whilst phosphoniocarbynes are 

comparatively well-known, ammoniocarbynes [M(≡CNR3)(L)n] remain unknown, 

although azolium examples have been obtained from the reaction of 

[Mo(≡CBr)(CO)2(Tp*)] with a range of nitrogen heterocycles (Scheme 1.28).194 The 

reaction of the same halocarbyne precursor with monobasic dialkylamines provides an 

alternative route to aminocarbynes (Scheme 1.28).194 However, this methodology fails 
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when extended to the attempted synthesis of [Mo(≡CPPh2)(CO)2(Tp*)] using LiPPh2 

(Scheme 1.5).54 
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Scheme 1.28. Syntheses of azolium- and aminocarbyne complexes via 

nucleophilic displacement of bromide from [Mo(≡CBr)(CO)2(Tp*)]. 

 

Whilst aminocarbyne chemistry is a mature field, for the heavier pnictogens there are no 

examples of antimony or bismuth carbyne complexes. However, Weber and co-workers 

have extended their work on phosphaalkenylcarbyne complexes to synthesise a variety 

of arsenic substituted carbyne complexes. Applying the same methodology used for 

phosphorus, arsaalkenylcarbyne complexes [M{≡CAs=C(NMe2)2}(CO)2(Tp*)] (M = 

Mo, W) were prepared via reaction of the chlorocarbynes [M(≡CCl)(CO)2(Tp*)] with 

the silylarsaalkene Me3SiAs=C(NMe2)2 (Scheme 1.29).71 The carbyne resonances (δC 

349.7 (M = Mo), 329.1 (M = W)) are more deshielded than the corresponding 

phosphaalkenylcarbyne complexes (δC 337.5 (M = Mo), 318.3 (M = W)).68 The 

tungsten-carbon distance (1.825(9) Å) in the crystal structure is consistent with a triple 

bond, confirming the carbyne-arsaalkene bonding description. 
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Scheme 1.29. Weber's synthesis of arsenic substituted carbyne complexes 

(M = Mo, W). 

 

Alkylation with methyl triflate at −100°C demonstrated the nucleophilic character at 

arsenic, providing the salt [M{≡CAs(Me)C(NMe2)2}(CO)2(Tp*)]OTf (Scheme 1.29).71 

Attempts to harness this nucleophilicity to form a gold complex via reaction with 

[AuCl(CO)] proceeded very differently to the phosphorus analogue, which was found to 

coordinate two molecules of AuCl to give [M{≡CP(AuCl)2C(NMe2)2}(CO)2(Tp*)]. In 

the arsenic case, the AuCl moiety acts as a carbene abstracting agent to form 

[AuCl{C(NMe2)2}], and consequential coupling of three 'M(≡CAs)(CO)2(Tp*)' 

moieties occurs to form the fascinating cyclic triarsine [M3(µ-CAs)3(CO)6(Tp*)3] 

(Scheme 1.29). A shift to higher frequency is observed in the IR spectra of [M3(µ-

CAs)3(CO)6(Tp*)3] (νCO 1987, 1909 cm−1 (M = Mo), νCO 1972, 1887 cm−1 (M = W)) in 

comparison to the starting material (νCO 1947, 1863 cm−1 (M = Mo), νCO 1936, 1848 

cm−1 (M = W)), reflecting the increased π-acceptor capacity of the C3As3 bridging 

ligand.  
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1.6 Summary 

The preceding discussion serves to highlight the relatively unexplored field of 

phosphorus-functionalised carbyne complexes, which stand in stark contrast to 

aminocarbynes, which are amongst the most stable carbyne complexes encountered. 

Apart from the exotic examples provided by Weber, simple carbynes of the form 

[M(≡CPR2)(L)n] are exceedingly rare and very little is known about their potential 

reactivity. Furthermore, of these it is only Cummins' complexes 

[Mo(≡CPClR){NtBu(3,5-C6H2Me3)}3] (R = Cl, Ph) that bear potentially reactive 

phosphorus substituents (chloride) to allow further modification of the phosphino 

group. The work to be described in this thesis addresses the synthesis and reactivity of 

the first phosphinocarbyne complexes of tungsten, beginning first with tertiary 

phosphine examples (Chapter 2), followed by an exploration of phosphinocarbyne 

complexes bearing chemically reactive substituents at phosphorus (Chapters 3 and 4), 

and ending with investigations into polymetallic phosphinocarbyne complexes (Chapter 

5). 

 



38  Chapter 2: Tertiary phosphinocarbyne complexes 

 

 

CHAPTER 2.  

Tertiary phosphinocarbyne complexes  



 Chapter 2: Tertiary phosphinocarbyne complexes 39 

 

 

CHAPTER 2: Tertiary phosphinocarbyne complexes  
2.1 The starting material [W(≡CBr)(CO)2(Tp*)] 

The starting material used for this project is the bromocarbyne complex 

[W(≡CBr)(CO)2(Tp*)] (1). The molybdenum analogue was first reported by Lalor and 

co-workers in 1983 from the reaction of NEt4[Mo(CO)3(Tp*)] with [IPh2]+ in 

bromoform.195 It was not until 1995 that this was developed into a preparative scale 

synthesis, this time using the redox reaction of NEt4[M(CO)3(Tp*)] (M = Mo, W) with 

arene diazonium salts [ArN≡N]BF4 in bromoform.55 Following Lalor's original 

syntheses, the development of lithium-halogen exchange protocols called for procedural 

refinements (Chapter 7) that now afford the complex conveniently on a large scale (40 g 

[W(CO)6], 28% yield) (Scheme 2.1).196 
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Scheme 2.1. Synthesis of the bromocarbyne starting material.  

 

The hydrotris(3,5-dimethylpyrazol-1-yl)borato ligand (Tp*) is a facially capping 

tridentate ligand with a very large Tolman cone angle of 224° (cf. Tp 184°).197 In this 

chemistry Tp* serves as a spectator ligand, and the stability afforded to the metal centre 

by such a sterically encumbered ligand makes much of this work possible. The steric 

profile of Tp* is crucial to Lalor's synthesis of 1. If the reaction is carried out with the 

smaller Tp ligand or with the larger hydrotris{3-(4-tolyl)pyrazol-1-yl}borate then the 

carbonyl substitution aryldiazenido product [M(N2R)(CO)2(L)] is formed.55  
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Figure 2.1. Proposed mechanism for bromocarbyne formation.  

 

The reaction mechanism proposed by Lalor involves a radical reaction, as outlined in 

Figure 2.1. The key initial step is believed to be an outer-sphere single electron transfer 

to generate the 17 valence electron radical 'W(CO)3(Tp*)●', which has been isolated in 

separate studies using ferrocenium as the oxidant in an innocuous solvent.198 When the 

metal centre is less shielded (e.g. Cp, Tp), electrophilic attack ensues directly at the 

metal centre. In bromoform, however, the formation of the dibromomethyl radical is 

presumed to be followed by W–C bond formation. At this stage, a further recurrent 

feature of the Tp* ligand comes into play, so-called 'octahedral enforcement', which 

disfavours the 7-coordinate dibromomethyl complex relative to the 6-coordinate 

bromocarbyne product which arises via spontaneous dehydrobromination. 

 

The halide in halocarbyne complexes [M(≡CX)(CO)2(Tp*)] (M = Mo, W; X = Cl, Br) 

can be displaced by nucleophiles to provide a range of functionalised carbyne 

complexes. This has been demonstrated for groups 14,199,200 15,66,68,194 1666,68,194,201,202 

and transition metals,203 representative examples of which are detailed in Scheme 2.2.  
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Scheme 2.2. Illustrative examples of nucleophilic displacement from 

halocarbynes (M = Mo, W; E = O, S, Se). 

 

Carbynes bearing chalcogen substituents have been prepared by displacement of 

chloride from [M(≡CX)(CO)2(Tp*)] by various anionic nucleophiles such as 

aryloxides,66 aryl- and alkylsulfides,201 phenylselenide201 and alkynylselenolates,202 or 

E2– (E = S, Se, Te).201 A bimetallic carbido complex has been similarly prepared using 

K[Fe(CO)2(Cp)] as the nucleophile to afford [Mo{≡CFe(CO)2(Cp)}(CO)2(Tp*)].203 

Neutral amines and phosphines have been used to synthesise cationic ammonio-194 and 

phosphoniocarbynes.66 Attempted direct substitution of chloride from 

[W(≡CCl)(CO)2(Tp*)] (M = Mo, W) by methyllithium resulted in methylation at a 

carbonyl ligand to form the acyl anion [W(≡CCl){C(=O)Me}(CO)(Tp*)]−. However, 

utilising LiMe2Cu in place of methyllithium provided the chloride substitution product 

[W(≡CMe)(CO)2(Tp*)].199 Although in this case the desired methylcarbyne was 

obtained using an alternative methylating agent, this result demonstrates the limited 

applicability of nucleophilic substitution reactions.  

 

2.2 Synthesis of phosphinocarbyne complexes via the lithiocarbyne 

approach 

In 2001 Templeton and co-workers reported the in situ generation of the lithiocarbyne 

complex [W(≡CLi)(CO)2(Tp*)] and demonstrated the synthetic promise of this complex 

in electrophilic substitution reactions (Scheme 2.3).64 Prior to this, the same group had 
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implicated the transient intermediacy of the anions [M(≡C)(CO)2(Tp*)]– (M = Mo, W) 

and their conjugate acids in the fluoride-mediated protodesilylation of silylcarbynes, 

leading to the non-classical bridging vinylidene complexes [M2(µ-

CCH2)(CO)4(Tp*)2].65 However, the long and low-yielding synthesis of the precursor 

[W(≡CH)(CO)2(Tp*)], in conjunction with its propensity to dimerise irreversibly to the 

non-classical vinylidene-bridged complex, deterred widespread use of this protocol.  

 

Subsequently, Hill and co-workers developed a one-step synthesis of the lithiocarbyne 

complex via a lithium-halogen exchange reaction of 1 and nBuLi.196 This reaction is 

performed in THF at −78°C to minimise side-reactions of the lithiocarbyne with other 

components of the reaction mixture, a number of which have been identified.204 The 

lithiocarbyne [M(≡CLi)(CO)2(Tp*)] (M = Mo, W) has been found to react with the 

liberated nBuBr, generating [M(≡CnBu)(CO)2(Tp*)]. The presence of proton sources 

(trace H2O, or under strictly anhydrous conditions, nBuBr) within the reaction mixture 

leads to [M(≡CH)(CO)2(Tp*)], which can rearrange to the non-classical vinylidene-

bridged dimer [M2(µ-CCH2)(CO)4(Tp*)2]. In the reaction of [Mo(≡CLi)(CO)2(Tp*)] 

with N,N-dimethylthiocarbamoyl, the dimeric carbyne complex [Mo2(µ-

C2)(CO)4(Tp*)2] was identified as a side product of the reaction, albeit in trace 

amounts.204 This was proposed to eventuate from an outer-sphere single-electron 

transfer reaction between N,N-dimethylthiocarbamoyl and the lithiocarbyne, generating 

[Mo(≡C)(CO)2(Tp*)]● which subsequently dimerises to form [Mo2(µ-C2)(CO)4(Tp*)2].  

 

Although the lithiocarbyne itself is thermally unstable, in situ treatment with 

electrophiles has provided thermally stable derivatives functionalised with group 11 – 

17 elements as well as transition metals.54,64,194,196,204-209 Prior to the work contained in 

this thesis, the only reported phosphorus-functionalised carbyne prepared via this 

approach was the molybdenum phosphinocarbyne complex [Mo(≡CPPh2)(CO)2(Tp*)], 

depicted in Scheme 1.5,54 and no discussion of its reactivity has followed. This project 

expands upon the previously developed methodology to provide novel phosphorus 

substituted carbyne complexes, some examples of which have been recently 

published.210 
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Scheme 2.3. Templeton's synthesis of the lithiocarbyne complex 

[W(≡CLi)(CO)2(Tp*)] and subsequent electrophilic substitution (R = nBu, 
tBu, NiPr2; EX = MeI, Me3SiOTf, I2, PhCOBr, PhCOPh then H2O, PhCHO 

then H2O). 

 

To more generally explore the chemistry of phosphorus-functionalised carbynes, the 

tungsten carbyne precursor was considered in favour of the molybdenum analogue for 

two reasons. Firstly, the rates of ligand substitution/modification typically decrease 

down a group such that intermediates or products of limited stability might be expected 

to be more amenable to study. Secondly, the most useful feature of tungsten (cf. 

molybdenum) is the observation of 183W satellites in the NMR spectra of such 

complexes (183W: I = 1/2, 14.3% natural abundance).* Although often not reported in the 

literature,† potentially informative data are available for 183W−31P and 183W−13C 

couplings, which will prove useful in the work to be described. Tungsten carbyne 

complexes typically show 1JWC coupling constants in the range of 140 – 300 Hz.10,21 In 

contrast, data for 2JWP couplings are somewhat sparse, reflecting the scarcity of 

phosphorus-functionalised organometallic C1 ligands for comparison. Much of the 

carbyne chemistry in the literature to date has focussed on group 6 species, and in this 

context little difference in reactivity has been observed between molybdenum and 

tungsten. 

 

Extending the lithiocarbyne protocol from molybdenum to tungsten allowed the 

phosphinocarbyne complex [W(≡CPPh2)(CO)2(Tp*)] (2) to be prepared in 90% yield 

                                                
* Molybdenum has two spin active isotopes, 95Mo (15.9%) and 97Mo (9.6%). However, both are 
quadrupolar (I = 5/2) and hence less useful. 
† The low abundance of 183W results in low intensity satellites (ca. 7% of primary resonance), 
the detection of which calls for high signal/noise measurements, which are often foregone. 
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(Scheme 2.4). Treatment of [W(≡CBr)(CO)2(Tp*)] (1) with one equivalent of nBuLi in 

THF at −78°C generated the lithiocarbyne [W(≡CLi)(CO)2(Tp*)]. This species was not 

isolated but was treated at low temperature with chlorodiphenylphosphine. Following 

work-up and chromatography the phosphinocarbyne 2 was isolated as an air- and 

moisture-stable orange powder.‡  
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Scheme 2.4. Synthesis of [W(≡CPPh2)(CO)2(Tp*)] (2) via the 

lithiocarbyne. 

 

Many of the spectroscopic features for complexes of this series are typified in the data 

for 2, and as such will be discussed in detail here. Complex 2 is manifest in the 31P{1H} 

NMR spectrum as a singlet at δP 32.0 straddled by 183W satellites (2JWP 69.0 Hz), close 

to the reported value for the molybdenum analogue (δP 35.5).54 As will become 

apparent, this 2JWP magnitude is indicative of a three-coordinate phosphinocarbyne 

complex of this type, and provides valuable information for the formulation of such 

species. 

 

The 1H NMR spectrum, shown in Figure 2.2, includes resonances attributable to the 

phenyl protons in the aromatic region. The methine Tp* resonances appear as singlets at 

5.85 and 5.74 ppm, integrating for 2 H and 1 H, respectively, while singlets due to the 

Tp* methyl groups are found at 2.38 (3 H), 2.37 (6 H), 2.31 (3 H) and 2.26 ppm (6 H). 

In the 1H (and 13C{1H}) NMR spectra the Tp* peaks appear in a 2:1 ratio that is typical 

of complexes of the form [M(≡CX)(CO)2(Tp*)] where X is non-stereogenic. The 

spectroscopic data are consistent with 2 possessing time-averaged CS symmetry in 

solution, with an internal mirror plane running along the N−W≡C axis, bisecting the 

two carbonyl ligands and the two phenyl groups of the phosphine (Figure 2.3 below). 

This leads to two of the pyrazolyl rings being equivalent (out of plane) and one non-

equivalent pyrazolyl ring in the plane, in agreement with the NMR spectra.  

                                                
‡ Under the conditions of its synthesis, subsequent reaction of 2 with the nBuBr lithium-halogen 
exchange side product does not occur, in contrast to the reaction with MeI to be described later. 
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Figure 2.2. 1H NMR spectrum of 2 demonstrating the typical spectroscopic 

signatures of [W(≡CPPh2)(CO)2(Tp*)] and related compounds, particularly 

the 2:1 ratio of the Tp* resonances. 

 

The most diagnostic resonance in the 13C{1H} NMR spectrum is the low-field carbyne 

carbon resonance which appears as a doublet with tungsten satellites at δC 292.6 due to 

coupling to phosphorus (1JPC 74.5 Hz) and tungsten (1JWC 187.9 Hz) (cf. 

[Mo(≡CPPh2)(CO)2(Tp*)] δC 309.0, 1JPC 84.3 Hz).54 The δC(M≡C) chemical shift 

values of carbyne complexes ligated by poly(pyrazolyl)borates fall within the wide 

range of δC 183.2 – 360.4, reflecting the diversity of substituents at the carbyne.21 

However, when the carbyne ligand bridges two metal centres the carbyne resonance can 

occur at a much lower field.209,211 The lithiocarbyne complex [W(≡CLi)(CO)2(Tp*)] is 

the most dramatic example of this (δC 556).64 Although this might appear counter-

intuitive based on inductive effects, the paramagnetic contribution to the chemical shift 

is expected to dominate. The carbyne resonances for both the molybdenum and tungsten 

phosphinocarbynes [M(≡CPPh2)(CO)2(Tp*)] fall significantly downfield from that of 

the aminocarbyne [Mo(≡CNEt2)(CO)2(Tp*)] (δC 251.9),194 which is shifted to high-field 

as a consequence of substantial contributions from the 2-azavinylidene resonance form, 

a consideration that is evidently not significant for the heavier phosphinocarbyne 

congeners. 
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Figure 2.3. Depiction of the mirror plane in 2.  

 

The observed 1JWC coupling falls within the reported range for other 

poly(pyrazolyl)borate tungsten carbyne complexes of 160 – 250 Hz.21 The magnitude of 

internuclear scalar coupling in part reflects the degree of 's-character' in the bonding 

since s orbitals have finite nuclear penetration (cf. p, d and f orbitals). Thus, for sp-

hybridised carbon, large couplings are to be expected. Organic carbyne complexes of 

the form [W(≡CR)(CO)2(Tp*)] have 1JWC in the somewhat narrow range of 183 – 198 

Hz, whilst the aminocarbynes [W(≡CNREt)(CO)2(Tp*)] (R = Me, Et) give rise to a 

larger 1JWC value of 208 Hz.21 There is no obvious correlation between δC and 1JWC. 

 

The mirror plane through the complex renders the two carbonyl ligands chemically 

equivalent. They give rise to a singlet at δC 225.3 with tungsten satellites (1JWC 168.9 

Hz). In this work, the chemical shifts and coupling constants for the carbonyl co-ligands 

in complexes of the type [W(≡CPRn)(CO)2(Tp*)] have been found to be relatively 

insensitive to changes in the phosphorus substituent.  

 

The remaining peaks in the 13C{1H} NMR spectrum are within the typical ranges and 

call for little comment. The heterocyclic pyrazolyl peaks resonate at δC 152.6 (1 C), 

152.2 (2 C), 145.3 (1 C) and 144.6 (2 C) for the C3,5 nuclei, and at δC 106.8 (1 C) and 

106.6 (2 C) for the C4 methine nuclei. Again the 2:1 ratio of the Tp* environments is 

apparent. The methyl groups appear as singlets in the expected region, with peaks at δC 

16.6 (2 C), 15.3 (1 C), 12.9 (2 C) and 12.7 (1 C). The presence of the phenyl groups is 

evidenced by peaks in the aromatic region at δC 136.5 – 128.5. Coupling to phosphorus 

is observed for C1,2,3,5,6 nuclei in the phenyl groups, and whilst C1 (δC 136.5, 1JPC 9.4 
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Hz) and C4 (δC 128.6, singlet) are readily identified, unequivocal identification of the 

C2,6 and C3,5 resonances is not possible due to the comparable coupling values. 

 

Characterisation of 2 included electrospray ionisation mass spectrometry, which was 

recorded using acetonitrile as the matrix. The spectrum contains peaks due to [M]+ (m/z 

734.7), [M – 2CO + MeCN]+ (m/z 619.8) and [M – 2CO + H]+ (m/z 679.5). Adducts 

containing H+, Na+, K+ and MeCN are commonly observed in the mass spectra of these 

types of complexes. The high resolution mass spectrum contained a [M + H]+ peak at 

m/z 735.2006 in close agreement with the calculated m/z value of 735.2005 

(C30H33
11BN6O2P184W). Peaks due to cleavage of the phosphine substituent or of the 

entire CPPh2 unit were not observed under these conditions. 

 

The infrared spectrum contains identifiable bands for the BH and CO stretches. The νBH 

absorption appears as a weak band at 2550 cm–1 (THF). Little variation in this 

frequency is seen between complexes, as has been noted for other carbyne complexes 

bearing poly(pyrazolyl)borate ligands, because of the steric and electronic isolation of 

the B−H bond from reactive sites within the molecules, which also renders it insensitive 

to solid state effects.21 In CH2Cl2 solution, two CO absorptions are seen for 2 at 1982 

and 1891 cm–1, corresponding to the symmetric A1 mode and antisymmetric B2 mode, 

respectively.21 In THF, this splits into two pairs of absorptions: 1981 and 1893 cm–1 

(strong) and 2000 and 1914 cm–1 (weak) (Figure 2.4). The solid state (Nujol) infrared 

spectrum contains three pairs of carbonyl absorptions: 1974 and 1883 cm–1 (strong), 

2001 and 1912 cm–1 (medium), and 1957 and 1858 cm–1 (weak). These three sets of 

peaks may correspond to rotational isomerism about the C−P bond, or it may be a 

consequence of solid state effects causing splitting of the bands.212 The presence of 

rotamers is supported by the appearance of two pairs of νCO absorption bands in the 

solution IR spectrum in THF, as in this case solid state effects cannot be invoked to 

explain the presence of more than two νCO bands. The carbonyl bands of 

[Mo(≡CNEt2)(CO)2(Tp*)] occur at 1938 and 1843 cm−1 (Nujol),194 whereas for 

[Mo(≡CPPh2)(CO)2(Tp*)] these bands are shifted to higher frequency by 50 cm−1 

(Nujol: 1988, 1901 cm−1),54 similar to what is seen for 2. This demonstrates the absence 

of significant vinylidene contributions in phosphinocarbynes, in contrast to 

aminocarbynes, which exhibit lower νCO frequencies resulting from the increased 
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electron density at the metal centre that accompanies the 2-azavinylidene resonance 

contributions.  

 

!

CH2Cl2  
Nujol 

THF 

 
Figure 2.4. Carbonyl absorption region of the infrared spectra of 2 in 

different media. 

 

Calculations§ carried out on 2 by Dr Manab Sharma identified three rotational isomers, 

the free energies of which lie within 10 kJ/mol of each other (Figure 2.5). The existence 

of these three rotational isomers with very similar energies is consistent with the data 

obtained.** That is, rotational isomers are present but interconvert readily on the NMR 

timescale as the energy differences between the isomers is very small. 

 

                                                
§ For details of calculations see Appendix. 
** Calculated vibrational frequencies in the gas phase (uncorrected) do not correspond to those 
obtained experimentally. 
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Figure 2.5. Calculated orientations about the WCP spine of 2 and their 

relative free energies in the gas phase. Conformations depicted looking 

down the PCWN axis.  

 

The νW≡C stretching band is not unambiguously identifiable in the IR spectra of carbyne 

complexes obtained in this project. Through comparison with the IR spectrum of 

[W(NO)(CO)2(Tp*)], a medium-weak absorption at 1099 cm–1 was attributed to the 

W≡C bond in [W(≡CBr)(CO)2(Tp*)]. However, absorptions associated with the PPh2 

moiety in the same region make it difficult to identify the νW≡C vibrational mode of 2. 

For the series trans-[M(≡CR)(X)(CO)4] (R = Me, Ph; X = Cl, Br, I, Re(CO)5; M = Cr, 

Mo, W) the M≡C stretching frequencies fall within the range 1380 – 1250 cm–1.10 

However, the M≡C stretch is generally not reported for carbyne complexes, perhaps due 

to the difficulty identifying it in the spectra of such complexes. Additionally, such 

modes may in principle be coupled to other vibrations, e.g. δs(CH3) for the complex 

trans-[W(≡CCH3)Br(CO)4], further clouding detailed analysis. 

 

The structure of 2 was confirmed by X-ray crystallography (Figure 2.6), and the 

structural features were found to conform to those seen for the molybdenum analogue.54 

The molecular structure clearly demonstrates the trigonal pyramidal geometry at the 

phosphorus centre (C1−P1−C41 101.52(12)°, C1−P1−C51 106.02(12)°, C41−P1−C51 
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104.32(12)°), in contrast to aminocarbynes in which significant pπ(N)-pπ(C) overlap 

leads to a trigonal planar nitrogen centre (2-azavinylidene resonance structure, Figure 

1.1).194 This is exemplified by the angle sum about nitrogen in the analogous 

aminocarbyne complex [Mo(≡CNEt2)(CO)2(Tp*)] of 360°,194 whereas the angle sum 

about phosphorus in 2 is 311.9°, similar to that found for the alkynylphosphine 

Ph2PC≡CMe (304.0°),213 and the molybdenum analogue [Mo(≡CPPh2)(CO)2(Tp*)] 

(312.0°).54 Interestingly, the geometry obtained in the crystal structure does not 

correspond to the lowest energy conformer calculated, but rather the second lowest 

(Figure 2.5). However, the energy difference between this orientation and the global 

minimum conformation is only 5.05 kJ/mol, which would be easily overcome by the 

energy of the crystal lattice. 
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Figure 2.6. Full view (left) and simplified view (right) of the molecular 

structure of 2 in a crystal (50% displacement ellipsoids, hydrogen atoms 

omitted). Selected bond lengths (Å) and angles (°): W1−C1 1.827(2), 

C1−P1 1.783(3), P1−C41 1.833(3), P1−C51 1.829(3), W1−C1−P1 

166.62(15), C1−P1−C41 101.52(12), C1−P1−C51 106.02(12), 

C41−P1−C51 104.32(12).  

 

Some general features of [W(≡CX)(CO)2(Tp*)] structures are apparent here. The 

geometry about tungsten is distorted octahedral. The N−W−N angles (81.18 – 82.35°) 

are contracted from the idealised 90° due to the chelation constraints of the tridentate 

Tp* ligand. The W1−C1−P1 angle of 166.62(15)° deviates slightly from linearity as 

seen in other complexes of this type.21 This bending is generally attributed to crystal 

packing forces.214 The W1−N11 bond trans to the carbyne is significantly longer 
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(2.319(2) Å) than the W1−N21 (2.208(2) Å) and W1−N31 (2.206(2) Å) bonds trans to 

the carbonyl ligands, demonstrating the strong trans influence of the carbyne ligand. 

The W≡C bond length of 1.827(2) Å falls within the reported range for other 

poly(pyrazolyl)borate ligated carbyne complexes of molybdenum and tungsten†† of 1.76 

– 1.90 Å.21 Variation of the carbyne substituent produces fluctuations of the metal-

carbon bond length within this range. Most notably, aminocarbynes typically display 

marginally longer M≡C bond lengths consistent with the 2-azavinylidene canonical 

description. These features are common to tungsten carbyne complexes of this type and 

as such need not be discussed further in most cases. 

 

2.3 Synthesis of phosphinocarbyne complexes via palladium-catalysed 

phosphination 

The use of palladium-catalysed P−C bond forming reactions for the preparation of 

phosphines is well established. Much research has been undertaken to broaden the scope 

of these reactions such that it now encompasses alkenyl halides,215 aryl halides and 

pseudohalides with primary phosphines,83,216 secondary phosphines,83,216,217 

triarylphosphines,218 H-phosphinate esters and H-phosphonate diesters,219 among others. 

This methodology has even been extended to halocarbynes on one occasion; 

[Mo(≡CBr)(CO)2(Tp*)] has been shown to undergo a palladium-catalysed reaction with 

diethylphosphinic acid (HP(=O)(OEt)2) to afford the phosphonitocarbyne complex 

[Mo{≡CP(=O)(OEt)2}(CO)2(Tp*)] in 64% yield (Scheme 2.5).54  
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Scheme 2.5. Palladium-catalysed synthesis of 

[Mo{≡CP(=O)(OEt)2}(CO)2(Tp*)].  

 

This methodology appeared to offer a promising approach to developing an alternative 

general synthetic route to phosphorus-functionalised carbyne complexes. Upon heating 

a toluene solution of the tungsten bromocarbyne 1 with diphenylphosphine and 

                                                
†† For comparative purposes, it should be noted that molybdenum and tungsten have comparable 
covalent radii due to the lanthanoid contraction. 
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triethylamine, in the presence of [Pd(PPh3)4] (5 mol%), to 80°C for one hour, infrared 

and NMR spectroscopic analysis indicated the formation of 2 as the major product 

(Scheme 2.6). 
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21  
Scheme 2.6. Synthesis of 2 via palladium-mediated P−C bond formation. 

 

The success of this reaction demonstrates the utility of transition metal catalysis as a 

means of affording functionalised carbyne complexes. More detailed investigations into 

the synthesis of phosphinocarbyne complexes via palladium-catalysed phosphination 

reactions can be found in Section 4.2.3. 

 

2.4 Attempted synthesis of phosphinocarbyne complexes via a 

stannylcarbyne complex  

A third route to phosphorus-functionalised carbyne complexes was explored within the 

scope of this project. The lithiocarbyne route, whilst effective for the synthesis of 2, 

does have limitations.204 The lithiocarbyne endures only at low temperature and needs 

to be generated freshly for each reaction. The reaction must be carried out under 

scrupulously anhydrous conditions, otherwise proton scavenging by the lithiocarbynes 

[M(≡CLi)(CO)2(Tp*)] (M = Mo, W) leads to formation of the methylidynes 

[M(≡CH)(CO)2(Tp*)]. Additionally, in some cases side reactions occur in which the 

liberated nbutyl bromide or the THF solvent act as competitive electrophiles, resulting in 

[M(≡CnBu)(CO)2(Tp*)] or the THF ring-opened complex 

[M{≡C(CH2)4OH}(CO)2(Tp*)].220 In this work, reactions with phosphorus-based 

electrophiles have not led to identifiable formation of [W(≡CnBu)(CO)2(Tp*)] or 

[W{≡C(CH2)4OH}(CO)2(Tp*)] as side-products, but this possibility should not be 

disregarded when utilising the lithiocarbyne route. The problems encountered in this 

work with the lithiocarbyne and palladium-mediated routes were primarily associated 

with purification of the desired product, and are detailed in the relevant sections.  
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In light of these issues, the viability of the stannylcarbyne complex 

[W(≡CSnMe3)(CO)2(Tp*)] as a precursor for the synthesis of phosphorus-

functionalised carbyne complexes was explored. Inspired by the success of 

alkynylstannanes in transmetallation reactions,221 this stannylcarbyne complex has been 

used to synthesise functionalised carbyne complexes by a gold-catalysed tandem 

transmetallation (Scheme 2.7).211  
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Scheme 2.7. Synthesis of a palladium carbido complex via the catalytic 

tandem transmetallation of a stannylcarbyne complex (L = AsPh3, SMe2). 

 

A THF solution containing the stannylcarbyne complex [W(≡CSnMe3)(CO)2(Tp*)] and 

a catalytic amount of [AuCl(AsPh3)] (7 mol%) was treated with PClPh2 and the mixture 

was stirred overnight. The infrared spectrum revealed complete consumption of the 

stannylcarbyne and appearance of a number of new species. The 31P{1H} NMR 

spectrum likewise contained multiple peaks, but no evidence of the desired product 2 

was seen in either the NMR or the IR spectra (Scheme 2.8). 
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Scheme 2.8. Attempted synthesis of 2 via gold-catalysed electrophilic 

substitution of a stannylcarbyne complex. 

 

Despite the failure of this reaction, the successful synthesis of 2 was achieved via both 

the lithiocarbyne method and via palladium-catalysed phosphination. With expedient 

access to this tungsten phosphinocarbyne complex, a detailed exploration of its 

reactivity was undertaken, the results of which are described in the following sections of 

this Chapter. Investigations into the synthesis and reactivity of other phosphinocarbyne 

complexes are presented in Chapters 3, 4 and 5. 
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2.5 Reactions with electrophiles 

The complex 2 is attractive chemically because there are a number of potential sites 

available for functionalisation: the phosphine substituent, the carbyne carbon atom, the 

metal centre or the tungsten-carbyne bond. Reactions with electrophiles were carried 

out to probe the reactivity of 2 and identify preferential sites of reactivity. 

 

2.5.1 Synthesis of [W(≡CPMePh2)(CO)2(Tp*)]I 

Templeton and co-workers have synthesised a series of phosphoniocarbyne complexes 

[W(≡CPR3)(CO)2(Tp*)]PF6 (R3 = Me3, Et3, Cy3, Ph3, Me2Ph) by treating the 

thiocarbyne [W(≡CSMe)(CO)2(Tp*)] with excess PR3 and NH4PF6,62 or by treating the 

chlorocarbyne [W(≡CCl)(CO)2(Tp*)] with PR3 and KPF6 (Scheme 1.8).66 

Transformation of 2 into a phosphoniocarbyne complex should be possible via simple 

P-alkylation. The provision of a platform for comparison in Templeton's complexes 

rendered this an obvious place to begin investigations.  

 

Treatment of 2 with methyl iodide affords the methyldiphenylphosphoniocarbyne salt 

[W(≡CPMePh2)(CO)2(Tp*)]I ([3]I) (Scheme 2.9). The 31P{1H} NMR spectrum of [3]I 

contains a singlet with 183W satellites at δP 12.2 showing a tungsten-phosphorus 

coupling of 2JWP 161.6 Hz, comparable to those observed for Templeton's complexes 

(e.g. [W(≡CPMe3)(CO)2(Tp*)]PF6 δP 16.7, 2JWP 147 Hz).62 Interestingly, the carbyne 

carbon atom appears in the 13C{1H} NMR spectrum as a singlet straddled by 183W 

satellites at δC 242.8 with 1JWC 206.2 Hz. The absence of resolvable 1JPC coupling seems 

counter-intuitive, but is consistent with what is observed for other 

phosphoniocarbynes,58,61,62,66,73,76,79 with the exception of [W(≡CPCy3)(CO)2(Tp*)]PF6, 

[Re(≡CPPh3)(SR)(NtBu)2] (R = adamantyl, tBu) and [TaCl(≡CPPh3)(CHPPh3)(Cp*)] 

which display very small carbon-phosphorus coupling constants between 7.5 and 15 

Hz.66,74,77,78 

 

MeI
W C

Tp*

OC
OC

P
Ph

2
Ph

W C

Tp*

OC
OC

Me

P

Ph
Ph

I

[3]I  
Scheme 2.9. Synthesis of [W(≡CPMePh2)(CO)2(Tp*)]I ([3]I). 
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It seems somewhat puzzling that, in comparing [3]I to 2, we observe a significant 

increase in 2JWP (69.0 to 161.6 Hz), a significant decrease in 1JPC (74.5 to ca. 0 Hz), and 

only a small increase in 1JWC (187.9 Hz to 206.2 Hz). It might be expected that the 

factors that dominate such coupling constants would be similar in all three cases. 

Typically, the increased coordination number at phosphorus in [3]I would be expected 

to lead to a decrease in the coupling constants because of the reduced s orbital 

contribution to the relevant bonds,222,223 as seen for 1JPC. One possible explanation for 

the attendant counter-intuitive increase in the magnitude of 2JWP could be the sign of the 

coupling. If the 2JWP coupling were negative (whilst 1JPC was positive), a reduction in 

the coupling would cause an increase in the absolute value, as was observed. Attempts 

to measure the sign of the 2JWP coupling experimentally were thwarted by the extremely 

low sensitivity of 183W, and no reports of the sign of 2JWP couplings could be found in 

the literature. In the absence of a definitive rationalisation as to the origin of the 

observed divergence in magnitude, it can be noted that this is a recurrent phenomenon 

encountered throughout the work to follow.  

 

2.5.2 Synthesis of [W(≡CPPh2·BH3)(CO)2(Tp*)] 

Phosphine-borane adducts are commonly used reagents in synthetic chemistry.224,225 

This synergistic relationship stems from the use of phosphines to stabilise boranes, and 

in turn boranes serve as useful protecting groups for phosphines. Inspired by the work 

of Miyoshi and co-workers in their synthesis of the metallated phosphine-borane 

adducts [Fe(PHPh·BR3)(CO)2(Cp)] (R = H, Cl),226 it was envisaged that addition of 

borane to 2 might follow a similar path. However, Stone and co-workers have shown 

that BH3·THF will add to the M≡C bond of more conventional carbyne complexes 

[W(≡CR)(CO)2(L)] (R = Me, Ph, Tol; L = Cp, Cp*) to form the dimeric species [W2{µ-

C(R)B(H)CH2R}(CO)4(L)2] (Scheme 2.10).227,228  
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Scheme 2.10. Stone's hydroboration of carbyne complexes (L = Cp, Cp*; R 

= Me, Ph, Tol). 
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Wadepohl and co-workers found that the hydroboration of group 6 carbyne complexes 

charted differing routes depending on the co-ligand and the carbyne substituent 

(Scheme 2.11).229,230 When the bulky Tp* ligand was utilised, formation of an η2-

B(R')CH2R complex occurred, whereas with Cp* or η5-C5Me4Et an α-boryl-η3-benzyl 

complex or an η2-CH2=CH2 complex was obtained. The reaction of 2 with borane might 

therefore take competitive courses, affording an opportunity to probe the reactivity at 

the phosphine compared to the W≡C bond. 

 

M C

L

OC
OC

R

(HBR'2)2

M

L

OC
OC

M
H

L

OC
OC

Et2B

CH2

H2C

M
H

L

OC
OC

B
C

R'

R

H

L = Cp*, η5-C5Me4Et
R = Tol
R' = Et

L = Tp*
R = Me, Tol

R'2 = Et2, HPh

L = Cp*
R = Me, SiMe3

R' = Et, nPr  
Scheme 2.11. Wadepohl's hydroboration of carbyne complexes (M = Mo, 

W). 

 

An orange toluene solution of 2 was treated with 1.2 equivalents of BH3·SMe2, 

resulting in overnight formation of a brown suspension. Infrared monitoring of the 

reaction mixture showed replacement of the starting material (νCO 1981, 1893 cm−1) by 

new νCO absorptions at 2004 and 1917 cm−1 with shoulders at 1995 and 1906 cm−1. 

Filtration and trituration of the resulting filtrate in Et2O afforded the phosphine-borane 

adduct [W(≡CPPh2·BH3)(CO)2(Tp*)] (4) as a brown powder in 58% yield (Scheme 

2.12). 
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Scheme 2.12. Synthesis of [W(≡CPPh2·BH3)(CO)2(Tp*)] (4). 

 

Appending of the borane to phosphorus was confirmed by the 31P{1H} NMR spectrum 

of complex 4 which showed a broad peak at δP 32.0 due to coupling to the quadrupolar 
11B nucleus. The 11B{1H} NMR spectrum showed two singlets, one at δB −10.1 

corresponding to the Tp* boron and one at δB −37.8 due to the BH3 group, both within 

the typical region of four-coordinate boron. A proton-coupled 11B NMR spectrum was 

acquired, but no coupling to the attached protons was resolved as is typical in non-

symmetrical boron environments.  
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Figure 2.7. Molecular structure of 4 in a crystal of 4·CHCl3 (50% 

displacement ellipsoids, selected hydrogen atoms omitted). Selected bond 

lengths (Å) and angles (°): W1−C1 1.824(4), C1−P1 1.782(4), P1−B2 

1.935(5), W1−C1−P1 164.1(2), C1−P1−B2 115.5(2). 

 

Crystals of 4 obtained from CHCl3/hexane were the subject of an X-ray crystallographic 

study, the results of which are summarised in Figure 2.7. The structural features of the 

[W(≡CP)(CO)2(Tp*)] fragment are largely unremarkable. The geometry about P1 is 

pseudo-tetrahedral, with the most obtuse angle being that of C1−P1−B2 (115.5(2)°). 

The P1−B2 bond length of 1.935(5) Å is similar to that in the related compounds (S,S)-
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{P(C≡CPh)(tBu)(BH3)}2C2H4 (average P−B distance 1.918 Å)231 and Ph3PBH3 (average 

P−B distance 1.917 Å).232 

 

Under the conditions used, no evidence of a reaction between BH3 and the W≡C bond 

was observed, in contrast to Stone and Wadepohl's work. Heating a solution of 4 to 

80°C in toluene-d8 resulted in no change other than partial decomposition of 4 to 

regenerate 2 via loss of BH3, as indicated by the 1H and 31P{1H} NMR spectra. No 

peaks that might correspond to BH3 migration to W≡C were observed.  

 

2.6 Protonation of [W(≡CPPh2)(CO)2(Tp*)] 

2.6.1 Protonation of carbyne complexes 

The reactivity of 2 towards electrophiles displayed thus far raises the question of the 

simplest electrophile, H+. In contrast to amines, phosphines are comparatively weak 

bases (e.g. pKa (MeCN) PMe3 = 15.5,233 NMe3 = 17.6234). Protonation of carbyne 

complexes is known to take a variety of routes: protonation at the metal centre, the 

M≡C bond or the carbyne carbon atom,235-238 with a number of factors involved in 

determining the site of protonation. Molecular orbital calculations suggest frontier 

orbital controlled protonation occurs at the metal centre, whereas charge-controlled 

protonation is directed at the carbyne carbon atom.239,240 McElwee-White and co-

workers found that electronic effects determine the ultimate site of protonation in the 

series [Mo(≡CBu)(L)2(L')] (L = CO, P(OMe)3, P(OPh)3; L' = Cp, Tp).236 Increasing the 

basicity at the metal shifts the site of protonation from the carbon to the metal centre, as 

outlined in Scheme 2.13. 
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Scheme 2.13. Effect of ligand variation on the site of protonation (L' = Cp, 

Tp; L = CO, P(OMe)3, P(OPh)3). 

 

In the case of [W(≡CH)Cl(L)4] (L4 = (PMe3)4, (dmpe)2), the outcome of protonation 

with HOTf differs based on the sterics of the phosphine co-ligands.237,238 With dmpe co-

ligands, protonation occurs at the metal centre to give [WH(≡CH)Cl(dmpe)2]+, whereas 

with PMe3 co-ligands protonation gives an α-agostic complex [W(=CH2)Cl(PMe3)4]+. 

This was rationalised sterically by the fact that a pentagonal H(PMe3)4 coordination 

plane is inaccessible, whereas the smaller dmpe ligands can accommodate the requisite 

trigonal bipyramidal structure. 

 

Predicting the outcome of protonation is further complicated by the distinction between 

kinetic and thermodynamic sites of protonation that arises in some cases.235 For 

example, protonation of [Mo(≡CCH2
tBu){P(OMe)3}2(Cp)] with HBF4 occurs initially at 

the carbyne carbon atom to form [Mo(=CHCH2
tBu){P(OMe)3}2(Cp)]+. A subsequent α-

hydride elimination reaction transpires, resulting in the cationic hydride complex 

[MoH(≡CCH2
tBu){P(OMe)3}2(Cp)]+.241 

 

2.6.2 Synthesis of [W(≡CPHPh2)(CO)2(Tp*)]BF4 and [W{η2-

C(H)PPh2}(CO)2(Tp*)]BF4 

This array of possible outcomes prompted an investigation into the reactivity of 2 with 

Brønsted acids. A suspension of 2 in Et2O at –78°C was treated with HBF4·Et2O. Upon 

warming to room temperature a pink precipitate formed ([5]BF4) which was isolated by 

filtration. This precipitate was dissolved in CDCl3 or CD3CN for NMR analysis, 
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resulting in a dark purple solution. The 1H, 13C{1H} and 31P{1H} NMR spectra are 

consistent with the formulation of an η2-carbene complex [W{η2-

C(H)PPh2}(CO)2(Tp*)]BF4 ([6]BF4), resulting from protonation at the carbyne carbon 

atom (Scheme 2.14). The 31P{1H} NMR spectrum contains a singlet at δP –101.3 

(CDCl3) with 183W satellites (1JWP 138.5 Hz). This resonance is shifted 130 ppm upfield 

compared to the starting material (δP 32.0), diagnostic of a phosphorus-containing three-

membered ring,242,243 and within the range for other M{η2-C(R)PR′2} complexes (−94 

to −155 ppm).69,109,114-118  

 

W C

Tp*

OC
OC

P
Ph

Ph

W

Tp*

OC
OC

BF4
C

P

H

Ph
Ph

HBF4⋅Et2O

2
[6]BF4

[5]BF4
solvent

 
Scheme 2.14. Protonation of 2 with HBF4·Et2O (solvent = CH2Cl2, CHCl3, 

MeCN).  

 

The 1H NMR spectrum includes a doublet resonance at δH 14.78, straddled by 183W 

satellites, with couplings of 2JPH 4.8 Hz and 2JWH 13.8 Hz. The significantly downfield 

chemical shift is characteristic of a secondary carbene M=CH peak, comparable to those 

observed in [W{η2-C(H)PC(NEt2)2}(CO)2(Tp*)]OTf (δH 14.24, 2JPH 16.9 Hz),69 [W{η2-

C(H)PMe2}(H)(PMe3)4]I (δH 11.86, 2JPH 11),118 [W{η2-C(H)SMe}(CO)2(Tp)]OTf (δH 

12.93)244 and [W{η2-C(H)SMe}(CO)2{CH(pz)3}][BF4]2 (δH 13.15).245 Although the 

magnitude of the P−H coupling is smaller in [6]BF4 than in these previously reported 

carbenes (4.8 cf. 11 and 16.9 Hz), Weber's complex is a phosphaalkenylcarbene (rather 

than a phosphinocarbene) so a higher degree of s-character exists in the phosphorus-

carbon bond. The Tp* resonances appear in a 2:1 ratio, consistent with either a mirror 

plane through the WCHP moiety or a fluxional process allowing rotation of the HCPPh2 

unit. 

 

The 13C{1H} NMR spectrum showed, in addition to the Tp*, Ph and CO resonances, a 

peak at 237.1 ppm corresponding to the carbene carbon atom. The 1JPC coupling of 46.3 

Hz is within the expected range for salts of the type [W{η2-C(R)PR′R′′}(CO)2(L)]+ of 

17.5 - 62.5 Hz.115,116 Coupling to 183W is observed (1JWC 21.5 Hz). Most previous 
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relevant work has not reported the W−C coupling constant, presumably due to low 

signal-to-noise ratios (183W 14% natural abundance). Kreissl has, however, reported 

W−C coupling values of 53.3 Hz (R = Me) and 34.9 Hz (R = Ph) for [W{η2-

C(R)PPh2}(CO)(PMe3)(Cp)]PF6,114,117 these being somewhat larger than that seen for 

[6]BF4. The 1H-coupled 13C NMR spectrum reveals the one-bond C−H coupling of the 

carbene carbon to be 199.0 Hz, comparable to what is seen in [W{η2-

C(H)SMe}(CO)2(Tp)]+ (211 Hz) but much larger than those seen in η1-carbene 

complexes such as [Fe(=CHPh)(CO)2(Cp)]+ (δC 324.4, 1JCH 146 Hz),246 

[W(=CHNEt2)(CNtBu)(CO)2(Cp*)]PF6 (δC 233.5, 1JCH 137 Hz)184 and syn-

[Mo(=CHPPh2)(=NDipp)(OC6HPh4-2,3,5,6){N(C(Me)CH)2}] (δC 276, 1JCH 130 Hz).128 

 

In the IR spectrum in CH2Cl2 carbonyl absorptions are observed at 2054 and 1982 cm–1. 

These bands appear at significantly higher frequencies than those of the starting 

material 2 (1982, 1891 cm–1) due to the decreased electron density available at the metal 

centre in the cationic species [6]BF4. Again, these absorptions are similar to those in the 

related thiocarbene [W{η2-C(H)SMe}(CO)2(Tp)]OTf (2067, 1996 cm–1)244 and 

phosphinocarbene complexes [W{η2-C(Ph)PPh2}(CO)2(Tp)]PF6 (2036, 1969 cm–1).116 

 

For carbynes bearing heteroatom substituents, precedent exists for the formation of η2-

carbenes upon protonation.69,244,245 The thiocarbyne complex [W(≡CSMe)(CO)2(Tp)] 

reacts with strong acids to provide the η2-carbene complex [W{η2-

C(H)SMe}(CO)2(Tp)]+ containing a W−C−S metallacyclopropene ring (Scheme 

2.15).244 Similarly, Weber has found that protonation of the phosphaalkenylcarbyne 

complex [W{≡CPC(NEt2)2}(CO)2(Tp*)] leads to [W{η2-C(H)PC(NEt2)2}(CO)2(Tp*)]+, 

albeit via [W{≡CPHC(NEt2)2}(CO)2(Tp*)]+.69  
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Scheme 2.15. Angelici's protonation of a thiocarbyne to produce an η2-

carbene (X = BF4, CF3SO3, CF3CO2). 
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A variety of strategies exist for the preparation of η2-phosphinocarbenes.109 Kreissl and 

co-workers have effected addition of [PR'R'']+ across the M≡C bond of aryl- and 

alkylcarbyne complexes to produce [M{η2-C(R)PR'R''}(CO)2(L)]X (M = Mo, W; L = 

Cp, η5-C5H4Me, Tp; R = Me, Ph, Tol; R' = R'' = Me, Ph; R' = Me, R'' = Cl) using 

PClR'R'' in the presence of a halide abstracting agent (NaBPh4, TlPF6) (Scheme 2.16). 

Decarbonylation of the tungstaphosphabicyclo[l.1.0]butanone salt [W{κ3-

C(O)C(R)PPh2}(CO)(PMe3)(Cp)]PF6 under mild conditions (30 – 38°C, 1 – 2 hours) 

furnishes the η2-phosphinocarbene salt [W{η2-C(R)PPh2}(CO)(PMe3)(Cp)]PF6 

(Scheme 2.16).114,117 Other examples of η2-phosphinocarbene complexes include: the 

thermal rearrangement of [W{=C(NEt2)PMePh}(CO)4(PHMePh)] to [W{η2-

C(NEt2)PMePh}(CO)4];119 the reduction of the tantalum complexes [TaCl5] and 

[TaCl4(Cp*)] with sodium in PMe3 to give [Ta{η2-C(H)PMe2}{η2-

CH2PMe2}(PMe3)3]120,121,123 and [Ta{η2-C(H)PMe2}(H)2(PMe3)(Cp*)],122 respectively, 

via double C−H activation; and hydride abstraction from [W{η2-CH2PMe2}(H)(PMe3)4] 

with ArX to give [W{η2-C(H)PMe2}(H)(PMe3)4]X (X = Br, I; Ar = Ph, Tol).118 This is 

another point wherein the reactivities of phosphorus and nitrogen contrast in such 

systems; η2-aminocarbenes are extremely rare (known only for [M{η2-

C(NiPr2)NiPr2}(CO)4] (M = Cr, Mo, W)),247,248 and protonation of aminocarbynes yields 

η1-aminocarbene complexes.182-184,249 
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Scheme 2.16. Kreissl's synthesis of η2-phosphinocarbene salts via (a) 

electrophilic addition (M = Mo, W; L = Cp, η5-C5H4Me, Tp; R = Me, Ph, 

Tol; R' = R'' = Me, Ph; R' = Me, R'' = Cl; M'X = NaBPh4, TlPF6) or (b) 

decarbonylation (R = Me, Ph). 
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Intriguingly, the solid state IR spectrum (Nujol) of the isolated pink precipitate [5]BF4 

showed CO stretching frequencies at 2022 and 1937 cm–1, to significantly lower 

frequency than what was observed in the CH2Cl2 solution infrared spectrum of 2054 

and 1982 cm–1. Such a significant shift (ca. 45 cm–1) seemed unlikely to be due to solid 

state effects, and instead suggested that these spectra were actually of different 

compounds. Having acquired all the solution NMR data, we were confident that the η2-

phosphinocarbene [6]BF4 was indeed the thermodynamic product of the reaction. This 

suggested that the isolated pink precipitate [5]BF4 was in fact the kinetic product, which 

subsequently underwent a transformation when dissolved in solution (CH2Cl2, CHCl3, 

CH3CN) to provide [6]BF4.  

 

The possible sites of initial protonation are the phosphine, the metal centre, the carbon 

atom (without pendant PPh2 stabilisation of tungsten) or the W≡C bond, depicted in 

Scheme 2.17. Following Marcus theory, Norton has identified that significant structural 

and electronic changes leads to slow rates of protonation.250 Protonation of lone pairs of 

electrons on heteroatoms is fast because little structural and electronic modification is 

required. A low energy barrier for protonation is consistently observed, resulting in the 

heteroatom as the kinetic site of protonation. Protonation at carbon and transition metal 

atoms is, in contrast, slow because it requires considerable electronic and structural 

rearrangement, leading to high kinetic barriers. Based on Norton's theories, we would 

expect that the phosphine would be the kinetic site of protonation in [5]BF4. 
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Scheme 2.17. Possible sites of kinetic protonation of 2.  

 

The rearrangement of the kinetic product [5]BF4 to [6]BF4 was very rapid in solution 

which precluded acquisition of NMR data for this intermediate. Conversion of [5]BF4 to 

[6]BF4 in CH2Cl2 was monitored by IR spectroscopy. After two minutes in solution the 

IR spectrum indicated [6]BF4 to be the major component (2054, 1982 cm–1), although 

peaks attributable to [5]BF4 remained evident at 2022 and 1937 cm–1. However, these 

do not persist beyond six minutes. As we were unable to obtain spectroscopic data for 

[5]BF4 in solution, we were limited to interrogating the IR data to infer its structure. On 

the basis of this, in conjunction with Norton-Marcus considerations, [5]BF4 is 

postulated to be the phosphonium salt [W(≡CPHPh2)(CO)2(Tp*)]BF4 (Scheme 2.18). 

The νCO frequencies (Nujol: 2022, 1937 cm–1) are in a similar region to those seen for 

other phosphonium carbyne salts [W(≡CPR3)(CO)2(Tp*)]PF6 of 2026 – 2015 and 1940 

– 1933 cm–1 (R3 = Me3, Et3, Cy3, Ph3, Me2Ph; CH2Cl2 solution),62,66 and 2015 and 1925 

cm–1 for [W(≡CPMePh2)(CO)2(Tp*)]I ([3]I, Nujol). The νCO absorptions of 

[W(≡CPMePh2)(CO)2(Tp*)]+ are shifted to slightly lower frequency than those for 

[5]BF4, consistent with PMePh2 being a stronger electron donor than PHPh2, thus 

rendering the metal more electron rich. 
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Scheme 2.18. Kinetic ([5]BF4) and thermodynamic ([6]BF4) products of 

protonation of 2 with HBF4·Et2O (solvent = CH2Cl2, CHCl3, MeCN). 

 

Unfortunately, the W≡C bond is not readily identifiable in IR spectra of these species. 

No νWH absorption could be identified in the IR spectrum, but this is not conclusive 

evidence that protonation did not occur on the metal because νMH modes are not 

unambiguously identifiable in IR spectra, may be weak, and typically couple with νCO 

modes. There is a very weak absorption in the infrared spectrum at 2457 cm−1, which is 

proposed to be the νPH mode of [5]BF4 and which is absent from the infrared spectrum 

of [6]BF4. This absorption is in the expected region for a P−H phosphonium salt (e.g. 

[HPPh3][WCl4(O)(OPPh3)] νPH 2415 cm−1 and [dppeH2]3[MoCl6]2·12H2O νPH 2400 

cm−1).251,252 However, as the absorption is very weak, the assignment is not conclusive 

but is nevertheless consistent with the formulation of [5]BF4. Further support for kinetic 

protonation at a heteroatom, i.e. phosphorus, is provided by the observation that [5]BF4 

is very easily deprotonated. Solutions of [5]BF4 in the weakly basic solvents THF or 

Et2O are orange, not purple, and contain the phosphinocarbyne 2, as confirmed by NMR 

and IR spectroscopies. 

 

With trifluoromethanesulfonic acid (HOTf) the reaction proceeds in an analogous 

manner to HBF4·Et2O, but less cleanly, and the product formed is less stable than the 

BF4
− salt. After stirring overnight in Et2O [W{η2-C(H)PPh2}(CO)2(Tp*)]OTf is present 

in the reaction mixture, as indicated by 1H NMR spectroscopy (CD3CN), but is 

accompanied by a significant number of other species. 
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By analogy with Templeton's synthesis,62,66 it was envisaged that the reaction of 1 with 

the secondary phosphine PHPh2 might furnish the phosphoniocarbyne [5]+ or the 

rearranged product [6]+. An acetonitrile solution of [W(≡CBr)(CO)2(Tp*)] and NaBF4 

was treated with PHPh2 and the reaction was monitored by IR spectroscopy (Scheme 

2.19). After two days at 82°C the infrared spectrum indicated that 1 was still present, in 

addition to a number of other absorptions in the carbonyl region (2022 (w), 2002 (w), 

1937 (m), 1917 (m), 1819 (m) cm–1), none of which correspond to [6]BF4 (2054, 1892 

cm−1 in CH2Cl2). However, the bands at 2022 and 1937 cm−1 were suggestive of [5]BF4 

for which the carbonyl absorptions appear at 2022 and 1937 cm−1 in the CH2Cl2 

spectrum. However, neither product was identifiable in the 1H and 31P{1H} spectra in 

CDCl3. The 31P{1H} NMR spectrum of the reaction mixture indicated a large number of 

products in the range −40 to 80 ppm, while a peak due to the desired product (δP 

−101.3) was conspicuously absent.  
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Scheme 2.19. Attempted synthesis of [5]X or [6]X using Templeton's route 

(MX = NaBF4, TlPF6). 

 

When the reaction was carried out using TlPF6, a more effective halide abstracting 

agent, no evidence for [6]+ was seen in the 1H or 31P{1H} NMR spectra, even after five 

days. The 1H NMR spectrum showed mainly unreacted 1, while the largest peak in the 
31P{1H} NMR spectrum was, interestingly, that of 2. Although based on the 1H NMR 

spectrum this represents a minor component of the overall mixture, its formation is 

consistent with the rapid deprotonation of transient [5]+ prior to rearrangement under 

these conditions. 

 

The lack of success in this reaction is an interesting contrast to Templeton's work. 

Although the reaction was only reported using tertiary phosphines, the reaction time and 

temperature required were found to increase with the steric bulk of the phosphine 
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(PMe2Ph eight hours room temperature, PPh3 two days 82°C, PCy3 four days 82°C). 

Therefore on steric grounds the reaction with PHPh2 would be expected to be facile, 

though on electronic grounds primary and secondary phosphines are less basic or 

nucleophilic than tertiary phosphines.253 

 

Following the work of Kreissl114,116 an alternative route to [6]BF4 was explored. A 

suspension of the methylidyne complex [W(≡CH)(CO)2(Tp*)] and NaBF4 in Et2O was 

treated with PClPh2 and allowed to stir for 24 hours. Instead of producing the expected 

purple colour of [6]BF4, a brown suspension was obtained, NMR analysis (CD3CN) of 

which unfortunately indicated that none of the desired η2-phosphinocarbene had been 

formed in the reaction (Scheme 2.20). 
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Scheme 2.20. Attempted synthesis of [6]BF4 using Kreissl's methodology. 

 

2.6.3 Computational studies  

Calculations performed by Dr Manab Sharma on [5]+ and [6]+ reconciled the 

irreversible isomerisation observed experimentally with the relative energies of the two 

isomers (ΔG5→6 −22.4 kJ/mol (gas phase)). Interrogation of an intramolecular proton-

transfer process found that this pathway was not accessible as it required traversing a 

transition state 171.5 kJ/mol higher in energy than [5]+ (Figure 2.8). It was thus 

concluded that the [5]+ → [6]+ isomerisation must involve intermolecular proton 

transfer via the solvent, rather than a concerted phosphorus to carbon proton transfer. 

The combined experimental and computational evidence suggests that protonation at 

phosphorus is rapid but reversible, whereas the subsequent direct protonation at carbon 

is slow but irreversible.  
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Figure 2.8. Calculated prototropic trajectory for the intramolecular 

isomerisation of [5]+ to [6]+ via the intermediate [W(=CHPPh2)(CO)2(Tp*)]. 

 

2.6.4 Reactivity of [W{η2-C(H)PPh2}(CO)2(Tp*)]BF4  

Attempted deprotonation of [W{η2-C(H)PPh2}(CO)2(Tp*)]BF4 

In Angelici's η2-thiocarbene salts a degree of reversibility in the protonation reaction 

was observed. Upon treatment with a diverse range of bases, partial reversion to 

[W(≡CSMe)(CO)2(Tp)] was observed (Scheme 2.15).244,254 These reactions also 

produced another isolable product [W{η2-CH(SMe)SMe}(CO)2(Tp)] (Scheme 2.21) in 

yields of 5 – 40%. Similar bis(thiolato)alkyl complexes were obtained from the 

reactions of the thiolatocarbenes [Mo{η2-C(SMe)Ar}(CO)2(Tp)]BF4 (Ar = C6H4OMe-4) 

with thiols.255 Reducing agents (Na[C10H8], Na[Fe(CO)2(Cp)], [N(Ph3P)2][Co(CO)4]) 

also give rise to these two products, suggesting that the bases used may in fact be acting 

as reducing agents. The mechanism of this rearrangement is unclear, but transfer of 

SMe− must be involved, which was attributed to the propensity of the SMe− group to act 

as a good leaving group.  
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Scheme 2.21. Angelici's reactions of [W{η2-C(H)SMe}(CO)2(Tp)]OTf with 

bases and reducing agents. 

 

Attempts to deprotonate [6]BF4 were less successful. Addition of NEt3 to a sample of 

[6]BF4 in CDCl3 resulted in no reaction over the course of four days, other than the 

gradual partial decomposition of [6]BF4 to give a number of species in the range δP 40 

to −20. No peak corresponding to 2 was seen in the 31P{1H} NMR spectrum (δP 32.0) 

(Scheme 2.22). In Angelici's case, although the yields were often low, deprotonation 

was seen with a large range of bases including amines, and the reaction times were only 

three hours. The complete absence of 2 in the spectra of this reaction indicates that 

[6]BF4 is less acidic than its thiocarbene counterpart. 
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Scheme 2.22. Attempted deprotonation of [6]BF4. 

 

Reaction with NaBH4 

In light of Angelici's work,245,254 the reactivity of [6]BF4 towards NaBH4 was explored 

with three possible products being envisaged (Scheme 2.23). The NaBH4 might act as a 

base, to produce 2 (or its BH3 adduct 4), which would seem unlikely as no evidence of 2 

was seen when NEt3 was used as the base. The NaBH4 may act as a hydride source, 

which would be expected to result in nucleophilic attack at the carbene to produce 

[W(η2-CH2PPh2)(CO)2(Tp*)], similar to nucleophilic addition reactions seen by 

Kreissl.256 The third option is addition of a PPh2 moiety to the carbene carbon to afford 

[W{η2-CH(PPh2)PPh2}(CO)2(Tp*)] as was seen for the thiocarbene.  
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A solution of [6]BF4 and NaBH4 in CD2Cl2 was monitored by 1H and 31P{1H} NMR 

spectroscopy, but no reaction was observed over the course of eight days (Scheme 

2.23). This again exemplifies the differing reactivities of the phosphino- and 

thiocarbene complexes. It is, however, not surprising that [W{η2-

CH(PPh2)PPh2}(CO)2(Tp*)] was not observed as the thiocarbene example implicates 

the SMe− leaving group, whereas PPh2
− is a much poorer leaving group. 
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Scheme 2.23. Attempted reaction of NaBH4 with [6]BF4. 

 

Reaction with [NnBu4]I  

Difficulties in the purification and crystallisation of [6]BF4 led us to investigate the 

reaction of [6]BF4 with iodide, in anticipation of iodide/carbonyl substitution resulting 

in the neutral complex [W{η2-C(H)PPh2}I(CO)(Tp*)], which could then afford the 

possibility of purification via chromatography. A solution of [6]BF4 and [NnBu4]I in 

CD2Cl2 was monitored by 1H and 31P{1H} NMR spectroscopy over the course of four 

days (Scheme 2.24). No reaction was observed except for the gradual partial 

decomposition of [6]BF4 to a number of species (δP 40 to −32), akin to what was seen 

for decomposition of [6]BF4 in the presence of NaBH4. This demonstrates that, despite 

the decreased retrodonation to the carbonyl ligands in the positively charged [6]BF4, the 

carbonyl ligands remain strongly bound to the metal centre.  
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Scheme 2.24. Attempted reaction of [6]BF4 with [NnBu4]I. 

 

2.7 Metallation reactions 

Phosphines are ubiquitous in coordination chemistry as ligands for transition metals. 

Stone and co-workers have extensively researched the coordination of carbyne 

complexes to transition metals and shown that complexation of the metal-carbon bond 

to one or two metals occurs readily.257-270 Complex 2 offers the opportunity to probe the 

donor properties of the phosphine versus the tungsten-carbon bond through reactions 

with metal complexes. 

 

2.7.1 Synthesis of [W{≡CPPh2RhCl2(Cp*)}(CO)2(Tp*)] 

Alkynylphosphines have been shown to react with the rhodium, iridium and ruthenium 

dimers [MCl2(Cp*)]2 to form P-coordinated species, an example of which is shown in 

Scheme 2.25.271 These species can undergo subsequent reactions with cis-

[Pt(C6F5)2(THF)2], via displacement of the labile THF ligands, to give bimetallic 

species with bridging chloride ligands or via coordination of the alkyne. The analogous 

reaction with [RhCl2(Cp*)]2 and 2 was investigated to see if this would yield the 

equivalent P-coordinated species. 
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Scheme 2.25. Forniés and Lalinde's coordination chemistry of 

alkynylphosphines. 

 

Reaction of 2 with half an equivalent of [RhCl2(Cp*)]2 in CH2Cl2 resulted in a dark red 

solution that showed two bands in the IR spectrum at 2008 and 1916 cm−1 (cf. 1982, 

1891 cm−1 in 2). After chromatographic purification the bimetallic species 

[W{≡CPPh2RhCl2(Cp*)}(CO)2(Tp*)] (7) was isolated as a red solid (Scheme 2.26). 

Electron donation to the Lewis-acidic rhodium is manifest in the shift of νCO to higher 

frequency with respect to the precursor 2. The 31P{1H} NMR spectrum shows only a 

very slight downfield shift upon coordination of the phosphine to δP 37.0 with coupling 

to rhodium (1JRhP 139.2 Hz) within the typical range.272 The carbyne resonance is 

shifted upfield compared to 2 and appears in the 13C{1H} NMR spectrum as a doublet 

straddled by 183W satellites at δC 273.0 (1JPC 28.7 Hz, 1JWC 208.2 Hz).  
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Scheme 2.26. Synthesis of [W{≡CPPh2RhCl2(Cp*)}(CO)2(Tp*)] (7). 
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The characterisation of 7 included an X-ray crystallographic study, the results of which 

are summarised in Figure 2.9. The geometry about rhodium is pseudo-octahedral and is 

comparable to that found in similar Rh(III) complexes.271,273 The sterically demanding 

Cp* ligand is oriented away from the tungsten centre so as to minimise interactions. 

The W1−C1 (1.824(4) Å) and C1−P1 (1.798(4) Å) distances are unchanged from those 

of 2 (1.827(2), 1.783(3) Å), but the W1−C1−P1 angle in 7 approaches linearity 

(175.8(2)°), in contrast to that of 2 (166.62(15)°). 
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Figure 2.9. Molecular structure of 7 in a crystal of 7·(CH2Cl2)2 (50% 

displacement ellipsoids, hydrogen atoms omitted). Selected bond lengths 

(Å) and angles (°): W1−C1 1.824(4), C1−P1 1.798(4), P1−Rh1 2.3198(10), 

W1−C1−P1 175.8(2), C1−P1−Rh1 119.23(13). 

 

The possibility of coordination of a third metal to the W≡C bond was explored in the 

reaction of 2 with one equivalent of [RhCl2(Cp*)]2. Although the reactions of carbyne 

complexes with the rhodium(I) species [Rh2(µ-CO)2(Cp*)2] have been 

described,258,262,269,274 the reactions of carbynes with trivalent rhodium reagents have 

not. Stirring a solution of 2 with one equivalent of [RhCl2(Cp*)]2 at room temperature 

for three days yielded only the bimetallic species 7. Subsequent heating at 110°C 

resulted in a number of IR bands in the carbonyl region. The 31P{1H} NMR spectrum 

showed that a number of phosphorus-containing species were present in the reaction 

mixture, but none of these peaks displayed 103Rh coupling. It was thus concluded that 
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the trimetallic species [W{η2-C(RhCl2Cp*)PPh2RhCl2(Cp*)}(CO)2(Tp*)] does not 

form, which is not surprising given the demanding steric requirements of these species. 
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Scheme 2.27. Attempted synthesis of the trimetallic complex 

[W{η2-C(RhCl2Cp*)PPh2RhCl2(Cp*)}(CO)2(Tp*)]. 

 

2.7.2 Reactions with [AuCl(SMe2)] 

The literature hosts numerous reports documenting addition of gold(I) reagents to 

tungsten carbyne complexes of the form [W(≡CR)(L)n] in which the metal-carbon triple 

bond is the reactive site.261,263,275-281 In these cases a W−C−Au metallacycle is formed, 

such as that seen in the reaction of [AuCl(PPh3)] with a tungsten tolylcarbyne, shown in 

Scheme 2.28.263 In this case, mono-addition of the [Au(PPh3)]+ moiety occurred, but 

solution NMR studies showed that the complex dissociates into 

[Au{W(≡CTol)(CO)2(Cp)}2]PF6 and [Au(PPh3)2]PF6. A particularly fascinating 

example of such chemistry is that of the tetrameric complex [W(CAu)(CO)2(Tp*)]4, 

which forms a remarkable C4Au4 ring in which each carbyne carbon is bound to two 

adjacent gold atoms and one {W(CO)2Tp*} moiety.211 
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Scheme 2.28. Addition of [Au(PPh3)]+ to the W≡C bond and subsequent 

dissociation of PPh3. 

 

In contrast to this, Weber and co-workers have reported the addition of [AuCl(CO)] to 

the phosphaalkenylcarbyne series [M{≡CP=C(NMe2)2}(CO)2(Tp*)] (M = Mo, W), in 

which two AuCl moieties add to the phosphorus atom to give 

[M{≡CP(AuCl)2C(NMe2)2}(CO)2(Tp*)] (Scheme 2.29).72 Intriguingly, in the case of 

the arsenic analogues, [AuCl(CO)] instead effects carbene abstraction, and subsequent 

trimerisation of the resultant 'M(CAs)(CO)2(Tp*)' fragment gives the fascinating cyclic 

triarsine structure [M(≡CAs)(CO)2(Tp*)]3. 
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Scheme 2.29. Weber's reactions of phosphaalkene- and arsaalkene-

substituted carbynes with [AuCl(CO)] (M = Mo, W). 
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In light of these contrasting reactivities, the reaction of the phosphinocarbyne 2 with 

gold(I) reagents was of interest. Upon treatment of 2 with one equivalent of 

[AuCl(SMe2)], infrared monitoring of the red THF solution showed replacement of the 

starting material (νCO 1981, 1893 cm−1) by new bands to higher frequency (2002, 1917 

cm−1). Both the shift in frequency and the intensity profile of the two absorptions were 

similar to those observed for the formation of 7.‡‡ Filtration through diatomaceous earth 

provided [W(≡CPPh2AuCl)(CO)2(Tp*)] (8) as a red solid in 81% yield (Scheme 2.30). 

The 31P{1H} NMR spectrum of 8 comprises a singlet with 183W satellites at δP 37.5, 

with 2JWP (139.3 Hz) being slightly smaller than the 2JWP values observed for tungsten 

phosphoniocarbynes (150 – 200 Hz).58,61,62,73 The carbyne resonance is observed as a 

doublet accompanied by 183W satellites at δC 263.3 (1JPC 22.1 Hz, 1JWC 199.9 Hz). The 

phosphorus-carbon coupling is significantly smaller than that of the starting material 

(74.5 Hz), reflecting the increased coordination about the phosphorus atom. 
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Scheme 2.30. Reaction of 2 with [AuCl(SMe2)] to provide 

[W(≡CPPh2AuCl)(CO)2(Tp*)] (8) and [W{η2-

C(AuCl)PPh2AuCl}(CO)2(Tp*)] (9). 

 

An X-ray crystallographic study of 8 corroborated ligation of AuCl to the phosphine 

(Figure 2.10). The W1−C1 bond length of 1.821(4) Å is consistent with a W≡C triple 
                                                
‡‡ Addition to the W≡C bond would result in an increased coordination number at tungsten, 
causing a variation in the intercarbonyl angle and thus also in the intensities of νs and νas. 
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bond,21 while the C1−P1 bond length of 1.773(4) Å is crystallographically identical to 

that of the precursor 2 (1.783(3) Å) and that observed in Weber's diauro compound 

[W{≡CP(AuCl)2C(NMe2)2}(CO)2(Tp*)] (1.782(11) Å).72 The Au1−P1 distance of 

2.2234(10) Å is consistent with a Au−P single bond282,283 and is slightly shorter than 

those observed in Weber's compound of 2.250(3) Å. The P1−Au1−Cl1 angle 

approaches linearity (177.17(5)°), which is in contrast to the P−Au−Cl angles observed 

in Weber's more sterically congested complexes of 168.06(11) and 169.61(11)°.  
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Figure 2.10. Molecular structure of 8 in a crystal (50% displacement 

ellipsoids, hydrogen atoms omitted). Selected bond lengths (Å) and angles 

(°): W1−C1 1.821(4), C1−P1 1.773(4), P1−Au1 2.2234(10), Au1−Cl1 

2.2724(13), W1−C1−P1 165.5(2), C1−P1−Au1 113.02(12), P1−Au1−Cl1 

177.17(5). 

 

Treatment of complex 2 with two equivalents of [AuCl(SMe2)] led to two sets of 

carbonyl absorptions; one attributable to 8 at 2002 and 1917 cm–1, accompanied by new 

bands at 2022 and 1944 cm–1. Addition of a further equivalent of [AuCl(SMe2)] led to a 

weakening of the νCO bands due to 8 and strengthening of the new νCO absorptions. 

Concentrating the reaction mixture caused precipitation of a pink powder which was 

isolated and found to be the trimetallic complex [W{η2-

C(AuCl)PPh2AuCl}(CO)2(Tp*)] (9), the result of AuCl addition across the W≡C triple 

bond, as shown in Scheme 2.30. Complex 9 also forms from addition of [AuCl(SMe2)] 

to the mono-aurated species 8. Notably, no evidence was obtained for the formation of 
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the complex [W{η2-C(AuCl)PPh2}(CO)2(Tp*)], suggesting that the phosphine, rather 

than the W≡C bond, is the stronger donor. 

 

The ESI(+) mass spectrum (MeCN) clearly demonstrated the presence of two AuCl 

moieties. A shift of the carbonyl absorptions to higher frequency is observed for 9 

compared to that of 8, reflecting the expected decrease in electron density at tungsten 

that accompanies complexation of AuCl to the carbyne. The intensity profile of the νCO 

absorption bands suggests an opening of the intercarbonyl angle relative to 8, consistent 

with what is observed in the solid state structure. Complex 9 appears in the 31P{1H} 

NMR spectrum as a singlet that displays 183W satellites at δP 53.6, with 2JWP 84.3 Hz 

significantly smaller than that observed for 8 (2JWP 139.3 Hz), in accordance with the 

decreased s-character along the W−C−P spine. In the 13C{1H} NMR spectrum the 

carbyne resonance is shifted downfield to δC 253.6. The modification of the carbyne 

moiety is evident in the significant decrease of both the phosphorus-carbon and 

tungsten-carbon coupling constants (1JPC 1.5 Hz, 1JWC 99.6 Hz), reflecting the higher 

degree of substitution along the WCP spine. The magnitude of the tungsten-carbon 

coupling is half that typically seen in carbyne complexes (e.g 8 1JWC 199.9 Hz).  

 

The characterisation of complex 9 included an X-ray crystallographic study, the results 

of which are shown in Figure 2.11. The geometry about the W1−Au2−C1 metallacycle 

is similar to that observed in related compounds.260,275-277,284 The W1−C1 bond length of 

1.897(4) Å is significantly elongated compared to that in 8 (1.821(4) Å) and falls within 

the range of both WC double and triple bonds, consistent with a dimetallacyclopropene 

description.285 Stone has observed semi-bridging carbynes, such as [Au{W(µ-

CTol)(CO)2(η5-C2B9H9Me2)}(PPh3)], in which the CTol moiety asymmetrically bridges 

the tungsten-gold bond (W−C 1.88(3), Au−C 2.19(3) Å).267 Although the disparity in 9 

is not as great as in Stone's example, the carbyne ligand is asymmetrically disposed 

along the W−Au bond (W1−C1 1.897(4), Au2−C1 2.031(4) Å). Coordination of AuCl 

to the W≡C bond would appear to reduce the usually strong trans influence of the 

carbyne ligand such that the three W−N bonds are of comparable lengths (2.208(4), 

2.189(4), 2.207(4) Å).  
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Figure 2.11. Molecular structure of 9 in a crystal (50% displacement 

ellipsoids, hydrogen atoms omitted). Selected bond lengths (Å) and angles 

(°): W1−C1 1.897(4), W1−Au2 2.8011(3), C1−P1 1.802(4), C1−Au2 

2.031(4), P1−Au1 2.2278(12), W1−N11 2.208(4), W1−N21 2.189(4), 

W1−N31 2.207(4), W1−C1−P1 145.1(3), C1−P1−Au1 110.50(15), 

C1−Au2−Cl2 167.42(14), W1−C1−Au2 90.90(18), C1−W1−Au2 46.47(13), 

P1−Au1−Cl1 175.66(6). 

 

2.8 Reactions with chalcogens 

There are two pathways in the literature for addition of chalcogens to carbyne 

complexes. One equivalent of chalcogen may add to the M≡C bond, generating an η2-

chalcoacyl complex. To this effect, Roper has obtained chalcoaroyl complexes by the 

reaction of elemental chalcogens with the carbyne complex [Os(≡CTol)Cl(CO)(PPh3)2], 

or by addition of HE− to the chlorocarbene complex [Os(=CClTol)Cl2(CO)(PPh3)2] 

(Scheme 2.31).35,286 When the nucleophile is HO− the η2-OCR complex is not seen; 

instead the complex rearranges to give the dicarbonyl species [Os(Tol)Cl(CO)2(PPh3)2]. 
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Scheme 2.31. Roper's preparation of chalcoaroyl complexes (R = Tol, E = 

O, S, Se, Te). 

 

Alternatively, addition of two equivalents of chalcogen may provide the corresponding 

dichalcocarboxylate complex. Stone has shown that addition of elemental sulfur or 

selenium to [M(≡CR)(L)2(Cp)] gave the corresponding dichalcocarboxylate species 

[M(κ2-E2CR)(L)2(Cp)] (Scheme 2.32).287 
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Scheme 2.32. Stone's synthesis of dichalcocarboxylate complexes (E = S, M 

= Mo, R = CH2
tBu, L = P(OMe)3 or CO; M = W, R = Tol, L = CO; E = Se, 

M = Mo, R = CH2
tBu, L = CO; M = W, R = Tol, L = CO). 

 

With phosphinocarbyne complexes chalcogen addition to the phosphine offers an 

alternative course, as phosphine chalcogenides are ubiquitous in synthetic chemistry 

(Scheme 2.33). The reactions of 2 with sulfur and selenium were undertaken to probe 

these possible reactivities. 
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Scheme 2.33. Addition of chalcogens to phosphines typically affords 

phosphine chalcogenides (E = O, S, Se). 
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2.8.1 Reactions with sulfur 

A solution of 2 in THF was stirred with one equivalent of elemental sulfur (1/8 S8). After 

16 hours the IR spectrum revealed two pairs of CO absorptions at 2003, 1917 and 1996, 

1908 cm−1. Cryostatic chromatography (−30°C) provided a purple band (minor product) 

and an orange band as the major product. 

 

The orange fraction gave rise to two CO absorption bands in the infrared spectrum at 

2004 and 1916 cm−1 in CH2Cl2. The mass spectra and microanalytical data supported 

addition of one sulfur atom. The 31P{1H} NMR spectrum showed a singlet with 183W 

satellites at δP 41.1, with coupling of 2JWP 150.9 Hz suggestive of a four-coordinate 

phosphorus, supporting formulation of the major product as the phosphine sulfide 

complex [W{≡CP(=S)Ph2}(CO)2(Tp*)] (10) (Scheme 2.34). The carbyne resonance 

appears in the 13C{1H} NMR spectrum at δC 270.1 with a very small 1JPC value (4.9 Hz) 

in accordance with a carbyne complex containing a four-coordinate phosphorus, while 

the large 1JWC coupling seen for the carbyne resonance (198.4 Hz) is consistent with 

retention of a W≡C triple bond. 
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Scheme 2.34. Reaction of 2 with sulfur to provide 

[W{≡CP(=S)Ph2}(CO)2(Tp*)] (10) and [W{η2-SCP(=S)Ph2}(CO)2(Tp*)] 

(11). 

 

An X-ray crystal structure determination of 10 served to corroborate the formulation 

proposed on the basis of spectroscopic data (Figure 2.12). The conversion of 2 to 10 

does not significantly affect the W≡C bond length (1.829(4) cf. 1.827(2) Å), though the 

W1−C1−P1 spine is further distorted from linearity (160.5(3) cf. 166.62(15)°). The 

angles about P1 are close to tetrahedral (104.35(19) – 113.97(15)°), the largest of these 
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being between the sulfur and carbyne carbon atoms. In spite of the increased 

coordination number at phosphorus, the C1−P1 bond (1.785(4) Å) does not differ 

significantly from that found for 2.  

 

 
Figure 2.12. Molecular structure of 10 in a crystal (50% displacement 

ellipsoids, hydrogen atoms omitted). Selected bond lengths (Å) and angles 

(°): W1−C1 1.829(4), C1−P1 1.785(4), P1−S1 1.9568(16), W1−C1−P1 

160.5(3), C1−P1−S1 113.97(15). 

 

IR spectroscopy of the purple fraction revealed two carbonyl bands at 1995 and 1907 

cm−1 in CH2Cl2. The ESI(+) mass spectrum was consistent with the addition of two 

sulfur atoms. The 1H NMR spectrum showed the typical 2:1 ratio of Tp* peaks and the 

presence of the PPh2 group, while the 31P{1H} NMR spectrum consisted of a single 

peak at δP 52.9 without any discernable 183W satellites. The absence of tungsten-

phosphorus coupling led us to initially suspect the compound might be the 

dithiocarboxylate complex [W(κ2-S2CPPh2)(CO)2(Tp*)], although 

phosphinodithiocarboxylate complexes remain rare.288-290 The 13C{1H} NMR spectrum 

contained a doublet straddled by 183W satellites at δC 250.1 (1JPC 42.0 Hz, JWC 42.8 Hz), 

which was assigned to the C−PPh2 carbon because of the diagnostic phosphorus-carbon 

coupling. The chemical shift, while slightly downfield from what is typically seen for 

dithiocarboxylates, could be consistent with either a dithiocarboxylate or a thioacyl 

group.287,291-293 Mayr and co-workers have reported the complex [W(κ2-S2CNEt2)(η2-

SCNEt2)(η2-SCHPh)(CO)] which contains both a dithiocarbamate and a thiocarbamoyl 
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group.292 In the 13C{1H} NMR spectrum (CDCl3) of this compound the η2-SCNEt2 

carbon appears at δC 256.9 with 183W satellites (1JWC 111 Hz) while the κ2-S2CNEt2 

carbon appears at δC 214.6 with no visible 183W coupling. Since the value of JWC 

observed for 11 falls between those for the two ligand environments in Mayr's 

compound, this data cannot be used to unequivocally define the nature of the product. 

 

Fortunately, crystals of 11 were acquired, an X-ray crystallographic study of which 

revealed the structure of the minor product to be the thioacyl complex [W{η2-

SCP(=S)Ph2}(CO)2(Tp*)] (11), as shown in Figure 2.13. The W1−C1 bond (2.003(13) 

Å) is significantly elongated compared to that in 2 (1.827(2) Å), reflecting the decrease 

in bond order, while the C1−P1 bond length is slightly shorter (1.770(14) cf. 1.783(3) 

Å). The geometry about the W1−C1−S1 metallacycle is similar to that seen for [W(κ2-

S2CNEt2)(η2-SCNEt2)(η2-SCHPh)(CO)].292 The W1−C1−P1 angle is considerably 

opened (145.4(7)°) from the ideal 120° expected for an sp2 carbon as a result of the 

constraints of the metallacycle. As seen for 9, the three W−N bond lengths are 

equivalent (2.206(9), 2.203(9), 2.218(10) Å), indicating the thioacyl ligand has a 

comparable trans influence to that of a CO ligand. 
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Figure 2.13. Molecular structure of 11 in a crystal (50% displacement 

ellipsoids, hydrogen atoms omitted). Selected bond lengths (Å) and angles 

(°): W1−C1 2.003(13), W1−S1 2.561(3), C1−S1 1.707(14), C1−P1 

1.770(14), P1−S2 1.970(5), W1−N11 2.206(9), W1−N21 2.203(9), 

W1−N31 2.218(10), W1−C1−P1 145.4(7), W1−C1−S1 86.9(6), C1−W1−S1 

41.7(4), W1−S1−C1 51.4(4), C1−P1−S2 113.2(4). 
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Two limiting valence bond descriptions may be invoked to explain the bonding within 

the WCS ring and the associated geometrical parameters; an η2-C,S-thioacyl ligand or a 

metallathiirene, each providing three valence electrons to the metal centre (neutral 

formalism). The former is supported by the comparatively short C1−S1 bond length 

(1.707(14) Å) consistent with some degree of multiple bond character (cf. 1.708(2) Å in 

Ph3PCHC(=S)tBu294 and 1.654, 1.687 Å in tBuC(=S)C(=S)NMe2).295 Conversely, as 

noted above, the W−C bond clearly also retains a degree of multiple bonding in support 

of the tungstathiirene description. Structural data for mononuclear transition metal 

thioacyls are somewhat rare, being limited to those for the complexes 

[Os(SCR)(O2CCF3)(CO)(PPh3)2] (R = Tol,296,297 CH=CHMe,298 C6H4X-2, X = Cl, 

Br299), [Ru{SCC(CCPh)=CHPh}Cl(CO)(PPh3)2],300 [Ru(SCPh)Cl(CS)(PPh3)2],301 

[Co(SCCHtBu2)(PMe3)(Cp)]BF4,302 and [Zr(SCCHC5H7Me4)Cl(Cp)2]303 in addition to a 

small number of metallacyclic examples.304,305 Thus there are no directly comparable 

data for group 6 metals, though the C–S bond of 11 falls within the range observed for 

the more numerous group 8 examples (1.636 – 1.76 Å). 

 

As seen for 2, rotational isomers were observed in the infrared spectra of 10. In the solid 

state (Nujol) spectrum, bands were observed at 1996 (s), 1924 (s) and 1909 (s) cm–1
, 

while the spectrum in THF contained two pairs of absorptions (2004 (s), 1997 (sh), 

1918 (s), 1908 (sh) cm−1) (Figure 2.14). In the case of 11, three absorptions were seen in 

the solid state spectrum (1992 (s), 1902 (s), 1892 (s) cm−1), but as only two bands were 

present in solution (THF, CH2Cl2) the presence of the extra band might be attributed to 

solid state effects. 

 



 Chapter 2: Tertiary phosphinocarbyne complexes 85 

 

 

!

CH2Cl2  

Nujol 
!

THF 
!

 
Figure 2.14. Carbonyl absorption region of the infrared spectra for 10 in 

different media. 

 

Calculations confirmed that three rotational isomers of 10 exist with free energies 

within 4.1 kJ/mol of each other, and three for 11 within 2.2 kJ/mol. The coexistence of 

rotamers in solution would therefore seem entirely plausible. Rotational isomers were 

not observed in the NMR spectra, consistent with the low calculated barriers to rotation. 

The calculated geometry that corresponds most closely to the solid state structure is that 

in which the SPWC(O) dihedral angle is 34° (cf. 17.6° in the crystal structure). This 

rotamer lies 2.3 kJ/mol higher in energy than the ground state structure in which the 

P=S bond bisects the intercarbonyl angle, an energy difference which would be easily 

overcome by crystal packing forces. 
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Figure 2.15. Rotational conformers and relative energies of 10 (θ = 250 – 

25° generated by symmetry). 

 

Interestingly, this reaction provides a mixture of products, the amounts of which are 

dependent on the solvent and stoichiometry of the reactants, as outlined in Table 2.1. 

The highest yields of 11 were obtained when toluene was used as the solvent. 

Surprisingly, addition of an excess of sulfur actually favoured the mono-addition 

product 10 rather than 11. 
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Table 2.1. Addition of sulfur to 2. 

Solvent Equivalents 
of S8 

Conditionsa Yield 10 
(%) 

Yield 11 
(%) 

THF ~ 1/8 - 81b 9b 

Toluene ~ 1/8 - 80 16 

THF ~ 1/8 
Slow dropwise addition of 

S in THF 86 7 

THF ~ 1/8 
Fast addition of S in THF 

at −78°C 98 0.6 

THF 5/8 - 90 6 

CH2Cl2 10/8 - 98 0.5 
Yields quoted represent the % yield as estimated by 31P{1H} NMR spectroscopy.  
a Unless stated otherwise, 2 and sulfur were combined as solids then dissolved in the 
specified solvent. b Yields quoted represent the isolated % yield.  
 

Addition of a second equivalent of sulfur to 10 did not generate 11, and even after six 

days at 110°C no evidence of 11 was seen in the NMR or IR spectra. This reveals that 

formation of 11 must proceed via initial competitive sulfur addition to the W≡C bond, 

followed by addition to the phosphine (Scheme 2.35). Once phosphine sulfide 

formation has occurred the W≡C bond is deactivated towards electrophilic attack, hence 

11 cannot be formed from 10. Conversely, addition of sulfur to the W≡C linkage does 

not deactivate the phosphorus lone pair. The complete mechanism for formation of 11 is 

anticipated to be much more complex that than depicted below, as reaction mechanisms 

involving elemental sulfur are complicated by the cyclic Sn allotropes,306,307 yet it does 

provide an understanding of the order of addition in the reaction. The possibility of 

employing a single sulfur atom delivery agent (propylene sulfide) is discussed below. 
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Scheme 2.35. Order of addition of sulfur to 2 to form 10 and 11. 

 

In order to probe the hypothesis that oxidation of the phosphorus deactivates the W≡C 

bond, reactions of [W(≡CPRPh2)(CO)2(Tp*)] (R = AuCl, BH3, [Me]I) with sulfur were 

explored. In all cases no reaction occurred, even after extended reaction times (six days) 

(Scheme 2.36). This implies that, as in the case of the phosphine sulfide, these four-

coordinate phosphorus moieties deactivate the W≡C moiety to electrophilic addition. In 

contrast, in the reactions of 2 with [AuCl(SMe2)] the bis-addition product 9 could be 

formed from either 2 or 8 (Scheme 2.30). 
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Scheme 2.36. Attempted reactions of [W(≡CPRPh2)(CO)2(Tp*)] with sulfur 

(R = AuCl, BH3, [Me]I, S). 

 

In all of the reactions of 2 with elemental sulfur, no evidence of a dithiocarboxylate 

complex [W(κ2-S2CPPh2)(CO)2(Tp*)] or [W{κ2-S2CP(=S)Ph2}(CO)2(Tp*)] was seen. 

Reactions of carbyne complexes with the single sulfur atom sources propylene sulfide 

and cyclohexene sulfide have been shown to provide thioacyl255,308 and 

dithiocarboxylate255,308,309 complexes. The reaction of 2 with propylene sulfide was 
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carried out and some formation of 10 was observed, but no evidence of 11, thioacyl or 

dithiocarboxylate or complexes was seen in the IR or NMR spectra and the reaction 

was, on the whole, not very successful, in contrast to those with elemental sulfur. 

 

2.8.2 Reaction with selenium 

In light of the interesting results obtained from the reaction of 2 with sulfur, the 

analogous reaction with selenium was investigated. A solution of 2 in CH2Cl2 was 

stirred with elemental selenium overnight. After chromatography, the phosphine 

selenide [W{≡CP(=Se)Ph2}(CO)2(Tp*)] (12) was obtained in 92% yield as an orange 

powder (Scheme 2.37). Although selenoacyl complexes have been reported to arise 

from the reactions of group 6 carbyne complexes with isoselenocyanates,310 formation 

of 12 was very clean and no evidence of a selenoacyl or a diselenocarboxylate was seen 

in the NMR or IR spectra. Even when the reaction was carried out with excess selenium 

at 110°C only 12 was produced.  
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Scheme 2.37. Synthesis of [W{≡CP(=Se)Ph2}(CO)2(Tp*)] (12). 

 

The 1H and 13C{1H} NMR spectra of 12 are largely unremarkable. The carbyne 

resonance occurs within the typical range at δC 265.2 (1JPC 13.6 Hz, 1JWC 201.4 Hz). 

The small phosphorus-carbon coupling constant is indicative of the four-coordinate 

nature of the phosphorus and the large tungsten-carbon coupling constant is 

characteristic of a tungsten-carbon triple bond. The 31P{1H} NMR chemical shift is 

unchanged (δP 31.9 cf. 32.0 for 2) but the presence of 77Se satellites (I = 1/2, 7.6% 

natural abundance, 1JSeP 711.8 Hz) is evidence of the formation of 12. The observed 

selenium-phosphorus coupling is comparable to that in the alkynylphosphine selenide 

P(=Se)(C≡CPh)tBuPh of 1JSeP 742.7 Hz (δP 34.3).311  

 

Values of 1JSeP have been correlated to the basicity of phosphines in the literature,312 

and applying the same formula here gives a calculated pKB value of 8.7 for the 

phosphine 2. This is similar to what is seen for PMe2Ph (pKB 8.4 calculated cf. 7.50 
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experimental) and P(C6H4OMe-4)3 (pKB 8.6 calc. cf. 9.43 exp.), but lower than that of 

PPh3 (pKB 11.3 calc. cf. 11.27 exp.).312 This suggests electron donation from the 

carbyne moiety results in increased electron density at phosphorus compared to PPh3, 

unsurprising given the marked π-acidity of carbyne ligands, which translates to the 

calculated increase in basicity. The high basicity at phosphorus is consistent with the 

observed (initial) formation of the phosphonium salt [5]+ upon protonation of 2, 

although in this case proton migration occurs due to the enhanced stability of the 

η2-phosphinocarbene [6]+. 
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Figure 2.16. Molecular structure of 12 in a crystal of 12·CHCl3 (50% 

displacement ellipsoids, hydrogen atoms omitted). Selected bond lengths 

(Å) and angles (°): W1−C1 1.823(4), C1−P1 1.784(4), P1−Se1 2.1120(11), 

W1−C1−P1 164.6(2), C1−P1−Se1 114.25(12). 

 

The crystal structure of 12 (Figure 2.16) reveals that the geometry about P1 is pseudo-

tetrahedral, with angles about P1 ranging from 103.69(17)° to 114.25(12)°. The W1−C1 

bond length of 1.823(4) Å is consistent with a triple bond, and the remaining structural 

parameters show little deviation from those observed for 2. 

 

2.8.3 Synthesis of [W{≡CP(=O)Ph2}(CO)2(Tp*)] 

In contrast to the rapid reactivity of the phosphinocarbyne [W(≡CPPh2)(CO)2(Tp*)] 

towards sulfur and selenium, complex 2 is comparatively air-stable. Stirring a CH2Cl2 

solution of 2 in air for 14 days resulted in only 43% conversion to the phosphine oxide 

[W{≡CP(=O)Ph2}(CO)2(Tp*)] (13) (Scheme 2.38). However, heating an aerobic 
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solution of 2 at 110°C resulted in complete consumption of 2 within eight hours, and 

NMR spectroscopy indicated 13 to be the major product of this reaction (ca. 70% by 
31P{1H} NMR spectroscopy).  
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Scheme 2.38. Synthesis of [W{≡CP(=O)Ph2}(CO)2(Tp*)] (13). 

 

Complex 13 appears in the 31P{1H} NMR spectrum as a singlet accompanied by 183W 

satellites at δP 19.9 (2JWP 145.2 Hz). The shift of this peak to higher field when 

compared to the phosphine 2 is somewhat puzzling, as oxidation of tertiary phosphines 

typically leads to downfield shifts in the 31P NMR spectra.313 However, all other 

spectroscopic data support the formulation of 13 as the oxide through comparison with 

the precursor (2), sulfide (10) and selenide (12) complexes (Table 2.2). As can be seen, 

the carbyne resonance shifts upfield in the progression from the oxide to sulfide to 

selenide species. 

 

Table 2.2. Selected spectroscopic data for phosphinocarbyne-chalcogenide 

complexes. 

Complex 
δP 

(2JWP 
(Hz) 

δC WC 
(1JPC, 2JWC 

(Hz)) 

νCO THF 
(cm−1) 

νCO Nujol 
(cm−1) 

[W(≡CPPh2)(CO)2(Tp*)] 
(2) 

32.0 
(69.0) 

292.6  
(74.5, 187.9) 1981, 1893 2001, 1974, 

1912, 1883 

[W{≡CP(=O)Ph2}(CO)2(Tp*)] 
(13) 

19.9 
(145.2) 

281.2  
(16.1, 190.6) 

2001, 1975, 
1911 

2002, 1987, 
1913 

[W{≡CP(=S)Ph2}(CO)2(Tp*)] 
(10) 

41.0 
(152.5) 

270.1  
(4.9, 198.4) 

2004, 1997, 
1918, 1908 

1996, 1924, 
1909 

[W{≡CP(=Se)Ph2}(CO)2(Tp*)] 
(12) 

31.9 
(152.6) 

265.2  
(13.6, 201.4) 

2004, 1997, 
1918, 1907 2002, 1912 

[W{η2-CSP(=S)Ph2}(CO)2(Tp*)] 
(11) 

52.9  
(-) 

250.1  
(42.0, 42.8) 1993, 1908 1992, 1902, 

1892 
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The infrared spectrum of 13 in THF is very similar to that of the sulfide and selenide 

complexes 10 and 12 (Table 2.2). Very strong νCO bands 2001 and 1911 cm–1 are 

accompanied by a medium absorption at 1975 cm–1. The P=O stretching frequency was 

not unambiguously identifiable in the infrared spectra. Unfortunately, satisfactory 

microanalytical data were not obtained for 13, but the low and high resolution ESI(+) 

mass spectra confirmed the formulation of 13 as [2 + O] through the observation of [M 

+ H]+, [M + Na]+ and [M + K]+ peaks. 

 

Given the counter-intuitive upfield shift in the 31P{1H} NMR spectrum upon oxidation 

of 2, proof of the identity of 13 by unequivocal synthesis was explored. Platinum group 

metal complexes have been used to catalyse the oxidation of phosphines;314 however, 

treating 2 with [Ni(COD)2] and exposure of the solution to air did not yield 13, perhaps 

due to the use of air rather than purified oxygen gas for the reaction. A more common 

method in the literature is the stoichiometric oxidation of phosphines with hydrogen 

peroxide.315,316 Treating 2 with aqueous H2O2 led to the formation of 13 in 

approximately 80% yield, based on the 31P{1H} NMR spectrum (Scheme 2.39). Only a 

marginal improvement in purity was obtained by column chromatography, and efforts 

to crystallise 13 were fruitless.  

 

These two successful protocols involve reactions in air in which moisture is present, 

raising the possibility that hydration of the P=O bond might account for the anomalous 
31P NMR shift. An anaerobic and anhydrous synthesis of 13 was performed in one step 

from 1 via the reaction of the lithiocarbyne with P(=O)ClPh2. NMR spectroscopy 

indicated formation of 13 as the major product (Scheme 2.39), and no change in the 

NMR spectrum was observed under these anhydrous conditions. 
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Scheme 2.39. Alternative synthetic routes to 13. 

 

Throughout this work a number of methods were developed to synthesise 13, and 

spectroscopic data combined with unequivocal synthesis confirm that the isolated 

product is the phosphine oxide, despite the anomalous 31P chemical shift. The alkynyl 

phosphine P(C≡CPh)Ph2 appears in the 31P NMR at δP –33.5,317 whereas the resonance 

for the oxide P(=O)(C≡CPh)Ph2 occurs downfield of this at δP 8.3.318 The carbyne 

moiety in 13 resembles an alkyne electronically, so the upfield shift must result from 

the presence of the tungsten, although the origin of this phenomenon is not fully 

understood. However, in the case of the phosphine sulfide and selenide carbynes the 

chemical shifts are unremarkable. 

 

2.8.4 Synthesis of [W{η2-C(AuCl)P(=S)Ph2}(CO)2(Tp*)] 

Although the gold complex 8 did not react with sulfur to give [W(η2-

CSPPh2AuCl)(CO)2(Tp*)], 8 did react with a second equivalent of [AuCl(SMe2)] to 

afford the di-aurated complex 9. This suggests that, despite the observed deactivation of 

the W≡C bond upon quaternisation of the phosphine, in some cases addition to the 

W≡C bond can take place. Curiosity led us to investigate this reaction but with reversal 

of the order of reagent addition. 

 

A solution of 10 and one equivalent of [AuCl(L)] (L = SMe2, THT) in CH2Cl2 was 

stirred for two hours, resulting in a red solution and a golden precipitate. The infrared 

spectrum indicated a mixture of starting material (νCO 2004, 1916 cm–1) and a new 

compound (νCO 2031, 1952 cm–1). Extending the reaction time did not lead to any 
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change in the infrared spectrum, so a further half equivalent of [AuCl(L)] was added, 

leading to almost complete conversion, as indicated by infrared spectroscopy. After 

chromatography, [W{η2-C(AuCl)P(=S)Ph2}(CO)2(Tp*)] (14) was obtained as an orange 

powder in 57% yield (Scheme 2.40). 
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Scheme 2.40. Synthesis of [W{η2-C(AuCl)P(=S)Ph2}(CO)2(Tp*)] (14) (L = 

SMe2, THT). 

 

Complex 14 appears in the 31P{1H} NMR spectrum as a broad singlet at δP 52.3 with no 

discernable 183W satellites. Broad peaks are also seen in the 13C{1H} NMR spectrum for 

the carbyne, carbonyl and C1,4-phenyl peaks. This broadening in the NMR spectra is not 

due to dissociation of the AuCl moiety, since in a 31P{1H} NMR spectrum containing 

both 10 and 14, the resonance for 10 is a sharp singlet with visible tungsten coupling, 

whereas the resonance for 14 is a broad singlet. If the AuCl group were dissociating on 

the NMR timescale we would expect to see broadening of both peaks. Hence this is 

most likely due to restricted rotation about the P−C bond, although this was not 

apparent in the NMR spectra for 9.  

 

The carbyne resonance is observed at δC 262.4, intermediate between 10 (δC 270.1) and 

9 (δC 253.6). No coupling to either tungsten or phosphorus was resolvable due to the 
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broad nature of the peak, although the analogous 1JPC coupling in 9 is only 1.5 Hz so the 

absence of discernable coupling here may simply reflect its small magnitude. The 1H 

and 13C{1H} NMR spectra display the typical 2:1 ratio of Tp* peaks, consistent with a 

time-averaged mirror plane through the W{η2-C(AuCl)P(=S)} functionality.  

 

Crystallographic grade crystals of 14 were obtained from chloroform/nhexane and the 

results of a crystallographic study are summarised in Figure 2.17. The geometry about 

the metallacyclopropene ring is similar to that seen in 9. As expected, the W1−C1 bond 

length (1.907(10) Å) is significantly elongated compared to that of 10 (1.829(4) Å). A 

slight lengthening of the P1−S1 bond is observed compared to 10 (1.992(5) cf. 

1.9568(16) Å), attributable to the higher degree of substitution along the W−C−P spine. 

As is inferred from the NMR spectra, a (non-crystallographic) mirror plane is present 

through the W{η2-C(AuCl)P(=S)}, bisecting the W(CO)2, PPh2 and Tp* moieties. A 

slight bending out of this mirror plane is seen for the phosphine sulfide, with a 

W1−C1−P1−S1 torsion angle of 8.43°. 

 

 
Figure 2.17. Molecular structure of 14 in a crystal (50% displacement 

ellipsoids, hydrogen atoms omitted). Selected bond lengths (Å) and angles 

(°): W1−C1 1.907(10), W1−Au1 2.7940(5), C1−P1 1.788(10), C1−Au1 

2.043(10), P1−S1 1.992(5), W1−C1−P1 146.6(6), C1−P1−S1 113.3(3), 

C1−Au1−Cl1 166.8(3), W1−C1−Au1 90.0(4), C1−W1−Au1 47.0(3), 

W1−Au1−C1 43.0(3). 
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The formation of 14 demonstrates that, although the nucleophilicity of the W≡C bond 

decreases upon quaternisation of the phosphorus centre, with an appropriate choice of 

reagent reaction at this site can still occur. This offers the possibility of targeted 

reactivity at the W≡C bond through the use of a protecting group to inhibit reactivity at 

the phosphine, such as the borane adduct 4, which might then be removed after addition 

of the desired electrophile to the W≡C bond.  

 

2.9 Frontier orbitals of [W(≡CPPh2)(CO)2(Tp*)] 

In order to better understand the reactivity features of 2, molecular orbital calculations 

were performed by Dr Manab Sharma.§§ The HOMO is located on the W(CO)2 

fragment, although no experimental evidence of reactivity at the W(CO)2 moiety has 

been observed. The salient orbitals for electrophilic addition are the HOMO–1 and 

HOMO–2 orbitals, depicted in Figure 2.18. As can be seen the HOMO–1 orbital resides 

on the phosphine lone pair and the W≡C and W−C(O) bonds. The HOMO–2 orbital is 

that perpendicular to HOMO–1 with respect to the W≡C and W−C(O) bonds. Evidently 

the HOMO−1 comprises a significant phosphorus component, thus reconciling the 

experimentally observed electrophilic attack at phosphorus in 2. This is in contrast to 

aminocarbynes, which typically undergo addition of electrophiles at the carbyne carbon 

atom. 

 

!!!! ! !(a) HOMO–1 (b) HOMO–2  
Figure 2.18. (a) HOMO–1 and (b) HOMO–2 calculated orbitals.  

 

The energy difference between these two orbitals is 0.5576 eV (HOMO–1 = −4.8343 

eV, HOMO–2 = −5.3919 eV); therefore it is conceivable that either may be involved in 

reactions with electrophiles. Experimentally, the phosphine appears to be the primary 

                                                
§§ Specific details of computational studies performed by Dr Sharma, whose expertise is 
gratefully acknowledged, may be found in the Appendix. 
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site for electrophilic addition, i.e. the HOMO–1 orbital. As this orbital is based on both 

the phosphine and the W≡C bond, we would expect little electronic preference for one 

site over the other in a frontier orbital-controlled reaction. Furthermore, the Mulliken 

charges suggest that charge-controlled electrophilic addition would in fact occur at 

carbon (C −0.27, P +0.31, W +0.36). In contrast to these findings, a strong preference 

for the phosphine is observed experimentally, suggesting that the reactivity is most 

likely dictated by steric factors. The bulky Tp* ligand, in conjunction with the phenyl 

groups of the PPh2 moiety, shield the W≡C bond from electrophiles, whilst the lone pair 

of electrons on phosphorus is exposed.  

 

The LUMO (−2.0895 eV) and LUMO+1 (−1.7291 eV) orbitals depicted in Figure 2.19 

show that nucleophilic attack would be expected to occur at the carbonyl ligands or at 

the carbyne carbon atom. This has not been investigated experimentally, but it is worth 

noting that Templeton has observed the kinetic product of nucleophilic attack by 

Li[BHEt3] on [W(≡CPPh3)(CO)2(Tp*)]PF6 to indeed be the result of attack at a 

carbonyl co-ligand, rather than the carbyne carbon, although the carbyne is where the 

nucleophile ultimately transfers.64  

 ! !!!!!!!! !
!

! !!!!!!!!!!! !

(a) HOMO–1 (b) HOMO–2 

(a) LUMO (b) LUMO+1 

 
Figure 2.19. (a) LUMO and (b) LUMO+1 calculated orbitals. 
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2.10 Summary 

The synthesis of the first tungsten phosphinocarbyne complex [W(≡CPPh2)(CO)2(Tp*)] 

(2) has been accomplished in a one pot protocol commencing with the bromocarbyne 

complex [W(≡CBr)(CO)2(Tp*)]. This conversion can be achieved by lithium-halogen 

exchange and subsequent nucleophilic substitution of a chlorophosphine, or by 

palladium-catalysed phosphination (Scheme 2.41). Both methods represent viable, 

potentially generalisable synthetic strategies towards a variety of phosphorus-

functionalised carbyne complexes, to be discussed in subsequent Chapters.  

 

W C

Tp*

OC
OC

P

Ph
Ph

W C

Tp*

OC
OC

Br

PHPh2
NEt3

[Pd(PPh3)4] (cat.)

21

nBuLi
PClPh2

 
Scheme 2.41. Synthesis of a phosphinocarbyne complex via lithium-

halogen exchange and via palladium-mediated P−C bond formation. 

 

Reactions of 2 with electrophiles have shown that, despite calculations showing that the 

HOMO–1 comprises both the W≡C bond and the phosphine lone pair, the phosphine is 

almost invariably the preferred site for electrophilic attack (Scheme 2.42). With selected 

electrophiles a second addition to the tungsten-carbon bond can occur, allowing for 

targeted functionalisation of phosphinocarbyne complexes. In the reaction with sulfur, 

the thioacyl phosphine sulfide [W{η2-SCP(=S)Ph2}(CO)2(Tp*)] has been isolated as a 

minor product. Kinetic protonation of 2 occurs on the phosphine, which rearranges in 

polar solvents to afford the η2-carbene complex [W{η2-C(H)PPh2}(CO)2(Tp*)]BF4. 
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Scheme 2.42. Electrophilic addition reactions of [W(≡CPPh2)(CO)2(Tp*)] 
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CHAPTER 3: Chlorophosphinocarbyne complexes  
3.1 Introduction 

Halophosphines (PX3, PX2R, PXR2) are among the most important compounds in 

synthetic organophosphorus chemistry. Halophosphines are highly reactive, particularly 

towards nucleophiles, which gives rise to their extensive use as synthetic precursors to 

countless phosphines. A search of the SciFinder database reveals more than 90,000 

reactions in which PCl3, one of the simplest halophosphines, is employed as a reactant 

or reagent. In many cases, halophosphines are the reagent of choice as starting materials 

to produce all varieties of phosphorus containing compounds. 

 

The use of halophosphines as precursors to substituted phosphines dates back to as early 

as 1879 when Michaelis reported his synthesis of dichlorophenylphosphine and 

dichlorotolylphosphine via a Friedel-Crafts type reaction of PCl3 with benzene or 

toluene in the presence of AlCl3.319 Nowadays, functionalisation of halophosphines is 

most commonly achieved via nucleophilic substitution of chloride by an organometallic 

reagent. Typically, organolithium (RLi) or Grignard reagents (RMgX) are used, but 

there are examples of the effective use of many other organometallics such as zinc, tin, 

copper and cadmium, particularly when mono-halide substitution is desired.313 

 

The first reported examples of phosphinocarbyne complexes by Cummins included two 

chlorophosphinocarbyne complexes [Mo(≡CPClR)(X)3] (R = Cl, Ph; X = NtBu(3,5-

C6H3Me2)).40,41 This P−Cl motif is of interest because in principle it allows for 

installation of further functionality into the carbyne complex via nucleophilic 

substitution of the chloride group. In Cummins' case, their motivation was the synthesis 

of a coordinated phosphaisocyanide analogue. Reduction of the 

chlorophosphinocarbyne complex [Mo(≡CPClPh)(X)3] with sodium amalgam gave the 

ion paired complex [Mo(≡CPPhNa)(X)3(L)2]2 (L = Et2O, THF) containing a CPPh− 

ligand, as depicted in Scheme 3.1. The utility of [Mo(≡CPClPh)(X)3] as a synthetic 

precursor was further demonstrated by the reaction with [Mo(≡CPPhNa)(X)3(L)2] to 

provide the dimeric complex [Mo2(µ-CPPh)2(X)6]. 
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Scheme 3.1. Cummins' synthesis and subsequent reactions of 

chlorophosphinocarbyne complexes (X = NtBu(3,5-C6H3Me2); R = Cl, Ph; 

L = Et2O, THF). 

 

Similarly, the potential to harness reactivity at the P−Cl site served as the motivation by 

which chlorophosphinocarbyne complexes were chosen as targets in this work. It was 

envisaged that such complexes would constitute late stage synthetic intermediates, 

derivatisation of which might provide a variety of species of interest. Following studies 

into the reactivity of the tertiary phosphine 2 towards electrophiles, discussed in Chapter 

2, the possibility of extending the reactivity of phosphinocarbyne complexes to allow 

the introduction of nucleophiles at the phosphine was considered. Accordingly, the 

reactions of the lithiocarbyne [W(≡CLi)(CO)2(Tp*)] towards a range of di- and tri-

halophosphines were of interest.  

 

Preliminary studies by Shang on the reactivity of the molybdenum lithiocarbyne 

[Mo(≡CLi)(CO)2(Tp*)] towards dichlorophenylphosphine, whilst not completed, 

nevertheless appeared promising.220 The reaction of [Mo(≡CBr)(CO)2(Tp*)] with nBuLi 

and PCl2Ph at −78°C led to isolation of the phosphinocarbyne complex 

[Mo(≡CPClPh)(CO)2(Tp*)] (Scheme 3.2). The 31P{1H} NMR spectrum contained a 

singlet at δP 85.3 (C6D6), and the carbyne resonance was identified in the 13C{1H} NMR 

spectrum as a doublet at δP 299.6 (1JPC 106 Hz). However, attempts to synthesise the 

bis-substituted product [Mo2(µ-C2PPh)(CO)4(Tp*)2] using a 2:1 stoichiometry gave a 
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mixture of products, with the desired product accounting for only 3% of the crude 

mixture on the basis of 31P{1H} NMR spectroscopy (Scheme 3.2). This was in contrast 

to a similar reaction involving dichlorodimethylstannane in which the 

chlorostannylcarbyne intermediate could not be isolated or observed en route to the 

binuclear complex [Mo2(µ-C2SnMe2)(CO)4(Tp*)2]. 
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Scheme 3.2. Previous work on chlorophosphinocarbyne complexes. 

 

Amongst the product mixture, the butyl-substituted phosphinocarbyne 

[Mo(≡CPnBuPh)(CO)2(Tp*)] was identified and attributed to a side reaction of the 

mono-substituted complex [Mo(≡CPClPh)(CO)2(Tp*)] with extraneous nBuLi present 

in the reaction mixture. Incorporation of nbutyl groups into products was a recurrent 

problem in this preliminary study. To avoid these problems, tungsten was utilised in the 

present work, rather than molybdenum, as it was anticipated that the slower kinetics 

might hamper these types of side reactions. 

 

3.2 Synthesis of chlorophosphinocarbyne complexes via the 

lithiocarbyne approach 

3.2.1 Synthesis of [W(≡CPClPh)(CO)2(Tp*)]  

Using the same electrophilic addition methodology described in the previous chapter, 

the synthesis of the chlorophosphinocarbyne complex [W(≡CPClPh)(CO)2(Tp*)] (15) 

was investigated (Scheme 3.3). A solution of the bromocarbyne in THF at −78°C was 

treated with one equivalent of nBuLi, followed by one equivalent of 

dichlorophenylphosphine. Extraction with npentane, concentration and cooling provided 

the desired product as a peach coloured precipitate in 71% yield. 
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Scheme 3.3. Synthesis of [W(≡CPClPh)(CO)2(Tp*)] (15). 

 

The infrared spectrum of 15 includes νCO absorption bands at 1992 and 1905 cm−1 

(THF), at higher frequency compared to those of 2 (1981, 1893 cm−1), indicating the 

increased π-acceptor capacity of the carbyne ligand resulting from negative 

hyperconjugation involving the P−Cl σ* orbitals. As expected, the 31P{1H} NMR 

spectrum of 15 displays a significantly downfield shift compared to the tertiary 

phosphine 2 (91.2 ppm cf. 32.0 ppm for 2), but only slightly downfield with respect to 

that of the molybdenum analogue [Mo(≡CPClPh)(CO)2(Tp*)] (δP 85.3),220 and very 

similar to what was observed for [Mo(≡CPClPh)(X)3] (δP 94.0; X = NtBu(3,5-

C6H3Me2)).40 Coupling to 183W was observed, with a 2JWP value of 77.9 Hz, slightly 

larger than that of 2 (69.0 Hz).  

 

In the 1H NMR spectrum a 1:1:1 ratio of the three Tp* pyrazolyl rings is observed, 

rather than the 2:1 ratio observed for 2 and its derivatives, reflecting the reduced 

symmetry (C1) as a consequence of the chiral phosphorus centre. This lower symmetry 

is also indicated by three pyrazolyl environments being observed in the 13C{1H} NMR 

spectrum, in addition to two resonances due to the diastereotopic carbonyl ligands. The 

carbyne carbon appears at δC 285.2 as a doublet with a large 1JPC coupling constant of 

96.0 Hz (cf. 2 74.5 Hz) and with 1JWC 189.0 Hz. The susceptibility of the P−Cl bond to 

hydrolysis precluded the acquisition of analysable mass spectrometric data using 

conventional ESI conditions. 

 

The existence of rotational isomers due to restricted rotation about the carbyne C−P 

bond was inferred from the appearance of a shoulder to lower ppm of the main 

resonance in the 31P{1H} NMR spectrum. Variable temperature NMR studies in 

toluene-d8 over the temperature range –90 to +90°C failed to resolve signals attributable 

to the presumed rotamers (Figure 3.1). Between –60°C and +60°C the shoulder was still 

visible, whilst at –90°C and +90°C the resolution was too poor to resolve the broad 
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singlet into the constituent peaks. Complex 15 is the only species in this work for which 

rotational isomerism about the phosphorus-carbon bond was evident on the 31P NMR 

timescale (121 MHz) although in a number of cases the co-existence of such isomers 

was apparent on the infrared timescale. 
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Figure 3.1. Variable temperature 31P{1H} NMR spectra of 15 (−90 to 

+90°C, toluene-d8, 121 MHz). 

 

One difficulty encountered in the preparation of chlorophosphinocarbyne complexes 

was that the products were generally obtained as a mixture of the mono-substitution 

[W(≡CPClR)(CO)2(Tp*)] and the bis-substitution products [W2(µ-C2PR)(CO)4(Tp*)2]. 

This issue is not unique to the present study, but rather a recurrent feature of the 

reactions of organolithium species with trihalophosphines.313 The product distribution 
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varied depending on the R group used, and when R = NEt2, NiPr2 none of the bimetallic 

species was formed. For R = Cy, Ph, the bulk sample often contained ca. 5% of the 

bimetallic complex. The intentional synthesis of the bimetallic complexes [W2(µ-

C2PR)(CO)4(Tp*)2] is discussed in Chapter 5. As the P−Cl bond is very sensitive to 

hydrolysis, chromatographic purification was not feasible for the separation of the 

mono- and bimetallic complexes. The products obtained were solids, so distillation was 

also not viable, unlike traditional organophosphines. In general, purification of the 

reaction mixture was effected by extraction and fractional crystallisation with varying 

degrees of success. Unfortunately, in some cases this led to less than ideal standards of 

purity (e.g. [W{≡CPCl(NEt2)}(CO)2(Tp*)], Section 3.2.4). 

 

3.2.2 Synthesis of [W(≡CPClCy)(CO)2(Tp*)] 

Dichlorocyclohexylphosphine was used to extend this methodology to an alkyl 

derivative in the expectation that the steric bulk imposed by the cyclohexyl group might 

allow more control over the degree of substitution at phosphorus. Treating 

[W(≡CLi)(CO)2(Tp*)] with one equivalent of PCl2Cy resulted in the immediate 

formation of a dark red coloured solution. After removal of the volatiles, extraction of 

the solid residue with pentane and subsequent concentration and cooling resulted in 

precipitation of the desired phosphinocarbyne [W(≡CPClCy)(CO)2(Tp*)] (16) (Scheme 

3.4). 
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Scheme 3.4. Synthesis of [W(≡CPClCy)(CO)2(Tp*)] (16). 

 

The key spectroscopic features of 16 are similar to those seen for 15. The THF infrared 

spectrum contains three carbonyl absorption bands at 1989 (s), 1969 (m) and 1901 (s) 

cm−1, implicating the co-existence of rotamers. The observed frequencies appear close 

to those of 15 (νCO 1992, 1905 cm−1), demonstrating the similar π-acceptor capacities of 

the two ligands. The solid state infrared spectrum contains five νCO bands. As the 

solution spectrum also contains more than two νCO absorptions, this suggests that 

rotational isomers are present, although solid state effects may also contribute to the 
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complexity of the spectrum. The 31P{1H} NMR spectrum contains a singlet at δP 120.2 

(2JWP 67.9 Hz), significantly downfield from the aryl phosphine 15 (δP 91.2). The 1H 

and 13C{1H} NMR spectra reveal the expected 1:1:1 ratio of the pyrazolyl ring 

environments due to the chiral phosphorus atom. As with 15, the two diastereotopic 

carbonyl ligands give rise to discrete resonances (δC 227.2, 225.8) whilst the appearance 

of a single carbyne resonance (δC 292.2) indicates that interconversion of the rotational 

isomers suggested by IR data is rapid on both the 13C and 31P NMR timescales. It may 

also be concluded that inversion of the phosphorus centre does not occur on these 

timescales as this would render the CO ligands chemically equivalent for both 15 and 

16. 

 

3.2.3 Synthesis of [W(≡CPCl2)(CO)2(Tp*)] 

When the reaction of the lithiocarbyne [W(≡CLi)(CO)2(Tp*)] with one equivalent of 

PCl3 was examined, a mixture of products was obtained (Scheme 3.5). The 31P{1H} 

NMR spectrum indicated that the desired product [W(≡CPCl2)(CO)2(Tp*)] (17) (δP 

136.2, 2JWP 80.5 Hz) constituted ca. 90% of the isolated product, but it was 

contaminated with ca. 10% of the bimetallic complex [W2(µ-C2PCl)(CO)4(Tp*)2] (35) 

(δP 124.7, 2JWP 70.3 Hz). While purification options beyond this level were somewhat 

restricted due to the hydrolytically sensitive P−Cl linkage precluding chromatography, 

the IR and NMR data obtained substantiate the formation of 17. The phosphorus 

resonance for 17 appears at δP 136.2, close to that of [Mo(≡CPCl2)(X)3] (X = NtBu(3,5-

C6H3Me2)) (δP 120.1),41 while the 2JWP coupling constant (80.5 Hz) is indicative of the 

three-coordinate environment at phosphorus. 
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Scheme 3.5. Synthesis of [W(≡CPCl2)(CO)2(Tp*)] (17). 
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Table 3.1 summarises some of the key spectroscopic data for the phosphinocarbyne 

complexes [W(≡CPRR')(CO)2(Tp*)] (R, R' = Cl, Ph). From this it can be seen that 

substitution of phenyl substituents for chloro groups leads to a downfield shift in the 31P 

NMR spectrum, while a modest increase in the tungsten-phosphorus coupling constant 

is observed. The infrared frequencies of the carbonyl absorption bands shift to higher 

frequency upon replacement of phenyl substituents by chloro groups. This might be 

understood in terms of negative hyperconjugation between the W≡C π system and the 

empty P−Cl σ* orbitals. 

 

Table 3.1. Selected spectroscopic data for [W(≡CPRR')(CO)2(Tp*)] (R, R' 

= Cl, Ph). 

Complex δP  2JWP (Hz) νCO (cm−1) 

[W(≡CPPh2)(CO)2(Tp*)] (2) 32.2 66.2 1981, 1893 

[W(≡CPClPh)(CO)2(Tp*)] (15) 91.2 74.9 1992, 1905 

[W(≡CPCl2)(CO)2(Tp*)] (17) 136.2 80.5 2005, 1920 

NMR spectra were recorded in C6D6. IR spectra were recorded in THF. 

 

Variation in the stoichiometry in the reactions of [W(≡CLi)(CO)2(Tp*)] with PCl3 or 

dichlorophosphines can be used to deliberately target bi- and trimetallic 

phosphinocarbyne complexes. Chapter 5 details findings in this area. 

 

3.2.4 Synthesis of [W{≡CPCl(NEt2)}(CO)2(Tp*)] 

The preparation of nitrogen-functionalised phosphinocarbyne complexes was explored 

because it was anticipated that the presence of the positively mesomeric amino group 

might alter the reactivity compared to the alkyl and aryl analogues. In particular it 

should assist in stabilising species such as the phosphenium cation 

[W(≡CPNR2)(CO)2(Tp*)]+. P−N cleavage of aminophosphines is also a useful synthetic 

protocol for the further functionalisation of aminophosphines.320-325 

 

Some preliminary research carried out by Shang yielded the first examples of carbyne 

complexes bearing nitrogen-functionalised phosphorus substituents.220 Unfortunately, 

many of these attempts were hampered by decomposition of the products or competing 



 Chapter 3: Chlorophosphinocarbyne complexes 109 

 

 

side reactions, particularly with nbutyl incorporation into products. The reaction of 

[Mo(≡CLi)(CO)2(Tp*)] with (ClPNtBu)2 gave the desired dimeric complex [Mo2(µ-

CPNtBu)2(CO)4(Tp*)2] (Scheme 3.6). However, when the reaction of 

[M(≡CLi)(CO)2(Tp*)] (M = Mo, W) and the iminophosphinyl chloride ClP=NMes* 

was performed, butyl-substituted products were isolated from the reaction mixtures, 

albeit in low yields (Scheme 3.6). In contrast to these studies, the current work focuses 

on species containing saturated amino groups and reactive substituents at phosphorus to 

allow for further derivatisation at this site. 
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Scheme 3.6. Shang's syntheses of nitrogen-substituted phosphorus carbyne 

complexes. 

 

It was anticipated that, based on previous successes in simple electrophilic substitution 

reactions with chlorophosphines, the same outcome would be attained by using σ3,λ3-

chloroaminophosphines. The reaction of [W(≡CLi)(CO)2(Tp*)] with 

dichloro(diethylamino)phosphine resulted in formation of one major product with νCO 

bands at 1993 and 1904 cm–1, which was identified as the desired phosphinocarbyne 

[W{≡CPCl(NEt2)}(CO)2(Tp*)] (18) (Scheme 3.7). The 31P{1H} NMR spectrum 

supported this formulation by the presence of a singlet with 183W satellites at δP 136.7 

with coupling to tungsten (2JWP 76.4 Hz) within the expected range for a three-

coordinate phosphorus.  
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Scheme 3.7. Synthesis of [W{≡CPCl(NEt2)}(CO)2(Tp*)] (18). 

 

Unfortunately, although 31P{1H} NMR spectroscopy indicated that the desired product 

had formed in ca. 80% yield, purification beyond this level was unsuccessful. Extraction 

with pentane or toluene (to remove the liberated lithium chloride) followed by 

concentration and cooling did not yield any precipitate, even at −78°C. Chromatography 

is not feasible due to the presence of the hydrolytically sensitive P−Cl bond, which was 

confirmed by TLC. The impure nature of the product meant that unambiguous 

identification of resonances attributed to 18 in the 1H NMR spectrum was not possible, 

particularly in the alkyl region. Because of these difficulties efforts were redirected 

towards the diisopropylamino analogue as it was hoped that this might have a greater 

propensity to crystallise whilst still providing informative spectroscopic characteristics 

in the 1H NMR spectrum. 

 

3.2.5 Synthesis of [W{≡CPCl(N iPr2)}(CO)2(Tp*)]  

The synthesis of the diisopropyl analogue was carried out in an analogous manner to 18. 

Fortunately, in this case concentration of the filtered hexane extract from the crude 

reaction mixture residue afforded [W{≡CPCl(NiPr2)}(CO)2(Tp*)] (19) as a 

spectroscopically and analytically pure brown solid in excellent yield (96%) (Scheme 

3.8). 
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Scheme 3.8. Synthesis of [W{≡CPCl(NiPr2)}(CO)2(Tp*)] (19). 

 

The spectroscopic data for 19 are as expected. The THF infrared spectrum contains two 

carbonyl absorption bands at 1992 and 1904 cm–1, very close to those observed for the 

phenyl analogue 15 (1992, 1905 cm–1), indicating that the incorporation of the 
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positively mesomeric amine group does not result in a marked increase of electron 

density at the metal centre. The 31P{1H} NMR spectrum shows a peak at δP 130.3, with 
2JWP 81.2 Hz, similar to the coupling constants observed for other three-coordinate 

chlorophosphinocarbyne complexes encountered in this work.  

 

The carbyne carbon appears in the 13C{1H} NMR spectrum in the typical downfield 

region at δC 291.3, accompanied by phosphorus-carbon (93.5 Hz) and tungsten-carbon 

(187.2 Hz) coupling constants similar to those of other chlorophosphinocarbynes. In the 
1H and 13C{1H} NMR spectra of 19 the peaks due to the isopropyl groups are broad. 

The rest of the molecule displays sharp peaks, indicating that there must be fluxional 

rotation about the phosphorus-nitrogen bond on both the 1H and 13C NMR timescales. 

Four distinct iPr(CH3) environments and two distinct iPr(CH) environments are 

observed as a result of this restricted rotation.  

 

Variable temperature NMR demonstrated changes in the 1H NMR spectrum over the 

temperature range −60°C to +100°C (Figure 3.2). At −60°C four iPr(CH3) environments 

were observed, although two of these resonances overlap, indicating restricted rotation. 

At 40°C this collapses into two broad resonances, and at 100°C two doublets are 

observed. These two doublets correspond to the two diastereotopic methyl groups of the 

isopropyl substituents (Me and Me', Figure 3.2), indicating that this temperature is 

sufficient to overcome the energy barrier and thus allow free rotation about the P−N 

bond. At high temperatures broad unresolved iPr(CH) resonances are observed at 3.5 – 

5 ppm. Following measurements at 100°C, the spectrum remeasured under ambient 

conditions showed no sign of decomposition of the complex, indicative of a high degree 

of thermal stability. 

 



112 Chapter 3: Chlorophosphinocarbyne complexes 

 

 

������������������������������
��	
���


!

+100°C 

+80°C 

+60°C 

+40°C 

+20°C 

0°C 

−20°C 

−40°C 

−60°C 

✱ 
✱ ✱       

✱ 

✱ ✱ 

W C

Tp*

OC
OC

P

Cl
N

C

C

H

Me'
H

Me'

Me

Me

 
Figure 3.2. Variable temperature 1H NMR spectra of 19 (−60°C to +100°C, 

toluene-d8, 500 MHz). 

 

Unfortunately, X-ray quality crystals of 19 were not forthcoming. However, the 

crystallographically characterised compounds [PCl(NiPr2){C(PPh3)2}]AlCl4,326 

PCl(NiPr2)(CMeCCl2)327 and {PCl(NiPr2)}2(C2B10H10)328 all contain trigonal pyramidal 

(sp3) phosphorus atoms and trigonal planar (sp2) nitrogen atoms (Figure 3.3), and it is 
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assumed that the amine moiety in complex 19 would similarly adopt a trigonal planar 

geometry, consistent with the observation that all four iPr(CH3) groups are inequivalent.  

 !

P(sp3) 
P(sp3) 

P(sp3) 

N(sp2) 

N(sp2) 

N(sp2) 

(a) 
!

(b) 

(c)  
Figure 3.3. Depiction of the geometries at phosphorus and nitrogen in the 

molecular structures of (a) [PCl(NiPr2){C(PPh3)2}]AlCl4, (b) 

{PCl(NiPr2)}2(C2B10H10) and (c) in the calculated* structure of 19. 

 

3.3 Reactions of [W(≡CPClPh)(CO)2(Tp*)] 

The reactivity of chlorophosphinocarbyne [W(≡CPClPh)(CO)2(Tp*)] 15 is potentially 

interesting because of the added dimension it presents over its tertiary analogue 

[W(≡CPPh2)(CO)2(Tp*)] 2 – the reactive P−Cl bond. The following sections of this 

chapter detail investigations into exploitation of this facet of chlorophosphinocarbyne 

complexes.  

 

                                                
* Calculated using Spartan 14 at the semi-empirical PM3 level of theory to qualitatively 
illustrate the molecular topology of 19. 
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Complex 15 exhibits reasonable thermal stability; no significant decomposition was 

observed over eight days at 80°C in a toluene solution. However, 15 is much more 

aerobically sensitive than its tertiary analogue 2 due to the hydrolytically sensitive P−Cl 

bond. Whilst 2 is moderately stable to air and moisture both as a solid and in solution, 

15 decomposes within minutes in solution when exposed to either air or moisture.  

 

Addition of degassed H2O to a CDCl3 solution of 15 resulted in complete consumption 

of 15 within ten minutes, coupled with the appearance of new peaks in the 31P{1H} 

NMR spectrum at δP 25.3 (4.0%), 23.0 (14.0%), 22.3 (broad, 49.2%), 13.9 (2JWP 156.1 

Hz, 27.1%) and 12.0 (broad, 5.7%). The hydrolysis pathway is postulated to follow that 

outlined in Scheme 3.9. Hydrolysis of monohalophosphines produces the corresponding 

hydroxyphosphines (i.e. [W{≡CP(OH)Ph}(CO)2(Tp*)]), but these compounds actually 

exist as the phosphine oxide tautomer (i.e. [W{≡CP(=O)HPh}(CO)2(Tp*)]).253,313 This 

secondary phosphine oxide [W{≡CP(=O)HPh}(CO)2(Tp*)] corresponds to the 

resonance observed at δP 13.9 (2JWP 156.1 Hz), which was confirmed by the oxidation 

of [W(≡CPHPh)(CO)2(Tp*)] (see Section 4.2) with hydrogen peroxide. 
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Scheme 3.9. Hydrolysis of [W(≡CPClPh)(CO)2(Tp*)]. 

 

However, the hydrolysis of 15 was found to be more complicated than simply formation 

of [W{≡CP(=O)HPh}(CO)2(Tp*)], as evidenced by the numerous other resonances 

present in the NMR spectra. After 16 hours, the 31P{1H} NMR spectrum indicated that 

δP 23.7 represented the major P-containing species (ca. 89%), and no peak due to 

[W{≡CP(=O)HPh}(CO)2(Tp*)] was observed. The 1H NMR spectrum indicated one 

major Tp*-containing complex was present which displayed a 1:1:1 ratio of the 

pyrazolyl peaks, possibly corresponding to Templeton's nonclassical vinylidene-bridged 
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complex [W2(µ-CCH2)(CO)4(Tp*)]. This bimetallic complex results from dimerisation 

of the methylidyne [W(≡CH)(CO)2(Tp*)],65 which in this case might arise from 

hydrolysis of the P−C(carbyne) bond. 

 

The absence of 183W satellites from all observed 31P{1H} NMR resonances except one 

(i.e. [W{≡CP(=O)HPh}(CO)2(Tp*)]) led to the supposition that these hydrolysis 

products involved cleavage of the P−C(carbyne) bond, consistent with the suspected 

formation of [W2(µ-CCH2)(CO)4(Tp*)]. Secondary alkynylphosphine oxides 

HP(=O)(R)(C≡CR') are not stable and have been found to be susceptible to 

P−C(alkyne) bond cleavage to provide the corresponding phosphinic acid 

HP(=O)(R)(OH).329 The equivalent decomposition reaction could account for one of the 

observed 31P{1H} NMR peaks (e.g. δP 22.3, 23.0, 23.7), as these are found near the 

reported value for HP(=O)(Ph)(OH) (δP 21.5).330 Decomposition is likely to be 

complicated by the presence of the tautomer [W{≡CP(OH)Ph}(CO)2(Tp*)] as these 

species are known to be reactive intermediates in reactions of secondary phosphine 

oxides,253 as well as by the presence of liberated HCl. 

 

3.3.1 Reactions with organolithium reagents 

In the literature, conventional syntheses of phosphines are commonly carried out by 

reaction of the corresponding halophosphine with an organometallic reagent, typically 

organolithium (RLi) or Grignard reagents (RMgX).253,313 One of the key reasons for 

targeting chlorophosphinocarbyne complexes was that they should allow for this facet 

of functionalisation through reaction with organometallic reagents, providing access to 

ideally any phosphine, limited only by imagination. 

 

Synthesis of [W(≡CPPh2)(CO)2(Tp*)] 

To begin these investigations, the reaction of 15 with phenyllithium was examined so as 

to provide proof of concept through formation of the previously prepared complex 2. 

Treatment of a THF solution of 15 at –78°C with a slight excess of PhLi resulted in the 

exclusive formation of 2, as indicated by 1H and 31P{1H} NMR analysis of the crude 

reaction mixture (Scheme 3.10). 
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Scheme 3.10. Synthesis of 2 by reaction of 15 with phenyllithium. 

 

Synthesis of [W(≡CPMePh)(CO)2(Tp*)] 

Having established the viability of this approach, the generality of the protocol was 

explored. A diethyl ether suspension of 15 was cooled to −78°C and treated with 

methyllithium, resulting in a brown suspension. Following chromatography on silica 

gel, [W(≡CPMePh)(CO)2(Tp*)] (20) was obtained as a yellow powder in 49% yield 

(Scheme 3.11). 
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Scheme 3.11. Synthesis of [W(≡CPMePh)(CO)2(Tp*)] (20). 

 

The spectroscopic data for 20 are largely unremarkable. The presence of the methyl 

group is evident in the 1H and 13C{1H} NMR spectra as doublets at δH 1.67 (2JPH 3.6 

Hz) and δC 11.6 (1JPC 15.1 Hz) due to coupling to the phosphorus nucleus. The 1H and 
13C{1H} NMR spectra display the anticipated 1:1:1 ratio pyrazolyl environments 

invoked by the presence of the chiral phosphorus centre. The infrared spectrum in THF 

shows a shift to lower frequency (νCO 1977, 1888 cm–1) upon substitution of the 

electron-withdrawing chloride for the methyl group (15: νCO 1992, 1905 cm–1). 

 

The electron-releasing methyl substituent renders complex 20 considerably more air-

sensitive than the diphenylphosphinocarbyne 2. While a solution of 2 in air showed only 

43% conversion to the oxide over 14 days, a solution of 20 in air was completely 

oxidised in three days, yielding [W{≡CP(=O)MePh}(CO)2(Tp*)] (21). This was 

identified on the basis of 1H and 31P{1H} NMR data (δP 26.4, 2JWP 144.9 Hz) 

comparable to what was seen for [W{≡CP(=O)Ph2}(CO)2(Tp*)] (δP 19.9, 2JWP 145.2 

Hz), as well as ESI(+) mass spectrometry.  
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Synthesis of [W{≡CP(C≡CPh)Ph}(CO)2(Tp*)] 

The synthesis of an alkynylphosphinocarbyne was considered attractive as this would 

allow for comparison of a carbyne M≡C and an alkyne C≡C group bound to phosphorus 

within the one molecule. A THF solution of 15 at −78°C was treated with a THF 

solution of lithium phenylacetylide. The solution turned orange, and after 

chromatographic work up the alkynylphosphine [W{≡CP(C≡CPh)Ph}(CO)2(Tp*)] (22) 

was obtained as a spectroscopically and analytically pure yellow powder in excellent 

yield (90%) (Scheme 3.12). 

 

W C

Tp*

OC
OC

P
C

W C

Tp*

OC
OC

P

Ph
Cl

PhC≡CLi

15 22
Ph C

Ph  
Scheme 3.12. Synthesis of [W{≡CP(C≡CPh)Ph}(CO)2(Tp*)] (22). 

 

A significant upfield shift (95 ppm) in the 31P{1H} NMR spectrum of 22 (δP –4.0, 2JWP 

82.5 Hz) demonstrates the replacement of chloride from the precursor 15. The 

resonance appears downfield from that of the organoalkynylphosphine P(C≡CPh)Ph2 

(δP −33.5).317 The infrared spectrum (Nujol) contains carbonyl absorption bands at 1981 

and 1890 cm−1, similar to what is seen for 2 (1981, 1893 cm−1). Additionally, a weak 

absorption band at 2162 cm−1 is observed, attributed to the C≡C stretch of the alkynyl 

unit, close to that of P(C≡CPh)Ph2 (νC≡C 2161 cm−1).317  

 

The inclusion of the alkynyl moiety leads to a slight upfield shift of the carbyne 

resonance (δC 281.5) compared to that of 2 (δC 292.6). The observed coupling constants 

(1JPC 75.9 Hz, 1JWC 192.1 Hz) are comparable to those seen for 

[W(≡CPRPh)(CO)2(Tp*)] (R = H, Me, Ph). The presence of the alkynyl unit is evident 

in the 13C{1H} NMR spectrum from peaks at δC 107.4 (PC≡CPh, 2JPC 3.5 Hz) and δC 

82.6 (PC≡CPh, 1JPC 7.5 Hz). Curiously, the magnitude of this 1JPC coupling seems 

remarkably small compared to the 1JPC(carbyne) value of 75.9 Hz. This is, however, not 

unprecedented, as demonstrated in the literature by Tilley and co-workers, as the 

corresponding resonance of the alkynylphosphine P(C≡CMes)Ph2 appears as a doublet 

at δC 94.2 with 1JPC 6 Hz.317  
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Figure 3.4. Full view (left) and simplified view (right) of the molecular 

structure of 22 in a crystal (50% displacement ellipsoids, hydrogen atoms 

omitted). Selected bond lengths (Å) and angles (°): W1−C1 1.823(6), 

C1−P1 1.790(6), P1−C4 1.747(8), C4−C5 1.224(10), C5−C51 1.451(11), 

W1−C1−P1 169.4(4), C1−P1−C4 97.9(3), P1−C4−C5 172.3(7), 

C4−C5−C51 176.0(8).  

 

Gratifyingly, crystals were obtained from a solution of 22 in benzene/hexane at −20°C, 

thus allowing for a comparison of the geometric features of the alkyne versus carbyne 

moieties (Figure 3.4). The W1−C1 (1.823(6) Å) and P1−C1 (1.790(6) Å) distances do 

not differ significantly from those of 2 (W1−C1 1.827(2), P1−C1 1.783(3) Å), despite 

incorporation of the alkynyl unit. The alkynylphosphino moiety resembles that of 

Ph2PC≡CMe, with a formal phosphorus-carbon single bond (P1−C4 1.747(8) Å, cf. 

1.759(2) Å) and carbon-carbon triple bond (C4−C5 1.224(10) Å, cf. 1.206(2) Å).213 It is 

interesting to note that, although P1−C1 and P1−C4 can both be considered as 

phosphorus-carbon single bonds, the P1−C1(carbyne) linkage is marginally (5 – 6 

e.s.d.) elongated compared to the P1−C4(alkyne) bond (1.790(6) Å cf. 1.747(8) Å), 

perhaps reflecting the comparative steric bulk of the CPh and [W(CO)2(Tp*)] termini. 

The P(C≡CPh)Ph moiety is oriented such that the phenyl group eclipses one carbonyl 

ligand, while the C≡CPh group bisects the N31−W1−C2(O) angle. This differs from the 

PPh2 conformation in 2 in which the two phenyl groups eclipse one carbonyl ligand and 

one pyrazolyl ring. However, the opposing orientational preferences of 2 and 22 are not 
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surprising since calculations have shown that conversion between conformers of 2 is 

facile due to the low energy differences involved (Section 2.2).  

 

3.3.2 Reactions with alcohols and amines 

Synthesis of [W{≡CP(OPh)Ph}(CO)2(Tp*)] 

Driven by the ease of substitution with carbon-based nucleophiles, attempts to extend 

this chemistry to alkoxy and amino reagents were undertaken. Chlorophosphines 

generally react with alcohols to provide the corresponding alkoxy- or 

aryloxyphosphine253,313 in the presence of a base (Scheme 3.13).331-338 
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Scheme 3.13. Preparation of alkoxy- and aryloxyphosphines. 

 

It was anticipated that applying similar conditions to the chlorophosphinocarbyne 15 

would provide an aryloxy-substituted phosphinocarbyne. This was initially attempted 

following the method of Le Lagadec and co-workers.331 A solution of phenol in THF 

was treated with one equivalent of dried and degassed triethylamine, and after ten 

minutes this was added to 15 (Scheme 3.14). The infrared spectrum of the reaction 

mixture indicated two pairs of CO stretching frequencies at 1999, 1911 cm–1 and 1983, 

1896 cm–1. No bands corresponding to the starting material could be seen (1992 and 

1905 cm–1). While this was promising, the 31P{1H} NMR spectrum of the reaction 

mixture unfortunately contained more than 15 peaks (mostly within the region δP 13.6 – 

47.2), none of which predominated. Identifiable amongst the mixture were peaks 

attributed to the desired product 23, (δP 126.4, 2JWP 76.1 Hz, 9.8%), the secondary 

phosphine [W(≡CPHPh)(CO)2(Tp*)] (δP −12.0, 1.6%, see Section 4.2) and the 

corresponding oxide [W{≡CP(=O)HPh}(CO)2(Tp*)] (δP 13.6, 2JWP 155.4 Hz, 3.4%) 

which is known to form upon reaction of 15 with H2O.  
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Scheme 3.14. Attempted synthesis of [W{≡CP(OPh)Ph}(CO)2(Tp*)] (base 

= NEt3, KH). 

 

Stephan and co-workers have prepared the phenoxyphosphine P(OPh)tBu2 from the 

reaction of phenol with PCltBu2 using potassium hydride as the base.338 The use of 

potassium hydride is attractive because this should limit the side products in the 

reaction mixture as, in theory, the deprotonation produces only potassium phenoxide 

and dihydrogen gas. A solution of phenol in THF was treated with one equivalent of 

potassium hydride and stirred for 30 minutes, then added to a solution of 15 in THF 

(Scheme 3.14). After stirring overnight the IR spectrum contained a number of peaks in 

the carbonyl region, including those observed in the previous triethylamine-mediated 

reaction. Unfortunately, as was seen in that case, NMR spectroscopy revealed that the 

reaction had produced a large number of compounds, the majority of which were 

common to both protocols, and the desired product represented only 7.6% of the 

mixture. 

 

This result was surprising, and it was postulated that formation of the phenoxide anion 

in solution was leading to the multitude of products in the reaction. To circumvent this, 

potassium phenoxide was synthesised and purified by filtration through diatomaceous 

earth, and the resulting product was isolated.336 A THF solution of this isolated KOPh 

was added slowly to a THF solution of 15 at 0°C (Scheme 3.15). After warming to 

room temperature, infrared spectroscopy indicated that all of the starting material had 

been consumed and new νCO bands were present at 1987 and 1899 cm–1, accompanied 

by shoulders at 1999, 1971 and 1914 cm–1. The 31P{1H} NMR spectrum of the crude 

reaction mixture showed one major product at δP 127.1 with 2JWP 74.0 Hz, which had 

been observed as a minor component (< 10%) in the reactions involving KH or NEt3. 

Both the chemical shift (cf. P(OPh)Ph2 δP 111.0)339 and the magnitude of the coupling 

constant are consistent with the desired product [W{≡CP(OPh)Ph}(CO)2(Tp*)] (23).  

 



 Chapter 3: Chlorophosphinocarbyne complexes 121 

 

 

W C

Tp*

OC
OC

P
Ph

W C

Tp*

OC
OC

P

Cl
Ph

KOPh

15 23
OPh

 
Scheme 3.15. Synthesis of [W{≡CP(OPh)Ph}(CO)2(Tp*)] (23). 

 

Although the spectroscopic yield for the reaction was respectable (ca. 65% by 31P{1H} 

NMR spectroscopy), attempts to chromatograph the crude reaction mixture led to 

significant decomposition, with 23 being isolated in only 17% yield, presumably due to 

partial hydrolysis of the phosphorus-oxygen bond on the acidic silica gel. Pleasingly, 

spectroscopically and analytically pure 23 was obtained in 44% yield by filtration 

through diatomaceous earth and precipitation of the impurities from benzene/hexane. 

 

Attempted synthesis of [W{≡CP(NiPr2)Ph}(CO)2(Tp*)]  

Since amines react with chlorophosphines in a similar way to alcohols, but serve the 

dual role of nucleophile and base, it was thought that an amino-substituted 

phosphinocarbyne might be obtained via the reaction of 15 with a secondary amine. A 

toluene solution of 15 at 0°C was treated with two equivalents of diisopropylamine, 

resulting in a brown solution (Scheme 3.16). Unfortunately, the 31P{1H} NMR spectrum 

of the reaction mixture contained 30 peaks in the region −15 to 50 ppm, and as such the 

reaction was deemed not viable.  
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Scheme 3.16. Attempted synthesis of [W{≡CPPh(NiPr2)}(CO)2(Tp*)]. 

 

3.3.3 Attempted reactions with metal carbonyl anions 

The success of halide metathesis reactions of 15 with organometallic and aryloxide 

nucleophiles prompted the elaboration of this chemistry to metal-based nucleophiles, 

with the aim of preparing bimetallic complexes. As noted in Section 1.4.2, bridging 

phosphaisocyanide complexes have been previously reported, and replacing the chloro 

substituent of 15 with a second metal would provide an alternative approach to the 
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synthesis of bimetallic µ-CPR complexes. Metal carbonyl anions react with a range of 

electrophiles E−X to form new E−M bonds. This strategy has been used to synthesise 

phosphido complexes [M(PR2)(CO)m(L)n] by reacting metal carbonyl anions 

[M(CO)m(L)n]− with the corresponding halophosphine PXR2.340-346 Gröer and Scheer 

found that the reaction of [W(CO)3(Cp)]− with PCl3 gives both monometallic 

[W(PCl2)(CO)3(Cp)] and bimetallic products [W2(µ-PCl2)Cl(CO)5(Cp)2] (Scheme 

3.17).346 Interestingly, when [W(PCl2)(CO)3(Cp)] was treated with [M(CO)3(η5-

C5H4
tBu)]− (M = Mo, W), cyclo-P3 complexes [M(η3-P3)(CO)3(η5-C5H4

tBu)] were 

formed. 
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Scheme 3.17. Reaction of PCl3 with K[W(CO)3(Cp)]. 

 

Based on the success of [Mo(CO)3(L)]− (L = Tp, Tp*) in reactions with tin and copper 

electrophiles,347 attempts were made to extend this methodology to our systems. A THF 

solution of KTp and [Mo(CO)3(C7H8)] (νCO 1981, 1910, 1881 cm−1) was monitored by 

infrared spectroscopy to confirm the formation of K[Mo(CO)3(Tp)] (νCO 1984, 1768, 

1729 cm−1), then this solution was added to one equivalent of 

[W(≡CPClPh)(CO)2(Tp*)] (Scheme 3.18). Infrared spectroscopy of the reaction showed 

broad infrared absorptions at 1999, 1928, 1910, 1894 and 1851 cm−1, in addition to 

K[Mo(CO)3(Tp)] bands. The 1H and 31P{1H} NMR spectra of the reaction mixture were 

very complex. In case some of the peaks in these spectra were due to intermediates, the 

NMR sample was heated to 55°C and monitored for three days, but unfortunately no 

conversion to a major product was observed.  
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Scheme 3.18. Attempted synthesis of [W{≡CPPhMo(CO)n(L)}(CO)2(Tp*)] 

(L = Cp, Tp; n = 2, 3). 

 

Steric constraints associated with the bulky Tp* and Tp ligands might be the reason for 

the lack of success in this reaction. Consequently, the smaller Cp complex 

Li[Mo(CO)3(Cp)] was trialled. Unfortunately, this reaction was similarly unsuccessful 

and no major product could be isolated from the reaction (Scheme 3.18). This suggests 

that either the Cp complex is similarly too large for the substitution to be favourable, or 

the origin of the failure of this reaction may in fact be electronic, in which case 

increasing the nucleophilicity of the anion might alleviate such problems. 

 

King has studied the nucleophilicities of various metal carbonyl anions and found that 

the nucleophilicity of [Fe(CO)2(Cp)]− is one million times greater than that of the 

molybdenum anion [Mo(CO)3(Cp)]−.348 It was thus hoped that using the iron anion 

[Fe(CO)2(Cp)]− would result in the desired nucleophilic substitution of chloride in a 

relatively clean fashion. In situ formation of K[Fe(CO)2(Cp)] was achieved by reduction 

of [Fe(CO)2(Cp)]2 with K[BHsBu3], as confirmed by infrared spectroscopy,349,350 and 

this was added to a THF solution of 15 (Scheme 3.19). The infrared spectrum of the 

reaction mixture contained a number of broad bands in the carbonyl region. The 
31P{1H} NMR spectrum contained a major product at δP 19.4 with a small JWP coupling 

constant of 51.7 Hz. This coupling might be consistent with the desired product 

[W{≡CPPhFe(CO)2(Cp)}(CO)2(Tp*)] because, although the magnitude is smaller than 

that seen for other [W(≡CPPhR)(CO)2(Tp*)] complexes in this work (68.0 – 77.9 Hz), 

the presence of the metal substituent would be expected to alter the coupling when 

compared to organo or halo substituents. Unfortunately, attempts to isolate this product 

via extraction and precipitation were unsuccessful, and led instead to the decomposition 

of the sample.  
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Scheme 3.19. Attempted synthesis of 

[W{≡CPPhFe(CO)2(Cp)}(CO)2(Tp*)]. 

 

King has reported that the cobalt anion [Co(CO)4]− is much less nucleophilic than 

[Fe(CO)2(Cp)]− (relative nucleophilicities 1:70,000,000).348 Despite the low 

nucleophilicity, it was thought that [Co(CO)4]− could be an ideal nucleophile for this 

reaction because of its small size, therefore limiting the steric restrictions that were 

thought to have hampered the molybdenum reactions discussed previously. Reduction 

of [Co2(CO)8] with Li[BHEt3] was carried out to generate Li[Co(CO)4],349 which was 

then added to a solution of 15 (Scheme 3.20). The 31P{1H} NMR spectrum indicated 

that the reaction was relatively clean, containing a broad singlet at δP 219.8 as the major 

component. No 183W satellites were visible, though the broadness of the peak could be 

consistent with complexation of phosphorus to quadrupolar 59Co (100% natural 

abundance, I = 7/2). The considerably downfield chemical shift is suggestive of the 

desired product [W{≡CPPhCo(CO)4}(CO)2(Tp*)] as the resonance for the phosphido 

complex [Co{PCl(NiPr2)}(CO)3(PPh3)] occurs at δP 282.8.351 However, this compound 

was quite unstable and could not be successfully isolated. TLC indicated that 

chromatographic separation was not viable, and crystallisation attempts were fruitless.  

 

W C

Tp*

OC
OC

P
Ph

Co(CO)4

W C

Tp*

OC
OC

P
Ph

15
Cl

Li[BHEt3]

1/2 [Co2(CO)8]

Li[Co(CO)4]

 
Scheme 3.20. Attempted synthesis of [W{≡CPPhCo(CO)4}(CO)2(Tp*)]. 

 



 Chapter 3: Chlorophosphinocarbyne complexes 125 

 

 

Based on the lack of success in these reactions, further attempts to synthesise bimetallic 

phosphinocarbyne complexes via nucleophilic substitution were abandoned. However, 

preliminary spectroscopic data did support the formation of 

[W{≡CPPhFe(CO)2(Cp)}(CO)2(Tp*)] and [W{≡CPPhCo(CO)4}(CO)2(Tp*)], 

suggesting that such species are viable, but in these cases were unable to be isolated due 

to their instability. 

 

3.4 Reactions of [W{≡CPCl(N iPr2)}(CO)2(Tp*)] 

3.4.1 Reaction with HCl 

Problems were encountered in the synthesis of 17 due to contamination with the bis-

substitution product 35 (Scheme 3.5). Aminophosphines can be cleaved with HCl to 

provide the corresponding chlorophosphines,313 and it was thought this could provide an 

alternative route to 17 thus circumventing the problem of 35 formation. A benzene-d6 

solution of 19 was treated with two equivalents of HCl (1.0 M in Et2O) and the reaction 

progress was monitored by NMR spectroscopy. After 15 minutes, the major product 

was indeed 17 (δP 136.1, 2JWP 78.6 Hz), although the 31P{1H} NMR spectrum contained 

six other peaks and 17 constituted only ca. 40% of the mixture. After 20 hours, the peak 

due to 17 had virtually disappeared and the largest peak in the 31P{1H} NMR spectrum 

was PCl2NiPr2 (δP 172.3). The 1H NMR spectrum comprised one major Tp*-containing 

compound which was identified as [W(≡CH)(CO)2(Tp*)]. These products are thought 

to have resulted from the reaction of the liberated [H2NiPr2]Cl with 17 (Scheme 3.21). It 

was therefore concluded that, although 17 was produced in this reaction, this does not 

represent an expedient synthetic route to access 17. 
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Scheme 3.21. Reaction of 19 with HCl. 
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3.4.2 Reaction with methyllithium 

As seen in Section 3.3.1, nucleophilic substitution of chloride with methyllithium 

produced the methyl substituted carbyne [W(≡CPMePh)(CO)2(Tp*)]. Following the 

same protocol, treatment of the aminophosphine 19 with methyllithium at –78°C 

resulted in a brown solution. After chromatography on alumina, the methyl derivative 

[W{≡CPMe(NiPr2)}(CO)2(Tp*)] (24) was obtained in 57% yield (Scheme 3.22). 
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Scheme 3.22. Synthesis of [W{≡CPMe(NiPr2)}(CO)2(Tp*)] (24). 

 

The 31P{1H} NMR spectrum of 24 showed a significant upfield shift compared to that 

of 19 (δP 54.0 cf. 130.3). The 1H and 13C{1H} NMR spectra of 24 contain only one 
iPr(CH) resonance and two iPr(CH3) resonances, whereas for the precursor 19 there 

were two iPr(CH) resonances and four iPr(CH3) resonances. The presence of only one 

isopropyl environment in the NMR spectra of 24 is indicative of free rotation about the 

P−N linkage. This is in contrast to what was seen for 19, which displays restricted 

rotation about the phosphorus-nitrogen bond at ambient temperatures. Low temperature 
1H NMR studies of 24 in toluene-d8 did not completely resolve the two diastereotopic 

methyl group resonances into four constituent peaks (Figure 3.5). At −80°C three broad 

resonances are observed, indicating some degree of fluxionality in the rotation about the 

P−N bond. Notably, the resonance due to the PCH3 group was essentially invariant 

throughout this temperature range and accordingly the possibility may be discarded that 

phosphine inversion accounts for higher time-averaged symmetry. The solid state 

infrared spectrum (Nujol) contains six bands in the carbonyl region, but as only two 

bands are observed in the solution state spectrum (THF: 1974, 1884 cm–1) this might be 

attributable to solid state effects rather than rotational isomerism. 
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Figure 3.5. Variable temperature 1H NMR spectra of 24 (−80°C to +40°C, 

toluene-d8, 500 MHz). 

 

The greater ease of rotation about the P−N bond in the methyl derivative 24 as 

compared to the chlorophosphine 19 presumably results from the electron-withdrawing 

ability of the chloro substituent. Negative hyperconjugation from the (trigonal) nitrogen 

to the P−Cl σ* orbital has an angular dependence, being maximised when the 

Cl−P−N−C dihedral angles are 90°, such that the loss of this interaction contributes to 

the rotation barrier (Figure 3.6). The energies of P−CH3 σ* orbitals in contrast are so 

high as to make negative hyperconjugation of negligible impact. 
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Figure 3.6. Resonance contributing forms of [W{≡CPX(NR2)}(CO)2(Tp*)] 

(R = iPr; X = Cl (19), Me (24)). 

 

3.4.3 Abstraction of chloride 

Numerous two-coordinate phosphine species are known, most of which involve a 

multiple bond to phosphorus, for example, phosphaalkenes RP=CR2 and unsaturated 

phosphorus heterocycles such as phosphabenzene. Those that contain only formal single 

bonds to phosphorus are phosphenium cations PR2
+ and phosphide anions PR2

– (Figure 

3.7). Phosphenium ions are two-coordinate phosphorus cations in which a large degree 

of the positive charge density is localised upon the phosphorus, as distinct from 

phosphamethine cyanins in which the positive charge is delocalised.352 Phosphenium 

cations are much less stable than phosphide anions and typically require at least one 

substituent to be a positively mesomeric amino group, thus stabilising the cation by 

charge dispersion through resonance. There are many examples of coordinated 

phosphenium ions and the bonding of these species may be considered in some ways 

analogous to that of Fischer carbenes.353-355 

 

P
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Figure 3.7. Phosphenium (6e−) PR2

+ and phosphide (8e−) PR2
– ions.  

 

Abstraction of chloride from chlorophosphines is the most common route to 

phosphenium ions.356 There are a range of chloride abstracting agents used in the 

literature, by far the most common of which is aluminium trichloride, providing the 

phosphenium as the AlCl4
− salt (Scheme 3.23).351,356-367 Examples of other chloride 

abstracting agents are known, such as GaCl3,366,368-370 SnCl4,366 NaBPh4,371 

SiMe3OTf,370,372,373 and TlOTf.374 In many cases, isolation of the phosphenium salt is 

not possible due to the instability of such species. However, undertaking the reaction in 
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the presence of a Lewis base such as an alkene,371 alkyne,351,371,372,375,376 

phosphine360,370,377 or arsine373 affords the corresponding Lewis base-stabilised cations. 
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Scheme 3.23. Chloride abstraction from chlorophosphines to give 

phosphenium ions. 

 

Chloride abstraction from 19 was targeted as a potential route to a carbyne-

functionalised phosphenium salt with possible phosphaisocyanide character. The 

aminophosphine 19 was chosen because the electron donating amino substituent should 

render the chloride more labile. A number of chloride abstracting agents were trialled, 

but reactions of 19 with Me3SiOTf, AgPF6 and Na[B{C6H3(CF3)2-3,5}4] led to a 

number of peaks in the 31P{1H} NMR spectra, none of which fell in the expected range 

for the phosphenium salt [W{≡CP(NiPr2)}(CO)2(Tp*)]+ ([25]+), as the literature 

indicates that the chemical shifts for more conventional phosphenium cations occur 

approximately 100 ppm downfield of those of the chlorophosphine precursors (19 δP 

130.3).356 

 

When a CD2Cl2 solution of 19 was treated with an excess of AlCl3, the 31P{1H} NMR 

spectrum comprised a broad singlet at δP 401.2 (LW1/2 24 Hz) without resolvable 183W 

satellites. This low-field chemical shift is strongly suggestive of reduced coordination at 

phosphorus and formation of the phosphenium ion [W{≡CP(NiPr2)}(CO)2(Tp*)]AlCl4 

([25]AlCl4) (Scheme 3.24). Organophosphenium ions have been reported in the wide 

range of δP 513.2 – 111.0,356 but when one of the phosphenium substituents is a 

transition metal the phosphorus resonances can occur above δP 800,351,361,377 and even as 

high as δP 1007.5 for [Mo{P(NiPr2)}(CO)3(Cp*)]AlCl4.378 The chemical shift of 

[25]AlCl4 displays a downfield shift of 270.9 ppm with respect to the precursor 19, 

more than the typical 100 ppm shift noted in the literature.356 However, this is 

dependent upon the conjugative strength of the substituents, as well as steric effects and 

the degree, if any, of ion pairing. The C−P−N comparator [P(Mes)(NiPr2)]AlCl4 (δP 

500) is shifted 368 ppm downfield compared to PCl(Mes)(NiPr2) (δP 132).365 In any 

event, the large shift observed on treating 19 with AlCl3 is sufficient to discount simple  
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P−Al Lewis adduct formation, given the ample precedent and associated NMR data. 

Unfortunately, resonances attributable to [25]AlCl4 could not be unambiguously 

identified in the 1H NMR spectrum. Due to the perceived sensitivity of such a species, 

[25]AlCl4 was not isolated. Instead, attempts to prepare a Lewis base-stabilised adduct 

were undertaken, as outlined below. 
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Scheme 3.24. Synthesis of [W{≡CP(NiPr2)}(CO)2(Tp*)]AlCl4 ([25]AlCl4). 

 

Synthesis of [W{≡CP(NiPr2)(CPhCPh)}(CO)2(Tp*)]AlCl4 

Phosphenium salts can undergo [2 + 2] cycloaddition reactions with alkynes, yielding 

phosphirenium salts [PR2(CRCR)]+.375,376 Sterenberg and Carty have extended this to 

terminal phosphinidene complexes [M(PR)(L)n]+ to afford phosphirenium complexes 

[M{PR(CRCR)}(L)n]+.351,360,371 In the absence of a positively mesomeric amino 

substituent on the phosphorus, the phosphinidene complex [Mo(PiPr)(CO)3(Cp*)]+ is 

unstable and could not be observed by NMR. However, addition of diphenylacetylene 

trapped the transient phosphinidene as the phosphirene cation 

[Mo{PiPr(CPhCPh)}(CO)3(Cp*)]+ (Scheme 3.25).360 
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Scheme 3.25. Sterenberg's synthesis of 

[Mo{PiPr(CPhCPh)}(CO)3(Cp*)]AlCl4. 

 

It was anticipated that this methodology might allow for the synthesis of 

phosphirenium-functionalised carbyne complexes. Abstraction of chloride from 19 with 

AlCl3 in the presence of diphenylacetylene provided a new compound, the 31P{1H} 

NMR spectrum of which contained a singlet at δP −77.3 straddled by tungsten satellites 
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(2JWP 219.9 Hz). This upfield chemical shift is consistent with what would be expected 

for a phosphirenium cation (e.g. δP −57.3 to −69.2 for [PClR(CR'CR'')]AlCl4 (R, R', R'' 

= H, Me, Ph)),375 supporting formation of the phosphirenium carbyne 

[W{≡CP(NiPr2)(CPhCPh)}(CO)2(Tp*)]AlCl4 ([26]AlCl4) (Scheme 3.26). Examination 

of the 1H NMR spectrum of [26]AlCl4 revealed a 2:1 ratio of the Tp* pyrazolyl peaks, 

and two doublets at δH 1.50 (3JHH 6.4 Hz) and δH 1.27 (3JHH 6.8 Hz) for the iPr-Me 

peaks, indicating free rotation about the P−N bond.  
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Scheme 3.26. Synthesis of [W{≡CP(NiPr2)(CPhCPh)}(CO)2(Tp*)]AlCl4 

([26]AlCl4). 

 

In the present context, the description as a phosphirenium carbyne is illustrative. By 

analogy with [W(≡CPMe2Ph)(CO)2(Tp*)]I (Section 2.5.1), the complex could also be 

described as a phosphoniocarbyne based on the phosphine P(NiPr2)(C2Ph2). Whilst this 

phosphine might appear somewhat exotic, it has recently been isolated.371  

 

Unfortunately, various attempts to synthesise [25]AlCl4 and [26]AlCl4 were hampered 

by protolytic cleavage of the amine group to yield [W(≡CPCl2)(CO)2(Tp*)], 

presumably due to the presence of HCl as a consequence of the hygroscopic nature of 

AlCl3. Although isolation of [25]AlCl4 and [26]AlCl4 has so far not eventuated, it 

should be possible with a more thorough screening of experimental conditions. These 

test reactions nevertheless serve to demonstrate the viability of such species and 

represent an area to be targeted in future work. 
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3.5 Summary 

The synthesis of a range of tungsten carbyne complexes bearing chlorophosphine 

substituents has been accomplished, further demonstrating the utility of the 

lithiocarbyne route for the generation of diversely functionalised phosphinocarbyne 

complexes (Scheme 3.27). The reactive nature of the phosphorus-chlorine bond in these 

complexes can be exploited, enabling late-stage functionalisation of such species. 

Halide metathesis with organometallic alkyl, aryl, alkynyl and aryloxy nucleophiles has 

provided mixed phosphinocarbynes [W(≡CPRR')(CO)2(Tp*)]. However, attempts to 

replicate this success using metal carbonyl anions were ineffective. Chloride abstraction 

proceeds with aluminium trichloride, generating a phosphenium-functionalised carbyne, 

or a phosphirenium-functionalised carbyne if performed in the presence of an alkyne. 
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Scheme 3.27. Synthesis and reactions of chlorophosphinocarbyne 

complexes. 
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CHAPTER 4: Secondary phosphinocarbyne complexes 
4.1 Introduction 

While the selection of a P−Cl motif provides an attractive means for further 

functionalisation of phosphinocarbynes via nucleophilic substitution, inclusion of a P−H 

group, in principle, allows for functionalisation via electrophilic substitution, either 

directly or via deprotonation of the phosphine. Terminal phosphinocarbyne complexes 

bearing P−H groups have not been previously reported, and thus it remains to be 

established whether this simply reflects the limited extent to which these complexes 

have been studied, or if there is an inherent instability associated with such complexes. 

A bridging secondary phosphinocarbyne complex [Fe2{µ-CPH(tBu)}(µ-

SMe)(CO)2(Cp)2] has, however, been prepared by addition of PH(tBu)(SiMe3) to 

[Fe2(µ-CSMe)(µ-CO)(CO)2(Cp)2]OTf (Scheme 1.17). 

 

Angelici and co-workers have prepared primary and secondary aminocarbyne 

complexes [W(≡CNHR)(CO)2(Tp)] (R = H, Me, Et, (CH2)2OH, iPr, tBu, Tol) from the 

reaction of the η2-thiocarbene salt [W{η2-C(H)SMe}(CO)2(Tp)]+ with primary amines 

and ammonia.254 These reactions result in a mixture of products, as outlined in Scheme 

4.1, with the aminocarbyne complex obtained in 25 – 35% yield. In contrast to 

conventional tertiary aminocarbynes [M(≡CNR2)(CO)2(Tp')] (M = Mo, W; R = Me, Et; 

Tp' = Tp, Tp*),147,168,194,379 these aminocarbynes were found to be too air-sensitive to 

isolate and were instead identified on the basis of their IR and NMR spectra through 

comparison with the tertiary analogues. 
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Scheme 4.1. Angelici's synthesis of primary and secondary aminocarbyne 

complexes (R = H, Me, Et, (CH2)2OH, iPr, tBu, Tol). 
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Interestingly, the alkyl substituted species [W(≡CNHR)(CO)2(Tp)] (R = Me, Et, 

(CH2)2OH, iPr, tBu) were found to contain a weak band in the infrared spectrum in the 

region 2125 – 2090 cm–1, characteristic of the C≡N stretch of coordinated isocyanides, 

suggesting the presence of an isocyanide C≡NR ligand. Additionally, resonances were 

observed in the hydride region of the 1H NMR spectra (ca. δH –2.3), along with a 

second set of R group peaks. This signified the presence of an isomer containing a 

hydride and an isocyanide ligand, namely [WH(C≡NR)(CO)2(Tp)], which exists in 

equilibrium with the aminocarbyne complex (Scheme 4.2). 
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Scheme 4.2. Aminocarbyne and isocyanide-hydride tautomerisation (R = 

Me, Et, (CH2)2OH, iPr, tBu). 

 

The ratio of the carbyne to isocyanide-hydride tautomers varied with the solvent used 

and was independent of the steric bulk of the R group. Isomeric carbyne:isocyanide 

ratios were observed as 4:1 in CD2Cl2, 5:1 in CDCl3 and 9:1 in CD3NO2. The primary 

aminocarbyne [W(≡CNH2)(CO)2(Tp)] and the aryl aminocarbyne 

[W{≡CNH(Tol)}(CO)2(Tp)] showed no evidence of a νCN stretch or a hydride 

resonance. The fact that these species exist solely as the aminocarbyne tautomers was 

attributed to the lower electron-donating ability of these R substituents compared to 

their alkyl counterparts. No indication of the corresponding iminoformyl tautomers was 

observed. 

 

Richards and co-workers have shown that protonation of electron-rich isocyanide 

complexes [M(CNR)2(dppe)2] (M = Mo, W; R = Me, tBu, Tol) occurs at nitrogen to 

form aminocarbynes [M(CNHR)(CNR)(dppe)2]+ and [M(CNHR)2(dppe)2]2+.145,152 

Similarly, protonation379 or alkylation147 of Na[M(CNR)(CO)2(Tp*)] (M = Mo, W; R = 

Et, tBu) provides aminocarbynes. In the case of [Mo(≡CNHtBu)(CO)2(Tp*)] no 

evidence of the hydride-isocyanide tautomer [MoH(CNtBu)(CO)2(Tp*)] was seen, in 

contrast to the tungsten analogue.254 Similar methodology encompassing protonation or 

alkylation of coordinated isocyanide ligands has been subsequently expanded to provide 
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aminocarbyne complexes of rhenium,12,154,380,381 as well as further molybdenum165 and 

tungsten382 examples. Pickett and co-workers have shown that cyanide complexes 

[M(C≡N)Cl(dppe)2] (M = Mo, W) can also act as precursors to aminocarbynes 

[M(≡CNH2)Cl(dppe)2]n+ (n = 0, 1), in this case via electrochemical reduction in the 

presence of the weak acid phenol.383,384 

 

As no examples of terminal secondary phosphinocarbyne complexes are known, the 

possibility of phosphaisocyanide-hydride or phosphaiminoformyl tautomers existing 

remains unexplored. Our investigations into the first terminal secondary 

phosphinocarbyne complexes are detailed here.  

 

4.2 Synthesis of secondary phosphinocarbyne complexes  

4.2.1 Reduction of chlorophosphinocarbyne complexes with 

borohydride reagents 

The use of hydride reagents to convert halophosphines PXR2 to the corresponding 

secondary phosphines PHR2 is well documented.385-389 In the hopes of achieving the 

first terminal carbyne complex bearing a secondary phosphine substituent, the reaction 

of [W(≡CPClPh)(CO)2(Tp*)] with borohydride reagents (Li[BHEt3] or K[BHsBu3]) was 

investigated. A THF solution of the chlorophosphinocarbyne 15 at room temperature 

was treated with M[BHR3] (M = Li, R = Et; M = K, R = sBu; Scheme 4.3). After 30 

minutes the infrared spectrum of the reaction mixture showed the starting material (νCO 

1992, 1905 cm−1) had been replaced by new bands at 1980 and 1892 cm–1. The 31P{1H} 

NMR spectrum comprised one major product as a singlet with 183W satellites at δP 

−12.8, shifted 100 ppm upfield from that of 15, with a tungsten-phosphorus coupling of 

67.3 Hz typical of a phosphinocarbyne, thus substantiating formation of the desired 

secondary phosphine [W(≡CPHPh)(CO)2(Tp*)] (27). The only known example of a 

secondary phosphinocarbyne complex is the bridging diiron complex [(Cp)(CO)Fe{µ-

CPH(tBu)}(µ-SMe)Fe(CO)(Cp)] (Scheme 1.17), which appears in a similar region of 

the 31P NMR spectrum at δP −6.0 (1JPH 265 Hz).108 
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Scheme 4.3. Synthesis of [W(≡CPHPh)(CO)2(Tp*)] (27) (M = Li, R = Et; 

M = K, R = sBu). 

 

The 1H NMR spectrum showed, in addition to phenyl and Tp* resonances, a doublet 

straddled by tungsten satellites due to the PH proton at δH 5.81 (1JPH 222.7 Hz, 3JWH 7.8 

Hz). This magnitude of 1JPH (222.7 Hz) closely resembles that of diphenylphosphine 

(219 Hz), although the chemical shift is downfield relative to diphenylphosphine (δP –

41.0).390 The only structurally authenticated391 secondary alkynylphosphine 

PH(C≡CMes*)(Mes*) has δH 6.13, δP −98.6 and 1JPH 244.2 Hz.97 In the 13C{1H} NMR 

spectrum the carbyne appears as a doublet at δC 289.5, shifted only marginally 

downfield from that of 15 (δC 286.6). Couplings are observed to phosphorus (1JPC 74.2 

Hz) and tungsten (1JWC 187.8 Hz). The phosphorus-carbon coupling is 21 Hz less than 

that of 15, closely resembling that of the methyl derivative [W(≡CPMePh)(CO)2(Tp*)] 

(75.4 Hz), as would be expected. The carbyne resonance of the bimetallic 

phosphinocarbyne [Fe2{µ-CPH(tBu)}(µ-SMe)(CO)2(Cp)2] (δC 420.0) lies considerably 

downfield from that of 27 as a result of the bridging nature of the carbyne. However, the 
1JPC values of the two complexes are remarkably similar despite differing coordination 

numbers at the carbyne carbon (1JPC 83 Hz cf. 74.2 Hz for 27).108 

 

In the solution infrared spectrum (THF), the PH stretch is present as a very weak 

absorption at 2257 cm–1, close to that of [Fe2{µ-CPH(tBu)}(µ-SMe)(CO)2(Cp)2] (KBr: 

νPH 2279 cm−1),108 along with carbonyl absorption bands at 1980 and 1892 cm–1. The 

νCO absorption bands of 27 are shifted to higher frequency compared to the 

aminocarbyne [W{CNH(Tol)}(CO)2(Tp*)] (CH2Cl2: 1956, 1860 cm−1)254 as anticipated 

based on the increased π-acceptor capacity of phosphinocarbyne ligands over 

aminocarbynes. The solid state Nujol spectrum is much more complicated. The νCO 

region displays bands at 2000 (m), 1977 (vs), 1911 (m), 1895 (vs), 1879 (vs) and 1865 

(sh) cm–1, while in the νPH region very weak bands are observed at 2269, 2244 and 2222 

cm–1. The observation of so many bands could be due to solid state effects, such as a 

number of crystalline polymorphs in the bulk solid sample, or more than one molecule 
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in the crystallographic asymmetric unit, either of which may result in different local 

environments for CO ligands in contrast to the essentially isotropic environment in 

solution. The presence of rotational isomers as an alternative explanation, as has been 

observed in other complexes of this type, is disfavoured by the appearance of only one 

set of CO and PH bands in solution, though again, packing forces in the rigid crystalline 

state may well perturb the conformer distribution that prevails in solution.   

 

X-ray quality crystals and satisfactory elemental analysis data have not been 

forthcoming for 27. However, in addition to the IR and NMR spectroscopic data, mass 

spectrometry and unequivocal synthesis (see Section 4.2.3), confirm the formulation of 

27 as the complex [W(≡CPHPh)(CO)2(Tp*)]. The positive ion ESI mass spectrum 

contains peaks attributable to [M + H]+ and [M + K]+, and high resolution data confirm 

the formulation through the accurate mass match of [M + K]+.  

 

Conveniently, the synthesis of 27 can also be achieved in a one-pot reaction from 1 

(Scheme 4.4), which allows the preparation of bulk samples of 27 with relative ease, 

obviating the purification of the intermediate halophosphine. While this procedure 

proceeds smoothly and the NMR spectra of the reaction mixture show the desired 

product as the major compound (ca. 90% by 31P{1H} NMR spectroscopy), sufficiently 

pure for many further purposes, a number of minor impurities are present as well. 

Frustratingly, purification beyond this level has proven difficult. Chromatography on 

silica or alumina results in decomposition. Removal of the liberated salts can be 

achieved via extraction with pentane or filtration through diatomaceous earth, but unlike 

the chlorophosphinocarbyne complexes, the product does not precipitate from the 

solution upon concentration and cooling so removal of non-polar impurities is not 

effected. Numerous attempts to crystallise the product were unsuccessful. 
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Scheme 4.4. One-pot synthesis of 27 from 1. 

 

Cryostatic chromatography on silica gel using a gradient of toluene/hexane at –40°C to 

minimise decomposition during the chromatographic process afforded spectroscopically 

pure 27, although unfortunately significant losses accompany this process, presumably 

due to hydrolysis on the silica gel support. From a sample containing crude 27 (61% by 
31P{1H} NMR spectroscopy), pure 27 was isolated in only 20% yield. 

 

Protection as the borane adduct, chromatographic purification and subsequent 

deprotection is a popular method in the synthesis and purification of phosphines.225,392 

Treatment of a toluene solution of 27 with BH3·SMe2 resulted in new IR bands in the 

carbonyl region at 1998 and 1892 cm–1, shifted to higher frequency than those of 27. A 

similar shift accompanied the addition of borane to the complex 

[W(≡CPPh2)(CO)2(Tp*)], discussed in Chapter 2. The 31P{1H} NMR spectrum showed 

a broad singlet at δP 10.8, indicative of formation of the borane adduct 

[W(≡CPHPh·BH3)(CO)2(Tp*)]. The reaction mixture was chromatographed on silica at 

–30°C to minimise decomposition using 2:1 CH2Cl2:hexane. Disappointingly, 

chromatography resulted in partial cleavage of the borane and fractions were collected 

containing 27 and 27·BH3 but neither of these species was obtained purely.  

 

Using this borohydride reduction route, synthesis of the cyclohexyl analogue 

[W(≡CPHCy)(CO)2(Tp*)] (28) was also achieved (Scheme 4.5). Treatment of a 

solution of 16 with Li[BHEt3] resulted in a brown solution, the 31P{1H} NMR spectrum 

of which contained a singlet at δP –4.6 with 183W satellites (2JWP 64.7 Hz). Removal of 

the 1H-decoupling gave a doublet of multiplets with a 1JPH coupling of 209.8 Hz, 
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consistent with the expected one-bond phosphorus-hydrogen coupling of 28. This 

coupling is replicated in the 1H NMR spectrum in the observation of a doublet of 

doublets due to the PH proton at δH 4.71 with couplings of 1JPH 210.0 Hz and 3JHH 6.0 

Hz. In the infrared spectrum (THF), in addition to the typical νCO (1976, 1887 cm–1) and 

νBH (2550 cm–1) bands, an absorption band is seen at 2243 cm–1 for the PH stretch. 
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Scheme 4.5. Synthesis of [W(≡CPHCy)(CO)2(Tp*)] (28) via reduction of 

the chlorophosphine. 

 

Satisfactory elemental analysis could not be obtained for 28. However, excitingly, 

crystals suitable for X-ray diffraction were obtained from an Et2O/pentane solution of 

28 at −24°C. The results of the X-ray study are shown in Figure 4.1. The crystal 

structure is racemic (P21/n), with each unit cell containing two molecules of R-28 and 

two molecules of S-28. The W1−C1−P1 angle shows a moderate distortion from 

linearity (168.7(7)°). The geometry about phosphorus is tetrahedral. The location of H1 

could not be determined from the difference electron density map. However, inclusion 

of two hydrogen atoms with 50% occupancy at calculated positions on P1 led to a short 

intermolecular H−H distance of 1.87 Å from one P1−H hydrogen atom to a Tp*−CH3 

hydrogen atom of a neighbouring molecule. Thus this hydrogen atom was removed and 

the remaining hydrogen atom (H1) was assigned full occupancy. 
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Figure 4.1. Molecular structure of S-28 in a crystal of rac-28 (50% 

displacement ellipsoids, hydrogen atoms except H1 omitted, R-enantiomer 

generated by P21/n symmetry). Selected bond lengths (Å) and angles (°): 

W1−C1 1.835(11), C1−P1 1.785(11), P1−C41 1.872(11), W1−C1−P1 

168.7(7), C1−P1−C41 106.4(5). 

 

In both the phenyl and cyclohexyl species no evidence of a phosphaisocyanide-hydride 

tautomer was seen in the NMR or IR spectra (Scheme 4.6). The existence of a C≡P 

bond would not be as diagnostic as the νC≡N stretch that was seen in Angelici's case as 

the νC≡P mode would be expected to appear in a region of the infrared spectrum already 

cluttered by pyrazolyl modes. The accompanying W−H moiety would be obvious in the 
1H NMR spectrum, however, no hydride resonance was observed and neither was a 

second 31P NMR resonance. 
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Scheme 4.6. No evidence for a phosphaisocyanide-hydride tautomer of 27 

or 28 was observed (R = Ph, Cy). 

 

The absence of a phosphaisocyanide-hydride isomer is not unexpected. Unlike the 

commonly encountered isocyanide ligands, true phosphaisocyanide ligands and 
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complexes thereof remain unknown. Previous attempts to synthesise such species 

tended to result in isomerisation to the phosphaalkyne isomers P≡CR and M−P≡CR 

which was attributed to the reticence of phosphorus to undergo s-p mixing of valence 

orbitals.95  

 

4.2.2 Other attempted syntheses of secondary phosphinocarbyne 

complexes 

The difficulties encountered in obtaining large quantities of pure compound led us to 

explore a number of alternative routes for the synthesis of [W(≡CPHCy)(CO)2(Tp*)]. A 

simpler one step reaction would be that of the bromocarbyne complex 1 with 

cyclohexylphosphine, which was anticipated to produce the desired carbyne 28 with 

concomitant loss of HBr (Scheme 4.7). However, after two days the 1H NMR spectrum 

revealed that the major component was unreacted 1. The 31P{1H} NMR spectrum 

indicated a mixture of 28, unreacted PH2Cy, the bis-substituted complex [W(µ-

C2PCy)(CO)2(Tp*)] (34) and an unknown species (δP 43.0). Although this reaction does 

produce some of the desired product, it proceeds too slowly to be synthetically viable. 
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Scheme 4.7. One step synthesis of [W(≡CPHCy)(CO)2(Tp*)] (28). 

 

Reaction of lithium phosphide salts with transition metal halides has been used to 

synthesise phosphide complexes with extrusion of the lithium halide.393 Elaboration of 

this methodology to the reaction of 1 with lithium cyclohexylphosphide resulted in over 

20 peaks in the 31P{1H} NMR spectrum (Scheme 4.8). The desired product was present 

(δP –4.6), but unfortunately not in a sufficient quantity to deem this route viable (ca. 6% 

by 31P{1H} NMR spectroscopy). 
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Scheme 4.8. Attempted synthesis of 28 using LiPHCy. 

 

It was hoped that use of the phosphine-borane adduct would decrease the reactivity of 

the intermediates formed in this reaction and hopefully result in a cleaner reaction. 

Repeating this reaction with the borane adduct led to only six products in the 31P{1H} 

NMR spectrum, unfortunately none of which corresponded to the desired product 

[W(≡CPHCy·BH3)(CO)2(Tp*)] (δP 20.0, Scheme 4.9). It is perhaps not surprising that 

these lithium phosphide syntheses were unsuccessful as the attempted synthesis of 

[Mo(≡CPPh2)(CO)2(Tp*)] via the reaction of [Mo(≡CBr)(CO)2(Tp*)] with LiPPh2 did 

not furnish the desired phosphinocarbyne complex (Scheme 1.5).54 
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Scheme 4.9. Attempted synthesis of [W(≡CPHCy·BH3)(CO)2(Tp*)].  

 

4.2.3 Palladium-catalysed phosphination 

As introduced in Section 2.3, a palladium-mediated P−C bond forming reaction 

between 1 and diphenylphosphine provided access to 2. Palladium-catalysed reactions 

of this type are well established for secondary phosphines and C(sp2)−X functionalities, 

but are uncommon for primary phosphines.83,215,216,394 The P−H substitutions of primary 

phosphines proceed in a stepwise fashion, and in some cases isolation of the secondary 

phosphines is possible when the appropriate stoichiometry is employed,83,215 although 

this may also require quenching of the reaction mixtures at the maximal PHRR' 

concentration.394  
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To this end, the reaction of 1 with cyclohexylphosphine, NEt3 and [Pd(PPh3)4] (5 

mol%) was carried out (Scheme 4.10). Initial monitoring of the reaction at room 

temperature saw the gradual disappearance of the starting material (νCO 1987, 1896 cm–

1) and appearance of the product (νCO 1976, 1888 cm–1). After one day the IR spectrum 

showed approximately equal intensity bands for both species, and after two days a 

significant amount of starting material still remained. Gratifyingly, when the reaction 

was heated to 80°C, complete consumption of 1 occurred within one hour. 
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Scheme 4.10. Synthesis of [W(≡CPHCy)(CO)2(Tp*)] (28) via palladium-

catalysed P−C bond formation. 

 
31P{1H} NMR spectroscopy of the reaction mixture indicated that the desired product 

[W(≡CPHCy)(CO)2(Tp*)] (28) represented the major component (δP −4.6, 2JWP 64.7 

Hz), but this was accompanied by two significant impurities: [W2(µ-

C2PCy)(CO)4(Tp*)2] (34, δP 89.9, 2JWP 67.5 Hz) as a result of a second P−H 

substitution, and PPh3 (δP −4.6). The 31P{1H} NMR spectrum indicated a considerable 

quantity of PPh3 was present, liberated from the [Pd(PPh3)4] catalyst used (5 mol% 

[Pd(PPh3)4] equates to 20 mol% PPh3 and thus represents a significant impurity). 

 

Chromatography at –40°C on silica gel using 3:2 hexane:CH2Cl2 as the eluent afforded 

spectroscopically pure 28 as a yellow powder in 43% yield. Although this secondary 

phosphinocarbyne is somewhat stable, it does still appear to undergo partial hydrolysis 

during chromatography, resulting in the low isolated yield. Attempts to scale up the 
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reaction to gram scales disappointingly resulted in decreased isolated yields as a 

consequence of an increased proportion of the product hydrolysing on the silica column.  

 

These conditions provide yields of ca. 90% of the desired product based on 31P{1H} 

NMR spectra of reaction mixtures, but unfortunately the long times and low yields 

obtained by cryostatic chromatography are not amenable to providing large quantities of 

high purity 28 for use as a synthetic precursor to functionalised carbynes. Repeated 

efforts to purify bulk samples of 28 by precipitation or crystallisation were ineffectual.  

 

A number of variations in the experimental conditions were trialled to address two 

issues that arising from this reaction: formation of the bis-substituted complex and 

removal of the PPh3 impurity. Attempts to limit formation of the bis-substituted 

complex [W2(µ-C2PCy)(CO)4(Tp*)2] (34) by conducting the reaction at a lower 

temperature (THF at reflux) did not supress the second substitution. A variety of 

palladium catalysts were screened for this reaction (Table 4.1). A survey of the 

literature showed that although [Pd(PPh3)4] appears to be the most common catalyst, a 

number of other catalysts have been demonstrated to effect P−C bond forming 

reactions.395,396 

 

Table 4.1. Coupling reactions of 1 with PH2Cy. 

Catalyst Loading 
(mol% Pd) Base Temp. 

(°C) 
Time 

(hours) 
Yield 28 

(%) 
Yield 34 

(%) 

None - - 25 48 35 11 

None - NEt3 80 24 39 32 

[Pd(PPh3)4] 5 NEt3 80 1 88a 12a 

[Pd(OAc)2] 3 NEt3 80 24 11 59 

[PdCl2(dppe)] 10 NEt3 80 48 14 28 

[Pd2(dba)3] 5 NEt3 80 24 9 22 

Yields quoted represent the % yield as estimated by 31P{1H} NMR spectroscopy.  
a Yields are approximate due to the overlapping chemical shifts of 28 and PPh3.  
 

The palladium catalysts [Pd(OAc)2], [PdCl2(dppe)] and [Pd2(dba)3] were anticipated to 

alleviate the purification difficulties encountered. Removal of ligand-derived impurities 

from the phosphine-free catalysts [Pd(OAc)2] and [Pd2(dba)3] was envisaged to be more 
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straightforward (e.g. by filtration or chromatography), whereas the bidentate phosphine 

dppe was selected as chelation should render it more tightly bound to the palladium 

centre and hence lead to less liberated phosphine ligand in the reaction mixture. 

However, all three catalysts were relatively ineffectual for the synthesis of 28, as 

outlined in Table 4.1, requiring longer reaction times whilst providing lower yields and 

favouring formation of the bis-substitution product 34 over the desired mono-

substituted species. 

 

When the reaction was attempted in the absence of palladium, IR spectroscopy 

indicated that only 1 was present after one hour at 80°C. After 24 hours at this 

temperature, consumption of 1 was complete. However, the 31P{1H} NMR spectrum 

showed 28 constituted only 39% of the reaction mixture, accompanied by a 

considerable amount of 34 (32%) as well as more than ten other phosphorus-containing 

species. 

 

Of the systems screened, [Pd(PPh3)4] catalysis gave by far the best results. When these 

conditions were applied to the reaction of 1 with phenylphosphine, the mono-substituted 

[W(≡CPHPh)(CO)2(Tp*)] (27) and bis-substituted [W2(µ-C2PPh)(CO)4(Tp*)2] (33) 

complexes were obtained in a ratio of approximately 2:1 (Scheme 4.11). Conducting the 

reaction with a large excess of phosphine to try to favour formation of 27 did not affect 

the production distribution. Slow addition of 1 to the reaction did not provide 

appreciable quantities of 27. 
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Scheme 4.11. Synthesis of [W(≡CPHPh)(CO)2(Tp*)] (27) via palladium-

catalysed P−C bond formation. 
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The increased production of the bimetallic carbyne 33 means that the second 

substitution (i.e. that of 27) is more favourable than in the cyclohexyl complex. This is 

thought to be predominantly a steric effect; the large bulk of the cyclohexyl substituent 

means that the second substitution is less favoured. This is consistent with the sterically 

demanding [Pd(PPh3)4] catalyst favouring formation of the monometallic carbynes, 

although the formulation of the active catalyst and the precise mechanism for the 

catalysis are not known. The extended reaction times required might also contribute to 

the larger quantities of 34 formed in these cases. 
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Figure 4.2. Proposed catalytic cycle for the palladium-catalysed 

phosphination of 1. 

 

The catalytic cycle is thought to follow the typical route for palladium-catalysed C−P 

cross-coupling reactions,396 and is outlined in Figure 4.2. The palladium(0) pre-catalyst 

[Pd(PPh3)4] dissociates in solution to form the active catalyst, presumably a 14-electron 

[Pd0L2] species, wherein L could be PPh3, PHRR' or indeed even 

[W(≡CPRR')(CO)2(Tp*)] during the catalytic cycle. Oxidative addition of halocarbynes 

to zero-valent palladium complexes gives trans-[PdX(L)2{C≡M(CO)2(Tp*)}] 

complexes, implicit in previous palladium-mediated coupling processess.54,397,398 A 

ligand exchange reaction and trans-cis isomerisation occurs, although the order of these 
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steps is indeterminate, then subsequent reductive elimination of the phosphinocarbyne 

product ensues. 

 

4.2.4 Thermal stability of [W(≡CPHPh)(CO)2(Tp*)] 

As will be shown in Chapter 5, the bimetallic complexes [W2(µ-C2PR)(CO)4(Tp*)2] 

undergo a fascinating thermal rearrangement to the bridging metallaphosphirene species 

[W2{µ:η1-C;η2-C,P-CC(PR)}(CO)4(Tp*)2]. It was hoped that a similar rearrangement 

would occur with the monometallic complex 27 to form a metallaphosphirene [W{η2-

C(H)PPh}(CO)2(Tp*)], reminiscent of the rearrangement of 

[W(≡CPHPh2)(CO)2(Tp*)]+ discussed in Section 2.6. Heating a solution of 27 in 

toluene at 110°C yielded numerous products, as evident in the 1H NMR, 31P{1H} NMR 

and IR spectra (Scheme 4.12). The major species in the 31P{1H} NMR spectrum was a 

singlet at δP 32.3 without discernable 183W satellites. Disappointingly, no resonances 

were observed below −25 ppm in the expected region for a phosphorus-containing 

three-membered ring, demonstrating that the thermal decomposition of 27 does not 

follow the same pathway as that of [W2(µ-C2PR)(CO)4(Tp*)2].  
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Scheme 4.12. Attempted thermal rearrangement of 27. 

 

4.3 Synthesis of an amino-substituted secondary phosphinocarbyne 

complex 

Aminophosphines bearing a P−H bond are relatively rare. In most cases they are 

thermally unstable with respect to amine elimination and formation of 

cyclopolyphosphines, and require steric protection or incorporation into a cyclic 

framework in order to be prepared. In these cases, reduction of the corresponding 

chlorophosphine using lithium aluminium hydride is commonly employed as a 

preparative route (Scheme 4.13),399-401 although isolated examples of alternative routes 

have been reported.402-404 
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Scheme 4.13. Synthesis of secondary aminophosphines via reduction with 

lithium aluminium hydride. 

 

As the [W{≡CP(NiPr2)}(CO)2(Tp*)] moiety is sterically demanding, we envisaged that 

it might impart sufficient kinetic stability to allow isolation of the secondary phosphine. 

Treatment of a THF solution of 19 with Li[BHEt3] resulted in a mixture of compounds 

as determined by IR and NMR spectroscopies. The 31P{1H} NMR spectrum contained a 

peak corresponding to the desired secondary phosphine [W{≡CPH(NiPr2)}(CO)2(Tp*)] 

(29) at δP 22.6 with coupling to tungsten of 77.6 Hz, consistent with a three-coordinate 

phosphine (Scheme 4.14). Removal of the 1H-decoupling gave a doublet of triplets 

resonance with 1JPH 229.5 Hz due to the P−H proton and 3JPH 20.8 Hz due to the 
iPr(CH) protons.  
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Scheme 4.14. Synthesis of [W{≡CPH(NiPr2)}(CO)2(Tp*)] (29) by reduction 

of 19 with Li[BHEt3]. 

 

Attempts to replicate this reaction led to varying proportions of 29 and a second species 

at δP 69.0, denoted 30. This compound also displays tungsten-phosphorus coupling 

indicative of a three-coordinate phosphine (71.7 Hz), for which a number of possible 

products were envisaged, outlined in Figure 4.3.  

 



150 Chapter 4: Secondary phosphinocarbyne complexes 

 

 

W C

Tp*

OC
OC

HW C

Tp*

OC
OC

P

H
NiPr2

W

Tp*

OC
OC

C

P

H

NiPr2

BEt3

W C

Tp*

OC
OC

P

H
N
iPr2

BEt3 W C

Tp*

OC
OC

P
NiPr2

W C

Tp*

OC
OC PHNiPr2

H

W C

Tp*

OC
OC

P

Et
NiPr2

30

W C

Tp*

OC
OC

P
P WC

Tp*

CO
CONiPr2

iPr2N

W C

Tp*

OC
OC

P

H
H

 
Figure 4.3. Possible side products from the reaction of 19 with Li[BHEt3]. 

 

The 1H-coupled 31P NMR spectrum of 30 appears as a broad multiplet (LW1/2 50 Hz), 

indicating that 30 does not contain any P−H protons, as this would lead to a diagnostic 

coupling of ca. 200 Hz. Additionally, the phosphorus atom must be within two or three 

bonds of other protons to give rise to the multiplet observed. If the only protons with 

which the phosphine was coupling were those on the iPr group we would expect to see a 

triplet resonance, as the 31P NMR spectrum of 29 showed a resolved doublet of triplets 

resonance. If the product obtained was the triethylborane adduct of 29 then the 31P{1H} 

NMR spectrum should show a broad singlet resonance due to coupling to the 

quadrupolar 11B nucleus. Of those products envisaged, the only one that matches the 31P 

and 31P{1H} NMR data is [W{≡CPEt(NiPr2)}(CO)2(Tp*)] (30, shown in blue in Figure 

4.3). This compound would result from transfer of an Et– group from the Li[BHEt3] 

reductant rather than the desired H– transfer. 

 

Unfortunately, separation of 29 and 30 was not effected by chromatography on alumina. 

Rather, both species seemed to decompose, and neither eluted from the column. Hence 

confirmation of the formulation of 30 as the ethyl-substituted phosphine through 

analysis of 1H and 13C{1H} NMR spectra was not possible as the NMR spectra of the 

crude mixture were too complicated in the alkyl region to be reliably assigned. The high 
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resolution mass spectrum of the crude mixture did contain a peak corresponding to [30 

+ H]+, supporting the identity of 30 as the ethyl-substituted phosphine. It is interesting 

to note, however, that no evidence of replacement of the diisopropylamino group was 

observed, even when Li[BHEt3] was added in excess (two equivalents). 

 

In an attempt to circumvent these problems, the reaction of 19 with K[BHsBu3] was 

carried out, but this resulted in a number of broad peaks in the 31P{1H} NMR spectrum 

(δP 155.3, 130.2, 86.8, 24.6, 20.9, 13.4 and 3.2). Phosphorus coordination of liberated 

BsBu3 might account for the broad nature of the peaks. A peak at δP 69.0 was 

conspicuously absent, supporting the assignment of this as the ethylphosphine 30. In the 
1H NMR spectrum a very weak doublet at δH 6.43 with 1JPH 232.1 Hz suggested that a 

small quantity of 29 did form, but the Tp* and alkyl regions of the spectrum indicated a 

multitude of species were present in the reaction mixture. 

 

The use of lithium aluminium hydride as the reductant was trialled, but this was met 

with limited success. Addition of 0.25 equivalents of LiAlH4 to 19 produced only 9% of 

29, with unreacted 19 accounting for the bulk of the reaction mixture. Addition of 

further LiAlH4 did not produce appreciable quantities of 29, and as a consequence of the 

lack of success attempts to synthesise 29 were abandoned. 

 

4.4 Deprotonation of secondary phosphinocarbyne complexes 

Secondary phosphines are weakly acidic (e.g. PHPh2: pKa 22)313 and deprotonation with 

a strong base yields phosphide anions PR2
–. Phosphide anions are considerably more 

stable than carbanions and can often be isolated, accounting for their common use as 

nucleophiles in syntheses. Based on these common observations of the stability and 

reactivity of phosphide anions, the synthesis of carbyne-substituted phosphide anions 

appeared attractive, especially due to the interest they incite from their analogy with 

phosphaisocyanide ligands. 

 

As mentioned in Section 4.1, protonation of electron-rich isocyanide complexes at 

nitrogen leads to the formation of aminocarbyne complexes. Although this methodology 

has not been tested in reverse, it is conceivable that deprotonation of a secondary 

aminocarbyne complex could generate the corresponding isocyanide species. Indeed 

this may be implicit in Angelici's observed aminocarbyne/hydride-isocyanide 
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tautomerism if inter- rather than intramolecular proton transfer was to operate. 

Extending this to phosphorus, it was envisaged that deprotonation of secondary 

phosphinocarbynes might produce phosphaisocyanide complexes similar to that 

prepared by Cummins [Mo(≡CPPhNa)(S')2(X)3]2 (S' = Et2O, THF; X = NtBu(3,5-

C6H3Me2)), in that case via reduction of the chlorophosphinocarbyne 

[Mo(≡CPClPh)(X)3].40 As outlined in Section 1.4.2, a true terminally-ligated 

phosphaisocyanide complex remains unknown, the closest example being that of 

[Mo(≡CPPhNa)(S')2(X)3]2, which crystallographic data indicated was most aptly 

described as a phosphidocarbyne rather than an anionic complex of a 

phosphaisocyanide.  

 

4.4.1 Deprotonation with butyllithium 

A solution of 28 was treated with an excess of nBuLi and stirred at –78°C for 30 

minutes followed by 90 minutes at room temperature, then quenched with D2O (Scheme 

4.15). 31P{1H} NMR spectroscopy indicated that the product consisted of 28 and the 

deuterated species [W(≡CPDCy)(CO)2(Tp*)] (28a) in a 2:1 ratio. Incorporation of 

deuterium leads to a diagnostic 1:1:1 triplet (2H, I = 1) at δP –6.2 (C6D6) with a 

phosphorus-deuterium coupling constant of 1JPD 32.3 Hz, indicative of 28a.  
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Scheme 4.15. Deprotonation of 28 with nBuLi.  

 

Attempts to increase this conversion by using extended reaction times, higher 

temperatures and more reactive bases (tBuLi, nBuLi + tmeda) were unsuccessful. 

Further investigations led to the assertion that the anion [W(CPCy)(CO)2(Tp*)]– ([31]−), 

which can be described as a phosphidocarbyne or an anionic phosphaisocyanide 

complex, is extremely basic and any trace quantities of proton sources results in 

reprotonation to reform 28. Although standard precautions were taken in these reactions 

for the removal of air and moisture, the sensitivity of [31]− is such that rigorous drying 

of all glassware and fresh distillation of solvents is necessary. Due to the continual 
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presence of 28 in attempted reactions with BuLi, efforts were redirected towards a 

different base. 

 

4.4.2 Deprotonation with potassium hydride 

Morris and co-workers have successfully synthesised phosphide anions by 

deprotonating the corresponding secondary phosphine using potassium hydride.405,406 

Although the low solubility of potassium hydride is sometimes a limitation, the 

attraction of this base is that the only by-product of the reaction is hydrogen gas, thus 

obviating the need for purification, which given the highly reactive nature of the 

product would most likely be problematic.  

 

The reaction of 28 with excess potassium hydride in THF was carried out, in which 

visible effervescence was observed in the resulting brown solution. In the 31P{1H} 

NMR spectrum a broad singlet was present at δP 115.3, which disappeared upon 

addition of D2O, coupled with the appearance of a 1:1:1 triplet at δP –6.2 (2JPD 32.8 Hz) 

assigned to the deuterated phosphine 28a (Scheme 4.16). In the absence of moisture or 

acidic protons, K[31] is reasonably stable; in the presence of excess KH the NMR 

sample of K[31] showed little change over 24 hours.  
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Scheme 4.16. Deprotonation of 28 with potassium hydride.  

 

The NMR value for K[31] is comparable to that observed by Cummins for his salt 

[Mo(≡CPPhNa)(X)3(Et2O)(THF)]2 (X = NtBu(3,5-C6H3Me2)) in THF-d8 of δP 103.5.40 

Interestingly, this signal showed significant dependence upon solvation of the sodium 

counter ion; in the presence of 12-crown-4 the value occurs at δP 126.1 (THF-d8), while 

in benzene-d6 the resonance shifts upfield to δP 68.8 (broad). The chemical shift of the 

salt K[31] is relatively independent of the solvation of the potassium cation in the 
31P{1H} NMR spectra. In benzene-d6, K[31] appears at δP 113.9 whereas in THF in the 

presence of dibenzo-18-crown-6 it is observed at δP 114.5. This demonstrates that the 

degree of ion pairing is less dependent upon solvation for K[31] than for 
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[Mo(≡CPPhNa)(X)3(Et2O)(THF)]2 as the anion [31]− and the K+ cation effectively act 

as free ions in solution. The phosphorus resonances for the bridging phosphaisocyanide 

complexes [Pt2(µ-C=PR)XX'(PEt3)3] (R = Mes, X = X' = Cl, Br; R = Me, X = Cl, X' = 

I) appear slightly downfield (δP 142.3 - 155.4)88,90,103 compared to that of K[31], yet the 

only other examples of bridging phosphaisocyanide complexes [Fe2(µ-C=PAr)(µ-

CO)(CO)2(Cp)2] (Ar = 2,4,6-C6H2R3; R = Me, iPr, tBu) occur 100 ppm downfield of this 

(δP 249.3 - 258.0),106 illustrating the extreme variation that is possible for phosphorus in 

phosphaisocyanide environments. 

 

Acquisition of infrared data for K[31] was hampered by the continual presence of 28. IR 

spectra were recorded in THF solution in a KBr cell made up under an argon 

atmosphere in a glove box, but the small quantities required for the measurement of IR 

spectra (< 0.1 mL) meant that inclusion of 28 in the spectra was unavoidable due to 

proton scavenging by K[31]. Nevertheless, the νCO bands of K[31] were identifiable in 

spectra containing a mixture of K[31] and 28 at 1862 and 1753 cm–1 (THF). This is a 

considerable shift compared to 28 (1976, 1887 cm–1), and may be rationalised in 

valence bond terms by the relative contribution of the phosphaisocyanide resonance 

form (Figure 4.4(b)) to the bonding description. This involves some localisation of 

electron density at the tungsten centre, which results in increased retro-donation to the 

carbonyl ligands, as evidenced by the shift to lower frequency. Further discussions of 

the infrared spectroscopic data follow below. 
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Figure 4.4. (a) Phosphidocarbyne and (b) phosphaisocyanide resonance 

contributing forms of 31. 

 

Application of these conditions to 27 provided the phenyl-substituted 

phosphaisocyanide salt K[W(CPPh)(CO)2(Tp*)] (K[32]) (Scheme 4.17). Treatment of a 

THF solution of 27 with excess potassium hydride afforded a red suspension, the 
31P{1H} NMR spectrum of which contained a singlet at δP 81.9 with resolvable tungsten 

satellites (2JWP 47.0 Hz). The tungsten-phosphorus coupling is less than that of the 
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precursor 27 (2JWP 67.3 Hz), and follows the previously observed trend wherein higher 

coordination numbers at phosphorus lead to larger 2JWP values. The 1H NMR spectrum 

displays a 2:1 ratio of the Tp* environments, consistent with what is expected for K[32] 

as chirality is lost upon deprotonation.  
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Scheme 4.17. Deprotonation of 27 with potassium hydride.  

 

The 13C{1H} NMR spectrum of K[32] in THF-d8 showed a significant downfield shift 

of almost 70 ppm for the ''carbyne'' resonance (δC 358.9, cf. δC 289.5 (C6D6) for 27). 

The magnitude of 1JPC (100.6 Hz) is the largest that has been observed in this work, and 

might result from increased multiple bonding (and hence increased s-character) along 

the W−C−P linkage. Unfortunately, the carbyne resonance for 

[Mo(≡CPPhNa)(X)3(Et2O)(THF)]2 (X = NtBu(3,5-C6H3Me2)) has not been reported, 

and the isocyanide [M(CNR)(CO)2(L)]− and thiocarbonyl [M(CS)(CO)2(L)]− analogues 

of [32]− have not been characterised by 13C NMR spectroscopy. In the absence of other 

directly related complexes little data is available for comparison. 13C{1H} NMR data 

have been reported for the bridging phosphaisocyanide complexes [Fe2(µ-C=PAr)(µ-

CO)(CO)2(Cp)2] (Ar = 2,4,6-C6H2R3; R = Me, iPr, tBu) and in these cases the CFe2 

resonances occur in a similar region to K[32] (δC 338.8 - 345.8), with comparable 1JPC 

values (92 - 97 Hz), although the bimetallic nature of these species means that only 

tentative parallels can be drawn.106  

 

The salt K[32] is not as basic as K[31], and clean infrared data were obtained for a 

sample of K[32] made in a glove box. In the infrared spectrum bands are observed in 

the carbonyl region at 1889, 1877 and 1771 cm−1 (THF). These absorptions lie to higher 

frequency than was seen for K[31], suggesting that the CPPh ligand is a better π-

acceptor than the cyclohexyl analogue, consistent with the electron-releasing nature of 

the cyclohexyl moiety.  
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Table 4.2 details the carbonyl absorption data for a series of complexes 

[M(CER)(CO)2(Tp*)] and [M(CE)(CO)2(Tp*)]− (M = Mo, W; E = PCy, PPh, NEt, S, O, 

CH2; R = H, Me, Et), along with [W(≡CH)(CO)2(Tp*)] and [W(≡CLi)(CO)2(Tp*)] for 

comparison. As can be seen, the expected general trend prevails of a shift in the νCO 

frequency to lower frequency upon formation of the anionic [M(CE)(CO)2(Tp*)]− salts. 

Typically, shifts in the order of 100 cm−1 are observed, although in the most extreme 

example ([W(≡CNEt2)(CO)2(Tp*)] cf. Na[W(CNEt)(CO)2(Tp*)]) a difference of ca. 

200 cm−1 is seen.147 Carbonyl absorption bands to lower frequency signify increased 

electron density at the metal centre, i.e. greater contributions from the −M=C=E 

resonance descriptor, and consequently increased retrodonation to the carbonyl co-

ligands. In the case of the phosphorus-functionalised salts K[31] and K[32], the νCO 

bands appear at more than 100 cm−1 higher in frequency than the isocyanide analogue 

Na[W(CNEt)(CO)2(Tp*)].147 On the basis of this, bonding in the CPR ligands of K[31] 

and K[32] should not be viewed as entirely phosphaisocyanide in character. However, 

the dramatic alteration of the νCO frequencies upon deprotonation indicates a substantial 

amount of charge density has been transferred to the tungsten centre, and as such the 

phosphidocarbyne canonical form is also insufficient to explain the WCPR bonding. 

These data together indicate that the complexes [31]− and [32]− lie between these two 

extreme descriptions, but give considerable weight to these species being the first 

examples of terminal phosphaisocyanide complexes. 
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Table 4.2. Selected infrared spectroscopic data for [M(CER)(CO)2(Tp*)] 

and [M(CE)(CO)2(Tp*)]−. 

Complex νCO (cm−1) kCO (N m−1) ΔkCO 

[W(≡CPHCy)(CO)2(Tp*)] (28) 1976, 1887 15.07  

K[W(CPCy)(CO)2(Tp*)] (K[31]) 1862, 1753 13.21 1.86 

[W(≡CPHPh)(CO)2(Tp*)] (27) 1980, 1892 15.14  

K[W(CPPh)(CO)2(Tp*)] (K[32]) 1889, 1877, 1771 13.49d 1.65 

[W(≡CNEt2)(CO)2(Tp*)]147 1936, 1833a 14.35  

Na[W(CNEt)(CO)2(Tp*)]147 1731, 1685, 1649 - - 

[Mo(≡CSMe)(CO)2(Tp*)]201 1987, 1904b 15.29  

[NEt4][Mo(CS)(CO)2(Tp*)]201 1886, 1794c 13.68 1.61 

[W(≡COMe)(CO)2(Tp*)]407 1958, 1862 14.74  

[NEt4][W(CO)3(Tp*)]407 1876, 1737a 13.20 1.54 

[W(≡CCH3)(CO)2(Tp*)]64 1968, 1876 14.53  

Li[W(CCH2)(CO)2(Tp*)]64 1858, 1686 12.71 1.82 

[W(≡CH)(CO)2(Tp*)]64 1986, 1893 15.20  

Li[W(C)(CO)2(Tp*)]64 1916, 1819 14.09 1.11 

IR spectra were recorded in THF, unless otherwise indicated. a CH2Cl2. b Unspecified 

medium. c KBr. d Based on average value for νsym. 

 

Attempts to crystallise K[31] and K[32] were unsuccessful. However, excitingly, 

crystals were obtained from a THF/Et2O solution of K[32] in the presence of 2.2.2-

cryptand at −25°C. The results of an X-ray crystallographic study of [K(2.2.2-

cryptand)][W(CPPh)(CO)2(Tp*)] are shown in Figure 4.5. The solid state structure 

clearly demonstrates the two-coordinate environment at phosphorus, which exhibits a 

bent geometry with a C1−P1−C41 angle of 104.4(3)°, close to what was seen in 

[W(≡CPHCy)(CO)2(Tp*)] (28, 106.4(5)°), [W(≡CPPh2)(CO)2(Tp*)] (2, 101.52(12)°, 

106.02(12)°) and [Mo(≡CPPhNa)(X)3(Et2O)(THF)]2 (X = NtBu(3,5-C6H3Me2), 

106.0(2)°), as well as in the calculated geometry for the model system 

[Mo(CPPh)(NH3)3]− (104.7°).40 Isocyanide ligands bound to electron-rich metal centres 

can, in the absence of steric effects, exhibit pronounced bending of the C−N−R spine 

(e.g. 139.4(10)° in [Re(CNMe)Cl(dppe)2]),408 ascribed to extensive π retrodonation to 
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the isocyanide C≡N π* orbital, formalised by significant contributions from the 

M=C=N−R canonical form.13 The W1−C1−P1 angle is distorted from linearity 

(167.0(4)°), as is commonly observed for carbyne complexes.  
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Figure 4.5. Full view (left) and simplified view (right – depicted looking 

down the P1−C1−W1 axis) of the molecular structure of [K(2.2.2-

cryptand)][32] in a crystal (50% displacement ellipsoids, hydrogen atoms 

omitted). Selected bond lengths (Å) and angles (°): W1−C1 1.915(7), 

C1−P1 1.692(7), P1−C41 1.830(8), W1−C1−P1 167.0(4), C1−P1−C41 

104.4(3). 

 

Importantly, the W1−C1 bond length (1.915(7) Å) is significantly elongated compared 

to conventional tungsten carbyne complexes and compared to phosphinocarbynes (e.g. 

28 1.835(11) Å, 2 1.827(2) Å). In Cummins' molybdenum phosphidocarbyne species 

[Mo(≡CPPhNa)(X)3(Et2O)(THF)]2 the Mo−C bond length is even shorter at 1.762(5) Å. 

The elongated W1−C1 bond in [K(2.2.2-cryptand)][32] demonstrates that the 

phosphaisocyanide resonance description is a significant contributor to the ground state 

structure. The W1−C1 bond length approaches that of isocyanide complexes (e.g. 

W−CNR 2.079(12) and 2.047(12) Å in [W(C≡NtBu)(STol)(CO)2(Cp)]),409 and is 

comparable to that of thiocarbonyl complexes (e.g. W−CS 1.944(19) Å in 

[W(CS)(CO)2(CNCy)]).410 Additionally, the C1−P1 bond (1.692(7) Å) is contracted 
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compared to the phosphinocarbyne complexes 28 (1.785(11) Å) and 2 (1.783(3) Å), and 

the phosphidocarbyne [Mo(≡CPPhNa)(X)3(Et2O)(THF)]2 (1.771(5) Å), yet DFT studies 

of the model system [Mo(CPPh)(NH2)3]– revealed a degree of Mo−C−P π bonding.40 

The C1−P1 bond length is comparable to the C=P bond lengths in phosphaalkenes (e.g. 

(Mes)P=CPh2 1.692(3) Å).411 Taken together these data establish that, although 

contributions from both the phosphidocarbyne and phosphaisocyanide canonical forms 

are evident, those from the phosphaisocyanide form are indisputable. As such, [32]− can 

confidently be regarded as the first known example of a terminal phosphaisocyanide 

complex. 

 

4.4.3 Reaction with methyl iodide 

In order to demonstrate the synthetic utility of these anions, alkylation was probed 

through the reaction of K[32] with the methylating agent methyl iodide. A THF solution 

of 27 was treated with potassium hydride to generate K[32], as confirmed by 31P{1H} 

NMR spectroscopy, followed by addition of methyl iodide. 31P{1H} NMR spectroscopy 

indicated that [W(≡CPMePh)(CO)2(Tp*)] (20) was the major component of the reaction 

mixture (Scheme 4.18). Electrophilic addition of Me+ to K[32] complements the 

previous strategy in which nucleophilic addition of Me− (as MeLi) to 

[W(≡CPClPh)(CO)2(Tp*)] generated 20 (Section 3.3.1).  
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Scheme 4.18. Synthesis of 20 via deprotonation and alkylation. 

 

This preliminary result suggests that the phosphorus is the preferred site for 

electrophilic addition to [32]−, rather than the metal. But as was seen in Chaper 2, 

electrophilic addition reactions to phosphorus-functionalised carbynes can take a 

number of pathways. It is possible that in the future more extensive studies might 

demonstrate similarly diverse reactivity for [32]−. 
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4.5 Summary 

The synthesis of the first examples of terminal secondary phosphinocarbyne complexes 

has been achieved. Transformation of the bromocarbyne complex 1 into secondary 

phosphinocarbyne complexes can be accomplished in a one-pot reaction involving 

metal-halogen exchange, electrophilic addition and reduction, or alternatively, via 

palladium-catalysed phosphination (Scheme 4.19). Synthesis of a rare example of a 

secondary aminophosphine [W{≡CPH(NiPr2)}(CO)2(Tp*)] has been accomplished by 

reduction of the chlorophosphine species, although isolation of this complex has so far 

not eventuated. 
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Scheme 4.19. Synthesis and reactivity of secondary phosphinocarbyne 

complexes (R = Cy, Ph; E = D, Me).  

 

Deprotonation of these complexes with potassium hydride provides access to the salts 

K[W(CPR)(CO)2(Tp*)]. Spectroscopic and structural data reveal considerable 

contributions from the phosphaisocyanide canonical description, and support 

formulation of these anions as the first examples of terminally ligated 

phosphaisocyanide complexes. These anions were found to be extremely basic and 

undergo reactions with electrophiles (D+, Me+) at phosphorus.  
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CHAPTER 5: Bi- and polymetallic phosphinocarbyne complexes 
5.1 Synthesis of bimetallic phosphinocarbyne complexes  

The use of secondary (PH2R) and dichloro- (PCl2R) phosphines in the syntheses of 

phosphinocarbyne complexes affords the possibility of multiple substitutions. Indeed, in 

the syntheses of [W(≡CPXR)(CO)2(Tp*)] (X = H, Cl; R = Cl, Cy, Ph) the bimetallic 

complexes [W2(µ-C2PR)(CO)4(Tp*)2] were observed as minor impurities as a result of 

substitution of the second H or Cl group on the phosphine. For studies directed towards 

mononuclear complexes, this proved to be somewhat problematic as the bimetallic 

complexes were found to have very similar solubilities to their monomeric counterparts, 

complicating purification procedures. These binuclear complexes are, however, 

interesting and novel species in their own right, worthy of further investigation. 

 

5.1.1 Synthesis of [W2(µ-C2PPh)(CO)4(Tp*)2]  

Deliberate attempts to synthesise the dimeric compound [W2(µ-C2PPh)(CO)4(Tp*)2] 

(33) by reaction of [W(≡CBr)(CO)2(Tp*)] with nbutyllithium and half an equivalent of 

dichlorophenylphosphine resulted in the desired product (Scheme 5.1). Alternatively, 

the reaction of 1 with half an equivalent of phenylphosphine in the presence of 

triethylamine and a catalytic amount (5 mol%) of [Pd(PPh3)4] also provided 33. 

Chromatographic purification yielded 33 contaminated with triphenylphosphine 

(liberated from the [Pd(PPh3)4] catalyst), which was removed by precipitation from 

CH2Cl2 and EtOH to give 33 as an orange powder in 67% yield. 
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Scheme 5.1. Synthesis of [W2(µ-C2PPh)(CO)4(Tp*)2] (33). 
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The presence of two metallocarbyne moieties at phosphorus results in a 31P{1H} NMR 

chemical shift (δP 80.4) to lower field than what is seen for conventional tertiary 

phosphines, but very close to that of the molybdenum analogue [Mo2(µ-

C2PPh)(CO)4(Tp*)2] (δP 80.2, see Section 3.1).220 The observed coupling (2JWP 76.2 Hz) 

is slightly larger than that seen for 2 (2JWP 66.2 Hz), and confirms the σ3, λ3 

environment at phosphorus. The carbyne resonance occurs within the typical region (δC 

285.0, 1JPC 78.6 Hz, 1JWC 192.4 Hz), slightly upfield compared to the corresponding 

resonance for the molybdenum analogue (δC 297.6, 1JPC 92 Hz),220 and the remaining 
13C{1H} and 1H NMR data are as expected and call for little comment. In the infrared 

spectrum of 33 carbonyl absorption bands are observed at 1984, 1974 and 1892 cm−1 in 

THF, indicating coupling of the carbonyl oscillations. This number expands to six bands 

in the solid state spectrum, implicating solid state effects, consistent with the 

observation of two crystallographically independent molecules in the asymmetric cell of 

the crystallographically determined structure of 33. In contrast, only two carbonyl 

absorption bands were seen in the IR spectrum of the molybdenum analogue [Mo2(µ-

C2PPh)(CO)4(Tp*)2] (hexane: νCO 1992, 1922 cm−1), to higher frequency than those of 

33.220  
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Figure 5.1. Molecular structure of 33 in a crystal of 33·(C5H12)0.25 (50% 

displacement ellipsoids, hydrogen atoms omitted). Selected bond lengths 

(Å) and angles (°): W1−C1 1.834(12), W2−C4 1.826(12), P1−C1 1.777(12), 

P1−C4 1.792(13), P1−C71 1.831(13), W1−C1−P1 175.1(8), W2−C4−P1 

163.7(8), C1−P1−C4 102.6(2). 
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The characterisation of 33 included an X-ray crystallographic study (Figure 5.1). The 

geometry of the phosphinocarbyne ligand does not differ significantly from that of the 

mononuclear complex 2. Although the W−C and P−C bond lengths do not differ 

between the two arms of the complex, the two W−C−P angles differ significantly for 

each arm of the complex – a feature that persists for both molecules of 33 in the 

asymmetric cell (P1−C1−W1 175.1(8)° cf. P1−C4−W2 163.7(8)°, P2−C101−W3 

172.4(8)° cf. P2−C104−W4 164.0(8)°). This might occur so as to allow the pyrazolyl 

rings to interlock, as illustrated in Figure 5.2. The bis-substituted carbyne complexes 

[W2(µ-C2EPh2)(OtBu)6] (E = Si, Ge, Sn) contain either identical W−C−E angles (E = Si, 

Ge) or similar angles (E = Sn, 173.8(2)° and 170.6(2)°).412 Disparity is seen in the 

Mo−C−Sn angles of the Tp*-ligated complex [Mo2(µ-C2SnMe2)(CO)4(Tp*)2] 

(162.0(2)° cf. 169.2(2)°), which also displays some stacking of the pyrazolyl rings. 

 

 
Figure 5.2. Space-filling representation of the molecular structure of 33 

showing the alignment of the pyrazolyl rings in the solid state. Colours are 

as in Figure 5.1 except the pyrazolyl C and N atoms are colour coded in 

green (W(1)-Tp*) and dark blue (W(2)-Tp*) to differentiate the two arms of 

the complex. 

 

Unlike the monometallic complex 2, 33 is quite prone to oxidation to give [W2{µ-

C2P(=O)Ph}(CO)4(Tp*)2], identifiable by the high-field chemical shift (δP 16.2) and 

large tungsten-phosphorus coupling constant (2JWP 144.9 Hz). The shift to high-field 

upon oxidation is atypical for tertiary phosphines. But as was seen for the monometallic 
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phosphinocarbyne 2 and its oxide 13, the presence of the {W(≡C)(CO)2(Tp*)} fragment 

leads to this unconventional behaviour (albeit to a much smaller extent for 13, perhaps 

due to the presence of only one carbyne moiety), although the reasons as to why are not 

understood.  

 

5.1.2 Synthesis of [W2(µ-C2PCy)(CO)4(Tp*)2] 

Preparation of the bimetallic cyclohexyl analogue was achieved by the reaction of 1 

with nbutyllithium and half an equivalent of dichlorocyclohexylphosphine. After 

chromatography [W2(µ-C2PCy)(CO)4(Tp*)2] (34) was obtained as a red-orange powder 

in 57% yield (Scheme 5.2). Synthesis of 34 via palladium-catalysed phosphination was 

also successful. However, co-elution of 34 with triphenylphosphine made this a less 

expedient route to 34. 
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Scheme 5.2. Synthesis of [W2(µ-C2PCy)(CO)4(Tp*)2] (34). 

 

The spectroscopic data for 34 largely conform to what was seen for 33. The phosphorus 

resonance appears similarly downfield at δP 89.9. In the 13C{1H} NMR spectra broad 

singlets are observed for the carbonyl ligands in both 34 (δC 227.1) and 33 (δC 226.4). 

The broadness of these peaks is unexpected but suggests that some degree of fluxional 

rotation is occurring on this timescale.  
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Figure 5.3. Full view (left) and simplified view (right) of the molecular 

structure of 34 in a crystal of 34·C6H6 (50% displacement ellipsoids, 

hydrogen atoms omitted). Selected bond lengths (Å) and angles (°): W1−C1 

1.837(5), W2−C4 1.832(5), P1−C1 1.788(5), P1−C4 1.784(5), P1−C71 

1.852(5), W1−C1−P1 167.0(3), W2−C4−P1 174.5(3), C1−P1−C4 100.4(2). 

 

Crystals grown from a solution of 34 in benzene/hexane at −12°C were the subject of an 

X-ray crystallographic study, the results of which are summarised in Figure 5.3. The 

phosphorus atom adopts a distorted trigonal pyramidal geometry (angle sum at P1 

309.9°), with the C1−P1−C4 angle being the most contracted (100.4(2)°). As was seen 

in 33, the W−C and P−C bond lengths are comparable between the two arms of the 

complex, yet the two W−C−P angles differ significantly (W1−C1−P1 167.0(3)° cf. 

W2−C4−P1 174.5(3)°). This is thought to occur so as to allow stacking of the pyrazolyl 

rings, as was seen for 33. 

 

The solid state structure of 34 does not possess any elements of symmetry (C1), whereas 

the solution state NMR data show two pyrazolyl environments in a 2:1 ratio, consistent 

with local Cs symmetry in which two of the pyrazolyl rings lie in the W−C−P−C−W 

mirror plane. From this it can be inferred that in solution there must be sufficiently free 

rotation about the P−C bonds such that the molecule is able to traverse this geometry on 

the NMR timescale. 
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5.1.3 Synthesis of [W2(µ-C2PCl)(CO)4(Tp*)2] 

Synthesis of the chloro-substituted analogue [W2(µ-C2PCl)(CO)4(Tp*)2] (35) was 

achieved in a similar fashion, as depicted in Scheme 5.3. In this case, isolation of a pure 

sample of 35 was not achieved because the hydrolytic susceptibility of the P−Cl linkage 

precludes chromatographic purification. Intriguingly, complex 35 was found to 

isomerise at room temperature to give the bridging carbyne-tungstaphosphirene 

complex [W2{µ:η1-C;η2-C,P-CC(PCl)}(CO)4(Tp*)2] (36 – see Section 5.1.5), which 

further thwarted efforts to obtain pure samples of 35 through precipitation and 

recrystallisation attempts. Benzene extraction of the reaction mixture residue provided a 

dark red solid, the 31P{1H} NMR spectrum of which revealed that the crude sample 

comprised 72% 35, contaminated with 12% 36, 3.6% [W3(µ-C3P)(CO)6(Tp*)3] and ten 

other minor impurities (≤2% each). 
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Scheme 5.3. Synthesis of [W2(µ-C2PCl)(CO)4(Tp*)2] (35). 

 

Complex 35 is evident in the 31P{1H} NMR spectrum by a singlet accompanied by 183W 

satellites at δP 124.9 (2JWP 66.4 Hz), only marginally upfield shifted with respect to the 

monometallic complex [W(≡CPCl2)(CO)2(Tp*)] (δP 136.2). The carbyne resonance falls 

within the expected region (δC 280.0, 1JPC 97.9, 1JWC 194.0 Hz), whilst the remaining 1H 

and 13C{1H} NMR data demonstrate the presence of two carbonyl environments and 

three pyrazolyl environments in a 1:1:1 ratio. This is in contrast to what was observed 

for 33 and 34 wherein the pyrazolyl rings exist in a 2:1 ratio and only one CO resonance 

is observed. The data obtained are consistent with the two tungsten centres being 

equivalent, but not with a mirror plane through the N−W≡C axis, unlike what was seen 

previously for 33, 34 and the complexes prepared in Chapter 2 (see Figure 2.3). 

Evidently 35 is not able to traverse such a geometry on the NMR timescale, leading to 

the observed inequivalence of these ligands. 
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5.1.4 Attempted synthesis of [W2{µ-C2P(NR2)}(CO)4(Tp*)2]  

When [W(≡CLi)(CO)2(Tp*)] was treated with half an equivalent of the amino-

substituted phosphines PCl2(NR2) (R = Et, iPr) no evidence of the bimetallic species 

[W2{µ-C2P(NR2)}(CO)4(Tp*)2] was observed in the IR or NMR spectra (Scheme 5.4). 

Instead, the mono-substitution products [W{≡CPCl(NR2)}(CO)2(Tp*)] were formed 

and the remaining lithiocarbyne complex decomposed to give a mixture of species 

including the methylidyne complex [W(≡CH)(CO)2(Tp*)].  

 

W C

Tp*

OC
OC

H

W C
Tp*

OC CO

P

NR2

C W
Tp*

COCO

W C

Tp*

OC
OC

Br

nBuLi
1/2 PCl2(NR2)

1

W C

Tp*

OC
OC

P

Cl
NR2

+ + others

 
Scheme 5.4. Attempted synthesis of [W2{µ-C2P(NR2)}(CO)4(Tp*)2] (R = 

Et, iPr). 

 

Whilst in these cases steric hindrance might prevent the second substitution from taking 

place, the size of the chloro(dimethylamino)phosphino group PCl(NMe2) should not be 

prohibitive considering that the reaction proceeds with cyclohexyldichlorophosphine. 

Based on this rationale the reaction was repeated using PCl2(NMe2), and the outcome of 

this reaction did differ from that of the ethyl and isopropyl complexes, although not as 

anticipated. The 31P{1H} NMR spectrum showed 12 peaks of comparable intensities in 

the region of 15 – 145 ppm. Resonances at δP 140.4, 131.4, 84.7, 83.1, 80.9 and 79.2 all 

displayed 183W satellites consistent with three-coordinate phosphinocarbynes (2JWP 64.7 

– 78.7 Hz), of which [W{≡CPCl(NMe2)}(CO)2(Tp*)] and [W2{µ-

C2P(NMe2)}(CO)4(Tp*)2] might account for two signals. The 1H NMR spectrum 

showed a multitude of Tp* environments, from which the methylidyne 

[W(≡CH)(CO)2(Tp*)] was identifiable by a singlet at δH 8.23 for WCH with 2JWH 83.7 

Hz, in agreement with the values reported by Templeton.65  
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As the difference in electronics between the three aminophosphines used is minimal, it 

indicates that the steric factors do influence the reactivity to some extent. However, in 

the absence of significant steric hindrance a multitude of products are formed, from 

which it can be inferred that either formation of the bis-substituted phosphine [W2{µ-

C2P(NMe2)}(CO)4(Tp*)2] is unfavourable, or that formation occurs but this complex is 

unstable under the reaction conditions employed. 
 

5.1.5 Thermal rearrangement of [W2(µ-C2PR)(CO)4(Tp*)2]  

Interestingly, the bimetallic carbyne complex [W2(µ-C2PCl)(CO)4(Tp*)2] (35) was 

found to rearrange spontaneously in solution. NMR samples of 35 contained, in addition 

to the product peak at δP 124.9, a broad resonance at δP 92.7 without resolvable 183W 

satellites. Crystals obtained from a solution of 35 in CH2Cl2/pentane at −15°C were 

found to be not the expected symmetric complex [W2(µ-C2PCl)(CO)4(Tp*)2] but rather 

the complex [W2{µ:η1-C;η2-C,P-CC(PCl)}(CO)4(Tp*)2] (36) in which the PCl moiety 

has migrated to one of the W≡C bonds, forming an extremely unusual 

tungstaphosphirene ring (Scheme 5.5). 
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Scheme 5.5. Synthesis of [W2{µ:η1-C;η2-C,P-CC(PCl)}(CO)4(Tp*)2] (36). 

 

This isomerisation occurs slowly in solution. After 70 hours a benzene solution of 35 

contained 35 and 36 in a 5:3 ratio, and after seven days the two isomers existed in 

almost equal proportions. The rearrangement can be accelerated by heating and 

proceeds within 13 hours at 50°C. Unfortunately, isolation of a pure bulk sample of 36 

was not accomplished, and as such spectroscopic data for 36 are limited to the 31P{1H} 

NMR spectrum as the 1H NMR spectrum was too complex for analysis. However, 

crystals of 36 were acquired, and the single crystal X-ray structure was determined, as 

depicted in Figure 5.4. Unfortunately, the result obtained is of low precision (R = 0.096) 

due to systematic twinning of the crystals, which limited the quality of the data 

available to refine the structural model. Nevertheless, the molecular structure confirmed 

the unusual formulation of 36. 
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Figure 5.4. Full view (left) and simplified view (right) of the molecular 

structure of R-36 in a crystal of rac-36·(CH2Cl2)2 (50% displacement 

ellipsoids, hydrogen atoms omitted, S-enantiomer generated by P21/c 

symmetry). Selected bond lengths (Å) and angles (°): W1−C1 1.958(19), 

W2−C2 1.82(2), C1−C2 1.47(3), C1−P1 1.75(2), W1−P1 2.517(7), P1−Cl1 

2.155(12), W1−C1−C2 152.1(16), W2−C2−C1 171.3(17), W1−P1−C1 

50.8(7), W1−C1−P1 85.3(9), P1−C1−C2 122.4(15), P1−W1−C1 43.8(6), 

W1−P1−Cl1 110.2(4), C1−P1−Cl1 105.2(8). 

 

While there are a number of reports of complexes containing three-membered [M{η2-

C(R)PR2}(L)n] rings in which the phosphorus is four-coordinate, metallaphosphirene 

complexes [M{η2-C(R)PR}(L)n] are exceedingly rare. Metallaphosphirene complexes 

are limited to the iridium species [Ir{η2-C(tBu)PCy}(CO)(PPh3)(L)] (L = CO, PPh3),413 

although related compounds are known, such as Weber's σ3, λ4 phosphaalkenyl complex 

[W{η2-C(H)P{C(NEt2)2}}(CO)2(Tp*)]X (X = OTf, BF4)69 and Mathey's W(CO)5-

coordinated tungstaphosphirene [W{η2-C(Ph)PPh(W(CO)5)}(CO)2(Cp)].126 

 

The iridaphosphirene complex [Ir{η2-C(tBu)PCy}(CO)(PPh3)2] was prepared by 

reaction of the phosphavinyl Grignard reagent Z-[CyP=C(tBu)MgCl(OEt2)] with 

Vaska's complex [IrCl(CO)(PPh3)2] (Scheme 5.6).413 The observed P−C (1.753(13) Å) 

and Ir−C (1.918(14) Å) bond lengths and the attendant distorted trigonal pyramidal 

geometry at phosphorus support the formulation of the complex as an iridaphosphirene 

species rather than the alternative η2-phosphavinyl description. Reactions with a range 

of electrophiles (H+, Me+, S, Se, AgCl, AuCl, AuPPh3
+, HgPh) proceeded via 

electrophilic addition to the phosphine.414,415 However, in the case of protonation a 
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rearrangement to the η1-phosphaalkene salt [Ir{η1-P(Cy)=CHtBu}(CO)(PPh3)2]+ is 

observed. 
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Scheme 5.6. Jones' synthesis and electrophilic addition reactions of 

iridaphosphirene complexes (E = H+, Me+, S, Se, AgCl, AuCl, AuPPh3
+, 

HgPh). 

 

While transfer reactions of complexed phosphinidine moieties (RPMLn) have been 

increasingly utilised,416,417 free phosphinidenes (P−R) are exceptionally reactive and 

remain to be isolated, so it is unlikely that the rearrangement proceeds via extrusion of 

the phosphinidene moiety. More likely is that the process involves a concerted 

migration of the PR moiety, in conjunction with P−C bond cleavage and C−C bond 

formation processes. There are a number of methods which can be used for the 

preparation of phosphirenes,418,419 and while the intermolecular addition of transient 

phosphirenes to alkynes has been reported,420 the cyclisation of a C≡C−PR unit remains 

unprecedented. Although this intramolecular migration of a PR moiety to a carbyne 

appears unique, Fischer has noted the thermal rearrangement of the terminal 

phosphinocarbene complex [W{=C(NEt2)(PMePh)}(CO)4(PHMePh)] to form a cyclic 

η2-carbene structure [W{η2-C(NEt2)PMePh}(CO)4], although this process does not 

invoke cleavage of any P−C bonds.119 In contrast, Eisch and co-workers have 

demonstrated the formation of borirenes via migration of a BMes fragment to the C≡C 

bond of an alkynyl substituent.421,422 
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Based on this curious rearrangement of the chlorophosphine complex 35 we wished to 

explore the scope of such reactivity. In solutions of the phenyl derivative 33 no 

rearrangement is observed at room temperature, and the thermal stability of 33 is 

implicit in the conditions used for its synthesis (palladium catalysis, 80°C, 18 hours). 

Accordingly, a toluene solution of 33 was heated to 110°C and the reaction progress 

was monitored by infrared spectroscopy. After 16.5 hours carbonyl absorption bands 

due to 33 (1985, 1974, 1893 cm−1) were accompanied by new bands at 1940 and 1876 

cm−1. After 41 hours, the major bands were those at 1940 and 1876 cm−1, assigned to 

the rearranged tungstaphosphirene complex [W2{µ:η1-C;η2-C,P-CC(PPh)}(CO)4(Tp*)2] 

(37) (Scheme 5.7), although weak bands at 1970, 1892 and 1858 cm−1 were evident. 

These might be attributed to 37, residual 33, or other side products formed in the 

reaction.  
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Scheme 5.7. Synthesis of [W2{µ:η1-C;η2-C,P-CC(PPh)}(CO)4(Tp*)2] (37). 

 

The 31P{1H} NMR spectrum indicated a mixture of phosphorus-containing products 

formed in the reaction (> 15 peaks), although the major component was a broad peak at 

δP −74.5 without visible 183W satellites. Attempts to purify the mixture by 

chromatography or fractional crystallisation were unsuccessful. Filtration through 

diatomaceous earth and removal of the solvent yielded a dark purple solid containing 

ca. 61% 37, as estimated by 31P{1H} NMR spectroscopy. Unfortunately the 1H NMR 

spectrum contained too many resonances for those due to 37 to be unambiguously 

identified. Given that the molecule has C1 symmetry (chiral at phosphorus), up to 

twelve methyl peaks would be expected. Although the inability to obtain a pure sample 

of 37 precluded the acquisition of useful spectroscopic data, high resolution mass 

spectrometric data confirmed the formulation of the complex by the observation of an 

[M + H]+ peak.  

 

Interestingly, the chemical shift of 37 (δP −74.5) is dramatically shifted with respect to 

that of 36 (δP 92.7). The appearance of the phosphorus resonance to high-field is 
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expected based on the iridaphosphirene complexes [Ir{η2-C(tBu)PCy}(CO)(PPh3)(L)] 

(L = CO, δP −188.7; PPh3, δP −152.3)413 and [W{η2-C(Ph)PPh(W(CO)5)}(CO)2(Cp)] (δP 

−157.2),126 and the generally observed high-field shifts for phosphorus in small rings 

(e.g. δP −77.3 for [W{≡CP(NiPr2)(CPhCPh)}(CO)2(Tp*)]AlCl4 (Section 3.4.3)). 

Replacement of aryl substituents with chloro groups does cause downfield shifts in the 

NMR spectra of phosphorus compounds, but the magnitude of the shift in this case is 

much larger than expected (e.g. PhP(CPhCPh){W(CO)5} δP −159.4423 cf. 

ClP(CPhCPh){W(CO)5} δP −109.2).424 In the case of the precursors, a comparatively 

small downfield shift of 45 ppm is observed for the chloro complex 35 (δP 124.9) 

compared to the phenyl analogue 33 (δP 80.4). 

 

 
Figure 5.5. Full view (left) and simplified view (right) of the molecular 

structure of R-37 in a crystal of rac-37·C6H6 (50% displacement ellipsoids, 

hydrogen atoms omitted, S-enantiomer generated by Pca21 symmetry). 

Selected bond lengths (Å) and angles (°): W1−C1 2.014(12), W2−C4 

1.865(10), C1−C4 1.380(14), C1−P1 1.790(12), W1−P1 2.585(3), P1−C71 

1.821(15), W1−C1−C4 148.1(9), W2−C4−C1 169.2(10), W1−P1−C1 

51.0(4), W1−C1−P1 85.4(5), P1−C1−C4 124.5(9), P1−W1−C1 43.7(3), 

W1−P1−C71 109.6(5), C1−P1−C71 107.8(7). 

 

Fortunately, crystals of 37 were obtained which provided confirmation of the 

formulation of 37. The results of an X-ray crystallographic study are summarised in 

Figure 5.5. The geometry of the WCCPW unit in 37 mirrors that of 36, with the 

exception of the W−P bond which is slightly elongated in 37 (2.585(3) cf. 2.517(7) Å). 

The phosphorus atoms of both 36 and 37 display significantly distorted trigonal 
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pyramidal geometries (angle sum at P 266.2° (36), 268.4° (37)) as a consequence of 

incorporation in a constrained three-membered ring. The W2−C4 bond (1.865(10) Å) 

can be formalised as a W−C triple bond, the length of which does not differ 

significantly from what was observed for the W≡C bonds of the precursor 33 (1.834(12) 

and 1.826(12) Å). The W1−C1 linkage (2.014(12) Å) points towards the retention of 

considerable multiple bond character, being shorter than that typically observed for 

tungsten bound to η1-C(sp2) vinyl, acyl or N-heterocyclic carbene ligands (2.15 – 2.30 

Å), and falling between the ranges typical of Fischer-type (> 2.0 Å) and Schrock-type 

carbene (< 2.0 Å) ligands.425 The W1−C1 linkage closely resembles the W−C bond 

length in the thioacyl complex [W{η2-SCP(=S)Ph2}(CO)2(Tp*)] (2.003(13) Å). The 

P1−C1 bond length (1.790(12) Å) is consistent with a P−C single bond, as seen in the 

cyclic phosphirene complexes [W{η2-C(Ph)PPh(W(CO)5)}(CO)2(Cp)] (1.775(8) Å),126 

[Pt{η1-P(Ph)C(Ph)C(Ph)}Cl2(PEt3)] (average 1.78 Å)426 and [Ir{η2-

C(tBu)PCy}(CO)(PPh3)2] (1.753(13) Å).413 These data support the valence bond 

description of 37 as a tungstaphosphirene complex, rather than alternative descriptors 

such as an η2-phosphaalkene complex.  

 

Given that the transformation is intramolecular with comparatively little rearrangement, 

attempts to effect the isomerisation via a solid state reaction were unsuccessful; heating 

solid 33 under argon at 100°C resulted in no reaction, while at 180°C decomposition 

was observed to yield a brown-black solid that did not display any 31P{1H} NMR 

resonances. Attempts to synthesise 37 from 1 in a one-pot procedure were similarly 

unsuccessful. Heating a toluene solution of 1, PH2Ph, NEt3 and a catalytic amount of 

[Pd(PPh3)4] at 100°C did produce 33, but continued heating did not afford appreciable 

quantities of 37, even after four days. The presence of base in this reaction may inhibit 

the isomerisation from occurring, although the mechanism by which the rearrangement 

occurs is unknown. 

 

5.2 Reactions with [AuCl(SMe2)] 

It was of interest to investigate reactions of 33 with electrophiles in order to compare 

the reactivity of this complex to that of the monometallic analogue 

[W(≡CPPh2)(CO)2(Tp*)] (2), discussed in Chapter 2, in which the phosphorus was 

found to be the most nucleophilic site. [AuCl(SMe2)] was chosen as the electrophile of 

interest because it displayed the most controllable reactivity towards 2, wherein mono- 
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or bis-addition of AuCl could be effected through stoichiometric control. Preliminary 

studies by Shang involving the reaction of [Mo2(µ-C2PPh)(CO)4(Tp*)2] with excess 

[AuCl(SMe2)] suggested formation of the P-coordinated complex [Mo2(µ-

C2PPhAuCl)(CO)4(Tp*)2].220 

 

When a CH2Cl2 solution of 33 was treated with one equivalent of [AuCl(SMe2)] a 

mixture of products was obtained (Scheme 5.8). The 31P{1H} NMR spectrum contained 

three resonances with 183W satellites at δP 49.4 (2JWP 143.7 Hz, 62%), 63.1 (2JWP 118.7 

Hz, 25%) and 75.7 (2JWP 88.8 Hz, 3%).* Addition of a second equivalent of 

[AuCl(SMe2)] altered the proportions of these three peaks to 16%, 46% and 34%, 

respectively. Addition of a third [AuCl(SMe2)] equivalent gave exclusively δP 75.7. 
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Scheme 5.8. Addition of [AuCl(SMe2)] to 33.  

 

Treatment of 33 with 1.1 equivalents of [AuCl(SMe2)] followed by chromatography 

allowed isolation of the complex which corresponded to δP 49.4 in 24% yield, which 

was found to be the product of P-coordination [W2(µ-C2PPhAuCl)(CO)4(Tp*)2] (38). 

The 31P{1H} NMR spectrum of 38 comprises a singlet resonance at δP 49.4 with 2JWP 

143.7 Hz, shifted 30 ppm upfield from that of the precursor 33. In contrast to this, the 

                                                
* Percentages quoted represent the % by 31P{1H} NMR spectroscopy. The percentage values do 
not sum to 100% as three other small peaks were present in the spectra. 
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monometallic complex 2 shifts 5 ppm downfield upon P-complexation of AuCl to give 

[W(≡CPPh2AuCl)(CO)2(Tp*)] (8) (δP 32.0 cf. 37.5). However, similar coupling 

constants are seen for 38 (2JWP 143.7 Hz) and 8 (2JWP 139.3 Hz), illustrating the 

recurrent theme throughout this work that the coupling constants are more diagnostic 

than the chemical shifts. A comparable upfield shift of 39 ppm was observed for the 

molybdenum analogue [Mo2(µ-C2PPhAuCl)(CO)4(Tp*)2] (δP 41.2) compared to the 

precursor [Mo2(µ-C2PPh)(CO)4(Tp*)2] (δP 80.2).220 

 

In the 13C{1H} NMR spectrum both the chemical shift and couplings of 38 (δC 262.5, 
1JPC 25.9, 1JWC 203.2 Hz) closely match those of 8 (δC 263.3, 1JPC 22.1, 1JWC 199.9 Hz), 

and resemble the data obtained for [Mo2(µ-C2PPhAuCl)(CO)4(Tp*)2] (δC 273.2, 1JPC 

42),220 although larger 1JPC values have been observed for the molybdenum analogues 

compared to their tungsten counterparts. The carbyne resonance appears 20 ppm upfield 

with respect to that of the precursor 33, along with a considerable reduction in the 1JPC 

value. The 1H and 13C{1H} NMR spectra indicate that the pyrazolyl rings and carbonyl 

ligands at each tungsten centre are inequivalent, a consequence of their prochiral nature. 

The carbonyl absorption bands in the IR spectrum show the expected shift to higher 

frequency due to the withdrawal of electron density from the tungsten centres that 

accompanies complexation of the phosphine. The ESI(+) mass spectrum clearly 

demonstrates the presence of one AuCl moiety through the observation of [M + 

MeCN]+ and [M + H]+ peaks. 

 

Crystals of 38 were obtained from a solution of 38 in Et2O at −20°C. The results of an 

X-ray crystallographic study are shown in Figure 5.6. Unfortunately the crystals 

obtained were of low quality, providing poor data that limited the precision of the 

structural model. Nevertheless, the structure substantiates the proposed formulation of 

38 based on spectroscopic data. The two W−C−P angles are comparable (W1−C1−P1 

170.3(13)°, W2−C4−P1 173.2(16)°), in contrast to what was seen in 33 and 34, 

although the low precision of the structure must be taken into account.  
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Figure 5.6. Molecular structure of 38 in a crystal of 38·Et2O (50% 

displacement ellipsoids, hydrogen atoms omitted). Selected bond lengths 

(Å) and angles (°): W1−C1 1.84(2), W2−C4 1.89(2), C1−P1 1.75(2), C4−P1 

1.73(2), P1−Au1 2.235(7), W1−C1−P1 170.3(13), W2−C4−P1 173.2(16), 

C1−P1−C4 106.8(10), P1−Au1−Cl1 178.4(2). 

 

The reaction of 33 with three equivalents of [AuCl(SMe2)] gave the pentametallic 

complex [W2{µ-(η2-CAuCl)2PPhAuCl}(CO)4(Tp*)2] (40) in which addition to the 

phosphine and both W≡C bonds has occurred. The phosphorus resonance is shifted 

downfield compared to 38 to δP 75.7. The 1JWP coupling of 88.8 Hz is comparable to 

that of [W{η2-C(AuCl)PPh2AuCl}(CO)2(Tp*)] (9) (1JWP 84.3 Hz). The carbyne 

resonance appears at δC 252.0 with no resolvable 1JPC coupling and considerably 

reduced 1JWC coupling (99.9 Hz) akin to what was seen for 9 (δC 253.6, 1JPC 1.5 Hz, 
1JWC 99.6 Hz). The carbonyl absorption bands are again shifted to higher frequency 

compared to 33 and 38 as a result of decreased electron density at the tungsten centres. 

As seen for 38, 1H and 13C{1H} NMR data demonstrate the prochiral nature of the 

carbonyl and pyrazolyl ligands. 

 

Crystals of 40 suitable for X-ray diffraction were obtained from a CH2Cl2/hexane 

solution, and the results of a crystallographic study are shown in Figure 5.7. The solid 

state structure revealed an Au···Au interaction exists between the two carbyne-bound 

gold moieties. The Au1···Au2 distance of 3.0318(8) Å falls within the typical range for 
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aurophilic bonding (2.8 – 3.3 Å),427 and well within the sum of the van der Waals radii 

(3.32 Å). The geometric features of 40 mirror those observed in the monotungsten 

complex 28, and related literature complexes.260,275-277,284 As has been seen 

previously,267 the carbyne ligands bridge the W−Au linkages unsymmetrically (W1−C1 

1.874(15), W2−C4 1.884(14) cf. C1−Au1 2.038(17), C4−Au2 2.020(15) Å), consistent 

with retained W−C multiple bonding. The two C−Au−Cl angles are significantly 

different, with C4−Au2−Cl2 being almost linear (178.4(4)°) while C1−Au1−Cl1 is 

considerably distorted from linearity (164.6(4)°). Both Cl1 and Cl2 show interactions 

with neighbouring dimethylpyrazolyl groups, and Cl1 also interacts with the CH2Cl2 

solvent molecule, and the cumulative effect of these interactions may be the observed 

distortion of the C1−Au1−Cl1 angle. 

 

 
Figure 5.7. Full view (left) and simplified view (right) of the molecular 

structure of 40 in a crystal of 40·CH2Cl2 (50% displacement ellipsoids, 

hydrogen atoms omitted). Selected bond lengths (Å) and angles (°): W1−C1 

1.874(15), W2−C4 1.884(14), C1−P1 1.804(16), C4−P1 1.831(15), C1−Au1 

2.038(17), C4−Au2 2.020(15), W1−Au1 2.8275(9), W2−Au2 2.7691(9), 

Au1−Au2 3.0318(8), P1−Au3 2.237(4), W1−C1−P1 148.6(10), W2−C4−P1 

148.8(9), C1−P1−C4 107.0(7), W1−C1−Au1 92.5(7), W2−C4−Au2 90.3(6), 

C1−W1−Au1 46.1(5), C4−W2−Au2 46.8(5), C1−Au1−Cl1 164.6(4), 

C4−Au2−Cl2 178.4(4). 

 

Unfortunately, chromatography did not lead to clean isolation of the complex 

corresponding to δP 63.1, denoted 39. Instead it was obtained contaminated with 

considerable quantities of 38, or both 38 and 40. The complex 39 was anticipated to 
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correspond to addition of AuCl to the phosphine and/or W≡C bonds, for which three 

structures appeared plausible, outlined in Figure 5.8.  
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Figure 5.8. Possible structures of 39.  

 

The asymmetric W2Au1 complex [W2{µ:η1-C;η2-C,Au-CP(Ph)C(AuCl)}(CO)4(Tp*)2] 

was disfavoured as the structure because addition of a second equivalent of 

[AuCl(SMe2)] to a mixture of the three products increased the proportion of 39 and 

decreased the proportion of 38. Additionally, the proportions of 38, 39 and 40 obtained 

are consistent with addition of one, two and three AuCl moieties, respectively, based on 

the amount of [AuCl(SMe2)] added. Mass spectrometry of a sample containing 39 and 

38 contained peaks consistent with addition of two AuCl moieties, suggesting that 39 

does correspond to a di-aurated complex. 

 

We anticipated that the asymmetric complex [W2{µ:η1-C;η2-C,Au-

CP(Ph)(AuCl)C(AuCl)}(CO)4(Tp*)2] was the most likely structure as this would 

correspond to the direct addition of AuCl to one W≡C bond of 38. However, inspection 

of the spectroscopic data obtained, outlined in Table 5.1, suggested that 39 actually 

possessed a symmetric structure in solution (further discounting the asymmetric W2Au1 

complex as 39). The 31P{1H} NMR spectrum comprised a singlet resonance at δP 63.1, 

for which the tungsten-183 satellite resonance was a doublet (2JWP 118.7 Hz). The 

chemical shift is not diagnostic, but the tungsten-phosphorus coupling provides useful 

structural information. The proposed asymmetric structure contains two inequivalent 

tungsten atoms; hence it would produce two sets of 183W satellites with different 

coupling constants (e.g. 2JWP 139.3 Hz in [W(≡CPPh2AuCl)(CO)2(Tp*)] cf. 84.3 Hz in 

[W{η2-C(AuCl)PPh2AuCl}(CO)2(Tp*)]). The magnitude of the coupling in 39 falls 
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between these values, indicating either that rapid exchange of the AuCl moieties is 

occurring on the NMR timescale, or the compound possesses a symmetric structure 

such as [W2{µ-(η2-CAuCl)2PPh}(CO)4(Tp*)2]. 

 

Table 5.1. Selected spectroscopic data for 33 and AuCl adducts. 

Complex δP  2JWP (Hz) νCO (cm−1) 

[W2(µ-C2PPh)(CO)4(Tp*)2] (33) 79.5 77.2 1986, 1975, 1892 

[W2(µ-C2PPhAuCl)(CO)4(Tp*)2] (38) 49.4 143.7 1998, 1913 

[W2{µ-(CAuCl)2PPh}(CO)4(Tp*)2] (39) 63.1 118.7 2004, 1916a 

[W2{µ-(CAuCl)2PPhAuCl}(CO)4(Tp*)2] (40) 75.7 88.8 2029, 1951 

NMR spectra were recorded in CDCl3. IR spectra were recorded in CH2Cl2. a Tentative 

assignment as the spectrum also contains bands due to 38 and 40.  

 

As the infrared timescale is fast, we would expect that the number of carbonyl 

absorption bands in the IR spectrum should be diagnostic of a symmetric or an 

asymmetric structure. Because a clean sample of 39 could not be obtained, tentative 

assignments were made at 2004 and 1916 cm−1 (CH2Cl2) of a solution also containing 

40 and small quantities of 38. Thus the possibility that additional νCO bands were 

masked by the bands of 40 or 38 could not be excluded. Furthermore, as indicated 

above for the complexes [W2(µ-C2PR)(CO)4(Tp*)2], the CO oscillators on adjacent 

tungsten centres may couple, affecting both the frequencies and relative intensities of 

different modes. The inability to obtain a clean sample of 39 meant that the 1H NMR 

spectrum could not be utilised to deduce structural information.  

 

Based on the 31P{1H} NMR spectra, scrambling of the three species does occur to a 

small extent. A mixture containing 16.6% 38, 47.8% 39 and 35.6% 40 was found to 

contain the three species in 23.5%, 39.9% and 36.6%, respectively, after 22 hours in 

CDCl3 at room temperature. The inability to obtain a clean sample of 39 is thus likely 

hampered by the conversion of 39 to 38 and 40 over time. 

 

The absence of peaks attributable to the asymmetric W2Au2 complex [W2{µ:η1-C;η2-

C,Au-CP(Ph)(AuCl)C(AuCl)}(CO)4(Tp*)2] or the asymmetric W2Au1 complex 

[W2(µ:η1-C;η2-C,Au-CP(Ph)C(AuCl)}(CO)4(Tp*)2] suggests that coordination of AuCl 
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to one W≡C group affects the donor strength of the remaining ligation sites. In order to 

form the eventual product 40 these complexes must form, but are perhaps too short 

lived to be observed (Scheme 5.9). Notably, free 33 is not detected in the reaction after 

addition of [AuCl(SMe2)]. 
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Scheme 5.9. Sequence of AuCl addition to 33. Complexes depicted in 

brackets are not detected in the reaction.  
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There are a number of plausible pathways through which we can rationalise these 

observations (Scheme 5.9):  

(a) complexation of AuCl to W≡C increases the nucleophilicity of the second W≡C 

bond such that migration or coordination of an AuCl group occurs to give the 

symmetric complexes; 

(b) complexation of AuCl to W≡C increases the nucleophilicity of the phosphorus such 

that migration of AuCl to phosphorus occurs; 

(c) complexation of AuCl to W≡C decreases the nucleophilicity of the phosphorus such 

that dissociation of the P-coordinated AuCl occurs; 

(d) W≡C is not sufficiently nucleophilic and only weakly coordinates AuCl, which 

subsequently dissociates. 

 

The most plausible explanation would appear to be (c). In the free phosphine 33 the 

phosphorus is clearly the most nucleophilic site as established by the formation of the 

1:1 adduct 38 in which AuCl is bound to phosphorus. Coordination of a second AuCl to 

one W≡C bond electronically reduces the nucleophilicity of the phosphorus, as well as 

introducing a degree of proximal steric congestion, which is relieved when the AuCl 

originally bound to phosphorus migrates (or dissociate/recoordinates) to the second 

W≡C bond. The observation of an aurophilic interaction in the tris-AuCl adduct 40 

points towards a similar interaction being present in the symmetrical bis-AuCl adduct, 

whilst such an interaction would be precluded for the asymmetrical bis-AuCl adduct, as 

indicated by the geometry adopted by the complex [W{η2-

C(AuCl)PPh2AuCl}(CO)2(Tp*)]. Aurophilic interactions have been suggested to span 

the range 25 – 50 kJ/mol and accordingly could be expected to play a role here.428 

Finally, addition of the third AuCl group to the revealed phosphine occurs in the last 

step. 

 

In the monometallic complex [W(≡CPPh2)(CO)2(Tp*)] (2), electrophilic addition to the 

phosphine was found to decrease the nucleophilicity of the W≡C bond, consistent with 

pathway (d). It appears that in 33 the nucleophilicities of the three competing sites are 

also linked, wherein complexation to one site alters the nucleophilicity of the other two 

sites, but in a more complex manner than in 2, potentially due to the additional driving 

force of aurophilic interactions. 
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5.3 Synthesis of a trimetallic phosphinocarbyne complex [W3(µ-

C3P)(CO)6(Tp*)3] 

Attempts to extend the lithiocarbyne protocol to the synthesis of a trimetallic, 

triscarbyne-substituted phosphine were somewhat inconclusive. Treating a THF 

solution of 1 with nbutyllithium and 0.3 equivalents of trichlorophosphine generated a 

brown solution, the infrared spectrum of which contained carbonyl bands at 1981, 1970 

and 1889 cm−1 suggestive of formation of the desired product [W3(µ-C3P)(CO)6(Tp*)3] 

(41) (Scheme 5.10). The 31P{1H} NMR spectrum of the crude product contained a 

singlet at δP 70.1 with tungsten-183 satellites (2JWP 68.6 Hz). The 1H NMR spectrum 

indicated a 2:1 ratio of pyazolyl environments, consistent with formulation of the 

desired product. 

 

W C
Tp*

OC CO

P C W
Tp*

COCO

W C

Tp*

OC
OC

Br

nBuLi
1/3 PCl3

1

C

W
Tp*OC

OC

41  
Scheme 5.10. Synthesis of [W3(µ-C3P)(CO)6(Tp*)3] (41). 

 

The complex 41 was not as stable as expected towards chromatographic purification 

considering the absence of reactive bonds within the molecule (e.g. P−Cl, P−O), 

whereas previous results have shown that P−C(carbyne) bonds are stable towards 

chromatography. Two-dimensional thin layer chromatography of crude 41 indicated 

that decomposition occurred, which is perhaps due to the steric strain of having three 

[W(≡C)(CO)2(Tp*)] moieties surrounding the phosphorus atom. The ESI(+) mass 

spectrum of 41 in acetonitrile did not contain any peaks that were identified as 

belonging to [W3(µ-C3P)(CO)6(Tp*)3], or fragments or adducts thereof. This might 

indicate that the isolated product is not the anticipated [W3(µ-C3P)(CO)6(Tp*)3] 

complex. Alternatively, the isolated product could be the trimetallic complex but the 

stability is insufficient to survive the ESI mass spectrometry conditions. This would not 

be an unreasonable conclusion to draw given the extreme steric requirements of having 

three bulky [W(C)(CO)2(Tp*)] fragments surrounding a single phosphorus atom, as 

illustrated in Figure 5.9. If steric congestion was the destabilising factor, then it may 
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follow that if the type of rearrangement observed for [W2(µ-C2PR)(CO)4(Tp*)2] (R = 

Cl, Ph) to the phosphirenes [W2{µ:η1-C;η2-C,P-CC(PR)}(CO)4(Tp*)2] were to occur for 

[W3(µ-C3P)(CO)6(Tp*)3], this might well alleviate unfavourable intramolecular 

interactions. 

 

!! ! 
Figure 5.9. Calculated† molecular geometry (left) and space-filling 

representation (right) of 41. Colours: W light blue, P purple, C grey, N blue, 

O red, B orange, H white. 

 

In order to substantiate the formulation of 41, a series of phosphines with varying 

degrees of carbyne-substitution at the phosphorus were considered, as presented in 

Table 5.2. Comparing the phosphorus chemical shifts in the series PCl3 to 41 shows an 

upfield shift with increasing numbers of carbyne substituents at the phosphorus. 

However, comparing the δP data for the series PPh3 to 41 indicates a downfield shift 

with inclusion of one and then two carbyne substituents, but 41 does not conform to this 

trend, lying upfield of the bis-substituted complex [W2(µ-C2PPh)(CO)4(Tp*)2]. 

Comparing the infrared data shows that the carbonyl absorptions shift to lower 

frequency in the chloro-substituted series with increasing numbers of carbyne 

substituents, again substantiating the formulation of 41 as the trimetallic complex. 

Significant shifts in the carbonyl absorption stretches are not observed for the phenyl 

derivatives. 

 

                                                
† Calculated using Spartan 14 at the semi-empirical PM3 level of theory to qualitatively 
illustrate the molecular topology of 41. 
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Table 5.2. Selected spectroscopic data for mono-, bi- and trimetallic 

phosphinocarbyne complexes and the relevant free phosphines. 

Compound δP  
2JWP 
(Hz) νCO (cm−1) 

PCl3 219.9 - - 

[W(≡CPCl2)(CO)2(Tp*)] (17) 136.2 80.5 2005, 1920 

[W2(µ-C2PCl)(CO)4(Tp*)2] (35) 124.9 66.4 1996, 1986, 1906 

[W3(µ-C3P)(CO)6(Tp*)3] (41) 71.6 69.7 1981, 1970, 1889 

[W2(µ-C2PPh)(CO)4(Tp*)2] (33) 80.4 76.2 1984, 1974, 1892 

[W(≡CPPh2)(CO)2(Tp*)] (2) 32.2 66.2 1981, 1893 

PPh3
429 −4.7 - - 

NMR spectra were recorded in C6D6. IR spectra were recorded in THF.  

 

While most data obtained are strongly suggestive of the formulation of 41 as the 

trimetallic phosphine [W3(µ-C3P)(CO)6(Tp*)3], unfortunately this assignment cannot be 

definitively confirmed without further evidence. 
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5.4 Summary 

The synthetic routes to mononuclear phosphinocarbyne complexes developed in the 

previous chapters are applicable to the syntheses of bimetallic phosphinocarbyne 

complexes bearing halo, alkyl or aryl substituents, as depicted in Scheme 5.11. 

Attempts to extend this to amino-functionalised phosphines were unsuccessful, yielding 

either the mono-substitution product [W{≡CPCl(NR2)}(CO)2(Tp*)] or a mixture of 

compounds. These bimetallic phosphinocarbynes were found to undergo a thermal 

rearrangement to give the unprecedented carbyne-metallaphosphirene complexes 

[W2{µ:η1-C;η2-C,P-CC(PR)}(CO)4(Tp*)2]. Using a 3:1 stoichiometry of the 

lithiocarbyne:trichlorophosphine appears to form the somewhat unstable trimeric 

complex [W3(µ-C3P)(CO)6(Tp*)3]. 
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Scheme 5.11. Syntheses of bi- and trimetallic phosphinocarbyne complexes. 

 

While electrophilic addition to the monometallic complex [W(≡CPPh2)(CO)2(Tp*)] was 

found to occur preferentially at the phosphine, in the bimetallic complex [W2(µ-

C2PPh)(CO)4(Tp*)2] the W≡C bond competes effectively with the phosphine as the 

preferred site for electrophilic attack. Reactions with [AuCl(SMe2)] resulted in mixtures 

of products of both P-coordination and carbyne-coordination (Scheme 5.12), although 

unambiguous characterisation of the di-aurated complex could not be obtained. 

Addition of excess [AuCl(SMe2)] pushes the reaction all the way to the pentametallic 
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complex [W2{µ-(η2-CAuCl)2PPhAuCl}(CO)4(Tp*)2], the crystal structure of which 

demonstrates the presence of aurophilic bonding between the two carbyne-bound gold 

atoms. 
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Scheme 5.12. Electrophilic addition of [AuCl(SMe2)] to [W2(µ-

C2PPh)(CO)4(Tp*)2].  

 



188 Chapter 6: Conclusions 

 

 

CHAPTER 6.  

Conclusions 



 Chapter 6: Conclusions 189 

 

 

CHAPTER 6: Conclusions 
A library of new phosphinocarbyne complexes has been prepared, including the first 

syntheses of terminal secondary phosphinocarbynes. The development of two general 

strategies has provided access to a range of phosphinocarbyne complexes bearing alkyl, 

aryl, amino, halo and hydro substituents. The utility of these synthetic strategies has 

been exemplified by extension to the synthesis of bi- and trimetallic phosphinocarbyne 

complexes, the existence of which was previously unknown. The [W(CO)2(Tp*)] 

moiety has been shown to be a robust and versatile functional group, found to be 

chemically inert in all experiments undertaken, enabling targeted reactivity at the 

carbyne and phosphorus centres. 

 

Reactions of tungsten phosphinocarbyne complexes with electrophiles, nucleophiles, 

acids and bases demonstrate the versatility of these complexes as synthetic precursors. 

In the monometallic complex [W(≡CPPh2)(CO)2(Tp*)] the phosphorus was found to be 

the most nucleophilic site, although in some cases reactivity at the carbyne carbon atom 

or the tungsten-carbon bond was observed. Replacement of hydro, halo and amino 

substituents at phosphorus has delivered further-functionalised complexes, including the 

salts [W{≡CP(NiPr2)}(CO)2(Tp*)]+ and [W(CPR)(CO)2(Tp*)]−, which feature, 

respectively, electrophilic or nucleophilic two-coordinate phosphorus centres. The latter 

of these has been shown spectroscopically and crystallographically to possess 

significant phosphaisocyanide character and represents the first example of a terminal 

phosphaisocyanide complex. The reactivity of the bimetallic phosphinocarbyne 

complexes differs from what was seen in the monometallic examples, highlighted by 

the novel thermal rearrangement to the bridging carbyne-tungstaphosphirene complexes 

[W2{µ:η1-C;η2-C,P-CC(PR)}(CO)4(Tp*)2]. Together, these results establish both the 

viability and the versatility of a wide range of novel unsaturated 'C1' organophosphorus 

ligand classes. 

 

Looking forward from this point, the future of C1P1 coordination chemistry appears 

bright. This work has demonstrated that, in many cases, conventional organophosphorus 

chemistry is applicable to organometallic systems, and the late-stage functionalisation 

of such systems highlights their value in the broader chemical world. There are several 

areas stemming from this work that offer significant potential, and some future visions 

for this chemistry are presented here. 
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Of particular importance is extension of the preliminary results obtained with regard to 

the synthesis of carbyne complexes bearing two-coordinate phosphorus moieties. 

Ideally this could lead to the isolation of phosphenium cations such as 

[W{≡CP(NiPr2)}(CO)2(Tp*)]+, which are especially interesting in comparison to the 

phosphaisocyanide anions [W(CPR)(CO)2(Tp*)]−. The conceptually simple preparative 

route used to access terminal phosphaisocyanide complexes – involving palladium-

catalysed phosphination followed by deprotonation – is likely to be applicable to other 

systems, and hence elaboration of this methodology could enable preparation of a range 

of phosphaisocyanide complexes. 

 

Most of the research described in this thesis was conducted using mononuclear carbyne 

complexes. However, Chapter 5 details studies of the synthesis and reactivity of bis- 

and triscarbynyl complexes. What is particularly interesting here is that these species 

were found to possess both similarities (e.g. the synthesis of [W2(µ-C2PPh)(CO)4(Tp*)2] 

and its tri-auration) and differences (e.g. the failed synthesis of [W2{µ-

C2P(NR2)}(CO)4(Tp*)2], and the thermal rearrangement and partial auration of [W2(µ-

C2PPh)(CO)4(Tp*)2]) to the mononuclear chemistry. In light of these findings, further 

explorations into such chemistry are expected to yield additional intriguing and 

potentially unpredictable outcomes. 

 

Although the results presented herein demonstrate that considerable variability is 

feasible in terms of the nature of the phosphorus substituent, an obvious limitation is 

that all of this work is restricted to the use of 'W(CO)2(Tp*)' as the metal and co-ligand 

set. Unfortunately, this is an artefact of the dearth of preparative routes to carbyne 

complexes bearing halide (or pseudohalide) substituents. However, the outlook is not so 

bleak since, in the case of phosphorus installation via nucleophilic substitution of 

halophosphines, this protocol can be applied to other anionic carbynes prepared, for 

example, by deprotonation of methylidyne complexes (e.g. Cummins' precursor to 

phosphinocarbynes [Mo(≡CH){NtBu(3,5-C6H3Me2)}3]2)40,41 or fluoride-mediated 

desilylation of silylcarbynes (e.g. Templeton's [Mo(≡CSiMe2Ph)(CO)2(Tp*)]).65 

Despite this, for this field to flourish in the future access to a broader array of suitable 

precursors is essential. 
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Of interest to the broader research community is the fact that much of the methodology 

presented in this thesis should be applicable to carbene complexes and more exotic 

MC1P1Rn systems, which could greatly enhance the scope of this work. Since much of 

the chemistry presented in this thesis is general in nature, it is anticipated that these 

ideas may contribute to many fertile areas of research in the future. 
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CHAPTER 7: Experimental 
General considerations 

Unless otherwise stated, experimental work involving metal complexes was carried out 

at room temperature under a dry and oxygen-free nitrogen atmosphere using standard 

Schlenk, vacuum line and inert atmosphere (argon) drybox techniques with dried and 

degassed solvents. Solvents were dried over sodium/benzophenone (benzene, diethyl 

ether, dimethoxyethane, hexane, pentane, tetrahydrofuran, toluene) or calcium hydride 

(acetonitrile, chloroform, dichloromethane) and distilled under N2. Chromatography 

was carried out using silica gel (40 − 63 µm) or neutral alumina (activity I, 63 − 200 

µm) as specified and degassed where required. Compounds containing four-coordinate 

phosphorus were generally air stable once isolated, excluding complexes [5]BF4, [6]BF4 

and [26]AlCl4. 

 

NMR spectra were obtained at 25°C on Varian Mercury 300 (1H at 300.1 MHz, 13C at 

75.47 MHz, 31P at 121.5 MHz), Varian Inova 300 (1H at 299.9 MHz, 11B at 96.23 MHz, 
13C at 75.42 MHz, 31P at 121.4 MHz), Varian MR 400 (1H at 399.9 MHz, 13C at 100.5 

MHz, 31P at 161.9 MHz), Bruker Avance 400 (1H at 400.1 MHz, 31P at 162.0 MHz), 

Varian Inova 500 (1H at 500.0 MHz, 13C at 125.7 MHz), Bruker Avance 600 (1H at 

600.0 MHz, 13C at 150.9 MHz) or Bruker Avance 800 (1H at 800.1 MHz, 13C at 201.2 

MHz) spectrometers. Chemical shifts (δ) are reported in ppm and referenced to the 

residual protonated solvent peak (1H, 13C), external 85% H3PO4 (31P) or external 

BF3·Et2O (11B) with coupling constants given in Hz. The multiplicities of NMR 

resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m 

(multiplet), br (broad) and combinations thereof for more highly coupled systems. 

Where applicable, the stated multiplicity refers to that of the primary resonance 

exclusive of 183W satellites. Whilst 13C{1H} signals for carbon nuclei of PPh and PCy 

groups could be routinely observed, their narrow spectral range and comparable JPC 

values often precluded unequivocal assignment, in which case they are designated as 

'C2,3,5,6(PPh)' or 'C2,3,5,6(Cy)'. In some cases, distinct peaks were observed in the 1H and 
13C{1H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal 

places for 1H NMR, 1 decimal place for 13C NMR) they are reported as having the same 

chemical shift.  
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Infrared spectra were obtained using a Perkin-Elmer Spectrum One FT-IR spectrometer. 

The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s 

(strong), m (medium), w (weak), sh (shoulder) and br (broad). Elemental 

microanalytical data were obtained from the ANU Research School of Chemistry 

microanalytical service. Electrospray ionisation mass spectrometry (ESI-MS) was 

performed by the ANU Research School of Chemistry mass spectrometry service with 

acetonitrile as the matrix. For compounds containing P−Cl functionalities no 

interpretable mass spectrometry data was obtained due to the hydrolytic sensitivity of 

the P−Cl bond. Data for X-ray crystallography were collected with a Nonius Kappa 

CCD, Agilent Xcalibur CCD or Agilent SuperNova CCD diffractometer and structures 

solved with the assistance of Dr Tony Willis and Mr Jas Ward, whose help is gratefully 

acknowledged.  

 

The following compounds were prepared according to published procedures: KTp*,430 

[AuCl(L)] (L = SMe2, THT),431 [Cp*RhCl2]2,432 KOPh,336 LiCCPh433,434 and 

[Pd(PPh3)4].435 All other reagents were obtained from commercial sources and purified 

as required.  

 

Synthesis of [W(≡CBr)(CO)2(Tp*)] (1) 

Synthesised using a modification of the literature procedure.196  

A suspension of [W(CO)6] (20.80 g, 58.11 mmol) and KTp* (24.70 g, 73.45 mmol) in 

1,2−dimethoxyethane (150 mL) was heated to reflux under N2. After five days the 

reaction mixture was allowed to cool and concentrated under reduced pressure to ca. 

100 mL. Bromoform (12 mL, 137 mmol) was added and the reaction mixture was 

treated with freshly prepared [MesN2]BF4 (synthesised as per below and used when 

damp, 17.515 g) in portions resulting in heat and gas evolution. The brown suspension 

was then connected to N2 with an oil bubbler to allow effluent gases to escape and 

stirred overnight. The solvent was removed under reduced pressure (accompanied by 

sublimation of residual [W(CO)6] in the cold trap). The brown residue was dissolved in 

CH2Cl2 and filtered to remove the insoluble material and the solvent was removed on 

the rotary evaporator. The residue was chromatographed (silica gel) using petroleum 

spirits (40-60) as the eluent and gradually increasing to 6:1 petroleum spirits:CH2Cl2. 

The initial colourless fraction containing residual [W(CO)6] was discarded. The first 

yellow band was collected and the solvent removed on the rotary evaporator to afford 1 
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as a yellow powder. Yield 10.127 g (16.101 mmol, 28% from W(CO)6). Spectroscopic 

data conform to those previously reported.55 

 

Note: Commercially available CHBr3 contains EtOH as a stabiliser to prevent radical 

reactions. The CHBr3 was purified by washing with H2O (5 × 15 mL) to remove the 

EtOH, then dried over MgSO4 and used without distillation or degassing. 

 

Mesityldiazonium tetrafluoroborate [MesN2]BF4  

To a 2 L conical flask containing MesNH2 (30.0 mL, 214 mmol) was added HCl (37%, 

89 mL, 1.1 mol) in H2O (400 mL) with stirring to provide a yellow suspension. The 

reaction mixture was cooled to 0°C and treated with NaNO2 (14.75 g, 213.8 mmol) in 

the minimum H2O (40 mL) resulting in a slightly cloudy yellow solution. NaBF4 (23.48 

g, 213.9 mmol) in the minimum H2O (50 mL) was added to provide a white precipitate. 

The suspension was stirred at 0°C for 40 minutes then the white precipitate was 

collected by filtration and washed with Et2O and dried under vacuum. Damp weight 

40.19 g. Caution! Diazonium salts are potentially explosive when dry! The use of metal 

spatulas is discouraged. The isolated [MesN2]BF4 can be used while still damp for the 

synthesis of [W(≡CBr)(CO)2(Tp*)]. 



196 Chapter 7: Experimental  

 

 

CHAPTER 2. Tertiary phosphinocarbyne complexes  
 

Synthesis of [W(≡CPPh2)(CO)2(Tp*)] (2) 

Synthesised according to the literature procedure for [Mo(≡CPPh2)(CO)2(Tp*)].54  

A solution of [W(≡CBr)(CO)2(Tp*)] (5.001 g, 7.951 mmol) in THF (100 mL) was 

cooled to –78°C in a dry ice/acetone bath and treated with nBuLi (4.7 mL, 1.7 M in 

hexanes, 8.0 mmol). The resulting light brown solution was stirred for 45 minutes and 

then treated with PClPh2 (1.45 mL, 8.08 mmol). The solution instantly turned dark red 

and was left in the dry ice/acetone bath to warm to room temperature overnight. The 

solvent was removed on the rotary evaporator and the residue was chromatographed on 

silica gel using CH2Cl2 as the eluent. The first orange band (containing the product) was 

collected. Ethanol was added and the solution was concentrated on the rotary evaporator 

to afford 2 as an orange powder which was isolated by filtration. Crystals suitable for 

crystallographic analysis were obtained by slow diffusion of nhexane into a solution of 2 

in CH2Cl2. Yield 5.228 g (7.120 mmol, 90%). IR (Nujol) ν/cm−1: 2548 w (BH), 2001 m, 

1974 s, 1957 w, 1912 m, 1883 s, 1858 w (CO). IR (CH2Cl2) ν/cm−1: 2554 w (BH), 1982 

vs, 1891 vs (CO). IR (THF) ν/cm−1: 2550 w (BH), 2000 w, 1981 s, 1914 w, 1893 vs 

(CO). 1H NMR (CDCl3) δ/ppm: 7.62 – 7.56 (m, 4 H, C6H5), 7.36 – 7.31 (m, 6 H, C6H5), 

5.85 (s, 2 H, pzH), 5.74 (s, 1 H, pzH), 2.38 (s, 3 H, pzCH3), 2.37 (s, 6 H, pzCH3), 2.31 

(s, 3 H, pzCH3), 2.26 (s, 6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 292.6 (d, W≡C, 
1JPC = 74.5, 1JWC = 187.9), 225.3 (CO, 1JWC = 168.9), 152.6 (1 C), 152.2 (2 C), 145.3 (1 

C), 144.6 (2 C) [C3,5(pz)], 136.5 [d, C1(C6H5), 1JPC = 9.4], 133.5 [d, C2,3,5,6(C6H5), JPC = 

19.7], 128.6 [C4(C6H5)], 128.5 [d, C2,3,5,6(C6H5), JPC = 7.2], 106.8 (1 C), 106.6 (2 C) 

[C4(pz)], 16.6 (2 C), 15.3 (1 C), 12.9 (2 C), 12.7 (1 C) (pzCH3). 31P{1H} NMR (CDCl3) 

δ/ppm: 32.0 (2JWP = 69.0). MS-ESI(+): m/z 734.7 [M]+, 619.8 [M – 2CO + MeCN]+, 

679.5 [M – 2CO + H]+. Accurate mass: found 735.2006 [M + H]+. Calcd. for 

C30H33
11BN6O2P184W: 735.2005. Anal. found: C, 48.48; H, 4.65; N, 11.42%. Calcd. for 

C30H32BN6O2PW: C, 49.07; H, 4.39; N, 11.45%. Crystal data for C30H32BN6O2PW: Mw 

= 734.26, triclinic, P−1 (No. 2), a = 8.1714(1) Å, b = 10.1587(1) Å, c = 18.9544(2) Å, α 

= 76.1227(8)°, β = 87.1138(8)°, γ = 81.0287(7)°, V = 1508.67(3) Å3, Z = 2, ρcalcd = 

1.616 Mg m−3, µ(Mo Kα) = 3.92 mm−1, T = 200(2) K, orange plate, 0.23 × 0.14 × 0.05 

mm, 8792 independent reflections. F2
 refinement, R = 0.025, wR = 0.055 for 7926 

reflections (I > 2σ(I), 2θmax = 60°), 371 parameters. 
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Synthesis of [W(≡CPMePh2)(CO)2(Tp*)]I ([3]I) 

Methyl iodide (7 drops, excess) was added to a solution of [W(≡CPPh2)(CO)2(Tp*)] 

(0.300 g, 0.409 mmol) in CH2Cl2 (20 mL) and stirred for three days. The orange 

solution gradually became red and IR monitoring showed the formation of the product. 

The solution was filtered through diatomaceous earth and then chromatographed on 

neutral alumina using 2:1 CH2Cl2:MeCN as the eluent. The bright pink band was 

collected and the solvent removed by rotary evaporation affording the product as a red 

solid. Yield 0.268 g (0.306 mmol, 75%). IR (Nujol) ν/cm−1: 2556 w (BH), 2015 s, 1925 

s (CO). IR (CH2Cl2) ν/cm−1: 2560 w (BH), 2022 s, 1937 vs (CO). IR (THF) ν/cm−1: 

2557 w (BH), 2018 vs, 1932 vs (CO). 1H NMR (CDCl3) δ/ppm: 7.90 – 7.83 (m, 4 H, 

C6H5), 7.77 – 7.73 (m, 2 H, C6H5), 7.69 – 7.62 (m, 4 H, C6H5), 6.00 (s, 2 H, pzH), 5.82 

(s, 1 H, pzH), 2.79 (d, 3 H, PCH3, 2JPH = 12.9), 2.41 (s, 6 H, pzCH3), 2.35 (s, 3 H, 

pzCH3), 2.31 (s, 3 H, pzCH3), 2.18 (s, 6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 

242.8 (W≡C, 1JWC = 206.2), 221.8 (d, CO, 3JPC = 2.8, 1JWC = 158.3), 152.1 (1 C), 150.2 

(2 C), 146.1 (1 C), 145.3 (2 C) [C3,5(pz)], 133.8 [d, C4(C6H5), 4JPC = 1.9], 131.4 [d, 

C2,3,5,6(C6H5), JPC = 11.1], 129.4 [d, C2,3,5,6(C6H5), JPC = 12.8], 120.1 [d, C1(C6H5), 1JPC 

= 89.3], 107.1 (1 C), 106.6 (2 C) [C4(pz)], 16.0 (2 C), 14.4 (1 C), 12.0 (1 C), 11.9 (2 C) 

(pzCH3), 11.1 (d, PCH3, 1JPC = 57.0). 31P{1H} NMR (CDCl3) δ/ppm: 12.2 (2JWP = 

161.6). MS-ESI(+): m/z 762.6 [M + MeCN – CO – I]+, 749.5 [M – I]+, 721.5 [M – CO – 

I]+, 693.6 [M – 2CO – I]+. Accurate mass: found 749.2168 [M – I]+. Calcd. for 

C31H35
11BN6O2P184W: 749.2162. Anal. found: C, 42.28; H, 4.20; N, 9.63%. Calcd. for 

C31H35BIN6O2PW: C, 42.49; H, 4.03; N, 9.59%. 

 

Synthesis of [W(≡CPPh2BH3)(CO)2(Tp*)] (4) 

BH3·SMe2 (0.05 mL, 0.5 mmol) was added to a solution of [W(≡CPPh2)(CO)2(Tp*)] 

(0.300 g, 0.409 mmol) in toluene (10 mL) and the reaction mixture was stirred 

overnight. The brown suspension was allowed to settle and the solution was filtered off. 

The precipitate was washed with 2 × 2mL toluene and the washings were combined 

with the filtrate. The solution was filtered through diatomaceous earth and the solvent 

removed under reduced pressure. The residue was triturated in Et2O to provide the 

product as a brown powder, which was collected by vacuum filtration. Crystals suitable 

for crystallographic analysis were obtained by slow diffusion of nhexane into a solution 

of 4 in CHCl3. Yield 0.178 g (0.238 mmol, 58%). IR (Nujol) ν/cm−1: 2557 w (pzBH), 

2359 m, br (BH3), 2001 s, 1911 s (CO). IR (CH2Cl2) ν/cm−1: 2556 w (pzBH), 2359 m, 
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br (BH3), 2003 s, 1915 s (CO). IR (THF) ν/cm−1: 2552 w (pzBH), 2375 m, br (BH3), 

2003 s, 1916 s (CO). 1H NMR (CDCl3) δ/ppm: 7.84 – 7.77 (m, 4 H, C6H5), 7.47 – 7.41 

(m, 6 H, C6H5), 5.89 (s, 2 H, pzH), 5.76 (s, 1 H, pzH), 2.38 (s, 9 H, pzCH3), 2.31 (s, 3 

H, pzCH3), 2.23 (s, 6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 271.2 (d, W≡C, 1JPC = 

21.1, 1JWC = 199.2), 224.2 (CO, 1JWC = 164.5), 152.8 (1 C), 152.1 (2 C), 145.6 (1 C), 

145.0 (2 C) [C3,5(pz)], 132.8 [d, C2,3,5,6(C6H5), JPC = 10.6], 130.8 [C4(C6H5)], 130.3 [d, 

C1(C6H5), 1JPC = 57.3], 128.6 [d, C2,3,5,6(C6H5), JPC = 10.6], 107.2 (1 C), 106.8 (2 C) 

[C4(pz)], 16.9 (2 C), 15.2 (1 C), 12.8 (2 C), 12.7 (1 C) (pzCH3). 31P{1H} NMR (CDCl3) 

δ/ppm: 32.0 (br). 11B{1H} NMR (CDCl3) δ/ppm: −10.1 (Tp*), −37.8 (BH3). MS-ESI(+): 

m/z 789.9 [M + MeCN + H]+, 770.8 [M + Na]+, 749.4 [M + H]+, 735.3 [M − BH2]+. 

Accurate mass: found 790.2601 [M + MeCN + H]+. Calcd. for C32H39
11B2N7O2P184W: 

790.2599. Found 771.2151 [M + Na]+. Calcd. for C30H35
11B2N6O2NaP184W: 771.2152. 

Anal. found: C, 47.88; H, 4.68; N, 11.35%. Calcd. for C30H35B2N6O2PW: C, 48.17; H, 

4.72; N, 11.23%. Crystal data for C30H35B2N6O2PW·CHCl3: Mw = 867.47, triclinic, P−1 

(No. 2), a = 10.2173(2) Å, b = 10.4412(2) Å, c = 17.5622(3) Å, α = 90.0224(10)°, β = 

92.6882(10)°, γ = 105.8832(10)°, V = 1799.87(6) Å3, Z = 2, ρcalcd = 1.601 Mg m−3, 

µ(Mo Kα) = 3.51 mm−1, T = 200(2) K, orange block, 0.22 × 0.15 × 0.11 mm, 10526 

independent reflections. F2
 refinement, R = 0.040, wR = 0.089 for 8636 reflections (I > 

2σ(I), 2θmax = 60°), 415 parameters. 

 

Synthesis of [W(≡CPHPh2)(CO)2(Tp*)]BF4 ([5]BF4) and [W{η2-

C(H)PPh2}(CO)2(Tp*)]BF4 ([6]BF4) 

A suspension of [W(≡CPPh2)(CO)2(Tp*)] (0.200 g, 0.272 mmol) in Et2O (12 mL) was 

cooled to –78°C and treated with HBF4⋅Et2O (0.06 mL, 0.4 mmol) dropwise. The 

orange suspension was stirred at –78°C for one hour then allowed to warm to room 

temperature and stirred for a further 45 minutes. Upon warming the mixture became a 

pink suspension. The mixture was filtered and the pink precipitate was washed with 

Et2O (2 × 3 mL) and npentane (2 × 3 mL) and dried under vacuum. IR spectroscopy 

revealed the precipitate is [5]BF4. Dissolution in CH3CN, CHCl3 or CH2Cl2 affords a 

dark purple solution, and removal of the solvent gives [6]BF4 as a purple solid.  

 

[W(≡CPHPh2)(CO)2(Tp*)]BF4 ([5]BF4) 

IR (Nujol) ν/cm−1: 2578 w (BH), 2459 vw (PH, tentative assignment), 2022 s, 1937 s 

(CO). IR (CH2Cl2) ν/cm−1: 2022 s, 1937 s (CO). The spectrum contains absorptions 
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attributable to [W{η2-C(H)PPh2}(CO)2(Tp*)]BF4 and [W(≡CPPh2)(CO)2(Tp*)] so the 

BH and PH absorptions cannot be conclusively identified. The mode assigned to νPH 

was reproduced computationally. 

 

[W{η2-C(H)PPh2}(CO)2(Tp*)]BF4 ([6]BF4) 

Yield 0.179 g (0.218 mmol, 80%). IR (Nujol) ν/cm−1: 2563 w (BH), 2055 s, 1979 vs, br 

1926 m, br (CO). IR (CH2Cl2) ν/cm−1: 2567 w (BH), 2054 s, 1982 vs (CO). The IR 

spectrum could not be obtained in THF as [6]BF4 is not stable in THF. 1H NMR 

(CDCl3) δ/ppm: 14.78 (d, 1 H, WCH, 2JPH = 4.8, 2JWH = 13.8), 7.45 – 7.40 (m, 2 H, 

C6H5), 7.34 – 7.26 (m, 4 H, C6H5), 7.09 – 7.02 (m, 4 H, C6H5), 6.06 (s, 1 H, pzH), 5.89 

(s, 2 H, pzH), 2.60 (s, 3 H, pzCH3), 2.51 (s, 6 H, pzCH3), 2.35 (s, 3 H, pzCH3), 1.42 (s, 

6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 237.1 (d, W=C, 1JPC = 46.3, 1JWC = 21.5), 

214.8 (CO, 1JWC = 134.3), 154.7 (1 C), 153.5 (2 C), 148.1 (1 C), 146.9 (2 C) [C3,5(pz)], 

133.2 [d, C2,3,5,6(C6H5), JPC = 12.1], 132.2 [C4(C6H5)], 129.5 [d, C2,3,5,6(C6H5), JPC = 

13.6], 128.8 [d, C1(C6H5), 1JPC = 64.9], 109.6 (1 C), 109.0 (2 C) [C4(pz)], 16.3 (1 C), 

15.5 (2 C), 13.1 (1 C), 12.8 (2 C) (pzCH3). 13C NMR (CDCl3) δ/ppm: 237.1 (dd, W=C, 
1JPC = 46.3, 1JCH = 199.0, 1JWC = 21.5). 31P{1H} NMR (CDCl3) δ/ppm: –101.3 (1JWP = 

138.5). MS-ESI(+): m/z 735.2 [M – BF4]+. Accurate mass: found 735.2005 [M – BF4]+. 

Calcd. for C30H33
11BN6O2P184W: 735.2005. Anal. found: C, 44.16; H, 4.34; N, 9.96%. 

Calcd. for C30H33B2F4N6O2PW: C, 43.83; H, 4.05; N, 10.22%. 

 

Synthesis of [W{≡CPPh2RhCl2(Cp*)}(CO)2(Tp*)] (7) 

A solution of [W(≡CPPh2)(CO)2(Tp*)] (0.350 g, 0.477 mmol) and [RhCl2(Cp*)]2 

(0.147 g, 0.239 mmol) in CH2Cl2 (20 mL) was stirred overnight. The solvent was 

removed in vacuo and the residue was dissolved in CH2Cl2 and chromatographed on 

silica gel. Elution with CH2Cl2 gave an initial yellow fraction containing 

[W(≡CPPh2)(CO)2(Tp*)]. Subsequent elution with THF gave a red fraction, which was 

collected and the solvent removed under reduced pressure. The residue was dissolved in 

CH2Cl2 and EtOH then concentrated under reduced pressure to afford the product as a 

red precipitate, which was collected by filtration. Crystals suitable for crystallographic 

and microanalytical analysis were obtained by slow diffusion of nhexane into a solution 

of 7 in CH2Cl2. Yield 0.219 g (0.210 mmol, 44%). IR (Nujol) ν/cm−1: 2552 w (BH), 

2004 s, 1913 s (CO). IR (CH2Cl2) ν/cm−1: 2554 w (BH), 2008 vs, 1916 vs (CO). IR 

(THF) ν/cm−1: 2012 vs, 1919 vs (CO), νBH not visible. 1H NMR (CDCl3) δ/ppm: 7.93 – 
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7.87 (m, 4 H, C6H5), 7.39 – 7.36 (m, 6 H, C6H5), 5.65 (s, 3 H, pzH, coincident), 2.41 (s, 

3 H, pzCH3), 2.28 (s, 6 H, pzCH3), 2.23 (s, 3 H, pzCH3), 1.69 (s, 6 H, pzCH3), 1.35 (d, 

15 H, 3JRhH = 3.6). 13C{1H} NMR (CDCl3) δ/ppm: 273.0 (d, W≡C, 1JPC = 28.7, 1JWC = 

208.2), 226.3 (CO, 1JWC = 170.5), 152.8 (3 C, coincident), 144.8 (1 C), 144.3 (2 C) 

[C3,5(pz)], 134.7 [d, C2,3,5,6(C6H5), JPC = 9.1], 132.5 [d, C1(C6H5), 1JPC = 45.3], 130.0 

[C4(C6H5)], 128.1 [d, C2,3,5,6(C6H5), JPC = 9.1], 106.9 (1 C), 106.1 (2 C) [C4(pz)], 98.5 

(C5Me5), 15.8 (2 C), 15.2 (1 C), 12.8 (2 C), 12.6 (1 C) (pzCH3), 8.9 (C5Me5). 31P{1H} 

NMR (CDCl3) δ/ppm: 37.0 (d, 1JRhP = 139.2, 2JWP = 122.0). MS-ESI(+): m/z 1007.8 [M 

– Cl]+. Accurate mass: found 1007.1848 [M – Cl]+. Calcd. for 

C40H47
11B35ClN6O2P103Rh184W: 1007.1844. Anal. found: C, 41.41; H, 4.32; N, 6.94%. 

Calcd. for C40H47BCl2N6O2PRhW·(CH2Cl2)2: C, 41.58; H, 4.24; N, 6.93%. Crystal data 

for C40H47BCl2N6O2PRhW·(CH2Cl2)2: Mw = 1213.16, orthorhombic, Pbca, a = 

20.9517(2) Å, b = 21.1340(2) Å, c = 22.1261(1) Å, V = 9797.29(14) Å3, Z = 8, ρcalcd = 

1.645 Mg m−3, µ(Mo Kα) = 3.08 mm−1, T = 200(2) K, red block, 0.27 × 0.20 × 0.14 

mm, 14324 independent reflections. F2
 refinement, R = 0.040, wR = 0.106 for 11541 

reflections (I > 2σ(I), 2θmax = 60°), 541 parameters. 

 

Synthesis of [W(≡CPPh2AuCl)(CO)2(Tp*)] (8) 

A mixture of [W(≡CPPh2)(CO)2(Tp*)] (0.352 g, 0.479 mmol) and [AuCl(SMe2)] (0.143 

g, 0.485 mmol) was dissolved in THF (15 mL) resulting in a red solution. The solution 

was stirred for 18 hours and a small amount of gold precipitate was observed. The 

solution was filtered through diatomaceous earth and the volatiles were removed in 

vacuo to afford the product as a red powder. Crystals suitable for crystallographic 

analysis were obtained by slow diffusion of EtOH into a solution of 8 in CH2Cl2. Yield 

0.374 g (0.387 mmol, 81%). IR (Nujol) ν/cm−1: 2552 w (BH), 2001 s, 1907 s (CO). IR 

(CH2Cl2) ν/cm−1: 2556 w (BH), 2003 vs, 1916 vs (CO). IR (THF) ν/cm−1: 2553 w (BH), 

2002 vs, 1917 vs (CO). 1H NMR (CDCl3) δ/ppm: 7.81 – 7.73 (m, 4 H, C6H5), 7.48 – 

7.43 (m, 6 H, C6H5), 5.90 (s, 2 H, pzH), 5.77 (s, 1 H, pzH), 2.38 (s, 6 H, pzCH3), 2.36 

(s, 3 H, pzCH3), 2.31 (s, 3 H, pzCH3), 2.24 (s, 6 H, pzCH3). 13C{1H} NMR (CDCl3) 

δ/ppm: 263.3 (d, W≡C, 1JPC = 22.1, 1JWC = 199.9), 223.6 (d, CO, 3JPC = 2.8, 1JWC = 

163.4), 152.7 (1 C), 151.8 (2 C), 145.9 (1 C), 145.2 (2 C) [C3,5(pz)], 133.7 [d, 

C2,3,5,6(C6H5), JPC = 13.8], 131.4 [d, C4(C6H5), 4JPC = 2.0], 129.7 [d, C1(C6H5), 1JPC = 

64.3], 129.0 [d, C2,3,5,6(C6H5), JPC = 12.4], 107.3 (1 C), 106.9 (2 C) [C4(pz)], 16.9 (2 C), 

15.2 (1 C), 12.7 (3 C, coincident) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 37.5 (2JWP = 
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139.3). MS-ESI(+): m/z 989.6 [M + Na]+, 911.6 [M – 2CO + H]+, 701.7 [M – 2CO – Au 

+ Na]+, 679.8 [M – 2CO – Au + H]+. Accurate mass: found 991.1151 [M + Na]+. Calcd. 

for C30H32Au11B37ClN6NaO2P184W: 991.1149. Anal. found: C, 37.24; H, 3.30; N, 

8.42%. Calcd. for C30H32AuBClN6O2PW: C, 37.28; H, 3.34; N, 8.69%. Crystal data for 

C30H32AuBClN6O2PW: Mw = 966.68, monoclinic, P21/n, a = 10.3172(1) Å, b = 

13.5659(2) Å, c = 25.2039(3) Å, β = 98.3693(5)°, V = 3490.02(7) Å3, Z = 4, ρcalcd = 

1.840 Mg m−3, µ(Mo Kα) = 7.65 mm−1, T = 200(2) K, orange plate, 0.38 × 0.28 × 0.05 

mm, 10247 independent reflections. F2
 refinement, R = 0.030, wR = 0.067 for 8112 

reflections (I > 2σ(I), 2θmax = 60°), 388 parameters. 

 

Synthesis of [W{η2-C(AuCl)PPh2AuCl}(CO)2(Tp*)] (9) 

A mixture of [W(≡CPPh2)(CO)2(Tp*)] (0.351 g, 0.478 mmol) and [AuCl(SMe2)] (0.428 

g, 1.45 mmol) was dissolved in THF (15 mL) resulting in a red solution. The solution 

was stirred for four days and a small amount of gold precipitate was observed. The 

solution was decanted by cannula filtration and concentrated to approximately 5 mL in 

vacuo resulting in precipitation of the product as a peach powder, which was isolated by 

filtration. Crystals suitable for crystallographic analysis were obtained by slow diffusion 

of EtOH into a solution of 9 in CH2Cl2. Yield 0.240 g (0.200 mmol, 55%). IR (Nujol) 

ν/cm−1: 2563 w (BH), 2022 vs, 1936 vs (CO). IR (THF) ν/cm−1: 2562 w (BH), 2022 vs, 

1944 vs (CO). 1H NMR (CDCl3) δ/ppm: 8.09 – 8.02 (m, 4 H, C6H5), 7.61 – 7.49 (m, 6 

H, C6H5), 5.96 (s, 1 H, pzH), 5.93 (s, 2 H, pzH), 2.50 (s, 3 H, pzCH3), 2.36 (s, 6 H, 

pzCH3), 2.32 (s, 3 H, pzCH3), 2.25 (s, 6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 

253.6 (d, WC, 1JPC = 1.5, 1JWC = 99.6), 216.6 (d, CO, 3JPC = 7.8, 1JWC = 154.2), 154.4 (1 

C), 152.5 (2 C), 146.9 (1 C), 146.4 (2 C) [C3,5(pz)], 134.4 [d, C2,3,5,6(C6H5), JPC = 13.6], 

132.5 [d, C4(C6H5), 4JPC = 3.0], 129.5 [d, C2,3,5,6(C6H5), JPC = 12.1], 129.4 [d, C1(C6H5), 
1JPC = 61.9], 109.1 (1 C), 108.2 (2 C) [C4(pz)], 17.4 (2 C), 16.0 (1 C), 13.2 (1 C), 12.7 

(2 C) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 53.6 (2JWP = 84.3). MS-ESI(+): m/z 

1220.8 [M + Na]+, 1162.7 [M – Cl]+. Accurate mass: found 1221.0532 [M + Na]+. 

Calcd. for C30H32Au2
11B35Cl2N6NaO2P184W: 1221.0533. Anal. found: C, 30.11; H, 2.88; 

N, 7.04%. Calcd. for C30H32Au2BCl2N6O2PW: C, 30.05; H, 2.69; N, 7.01%. Crystal 

data for C30H32Au2BCl2N6O2PW: Mw = 1199.10, monoclinic, P21/n, a = 16.5513(2) Å, 

b = 12.9890(2) Å, c = 17.7921(2) Å, β = 113.5027(7)°, V = 3507.71(8) Å3, Z = 4, ρcalcd 

= 2.270 Mg m−3, µ(Mo Kα) = 11.85 mm−1, T = 200(2) K, red block, 0.36 × 0.29 × 0.26 
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mm, 10263 independent reflections. F2
 refinement, R = 0.034, wR = 0.080 for 8079 

reflections (I > 2σ(I), 2θmax = 60°), 406 parameters. 

 

Synthesis of [W{≡CP(=S)Ph2}(CO)2(Tp*)] (10) and [W{η2-

SCP(=S)Ph2}(CO)2(Tp*)] (11) 

A solution of [W(≡CPPh2)(CO)2(Tp*)] (0.500 g, 0.681 mmol) and elemental sulfur 

(0.022 g, 0.686 mg-atom) in THF (30 mL) was stirred overnight. The volatiles were 

removed in vacuo and the residue was chromatographed on silica gel at –30°C with 

CH2Cl2 as the eluent. The initial faint grey fraction was discarded, and the second 

(purple, minor) and third (orange, major) fractions were collected, containing [W{η2-

SCP(=S)Ph2}(CO)2(Tp*)] and [W{≡CP(=S)Ph2}(CO)2(Tp*)], respectively. 

[W{≡CP(=S)Ph2}(CO)2(Tp*)] was isolated by concentration of a CH2Cl2/EtOH 

solution in vacuo to afford the product as an orange powder. Crystals suitable for 

crystallographic analysis were obtained from CH2Cl2/nhexane (10) and CH2Cl2/MeOH 

(11).  

N.B. When the reaction is carried out in toluene it gives 16% 11 and 80% 10. If the 

reaction is carried out with an excess of sulphur (10/8 equivalents of S8) then 10 is 

obtained in 98% yield. 

 

[W{≡CP(=S)Ph2}(CO)2(Tp*)] (10) 

Yield 0.422 g (0.551 mmol, 81%). IR (Nujol) ν/cm−1: 2560 w, 2550 w (BH), 1996 s, 

1924 s, 1909 s (CO). IR (CH2Cl2) ν/cm−1: 2556 w (BH), 2004 s, 1916 s, br (CO). IR 

(THF) ν/cm−1: 2552 w (BH), 2004 s, 1997 sh, 1918 s, 1908 sh (CO). 1H NMR (CDCl3) 

δ/ppm: 8.00 – 7.95 (m, 4 H, C6H5), 7.47 – 7.43 (m, 6 H, C6H5), 5.88 (s, 2 H, pzH), 5.76 

(s, 1 H, pzH), 2.38 (s, 9 H, pzCH3), 2.31 (s, 3 H, pzCH3), 2.27 (s, 6 H, pzCH3). 13C{1H} 

NMR (CDCl3) δ/ppm: 270.1 (d, W≡C, 1JPC = 4.9, 1JWC = 198.4), 224.0 (CO, 1JWC = 

162.5), 152.8 (1 C), 152.4 (2 C), 145.7 (1 C), 145.0 (2 C) [C3,5(pz)], 134.3 [d, C1(C6H5), 
1JPC = 86.7], 131.9 [d, C2,3,5,6(C6H5), JPC = 11.0], 131.1 [d, C4(C6H5), 3JPC = 2.4], 128.5 

[d, C2,3,5,6(C6H5), JPC = 12.2], 107.2 (1 C), 106.9 (2 C) [C4(pz)], 17.0 (2 C), 15.3 (1 C), 

12.8 (2 C), 12.8 (1 C) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 41.0 (2JWP = 152.5). 

MS-ESI(+): m/z 789.5 [M + Na]+, 710.7 [M – 2CO]+, 454.6 [M – 2CO – Tp* + 

MeCN]+, 413.5 [M – 2CO – Tp*]+. Accurate mass: found 789.1545 [M + Na]+. Calcd. 

for C30H32
11BN6O2NaPS184W: 789.1545. Anal. found: C, 47.19; H, 4.47; N, 10.84%. 

Calcd. for C30H32BN6O2PSW: C, 47.02; H, 4.21; N, 10.97%. Crystal data for 
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C30H32BN6O2PSW: Mw = 766.32, triclinic, P – 1 (No. 2), a = 10.2968(2) Å, b = 

10.4179(2) Å, c = 17.2038(4) Å, α = 98.7173(12)°, β = 106.0368(13)°, γ = 

106.6702(11)°, V = 1644.85(6) Å3, Z = 2, ρcalcd = 1.547 Mg m−3, µ(Mo Kα) = 3.66 

mm−1, T = 200(2) K, orange block, 0.20 × 0.18 × 0.11 mm, 9625 independent 

reflections. F2
 refinement, R = 0.042, wR = 0.089 for 7233 reflections (I > 2σ(I), 2θmax = 

60°), 379 parameters. 

 

[W{η2-SCP(=S)Ph2}(CO)2(Tp*)] (11) 

Yield 0.047 g (0.059 mmol, 9%). IR (Nujol) ν/cm−1: 2552 w (BH), 1992 s, 1902 s, 1892 

s (CO). IR (CH2Cl2) ν/cm−1: 2559 w (BH), 1995 s, 1907 s (CO). IR (THF) ν/cm−1: 1993 

s, 1908 s (CO), νBH not unambiguously identifiable. 1H NMR (CDCl3) δ/ppm: 8.09 – 

8.02 (m, 4 H, C6H5), 7.51 – 7.42 (m, 6 H, C6H5), 5.91 (s, 1 H, pzH), 5.80 (s, 2 H, pzH), 

2.55 (s, 3 H, pzCH3), 2.37 (s, 6 H, pzCH3), 2.32 (s, 3 H, pzCH3), 1.93 (s, 6 H, pzCH3). 
13C{1H} NMR (CDCl3) δ/ppm: 250.1 (d, WC, 1JPC = 42.0, 1JWC = 42.8), 224.5 (CO, 
1JWC = 76.3), 153.8 (1 C), 152.9 (2 C), 145.3 (1 C), 144.4 (2 C) [C3,5(pz)], 132.7 [d, 

C1(C6H5), 1JPC = 87.3], 132.5 [d, C2,3,5,6(C6H5), JPC = 11.0], 131.5 [C4(C6H5)], 128.3 [d, 

C2,3,5,6(C6H5), JPC = 13.3], 108.2 (1 C), 107.5 (2 C) [C4(pz)], 16.3 (1 C), 13.7 (2 C), 13.2 

(1 C), 12.6 (2 C) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 52.9 (s). MS-ESI(+): m/z 

821.6 [M + Na]+, 798.7 [M]+, 743.4 [M – 2CO + H]+. Accurate mass: found 821.1268 

[M + Na]+. Calcd. for C30H32
11BN6O2NaPS2

184W: 821.1266. Anal. found: C, 44.41; H, 

4.20; N, 10.42%. Calcd. for C30H32BN6O2PS2W: C, 45.13; H, 4.04; N, 10.53%. Crystal 

data for C30H32BN6O2PS2W: Mw = 798.39, monoclinic, P21/c, a = 9.9675(2) Å, b = 

15.4834(4) Å, c = 23.6677(6) Å, β = 92.4264(15)°, V = 3649.38(15) Å3, Z = 4, ρcalcd = 

1.453 Mg m−3, µ(Mo Kα) = 3.36 mm−1, T = 200(2) K, purple lath, 0.30 × 0.09 × 0.04 

mm, 8407 independent reflections. F2
 refinement, R = 0.095, wR = 0.217 for 6295 

reflections (I > 2σ(I), 2θmax = 55°), 388 parameters. 

 

Synthesis of [W{≡CP(=Se)Ph2}(CO)2(Tp*)] (12)  

A mixture of [W(≡CPPh2)(CO)2(Tp*)] (0.306 g, 0.417 mmol) and grey selenium (0.033 

g, 0.418 mg-atom) was stirred overnight in CH2Cl2 (15 mL). The solvent was removed 

in vacuo. The red residue was chromatographed on silica (3.6 × 10 cm) with 1:1 

CH2Cl2:npentane as the eluent. The first yellow band to elute was discarded and the 

polarity increased to 3:1 CH2Cl2:npentane. The red fraction containing the product was 

collected and the solvent was removed in vacuo. The orange residue was redissolved in 
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CH2Cl2 and EtOH was added and the solution concentrated in vacuo to afford the 

product as an orange powder. Crystals suitable for crystallographic analysis were 

obtained from a solution of 12 in CHCl3. Yield 0.313 g (0.385 mmol, 92%). IR (Nujol) 

ν/cm−1: 2553 w (BH), 2002 s, 1912 s, br (CO). IR (CH2Cl2) ν/cm−1: 2556 w (BH), 2005 

vs, 1917 vs, br (CO). IR (THF) ν/cm−1: 2552 w (BH), 2004 vs, 1997 vs, 1918 vs, 1907 

vs (CO). 1H NMR (CDCl3) δ/ppm: 8.02 – 7.95 (m, 4 H, C6H5), 7.44 – 7.41 (m, 6 H, 

C6H5), 5.90 (s, 2 H, pzH), 5.78 (s, 1 H, pzH), 2.40 (s, 6 H, pzCH3), 2.38 (s, 3 H, 

pzCH3), 2.32 (s, 3 H, pzCH3), 2.27 (s, 6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 

265.2 (d, W≡C, 1JPC = 13.6, 1JWC = 201.4), 224.0 (d, CO, 3JPC = 3.0, 1JWC = 164.4), 

152.8 (1 C), 152.3 (2 C), 145.7 (1 C), 145.0 (2 C) [C3,5(pz)], 133.2 [d, C1(C6H5), 1JPC = 

76.9], 132.2 [d, C2,3,5,6(C6H5), JPC = 12.1], 131.1 [d, C4(C6H5), 3JPC = 3.0], 128.4 [d, 

C2,3,5,6(C6H5), JPC = 13.6], 107.2 (1 C), 106.8 (2 C) [C4(pz)], 17.0 (2 C), 15.3 (1 C), 12.8 

(2 C), 12.7 (1 C) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 31.9 (2JWP = 152.6, 1JSeP = 

711.8). MS-ESI(+): m/z 836.6 [M + Na]+, 813.3 [M – H]+, 787.4 [M – CO + H]+, 759.5 

[M – 2CO + H]+. Accurate mass: found 814.1093 [M]+. Calcd. for 

C30H32
11BN6O2P80Se184W: 814.1092. Anal. found: C, 44.59; H, 3.96; N, 10.77%. Calcd. 

for C30H32BN6O2PSeW: C, 44.31; H, 3.97; N, 10.33%. Crystal data for 

C30H32BN6O2PSeW·CHCl3: Mw = 932.59, triclinic, P−1 (No. 2), a = 10.2609(2) Å, b = 

10.4116(1) Å, c = 17.5341(3) Å, α = 90.5897(11)°, β = 91.1982(9)°, γ = 106.3725(10)°, 

V = 1796.60(5) Å3, Z = 2, ρcalcd = 1.724 Mg m−3, µ(Mo Kα) = 4.53 mm−1, T = 200(2) K, 

orange plate, 0.26 × 0.24 × 0.12 mm, 10523 independent reflections. F2
 refinement, R = 

0.041, wR = 0.092 for 8432 reflections (I > 2σ(I), 2θmax = 60°), 415 parameters. 

 

Synthesis of [W{≡CP(=O)Ph2}(CO)2(Tp*)] (13) 

Method A: A solution of [W(≡CPPh2)(CO)2(Tp*)] (0.100 g, 0.136 mmol) in toluene (9 

mL) in air was heated to reflux. After eight hours IR spectroscopy indicated all the 

starting material had been consumed. The solvent was removed under reduced pressure. 
1H and 31P{1H} NMR spectroscopy indicated 13 to be the major product (ca. 70% by 
31P{1H} NMR).  

Method B: A solution of [W(≡CPPh2)(CO)2(Tp*)] (0.200 g, 0.272 mmol) in CH2Cl2 (20 

mL) in air was treated with 30% aqueous H2O2 (1.0 mL, 9.8 mmol) and the mixture was 

stirred vigorously. After 75 minutes TLC showed the reaction was complete. The 

organic layer was washed with water (3 × 15 mL) and dried with MgSO4. The solvent 

was removed to afford crude 13 as an orange oil. The product was chromatographed on 



 Chapter 7: Experimental 205 

 

 

silica gel with 1:1 THF:hexane. An initial yellow band was discarded and the second 

(major) orange band containing the product was collected. 1H and 31P{1H} NMR 

spectroscopy showed only a marginal improvement in purity as a result of 

chromatography (ca. 80% 13 by 31P{1H} NMR). Yield 0.132 g (0.176 mmol, 65%).  

Method C: A solution of [W(≡CBr)(CO)2(Tp*)] (0.020 g, 0.032 mmol) in THF (1 mL) 

was cooled to –78°C and treated with nBuLi (0.07 mL, 0.45 M in hexanes, 0.03 mmol). 

The resulting dark yellow solution was stirred for 30 minutes and then treated with 

P(=O)ClPh2 (0.31 mL, 0.10 M in THF/hexane, 0.032 mmol). The solution instantly 

turned orange and was stirred 40 minutes then allowed to warm to room temperature 

and stirred for a further 40 minutes. The volatiles were removed under reduced pressure. 
1H and 31P{1H} NMR spectroscopy indicated formation of 13 as the major product. 

IR (Nujol) ν/cm−1: 2550 w (BH), 2002 s, 1987 m, 1913 s, br (CO). IR (CH2Cl2) ν/cm−1: 

2556 w (BH), 2004 vs, 1983 m, 1915 vs, br (CO). IR (THF) ν/cm−1: 2553 w (BH), 2001 

vs, 1975 w, 1911 vs, br (CO). N.B. νPO was not unambiguously identifiable. 1H NMR 

(CDCl3) δ/ppm: 7.96 – 7.93 (m, 4 H, C6H5), 7.49 – 7.46 (m, 6 H, C6H5), 5.91 (s, 2 H, 

pzH), 5.78 (s, 1 H, pzH), 2.40 (s, 6 H, pzCH3), 2.38 (s, 3 H, pzCH3), 2.35 (s, 6 H, 

pzCH3), 2.33 (s, 3 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 281.2 (d, W≡C, 1JPC = 

16.1, 1JWC = 190.6), 224.0 (CO, 1JWC = 164.4), 152.0 (1 C), 151.7 (2 C), 145.3 (1 C), 

144.5 (2 C) [C3,5(pz)], 133.3 [d, C1(C6H5), 1JPC = 105.6], 131.0 [d, C2,3,5,6(C6H5), JPC = 

10.0], 130.9 [d, C4(C6H5), 3JPC = 1.8], 127.9 [d, C2,3,5,6(C6H5), JPC = 12.1], 106.7 (1 C), 

106.4 (2 C) [C4(pz)], 16.2 (2 C), 14.7 (1 C), 12.3 (2 C), 12.2 (1 C) (pzCH3). 31P{1H} 

NMR (CDCl3) δ/ppm: 19.9 (2JWP = 145.2). MS-ESI(+): m/z 1523.4 [2M + Na]+, 814.2 

[M + Na + MeCN]+, 789.1 [M + K]+, 773.2 [M + Na]+, 751.2 [M + H]+. Accurate mass: 

found 751.1953 [M + H]+. Calcd. for C30H33
11BN6O3P184W: 751.1954. Found 773.1777 

[M + Na]+. Calcd. for C30H32BN6
23NaO3P184W: 773.1774. Anal. found: C, 47.48; H, 

4.45; N, 11.06%. Calcd. for C30H32BN6O3PW: C, 48.03; H, 4.30; N, 11.20%. Calcd. for 

the hemi-hydrate C30H32BN6O3PW·(H2O)0.5: C, 47.45; H, 4.38; N, 11.06%. 

 

Synthesis of [W{η2-C(AuCl)P(=S)Ph2}(CO)2(Tp*)] (14) 

[W{≡CP(=S)Ph2}(CO)2(Tp*)] (0.095 g, 0.12 mmol) and [AuCl(SMe2)] (0.037 g, 0.12 

mmol) were dissolved in CH2Cl2 (6 mL) resulting in a red solution and golden 

precipitate. The suspension was stirred for two hours after which time IR spectroscopy 

showed the presence of the starting material (νCO 2004, 1916 cm–1) and a new 

compound (νCO 2031, 1952 cm–1). After 4.5 hours the infrared showed no change, so a 
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further half equivalent of [AuCl(THT)]* (0.020 g, 0.062 mmol) was added. After six 

hours of stirring the IR showed almost complete conversion to the product and the 

reaction was left to sit overnight. The reaction mixture was filtered through 

diatomaceous earth and washed with CH2Cl2 until the washings were colourless. EtOH 

was added to the filtrate and the solution was concentrated on the rotary evaporator until 

a bluish precipitate was observed, which was removed by filtration. The crude product 

was chromatographed on neutral alumina using 2:1 CH2Cl2:MeCN as the eluent. An 

initial orange fraction was collected containing the starting material, followed by a red 

fraction containing the product. The solvent was removed under reduced pressure to 

afford 14 as an orange solid. Yield 0.070 g (0.070 mmol, 57%). IR (Nujol) ν/cm−1: 2560 

w (BH), 2028 s, 1948 s, br (CO). IR (CH2Cl2) ν/cm−1: 2563 w (BH), 2031 s, 1952 vs, br 

(CO). IR (THF) ν/cm−1: 2563 w (BH), 2031 vs, 1953 vs, br (CO). 1H NMR (CDCl3) 

δ/ppm: 8.23 – 8.20 (m, 4 H, C6H5), 7.55 – 7.50 (m, 6 H, C6H5), 5.94 (s, 1 H, pzH), 5.91 

(s, 2 H, pzH), 2.54 (s, 3 H, pzCH3), 2.36 (s, 6 H, pzCH3), 2.32 (s, 3 H, pzCH3), 2.20 (s, 

6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 262.4 (br, WCP), 216.4 (br, CO), 154.3 (1 

C), 152.5 (2 C), 146.7 (1 C), 146.1 (2 C) [C3,5(pz)], 132.5 [d, C2,3,5,6(C6H5), JPC = 10.0], 

132.0 [br, C1,4(C6H5)], 128.8 [d, C2,3,5,6(C6H5), JPC = 8.9], 108.8 (1 C), 108.0 (2 C) 

[C4(pz)], 17.2 (2 C), 15.9 (1 C), 13.1 (1 C), 12.7 (2 C) (pzCH3). 31P{1H} NMR (CDCl3) 

δ/ppm: 52.3 (br). MS-ESI(+): m/z 1962.4 [2 M – Cl + H]+, 1729.4 [2 M – Au – 2 Cl]+, 

1021.1 [M + Na]+, 963.1 [M – Cl]+. Accurate mass: found 1023.0871 [M + Na]+. Calcd. 

for C30H32Au11B37ClN6NaO2P184W: 1023.0870. Found 1021.0909 [M + Na]+. Calcd. for 

C30H32Au11B35ClN6NaO2P184W: 1021.0900. Anal. found: C, 35.83; H, 3.25; N, 8.20%. 

Calcd. for C30H32AuBClN6O2PSW: C, 36.08; H, 3.23; N, 8.41%. Crystal data for 

C30H32AuBClN6O2PSW: Mw = 998.74, monoclinic, P21/c, a = 16.6239(3) Å, b = 

12.8664(3) Å, c = 17.4284(3) Å, β = 116.7247(10)°, V = 3329.55(12) Å3, Z = 4, ρcalcd = 

1.992 Mg m−3, µ(Mo Kα) = 8.08 mm−1, T = 200(2) K, orange block, 0.10 × 0.09 × 0.08 

mm, 7648 independent reflections. F2
 refinement, R = 0.043, wR = 0.118 for 5693 

reflections (I > 2σ(I), 2θmax = 55°), 397 parameters. 

                                                
* [AuCl(THT)] was used because all of the [AuCl(SMe2)] sample was used up in this reaction, 
whereas a sample of [AuCl(THT)] was on hand. 
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CHAPTER 3. Chlorophosphinocarbyne complexes 
 

Synthesis of [W(≡CPClPh)(CO)2(Tp*)] (15) 

A solution of [W(≡CBr)(CO)2(Tp*)] (2.999 g, 4.768 mmol) in THF (100 mL) was 

cooled to –78°C and treated with nBuLi (3.0 mL, 1.6 M in hexanes, 4.8 mmol). The 

resulting light brown solution was stirred for 30 minutes and then treated with PCl2Ph 

(0.65 mL, 4.8 mmol). The solution instantly turned dark red and was stirred for a further 

70 minutes then allowed to warm to room temperature. Volatiles were removed under 

reduced pressure and the solid residue was extracted with npentane (4 × 50 mL) and the 

solution was collected by cannula filtration. Concentration under reduced pressure then 

cooling to −15°C resulted in a peach coloured precipitate which was isolated by 

filtration. The filtrate was concentrated and cooled to provide a second crop. Yield 

2.335 g (3.371 mmol, 71%). IR (Nujol) ν/cm−1: 2550 w, 2524 w (BH), 2006 sh, 1987 s, 

1970 sh, 1923 sh, 1898 s (CO). IR (THF) ν/cm−1: 2551 w (BH), 1992 vs, 1905 vs (CO). 
1H NMR (CDCl3) δ/ppm: 7.85 – 7.79 (m, 2 H, C6H5), 7.45 – 7.42 (m, 3 H, C6H5), 5.90 

(s, 1 H, pzH), 5.89 (s, 1 H, pzH), 5.75 (s, 1 H, pzH), 2.45 (s, 3 H, pzCH3), 2.37 (s, 3 H, 

pzCH3), 2.36 (s, 6 H, pzCH3, coincident), 2.36 (s, 3 H, pzCH3), 2.30 (s, 3 H, pzCH3). 1H 

NMR (C6D6) δ/ppm: 7.96 – 7.91 (m, 2 H, C6H5), 7.10 – 6.99 (m, 3 H, C6H5), 5.48 (s, 2 

H, pzH, coincident), 5.27 (s, 1 H, pzH), 2.55 (s, 3 H, pzCH3), 2.51 (s, 3 H, pzCH3), 2.28 

(s, 3 H, pzCH3), 2.02 (s, 3 H, pzCH3), 2.01 (s, 3 H, pzCH3), 1.96 (s, 3 H, pzCH3). 
13C{1H} NMR (CDCl3) δ/ppm: 285.2 (d, W≡C, 1JPC = 96.0, 1JWC = 189.0), 224.7 (CO, 
1JWC = 165.4), 224.7 (CO, 1JWC = 165.4), 152.6 (1 C), 152.1 (1 C), 152.0 (1 C), 145.6 (1 

C), 144.8 (1 C), 144.8 (1 C) [C3,5(pz)], 138.7 [d, C1(C6H5), 1JPC = 33.2], 132.2 [d, 

C2,3,5,6(C6H5), JPC = 27.2], 130.3 [C4(C6H5)], 128.7 [d, C2,3,5,6(C6H5), JPC = 7.5], 107.0 (1 

C), 106.7 (2 C, coincident) [C4(pz)], 16.9 (2 C, coincident), 15.2 (1 C), 12.7 (2 C, 

coincident), 12.7 (1 C) (pzCH3). 13C{1H} NMR (C6D6) δ/ppm: 286.6 (d, W≡C, 1JPC = 

95.5, 1JWC = 189.3), 225.7 (CO, 1JWC = 164.6), 225.5 (CO, 1JWC = 165.4), 152.8 (1 C), 

152.2 (1 C), 152.2 (1 C), 145.3 (1 C), 144.5 (1 C), 144.5 (1 C) [C3,5(pz)], 139.5 [d, 

C1(C6H5), 1JPC = 33.3], 132.7 [d, C2,3,5,6(C6H5), JPC = 26.3], 130.5 [C4(C6H5)], 129.0 [d, 

C2,3,5,6(C6H5), JPC = 8.1], 107.3 (1 C), 107.1 (2 C, coincident) [C4(pz)], 17.2 (1 C), 17.1 

(1 C), 15.1(1 C), 12.4 (3 C, coincident) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 91.2 

(2JWP = 77.9). 31P{1H} NMR (C6D6) δ/ppm: 91.2 (2JWP = 74.9). Anal. found: C, 41.58; 

H, 4.11; N, 12.17%. Calcd. for C24H27BClN6O2PW: C, 41.62; H, 3.93; N, 12.13%. 
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Synthesis of [W(≡CPClCy)(CO)2(Tp*)] (16) 

A solution of [W(≡CBr)(CO)2(Tp*)] (2.500 g, 3.975 mmol) in THF (80 mL) was cooled 

to –78°C and treated with nBuLi (2.35 mL, 1.7 M in hexanes, 4.0 mmol). The resulting 

light brown solution was stirred for 45 minutes and then treated with PCl2Cy (0.61 mL, 

4.0 mmol). The solution instantly turned dark red and was stirred for a further 60 

minutes then allowed to warm to room temperature. Volatiles were removed under 

reduced pressure and the solid residue was extracted with npentane (4 × 30 mL) and the 

solution was collected by cannula filtration. Concentration under reduced pressure then 

cooling to −15°C resulted in an orange coloured precipitate which was isolated by 

filtration. Yield 1.814 g (2.596 mmol, 65%). IR (Nujol) ν/cm−1: 2552 w, 2528 w (BH), 

2006 s, 1987 s, 1967 m, 1917 s, 1897 s (CO). IR (THF) ν/cm−1: 2550 w (BH), 1989 s, 

1969 m, 1901 s (CO). 1H NMR (CDCl3) δ/ppm: 5.97 (s, 2 H, pzH, coincident), 5.80 (s, 

1 H, pzH), 2.64 (s, 6 H, pzCH3, coincident), 2.42 (s, 9 H, pzCH3, coincident), 2.36 (s, 3 

H, pzCH3), 2.20 – 1.31 (m, 11 H, Cy). 1H NMR (C6D6) δ/ppm: 5.53 (s, 2 H, pzH, 

coincident), 5.32 (s, 1 H, pzH), 2.74 (s, 3 H, pzCH3), 2.70 (s, 3 H, pzCH3), 2.32 (s, 3 H, 

pzCH3), 2.28 – 2.17 (m, 2 H, Cy), 2.05 (s, 6 H, pzCH3, coincident), 2.00 (s, 3 H, 

pzCH3), 1.68 – 1.10 (m, 9 H, Cy). 13C{1H} NMR (C6D6) δ/ppm: 292.2 (d, W≡C, 1JPC = 

99.9, 1JWC = 193.6), 227.2 (CO, 1JWC = 165.7), 225.8 (CO, 1JWC = 166.9), 152.7 (1 C), 

152.2 (2 C, coincident), 145.3 (1 C), 144.7 (1 C), 144.5 (1 C) [C3,5(pz)], 107.3 (1 C), 

107.1 (2 C, coincident) [C4(pz)], 46.1 [d, C1(Cy), 1JPC = 30.2], 29.0 [d, C2,3,5,6(Cy), JPC 

= 16.7], 28.7 [d, C2,3,5,6(Cy), JPC = 10.4], 27.1 [d, C2,3,5,6(Cy), JPC = 12.6], 27.0 [d, 

C2,3,5,6(Cy), JPC = 8.8], 26.3 [C4(Cy)], 17.5 (1 C), 17.4 (1 C), 15.2 (1 C), 12.5 (2 C, 

coincident), 12.5 (1 C) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 121.1 (2JWP = 69.0). 
31P{1H} NMR (C6D6) δ/ppm: 120.2 (2JWP = 67.9). Anal. found: C, 41.79; H, 5.12; N, 

11.61%. Calcd. for C24H33BClN6O2PW: C, 41.26; H, 4.76; N, 12.03%. 

 

Synthesis of [W(≡CPCl2)(CO)2(Tp*)] (17) 

A solution of [W(≡CBr)(CO)2(Tp*)] (0.150 g, 0.238 mmol) in THF (20 mL) was cooled 

to –78°C and treated with nBuLi (0.53 mL, 0.45 M in hexanes, 0.24 mmol). The 

resulting light brown solution was stirred for 20 minutes and then treated with PCl3 

(0.79 mL, 0.30 M in hexanes, 0.24 mmol). The solution instantly turned red and was 

stirred for a further 30 minutes then allowed to warm to room temperature. Volatiles 

were removed under reduced pressure. The product was extracted with benzene and the 

solvent was removed under reduced pressure to afford crude 17 as a dark red solid (ca. 
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90% 17 by 31P{1H} NMR spectroscopy). Yield 0.121 g (0.186 mmol, 78%). Limited 

spectroscopic data for the crude product are given here. IR (THF) ν/cm−1: 2552 w (BH), 

2005 s, 1920 vs (CO). 1H NMR (C6D6) δ/ppm: 5.48 (s, 2 H, pzH), 5.30 (s, 1 H, pzH), 

2.58 (s, 6 H, pzCH3), 2.22 (s, 3 H, pzCH3), 2.04 (s, 6 H, pzCH3), 1.96 (s, 3 H, pzCH3). 
31P{1H} NMR (C6D6) δ/ppm: 136.2 (2JWP = 80.5).  

 

Synthesis of [W{≡CPCl(NEt2)}(CO)2(Tp*)] (18) 

A solution of [W(≡CBr)(CO)2(Tp*)] (174 mg, 0.277 mmol) in THF (10 mL) was 

cooled to –78°C and treated with nBuLi (0.16 mL, 1.7 M in hexanes, 0.27 mmol). The 

resulting light brown solution was stirred for one hour and then treated with PCl2(NEt2) 

(0.04 mL, 0.3 mmol). The solution instantly turned dark red and was stirred for a further 

60 minutes then allowed to warm to room temperature. Volatiles were removed under 

reduced pressure and the solid residue was extracted with npentane (25 mL, then 3 × 10 

mL) and the solution was collected by cannula filtration. Concentration under reduced 

pressure then cooling to −78°C did not result in precipitation of the product. Limited 

spectroscopic data for the crude product (ca. 80% by 31P{1H} NMR spectroscopy) are 

given here. IR (THF) ν/cm−1: 2551 w (BH), 1993 vs, 1904 vs (CO). 1H NMR (C6D6) 

δ/ppm: 5.56 (s, 1 H, pzH), 5.55 (s, 1 H, pzH), 5.31 (s, 3 H, pzH), 2.82 (s, 3 H, pzCH3), 

2.71 (s, 3 H, pzCH3), 2.32 (s, 3 H, pzCH3), 2.05 (s, 3 H, pzCH3), 2.03 (s, 3 H, pzCH3), 

1.99 (s, 3 H, pzCH3), 0.96 (t, 6 H, N(CH2CH3)2, 3JHH = 15.0). Unfortunately, the 1H 

NMR spectrum of the crude product was too complex to confidently assign the 

resonance attributed to N(CH2CH3)2. 31P{1H} NMR (C6D6) δ/ppm: 136.7 (2JWP = 76.4).  

 

Synthesis of [W{≡CPCl(NiPr2)}(CO)2(Tp*)] (19) 

A solution of [W(≡CBr)(CO)2(Tp*)] (2.000 g, 3.180 mmol) in THF (60 mL) was cooled 

to –78°C and treated with nBuLi (1.3 mL, 2.5 M in hexanes, 3.3 mmol). The resulting 

light brown solution was stirred for 20 minutes and then treated with PCl2(NiPr2) (0.59 

mL, 3.2 mmol). The solution instantly turned dark red and was stirred for a further 30 

minutes then allowed to warm to room temperature. Volatiles were removed under 

reduced pressure. The solid residue was suspended in hexane and filtered through 

diatomaceous earth and the filter pad was washed with hexane and benzene until the 

washings were colourless. The solvent was removed under reduced pressure to afford 

19 as a brown solid. Yield 2.193 g (3.102 mmol, 96%). IR (Nujol) ν/cm−1: 2547 w 

(BH), 1988 vs, 1909 sh, 1900 vs (CO). IR (THF) ν/cm−1: 2551 w (BH), 1992 vs, 1904 
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vs (CO). 1H NMR (C6D6) δ/ppm: 5.57 (s, 1 H, pzH), 5.56 (s, 1 H, pzH), 5.33 (s, 1 H, 

pzH), 4.83 (s, br, 1 H, NCH), 3.06 (s, br, 1 H, NCH), 2.82 (s, 3 H, pzCH3), 2.77 (s, 3 H, 

pzCH3), 2.33 (s, 3 H, pzCH3), 2.07 (s, 3 H, pzCH3), 2.05 (s, 3 H, pzCH3), 2.01 (s, 3 H, 

pzCH3), 1.32 (m, br, 3 H, NCH(CH3)2), 1.20 (m, br, 6 H, NCH(CH3)2), 1.01 (m, br, 3 H, 

NCH(CH3)2). 1H NMR (toluene-d8, −60°C) δ/ppm: 5.45 (s, 1 H, pzH), 5.43 (s, 1 H, 

pzH), 5.19 (s, 1 H, pzH), 4.85 (m, 1 H, NCH), 2.85 (s, 3 H, pzCH3), 2.80 (s, 3 H, 

pzCH3), 2.34 (s, 3 H, pzCH3), 1.99 (s, 3 H, pzCH3), 1.95 (s, 3 H, pzCH3), 1.92 (s, 3 H, 

pzCH3), 1.31 (d, 3 H, NCH(CH3)2, 3JHH = 6.5), 1.20 (d, 3 H, NCH(CH3)2, 3JHH = 7.5), 

1.19 (d, 3 H, NCH(CH3)2, 3JHH = 7.5), 1.00 (d, 3 H, NCH(CH3)2, 3JHH = 6.5). The other 

NCH resonance was obscured by the pzCH3 resonance (ca. 2.85 ppm). 13C{1H} NMR 

(C6D6) δ/ppm: 291.3 (d, W≡C, 1JPC = 93.5, 1JWC = 187.2), 226.3 (CO, 1JWC = 166.9), 

226.0 (CO, 1JWC = 165.5), 152.6 (1 C), 152.3 (1 C), 152.3 (1 C), 145.2 (1 C), 144.6 (1 

C), 144.6 (1 C) [C3,5(pz)], 107.3 (1 C), 107.1 (1 C), 107.1 (1 C) [C4(pz)], 54.5 (br, 

NCH), 45.9 (d, br, NCH, 2JPC = 23.4), 26.9 (br, NCH(CH3)2), 24.9 (d, br, NCH(CH3)2, 
3JPC = 21.9), 22.1 (br, NCH(CH3)2), 21.8 (br, NCH(CH3)2), 17.5 (1 C), 17.4 (1 C), 15.1 

(1 C), 12.5 (2 C, coincident), 12.4 (1 C) (pzCH3). 31P{1H} NMR (C6D6) δ/ppm: 130.3 

(2JWP = 81.2). Anal. found: C, 39.93; H, 4.77; N, 13.41%. Calcd. for 

C24H36BClN7O2PW: C, 40.28; H, 5.07; N, 13.70%. 

 

Synthesis of [W(≡CPMePh)(CO)2(Tp*)] (20) 

A suspension of [W(≡CPClPh)(CO)2(Tp*)] (0.167 g, 0.241 mmol) in Et2O (20 mL) was 

cooled to –78°C and treated with MeLi (0.16 mL, 1.6 M in Et2O, 0.26 mmol). The 

resulting brown suspension was stirred for one hour then allowed to warm to room 

temperature. The reaction mixture was chromatographed on silica using 2:1 

hexane:THF as the eluent. The first yellow band containing the product was collected 

and the solvent removed under reduced pressure to afford 20 as a yellow powder. Yield 

0.080 g (0.12 mmol, 49%). IR (Nujol) ν/cm−1: 2548 w (BH), 1996 m, 1968 s, 1907 m, 

1879 s (CO). IR (THF) ν/cm−1: 2550 w (BH), 1995 w, 1977 s, 1905 w, sh, 1888 vs 

(CO). 1H NMR (CDCl3) δ/ppm: 7.68 – 7.62 (m, 2 H, C6H5), 7.40 – 7.32 (m, 3 H, C6H5), 

5.89 (s, 1 H, pzH), 5.84 (s, 1 H, pzH), 5.74 (s, 1 H, pzH), 2.51 (s, 3 H, pzCH3), 2.39 (s, 

3 H, pzCH3), 2.35 (s, 3 H, pzCH3), 2.34 (s, 3 H, pzCH3), 2.30 (s, 3 H, pzCH3), 2.28 (s, 3 

H, pzCH3), 1.70 (d, 3 H, PCH3, 2JPH = 3.3). 1H NMR (C6D6) δ/ppm: 7.76 – 7.70 (m, 2 

H, C6H5), 7.12 – 7.02 (m, 3 H, C6H5), 5.52 (s, 1 H, pzH), 5.48 (s, 1 H, pzH), 5.32 (s, 1 

H, pzH), 2.62 (s, 3 H, pzCH3), 2.41 (s, 3 H, pzCH3), 2.40 (s, 3 H, pzCH3), 2.03 (s, 3 H, 
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pzCH3), 2.02 (s, 3 H, pzCH3), 1.99 (s, 3 H, pzCH3), 1.67 (d, 3 H, PCH3, 2JPH = 3.6). 
13C{1H} NMR (CDCl3) δ/ppm: 299.3 (d, W≡C, 1JPC = 75.6, 1JWC = 184.0), 225.3 (CO, 
1JWC = 168.2), 225.3 (CO, 1JWC = 168.4), 152.5 (1 C), 152.0 (1 C), 152.0 (1 C), 145.2 (1 

C), 144.6 (1 C), 144.6 (1 C) [C3,5(pz)], 137.3 [d, C1(C6H5), 1JPC = 10.3], 132.5 [d, 

C2,3,5,6(C6H5), JPC = 19.5], 128.7 [C4(C6H5)], 128.5 [d, C2,3,5,6(C6H5), JPC = 7.5], 107.0 (1 

C), 106.8 (1 C), 106.7 (1 C) [C4(pz)], 17.0 (1 C), 16.8 (1 C), 15.2 (1 C), 12.8 (2 C, 

coincident), 12.7 (1 C) (pzCH3), 11.5 (d, PCH3, 1JPC = 13.6). 13C{1H} NMR (C6D6) 

δ/ppm: 300.9 (d, W≡C, 1JPC = 75.4, 1JWC = 184.9), 226.3 (CO, 1JWC = 169.0), 226.0 

(CO, 1JWC = 169.0), 152.5 (1 C), 152.0 (1 C), 151.9 (1 C), 144.9 (1 C), 144.3 (1 C), 

144.2 (1 C) [C3,5(pz)], 138.3 [d, C1(C6H5), 1JPC = 10.6], 132.6 [d, C2,3,5,6(C6H5), JPC = 

19.6], 128.7 [d, C2,3,5,6(C6H5), JPC = 9.1], 128.7 [C4(C6H5)], 107.0 (1 C), 106.8 (1 C), 

106.7 (1 C) [C4(pz)], 17.0 (1 C), 17.0 (1 C), 16.9 (1 C), 12.4 (2 C, coincident), 12.3 (1 

C) (pzCH3), 11.6 (d, PCH3, 1JPC = 15.1). 31P{1H} NMR (CDCl3) δ/ppm: 9.5 (2JWP = 

74.0). 31P{1H} NMR (C6D6) δ/ppm: 9.8 (2JWP = 71.2). MS-ESI(+): m/z 673.2 [M + H]+. 

Accurate mass: found 673.1852 [M + H]+. Calcd. for C25H31
11BN6O2P184W: 673.1849. 

Anal. found: C, 44.20; H, 4.60; N, 11.75%. Calcd. for C25H30BN6O2PW: C, 44.67; H, 

4.50; N, 12.50%. 

 

Synthesis of Tp*(CO)2W≡CP(=O)MePh (21) 

Exposure of a C6D6 solution of Tp*(CO)2W≡CPMePh to air for three days resulted in 

conversion to the oxide 21 as the major product (ca. 70% by 31P{1H} NMR 

spectroscopy). Limited spectroscopic data for the crude product are given here. 1H 

NMR (C6D6) δ/ppm: 8.04 – 7.98 (m, 2 H, C6H5), 5.49 (s, 1 H, pzH), 5.40 (s, 1 H, pzH), 

5.29 (s, 1 H, pzH), 2.72 (s, 3 H, pzCH3), 2.30 (s, 3 H, pzCH3), 2.26 (s, 3 H, pzCH3), 

2.03 (s, 3 H, pzCH3), 2.00 (s, 3 H, pzCH3), 1.95 (s, 3 H, pzCH3), 1.68 (d, 3 H, PCH3, 
2JPH = 13.2). The other C6H5 resonances could not be identified as they were obscured 

by the C6H6 solvent peak. 31P{1H} NMR (C6D6) δ/ppm: 24.7 (2JWP = 141.2). MS-

ESI(+): m/z 689.2 [M + H]+. Accurate mass: found 689.1795 [M + H]+. Calcd. for 

C25H31
11BN6O3P184W: 689.1789. 

 

Synthesis of [W{≡CP(C≡CPh)Ph}(CO)2(Tp*)] (22) 

A solution of [W(≡CPClPh)(CO)2(Tp*)] (0.200 g, 0.289 mmol) in THF (10 mL) was 

cooled to –78°C and treated with LiC≡CPh (1.6 mL, 0.18 M in THF, 0.29 mmol). The 

resulting orange solution was stirred for 40 minutes then allowed to warm to room 
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temperature and stirred for a further hour. The volatiles were removed under reduced 

pressure. The residue was chromatographed on silica using hexane as the eluent and 

increasing the polarity to 1:1 CH2Cl2:hexane. The first orange fraction was collected 

and the solvent was removed under reduced pressure to afford 22 as an orange powder. 

Crystals suitable for crystallographic analysis were grown from a solution of 22 in 

benzene/hexane. Yield 0.196 g (0.258 mmol, 90%). IR (Nujol) ν/cm−1: 2549 w (BH), 

2162 w (C≡C), 1981 s, 1890 s, br (CO). IR (THF) ν/cm−1: 2550 w (BH), 2160 w (C≡C), 

1983 s, 1896 vs (CO). 1H NMR (CDCl3) δ/ppm: 7.90 (m, 2 H, C6H5), 7.60 (m, 2 H, 

C6H5), 7.42 (m, 3 H, C6H5), 7.37 (m, 3 H, C6H5), 5.92 (s, 1 H, pzH), 5.90 (s, 1 H, pzH), 

5.78 (s, 1 H, pzH), 2.54 (s, 3 H, pzCH3), 2.48 (s, 3 H, pzCH3), 2.43 (s, 3 H, pzCH3), 

2.39 (s, 6 H, pzCH3), 2.35 (s, 3 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 281.5 (d, 

W≡C, 1JPC = 75.9, 1JWC = 192.1), 224.4 (CO, 1JWC = 166.9), 224.3 (CO, 1JWC = 167.0), 

152.6 (1 C), 152.2 (2 C, coincident), 145.4 (1 C), 144.6 (1 C), 144.6 (1 C) [C3,5(pz)], 

133.9 [d, C1{P(C6H5)}, 1JPC = 3.0], 133.2 [d, C2,3,5,6{P(C6H5)}, JPC = 22.0], 131.9 

[C2,3,5,6{CC(C6H5)}], 129.2 [C4(C6H5)], 128.7 [d, C2,3,5,6{P(C6H5)}, JPC = 8.0], 128.7 

[C4(C6H5)], 128.4 [C2,3,5,6{CC(C6H5)}], 123.3 [C1{CC(C6H5)}], 107.4 (d, PC≡CPh, 2JPC 

= 3.5), 106.9 (1 C), 106.6 (1 C), 106.6 (1 C) [C4(pz)], 82.6 (d, PC≡CPh, 1JPC = 7.5), 

16.9 (1 C), 16.8 (1 C), 15.2 (1 C), 12.7 (2 C, coincident), 12.7 (1 C) (pzCH3). N.B. The 

C4(C6H5) resonances could not be unambiguously assigned. 31P{1H} NMR (CDCl3) 

δ/ppm: –4.0 (2JWP = 82.5). MS-ESI(+): m/z 797.0 [M + K]+, 781.5 [M + Na]+, 759.5 [M 

+ H]+, 731.5 [M – CO + H]+, 701.9 [M – 2 CO]+. Accurate mass: found 797.1568 [M + 

K]+. Calcd. for C32H32
11BN6O2

39KP184W: 797.1564. Found 759.2010 [M + H]+. Calcd. 

for C32H33
11BN6O2P184W: 759.2005. Anal. found: C, 50.46; H, 4.46; N, 11.14%. Calcd. 

for C32H32BN6O2PW: C, 50.69; H, 4.25; N, 11.08%. Crystal data for C32H32BN6O2PW: 

Mw = 836.39, triclinic, P−1 (No. 2), a = 12.2295(5) Å, b = 12.8837(5) Å, c = 13.0374(6) 

Å, α = 66.331(2)°, β = 78.549(3)°, γ = 77.752(3)°, V = 1823.77(14) Å3, Z = 2, ρcalcd = 

1.523 Mg m−3, µ(Mo Kα) = 3.25 mm−1, T = 200(2) K, orange prism, 0.16 × 0.07 × 0.06 

mm, 6448 independent reflections. F2
 refinement, R = 0.041, wR = 0.082 for 5307 

reflections (I > 2σ(I), 2θmax = 50°), 442 parameters. 

 

Synthesis of [W{≡CP(OPh)Ph}(CO)2(Tp*)] (23) 

A solution of [W(≡CPClPh)(CO)2(Tp*)] (0.099 g, 0.14 mmol) in THF (2 mL) was 

cooled to 0°C and treated with KOPh (0.020 g, 0.15 mmol) in THF (1 mL). The 

resulting orange-brown solution was stirred for 30 minutes then allowed to warm to 
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room temperature and stirred for a further 30 minutes. The solvent was removed under 

reduced pressure. The residue was dissolved in benzene, filtered through diatomaceous 

earth and washed through with benzene until the washings were colourless. The filtrate 

was concentrated to ca. 0.5 mL and hexane (2 mL) was added with stirring. The orange 

suspension was cooled to –50°C and filtered to yield a bright orange solution. The 

solvent was removed under reduced pressure to afford 23 as an orange solid. Yield 47 

mg (0.063 mmol, 44%). IR (Nujol) ν/cm−1: 2551 w (BH), 2004 s, 1984 s, 1915 s, 1893 s 

(CO). IR (THF) ν/cm−1: 2550 w (BH), 1987 s, 1900 vs (CO). 1H NMR (C6D6) δ/ppm: 

7.94 (m, 2 H, C6H5), 7.33 – 6.80 (m, 8 H, C6H5), 5.51 (s, 1 H, pzH), 5.49 (s, 1 H, pzH), 

5.30 (s, 1 H, pzH), 2.62 (s, 3 H, pzCH3), 2.52 (s, 3 H, pzCH3), 2.31 (s, 3 H, pzCH3), 

2.04 (s, 3 H, pzCH3), 2.03 (s, 3 H, pzCH3), 1.98 (s, 3 H, pzCH3). 1H NMR (CDCl3) 

δ/ppm: 7.75 – 6.81 (m, 10 H, C6H5), 5.86 (s, 1 H, pzH), 5.83 (s, 1 H, pzH), 5.71 (s, 1 H, 

pzH), 2.44 (s, 3 H, pzCH3), 2.35 (s, 3 H, pzCH3), 2.33 (s, 9 H, pzCH3), 2.23 (s, 3 H, 

pzCH3). 13C{1H} NMR (C6D6) δ/ppm:† 294.8 (d, W≡C, 1JPC = 42.5, 1JWC = 185.1), 

225.8 (CO, 1JWC = 167.0), 225.6 (CO, 1JWC = 167.0), 152.7 (1 C), 152.2 (1 C), 152.1 (1 

C), 145.1 (1 C), 144.4 (1 C), 144.3 (1 C) [C3,5(pz)], 158.0 [d, C1(POC6H5), 1JPC = 10.1], 

141.0 [d, C1(PC6H5), 1JPC = 16.1], 130.9 [d, C2,3,5,6(PC6H5), JPC = 22.1], 129.7 

[C3,5(POC6H5)], 129.7 [C4(PC6H5)], 128.8 [d, C2,3,5,6(C6H5), JPC = 8.0], 122.6 

[C4(POC6H5)], 119.3 [d, C2,6(POC6H5), JPC = 10.1], 107.2 (1 C), 106.9 (1 C), 106.9 (1 

C) [C4(pz)], 17.1 (1 C), 16.9 (1 C), 15.1 (1 C), 12.4 (2 C, coincident), 12.4 (1 C) 

(pzCH3). 31P{1H} NMR (C6D6) δ/ppm: 127.3 (2JWP = 74.0). 31P{1H} NMR (CDCl3) 

δ/ppm: 126.4 (2JWP = 76.2). MS-ESI(+): m/z 807.7 [M + O + MeCN]+, 789.6 [M + O + 

Na]+, 767.6 [M + O + H]+. Accurate mass: found 789.1725 [M + O + Na]+. Calcd. for 

C30H32
11BN6O4

23NaP184W: 789.1723. Found 807.2098 [M + O + MeCN]+. Calcd. for 

C32H35
11BN7O4P184W: 807.2091. Anal. found: C, 48.02; H, 4.32; N, 11.24%. Calcd. for 

C30H32BN6O3PW: C, 48.03; H, 4.30; N, 11.20%. 

 

Synthesis of [W{≡CPMe(NiPr2)}(CO)2(Tp*)] (24) 

A solution of [W{≡CPCl(NiPr2)}(CO)2(Tp*)] (0.150 g, 0.210 mmol) in THF (8 mL) 

was cooled to –78°C and treated with MeLi (0.17 mL, 1.6 M in Et2O, 0.27 mmol). The 

resulting brown was stirred for two hours then allowed to warm to room temperature. 

The volatiles were removed under reduced pressure. The residue was chromatographed 

                                                
† 13C PC6H5 and POC6H5 resonances assigned by comparison with P(OPh)Ph2

436,437 and 
MeOPh.438  
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on alumina using hexane as the eluent and increasing the polarity to 5:1 hexane:THF. 

The first yellow fraction was collected and the solvent was removed under reduced 

pressure to afford 24 as a yellow powder. Yield 83 mg (0.12 mmol, 57%). IR (Nujol) 

ν/cm−1: 2542 w, (BH), 1987 m, 1972 s, 1957 sh, 1902 m, 1883 s, 1862 m (CO). IR 

(THF) ν/cm−1: 2551 w (BH), 1974 vs, 1884 vs (CO). 1H NMR (C6D6) δ/ppm: 5.56 (s, 1 

H, pzH), 5.55 (s, 1 H, pzH), 5.36 (s, 1 H, pzH), 3.60 (m, 2 H, NCH), 2.85 (s, 3 H, 

pzCH3), 2.71 (s, 3 H, pzCH3), 2.43 (s, 3 H, pzCH3), 2.09 (s, 3 H, pzCH3), 2.07 (s, 3 H, 

pzCH3), 2.03 (s, 3 H, pzCH3), 1.52 (d, 3 H, PCH3, 2JPH = 6.4), 1.40 (d, 6 H, 

NCH(CH3)2, 3JHH = 6.8), 1.05 (d, 6 H, NCH(CH3)2, 3JHH = 6.8). 13C{1H} NMR (C6D6) 

δ/ppm: 312.8 (d, W≡C, 1JPC = 80.5, 1JWC = 178.1), 227.5 (CO, 1JWC = 171.0), 227.0 

(CO, 1JWC = 171.0), 152.5 (1 C), 152.2 (1 C), 152.0 (1 C), 144.7 (1 C), 144.3 (1 C), 

144.2 (1 C) [C3,5(pz)], 107.0 (1 C), 106.8 (1 C), 106.7 (1 C) [C4(pz)], 48.6 (br, NCH), 

24.7 (d, NCH(CH3)2, 3JPC = 7.6), 24.4 (d, NCH(CH3)2, 3JPC = 5.6), 17.5 (d, pzCH3, 5JPC 

= 1.4), 17.4 (d, pzCH3, 5JPC = 4.4), 15.4 (d, PCH3, 1JPC = 18.5), 15.2 (1 C), 12.5 (1 C), 

12.5 (1 C), 12.4 (pzCH3). 31P{1H} NMR (C6D6) δ/ppm: 54.0 (2JWP = 77.5). MS-ESI(+): 

m/z 696.3 [M + H]+. Accurate mass: found 696.2589 [M + H]+. Calcd. for 

C25H40
11BN7O2P184W: 696.2584. Anal. found: C, 43.17; H, 5.80; N, 13.98%. Calcd. for 

C25H39BN7O2PW: C, 43.19; H, 5.65; N, 14.10%. 

 

Synthesis of [W{≡CP(NiPr2)}(CO)2(Tp*)]AlCl4 ([25]AlCl4) 

In a glove box [W{≡CPCl(NiPr2)}(CO)2(Tp*)] (0.030 g, 0.042 mmol) and freshly 

sublimed AlCl3 (0.016 g, 0.12 mmol) were dissolved in CD2Cl2 (0.5 mL) in an NMR 

tube, resulting in a brown solution. After 45 minutes the 31P{1H} NMR spectrum 

indicated that [25]AlCl4 was the major product (ca. 82% by 31P{1H} NMR 

spectroscopy). Unfortunately, the 1H NMR spectrum of the crude product was too 

complex for resonances attributed to [25]AlCl4 to be confidently assigned. 31P{1H} 

NMR (C6D6) δ/ppm: 54.0 (2JWP = 77.5).  

 

Synthesis of [W{≡CP(NiPr2)(CPhCPh)}(CO)2(Tp*)]AlCl4 ([26]AlCl4) 

In a glove box [W{≡CPCl(NiPr2)}(CO)2(Tp*)] (0.030 g, 0.042 mmol), freshly sublimed 

AlCl3 (8 mg, 0.06 mmol) and diphenylacetylene (8 mg, 0.05 mmol) were dissolved in 

CD2Cl2 (0.5 mL). The resultant brown solution was transferred to an NMR tube. After 

two days 1H and 31P{1H} NMR spectroscopy indicated formation of [26]AlCl4 as the 

major product (ca. 80%). 1H NMR (CD2Cl2) δ/ppm: 6.10 (s, 2 H, pzH), 5.83 (s, 1 H, 
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pzH), 3.72 (m, br, 2 H, NCH), 2.58 (s, 6 H, pzCH3), 2.44 (s, 6 H, pzCH3), 2.33 (s, 3 H, 

pzCH3), 2.26 (s, 3 H, pzCH3), 1.50 (d, 6 H, NCH(CH3)2, 3JHH = 6.4), 1.28 (d, 6 H, 

NCH(CH3)2, 3JHH = 6.8). The Ph resonances could not be unambiguously identified 

(probably due to the presence of unreacted diphenylacetylene). 31P{1H} NMR (CD2Cl2) 

δ/ppm: −77.3 (2JWP = 219.9). 
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CHAPTER 4. Secondary phosphinocarbyne complexes 
 

Synthesis of [W(≡CPHPh)(CO)2(Tp*)] (27) 

A solution of [W(≡CBr)(CO)2(Tp*)] (1.000 g, 1.590 mmol) in THF (50 mL) was cooled 

to –78°C and treated with nBuLi (0.64 mL, 2.5 M in hexanes, 1.6 mmol). The resulting 

light brown solution was stirred for 30 minutes and then treated with PCl2Ph (1.6 mL, 

0.99 M in THF, 1.6 mmol). The solution instantly turned dark red and was stirred for a 

further 25 minutes then allowed to warm to room temperature and stirred for 20 

minutes. The solution was cooled to –78°C and treated with Li[BHEt3] (1.6 mL, 1.0 M 

in THF, 1.6 mmol). The resultant orange-brown solution was stirred for 20 minutes then 

allowed to warm to room temperature. Volatiles were removed under reduced pressure. 

The residue was suspended in toluene and filtered through diatomaceous earth. The 

filter pad was washed with toluene until the washings were colourless. The solvent was 

removed under reduced pressure to afford crude 27 as a dark red powder. 31P{1H} NMR 

spectroscopy indicated that the crude product contained 89% 27. Crude yield 0.965 g 

(1.47 mmol, 92%). 

Further purification may be achieved by cryostatic chromatography, but significant 

losses of product are encountered during chromatography. A sample of crude 27 (1.5 

mmol, containing 61% 27 by 31P{1H} NMR spectroscopy) was chromatographed on 

silica gel at –40°C using hexane as the initial eluent then increasing the polarity to 2:1 

toluene:hexane. The first yellow fraction (containing the product) was collected and the 

solvent was removed under reduced pressure to afford 27 as a yellow powder. A second 

orange fraction was collected which contained a mixture of 27 (15.4%), [W(µ-

C2PPh)(CO)2(Tp*)] (30.9%) and an unidentified species (δP 22.8, JWP = 68.5 Hz, 

53.7%). Removal of the solvent from fraction one under reduced pressure afforded 27 

as a yellow powder. Yield 0.198 g (0.301 mmol, 20%).  

IR (Nujol) ν/cm−1: 2547 w, 2531 sh (BH), 2269 vw, 2244 vw, 2222 vw (PH), 2000 m, 

1977 vs, 1911 m, 1895 vs, 1879 vs, 1865 sh (CO). IR (THF) ν/cm−1: 2549 w (BH), 

2257 vw (PH), 1980 s, 1892 vs (CO). 1H NMR (C6D6) δ/ppm: 7.67 – 7.63 (m, 2 H, 

C6H5), 7.10 – 7.02 (m, 3 H, C6H5), 5.81 (d, 1 H, PH, 1JPH = 222.7, 3JWH = 7.8), 5.51 (s, 1 

H, pzH), 5.50 (s, 1 H, pzH), 5.31 (s, 1 H, pzH), 2.52 (s, 3 H, pzCH3), 2.49 (s, 3 H, 

pzCH3), 2.36 (s, 3 H, pzCH3), 2.04 (s, 6 H, pzCH3, coincident), 1.99 (s, 3 H, pzCH3). 
13C{1H} NMR (C6D6) δ/ppm: 289.5 (d, W≡C, 1JPC = 74.2, 1JWC = 187.8), 225.6 (CO, 
1JWC = 167.2), 225.3 (CO, 1JWC = 167.6), 152.7 (1 C), 152.2 (1 C), 152.1 (1 C), 145.0 (1 
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C), 144.3 (1 C), 144.3 (1 C) [C3,5(pz)], 134.6 [d, C2,3,5,6(C6H5), JPC = 17.1], 132.6 [d, 

C1(C6H5), 1JPC = 8.9], 129.9 [d, C2,3,5,6(C6H5), JPC = 6.6], 128.6 [C4(C6H5)], 107.1 (1 C), 

106.9 (1 C), 106.8 (1 C) [C4(pz)], 16.7 (1 C), 16.7 (1 C), 15.2 (1 C), 12.4 (2 C, 

coincident), 12.4 (1 C) (pzCH3). 31P{1H} NMR (C6D6) δ/ppm: −12.8 (2JWP = 67.3). MS-

ESI(+): m/z 697.1 [M + K]+, 659.2 [M + H]+. Accurate mass: found 697.1251 [M + K]+. 

Calcd. for C24H28
11BKN6O2P184W: 697.1251. Found 659.1693 [M + H]+. Calcd. for 

C24H29
11BN6O2P184W: 659.1692. Anal. found: C, 45.17; H, 4.38; N, 12.45%. Calcd. for 

C24H28BN6O2PW: C, 43.80; H, 4.29; N, 12.77%. 

 

Synthesis of [W(≡CPHCy)(CO)2(Tp*)] (28) 

A solution of [W(≡CBr)(CO)2(Tp*)] (0.400 g, 0.636 mmol) and [Pd(PPh3)4] (0.037 g, 

0.032 mmol) in toluene (15 mL) was treated with NEt3 (0.11 mL, 0.79 mmol) and 

PH2Cy (0.94 M in hexane, 0.82 mL, 0.77 mmol). The brown solution was heated to 

80°C for one hour after which time IR spectroscopy indicated complete consumption of 

the starting material [W(≡CBr)(CO)2(Tp*)]. The mixture was allowed to cool and 

volatiles were removed under reduced pressure. 31P{1H} NMR spectroscopy indicated 

that the crude product contained ca. 88% 28.  

Further purification may be achieved by cryostatic chromatography, but significant 

losses of product are encountered during chromatography. The crude residue was 

chromatographed on silica gel at –40°C using hexane as the initial eluent before 

increasing the polarity to 3:2 hexane:CH2Cl2. An initial faint green fraction was 

discarded, and the second yellow fraction (containing the product) was collected. A 

third orange fraction was collected which contained a mixture of [W(µ-

C2PCy)(CO)2(Tp*)] and PPh3. Removal of the solvent from fraction two under reduced 

pressure afforded 28 as a yellow powder. Crystals suitable for crystallographic analysis 

were grown from a solution of 28 in a mixture of Et2O and pentane at –24°C. Yield 

0.183 g (0.276 mmol, 43%).  

IR (Nujol) ν/cm−1: 2547 w, 2527 w (BH), 2283 vw, 2244 vw (PH), 2000 s, 1977 s, 1911 

s, 1888 s (CO). IR (THF) ν/cm−1: 2550 w (BH), 2243 vw (PH), 1976 vs, 1887 vs (CO). 
1H NMR (C6D6) δ/ppm: 5.56 (s, 1 H, pzH), 5.54 (s, 1 H, pzH), 5.35 (s, 1 H, pzH), 4.71 

(dd, 1 H, PH, 1JPH = 210.0, 3JHH = 6.0, 3JWH = 8.4 Hz), 2.73 (s, 3 H, pzCH3), 2.68 (s, 3 

H, pzCH3), 2.41 (s, 3 H, pzCH3), 2.23 (m, 1 H, PCH), 2.14 (m, 2 H, Cy), 2.08 (s, 3 H, 

pzCH3), 2.07 (s, 3 H, pzCH3), 2.03 (s, 3 H, pzCH3), 1.66 (m, 2 H, Cy), 1.51 (m, 2 H, 

Cy), 1.41 (m, 1 H, Cy), 1.23 (m, 2 H, Cy), 1.15 (m, 1 H, Cy). 13C{1H} NMR (C6D6) 
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δ/ppm: 298.3 (d, W≡C, 1JPC = 76.9, 1JWC = 184.1), 227.1 (CO, 1JWC = 168.4), 225.7 

(CO, 1JWC = 169.1), 152.6 (1 C), 152.3 (1 C), 152.0 (1 C), 144.9 (1 C), 144.2 (1 C), 

144.1 (1 C) [C3,5(pz)], 107.0 (1 C), 106.8 (1 C), 106.8 (1 C) [C4(pz)], 35.3 [d, 

C2,3,5,6(Cy), JPC = 7.5], 33.5 [d, C2,3,5,6(Cy), JPC = 6.0], 32.9 [d, C2,3,5,6(Cy), JPC = 15.9], 

27.4 [C3,4,5(Cy)], 27.3 [d, C1(Cy), JPC = 19.6], 26.3 [C3,4,5(Cy)], 17.0 (1 C), 16.8 (1 C), 

15.2 (1 C), 12.5 (2 C, coincident), 12.4 (1 C) (pzCH3). 31P{1H} NMR (C6D6) δ/ppm: 

−4.6 (2JWP = 64.7). 31P NMR (C6D6) δ/ppm: −4.5 (d, 1JPH = 209.8). MS-ESI(+): m/z 

1327.4 [2M – H]+, 665.2 [M +H]+. Accurate mass: found 665.2151 [M + H]+. Calcd. for 

C24H35
11BN6O2P184W: 665.2162. Anal. found: C, 45.70; H, 5.20; N, 11.96%. Calcd. for 

C24H34BN6O2PW: C, 43.40; H, 5.16; N, 12.65%. Crystal data for C24H34BN6O2PW: Mw 

= 664.21, monoclinic, P21/n, a = 10.6309(2) Å, b = 14.6523(3) Å, c = 18.3905(4) Å, β = 

104.4069(11)°, V = 2774.55(10) Å3, Z = 4, ρcalcd = 1.590 Mg m−3, µ(Mo Kα) = 4.25 

mm−1, T = 200(2) K, orange block, 0.12 × 0.07 × 0.06 mm, 6380 independent 

reflections. F2
 refinement, R = 0.058, wR = 0.161 for 4658 reflections (I > 2σ(I), 2θmax = 

55°), 317 parameters. 

 

Synthesis of [W{≡CPH(NiPr2)}(CO)2(Tp*)] (29) and 

[W{≡CPEt(NiPr2)}(CO)2(Tp*)] (30) 

A solution of [W{≡CPCl(NiPr2)}(CO)2(Tp*)] (0.028 g, 0.039 mmol) in THF (1 mL) 

was cooled to –78°C and treated with Li[BHEt3] (0.08 mL, 1.0 M in THF, 0.08 mmol). 

The resulting orange-brown solution was stirred for 60 minutes then allowed to warm to 

room temperature. Volatiles were removed under reduced pressure to afford crude 29 as 

a brown solid. 31P{1H} NMR spectroscopy indicated that the crude product contained 

75% 29 and 15% 30. Attempts to scale up the procedure (0.150 g 19) gave 29 and 30 in 

25% and 38% spectroscopic yield, respectively. As samples of reasonable purity of 29 

and 30 were not obtained, only very limited spectroscopic data are available. 

 

[W{≡CPH(NiPr2)}(CO)2(Tp*)] (29)  

IR (THF) ν/cm-1: 2550 w (BH), 1976 s, 1886 vs (CO), (νPH not unambiguously 

identifiable). 1H NMR (C6D6) δ/ppm: 6.46 (d, 1 H, PH, 1JPH = 228.1), 5.55 (s, 2 H, 

pzH), 5.34 (s, 1 H, pzH). The pz-CH3 and iPr resonances could not be unambiguously 

identified. 31P{1H} NMR (C6D6) δ/ppm: 22.6 (2JWP = 77.6). 31P NMR (C6D6) δ/ppm: 

22.6 (dt, 1JPH = 229.5, 3JPH = 20.8).  
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[W{≡CPEt(NiPr2)}(CO)2(Tp*)] (30) 
31P{1H} NMR (C6D6) δ/ppm: 68.8 (2JWP = 71.2), cf. 54.0 (2JWP = 77.5) for 

[W{≡CPMe(NiPr2)}(CO)2(Tp*)]. 31P NMR (C6D6) δ/ppm: 68.9 (m, br). MS-ESI(+): m/z 

710.3 [M + H]+, 726.3 [M + H + O]+. Accurate mass: found 710.2739 [M + H]+. Calcd. 

for C26H42
11BN7O2P184W: 710.2740.  

 

Synthesis of K[Tp*(CO)2W≡CPCy] (K[31]) 

In a glove box [W(≡CPHCy)(CO)2(Tp*)] (0.025 g, 0.038 mmol) and potassium hydride 

(4 mg, 0.1 mmol) were dissolved in THF to form a brown solution with visible 

effervescence. After five hours 31P{1H} NMR spectroscopy indicated formation of 

K[31] as the major product (ca. 90% by 31P{1H} NMR spectroscopy). Limited 

spectroscopic data are given below. Unfortunately, the extreme sensitivity of K[31] 

made acquisition of more complete spectroscopic data difficult due to the persistent 

formation of 28. IR (THF) ν/cm-1: 1862 vs, 1753 vs (CO), (νBH not unambiguously 

identifiable). 31P{1H} NMR (THF-d8) δ/ppm: 115.3 (br).  

 

Synthesis of K[W(CPPh)(CO)2(Tp*)] (K[32]) 

In a glove box [W(≡CPHPh)(CO)2(Tp*)] (0.050 g, 0.076 mmol) and potassium hydride 

(8 mg, 0.2 mmol) were dissolved in THF-d8 to form a dark red solution with visible 

effervescence. After 15 minutes the solution was transferred to an NMR tube. After 2.5 

hours, 1H and 31P{1H} NMR spectroscopy indicated quantitative formation of K[32]. IR 

(THF) ν/cm−1: 1889 vs, 1877 s, 1771 vs (CO), (νBH not unambiguously identifiable). 1H 

NMR (THF-d8) δ/ppm: 7.50 (m, 2 H, C6H5), 6.91 (m, 2 H, C6H5), 6.69 (m, 1 H, C6H5), 

5.72 (s, 2 H, pzH), 5.66 (s, 1 H, pzH), 2.53 (s, 6 H, pzCH3), 2.41 (s, 3 H, pzCH3), 2.36 

(s, 6 H, pzCH3), 2.31 (s, 3 H, pzCH3). 13C{1H} NMR (THF-d8) δ/ppm: 358.9 (d, W≡C, 
1JPC = 100.6, 1JWC = 183.1), 234.7 (CO, 1JWC = 175.1), 152.4 (2 C), 143.4 (1 C) 

[C3,5(pz)], 147.5 [d, C1(C6H5), 1JPC = 58.4], 130.9 [d, C2,3,5,6(C6H5), JPC = 16.1], 128.8 

[C2,3,5,6(C6H5)], 127.2 [C4(C6H5)], 106.0 (3 C, coincident) [C4(pz)], 17.3 (2 C), 15.7 (1 

C), 12.5 (2 C), 12.3 (1 C) (pzCH3). 31P{1H} NMR (THF-d8) δ/ppm: 81.9 (2JWP = 47.0).  

 

Synthesis of [K(2.2.2-cryptand)][W(CPPh)(CO)2(Tp*)] ([K(2.2.2-cryptand)][32]) 

In a glove box excess 2.2.2-cryptand was added to a solution of K[32] in THF. The dark 

red solution was filtered, layered with Et2O and stored at −25°C to provide dark purple 

crystals of [K(2.2.2-cryptand)][W(CPPh)(CO)2(Tp*)] suitable for crystallographic 
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analysis. Crystal data for C24H27BN6O2PW·KC18H36N2O6: Mw = 1072.74, monoclinic, 

P21/n, a = 14.6929(3) Å, b = 23.4328(5) Å, c = 15.9038(3) Å, β = 95.3960(18)°, V = 

5451.35(19) Å3, Z = 4, ρcalcd = 1.307 Mg m−3, µ(Cu Kα) = 5.30 mm−1, T = 150(2) K, 

dark purple needle, 0.13 × 0.07 × 0.06 mm, 10683 independent reflections. F2 

refinement, R = 0.061, wR = 0.112 for 9566 reflections (I > 2σ(I), 2θmax = 144°), 559 

parameters. 
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CHAPTER 5. Bi- and polymetallic phosphinocarbyne complexes 
 

Synthesis of [W2(µ-C2PPh)(CO)4(Tp*)2] (33) 

A solution of [W(≡CBr)(CO)2(Tp*)] (1.000 g, 1.596 mmol) and [Pd(PPh3)4] (0.088 g, 

0.076 mmol, 5 mol% - not optimised) in benzene (40 mL) was treated with 

triethylamine (0.26 mL, 1.9 mmol) and phenylphosphine (1.25 mL, 0.63 M in hexane, 

0.788 mmol) and the reaction mixture was heated to reflux. After 18 hours the dark 

brown solution was allowed to cool and the solvent was removed under reduced 

pressure. The crude mixture was chromatographed on silica gel using hexane as the 

eluent initially, then increasing the polarity to 2:1 toluene:hexane. The initial yellow and 

brown fractions were collected and discarded, and the following major red-orange band 

containing the product was collected. The solvent was removed under reduced pressure 

and the residue was dissolved in CH2Cl2. EtOH was added and the solution was 

concentrated on the rotary evaporator to afford 33 as an orange powder. Crystals 

suitable for crystallographic analysis were grown from a solution of 33 in 

benzene/Et2O/pentane at –20°C. Yield 0.640 g (0.531 mmol, 67%). IR (Nujol) ν/cm−1: 

2549 w (BH), 2010 sh, 1997 s, 1980 s, 1970 s, 1913 s, br 1887 s (CO). IR (THF) 

ν/cm−1: 2548 w (BH), 1984 vs, 1974 vs, 1892 vs (CO). 1H NMR (C6D6) δ/ppm: 8.09 

(m, 2 H, C6H5), 7.22 (m, 2 H, C6H5), 7.08 (m, 1 H, C6H5), 5.50 (s, 4 H, pzH), 5.33 (s, 2 

H, pzH), 2.51 (s, 12 H, pzCH3), 2.34 (s, 6 H, pzCH3), 2.07 (s, 12 H, pzCH3), 2.01 (s, 6 

H, pzCH3). 13C{1H} NMR (C6D6) δ/ppm: 285.0 (d, W≡C, 1JPC = 78.6, 1JWC = 192.4), 

226.4 (br, CO, 1JWC = 161.1), 152.7 (4 C), 152.5 (2 C), 144.8 (2 C), 143.9 (4 C) 

[C3,5(pz)], 133.4 (d, JPC = 19.6, C6H5), 128.8, 128.7 (C6H5, multiplicities and couplings 

unknown as the rest of the C6H5 peaks are obscured by the C6D6 peak), 107.0 (2 C), 

106.7 (4 C) [C4(pz)], 16.9 (4 C), 15.1 (2 C), 12.4 (2 C), 12.3 (4 C) (pzCH3). 31P{1H} 

NMR (C6D6) δ/ppm: 80.4 (2JWP = 76.2). MS-ESI(+): m/z 1245.3 [M + K]+, 1222.3 [M + 

O]+. Accurate mass: found 1245.2579 [M + K]+. Calcd. for C42H49
11B2

39KN12O4P184W2: 

1245.2580. Anal. found: C, 42.10; H, 4.06; N, 13.93%. Calcd. for C42H49B2N12O4PW2: 

C, 41.82; H, 4.09; N, 13.93%. Calcd. for C42H49B2N12O4PW2·(C5H12)0.25: C, 42.43; H, 

4.28; N, 13.73%. Crystal data for C42H49B2N12O4PW2·(C5H12)0.25: Mw = 1224.27, 

triclinic, P – 1 (No. 2), a = 10.5139(4) Å, b = 21.4625(9) Å, c = 24.2130(9) Å, α = 

66.375(4)°, β = 88.740(3)°, γ = 84.806(3)°, V = 4984.6(4) Å3, Z = 4, ρcalcd = 1.631 Mg 

m−3, µ(Mo Kα) = 4.70 mm−1, T = 150(2) K, orange block, 0.24 × 0.12 × 0.07 mm, 
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23071 independent reflections. F2
 refinement, R = 0.065, wR = 0.141 for 13731 

reflections (I > 2σ(I), 2θmax = 59.5°), 1180 parameters. 

 

Synthesis of [W2(µ-C2PCy)(CO)4(Tp*)2] (34) 

A solution of [W(≡CBr)(CO)2(Tp*)] (0.250 g, 0.397 mmol) in THF (10 mL) was cooled 

to –78°C and treated with nBuLi (2.5 M in hexanes, 0.16 mL, 0.40 mmol). The resulting 

light brown solution was stirred for 50 minutes and then treated with PCl2Cy (1.0 M in 

THF, 0.20 mL, 0.20 mmol). The solution instantly turned red and was stirred for a 

further 30 minutes then allowed to warm to room temperature. Volatiles were removed 

under reduced pressure. The residue was chromatographed on silica using hexane as the 

eluent. The polarity was gradually increased to 2:1 hexane:THF. The first yellow band 

(containing [W(≡CBr)(CO)2(Tp*)]) was discarded, and the second (orange) band 

containing the product was collected. The solvent was removed under reduced pressure 

to afford 34 as a red-orange powder. Crystals suitable for crystallographic analysis were 

grown from a solution of 34 in benzene/hexane at –12°C. Yield 0.136 g (0.121 mmol, 

57%). IR (Nujol) ν/cm−1: 2546 w (BH), 2000 sh, 1990 s, 1981 s, 1967 s, 1905 s, 1883 s 

(CO). IR (THF) ν/cm−1: 2548 w (BH), 1980 m, 1969 s, 1888 vs (CO). 1H NMR (C6D6) 

δ/ppm: 5.45 (s, 4 H, pzH), 5.32 (s, 2 H, pzH), 2.63 (s, 12 H, pzCH3), 2.37 (s, 6 H, 

pzCH3), 2.26 – 2.11 (m, 2 H, Cy), 2.08 (s, 12 H, pzCH3), 2.01 (s, 6 H, pzCH3), 1.68 – 

1.13 (m, 9 H, Cy). 13C{1H} NMR (C6D6) δ/ppm: 291.1 (d, W≡C, 1JPC = 80.3, 1JWC = 

190.1), 227.1 (br, CO), 152.6 (4 C), 152.5 (2 C), 144.8 (2 C), 143.7 (4 C) [C3,5(pz)], 

107.0 (2 C), 106.7 (4 C) [C4(pz)], 41.2 [d, C1,2,3,5,6(Cy), JPC = 11.2], 31.3 [d, 

C1,2,3,5,6(Cy), JPC = 12.2], 27.4 [d, C1,2,3,5,6(Cy), JPC = 11.8], 26.6 [C4(Cy)], 17.0 (4 C), 

15.2 (2 C), 12.5 (4 C), 12.3 (2 C) (pzCH3). 31P{1H} NMR (C6D6) δ/ppm: 89.9 (2JWP = 

67.5). 31P{1H} NMR (CDCl3) δ/ppm: 87.8 (2JWP = 68.0). MS-ESI(+): m/z 1213.3 [M + 

H]+. Accurate mass: found 1213.3494 [M + H]+. Calcd. for C42H56
11B2N12O4P184W2: 

1213.3490. Anal. found: C, 41.79; H, 4.67; N, 13.62%. Calcd. for C42H55B2N12O4PW2: 

C, 41.61; H, 4.57; N, 13.86%. Crystal data for C42H55B2N12O4PW2·C6H6: Mw = 

1290.39, monoclinic, P21/c, a = 24.2055(3) Å, b = 10.4092(1) Å, c = 25.5107(3) Å, β = 

105.9841(6)°, V = 6179.17(12) Å3, Z = 4, ρcalcd = 1.387 Mg m−3, µ(Mo Kα) = 3.79 

mm−1, T = 200(2) K, orange plate, 0.19 × 0.18 × 0.09 mm, 14148 independent 

reflections. F2
 refinement, R = 0.038, wR = 0.100 for 10493 reflections (I > 2σ(I), 2θmax 

= 55°), 622 parameters. 
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Synthesis of [W2(µ-C2PCl)(CO)4(Tp*)2] (35) 

A solution of [W(≡CBr)(CO)2(Tp*)] (0.100 g, 0.159 mmol) in THF (5 mL) was cooled 

to –78°C and treated with nBuLi (0.45 M in hexanes, 0.42 mL, 0.19 mmol). The 

resulting light brown solution was stirred for 30 minutes and then treated with PCl3 

(0.30 M in hexane, 0.27 mL, 0.081 mmol). The solution instantly turned dark red and 

was stirred for a further 30 minutes then allowed to warm to room temperature. 

Volatiles were removed under reduced pressure. The residue was extracted with 

benzene (5 mL), filtered and the solvent was removed under reduced pressure to afford 

crude 35 as a dark red solid (ca. 72% 35 and ca. 12% 36 by 31P{1H} NMR 

spectroscopy). Yield 0.083 g (0.071 mmol, 90%). IR (THF) ν/cm−1: 2550 w (BH), 1996 

s, 1986 s, 1906 vs (CO). 1H NMR (C6D6) δ/ppm: 5.48 (s, 4 H, pzH), 5.32 (s, 2 H, pzH), 

2.69 (s, 6 H, pzCH3), 2.54 (s, 6 H, pzCH3), 2.31 (s, 6 H, pzCH3), 2.09 (s, 12 H, pzCH3), 

2.02 (s, 6 H, pzCH3). 13C{1H} NMR (C6D6) δ/ppm: 280.0 (d, W≡C, 1JPC = 97.9, 1JWC = 

194.0), 226.4 (CO, 1JWC = 164.5), 225.0 (CO, 1JWC = 166.0), 152.8 (2 C), 152.6 (2 C), 

152.2 (2 C), 145.4 (2 C), 144.4 (2 C), 144.3 (2 C) [C3,5(pz)], 107.4 (2 C), 106.9 (4 C) 

[C4(pz)], 17.3 (2 C), 17.0 (2 C), 15.2 (2 C), 12.6 (4 C), 12.5 (2 C) (pzCH3). 31P{1H} 

NMR (C6D6) δ/ppm: 124.9 (2JWP = 66.4).  

 

Synthesis of [W2{µ:η1-C;η2-C,P-CC(PCl)}(CO)4(Tp*)2] (36) 

A solution of [W2(µ-C2PCl)(CO)4(Tp*)2] (0.083 g, 0.071 mmol) in C6D6 (0.5 mL) was 

heated to 50°C. After 13 hours 31P{1H} NMR spectroscopy of the dark magenta 

solution indicated formation of 36 as the major product (ca. 75% by 31P{1H} NMR 

spectroscopy). Crystals suitable for crystallographic analysis were grown by slow 

diffusion of npentane into a solution of 36 in CH2Cl2 at –15°C. Unfortunately, the 1H 

NMR spectra obtained of samples of 36 were either too complex (due to the impure 

nature of the sample), or the peaks were significantly broadened (presumably due to the 

presence of the insoluble side-products that form during the conversion of 35 to 36) 

such that analysis was not possible. 31P{1H} NMR (C6D6) δ/ppm: 92.7 (br). Crystal data 

for C36H44B2ClN12O4PW2·(CH2Cl2)2: Mw = 1334.44, monoclinic, P21/c, a = 22.1833(6) 

Å, b = 10.5501(3) Å, c = 23.1940(4) Å, β = 114.4551(14)°, V = 4941.2(2) Å3, Z = 4, 

ρcalcd = 1.794 Mg m−3, µ(Mo Kα) = 5.01 mm−1, T = 200(2) K, dark red block, 0.09 × 

0.06 × 0.04 mm, 8702 independent reflections. F2
 refinement, R = 0.096, wR = 0.242 for 

6928 reflections (I > 2σ(I), 2θmax = 50°), 576 parameters. 
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Synthesis of [W2{µ:η1-C;η2-C,P-CC(PPh)}(CO)4(Tp*)2] (37) 

A solution of [W2(µ-C2PPh)(CO)4(Tp*)2] (0.192 g, 0.16 mmol) in toluene (15 mL) was 

heated to reflux for 42 hours. The dark purple suspension was filtered and the volatiles 

were removed under reduced pressure. The solid was extracted with benzene (5 mL) 

and filtered, then layered with hexane (5 mL) and cooled to 4°C. The resulting purple 

precipitate was isolated by filtration and found to contain 37 as the major product (ca. 

65% by 31P{1H} NMR spectroscopy). Crystals suitable for crystallographic analysis 

were grown from a solution of 37 in a mixture of benzene and hexane at –12°C. IR 

(toluene) ν/cm-1: 2548 vw (BH), 1941 vs, 1876 vs (CO). The IR spectra obtained all 

contain some unreacted 33 (toluene: νCO 1985, 1974, 1893 cm−1) so additional weak 

bands due to 37 may be present but obscured by the residual 33 bands. 1H NMR (C6D6) 

δ/ppm: 8.19 (m, 2 H, C6H5), 7.34 (m, 3 H, C6H5), 5.66 (s, 1 H, pzH), 5.46 (s, 2 H, pzH), 

5.24 (s, 1 H, pzH), 5.22 (s, 2 H, pzH), 2.67 (s, 3 H, pzCH3), 2.62 (s, broad, 3 H, pzCH3), 

2.53 (s, 3 H, pzCH3), 2.26 (s, 3 H, pzCH3), 2.24 (s, 3 H, pzCH3), 2.17 (s, 6 H, pzCH3), 

2.15 (s, 3 H, pzCH3), 2.13 (s, 3 H, pzCH3), 2.01 (s, 3 H, pzCH3), 1.94 (s, 3 H, pzCH3), 

1.72 (s, broad, 3 H, pzCH3). 31P{1H} NMR (C6D6) δ/ppm: −74.5 (br). MS-ESI(+): m/z 

1207.3 [M + H]+. Accurate mass: found 1207.3021 [M + H]+. Calcd. for 

C42H50
11B2N12O4P184W2: 1207.3021. Crystal data for C42H49B2N12O4PW2·C6H6: Mw = 

1284.34, orthorhombic, Pca21, a = 24.8643(5) Å, b = 10.7400(2) Å, c = 19.2900(4) Å, 

V = 5151.25(18) Å3, Z = 4, ρcalcd = 1.656 Mg m−3, µ(Mo Kα) = 4.55 mm−1, T = 200(2) 

K, dark purple block, 0.10 × 0.07 × 0.06 mm, 8997 independent reflections. F2
 

refinement, R = 0.043, wR = 0.089 for 6669 reflections (I > 2σ(I), 2θmax = 50°), 623 

parameters. 

 

Synthesis of [W2(µ-C2PPhAuCl)(CO)4(Tp*)2] (38) 

A solution of [W2(µ-C2PPh)(CO)4(Tp*)2] (0.050 g, 0.041 mmol) and [AuCl(SMe2)] 

(0.013 g, 0.044 mmol) in CH2Cl2 (3 mL) was stirred at room temperature for 30 

minutes. The volatiles were removed under reduced pressure. The residue was 

chromatographed on silica gel using CH2Cl2 as the eluent. A small initial grey band and 

yellow band were collected and discarded, and the first orange band (containing the 

product) was collected. The solvent was removed on the rotary evaporator to afford 38 

as a red solid. The remaining two red-orange bands contain a mixture of 38, 39 and 40. 

Crystals suitable for crystallographic analysis were grown from a solution of 38 in Et2O 

at −20°C. Yield 0.014 g (0.010 mmol, 24%). IR (Nujol) ν/cm−1: 2553 w (BH), 2000 sh, 
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1995 s, 1911 s (CO). IR (THF) ν/cm−1: 2553 vw (BH), 1996 s, 1914 vs (CO). 1H NMR 

(CDCl3) δ/ppm: 8.02 (m, 2 H, C6H5), 7.48 (m, 3 H, C6H5), 5.82 (s, 4H, pzH), 5.74 (s, 2 

H, pzH), 2.37 (s, 18 H, pzCH3), 2.35 (s, 6 H, pzCH3), 2.34 (s, 6 H, pzCH3), 2.29 (s, 6 H, 

pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 262.5 (d, W≡C, 1JPC = 25.9, 1JWC = 203.2), 

225.1 (CO, 1JWC = 164.0), 223.7 (CO, 1JWC = 164.3), 152.6 (2 C), 152.5 (2 C), 152.2 (2 

C), 145.6 (2 C), 144.7 (2 C), 144.7 (2 C) [C3,5(pz)], 134.4 [d, C2,3,5,6(C6H5), JPC = 14.6], 

131.1 [C4(C6H5)], 130.3 [d, C1(C6H5), 1JPC = 65.3], 128.8 [d, C2,3,5,6(C6H5), JPC = 12.5], 

107.1 (2 C), 106.7 (2 C), 106.6 (2 C) [C4(pz)], 17.5 (4 C), 15.2 (2 C), 12.7 (6 C) 

(pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 49.4 (2JWP = 143.7). MS-ESI(+): m/z 1479.3 

[M + MeCN]+, 1460.2 [M + Na – H]+, 1439.2 [M + H]+. Accurate mass: found 

1463.2169 [M + Na]+. Calcd. for C42H49Au11B2
37ClN12NaO4P184W2: 1463.2165. Found 

1461.2184 [M + Na]+. Calcd. for C42H49Au11B2
35ClN12NaO4P184W2: 1461.2194. Anal. 

found: C, 34.83; H, 3.63; N, 11.30%. Calcd. for C42H49AuB2ClN12O4PW2: C, 35.07; H, 

3.43; N, 11.68%. Crystal data for C42H49AuB2ClN12O4PW2·C4H10O: Mw = 1512.77, 

triclinic, P – 1 (No. 2), a = 12.5001(13) Å, b = 14.7647(14) Å, c = 17.4599(10) Å, α = 

66.723(7)°, β = 69.805(7)°, γ = 73.373(9)°, V = 2735.9(5) Å3, Z = 2, ρcalcd = 1.836 Mg 

m−3, µ(Mo Kα) = 7.00 mm−1, T = 150(2) K, red prism, 0.19 × 0.08 × 0.07 mm, 11228 

independent reflections. F2
 refinement, R = 0.081, wR = 0.175 for 5382 reflections (I > 

2σ(I), 2θmax = 52°), 631 parameters. 

 

Synthesis of [W2{µ-(CAuCl)2PPh}(CO)4(Tp*)2] (39) 

[W2(µ-C2PPh)(CO)4(Tp*)2] (0.020 g, 0.017 mmol) and [AuCl(SMe2)] (0.010 g, 0.034 

mmol) were dissolved in CDCl3 (0.5 mL) in an NMR tube. After 15 minutes, 31P{1H} 

NMR spectroscopy indicated the solution contained a mixture of 38 (16.0%), 39 

(45.8%) and 40 (34.2%), as well as two small singlets without resolvable 183W satellites 

at δP 37.5 (0.5%) and 30.2 (3.6%). Attempts to chromatograph mixtures containing 39 

did not lead to isolation of pure 39; instead it was isolated contaminated with 38, or 

both 38 and 40. Limited spectroscopic data for the crude product are given here. IR 

(CH2Cl2) ν/cm−1: 2004 s, 1916 vs (CO) (tentative assignments as the spectrum also 

contains bands due to 38 and 40). 31P{1H} NMR (CDCl3) δ/ppm: 63.1 (2JWP = 118.7). 

MS-ESI(+): m/z 1693.2 [M + MeCN]+. Accurate mass: found 1693.1543 [M + Na]+. 

Calcd. for C42H49Au2
11B2

35Cl2N12NaO4P184W2: 1693.1548.  
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Synthesis of [W2{µ-(CAuCl)2PPhAuCl}(CO)4(Tp*)2] (40) 

A solution of [W2(µ-C2PPh)(CO)4(Tp*)2] (0.020 g, 0.017 mmol) and [AuCl(SMe2)] 

(0.015 g, 0.051 mmol) in CH2Cl2 (2 mL) was stirred at room temperature for 20 

minutes. The red solution was decanted into a round bottom flask to which hexane (ca. 

1 mL) was added and volatiles removed on the rotary evaporator to afford 40 as a pink 

powder. Crystals suitable for crystallographic analysis were grown from a solution of 

40 in CH2Cl2 layered with hexane. Yield 0.031 g (0.016 mmol, 96%). IR (Nujol) 

ν/cm−1: 2560 w (BH), 2024 s, 1943 s, br, 1914 sh (CO). IR (THF) ν/cm−1: 2060 vw 

(BH), 2026 s, 1948 vs (CO). 1H NMR (CDCl3) δ/ppm: 8.60 (m, 2 H, C6H5), 7.60 (m, 1 

H, C6H5), 7.57 (m, 2 H, C6H5), 5.99 (s, 2 H, pzH), 5.94 (s, 2 H, pzH), 5.89 (s, 2 H, 

pzH), 2.76 (s, 6 H, pzCH3), 2.45 (s, 6 H, pzCH3), 2.38 (s, 6 H, pzCH3), 2.36 (s, 6 H, 

pzCH3), 2.32 (s, 6 H, pzCH3), 2.15 (s, 6 H, pzCH3). 13C{1H} NMR (CDCl3) δ/ppm: 

252.0 (WC, 1JWC = 99.9), 217.5 (d, CO, 3JPC = 8.0, 1JWC = 153.4), 216.2 (d, CO, 3JPC = 

8.1, 1JWC = 153.4), 154.3 (2 C), 153.5 (2 C), 152.9 (2 C), 146.8 (2 C), 146.3 (2 C), 

146.2 (2 C) [C3,5(pz)], 136.7 [d, br, C2,3,5,6(C6H5), JPC = 15.4], 133.1 [C4(C6H5)], 129.1 

[d, C2,3,5,6(C6H5), JPC = 12.4], 129.0 [d, C1(C6H5), 1JPC = 59.3], 109.0 (2 C), 108.1 (2 C), 

108.0 (2 C) [C4(pz)], 19.4 (2 C), 17.9 (2 C), 16.0 (2 C), 13.2 (2 C), 12.8 (2 C), 12.7 (2 

C) (pzCH3). 31P{1H} NMR (CDCl3) δ/ppm: 75.7 (2JWP = 88.8). MS-ESI(+): m/z 1943.1 

[M + K]+, 1927.1 [M + Na]+. Accurate mass: found 1929.0847 [M + Na]+. Calcd. for 

C42H49Au3
11B2

35Cl37Cl2N12NaO4P184W2: 1929.0844. Found 1927.0875 [M + Na]+. 

Calcd. for C42H49Au3
11B2

35Cl2
37ClN12NaO4P184W2: 1927.0873. Anal. found: C, 26.51; 

H, 2.58; N, 8.71%. Calcd. for C42H49Au3B2Cl3N12O4PW2: C, 26.50; H, 2.59; N, 8.83%. 

Crystal data for C42H49Au3B2Cl3N12O4PW2·CH2Cl2: Mw = 1988.42, monoclinic, P21/c, 

a = 23.7948(4) Å, b = 10.6312(2) Å, c = 24.9238(5) Å, β = 116.0601(9)°, V = 

5663.91(19) Å3, Z = 4, ρcalcd = 2.332 Mg m−3, µ(Mo Kα) = 12.11 mm−1, T = 200(2) K, 

red prism, 0.17 × 0.04 × 0.03 mm, 9980 independent reflections. F2
 refinement, R = 

0.056, wR = 0.160 for 7173 reflections (I > 2σ(I), 2θmax = 50°), 649 parameters. 

 

Synthesis of [W3(µ-C3P)(CO)6(Tp*)3] (41) 

A solution of [W(≡CBr)(CO)2(Tp*)] (0.216 g, 0.343 mmol) in THF (10 mL) was cooled 

to –78°C and treated with nBuLi (1.7 M in hexanes, 0.20 mL, 0.34 mmol). The resulting 

light brown solution was stirred for 60 minutes and then treated with PCl3 (0.01 mL, 0.1 

mmol). The solution instantly turned dark brown and was allowed to warm to room 

temperature gradually over five hours. Volatiles were removed under reduced pressure. 
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The residue was extracted with pentane (3 × 10 mL), filtered and the solvent was 

removed under reduced pressure to afford crude 41 as a brown solid (ca. 87% 41 by 
31P{1H} NMR spectroscopy, accompanied by peaks at δP 19.0 (5%) and 17.5 (8%)). 

Limited spectroscopic data for the crude product are given here. IR (THF) ν/cm−1: 2548 

w (BH), 1981 s, 1970 s, 1889 vs (CO). 1H NMR (CDCl3) δ/ppm: 5.74 (s, 3 H, pzH), 

5.69 (s, 6 H, pzH), 2.37 (s, 27 H, pzCH3), 2.31 (s, 27 H, pzCH3). 31P{1H} NMR 

(CDCl3) δ/ppm: 70.1 (2JWP = 68.6). 31P{1H} NMR (C6D6) δ/ppm: 71.6 (2JWP = 69.7). 

ESI mass spectrometry did not yield any identifiable peaks, presumably due to the high 

sensitivity of 41. 
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Computational details 
 

All computational works were performed by Dr Manab Sharma using the Gaussian 09 suite 

of programs.1 The geometries of all complexes have been optimised at the DFT level of 

theory using the exchange functional of Becke2 in conjunction with the correlation 

functional of Perdew3,4 (BP86). The Stuttgart basis set in combination with the 60-core-

electron relativistic effective core potential (SDD)5,6 was used for W; 6-31G(d)7 basis sets 

were used for all other atoms. This basis set combination is referred to as BS1. Frequency 

calculations were performed to confirm that optimised structures were minima or saddle 

points using the BP86/BS1 level of theory. Single-point energy calculations for all the 

optimised structures were carried out with a larger basis set (BS2). BS2 utilises the 

quadruple-ζ valence def2-QZVP8 basis set on W along with the corresponding ECP and the 

6-311+G(2d,p) basis set on other atoms. The solvation energies were calculated using BS2 

on gas phase optimised geometries with the CPCM solvation model9 using 

dichloromethane and acetonitrile as solvents. Single-point calculations were also carried 

out at the M06/BS2, B97D/BS2 and B3LYP/BS2 level of theories, and found to follow 

similar trends. For the ionic complexes, optimisations were also carried out in solvent 

(dichloromethane) medium. 
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