
Scalable Loss-calibrated Bayesian
Decision Theory and Preference

Learning

M. Ehsan Abbasnejad

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

April 2017

c© M. Ehsan Abbasnejad 2017

Declaration

I hereby declare that this thesis is my original work which has been done in collabo-
ration with other researchers. This document has not been submitted for any other
degree or award in any other university or educational institution. Parts of this thesis
have been published in collaboration to other researchers in international conferences
as listed below:

• (Chapter 3) E. Abbasnejad, S. Sanner, E. V. Bonilla, P. Poupart, Learning
Community-based Preferences via Dirichlet Process Mixtures of Gaussian Pro-
cesses, In Proceedings of the 23rd International Joint Conference on Artificial Intelli-
gence (IJCAI), 2013. Beijing, China.

• (Chapter 4) E. Abbasnejad, E. V. Bonilla, S. Sanner, Decision-theoretic Spar-
sification for Gaussian Process Preference Learning, Proceedings of the Machine
Learning and Knowledge Discovery in Databases - European Conference (ECML PKDD),
2013. Prague, Czech Republic.

• (Chapter 5) E. Abbasnejad, J. Domke, S. Sanner, Loss-calibrated Monte Carlo
Action Selection, In Proceedings of the 26th Conference on Artificial Intelligence
(AAAI), 2015. Austin, USA.

M. Ehsan Abbasnejad
April 26, 2017

3

to my parents.

Acknowledgments

I would like to express my gratitude towards all who helped me make this thesis
possible.

First and foremost, I wish to thank my supervisor Scott Sanner for all his guid-
ance, caring and patience and providing me with the excellent atmosphere for doing
research. Scott’s intuitive understanding of Bayesian methods and decision theory
motivated my research and gave me insights that would have never been possible
without him. His encouragements have been invaluable to me during the hard times.
I am extremely grateful for his strong support in my academic and personal life. I
also wish to thank my advisor Edwin V. Bonilla, who gave me the opportunity to
learn Gaussian processes. Special thanks to Justin Domke whose advice on math-
ematical formulation and problem solving has been invaluable. His deep and intu-
itive understanding has been a great help and motivation. I would like to express
my warm respects towards Mark Reid as my advisor, for his time and helpful sug-
gestions. I would also like to thank Pascal Poupart who gave me a better insight into
Nonparametric Bayesian methods during my visit. I am eternally in debt to these
academic role models.

I acknowledge the financial, academic and technical support provided by the
National ICT of Australia (NICTA) and the Australian National University (ANU)
and thank them for their support in my research. My fellow postgraduate friends
at NICTA and the ANU provided a welcoming collaborative environment. I would
like to specially thank Zahra Zamani, Alireza Motevalian, Sarah Taghavi Namin,
Mohammad Ismailzadeh, Mohammad Najafi, Ehsan Nabavi, Hadi Afshar, Behrouz
Nasihatkon, Salim Masoumi, Alireza Khosravian, Mehdi Shabani, MohammaReza
Jouyandeh, Fateme Rajabi, Morteza Azad, Sahba Najafi, Mohsen Zamani, Mona
Golestar Far, Suvash Sedhain and many others who always cheered me on and made
my life so joyful.

Finally I have to thank my parents who have always supported me and gave me
the encouragement to follow my dreams. I thank them for believing in me and for
their endless love and support. My brothers, Iman and Amin, I thank you for always
being my best friends and supportive of whatever I have done.

Above all I wish to thank the almighty God for his guidance in life and giving
me the opportunity to pursue my degree.

7

Abstract

Bayesian decision theory provides a framework for optimal action selection under
uncertainty given a utility function over actions and world states and a distribution
over world states. The application of Bayesian decision theory in practice is often
limited by two problems: (1) in application domains such as recommendation, the
true utility function of a user is a priori unknown and must be learned from user
interactions; and (2) computing expected utilities under complex state distributions
and (potentially uncertain) utility functions is often computationally expensive and
requires tractable approximations.

In this thesis, we aim to address both of these problems. For (1), we take a
Bayesian non-parametric approach to utility function modeling and learning. In our
first contribution, we exploit community structure prevalent in collective user prefer-
ences using a Dirichlet Process mixture of Gaussian Processes (GPs). In our second
contribution, we take the underlying GP preference model of the first contribution
and show how to jointly address both (1) and (2) by sparsifying the GP model in
order to preserve optimal decisions while ensuring tractable expected utility compu-
tations. In our third and final contribution, we directly address (2) in a Monte Carlo
framework by deriving an optimal loss-calibrated importance sampling distribution
and show how it can be extended to uncertain utility representations developed in
the previous contributions.

Our empirical evaluations in various applications — including multiple prefer-
ence learning problems using synthetic and real user data and robotics decision-
making scenarios derived from actual occupancy grid maps — demonstrate the effec-
tiveness of the theoretical foundations laid in this thesis and pave the way for future
advances that address important practical problems at the intersection of Bayesian
decision theory and scalable machine learning.

9

10

Contents

Declaration 3

Acknowledgments 7

Abstract 9

1 Introduction 1
1.1 Motivation . 1
1.2 Basic Framework . 3
1.3 Contributions . 4
1.4 Thesis Outline . 5

2 Background 7
2.1 Foundation of Decision Theory . 7

2.1.1 Basic Definitions . 7
2.1.2 Modeling Uncertainty . 9

2.1.2.1 Graphical Models . 9
2.1.3 Using Prior and the Bayesian View 10
2.1.4 Bayesian Decision Theory . 13

2.2 Bayesian Modeling and Learning . 14
2.2.1 Parametric Bayesian Modeling . 14
2.2.2 Nonparametric Bayesian Modeling 16

2.2.2.1 Gaussian Processes . 17
2.2.2.2 Dirichlet Processes . 20

2.3 Bayesian Inference . 22
2.3.1 Laplace Method . 22
2.3.2 Variational Inference . 23
2.3.3 Expectation Propagation (EP) . 24
2.3.4 Sampling and Markov Chain Monte Carlo (MCMC) 26

2.3.4.1 Monte Carlo Methods . 26
2.3.4.2 Gibbs Sampling . 27
2.3.4.3 Metropolis-Hastings . 28

2.4 Bayesian Decision Theory and Preference Learning 29
2.4.1 Preferences and Existence of the Utility 29
2.4.2 Risk-seeking vs. Risk-averse Behavior 31
2.4.3 Learning the Utility Function . 31

2.5 Summary . 32

11

12 Contents

3 Learning Community-based Preferences 35
3.1 Gaussian process for Multi-user Preference Learning 36

3.1.1 Prediction . 39
3.1.2 Optimizing the Kernel Hyper-parameters 40

3.2 Dirichlet Process Mixtures of Community-based Preference GPs 40
3.2.1 Inferring Community utilities . 42
3.2.2 Inferring Community Membership 44
3.2.3 Prediction . 45
3.2.4 Final Algorithm . 46

3.3 Empirical Evaluation . 46
3.4 Related Work . 50
3.5 Conclusion . 50

4 Decision-theoretic Sparsification for Gaussian Process Preference Learning 51
4.1 Decision-theoretic Sparsification . 52

4.1.1 Observation-driven Sparsification 52
4.1.2 Item-driven Sparsification: Valuable Vector Machine 53
4.1.3 Loss Functions and Risk . 55

4.1.3.1 Log loss and IVM . 55
4.1.3.2 Valuable Vector Machine – Value Of Information 55
4.1.3.3 Valuable Vector Machine – Upper Confidence Bound . 55

4.2 Empirical Evaluation . 56
4.2.1 Datasets . 58
4.2.2 Results . 59

4.3 Related Work . 60
4.4 Conclusion . 61

5 Loss-calibrated Monte Carlo Action Selection 63
5.1 Loss-calibrated Monte Carlo Importance Sampling 65

5.1.1 Minimizing regret . 66
5.1.2 Minimizing the probability of suboptimal action 67
5.1.3 Optimal q . 71

5.2 Applications . 73
5.2.1 Power-plant Control . 73
5.2.2 Robotic Navigation . 76

5.3 Conclusion and Future Work . 77

6 Conclusion 79
6.1 Summary of Contributions . 79
6.2 Future Work . 80
6.3 Concluding Remarks . 83

Contents 13

A Alternative Formulation of the Loss-calibrated MC Action Selection 85
A.1 Minimizing the probability of suboptimal action 85

A.1.1 Optimal q . 86

14 Contents

List of Figures

2.1 A graphical model of three random variables x1, x2, y 9

2.2 Graphical model and the plate representation 11

2.3 Hierarchical Bayesian model . 13

2.4 Bayesian linear regression: the prior and the posterior of the parameter
θ are shown in Figure 2.4(a). In Figure 2.4(b), the dots are the observed
points. The red lines are three samples from the linear function defined
by the posterior distribution. As is shown, the posterior is peaking at
the true value (1 in this example). 15

2.5 Graphical model of the Mixture Model 16

2.6 Dirichlet distribution for various values of α 20

2.7 An illustration of the Dirichlet distribution and the partitioning of the
space. 21

2.8 A graphical model for EP . 25

3.1 Our proposed generative graphical model for community-based pref-
erences. There is a plate for users ω with community membership
indicator cω ∈ C and an embedded plate for i.i.d. preference obser-
vations aω

i � aω
j of user ω depending on the community assignment

cω of ω, community cω’s latent utility function ucω , and the discrim-
inal dispersion parameter α. There is a separate plate for commu-
nities c ∈ C = {1 . . . , ∞} which contains the latent utility function
uc drawn from a Gaussian Process conditioned on local (optimized)
community parameters Kc

x. Finally, each cω is generated i.i.d. from
an infinite multinomial distribution with parameters π and Dirichlet
Process prior with concentration parameter λ. 41

3.2 The distribution of preferred cars in each community for the AMT car
dataset. Each x-axis position represents a different car and the y-axis
the normalized frequency with which that car was preferred to another
by a user in the community. Each community is distinct and differs in
at least one car attribute. 48

3.3 Distribution of communities in the datasets . The x-axis is the number
of communities; the y-axis is the posterior probability at the last sam-
pling iteration. These values are obtained at iteration 15 of Synthetic
and Sushi and iteration 36 of AMT Car. 49

15

16 LIST OF FIGURES

4.1 Illustration of Value of Information: it is the product of the shaded
area under the normal curve when the utility is higher than the opti-
mal value and the linear function of their difference. This value cor-
responds to the expectation of the difference of the utility of the item
and the optimal under the shaded mass. As it is observed, uω

1 has
negligible mass above uω,∗ point, therefore the item corresponding to
uω

2 is selected. 56
4.2 Performance of the sparsification methods in terms of the recommen-

dation loss (the proportion of items that are incorrectly predicted as
the best item for recommendation) in the first column and the 0/1 loss
(percentage of wrongly predicted preferences) in the second, as a func-
tion of the proportion of items selected for sparsification. The larger
the number of items the lower the level of sparsification and the closer
the algorithms are to the Full-GP method. 57

4.3 Average prediction time for inference with 200 users and 10 items. The
number calculated as the time consumed to make a series of predic-
tions on the preferences of the test set. 60

5.1 Motivation for loss-calibration in Monte Carlo action selection. (Top) Utility
u(θ) for actions a1 and a2 as a function of state θ. (Middle) A belief state dis-
tribution p(θ) for which the optimal action arg maxa∈{a1,a2} Ep[u(θ, a)] should
be computed. (Bottom) A potential proposal distribution q(θ) for importance
sampling to determine the optimal action to take in p(θ). 64

5.2 Power-plant simulations: the step-valued utility function (as in Equa-
tion 5.17 and 5.18) in the first column, the true distribution p (in
blue) and q∗ (in red) in the second column and in the third and forth
columns the result of performing Subsampled MC and Multiple MC (as de-
scribed in the text) are shown. In the two right-hand columns, note
that q∗ achieves the same percentage of optimal action selection per-
formance as p in a mere fraction of the number of samples. 75

5.3 Performance of the decision maker in selecting the best action as the
dimension of the problem increases in the power-plant. Note that at
100 dimensions, p is unable to select the optimal action whereas q still
manages to select it a fraction of the time (and would do better if more
samples were taken). 76

5.4 A robot’s internal map showing the samples taken from its true belief
distribution p (two modes are shown in blue, the second one is slightly
obfuscated by the robot) and the optimal sampling distribution q∗ de-
rived by our loss calibrated Monte Carlo importance sampler in 5.4(a).
In 5.4(b) and 5.4(c) we see the performance (in terms of percentage of
optimal action selected) of our loss-calibrated sampling method using
q∗ leads to near immediate detection of the optimal action in only a
few samples. 76

Chapter 1

Introduction

1.1 Motivation

Every day, people and computers are faced with decision making in uncertain cir-
cumstances. Decision theory is the study of optimal decision making under uncer-
tainty. It is concerned with the analysis of the consequence of actions in an uncertain
environment. Decision theory requires three major components: state, action, and the
utility function. The utility function is a means of evaluating how valuable an action
(i.e. a choice amongst alternatives) is for the decision maker in a given state of na-
ture. The expectation of this utility for an action with respect to the uncertain states
is the expected utility and maximizing it is the core focus of decision theory.

In this formulation, conventional decision theory assumes the utility is known
to the decision maker. However, in many applications this assumption is not valid.
The utility may only be formulated by or revealed to the decision maker through
an interaction with the environment and may be partially known. Consider the
following examples:

• Recommendation: The objective of a recommender system is to suggest attrac-
tive items (alternatives) to the users that potentially leads to their selection (e.g.
purchase). With an abundance of consumer choices, such systems are becoming
increasingly popular to direct users to what they might find useful. One way
these recommenders provide these suggestions is by learning from the users’
feedback that was collected from their previous preferences for items. Under
certain assumptions, we can model preferences using utilities. These utilities
are unknown and user’s preferences provide information to help formulate
belief about their true values.

• Robotic automation: Navigation and exploration are vital tasks in robotics
and entail making choices amongst a variety of alternatives. For example an
unmanned aerial vehicle (UAV) for scientific research has to maximize area
covered while choosing a path, places to stop for observation, duration of stay
while observing, and types of measurements [28]. These all have to be done
while carefully avoiding collisions with other objects, such as moving UAVs [5].
Also, one has to consider the fact that certain actions might perform well for a
mission and poorly for others. Manually determining the utility function needs

1

2 Introduction

a tedious investigation into the mission, the field, and possible consequences of
each action. Alternatively, learning it (or improving from what was learned in
a similar mission) through the collection of information from the environment
can be considered.

• Automated medical assistant: Assessing the effectiveness of a medical treat-
ment is generally hard and has to be tailored towards the needs of each indi-
vidual patient [22]. This is because each patient might feel differently about
the process and consequences of each treatment. For instance, one might prefer
a short but intensive treatment over a longer, relatively comfortable one. By
presenting these alternatives at a given stage to a patient we can construct a
personal utility function. We might start with a “general” utility function as a
prior and update it as patient’s preferences are observed. In this process, we
learn the utility of each patient during the course of a treatment.

• Autonomic computing: Managing a cluster server can be a tedious and error-
prone task. It can ideally be managed automatically by the computers them-
selves with minimal human intervention [16, 66]. These systems are becom-
ing crucial due to the increasing popularity of cloud computing where users
can run their programs on these cloud resources and pay accordingly. An au-
tonomic system seeks to maximize its income by intelligent allocation of all
resources while ensuring certain quality constraints (such as maximum wait
time in the queue) are satisfied. The utility function measures how much the
allocation of a resource (e.g. CPU) to a task in the queue earns for the cloud
service provider while maximizing the customer’s satisfaction. This utility is
unknown in advance because each application’s resource requirements are not
known and different. Learning the utility of resources for each application
ensures a better allocation and consequently a better quality of services.

In all these examples, the utility function is initially unknown or imprecise. The
value of utilities is inferred from some form of available information (e.g. prefer-
ences). With observing the alternative choices and their consequences, we formulate
a "belief" in a utility function. For example in a recommender system, observing a
purchase of a comedy movie increases the certainty that the user is interested in this
genre and may assign higher utility values to instances of such movies.

With the prerequisite that we need to handle uncertain utilities, we treat the util-
ity function as a random quantity. As such the arsenal of available solutions for
probabilistic modeling is at our disposal. Although in some problems, the utilities
are assumed to have a particular form, we are interested in a flexible way of mod-
eling the utility function such that its capacity scales with observations. Hence, we
contribute novel nonparametric Bayesian methods for utility learning. Nonparamet-
ric Bayesian models accommodate the needs of such problems by (1) providing an
infinite dimensional basis for the problem, (2) expanding its capacity with new obser-
vations that enables multi-modal representation and (3) presenting an explicit model
of uncertainty (Bayesian posterior) for its predictions.

§1.2 Basic Framework 3

Once the utility is formulated, finding the action to be performed requires calcu-
lation of expected utilities that leads to computationally expensive integrals. This is
true if either the utility is manually formulated or learned using probabilistic model-
ing methods. Efficient computation of the expected utility is a challenging problem
that we also investigate in this thesis. In the subsequent section, we provide a more
formal description of the fundamental problems that we address in this thesis.

1.2 Basic Framework

Bayesian decision-theory [7, 32, 77] provides a formalization of robust decision-
making in uncertain settings by maximizing expected utility. Formally, a utility func-
tion u(θ, a) quantifies the return of performing an action a ∈ A = {a1, . . . , ak} in
a given state θ. When the true state is uncertain and only a belief state distribu-
tion p(θ) is known, Bayesian decision-theory posits that an optimal control action a
should maximize the expected utility

EUu(a) = Eθ∼p(θ)[u(θ, a)] =
∫

u(θ, a)p(θ)dθ, (1.1)

where by definition, the optimal action a∗ is

a∗ = arg max
a

EUu(a). (1.2)

This conventional formalization assumes the utility is given and completely known.
As discussed earlier, this is not always the case and utilities can be unknown or im-
precise in various applications. Since we are treating the utility function as a random
quantity, we have a belief in its values (technically a random function). Therefore, we
are led to the framework known as expected expected utility [15] that takes an expecta-
tion both over state and utility uncertainty:

EEU(a) = Eu∼p(u)
[
EUu(a)

]
=
∫

EUu(a)p(u)du. (1.3)

Here u is a functional and p(u) is a distribution over this functional. As expected, the
optimal action is the one that maximizes this expression. For a fully known utility
function, that is when the distribution of the utilities is a Dirac delta function centered
at this fixed utility, we recover the conventional decision theoretic framework given
in Equation 1.1.

When there is no observation in the Bayesian modeling of p(u), the utility value
is represented in the prior provided by the expert. As more observations become
available, the belief in the utility is updated.

There are two major aspects to this formalization:

4 Introduction

• Learning a distribution over utility functions: In practice, modeling the dis-
tribution of the utility function itself is difficult. For instance, utilities have to
be inferred from pairwise comparisons in preference learning. Then the first
question is how to learn a utility belief model p(u) from observations?

• Efficient computation of the optimal action: Once the utility is learned, finding
the optimal action is often expensive and needs an efficient computation of the
integral in the expected utility. In this case, if we are given a fixed utility, how
do we efficiently compute EUu(a)? On the other hand, if we have a distribution
over the utility p(u), then how to compute EEU(a)?

These two issues are the main problems that will be addressed in this thesis.

1.3 Contributions

As outlined previously, the two aims of this thesis are learning a distribution over
utility functions and efficient computation of the optimal action. As such, in the
following we summarize our main contributions:

• Learning Community-based Preferences via Dirichlet Process Mixtures of
Gaussian Processes: To formulate our belief in a utility function, we need a
flexible model that requires minimal constraints on the structure of utilities.
This model has to be able to automatically adapt to the amount of data. Our
first contribution is to use nonparametric Bayesian methods, in particular Gaus-
sian Processes (GPs) [74], to model the distribution of the utility. However, as
these models can grow prohibitively large when numbers of users grow, we
leverage the notation of communities to motivate nonparametric clusterings of
users for an efficient representation. This efficient extension reduces cubic op-
erations for computing the posterior to linear ones using the Dirichlet Process
(DP) [85]. We provide an application of this method to preference learning and
show that our proposed approach is capable of grouping users based on their
preference clusters.

• Decision-theoretic Sparsification for Gaussian Process Preference Learning:
In addition to exploring user communities for efficient inference in GPs using
DPs, we further propose a decision-theoretic sparsification method for GP pref-
erence learning. Thus, as opposed to the previous approach, we use only a sub-
set of users and items to learn the approximate posterior. This method learns
an approximate sparsified distribution of the utility function where our sparsi-
fication approach is underpinned by decision theory and directly incorporates
the loss function inherent in the underlying preference learning problem. We
show that by selecting different specifications of the loss function several pop-
ular sparsification methods are recovered from our decision-theoretic frame-
work. We refer to our method as the Valuable Vector Machine (VVM) as it selects
the most “valuable” items during sparsification to minimize the corresponding
loss.

§1.4 Thesis Outline 5

• Loss-calibrated Monte Carlo Action Selection: Obtaining the optimal action
that maximizes the expected utility requires computationally expensive inte-
grals typically evaluated using Monte Carlo methods in both conventional
Bayesian decision theory in Equation 1.1 and EEU in Equation 1.3. We provide
an improved Monte Carlo method to find the optimal action in a fraction of the
time compared to its conventional counterpart; To do this, we use the calculus
of variations to find the optimal distribution that minimizes the regret, that is,
we minimize the probability of suboptimal action selection when the number
of samples is limited. As will be shown, this objective further minimizes the
probability of suboptimal action selection in the finite sample case.

Putting these three basic contributions together we lay the foundation for efficient
and scalable computation of expected expected utility for optimal Bayesian decision-
theoretic action selection. Our empirical evaluations in various applications — in-
cluding multiple preference learning problems using synthetic and real user data
and robotics decision-making scenarios derived from actual occupancy grid maps —
demonstrate the effectiveness of the theoretical foundations laid in this thesis and
pave the way for future advances that address important practical problems at the
intersection of Bayesian decision theory and scalable machine learning.

1.4 Thesis Outline

This chapter introduced our research problem: efficient and scalable decision making
using uncertain utilities learned from preference feedback. The remainder of this
thesis is structured as follows: Chapter 2 defines all the background material required
to understand decision theory, graphical and Bayesian models used in this thesis as
well as a review of current approaches. In Chapter 3, we discuss our approach using
GPs and DPs for efficient preference learning and of modeling the utility function.
Chapter 4 applies GPs to finding the distribution of the utility function for multiple
users and introduces a decision theoretic formalization for sparse Gaussian process
models. Having discussed approaches to modeling the distribution of the utility
function, in Chapter 5 we discuss how to efficiently determine the optimal action
using sampling for computation of the expected utilities. Finally, Chapter 6 concludes
this thesis with a summary and interesting directions for future work.

6 Introduction

Chapter 2

Background

As explained earlier in the introduction, decision theory studies models of decision
making for agent(s) under Bayesian models of environment uncertainty. In this sec-
tion we will provide the background material needed for our contributions in the
rest of this thesis. In particular, we will discuss:

• What is decision theory and how it is formally defined? How can we model
the uncertainty involved in the decision making process? We will formally
introduce decision theory in Section 2.1 and modeling uncertainty in Section
2.1.2

• Amongst the decision theoretic frameworks, Bayesian decision theory is a com-
pelling choice because it models the uncertainty as an explicit probability dis-
tribution and, as will be argued in Section 2.1.4, is the framework that we will
focus on. Since we will be using Bayesian decision theory, we will discuss its
differences with the frequentist’s view. We further discuss how the Bayesian
models are built and used for learning and inference in Section 2.2. In Section
2.3 we will provide some remarks on approximate Bayesian inference.

• Finally we draw the connection between the Bayesian decision theory and pref-
erence learning via a notion of a utility function in Section 2.4.

2.1 Foundation of Decision Theory

In this section we will explain the basics of decision theory. Further reading on
decision theory can be found in [7–9, 77][45, Chapter 22][31, 32, Chapter 9].

2.1.1 Basic Definitions

In this thesis, we use a decision making scenario consisting of three basic elements,
state, action and utility as detailed below:

• The state indicates the condition of the nature that the decision maker is in and
is typically not fully realized and thus uncertain. This uncertainty can be due
to the changing nature of the decision maker’s environment or the noisy tools

7

8 Background

for measurement. As such, the “belief” over the value of the state is typically
conditioned on some observations. This uncertain variable, denoted as θ ∈ Θ

(depending on the application can be vector of continuous or discrete values),
describes the attributes of this environment. When experiments are performed
to gather information about the value of θ, it is called the parameter in some
parameter space. We use the state of nature and the parameter interchangeably
to refer to θ.

• The decision maker can affect its environment by taking an action a ∈ A in
the set of all possible actions under consideration A = {a1, a2, . . . , ak}. At each
state, the action performed produces an outcome o : A×Θ. The analysis of
this outcome for the selected action is of central interest to decision theory.

• The utility function is a means of evaluating how valuable the outcome of an
action is for the decision maker in a given state. This function u : Rd ×A → R

returns higher values for the actions that are more favorable in a given state.
In the cases where there is no uncertainty (i.e. deterministic environment),
the optimal action is the one that has the highest utility. However, in general
the environment is uncertain and we need to consider expected utility over all
possible states. In some applications it is insightful to think of the utility value
in a monetary manner although this is not always the case.

In this thesis, we assume the outcome o is deterministic on the state-action space and
therefore the utility of the selected action in the given state u(θ, a) is equivalent to
the utility of the outcome u(o), i.e. u(o) = u(θ, a).

Given a distribution over the state of the nature and a utility function, we define
the expected utility as:

EUu(a) = Eθ∼p(θ)
[
u(θ, a)

]
, (2.1)

with the optimal action being the one that maximizes this value, i.e.,

a∗= arg max
a

EUu(a)

That is, with respect to our belief about the state of nature, the action that maxi-
mizes the expected utility is optimal. This definition connects three basic elements
of decision theory. In the following we further detail how to obtain and model the
distribution of states and the utility.

It is noteworthy to add that the notion of utility is closely related to the loss. We
view loss as a merely different view on evaluation of an action in a given state that
measures its cost, as opposed to the gain measured by utility. It can be simply seen
as the negative of the utility. Due to this dualistic view, we use maximize negative
loss or utility depending on the context interchangeably.

§2.1 Foundation of Decision Theory 9

y

x1 x2

(a) Bayesian network

y

x1 x2

(b) Factor graph

Figure 2.1: A graphical model of three random variables x1, x2, y

2.1.2 Modeling Uncertainty

A well-understood mathematical tool for representing and reasoning under uncer-
tainty is probability theory that is foundational to Bayesian methods that underly
work in this thesis. In this section we discuss how to represent the probabilities and
learn from observations. In subsequent sections where we discuss the uncertainty in
the utility function, we employ the same modeling tools for the distribution of the
utilities.

2.1.2.1 Graphical Models

Graphical models are the marriage of graph theory and probabilistic modeling. The
reason for using such models is more compact representation of the joint probabilities
by exploiting the independence of random variables. In particular for modeling the
unknown state of nature, we might notice interactions among various variables that
lead to a structured graphical model of conditional dependence. In addition, these
graphical representations allow exploiting structure for efficient inference and paves
the way for use of well-developed graph algorithms for probabilistic reasoning in
graphical models. In short, we use a graph representation because:

• the graph structure reveals properties of the model, namely dependence/inde-
pendence of variables;

• inference and learning can exploit the structure of graphical models for effi-
ciency;

• much more compact than the explicit representation of full joint;

• compact models with fewer parameters have higher bias but can be learned
with lower variance than full joint; and,

• it is easier to visualize the structure of the probabilistic models.

In a graphical model, we have a set of nodes corresponding to the random vari-
ables in the model and the edges between them representing probabilistic depen-
dence. We have two types of graphical models [12, 45, 51, 90]:

10 Background

1. Undirected Graphical Models: Also known as Markov Random Fields (MRF),
represent the distribution that factorizes according to set of functions ψ that
define the interaction (or compatibility) between the variables in a clique. De-
noting by C a clique in the graph, the joint probability of d random variables
θ1, . . . , θd, can be written as:

p(θ1, θ2, . . . , θd) =
1
Z ∏

C
ψC(θC),

where θC is the subset of variables belonging to the clique C and their corre-
sponding compatibility function ψC.

2. Directed Graphical Models: Also known as Bayesian networks, represent the
connection between variables in a parent-child relationship that is specified by
the arrow direction in the graph. In this relation, the children depend on their
parents. Therefore, the joint distribution factorizes based on the parents pa(θ)
of a variable θ, that is,

p(θ1, θ2, . . . , θd) = ∏ p(θi|pa(θi)).

An example of a directed graph is shown in Figure 2.1(a). In this graph, x1, x2

are the parents of y. The direction of arrows in the graph represent the direction
of conditional dependency between variables. The joint in this figure represents
the following:

p(x1, x2, y) = p(y|x1, x2)p(x1)p(x2)

Both directed and undirected graphical models can be easily depicted in a fac-
tor graph as shown in Figure 2.1(b). The factor graph represents the factorization
of a function. In a factor graph, the black squares represent the potential function
between the connected random variables. This interaction is the compatibility func-
tion in undirected graphs or the joint distribution of the connecting variables in the
directed one.

In many problems where the number of random variables is large and there
are patterns of conditional independence, a plate diagram as shown in Figure 2.2
is conventionally used to provide a simpler representation. A simple example is
shown in Figure 2.2 where variable yi depends on xi and θ for all i = 1, 2, . . . , n. The
observed variables are normally shaded in graphical models. This graphical model
is common in machine learning (regression and classification) where the target value
(label) y depends on the observation x and the state of nature θ. We will discuss a
regression example (where y is continuous) in the following sections.

2.1.3 Using Prior and the Bayesian View

Statisticians are generally divided into two camps: Frequentists and Bayesians [7, 8]:

§2.1 Foundation of Decision Theory 11

x1

✓

y1 y2 yn

x2 xn...

...

✓

xi

yi

i = 1, . . . , n

Figure 2.2: Graphical model and the plate representation

• The frequentist view is that the state of nature is an unknown that we have
measurements from. One formulates a hypothesis model that minimizes the
average loss of the observed measurements. Through a large number of obser-
vations, the model that minimizes the average loss on the training observations
learns to recognize the unseen samples with a good performance. Similarly,
models that find the single parameter that maximizes the probability of the
observations are frequentist.

• The Bayesian view on the other hand, thinks of the state of nature as a random
variable. Hence as a random variable, there is an initial belief about its value
and upon seeing new observations this belief is updated. Bayesian modeling is
done with the view that the uncertainty about the unknown state of nature is
often reduced as more observations are made.

Bayesian methods use simple probability rules to infer unknown states. In particular,
for two random variables A and B, we will use two standard probability rules:

p(A) =
∫

p(A, B)dB marginalization (sum/integrate out),

p(A, B) = p(A|B)p(B) chain rule (product rule).

These probabilistic principles combined with the basic Bayes rule lay the founda-
tion for Bayesian reasoning about the uncertainty of the unknown state,

p(θ|D) =
p(D|θ)p(θ)

Z
, (2.2)

where D denotes the set of observed random variables {di}i=1,...,n and

Z = p(D) =
∫

p(D|θ)p(θ)dθ (2.3)

Since it is assumed that the observation di ∈ D is independently and identically

12 Background

distributed, the likelihood term factorizes, i.e.

p(D|θ) =
n

∏
i=1

p(di|θ)

In Figure 2.2, the graphical model of such factorization where di = (xi, yi) is shown.
Here, p(θ) represents the prior, p(D|θ) the likelihood and Z is the normalizer that

ensures the posterior on the left-hand-side (LHS) sums to one, and hence is a proper
distribution. This prior is obtained from a problem-specific expert’s knowledge or a
similar problem. The distribution of the prior is often determined by its parameters
that are called hyper-parameters to set apart from the unknown parameters we are
looking for. Inference is the procedure of obtaining the posterior distribution of these
unknown parameters from the prior using the likelihood. The posterior, p(θ|D), is
the distribution of the state variable given the observations. When we are in the no-
data setting, that is, there are no observation, the posterior is equal to the prior. Upon
having new observations we can incrementally update our belief about the state. In
each step, the posterior of the previous iteration acts as a prior in the Bayes rule to
update the belief about θ, i.e.

p(θ|D) ∝ p(dn|θ)p(θ|D1,...,n−1)

where D1,...,n−1is the set of first n− 1 observations.
When the integral in the normalizer Z is tractable, exact inference can be carried

out. Often times in practice however, the integral is hard to perform and as such var-
ious sampling and approximation methods are developed to estimate the posterior.
We will discuss these methods in the subsequent section.

An important advantage of Bayesian modeling is that, as opposed to the fre-
quentest view, over-fitting or under-fitting is automatically avoided. That is because in
Bayesian methods, for prediction we integrate over all parameterizations, i.e.

p(d∗|D) ∝
∫

p(d∗|θ)p(θ|D)dθ

where d∗ is the unseen sample. This integration acts as an averaging with respect
to all possible parameter values as opposed to picking the parameter that maximizes
the posterior probability which might overfit the data and lead to poor generalization
to unseen examples.

Furthermore, Bayesian models are generally considered consistent in the sense
that if the true parameter value θ∗ that generates the data is in the prior, as the num-
ber of observations approach infinity, the posterior converges to the delta function
centered at the true parameter value [31, 32], i.e., for n observations in D,

lim
n→∞

p(θ|D) → δ(θ− θ∗).

Simply put, the posterior will peak at the true parameter value in the posterior (con-
vergences to the true point in the parameter space).

§2.1 Foundation of Decision Theory 13

✓

xi

yi

i = 1, . . . , n

�

Figure 2.3: Hierarchical Bayesian model

A Bayesian model can be hierarchical by having multiple levels of priors where
priors of priors are hyper-priors:

p(θ) =
∫

p(θ|λ)p(λ)dλ.

where λ is the hyper-parameter. A graphical model of this new representation is
shown in Figure 2.3. This will add further flexibility in the model. Although hierar-
chical models are more complex and their inference is more challenging, in problems
like topic modeling they proved to be effective [13].

2.1.4 Bayesian Decision Theory

Now that the state distribution in a Bayesian view can be obtained from the observa-
tions, we can proceed to introduce Bayesian decision theory as:

EUu(a) = Eθ∼p(θ|D)[u(θ, a)] =
∫

u(θ, a)p(θ|D)dθ. (2.4)

with the optimal action a∗ being the one that maximizes this value, i.e.,

a∗= arg max
a

EUu(a)

Then action a1 is preferred to action a2 if and only if

EUu(a1) > EUu(a2).

We say the decision maker is indifferent about a1 and a2 when EUu(a1) = EUu(a2).
In problem settings where the utility itself is unknown, we can learn the distribu-

tion of the utility and compute the expected expected utility. In doing so, we learn the
belief in both the utility and the state variable and then integrate them out in EEU,

14 Background

i.e.

EEU(a) = Eu∼p(u)
[
EUu(a)

]
=
∫

EUu(a)p(u)du.

Then the utility of an action is a distribution of the utility for that action and there is
no independent state variable to consider.

2.2 Bayesian Modeling and Learning

So far we have introduced the general picture of decision theory without discussing
the specific models. In this section, we concentrate on the Bayesian modeling for
learning the distribution of unknown variables. These variables can be (1) the state
of nature, (2) the utility function, or (3) other latent variables that the belief over state
or utility function depends on.

In Bayesian modeling, we choose the prior and the likelihood and compute the
posterior from the Bayes rule. When the product of the prior and the likelihood re-
mains in the same family, computing the posterior is tractable and the prior is called
conjugate. Formally, if M is a set of prior distributions on θ, then the prior is called
conjugate to the likelihood model if for every observation, the posterior is inM. We
will give an example of a tractable problem and then discuss various approximate
methods that in subsequent chapters will be used for intractable problems.

In the following we will discuss parametric and nonparametric Bayesian models.
A particular characteristic of the parametric Bayesian modeling is that there is a fixed
dimensional parameter whose posterior distribution we are interested to obtain. The
posterior in these models takes a fixed size parametric form. In the nonparametric
models on the other hand, the dimension of the parameter can grow with the data.
In the following, we will discuss them in details.

2.2.1 Parametric Bayesian Modeling

In the Bayesian view we are interested in the distribution of the unknown random
variables. There is an initial belief about the value of these unknowns that ulti-
mately become more certain with more observations. In case these likelihoods and
the prior are conjugate we can compute the products in closed form and the integral
is tractable. For example Gaussian distribution is a conjugate prior for a Gaussian
likelihood as in the Bayesian linear regression below.

As an example of the parametric Bayesian modeling, consider the observations
to be a set of pairs D = {(xi, yi)}n

i=1 where xi ∈ Rd and yi ∈ R as a regression
problem. The graphical model of this regression problem is shown in Figure 2.2 that
corresponds to the following:

p(θ|D) =
1
Z

p(θ)p(D|θ) = 1
Z

p(θ)
n

∏
i=1

p(xi, yi|θ).

§2.2 Bayesian Modeling and Learning 15

−6 −4 −2 0 2 4 6

θ

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p

p(θ)

p(θ|D)

(a) Prior and posterior on weights

1.0 1.2 1.4 1.6 1.8 2.0 2.2

x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y

(b) Regression model

Figure 2.4: Bayesian linear regression: the prior and the posterior of the parameter θ
are shown in Figure 2.4(a). In Figure 2.4(b), the dots are the observed points. The red
lines are three samples from the linear function defined by the posterior distribution.

As is shown, the posterior is peaking at the true value (1 in this example).

In case of regression where we are not modeling p(xi), we can write the likeli-
hood as p(yi|xi, θ) (i.e. since xi is observed, its distribution is absorbed in the nor-
malizer). Assuming a Gaussian prior, θ ∼ N (0, α2Id) and a Gaussian likelihood
yi ∼ N (θ>xi, β2Id) with hyper-parameters α, β ∈ R, the posterior is

p(θ|D) = N (β−2SX>y, S).

S =
(

α−2I + β−2X>X
)−1

,

where Id is the identity matrix of size d, X is the matrix constructed from observation
x and y is the vector of labels. The posterior is a distribution over the value of
the state of nature which represents the linear functions that generated the label y.
Here, if the labels are binary (±1), the likelihood model is not Gaussian (i.e. not
conjugate) and hence the integral in the posterior becomes intractable and requires
approximation.

An illustration of this model at work is shown in Figure 2.4. The dots in Figure
2.4(b) represent the observations that are generated from a linear function with a
small additional noise. That is, we chose a constant weight that was multiplied by
each point on the x-axis and then a random noise was added to the output as shown
in the y-axis, i.e. y ∼ N (x>θ, β2). The prior, a zero mean Gaussian distribution over
that unknown weight, and the posterior that was obtained from these observations is
shown in Figure 2.4(a) where the posterior is peaked at the true parameter value that
generated the data. This posterior represents the belief over the space of weights that
could generate the observations (with the given likelihood parameter β that specifies
the noise in the observations). Three samples of these linear functions induced by
this posterior are also plotted in red. If we increase the number of observations, this

16 Background

xi

i = 1, . . . , n

c = 1, . . . , m

✓c

ci

Figure 2.5: Graphical model of the Mixture Model

posterior Gaussian distribution on the weight vectors becomes sharper and looks
more like a delta function. It is an important example that shows how the conjugate
likelihood can lead to an efficient inference. We will get back to this example again
when we discuss Gaussian processes and Bayesian inference.

Bayesian parametric models can be used in the estimation of the mixture models
as well. The easiest way to think about the mixture model is in clustering where a
subset of observations form a group (k-means can be seen as a non-Bayesian mixture
model). Instead of a labeled set, we have an unlabeled set D = {x1, x2, . . . , xn} and a
mixture model for the likelihood. That is, there is a parameter vector for each cluster
and there is a hidden variable ci that specifies which cluster each observation xi be-
longs to. The likelihood of each observation given its cluster is p(xi|θc) (distribution
of each observation depends on the parameter of that cluster). Then we have,

p(θ|D) =
1
Z

m

∑
c=1

p(θc)
n

∏
i=1

p(ci = c)p(xi|θc). (2.5)

The integration of the posterior distribution becomes intractable in general and
needs sampling or approximate inference. If we assume p(xi|θc) and p(θc) are conju-
gates (say a Gaussian distribution like the regression problem), we can use Expectation
Maximization (EM) to estimate the membership variable ci and the parameter θc (if
not conjugate we need an approximation step inside EM, e.g. variational EM). Al-
though with this procedure we enter the realm of frequentists by Maximum a-posteriori
(MAP) estimation (and Maximum Likelihood if we ignore the prior on the value of θ)
by selecting one set of parameters among many, we can get a feeling of the possible
value for the unknowns. A graphical model of the mixture model is shown in Figure
2.5.

2.2.2 Nonparametric Bayesian Modeling

Nonparametric Bayesian analysis has gained contemporary attention due to its flex-
ibility in modeling complex phenomena and scaling with data [29, 67]. Examples of
these methods are the Dirichlet process [85], hierarchical Dirichlet process [86], Gaus-
sian process [74], Indian buffet process [35] and etc among many others [39]. Non-
parametric methods are flexible and adapt to the observations. They consist of the
(1) infinite dimensional parameter space and (2) can use the finite number of obser-
vations to explain the sample space. These methods are distributions with infinitely

§2.2 Bayesian Modeling and Learning 17

many parameters that can equivalently be thought of as distributions in function
spaces. A simple nonparametric method is the Parzen window which estimates the
density function as a mixture of Gaussians each centered at one of the observations.
In this thesis, we will discuss two prominent nonparametric approaches: Gaussian
and Dirichlet processes.

One important underlying assumption about nonparametric Bayesian methods is
exchangeability. The joint distribution of exchangeable variables is invariant to their
permutation. It is a valid and weaker assumption than i.i.d in machine learning. If
this joint distribution depends on a variable that is distributed according to a prior
and then integrated out, their joint marginal distribution remains exchangeable. The
important consequence, due to de Finetti’s theorem, proves the converse statement: if
a joint distribution x1, . . . , xn is (infinitely) exchangeable then there is a latent random
variable θ such that

p(x1, . . . , xn) =
∫

p(θ)
n

∏
i=1

p(xi|θ)dθ.

In other words, exchangeability automatically implies existence of a Bayesian model
with θ as its latent random variable. Therefore, any infinitely exchangeable sequence
is inherently Bayesian with a process working under the hood. This is particularly
important to the nonparametric Bayesian models because these models define a joint
distribution of infinite variables. As will be shown below in both Gaussian and
Dirichlet processes, there are underlying variables which are integrated out to model
the joint distribution.

2.2.2.1 Gaussian Processes

A Gaussian process [51, 74] defines a multivariate Gaussian distribution (similar to
the Bayesian linear regression) on functions over an input space. This distribution
in the functional space can then be used as a prior. Since Gaussian processes are
defined over functions that can represent infinite dimensional spaces, they extend the
finite dimensional space in the parametric Bayesian models (e.g. regression model
discussed before). We follow [51] in our introduction below.

Similar to that of the Bayesian linear regression, we use a linear function of the
inputs. However, instead of using the inputs x directly, we use a linear combination
of some basis functions φh(x) in the feature space, i.e

f (x) = ∑
h

θhφh(x).

These basis functions map the inputs to a higher dimensional space. Following
the same line of argument as before in Bayesian linear regression, we can see that the
posterior depends on the inner products of the basis functions for observed values.
Denoting by Φ the matrix with entries Φh,i = φh(xi) and assuming θ is a zero mean

18 Background

Gaussian with variance α2, we have:

E[f] = ΦE[θ] = 0

cov[f] = ΦE[θθ>]Φ> = α2ΦΦ>.

This is a defining characteristics of a Gaussian process, namely the distribution
of f is a Gaussian that is defined by the product of the input values. The covariance
matrix is defined as:

[ΦΦ>]i,j = ∑
h

φh(xi)φh(xj).

Increasing the number of basis functions to possibly infinite, this summation becomes
integral (there are infinitely many basis function that can be used). This integral
of inner products of these mapped functions represents the kernel function in the
(possibly) infinite dimensional Hilbert space. From applying the kernel functions on
the input values, we obtain the kernel matrix that replace the covariance matrix, i.e.

E[f (xi) f (xj)] = k(xi, xj) = Ki,j.

Hence, Gaussian process prior, as a joint distribution of the functions f in the space
induced by the mapping function φ over the matrix X built from n inputs x is:

p(f|X) ∼ N (f; 0, K)

This is the distribution of the functional values in the input space. It should be
noted that the state variable θ is integrated out and we are left with a distribution
over functions. Using this notion, we can form a belief over the non-linear functions
that can be used for regression, classification and utility modeling. Gaussian process
provides a very powerful statistical tool for Bayesian learning in complex domains.
For instance in regression, we have the likelihood for the target values y,

p(y|f, X) = N
(
y; f, σ2In

)
,

that is, the likelihood is defined as the value of this latent function obtained from the
Gaussian process prior with additional noise with variance σ2. Then the distribution
of target values given the observed inputs is obtained by integrating out the latent
functions as

p(y|X) =
∫

p(y|f, X)p(f|X)df

= N
(
y; 0, K + σ2In

)
.

For prediction, we have the joint probability of the function values for the ob-

§2.2 Bayesian Modeling and Learning 19

served y and predictions f∗ for test example x∗:

p
([

y
f∗

]∣∣∣∣X, x∗
)
= N

([
y
f∗

]
; 0,

K + σ2In k∗
k∗> k∗,∗

)
,

where

[k∗]i = k(x∗, xi)

k∗,∗ = k(x∗, x∗).

and [k∗]i denotes the ith element in the vector. Then the predictive distribution is the
conditional obtained from this joint:

p(f∗|y, X, x∗) = N
(

f∗; k∗(K + In)
−1y, k∗,∗ − k∗>(K + In)k∗

)
.

In the following chapters we will discuss how these functions can be seen as the
unknown utilities and be used for preference learning. Unlike the regression model
here, because of the form of the likelihood in both classification and preference learn-
ing, the posterior becomes intractable and approximate inference has to be carried
out, we discuss later.

The difficulty with the Gaussian process is the selection of the kernel function
that specifies the prior. The kernel function acts as the basis for the function we
are learning. Expert knowledge can be used in kernel selection for the given task.
Additionally, most kernel functions have hyper-parameters that have to be tuned to
fit the given problem. For instance in Gaussian (or RBF) kernel,

Ki,j = exp

(
−‖xi − xj‖2

λ

)
,

the hyper parameter is λ that specifies how sensitive the kernel function is to the
distance between inputs. Similarly in squared exponential kernel,

Ki,j = λ2
1 exp

(
−(xi − xj)

>A(xi − xj)
)
+ λ2δi,j,

hyper-parameter λ2 puts more emphasis on the same instances corresponding to the
diagonal entries in the kernel matrix. The other hyper-parameter A is a squared
symmetric matrix that specifies the correlation between input features. This kernel
is an instance of automatic relevance determination (ARD) [51] in which the matrix
A determines the correlation of features of xi and xj similar to that of a covariance
matrix in a Gaussian distribution. Alternatively one can view matrix A as a weighting
of the features of the input x.

One advantage of Gaussian processes is that the automatic optimization of the

20 Background

(a) α = {0.99, 0.99, 0.99} (b) α = {2, 2, 2} (c) α = {1, 1, 5} (d) α = {50, 50, 50}

Figure 2.6: Dirichlet distribution for various values of α

hyper-parameters can be done by maximizing the log marginal likelihood:

log(p(y|X)) =
1
2

y>(K + σ2In)
−1y− 1

2
log det(K + σ2In)−

n
2

log(2π).

Here, only the first and the second term depend on the kernel matrix and can be
easily optimized. For further reading, refer to the Gaussian processes book [74].

2.2.2.2 Dirichlet Processes

The Dirichlet distribution Dir(α) is defined over a finite simplex parameterized by
a variable α = {α1, . . . , αm}. This parameter specifies the concentration of samples
in the simplex. Each point in this simplex can be thought of as a probability mass
function (pmf) and consequently the joint is weighted sum of these pmfs (by α).
In Figure 2.6, we show examples of Dirichlet distribution with various values of
parameter α. One important property of the Dirichlet distribution that is used in
building the Dirichlet process is aggregation. That is, if partitions of the sample space
are joined, the resulting sample space is again a Dirichlet distribution where the
values of αs for that partition are aggregated.

Dirichlet process is an extension of the mixture model introduced earlier (refer to
[39] for a complete introduction). It models the distribution over an infinite sample
set as an infinite mixture of weighted Dirac delta functions. This infinite mixture
becomes the Dirichlet distribution again when we employ the aggregation property
on all the sample space regions. The parameter α(A) is the function of the region A
of this Dirichlet distribution and is the integral of all the point masses in the region,
i.e. α(A) =

∫
IA[x]dα(x) where IAis the indicator function of region A for x in the

input space. For Dirichlet process, there is an additional parameter G that specifies
the base distribution where the samples are generated from. Base distribution is
the expected value of the Dirichlet process. It should be noted that while G can
be either continuous or discrete, the Dirichlet process is always discrete. Similar to
the Gaussian process where the marginals were Gaussian, in Dirichlet process the
marginals are Dirichlet.

A simple intuitive view is to think of the sample space as shown in Figure 2.7. The
joint distribution is defined with a Dirichlet (for two partitions it is a Beta distribu-
tion). The Dirichlet process is defined as the infinite mixture of the data points. With

§2.2 Bayesian Modeling and Learning 21

A1

A2

A4

A3 A5

A6

Figure 2.7: An illustration of the Dirichlet distribution and the partitioning of the
space.

some probability one partition might break into two. As such, one way to construct
the Dirichlet process is to consider the partitioning of the input space A = {A1, A2}.
Then the distribution in A is a Beta(α(A1), α(A2)) with its expectation defined as

α(A1)

α(A1) + α(A2)
=

α(A1)

M
.

Here, the denominator M denotes the mass of the region on which the probabil-
ity is defined. When increasing the number of partitions, the joint distribution
becomes Dirichlet with similar property. In particular for finite partitions A =
{A1, A2, . . . , Am} the posterior p(A1), . . . , p(Am) on given inputs {x1, x2, . . . , xn} is

Dir(α(A1) + n1, . . . , α(Am) + nm)

where

ni =
n

∑
j=1

I[xj ∈ Ai],

the count for observations in partition Ai. The expectation of the posterior is [39]:

E[x1, x2, . . . , xn] =
M

M + n
G(A) +

n
M + n

p̃

where p̃ is the empirical distribution, i.e., the distribution of observed points. This
equation simply states on expectation a sample is drawn from the base distribution G
with a value proportionate to the mass (that is in the heart of sampling for the Dirich-
let processes). Similarly, with a value proportionate to the number of observations it
is assigned to one of the current partitions. Since this distribution is exchangeable,
we have the following conditional:

p(xn+1 ∈ Am|x1, x2, . . . , xn) =
M

M + n
G(Am) +

nm

M + n
p̃.

Again, probability of assigning a point xn+1 to a partition is proportionate to the
number of instances in that partition. Otherwise, with some probability proportion-
ate to α0 it is as the distribution of G(Am). As such, it is more probable for a new

22 Background

instance to be assigned to a more populous partition. Schemes such as Polya urn
method, Chinese restaurant process and stick-breaking are developed around this
central concept to provide various views for construction of the Dirichlet process
[29, 39, 56, 67].

Another important property of the Dirichlet distribution is that it is a conjugate
prior for the multinomial distribution. In other words, the simplex defined by the
Dirichlet distribution is a distribution over parameter of the multinomial distribution.
By integrating over all possible such parameters, we obtain a multinomial posterior.
In the same way, one can use the Dirichlet distribution as a prior for the cluster
probability p(ci = c) in Equation 2.5. We will see an example of using this property
in Chapter 3.

2.3 Bayesian Inference

As mentioned before, Bayesian inference is the process of obtaining the posterior
from the prior by incorporating the likelihood of the observations. In many practi-
cal cases the integral of the posterior is intractable and approximations are needed.
Although for simple problems with small dimensions numerical integration (such
as quadrature method) can be performed, in practice these methods are infeasible
in high dimensions. Also, since the posterior is obtained from the product of all the
likelihoods with the prior, it can be highly multimodal. In this section we will discuss
key Bayesian inference methods in the literature which will be used throughout the
subsequent chapters.

In general, approaches to inference can be either deterministic or stochastic. In
deterministic methods, the true posterior is used to constrain the approximate distri-
bution so that is easier to work with. For example in variational methods, the true
posterior is used as an upper bound on a predefined family of distributions (such
as exponential family). These methods generally enjoy fast inference, however, the
effectiveness of the approximation highly depends on the divergence measure and
the distribution family used [54]. The stochastic methods typically draw samples
directly from the posterior e.g. Markov Chain Monte Carlo methods. These methods
are generally slower and computationally more demanding, but can be arbitrarily
accurate in estimating the moments of the posterior.

2.3.1 Laplace Method

The first approximate Bayesian inference method that we will consider is the Laplace
approximation [12, 55]. Laplace’s method uses the Taylor expansion of the log of the
posterior at point θ∗ as

log(p(θ|D)) ≈ log(p(θ∗|D)) + g>(θ− θ∗) +
1
2
(θ− θ∗)>H(θ− θ∗),

§2.3 Bayesian Inference 23

where

g =

(
∂ log(p(θ|D))

∂θ

)
θ=θ∗

H =

(
∂2 log(p(θ|D))

∂θ∂θ>

)
θ=θ∗

.

This expansion already looks like the log of Gaussian distribution. If we use θ∗at the
mode (obtained from the MAP estimate), then g = 0 and we get

p(θ|D) ≈ N (θ∗,−H−1).

Simply put, we obtain the point estimate of the posterior using MAP inference
and use this point to compute the covariance matrix. Then, Laplace’s method ap-
proximates the posterior with a unimodal Gaussian distribution centered at a mode
of that posterior. As such, it ignores the complex multimodal shape of the posterior.
Although the curvature of the posterior is captured in the hessian matrix of the log
of the posterior, in general the exact shape of the posterior is not preserved in its
Laplace’s approximation.

2.3.2 Variational Inference

Variational methods [12, 45, 88, 90, 92] have received significant attention in recent
years and use the calculus of variations to have a better global approximation. Un-
like Laplace’s method that is rather simplistic, variational methods can work with
a larger family of distributions. Similar to Laplace’s method, variational methods
involve finding a lower bound to the true posterior. Maximizing this lower bound
can be done efficiently using well-established optimization algorithms. Therefore
variational methods are efficient inference algorithms.

Since the difficult part of the inference is computing the normalizer, we use cal-
culus of variation to rewrite it as

Z =
∫

p(D|θ)p(θ)dθ =
∫ (p(D|θ)p(θ)

q(θ|ψ)

)
q(θ|ψ)dθ

where ψ is the collection of parameters that define q. The alternative distribution q
is used to approximate the true posterior. Using − log as a convex transformation of
Z and Jensen’s inequality, we have

log(Z) ≥
∫

log
(

p(D|θ)p(θ)
q(θ|ψ)

)
q(θ|ψ)dθ,

therefore,

Z ≥ exp
(∫

log
(

p(D|θ)p(θ)
q(θ|ψ)

)
q(θ|ψ)dθ

)
.

24 Background

Maximizing the right hand side of this equation will achieve a tight lower bound
on the normalizer. The tightness of this bound depends on the choice of q. It is
easy to see this bound is equal to the negative of the KL-divergence between the
two distributions. Therefore, this maximization over parameters ψ is equivalent to
minimizing the KL-divergence between the approximate and the true posterior, i.e.

KL(q||p) =
∫

log
(

q(θ|ψ)

p(D|θ)p(θ)

)
q(θ|ψ)dθ.

The idea is that computing this integral with respect to q and working with the
log is simpler because q is potentially a distribution with respect to which this in-
tegral becomes tractable. This minimization objective is also known as I-projection
(information projection) since it seeks to estimate the regions of the posterior that
have higher density.

Various assumptions and constraints on the approximate distribution leads to
several extensions namely, mean-field, Bethe method and cavity method [31, 90, 92].
For example, mean-field methods assume the parameters of the true posterior are
independent which leads to simplification of the minimization of the KL divergence.

2.3.3 Expectation Propagation (EP)

Another approximate Bayesian inference method is Expectation Propagation (EP) [55].
EP is an efficient algorithm for approximating factorized distributions. The gen-
eral idea is that we can approximate the posterior by replacing each factor with an
approximation and computing the product that permits a tractable posterior compu-
tation. Iterating through this procedure for all factors will approximate the posterior.
EP is presented in Algorithm 2.1 in detail. As is seen, first the approximate posterior
q(θ) is constructed from the prior and the initial estimate of each factor. Then iter-
atively, each factor is replaced with its true likelihood (p(Di|θ)) and then updated
accordingly for all n factors. A graphical model of EP is shown in Figure 2.8.

Algorithm 2.1 Expectation Propagation (EP)
q(θ) = p(θ)∏n

i=1 qi(θ)
while not converged do

for i=1,. . . ,n do
compute cavity distribution q\i(θ) = q(θ)/qi(θ)
compute tilted distribution q̃i(θ) = p(Di|θ)qi(θ)
set qnew

i (θ) so that qnew
i (θ)q\i(θ) ≈ q̃i(θ)

update q(θ) = qnew
i q\i(θ)

end for
end while

It is insightful to think of EP as a message-passing algorithm: when approxi-
mating a factor qi, the incoming messages from other factors comprise the cavity
distribution q−i(θ) = q(θ)/qi(θ). Then, the factor is approximated using the tilted

§2.3 Bayesian Inference 25

✓

d2

d1 d3

p(✓|d3)p(✓|d1)

p(✓|d2)
q2(✓)

q1(✓) q3(✓)

p(✓)

Figure 2.8: A graphical model for EP

distribution q\i(θ) by incorporating the given likelihood and the cavity distribution
p(Di|θ)q−i(θ). This draws further attention to the fact that using simple approxima-
tion of each likelihood term (as probability of the conditionally independent variable
Di) and computing the approximate posterior from it is not a good approximation
of the true posterior. Instead EP suggest using an approximation of each term that
incorporates the approximations to other terms as well (i.e. effect of each observation
individually on the posterior distribution). That is why the cavity distribution is re-
quired to account for the other variables and their influence. If the approximation at
each step is not required (computing tilted distribution is tractable), with this mes-
sage passing view one can obtain the popular loopy Belief propagation algorithm
[95] as a special case of EP.

The projection in this procedure is equal to minimizing the KL-divergence be-
tween the true posterior and its approximation, i.e.

KL(p||q) =
∫

log
(

p(θ|D)
q(θ)

)
p(θ|D)dθ.

In particular, in the algorithm when the approximation of each factor is updated in
qnew

i (θ)q−i(θ) ≈ q\i(θ), we minimize the KL divergence between this approximation
and the true posterior. Interestingly when the distribution of q is in exponential
family, it is easy to see that this minimization is equal to matching the expectations
under p and q. This is known as moment matching (matching mean, variance, etc.).
Hence unlike variational inference, in EP the mass of the posterior is more important
to be correctly estimated. Furthermore, as opposed to variational methods EP is
zero-avoiding, meaning that if there is a non-zero density region in the posterior it
will be considered in the approximations [45].

EP is an excellent algorithm for complex methods like Gaussian processes and
provides efficient inference for classification. In Chapter 4 we explain in detail how
EP can be used for efficient inference in Gaussian processes for preference learning.

26 Background

2.3.4 Sampling and Markov Chain Monte Carlo (MCMC)

In this section, we discuss stochastic methods for estimating the posterior. The gen-
eral idea in stochastic methods is to draw samples from the posterior to estimate
any desired expectation. For simple distributions, if the cumulative density function
(CDF) is known, the samples can be easily drawn from its inverse function. However,
in general many distributions that we are interested in (i.e. the posterior) may not
have a tractable CDF. For further reading on stochastic methods refer to [32, 57, 79].
We closely follow [57].

2.3.4.1 Monte Carlo Methods

Monte Carlo (MC) methods are stochastic methods for unbiased estimation of the
integrals with respect to a distribution by sampling. In particular, let’s imagine we
are estimating the expectation of the posterior parameter, i.e.

Ep[θ] =
∫

θp(θ|D)dθ.

This integral is then estimated by an unbiased value obtained from the average of
the samples, i.e.

Ep[θ] ≈
1
N

N

∑
j=1

θi θi ∼ p(θ|D).

As the number of samples grow, this average approaches the true expectation. Unlike
the previous approaches, MC methods can be arbitrarily accurate depending on the
number of samples.

In simple problems with low dimensions, one can perform rejection sampling,
that is, generate samples of θ from a region that is easy to sample from and contains
the posterior (e.g. a hypercube), and with some probability proportionate to the
posterior’s density accept each sample. In high dimensional problems though, it is
computationally costly to perform such sampling and almost all generated samples
are rejected.

The difficulty with this approach is that samples generally have to be generated
from the prior and weighted by the likelihood (likelihood weighting). Since the
priors are typically far from the desired posterior, this process becomes slow and
inefficient. The alternative approach is to construct the sequence of samples from the
posterior distribution. Markov Chain Monte Carlo (MCMC) methods search the space
and generate the samples that are provably from the posterior when the number of
samples grows. It is known as Markovian since each sample is drawn conditioned
on the previous one which forms a chain. In this search, MCMC generates more
samples from the regions with higher density.

Formally, a Markov chain is a series of random variables θ1, θ2, . . . , θN in which
the influence of values of each sample on the distribution of θN+1 only depends on

§2.3 Bayesian Inference 27

θN , i.e.

p(θN+1|θ1, . . . , θN) = p(θN+1|θN).

It is important for the MCMC to reach a steady-state or converge, that is, the average
converges to the true expectation. This usually means taking new samples won’t lead
to sudden changes in the average. The stationary (or invariant) distribution is the one
that Markov chain stays in during sampling. That is, distribution π is said to be the
stationary distribution with transition probability T(θ, θ′) such that

π(θ) =
∫

π(θ′)T(θ′, θ)dθ′.

Often we use the time reversible Markov chains that satisfy the detailed balance
condition, that is, the probability of transition from θ to θ′ is the same as the proba-
bility of being in state θ′ and transitioning to θ:

π(θ)T(θ, θ
′
) = π(θ

′
)T(θ

′
, θ)

This property insures the generated samples are unbiased and have the desired sta-
tionary distribution. It is also used in devising Markov Chain sampling algorithms
such as Metropolis-Hastings that will be discussed. In the rest of this section, the
stationary distribution is the posterior of the state p(θ|D) that we are interested in
sampling from.

2.3.4.2 Gibbs Sampling

Gibbs sampling is a widely used MCMC method. Suppose the posterior we are
interested in is a joint distribution (e.g. univariate variables that jointly specify θ as
a vector):

p(θ|D) = p({θi}i=1,...,d|D).

In this case, Gibbs samples each variable θi conditioned on the values of all the
other variables θ\i at a given time step, i.e.

p(θi|θ\i,D).

Unless we are using Blocked Gibbs where variables are sampled jointly, θi is a
one-dimensional variable. This conditional can be written as

p(θi|θ\i,D) =
p(θ,D)∫
p(θ,D)dθi

which is easy to estimate, in particular, the univariate integral in the denominator
is either analytically tractable or numerically computable. For example in the mixture

28 Background

model we discussed earlier, we can sample the probability of each cluster as,

p(ci = c|θ,D, c\i) =
p(ci = c)p(D|θc)

∑m
c′=1 p(ci = c′)p(D|θc′)

,

where p(D|θc) is the likelihood of all the instances in cluster c and p(ci = c) is the
prior that can be generated from a Dirichlet process.

In an extension, collapsed Gibbs marginalizes over one or more variables that are
easy to integrate out and perform sampling on the rest.

2.3.4.3 Metropolis-Hastings

Another popular MCMC method is Metropolis-Hastings (MH). It models the selec-
tion of every sample by considering the probability of jumping from a given sample
to a proposal based on its distribution and some transition probability. For drawing
the samples from p(θ|D), we can use reversibility condition as,

p(θt|D)T(θt, θt+1) = p(θt+1|D)T(θt+1, θt) (2.6)

where T(θt, θt+1) is the probability of moving from θt to θt+1 at time t and t + 1.
Since T(θt, θt+1) as the transition probability that preserved the detailed balance is
unknown, we use an alternative distribution that we can control to preserve the
detailed balance. That is, we replace unknown T(θt, θt+1) with T′(θt, θt+1)γ(θt, θt+1)
where T′(θt, θt+1) is known as the proposal distribution and γ(θt, θt+1) is the additional
probability of move to make sure the reversibility condition is satisfied:

p(θt|D)T′(θt, θt+1)γ(θt, θt+1) = p(θt+1|D)T′(θt+1, θt)γ(θt+1, θt) (2.7)

Then, we can accept each move with probability equal to γ, i.e,

γ(θt, θt+1) = min
[

p(θt+1|D)T′(θt+1, θt)

p(θt|D)T′(θt, θt+1)
, 1
]

(2.8)

The proposal distribution specifies the “jumps” in this Markov chain. We can
use any distribution with symmetry condition T′(θt, θt+1) = T′(θt+1, θt) as proposal
however commonly a Gaussian centered at the previous sample with a constant vari-
ance is used, i.e.

T′(θt, θt+1) = N (θt, α2).

Here, α2 denotes the variance of this transition and defines how far from the current
sample we should traverse to obtain a new sample. Selection of this variance is
particularly important and impacts the performance of the sampler. If it is large,
then sampler is mostly exploring and a large fraction of these transitions will be
rejected. If it is too small, all the samples are taken from a small region and the
sampler won’t be able to traverse the space adequately. In both cases, the Markov

§2.4 Bayesian Decision Theory and Preference Learning 29

chain won’t converge efficiently.
In Algorithm 2.2 Metropolis-Hastings is summarized. It is easy to see that the

Gibbs sampler is a special case of the Metropolis-Hastings when the conditional
distribution is the proposal distribution. Since the proposal distribution is the same
as the posterior we are interested in, then all the proposed samples are accepted in
Gibbs sampler.

Algorithm 2.2 Algorithm for generating samples using Metropolis-Hastings
Input: A, n // Set of actions and the number of samples
for t = 1 to n do

θ′ ∼ T′(θt+1, θt) // Draw next sample
u ∼ U[0, 1] // Draw a sample from the uniform distribution

a = min

[
p(θt+1|D)T′(θt+1, θt)

p(θt|D)T′(θt, θt+1)
, 1

]
if u ≤ a then

θt+1 = θ
′

else
θt+1 = θt

end if
end for

There are other popular MCMC methods such as Hamiltonian Monte Carlo [60]
which uses the gradient of the posterior to navigate in the parameter space. Inter-
estingly in Hamiltonian Monte Carlo, to make sure samples are drawn from the true
posterior an internal Metropolis-Hastings step is required.

Finally, the sampling methods in general operate independent of the final expec-
tation that is to be computed. In Chapter 5, we will discuss a Monte Carlo method
that improves sampling by considering the loss function involved.

2.4 Bayesian Decision Theory and Preference Learning

2.4.1 Preferences and Existence of the Utility

So far, we have discussed the fundamentals of Bayesian decision theory and mod-
eling state uncertainty and learning posterior belief distribution from data. In this
section, we discuss the relation between preference learning and the utility func-
tion since utilities are the other major component of expected utilities underlying
Bayesian decision theory. [89] have defined axioms that lay the foundation for ex-
istence of the utility function when only preferences are observed. In short, given
the utility function, the expected utility of the actions indicate the preferences of the
decision maker about those actions. These axioms provide conditions under which
given preferences indicate existence of an underlying utility function.

As mentioned before, utility function u(a, θ) denotes the “value” of each action
at the given state θ. For decision making we are interested in the action with the
maximum expected utility: If action a1 is preferred to action a2 then EUu(a1) >
EUu(a2). This preference is determined based on the known utility function of the

30 Background

decision maker.
Assume we are given an ordering of k actions a1, a2, . . . , ak for a decision maker,

then we can define the following properties:

1. (Completeness) For strict orders and equivalence, denoted by � and ∼ respec-
tively, we have only one of the following:

• a1 � a2 or a2 � a1 or a1 ∼ a2 (i.e. a1 is preferred, or a2 is preferred,
or the decision maker is indifferent). Corresponding rewards are then
EUu(a1) > EUu(a2) or EUu(a2) > EUu(a1) or EUu(a1) = EUu(a2).

2. (Transitivity) for total ordering denoted by � (strictly preferred or indifferent),
we have

• If a1 � a2 and a2 � a3, then a1 � a3 (i.e. EUu(a1) ≥ EUu(a2) and
EUu(a2) ≥ EUu(a3), then EUu(a1) ≥ EUu(a3)). It is a particularly im-
portant axiom as it specifies the necessary conditions for decision making.
Without transitivity, we could have cycles in the preferences that lead to
contradiction and prevent selection of the optimal action.

3. (Continuity) If a1 � a′ � a2, then there exists a probability p such that

• pEUu(a1) + (1− p)EUu(a2) = EUu(a′). Any action that is between a total
ordering of two other actions has a utility that is the convex combination
of both.

4. (Independence) If a1 ≺ a2, then for any action a′ and probability p,

• pEUu(a1) + (1− p)EUu(a′) ≺ pEUu(a2) + (1− p)EUu(a′).

Under these conditions, for a rational decision maker there exists a utility function
for which we have:

a1 ≺ a2 ⇐⇒ EUu(a1) < EUu(a2).

In other words, the outcome reward corresponds to the expected utility of the given
action.

In essence, these sets of axioms underpin the existence of the utility function for
this set of orderings or preferences. Hence we have now a two way relationship:
higher expected utility indicates preference. Conversely, if an action is preferred to
another one the expectation of some utility for this action is higher.

It is also noteworthy to consider the rationality of the decision maker when dealing
with these axioms. Consider the following [45, 77]:

1. Not every decision maker provides the complete ordering.

2. Transitivity is not always preserved with real world scenarios.

§2.4 Bayesian Decision Theory and Preference Learning 31

3. From few orderings of individual decision makers, we cannot conclude general
ordering of actions.

4. People change their preferences towards risk taking at times.

In general, human decision making is not always fully rational in the sense that it
not always maximizes an expected utility. As such, maximization of the utility is not
a principle that adequately describes human behavior. In spite of these criticisms,
decision theory provides the underlying idealized axiomatic framework for rational
decision making under uncertainty, regardless of human’s notion of rationality.

2.4.2 Risk-seeking vs. Risk-averse Behavior

Although the Von Neumann and Morgenstern axioms specify the existence of the
utility, they do not provide any further information as to what that function looks
like. Thus, the utility function can be arbitrarily complex. Assume the state is the
money, then there is a connection between the shape of the utility function and the
attitude of the decision maker: a concave utility function indicate a risk-averse behav-
ior. A risk-averse agent dislikes risky cases and prefers actions with a modest certain
reward over actions with high uncertain ones. Conversely, a convex utility indicates
a risk-seeking behavior where agent is happy to bet on large uncertain sums at the
risk of no reward. Finally, a risk-neutral agent has a linear utility.

2.4.3 Learning the Utility Function

Preference learning can be formulated as the problem of finding this utility func-
tion. The common practice is to constrain the utility function of a user to have a
specific structure. For instance, one can assume that the utility function is comprised
of additive utilities as a linear combination of subutilities. Each subutility evaluates a
single feature (e.g. age) and a linear combination of them form the utility function.
Then weights are sought that construct a utility whose expectation matches the pref-
erences. In a more general setting, generalized additive utilities can be learned as a
sum over subsets of the features from preferences [18, 22, 38].

One can model the utility of each action by considering the fact that if action a1 is
preferred to a2, its utility is higher u(a1, θ) > u(a2, θ). Hence, utility u(ai, θ) becomes
a random variable for each action in the random utility model. Then, for instance,
Bradley-Terry [41] models the preferences as independent pairwise orderings with
the probability of action ai being preferred to aj as

p(ai � aj) =
u(ai, θ)

u(ai, θ) + u(aj, θ)
, (2.9)

and for a set of preferences, we have pairwise independence as:

p(a1 � . . . � ak) = p(a1 � a2) · · · p(a1 � ak).

32 Background

In some cases, utility is assumed to have an exponential form as u(ai, θ) = e f (θ;λi)

for some function f and the utility is learned by finding the optimal λ. Through
maximizing the probability of the preferred actions in Equation 2.9, the unknown
parameters of the utility λ can be found.

An extension of Bradley-Terry model is Plackett-Luce [50, 68] where the ordering
is defined as a joint probability:

p(ai � . . . � ak) =
u(ai, θ)

u(ai, θ) + . . . + u(ak, θ)
.

In these models, the parameters (or the utility itself) are learned so that, among
all permutations, the ordering induced maximizes the likelihood of the observed
preferences. Placket-Luce model is related to the Gumbel distribution which is in
exponential family [96]. Based on this relation, [4] proposed a maximum likelihood
approach to learning the preference orderings.

By defining a prior over the parameters, the Bayesian extensions of these ap-
proaches are also investigated. For example, [37] used the Gumbel distribution as
the likelihood model in the exponential family with non-conjugate priors with EP
used for approximate inference. Extensions to nonparametric models have also been
developed, in particular, [24] and [19] proposed a preference learning framework
based on Gaussian processes. Multi-user Gaussian process-based preference models
have been given by [11] and [14]. One advantage of using nonparametric Bayesian
models is that they are able to scale with the observations to capture the complexity
of the utility function.

Utilities found by these algorithms covered in this section are used for calculating
the expected utility. However, this utility function is uncertain by itself and the
optimal action has to be selected such that this uncertainty is taken into account.
Using the expected expected utility (EEU) framework [15], we can determine the
optimal action by using the posterior obtained from an observed set of preferences
D and compute the expected utility of a given action, i.e.

EEU(a) =
∫

EUu(a)p(u|D)du. (2.10)

We will discuss efficient learning of this posterior of the utility given preferences in
Chapter 3 and 4. Subsequently in Chapter 5 we discuss how to efficiently compute
the expectation using sampling in EEU.

2.5 Summary

In this chapter we covered decision theory and formally introduced its formula-
tion. We also presented modeling of the uncertainty using probability theory and in
particular Bayesian methods. We argued Bayesian decision theory is a compelling
framework for decision making because of its ability to deal with uncertainty. We
also presented the Expected expected utility (EEU) framework as an extension of con-

§2.5 Summary 33

ventional decision theory for problems where the utility function itself is uncertain.
We discussed how to represent and learn the distribution of the unknown variables
in parametric and nonparametric Bayesian models. Further, we drew the connec-
tion between the Bayesian decision theory and preference learning based on the Von
Neumann and Morgenstern axioms.

Building on the foundation of the material covered in this chapter, in the rest of
this thesis we will discuss how to learn the distribution of the utilities and then com-
pute the expected utility efficiently. In particular, in the subsequent chapter, we will
introduce an efficient Dirichlet Process mixture of Gaussian Processes (GPs) where
we leverage the distribution of user communities to learn a compact nonparametric
distribution of the utilities from the preferences. In Chapter 4, we use a decision
theoretic approach for sparsifying the GP model in order to preserve optimal deci-
sions while ensuring tractable expected utility computations. Finally in Chapter 5,
we present a Monte Carlo framework by deriving an optimal loss-calibrated proposal
distribution for sampling and show how it can be used for finding the optimal action
with a fraction of samples required to compute the expected utilities.

34 Background

Chapter 3

Learning Community-based
Preferences

In the background chapter we covered Bayesian decision theory and preference learn-
ing. As discussed, due to the uncertain nature of the utility function in many appli-
cations, we need to learn it from the data. In this chapter, we will discuss how to
model and learn the belief over the utility function from the preferences.

Preference learning has become an important subfield in machine learning tran-
scending multiple disciplines such as economics, operations research and social sci-
ences. A wide range of applications in areas such as recommender systems, au-
tonomous agents, human-computer interaction and e-commerce has motivated ma-
chine learning researchers to investigate flexible and effective ways to construct pre-
dictive preference models from preference observations [30].

This is a challenging problem since complex relations between users and their
preferred items must be uncovered. Furthermore, flexible and principled ways to
handle uncertainty over the users’ preferences are required in order to balance what
the system knows. To address these challenges, non-parametric Bayesian approaches
based on Gaussian processes (GPs) [75] have shown to be effective in real applica-
tions [14, 23, 69, 93]. However, one of the major limitations of preference learning
approaches based on GPs is their cubic time complexity in both the number of users
and items.

While the number of items in many preference prediction applications may be
computationally manageable in a GP framework, the number of users may be much
larger and often poses the greatest computational challenge. Fortunately, it is well-
known that preferences across a user population often decompose into a smaller
number of communities of commonly shared preferences [70].

To exploit community structure in preferences, we propose a novel mixture model
of GP-based preference learning. While we might first take a finite mixture model
approach to modeling community-based preferences, we note that one of the most
difficult parts of modeling communities is determining their number. Fortunately,
we can exploit the Dirichlet Process [56] framework to build infinite mixture models
where the number of mixture components (communities) is inferred automatically.
Hence, we model user preferences as an infinite Dirichlet Process (DP) mixture of

35

36 Learning Community-based Preferences

communities and learn (a) the expected number of preference communities repre-
sented in the data, (b) a GP-based preference model over items within each com-
munity, and (c) the mixture weights representing each user’s fraction of community
membership. This results in a learning and inference process that scales linearly in
the number of users rather than cubicly and as a side benefit provides the ability to
analyze individual communities of preference while also learning how user prefer-
ences align with each community and each other.

In the rest of this chapter, first we discuss a Gaussian process framework for
learning the distribution of the utilities that utilizes multiple users’ information to
build the prior. Using multi-user preferences ensures the correlation between users’
preferences are jointly modeled. Then we present its extension to a community-based
preference leaning model that learns the infinite mixture of Gaussian processes. This
model amounts to sharing the utility for community members. We will then discuss
the empirical evaluation of our approach and finally conclude with related work and
summary.

3.1 Gaussian process for Multi-user Preference Learning

In this section, we define a general approximation framework for Bayesian preference
learning via Gaussian Processes that we will adapt for learning communities in the
next section.

Let U = {ω1, ω2, . . . , ωn} be a set of n users and let X = {a1, a2, . . . , am} be a
set of m items and denote the set of observed preferences of each user ω ∈ U with
Dω = {aω

i � aω
j } where 1 ≤ i ≤ m and 1 ≤ j ≤ m. Given the preferences Dω for ω,

satisfaction of the von Neumann-Morgenstern axioms ([63]) justify the existence of
utilities uω

i ∈ R for each item ai ∈ X s.t. ai � aj ∈ Dω iff uω
i > uω

j . In order to model
the distribution over these utilities, we build upon the model proposed by [14]. We
denote a latent utility vector u for all users and items with u = [uω1

1 , uω1
2 , . . . , uωn

m]T.
Then, we can define the likelihood over all the preferences given the latent functions
as:

p(D|u) = ∏
ω∈U

∏
aω

i �aω
j ∈Dω

p(aω
i � aω

j |uω
i , uω

j), (3.1)

with

p(aω
i � aω

j |uω
i , uω

j) =
∫

I[uω
i − uω

j ≥ ε]N (ε; 0, α2) = Φ

(
uω

i − uω
j

α

)
(3.2)

where Φ(x) =
∫ x
−∞N (y)dy and N (y) is a zero-mean Gaussian distribution with

unit variance. In this model, p(u) is the prior over the latent utilities u and is defined
via a GP with zero-mean function and a covariance function that factorizes over users

§3.1 Gaussian process for Multi-user Preference Learning 37

and items [14]. Therefore:

p(u) = N (u; 0, K), K = Ku ⊗Kx, (3.3)

where K is the kernel matrix composed of the Kronecker product of the kernel matrix
over the users Ku and the kernel matrix over the items Kx. One interesting feature of
this model is the inherent transfer of preferences across users through the correlated
prior, which will subsequently help the prediction on those users for which there
are not many preferences recorded. Additionally, as we shall see later, having a
fully factorized likelihood across users and items will facilitate the application of
sequential approximate posterior inference methods such as Expectation Propagation
(EP) as discussed in Section 2.3.3 of last chapter.

The posterior of the latent functions u given all the preferences is:

p(u|D) = 1
Z

p(u)p(D|u), (3.4)

with Z being the normalizer. This posterior is analytically intractable due to the non-
Gaussian nature of the likelihood. Therefore, we need to resort to approximations.
Here we use EP which approximates the posterior p(u|D) by a tractable distribution
q(u). EP assumes that each likelihood term p(aω

i � aω
j |uω

i , uω
j) can be approximated

by a distribution q(uω
i , uω

j) such that the approximated posterior q(u) factorizes over
q(uω

i , uω
j). Then EP iteratively approximates each q(uω

i , uω
j) in turn by dividing it

out from the approximated posterior q(u) (obtaining the cavity distribution), mul-
tiplying in the true likelihood p(aω

i � aω
j |uω

i , uω
j), and projecting the result back to

its factorized form by matching its moments to an updated q(uω
i , uω

j). This overall
procedure is motivated by the aim to minimize the KL-divergence between the true
posterior p(u|D) and its approximation q(u).

In the preference learning case we detailed earlier, we can approximate the pos-
terior with a Gaussian:

q(u) =
1
Z̃

p(u) ∏
ω∈U

∏
{{i,j}|aω

i �aω
j ∈Dω}

q(uω
i , uω

j) = N (u; µ, Σ). (3.5)

We are interested in locally approximating each likelihood term in Equation 3.1
as:

p(aω
i � aω

j |uω
i , uω

j) ≈ q(uω
i , uω

j) (3.6)

= Z̃ω
i,jN (uω

i , uω
j ; µ̃ω,[i,j], Σ̃ω,[i,j]),

whereN (uω
i , uω

j ; µ̃ω,[i,j], Σ̃ω,[i,j]) denotes the local two-dimensional Gaussian over [uω
i , uω

j]
T

with mean µ̃ω,[i,j] and covariance Σ̃ω,[i,j] corresponding to items i and j.

38 Learning Community-based Preferences

Hence we can approximate the posterior as:

q(u) =
1
Z̃

p(u) ∏
ω∈U

∏
{i,j}∈D

q(uω
i , uω

j) = N (u; µ, Σ), (3.7)

where

µω,[i,j] = Σω,[i,j]Σ̃
−1
ω,[i,j]µ̃ω,[i,j] (3.8)

Σ−1
ω,[i,j] = (K−1

ω,[i,j] + Σ̃
−1
ω,[i,j]). (3.9)

This means that in order to determine the parameters of our approximate posterior,
we need to compute estimates of the local parameters µ̃ and Σ̃. To show these up-
dates, we need to define additional distributions: (a) the cavity distribution which we
will denote with the backslash symbol “\” and (b) the unnormalized marginal posterior,
which we will denote with the hat symbol “ ˆ ”.

Here we only show how to compute the parameters necessary to estimate the
posterior1. We iterate through the following steps:

1. Update the cavity distribution: The cavity distribution q\(uω
i , uω

j) results from
multiplying the prior by all the local approximate likelihood terms except q(uω

i , uω
j)

and marginalizing all latent dimensions except uω
i and uω

j . This is done in practice
simply by removing the current approximate likelihood term from the approximate
posterior. Hence we obtain:

q\(u
ω
i , uω

j) = N (uω
i , uω

j ; µ\ω,[i,j], Σ\ω,[i,j]) (3.10)

µ\ω,[i,j] = Σ\ω,[i,j](Σω,[i,j]
−1µω,[i,j] − Σ̃

−1
ω,[i,j]µ̃ω,[i,j]) (3.11)

Σ\ω,[i,j] = (Σ−1
ω,[i,j] − Σ̃

−1
ω,[i,j])

−1. (3.12)

2. Update the unnormalized marginal posterior: This results from finding the
unnormalized Gaussian that best approximates the product of the cavity distribution
and the exact likelihood:

q̂(uω
i , uω

j) ≈ p(aω
i � aω

j |uω
i , uω

j)q\(u
ω
i , uω

j) (3.13)

q̂(uω
i , uω

j) = Ẑ−1N (uω
i , uω

j ; µ̂ω,[i,j], Σ̂ω,[i,j]) (3.14)

with

Ẑ = Φ(ri,j)

µ̂ω,[i,j] = µ\ω,[i,j] + Σ\ω,[i,j]wω,[i,j] (3.15)

Σ̂ω,[i,j] = Σ\ω,[i,j] − Σ\ω,[i,j](wω,[i,j]w
>
ω,[i,j]r̂i,jwω,[i,j]11

>)Σ\ω,[i,j], (3.16)

1Similar updates for the single user case are given in [23].

§3.1 Gaussian process for Multi-user Preference Learning 39

where

wω,[i,j] =
N (ri,j)

Φ(ri,j)(α2 + tr(Σ\ω,[i,j]12))
11,

and

11 =

[
1
−1

]
12 =

[
1 −1
−1 1

]
.

3. Update the local factor approximation: by performing moment matching, we
can calculate the corresponding parameters in q(uω

i , uω
j) as:

µ̃ω,[i,j] = Σ̃ω,[i,j](Σ̂
−1
ω,[i,j]µ̂ω,[i,j] − Σ−1

\ω,[i,j]µ\ω,[i,j])

Σ̃ω,[i,j] = (Σ̂
−1
ω,[i,j] − Σ−1

\ω,[i,j])
−1. (3.17)

At each iteration once we have local factor parameters µ̃ and Σ̃ , we can compute the
parameters of the full posterior approximation using 3.7. We iterate through all the
factors and update the local approximations sequentially.

3.1.1 Prediction

Given a pair of items a∗1 , a∗2 for a particular user, we will be able to determine the
predictive distribution over the latent utility functions as:

p(u∗1 , u∗2 |D) =
∫ ∞

−∞
p(u∗1 , u∗2 |u)p(u|D)du=N (µ∗, C∗) (3.18)

with µ∗ = K∗(K + Σ̃)−1µ̃ (3.19)

C∗ = Σ∗ −K∗>(K + Σ̃)−1K∗, (3.20)

where Σ∗ is the 2× 2 kernel matrix built from the item pair a∗1 and a∗2 ; K∗ = K∗u ⊗K∗x
that represents the kernel matrix of the test user and items with all the users and
items in the training set; K∗u is the 1× n kernel matrix of the queried user with other
users; and K∗x is the 2×m kernel matrix of the queried pair of items with other items.
Subsequently, their preference for a user is determined by integrating out the latent
utility functions:

p(a∗1 � a∗2 |D) =
∫ ∫

p(a∗1 � a∗2 |u∗1 , u∗2 ,D)p(u∗1 , u∗2 |D)du∗1du∗2

= Φ
(

µ∗1 − µ∗2
α2 + C∗1,1 + C∗2,2 − 2C∗1,2

)
. (3.21)

We see that the mean and covariance of the predictive distribution require the in-
version of a (possibly) very large matrix. This matrix is, in general, of dimensions
nm× nm. Even though the inverse matrix can be reused for multiple query points,

40 Learning Community-based Preferences

this is intractable for any real application. Hence, we will focus on how to sparsify
this matrix by selecting a subset of inducing items. Note the main difference with other
machine learning settings where there is a one-to-one correspondence between the
number of observations and the dimensionality of the corresponding matrix. In our
case, the observations (preference relations) affect the dimensionality of this matrix
only indirectly and we are more concerned with the number of users and items.

Since our focus is on improving prediction time and this scales cubically with the
number of items we need to obtain a risk-sensitive posterior approximation. EP is
well-suited for this case because it considers all data efficiently and locally.

3.1.2 Optimizing the Kernel Hyper-parameters

One of the inherent advantages of GPs over other non-Bayesian kernel methods is its
capability of optimizing the hyper-parameters. This can be easily done by maximiz-
ing the marginal likelihood in a gradient descent algorithm. The marginal likelihood
can be obtained from the normalizer Z̃ in Equation 3.5 as:

Z̃ =
∫

p(u) ∏
ω∈U

∏
{i,j}∈D

q(uω
i , uω

j)du (3.22)

where both p(u) and q(uω
i , uω

j) are Gaussian distributions and their product pro-
duces an unnormalized Gaussian distribution. Therefore, the log likelihood is:

log(Z̃) =− 1
2

µ̃>(K + Σ̃)−1µ̃− 1
2

log det(K + Σ̃)− n
2

log 2π (3.23)

The derivative of the marginal likelihood with respect to the kernel hyper-parameters
can be used in a gradient descent algorithm to optimize the kernel.

3.2 Dirichlet Process Mixtures of Community-based Prefer-
ence GPs

In this section we propose to alter the GP preference based model of Section 3.1
to model users as a (potentially) infinite mixture of GP-based communities. Hence,
we now assume there are an infinite number of possible communities of preference
C = {1 . . . ∞} where for every user ω there is a latent indicator cω ∈ C indicating
to which community ω belongs. Further, we assume each community c ∈ C has it’s
own latent utility function over items only uc = [uc

1, uc
2, . . . , uc

m]
T since we assume all

members of the community share common preferences. Hence, we can now define
a likelihood in this model for the preference data conditioned on all latent utilities
u = [u1, . . . , u∞] (where we have redefined u from the previous section) and the vector
of latent community indicators for each user c = [cω1 , . . . , cωn]

>:

p(D|u, c, α) = ∏
ω∈U

∏
(i,j)∈Dω

p(aω
i � aω

j |ucω
i , ucω

j , α) (3.24)

§3.2 Dirichlet Process Mixtures of Community-based Preference GPs 41

Figure 3.1: Our proposed generative graphical model for community-based prefer-
ences. There is a plate for users ω with community membership indicator cω ∈ C and
an embedded plate for i.i.d. preference observations aω

i � aω
j of user ω depending on

the community assignment cω of ω, community cω’s latent utility function ucω , and
the discriminal dispersion parameter α. There is a separate plate for communities
c ∈ C = {1 . . . , ∞} which contains the latent utility function uc drawn from a Gaus-
sian Process conditioned on local (optimized) community parameters Kc

x. Finally,
each cω is generated i.i.d. from an infinite multinomial distribution with parameters

π and Dirichlet Process prior with concentration parameter λ.

λ π cω

aωi aωj

(i, j) ∈D
ω ∈{1, . . . , n}

αKcx c

c ∈{1, . . . ,∞}

u

with p(aω
i � aω

j |ucω
i , ucω

j , α) as defined in the previous section and a community-
specific kernel prior Kc

x for each uc (c ∈ C) over items only.

p(uc|Kc
x) = N (uc; 0, Kc

x). (3.25)

It is important to emphasize here that one important feature of our infinite community-
based mixture model is that the hyper-parameters Kc

x of the utilities uc are community-
dependent and can be optimized as part of the learning process as described in Sec-
tion 3.1.2 leading to improved community modeling and generalization over all item
preferences within that community.

We assume that c is generated according to an infinite multinomial distribution
with parameters π ∈ R|C| (∑|C|i=1 πi = 1), hence

p(c|π) =
|C|
∏
i=1

πni
i (3.26)

where

ni = ∑
ω∈U

δcω=i.

indicating the number of users in the community cω.

Since the number of possible communities |C| is infinite, we resort to Dirichlet
processes by defining an infinite Dirichlet prior on the community distribution with

42 Learning Community-based Preferences

concentration parameter λ [58, 72]:

p(π|λ) = p(π1, . . . , π|C||λ) = Dirichlet(λ/|C|, . . . , λ/|C|)

=
Γ(λ)

Γ(λ/|C|)|C|
|C|
∏
j=1

π
λ/|C|−1
j . (3.27)

Altogether this generative framework is represented in the graphical model of Fig-
ure 3.1.

Our primary goal in inference is to obtain a sample posterior estimate over u and
c to be used for future prediction. To this end, we begin by multiplying all of the
likelihood and prior factors of our generative model in Figure 3.1 to obtain a superset
of the desired joint posterior parameters:

p(u, c,π|D, Kx, λ, α) ∝

[
∏
c∈C

p(uc|Kc
x)

]
· (3.28)[

∏
ω∈U

[
∏

(i,j)∈Dω

p(aω
i � aω

j | f cω
i , f cω

j , α)

]
︸ ︷︷ ︸

p(Dω |u,cω ,α)

p(cω|π)

]
p(π|λ)

Here of course, we don’t necessarily require a posterior estimate over π and we will
see in Section 3.2.2 that it is in fact important to marginalize over π in the posterior
to facilitate Gibbs sampling inference for Dirichlet processes.

However, before we dive into specific details, we first provide a general overview
of our posterior inference framework. To perform inference in this Dirichlet Process
mixture of GPs, we utilize the joint probability in Equation 3.28 and devise a col-
lapsed, blocked Gibbs sampler that breaks the Gibbs sampling inference into two
distinct steps, for which different inference algorithms are appropriate. Specifically,
collapsing comes from marginalizing over π and blocking stems from repeating joint
inference of u given c. Gibbs sampling then repeats as follows until convergence:

• For each cω, infer p(cω|c\ω, u,D, λ, α, K) via Gibbs sampling as discussed in
Section 3.2.2.

• Infer p(u|c,D, λ, α, K) via Expectation Propagation (EP) as discussed in Sec-
tion 3.2.1 with hyper-parameters optimized as discussed in Section 3.1.2.

Here we have merged all kernel hyper-parameters into the set K = {Kc
x|c ∈ C}.

3.2.1 Inferring Community utilities

The posterior of the utility (latent) functions u given all the preferences and parame-
ters θ is:

p(u|c,D, θ) =
1
Z

p(D|u, c, θ)p(u|c) (3.29)

§3.2 Dirichlet Process Mixtures of Community-based Preference GPs 43

Since the likelihood is factorized we again take advantage of the sequential approx-
imation EP. EP approximates the posterior p(u|c,D, θ) by a tractable distribution
q(u|c) which this time depends on the community. EP assumes that each likeli-
hood term p(aω

i � aω
j |uω

i , uω
j , cω = c, Ka) can be approximated by a distribution

q(uω
i , uω

j |cω = c, Ka) such that the approximated posterior q(u|c) factorizes over
q(uω

i , uω
j |cω). Then EP iteratively approximates each q(uω

i , uω
j |cω) in turn by divid-

ing it out from the approximated posterior q(u|c) (obtaining the cavity distribution),
multiplying in the true likelihood p(aω

i � aω
j |uω

i , uω
j , cω, Ka), and projecting the result

back to its factorized form by matching its moments to an updated q(uω
i , uω

j |cω).

In the preference learning case we detailed earlier, we can approximate the pos-
terior with a Gaussian:

q(u|c) = ∏
c

1
Z̃c ∏

ω∈U
p(u|cω = c) ∏

{{i,j}|aω
i �aω

j ∈Dω}
q(f ω

i , f ω
j |cω = c)

= N (u; µc, Σc). (3.30)

where µc and Σc denote the mean and covariance of the Gaussian distribution for
the community user ω belongs to corresponding to θcω . We are interested in locally
approximating each likelihood term as:

p(aω
i � aω

j | f ω
i , f ω

j , cω) ≈ q(f ω
i , f ω

j |cω) (3.31)

= Z̃ω
i,jN (f ω

i , f ω
j ; µ̃c

ω,[i,j], Σ̃c
ω,[i,j]),

where N (f ω
i , f ω

j ; µ̃c
ω,[i,j], Σ̃c

ω,[i,j]) denotes the local two-dimensional Gaussian over

[f ω
i , f ω

j]> with mean µ̃c
ω,[i,j] and covariance Σ̃c

ω,[i,j] corresponding to items i and j.

Hence we can approximate the posterior in Equation 3.5 with the following pa-
rameters:

µc
ω,[i,j] = Σc

ω,[i,j]Σ̃
c−1
ω,[i,j]µ̃

c
ω,[i,j] (3.32)

Σc−1
ω,[i,j] = (Kc−1

ω,[i,j] + Σ̃c−1
ω,[i,j]). (3.33)

One advantage of our model is that the hyper-parameters of the model can be
learned independently for each community. Even though we can define distribu-
tions over covariance (Inverse-Wishart), here due to the computational cost of a full
Bayesian update of K we instead optimize the hyper-parameters by maximizing the
marginal likelihood in a gradient descent algorithm. The marginal likelihood can be
obtained from the normalizer Z̃c in Equation 3.30 similar to that of explained in Sec-
tion 3.1.2 although the kernels are now smaller and is only defined on the members
of the community.

44 Learning Community-based Preferences

3.2.2 Inferring Community Membership

In our Gibbs sampler, given u, we now wish to sample c – the community member-
ships for all users. Assuming that our blocked Gibbs sampler has already provided
us with a sample of u for some fixed c∗ sampled on the previous iteration, we now
wish to sample each new cω in turn for the current iteration provided that we can
define p(cω|c\ω, u,D, λ, α).

While we could sample u from p(u|c∗,D, λ, α) to compute p(cω|c\ω, u,D, λ, α),
this seems inefficient given that we can derive the full posterior p(u|c∗,D, λ, α) in
closed-form given our Gaussian Process inference machinery in Section 3.2.1. So
instead we propose to compute Ep(u|c∗,D,λ,α)[p(cω|c\ω, u,D, λ, α)].2

Now we derive an efficiently computable closed-form for sampling cω where we
abbreviate the previous expectation to the shorter form Eu|c∗ [p(cω|c\ω, u,D, λ, α)]:3

Eu|c∗ [p(cω|c\ω, u,D, λ, α)] ∝ Eu|c∗
[∫

p(cω, c\ω︸ ︷︷ ︸
c

, u, π|D, λ, α)dπ

]
(3.34)

= Eu|c∗
[

∏
ω∈U

∏
(i,j)∈Dω

p(aω
i � aω

j |uω
i , uω

j , α)︸ ︷︷ ︸
p(Dω |u,cω ,α)

p(cω|π)

]
p(π|λ)dπ

(3.35)

∝ Eu|c∗ [p(Dω|u, cω, α)]
∫

p(c|π)p(π|λ)dπ︸ ︷︷ ︸
p(c|λ)∝p(cω |c\ω ,λ)

(3.36)

∝

∫ p(Dω|u, cω, α)︸ ︷︷ ︸
Likelihood

p(u|c∗,D, λ, α)︸ ︷︷ ︸
Gaussian Process

]du

 p(cω|c\ω, λ)︸ ︷︷ ︸
Dirichlet Process

(3.37)

In this derivation, we note the proportionalities can be introduced anytime a rewrite
induces a constant normalizer that is independent of cω since this can be absorbed
into the global normalizer. Since cω is discrete, the normalization can be easily com-
puted on demand when required.

In (3.34), we rewrote the conditional in terms of the full joint since the normalizer
required to obtain the LHS is p(c\ω, u, π|D, λ, α), which is independent of cω.

In (3.35), we expanded the full joint into its definition from our graphical model
in Figure 3.1.

In (3.36), we removed the product for ω′ ∈ U \ {ω} since the likelihood of each
user ω′’s preferences only depend on cω′ and hence these likelihoods are a constant

2Of course, one can always sample u and avoid this expectation if preferred, but we conjecture that
using the expectation will induce a lower-variance Gibbs sampling process with faster convergence.

3A detailed derivation of all math derived in these sections is provided in an online appendix at the
authors’ web pages.

§3.2 Dirichlet Process Mixtures of Community-based Preference GPs 45

w.r.t. cω for ω 6= ω′. We also note that the expectation over u only applies to terms
involving u and likewise the integral over π only applies to terms involving π.

In (3.37), we expanded the definition of the expectation and replaced p(c|λ) with
p(cω|c\ω, λ) since the latter only has a normalizer p(c\ω|λ) which is independent of
cω.

Thus in (3.37) we arrive at a closed-form computation that is straightforward to
compute. In the square brackets, we need only use our GP posterior f |c∗ to compute
the product of the probabilities of each of user ω’s preferences aω

i � aω
j ∈ Dω as

defined in the next sections. This leaves us only to compute p(cω = c|c\ω, λ) as is
standard in Gibbs sampling for Dirichlet processes:

1. If c is an active community (∃cω ∈ c\ω s.t. cω = c), then

p(cω = c|c\ω, λ) =
∑ω′ 6=ω I[cω′ = c]

N − 1 + λ
(3.38)

where N is the number of non-empty communities.

2. Else c is a new community so

p(cω = c|c\ω, λ) =
λ

N − 1 + λ
(3.39)

Hence all quantities required to sample cω have now been defined permitting sam-
pling of each cω in turn to complete the community process sampling portion of the
Gibbs sampling inference for our model. And the result is intuitive: a user ω is more
likely to join a community which provides a higher likelihood on its preference data
Dω. Additionally, this sampling process displays the well-known “rich-get-richer”
effect of Dirichlet Processes since communities with more members have a higher
probability of being selected.

3.2.3 Prediction

Given a pair of items a∗1 , a∗2 for a particular user, we will be able to determine the
predictive distribution over the latent utility functions as:

p(u∗1 , u∗2 |D, α, K, ω) =
∫ ∞

−∞
p(u∗1 , u∗2 |ucω , α, Kc)p(ucω |D, α, Kc)ducω

= N (µ∗, C∗),

with

µ∗ = K∗(Kc + Σ̃c)−1µc (3.40)

C∗ = Σ∗ −K∗>(Kc + Σ̃c)−1K∗, (3.41)

where Σ∗ is the 2× 2 kernel matrix built from the item pair a∗1 and a∗2 ; K∗ represents
the kernel matrix of test items with all the items in the training set; K∗c is the kernel

46 Learning Community-based Preferences

matrix of the queried user with other users in the same community; and K∗x is the
2×m kernel matrix of the queried pair of items with other items. Subsequently, their
preference for a user is determined by integrating out the latent utility functions we
have p(a∗1 � a∗2 |D, α, K) equals:

∑
c

p(c|λ)
∫ ∫

p(a∗1 � a∗2 |u∗1 , u∗2 , c, α, K)p(u∗1 , u∗2 |D, c, α, K)du∗1u∗2

= ∑
c

p(c|λ)Φ
(

µ∗1 − µ∗2
α2 + C∗1,1 + C∗2,2 − 2C∗1,2

)
.

We see that the mean and covariance of the predictive distribution require the in-
version of a much smaller matrix because only observations in each community have
to be considered. This leads to O(n3) time complexity (cubic in the number of obser-
vations) compared to the case where the community of the users is not considered in
Section 3.1.1 which has O(n3m3) time complexity.

Algorithm 3.1 Blocked Gibbs Sampling Routine
input: X, U,D, λ, α
Initialize c to arbitrary assignments for each user
while not converged do

// Infer community utilities and hyper-parameters
for c ∈ C do

1. Obtain Kc similar to Section 3.1.2 conditioned on the c.
2. Perform EP to infer p(u|c,D, α, K) (Section 3.2.1).

end for
// Sample community membership assignments
for ω ∈ U do

3. Sample cω from Eq. 3.37.
end for

end while

3.2.4 Final Algorithm

Having found the communities and users’ utilities, the algorithm for community-
based preference learning is presented in Algorithm 3.1. After initializing with class
assignments for each user, hyper-parameters for each community GP are optimized
followed by inference of u and then c, which repeats until convergence.

3.3 Empirical Evaluation

In this section we empirically evaluate the performance of our algorithm to deter-
mine (1) how well the DP mixture of GPs is capable of reducing prediction time
vs. Full-GP defined in Section 3.1, (2) how well the DP mixture of GPs works in
accurately learning the preferences of each user compared to Full-GP, (3) whether

§3.3 Empirical Evaluation 47

Table 3.1: Performance results for Synthetic, Sushi and AMT Car datasets.
Algorithm Dataset Accuracy % Time(s)

Full-GP, Section 3.1
Synthetic 95.17± 3.33 0.05

Sushi 62.13± 5.69 2.10
Car 64.00± 8.94 0.89

DP Mixture of GPs
Section 3.2

Synthetic 100± 0 0.04
Sushi 62.04± 5.41 0.09
Car 64.17± 6.97 0.10

each community learned has a distinct set of preferences, and (4) how effectively the
true number of communities in data is recovered. We perform our evaluation on
three datasets: one synthetic and two real-world datasets. The synthetic experiment
assesses the effectiveness of our approach in a controlled setting and the real-world
datasets include the data obtained from preferences over cars that we have created us-
ing Amazon Mechanical Turk as well as a publicly available sushi preference dataset.
We compute the accuracy as the percentage of correctly predicted test preferences to
the whole set.

It is assumed that we are given a set of users and items with their corresponding
features. For each user and item we also augment their features with their ID index,
that is, a vector that is only one for that particular user or item (this is a common
practice in collaborative filtering). The pairwise item preferences of each user are
split into two sets for performing the inference (60%), and testing (40%) where the
algorithm performance is evaluated. We use the squared exponential covariance with
automatic relevance determination (ARD) for both users and items. We manually
tuned λ and α (for Full-GP as well).

Synthetic Dataset: We generated a hypothetical set of 60 users and 10 items and
assigned each user to one of four communities. We randomly assigned each item to
be liked by one of the communities (high utility) and disliked by the other three com-
munities (low utility). From these communities and their associated utility functions,
we generate the preferences of each user (without noise to make a pure synthetic
test data set). Our approach is able to converge to exactly four communities with
the correct memberships (as shown in Figure 3.3), demonstrating that our algorithm
is effective in recovering latent community structure present in data. As observed
in Table 3.1, the accuracy and the time consumed by the proposed approach is also
improved compared to Full-GP.

Sushi Dataset: Here we describe the results on the sushi dataset [43]. It is a
dataset of preferences of people about 10 types of sushis which leads to 45 prefer-
ences (pairs of sushis) per user. Each user and item (sushi) is specified by a set of
features and where we have categorical features, they are converted to binary ones.
Moreover, similar to the collaborative filtering setting, we included the IDs of the
users and items as well. We discovered 8 communities in this dataset (as shown in
Figure 3.3 while performing as accurately as Full-GP with two orders of magnitude
less running time as shown in Table 3.1.

48 Learning Community-based Preferences

Figure 3.2: The distribution of preferred cars in each community for the AMT car
dataset. Each x-axis position represents a different car and the y-axis the normalized
frequency with which that car was preferred to another by a user in the community.

Each community is distinct and differs in at least one car attribute.

0

0.02

0.04

0.06

0.08

Community1

0

0.02

0.04

0.06

0.08

Community2

0

0.02

0.04

0.06

0.08

Community3

0

0.02

0.04

0.06

0.08

Community4

0

0.02

0.04

0.06

0.08

Community5

0

0.02

0.04

0.06

0.08

Community6

0

0.02

0.04

0.06

0.08

Community7

Table 3.2: Most likely attributes selected in each category by communities discovered
in the AMT Car dataset. As observed in Figure 3.2, some communities are very
different while others are similar. For example, community 3 and 7 are only different

in the body type they prefer, but are both quite different from community 4.
SUV, Sedan Automatic, Manual Engine Capacity Hybrid, Non-Hybrid

1 SUV Automatic 3.5L Non-Hybrid
2 Sedan Manual 2.5L Non-Hybrid
3 Sedan Automatic 2.5L Non-Hybrid
4 SUV Manual 4.5L Non-Hybrid
5 Sedan Manual 2.5L Hybrid
6 SUV Automatic 4.5L Non-Hybrid
7 SUV Automatic 2.5L Non-Hybrid

§3.3 Empirical Evaluation 49

Figure 3.3: Distribution of communities in the datasets . The x-axis is the number
of communities; the y-axis is the posterior probability at the last sampling iteration.
These values are obtained at iteration 15 of Synthetic and Sushi and iteration 36 of

AMT Car.

(a) Synthetic (b) Sushi (c) AMT Car

Car Preference Dataset using Amazon Mechanical Turk4: Amazon Mechanical
Turk5 (AMT) provides an excellent crowdsourcing opportunity for performing online
experiments and user studies. Since the number of publicly available preference
learning datasets are limited, we set up an experiment in AMT to collect real pair-
wise preferences over users. In this experiment users are presented with a choice to
prefer a car over another based on their attributes. The car attributes used are:

• Body type: Sedan, SUV

• Engine capacity: 2.5L, 3.5L, 4.5L, etc.

• Transmission: Manual, Automatic

• Fuel consumed: Hybrid, Non-Hybrid

The set is then split into two sets with 60% of all the preferences kept for inference
and the rest for testing. The dataset is collected so that 10 unique cars (items) are
considered and users are required to answer all 45 possible pair-wise preferences.
We targeted US users mainly to have a localized and consequently more meaningful
preference dataset. For each user, a set of attributes in terms of general questions (age
range, education level, residential region and gender) is collected. Every categorical
attribute is converted to binary ones. We collected these preferences from 60 unique
users.

As observed in Table 3.1, the proposed approach is as accurate and faster than
Full-GP. Through learning the communities, we can also analyze the most frequently
chosen attributes selected by a community as shown in Table 3.2, where inference
converged to 7 communities.

4http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html
5http://mturk.com

http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html
http://mturk.com

50 Learning Community-based Preferences

3.4 Related Work

Probabilistic models for utility functions in preference learning and elicitation have
previously been proposed in the machine learning community [21, 38]. Extensions
to non-parametric models have also been developed. In particular, [25] proposed
a preference learning framework based on Gaussian processes and [27] used this
model for active learning with discrete choice data. Multi-user GP-based preference
models have been given by [11] and [14]. However, none of these methods directly
address the efficiency problem nor discovered any community structure.

Stochastic blocked models [1, 65] are another class of related approaches that
model the dependencies between users and infer the graphical structure under which
users interact. Such models implicitly find the communities users belong to, even
though not directly applied to preference learning in the setting we discussed here.

Furthermore, [73] proposed the infinite mixture of Gaussian processes for regres-
sion and later extended in [53] that is similar to the mixture of Gaussian processes
detailed here. Our work however further extends the mixture of GPs to social pref-
erence learning.

3.5 Conclusion

Considering user populations often comprises of communities of shared preferences,
we modeled user utilities as an infinite Dirichlet Process (DP) mixture of communi-
ties. The resulting inference algorithm scales linearly in the number of users unlike
previous Gaussian Process preference learning approaches that scaled cubicly in the
number of users. We evaluated our approach on a variety of preference data sources
including Amazon Mechanical Turk showing that our method is more scalable and
as accurate as previous work with only a small number of inferred communities,
validating our community-based modeling approach. The posterior of the utilities
learned can be used in a decision theoretic framework for applications such as recom-
mendation. The framework discussed in this chapter, provides an efficient approach
for learning uncertain utilities from preferences which can further be used in EEU
framework for decision making.

Since the number of users in a single community in our model can grow arbitrar-
ily large, the inference in each component of this mixture model can become difficult.
One solution is to use a hierarchical representation that may better reflect the reality
of users’ clusters in communities albeit at the cost of more complex modeling. An-
other way to avoid this issue is to use a sparse representation of the GPs model of
user utilities in each community which can further improve efficiency. In the subse-
quent chapter we look into using a decision theoretic framework to sparsify GPs for
preference learning. This sparsification approach uses a subset of users and items
as determined by the expected loss incurred from excluding them in the posterior
distribution over utilities.

Chapter 4

Decision-theoretic Sparsification
for Gaussian Process Preference
Learning

In the previous chapter, we detailed an approach for efficient learning of the distri-
bution of utilities using the structure of the problem represented in the communities.
In this chapter we discuss another approach motivated by decision theory to improve
scalability considered in the approximate posterior GP model of utility.

Scalability issues in Gaussian process are not exclusive to preference learning
and they are common in other settings such as regression and classification. It is
customary in Gaussian processes to adopt sparsification approaches, where a subset
of training examples is selected as inducing points, considerably reducing the time
complexity of posterior approximation and prediction [44, 81, 82]. A popular ap-
proach to GP sparsification is the Informative Vector Machine [48], where inducing
points are selected according to an information-theoretic criterion. A key character-
istic of the IVM is that it can be embedded naturally in sequential algorithms such
as assumed density filtering (ADF) or EP. These algorithms provide efficient compu-
tation of the quantities of interest (i.e., posterior variances) to be used by the IVM’s
sparsification criterion.

Nevertheless, the IVM’s purely entropic sparsification criterion fails at addressing
the varying loss functions that may be of interest to the final decision-theoretic task
— especially those tasks that naturally arise in preference learning.

For example, we might be interested in

1. optimizing the utility of the best recommendation,

2. giving a ranking of all items (or a subset), or

3. correctly classifying all pairwise preferences.

In each case we seek to optimize a loss for a different decision-theoretic task and
when we need to approximate in a Bayesian setting, it is important that our approx-
imation is loss-calibrated [47], i.e. the inference is performed with the task-specific

51

52 Decision-theoretic Sparsification for Gaussian Process Preference Learning

loss taken into account in approximation. We note that the uncertainty reduction
principle inherent to the IVM approximation is not loss-calibrated for all tasks (1)–(3).

In this chapter, we continue to bridge the gap between decision theory and ap-
proximate Bayesian inference [47] in a direction that leverages the efficiency of the
IVM approach for GP sparsification, while overcoming its loss-insensitive approxi-
mation. We show that the IVM’s differential entropy criterion, a value of information
criterion, and an upper confidence bound [84] criterion can all be recovered in our
framework by specifying the appropriate loss.

An additional important aspect of the preference learning problem that distin-
guishes it from standard machine learning settings is that the complexity of making
predictions does not directly depend upon the number of observations (i.e. prefer-
ence relations), but rather the number of users and items. Our method takes this
into consideration and adopts an item-driven sparsification strategy that retains the
items that best encode the users’ preferences. Our experiments show that this is an
effective way of reducing the complexity of inference in preference learning with GPs
while addressing the objective function of interest directly. We refer to our generic
method as the Valuable Vector Machine (VVM) since it incorporates the loss function
directly into its sparsification mechanism.

The rest of this chapter is organized as follows: we propose our VVM sparsifica-
tion framework in Section 4.1 built upon the GPs for preference learning framework
introduced in Section 3.1. The empirical evaluation is presented in Section 4.2. We
differentiate our approach from related work in Section 4.3 and conclude in Section
4.4.

4.1 Decision-theoretic Sparsification

To recap Section 3.1, our multi-user preference learning objective is to approximate
a posterior q(u) = N (u; µ, Σ) over latent utilities u = [uω1

1 , uω1
2 , . . . , uωn

m]T for users
ω ∈ U and items ai ∈ X. In the previous section, we showed how to learn q(u)
from preference data by EP; in this section due to computational considerations, we
wish to sparsify this Gaussian posterior in a loss-calibrated manner. We note that in
the special case of GP-based preference learning, there are at least two different ways
one might approach sparsification: observation-driven sparsification and item-driven
sparsification.

4.1.1 Observation-driven Sparsification

In this approach, we incrementally select a subset of observations (in this case pref-
erences) in order to approximate the posterior q(u) . More formally, recall that
Dω = {aω

i � aω
j } and let D′ ⊆ D be a subset of selected preferences. Observation-

driven sparsification simply chooses the data subset D′ according to some criterion
to obtain a posterior approximation qD′(u) ≈ p(u|D′) (e.g., via EP as outlined in the
last section).

§4.1 Decision-theoretic Sparsification 53

Table 4.1: Loss and corresponding risk to minimize for VVM variants. Let q(u) :=
qS′′(u) and a ∈ {aω

i }.
Algorithm IVM (item) VVM-VOI VVM-UCB
Loss Type Logarithmic loss Regret Exponential Loss
L(u, ai, ω) − log(q(f ω

i)) −I[uω
i > f ω,∗u](uω

i −uω,∗) − exp(βuω
i), β > 0

RiskL(S′, ai, ω) H(q(uω
i)) σ(ω, ai) [cΦ(c) +N (c)] 1 + βµ(ω, ai) +

β2

2 σ̄2(ω, ai)
Selection Time O(1) O(n) O(1)

As a concrete example, the original Informative Vector Machine [48] initializes D′
to a small random subset and then incrementally builds D′ := D′ ∪ {d∗} for the d∗

that maximizes information gain

d∗ = arg max
d∈D\D′

H(qD′∪{d}(u))− H(qD′(u)), (4.1)

where qD′(u) ≈ p(u|D′), qD′∪{d}(u) ≈ p(u|D′ ∪ {d}) and H is the entropy. This
repeats until the desired level of observation sparsity has been reached. Since D′
is fixed at each iteration and thus H(qD′(u)) is a constant, each incremental se-
lection in the IVM is equivalent to choosing the d∗ that maximizes entropy, i.e.,
d∗ = arg maxd∈D\D′ H(qD′∪{d}(u)).

4.1.2 Item-driven Sparsification: Valuable Vector Machine

Inclusion of a preference observation entails a 2-dimensional update to our GP pos-
terior; however, since preferences may overlap, there is not a direct relationship be-
tween the number of included preferences and the dimensionality of the posterior
and hence the computational complexity of prediction described in section 3.2.3. A
more direct way to control the sparsity level of our Gaussian posterior is to simply
retain the items for users (equivalently dimensions f ω

i of our Gaussian posterior) that
minimizes some criterion.

This item-driven approach underlies the Valuable Vector Machine (VVM) that we
propose for different decision-theoretic settings. First we introduce some notation.
Let S′ ⊆ S = {(ai, ω)} be a selected subset of user-item pairs corresponding to latent
utility dimensions f ω

i of u with cardinality |S′|. Let q(u[S′]) = N (u[S′]; µ[S′], Σ[S′,S′])
where u[S′] and µ[S′] respectively represent the subvectors of u and µ for selected
dimensions S′ (i.e., selected users and items in set S′) and Σ[S′,S′] the corresponding
submatrix of Σ. Motivated by the observation-driven IVM, after running EP, let us
incrementally select dimensions s∗ ∈ S of our Gaussian posterior to retain so that
initializing S′ = ∅, at each iteration we update S′ := S′ ∪ {s∗} to obtain an improved
posterior qS′(u) until some dimensionality limit has been reached.

In decision theory, our objective is to select an action a∗ ∈ A from a possible space
of actions A so as to minimize the expectation of some loss L(a) w.r.t. uncertainty
(in this case utility uncertainty over u), i.e. a∗ = arg mina EuL(u, a). Our specific task
at each iteration of the VVM is to propose an item-user dimension aω

i for inclusion

54 Decision-theoretic Sparsification for Gaussian Process Preference Learning

in the posterior — hence the action space A = {ai} — and to select the item s∗ that
minimizes expected loss (risk)

s∗ = arg min
(ai ,ω)∈S\S′

RiskL(S′, ai, ω);

where RiskL(S′, ai, ω) := Eu∼qS′′ [L(u, ai, ω)] , (4.2)

S′′ = S′ ∪ {aω
i }. In the following, we will detail choices of loss functions and their

respective RiskL(S′, ai, ω) yielding the VVM variants as summarized in Table 4.1 and
its corresponding method in Algorithm 3.1.

In each iteration, VVM selects the action (i.e. item) that minimizes the expected
loss for each user until desired predefined dimensionality is reached. Our experi-
ments with a variable number of items per user led to worse performance since it
often overemphasizes item selection for the noisiest users. Hence, we found that a
constant number of items enforces fairness of GP modeling effort per user.

It should also be noted that the greedy selection here is fairly general and in spe-
cial cases such as submodular losses, one can prove further convergence guarantees
[46].

Algorithm 4.1 Valuable Vector Machine
input: X, U,D, r // r is the number of items selected for each user
while not converged do

for aω
i � aω

j ∈ D do
1. Update the cavity distribution µ\ω,[i,j], Σ\ω,[i,j] from Equation 3.11 and 3.12.
2. Update the unnormalized marginal posterior µ̂,Σ̂ from Equation 3.15 and
3.16.
3. Update the local factor approximation µ̃, Σ̃ from Equation 3.17.
5. Update µ and Σ from Equation 3.7.

end for
end while
for each ω ∈ U // Selection of best items for each user do

S′ω = {} // The user ω’s subset
while |S′ω| < r do

a∗i =arg minai∈X,ai /∈S′ω RiskL(S′, ai, ω)// Table 4.1
S′ω = S′ω ∪ {a∗i }

end while
S = S ∪ S′ω

end forreturn µ[S], Σ[S,S] // Subset of posterior parameters

§4.1 Decision-theoretic Sparsification 55

4.1.3 Loss Functions and Risk

4.1.3.1 Log loss and IVM

Log-loss is appropriate when we want to maximize the log posterior over all pref-
erences. Here we see that we can actually recover an item-based variant of the IVM
when using log-loss. Specifically, letting q(f ω

i) refer to the marginal of q(u) over f ω
i

then

RiskL(S′, ai, ω) = EL(uω
i

∫ ∞

−∞
−qS′′(uω

i)[log qS′′(uω
i)]duω

i

= H(qS′′(uω
i)), (4.3)

which corresponds to the entropic criterion used by the IVM. Recall that the second
entropy term in the standard IVM information gain calculation is constant and can
be omitted as noted for (4.1).

4.1.3.2 Valuable Vector Machine – Value Of Information

In the case that our end objective is to predict or recommend the best item ai for user
ω, the loss we might consider minimizing is the regret, I[f ω

i − f ω,∗ > 0](f ω
i − f ω,∗)

where we could define f ω,∗ = arg maxi f ω
i ; in words, we want to minimize how

much utility we lose for recommending a suboptimal item. In expectation, we might
simply fix f ω,∗ = maxi EqS′′ [f ω

i] (the best current item in expectation) where expected
loss minimization leads us to the following risk:

RiskL(S′, ai, ω) =
∫ ∞

−∞
I[uω

i > uω,∗](uω
i − uω,∗)qS′′(uω

i)duω
i

= σ(ω, a) [cΦ(c) +N (c)]︸ ︷︷ ︸
VOI

(4.4)

where qS′′(uω
i) = N (uω

i ; µ(ω, a), σ2(ω, a)) and c = µ(ω,a)−ûω

σ(ω,a) [83]. This is precisely
the statement of Value of Information (VOI) [40] under a Gaussian assumption of un-
certainty — quite simply, the more probability mass an item utility has in its tail
above the best item in expectation, the higher its chance of being the best item —
hence the higher VOI associated with selecting this item in S′′. The minimization of
risk in this case is equivalent to maximizing the VOI.

4.1.3.3 Valuable Vector Machine – Upper Confidence Bound

It is well-known that a concave or convex valuation of underlying utility respectively
encourages risk-averse or risk-seeking behavior w.r.t. utility uncertainty. Risk-seeking
behavior from a convex utility function will encourage including “potentially opti-
mal” items according to how uncertain we are regarding their utility function value.
A natural convex utility transformation is exp(βuω

a), which leads to the following

56 Decision-theoretic Sparsification for Gaussian Process Preference Learning

uω,∗

uω
i − uω,∗

qS′′(uω
2)

qS′′(uω
1)

Figure 4.1: Illustration of Value of Information: it is the product of the shaded area
under the normal curve when the utility is higher than the optimal value and the
linear function of their difference. This value corresponds to the expectation of the
difference of the utility of the item and the optimal under the shaded mass. As it is
observed, uω

1 has negligible mass above uω,∗ point, therefore the item corresponding
to uω

2 is selected.

risk

RiskL(S′, ai, ω) = −
∫ ∞

−∞
qS′′(uω

i) exp(βuω
i)duω

i

= −
∫ ∞

−∞
qS′′(uω

i)

(
1 + βuω

i +
β2

2
uω

i
2 + . . .

)
duω

i

≈ 1 + β ·UCB(ω, ai)

where

UCB(ω, ai) = µ(ω, ai) +
β

2
σ̄2(ω, ai). (4.5)

and σ̄2(ω, ai) = EqS′′ [u
ω
i

2]. Here, we first replaced exp(βuω
i) with its Taylor expansion

and approximated it by truncating third-order terms and above. When doing this, we
see that the dimension au

i selected by the VVM will be the one with the greatest Upper
Confidence Bound (UCB) [3] used in bandit problems, where larger β > 0 encourages
more risk-seeking behavior. As seen, maximizing UCB is equal to minimizing the
risk in our general framework.

4.2 Empirical Evaluation

In this section we evaluate the performance of our algorithms (VVM-VOI and VVM-
UCB) compared to the IVM and the full GP, i.e. a GP-preference model that does not
use sparsification, in terms of two losses: the 0/1 loss and recommendation loss. The
0/1 loss is the percentage of incorrectly predicted preferences and the recommendation
loss is the proportion of items that are incorrectly predicted as the best for recom-

§4.2 Empirical Evaluation 57

20 40 60 80 100
0

10

20

30

40

50

60

70

Percentage of items selected

R
e
c
o
m
m
e
n
d
a
ti
o
n
L
o
ss

IVM
VVM−VOI
VVM−UCB

(a) Synthetic dataset

20 40 60 80 100
0

5

10

15

20

25

30

35

Percentage of items selected

%
0
/1

L
o
ss

IVM
VVM−VOI
VVM−UCB

(b) Synthetic dataset

20 40 60 80 100

5

10

15

20

25

30

Percentage of items selected

R
e
c
o
m
m
e
n
d
a
ti
o
n
L
o
ss

(c) Facebook dataset

20 40 60 80 100

5

10

15

20

25

30

35

Percentage of items selected

%
0
/1

L
o
ss

(d) Facebook dataset

20 40 60 80 100

10

20

30

40

50

60

Percentage of items selected

R
e
c
o
m
m
e
n
d
a
ti
o
n
L
o
ss

(e) AMT Car dataset

20 40 60 80 100

20

25

30

35

40

45

Percentage of items selected

%
0
/1

L
o
ss

(f) AMT Car dataset

Figure 4.2: Performance of the sparsification methods in terms of the recommendation
loss (the proportion of items that are incorrectly predicted as the best item for rec-
ommendation) in the first column and the 0/1 loss (percentage of wrongly predicted
preferences) in the second, as a function of the proportion of items selected for spar-
sification. The larger the number of items the lower the level of sparsification and

the closer the algorithms are to the Full-GP method.

58 Decision-theoretic Sparsification for Gaussian Process Preference Learning

mendation. In other words, if the set of items that a user considers to be the best
(as induced by her preferences) is denoted by T and the predicted set of best items
is T∗, the recommendation loss is |T̄|m × 100, where m is the number of items and
T̄ = {a ∈ T∗|a /∈ T}. We report the results as a function of the proportion of items
selected for sparsification.

Our experimental rationale is to exhibit how different risk-sensitive sparsifica-
tions perform across two different important losses related to preference learning
compared to IVM. As such, we use IVM in its original form that works with ADF
since it was argued by [80] that it performs better than running full EP, which we
observed as well. Hence we chose the IVM variant that offered best performance and
compared it against VVM.

We consider three datasets: a synthetic dataset and two real-world datasets. The
synthetic experiment assesses the effectiveness of our approach in a controlled set-
ting and the real-world datasets include users’ preferences over cars that we have
collected using Amazon Mechanical Turk and a Facebook dataset that we have ob-
tained via an in-house application that collects user preferences over web links.

In all these datasets we are given a set of users and items and their corresponding
features along with each user’s preferences over item pairs. For each user and item
we augment their feature vectors with their ID index (this is a common practice in
collaborative filtering) and transform their categorical features into binary variables.
We split each user’s set of preferences into 60% for training and 40% for testing.

We use the squared exponential covariance kernel with automatic relevance de-
termination (ARD) (see [75], Page 106) for both users and items and optimize the
hyper-parameters by maximizing the marginal likelihood under the EP approxima-
tion as detailed in section 3.1.2. we have set α = 3 (see Equation (3.2)) and β = 1 (see
Equation (4.5)) for all experiments on all datasets.

4.2.1 Datasets

Synthetic Dataset: In this experiment we created a synthetic dataset where the util-
ity function value for each item is known beforehand and is subsequently used to
generate users’ preferences. A set of hypothetical users and items are created and
identified by their IDs. For each user, items are randomly split into two sets to indi-
cate the ones that are liked (with a constant utility value of 10) and disliked (with a
constant utility value of 5). From these utility functions we generate full sets of pref-
erences for 10 items and 50 users. Consequently, for each user, 5 items have higher
utility value and are naturally preferred to the other half.

Facebook Data: This dataset has been created using a Facebook App that recom-
mends web links to users every day. The users may give their feedback on the links
indicating whether they liked/disliked them. At its peak usage, 111 users had elected
to install the Facebook app developed for this project. also collected user information
consisting of ID, age and gender and the link features including count of link’s total
“likes", count of link’s “shares" and count of total link comments. The Facebook App
recommended three links per day to avoid position bias and information overload.

§4.2 Empirical Evaluation 59

The preference set is built such that the links that are liked are considered preferred
to the ones disliked in the batch of three recommended each day. We used 20% of
users with the highest number of preferences over 50 links commonly recommended
to all users.

Car Preference Dataset using Amazon Mechanical Turk: We used the car pref-
erence dataset explained in the previous chapter.

4.2.2 Results

We evaluate our algorithms in a cross-validation setting using 60% of preferences
for training and 40% for testing and repeated each experiment 40 times. Results
are averaged over the number of test users. We analyze the performance of the
algorithms as a function of the level of sparsification, as given by the percentage of
items selected for inference. The larger the percentage of items selected, the smaller
level of sparsification and the closer the algorithms are to the Full-GP method. The
performances of the different algorithms on all datasets using the recommendation
loss and the 0/1 loss are shown in Figure 4.2.

Figures 4.2(a) and 4.2(b) show the results on the synthetic dataset. Because of the
clear distinction between the items that are preferred for each user, all algorithms
perform very well when using at least 40% of the items. While IVM and VVM-VOI
have very similar performance, VVM-UCB’s performance is outstanding, requiring
only a very small number of items to achieve perfect prediction.

As seen in Figures 4.2(c) and 4.2(d), on the Facebook dataset both VVM-VOI and
VVM-UCB outperform (or have equal performance to) IVM when using at least 30%
of the items.

It is interesting to note here that the risk-seeking behavior of VVM-UCB leads
to a better approximation of the Full-GP which is particularly visible in the Face-
book dataset where the number of items are larger. We conjecture that the excel-
lent performance of VVM-UVB with this larger number of items is because it man-
ages to quickly find and refine the set of highest value items, more effectively than
even VVM-VOI. This simultaneously lowers recommendation loss by finding a near-
optimal item and 0/1 loss since the best items can then be identified with certainty
in most pairwise comparisons.

Figures 4.2(e) and 4.2(f) show the results on the AMT Car dataset. In this dataset,
where true preferences have been collected, VVM-VOI and VVM-UCB consistently
outperform IVM. Similar to the Facebook results, we conjecture that VVM-VOI’s and
VVM-UCB’s better performance than the IVM (most notably on 0/1 loss where all
preferences matter) stems from the fact that they both select the potentially best items
first and this helps identify the dominant item in all pairwise preferences. However
it seems that identifying the single best item among the potentially best items is
difficult in this particular dataset, requiring a large proportion of data to identify the
best item with high accuracy.

It is interesting to mention that while VVM-VOI and VVM-UCB outperform IVM
in most cases when using the recommendation loss, a similar trend is seen when

60 Decision-theoretic Sparsification for Gaussian Process Preference Learning

20 30 40 50 60

50

60

70

80

90

Percentage of items selected

T
im

e
(s
)

Full GP
IVM
VVM−VOI
VVM−UCB

Figure 4.3: Average prediction time for inference with 200 users and 10 items. The
number calculated as the time consumed to make a series of predictions on the pref-

erences of the test set.

using the 0/1 loss. Although this result may look unexpected, it is important to em-
phasize that neither the VVM or the IVM are designed to optimize the 0/1 loss. In
fact, the risk-seeking nature of the VVM-UCB loss, as a consequence of the exponen-
tial transformation of the utility functions, may be better aligned with the 0/1 loss
than the entropic criterion used by the IVM.

Another issue worth mentioning is the computational cost of running the differ-
ent approximation algorithms. As a reference of the time spent by our algorithms
compared to the Full-GP (where no sparsification is done), Figure 4.3 shows the pre-
diction time for an indicative experiment. We see that – while IVM and VVM-UCB
may enjoy very similar prediction time and similar structure in the posterior – sparsi-
fication improves prediction time significantly and that all approximation algorithms
have roughly the same computational cost. Small variations as that observed when
using 60% of the items can be explained by the different sparsity properties of the
posterior covariance obtained when selecting a distinct subset of items.

4.3 Related Work

In standard machine learning settings, low-rank approximations to the Gram matrix
are commonly used by practitioners and researchers (see e.g. Chapter 8 of [75]) to
deal with large datasets. A unifying framework in which most of these approxima-
tions can be formulated has been given by [71]. This framework includes the fully
independent training conditional (FITC) approximation, which makes better use of
all the data and can be combined with our approach to approximate the covariance at
a higher cost. The work proposed in [82] considers sparsification approaches where
the inducing points are latent variables their values are optimized within a consistent

§4.4 Conclusion 61

probabilistic latent variable model. However, none of these algorithms addresses the
sparsification problem from a decision-theoretic perspective.

Our approach is analogous to the IVM in that we borrow ideas from active learn-
ing in order to carry out sparsification during approximate inference. For example,
upper confidence bounds (UCB) are used in [84] for GP optimization within the
bandit setting. We note that, unlike this latter experimental design scenario, in our
sparsification framework we see the data beforehand and decide to include it in our
approximation afterwards.

An information theoretic active learning algorithm for classification and prefer-
ence learning is proposed in [61]. In the preference learning case, this method ex-
ploits the reduction of the preference learning problem to a classification setting [62].
This work is complementary to ours in that we can use it along with the FITC approx-
imation in order to devise more effective decision-theoretic sparsification methods for
multi-user preference learning. We leave the study of such an approach for future
work.

The most relevant work to ours has been proposed in [47] where the use of loss
functions in Bayesian methods is considered by formulating an EM algorithm that
alternates between variational inference and risk minimization. We take the idea of
bridging the gap between decision theory and approximate Bayesian inference [62]
in a direction that leverages the efficiency of the IVM approach for GP sparsification,
while overcoming its loss-insensitive approximation.

4.4 Conclusion

We proposed a decision-theoretic sparsification method for Gaussian process prefer-
ence learning. We referred to our method as the valuable vector machine (VVM) to
emphasize the importance of considering a loss-sensitive sparsification approach. We
showed that the IVM’s differential entropy criterion, a value of information criterion,
and an upper confidence bound (UCB) criterion can be recovered in a generalized
decision-theoretic framework by specifying the appropriate loss. Our approach pro-
vides a basis for inference in Gaussian process in the context of loss-sensitive sparsi-
fication. Empirical evaluations further showed, that this is an effective approach in
approximating the posterior. The approximate posterior obtained from VVM can be
used for modeling the users in each community in Chapter 3 to increase performance
further.

VVM uses a simple greedy approach for approximation that even though em-
pirically shown to perform well needs further theoretical guarantees. If the regret
function considered for item selection is submodular, then we have guarantees on
the approximation bounds and convergence for free. In addition, VVM is a post in-
ference procedure in the sense that the full posterior has to be found before sparsifi-
cation. An ideal extension of our approach is to use the decision theoretic framework
of VVM within EP so that the full posterior is not required to be learned.

Once the approximate belief over the utility function is learned using VVM, we

62 Decision-theoretic Sparsification for Gaussian Process Preference Learning

can use EEU framework for decision making. For each user, the expectation of each
action (selection of an item) with respect to this belief is the expected expected utility.
The item with highest expected expected value is the optimal item for recommenda-
tion.

In the EEU framework, we need to be able to find the optimal action by com-
puting the expectations efficiently. These expectations are taken with respect to the
distribution of the utility that is learned using one of the approaches discussed in this
or previous chapter. In the subsequent chapter, we will present an efficient Monte
Carlo method that computes the expectations using samples of a distribution (such
as the belief over utilities). This efficient sampling approach uses a fraction of the
samples that conventional sampling algorithms require to compute expected utilities
for finding the optimal action.

Chapter 5

Loss-calibrated Monte Carlo Action
Selection

So far we have covered two approaches to modeling and learning the distribution of
the utilities. We have discussed using a structure in the data, i.e. user communities,
and sparsification of the posterior for efficient learning of this belief over the utility
function. In the EEU framework, we need to be able to compute the expectations with
respect to this distribution to find the optimal action. In this chapter, we concentrate
on computing this expectation efficiently.

In both conventional Bayesian decision theory and the expected expected utility
framework, an important aspect of the selection of the optimal action is computing
the expectations. Having known the distribution of the state or utility, these expec-
tations can be computed by sampling. In this chapter, we focus on sampling for
efficient selection of the optimal action. In particular, we focus on the expectation in
either of the following cases:

1. State uncertainty: in conventional decision theory, we compute the expected
utility with respect to the belief over the state value using the given utility
function for each action. Hence, when the distribution of the state is given and
we are computing the expected utility of action a (as in Equation (1.1)):

EUu(a) = E[u(θ, a)] =
∫

u(θ, a)p(θ|D)dθ, (5.1)

2. Utility uncertainty: in EEU framework where we consider the uncertainty in
the utility and we compute the expectation with respect to the belief over the
utility function. Thus, when a distribution of the utility function is given, e.g.
it is found in a model similar to the ones discussed in Chapter 3 and 4, the
expectation is computed with respect to the uncertain functions drawn from
the posterior of the utilities in the expected expected utility framework (as in
Equation (1.3)):

E[EUu(a)] =
∫

EUu(a)p(u|D)du.

63

64 Loss-calibrated Monte Carlo Action Selection

a1

u a2

p

q

θ

Figure 5.1: Motivation for loss-calibration in Monte Carlo action selection. (Top) Utility
u(θ) for actions a1 and a2 as a function of state θ. (Middle) A belief state distribution p(θ)
for which the optimal action arg maxa∈{a1,a2} Ep[u(θ, a)] should be computed. (Bottom) A
potential proposal distribution q(θ) for importance sampling to determine the optimal action

to take in p(θ).

Without loss of generality, we consider the distribution of the state p(θ) or utility
p(u) regardless of whether it is a posterior or prior (it is conditioned on data or not).
The second case is the same, except the samples are drawn from a function space
such as samples from the Gaussian process posterior (e.g. [59, 91]). For notational
convenience we denote EUu(a) simply by EU(a).

In real-world settings such as robotics [87], the belief distribution p(θ) may be
complex (e.g., highly multimodal) and/or high-dimensional thus prohibiting the ap-
plication of analytical methods to evaluate the EU integral of (5.1). Practitioners often
resort to the use of Monte Carlo methods to compute an approximate (but unbiased)
expectation using n samples from p(θ):

1
N

N

∑
i=1

[u(θi, a)], θi ∼ p. (5.2)

Unfortunately, naïve application of Monte Carlo methods for optimal action selec-
tion often proves to be inefficient as we illustrate in Figure 5.1. At the top we show
two utility functions for actions a1 and a2 as a function of univariate state θ on the
x-axis. Below this, in blue, we show the known state belief distribution p(θ). Here, it
turns out that EU(a1) > EU(a2). Unfortunately, if we sample from p(θ) to compute
a Monte Carlo expected utility for each of a1 and a2, we find ourselves sampling fre-
quently in the region where u(θ, a1) and u(θ, a2) are very close, but where suboptimal
a2 is marginally better than a1.

An intuitive remedy to this problem is provided by an importance sampling ap-

§5.1 Loss-calibrated Monte Carlo Importance Sampling 65

proach (see e.g. [33]) where we sample more heavily in regions as indicated by
distribution q(θ) and then reweight the Monte Carlo expectation to provide an un-
biased estimate of EU(a). Formally, the theory of importance sampling tells us that
since

EU(a) =
∫ [u(θ, a)p(θ)

q(θ)

]
q(θ)dθ, (5.3)

we can draw samples from q to compute an (unbiased) estimate of EU(a) as

ˆEUN(a) =
1
N

N

∑
i=1

[
u(θi, a)p(θi)

q(θi)

]
, θi ∼ q. (5.4)

This leaves us with one key question to answer in this chapter: How can we au-
tomatically derive a q(θ) to increase the probability that the optimal action a∗ is selected for
a finite set of n samples ? Answering this question is important for real-time applica-
tions of Bayesian decision-theoretic approaches where efficiency and optimality are
two key operating criteria.

To this end, in the subsequent section we derive a proposal distribution for a loss-
calibrated Monte Carlo importance sampler that tightens a bound on the regret, i.e.,
the difference of the expected utility of the true optimal action and its estimate. We
first establish an intuitive result that minimizing the probability of suboptimal action
selection tightens this bound. For two actions, this bound is tight and minimizing
this probability is in fact equivalent to maximizing the expected utility of the optimal
action.

We evaluate our loss-calibrated Monte Carlo method in two domains. We first
examine a synthetic plant control examples building on those of [47], who were also
motivated by loss-calibration in Bayesian decision theory, albeit not in the case of
Monte Carlo methods as we focus on in this work. We also demonstrate results in a
Bayesian decision-theoretic robotics setting with uncertain localization motivated by
the work of [87].

In both empirical settings and in states with up to 100 dimensions, we demon-
strate that using our loss-calibrated Monte Carlo method find the optimal action
with fewer samples than conventional loss-insensitive samplers. This suggests a new
class of loss-calibrated Monte Carlo samplers for efficient online Bayesian decision-
theoretic action selection.

5.1 Loss-calibrated Monte Carlo Importance Sampling

In many applications of decision theory, sampling is the most time-consuming step.
Since we know these samples are ultimately used to estimate high-utility actions, we
are interested in guiding the sampler to be more efficient for this task.

Here, we will pick a distribution q to draw samples from, which are in turn used
to select the action that maximizes the EU. The estimated optimal action âN defined

66 Loss-calibrated Monte Carlo Action Selection

as
âN = arg max

a
ˆEUN(a). (5.5)

Since the samples are drawn randomly from q, âN is a random variable and so
is its expected utility EU(âN). As such, we use E, P and V henceforth to denote
the expectation, probability and variance operators. We emphasize that all random
variables are determined by q.

In principle, we would like to select the distribution q to minimize regret, i.e.
maximize the true EU of the estimated action âN . As this is challenging to do directly,
proceed in three steps:

1. We establish a connection between regret and the probability of suboptimal
action selection in Theorem 1.

2. Since calculating the probability of selecting the suboptimal action is intractable
to be directly minimized, we derive an upper bound in Theorem 15, based on
the variance of the difference of estimated utilities.

3. Theorem 17 shows how to calculate the distribution q to minimize this bound.

5.1.1 Minimizing regret

To find the optimal estimated action âN with fewer samples, we wish to select q that
minimizes the regret. Formally we define this as

min
q

`(âN)

where `(âN) = E [EU(a∗)− EU(âN)] . (5.6)

Direct minimization of Equation 5.6 is difficult, hence we bound it with the probabil-
ity of selecting a suboptimal action instead. Tightening this bound with respect to q
will lead to a practical strategy. It is detailed in the following theorem.

Theorem 1 (Regret bounds). For the optimal action a∗ and its estimate âN the regret as
defined in Equation 5.6, is bounded as

∆ P [âN 6= a∗] ≤ `(âN) ≤ Γ P [âN 6= a∗] , (5.7)

where ∆ = EU(a∗)−maxa′∈A\{a∗} EU(a′) and Γ = EU(a∗)−mina′∈A EU(a′).

Proof. We know E [EU(âN)] is equal to

P [âN = a∗]EU(a∗) + ∑
a∈A\{a∗}

P [a = âN]EU(a)

≥P [âN = a∗]EU(a∗) + ∑
a∈A\{a∗}

P [a = âN]min
a′∈A

EU(a′)

=P [âN = a∗]EU(a∗) + P [a∗ 6= âN]min
a′∈A

EU(a′).

§5.1 Loss-calibrated Monte Carlo Importance Sampling 67

This is equivalent to stating that `(âN) ≤ Γ P [âN 6= a∗] after some manipulation.
Similarly, we have that

E [EU(âN)] ≤ P [âN = a∗]EU(a∗) + P [âN 6= a∗] max
a′∈A\{a∗}

EU(a′)

which leads to `(âN) ≥ ∆P [a∗ 6= âN] .

The bound is very intuitive: minimizing the probability of the estimated optimal
action âN being suboptimal will lead to a bound on the regret. Clearly, for two actions
we have ∆ = Γ. Thus, in the two-action case, minimizing the probability of selecting
a suboptimal action is equivalent to maximizing the expected utility of the selected
action. With more actions, these objectives are not equivalent, but we can see that the
difference is controlled in terms of ∆ and Γ.

5.1.2 Minimizing the probability of suboptimal action

We now turn to the problem of minimizing P [a∗ 6= âN]. Before doing so though,
we first mention few lemmas that are used in proving the main theorem. In partic-
ular, Lemma 2 to 5, provide the necessary bounds on the terms involving max that
are hard to handle. In Lemma 6 we start providing bounds on the probability of
suboptimal actions. Further details of the proofs are available in the supplement.

Lemma 2. Assuming utility values are non-negative everywhere, for a given action a 6= a∗

we have

EU(a∗) ≤ E
[

max
a′∈A\{a}

ˆEUN(a′)
]
≤ ∑

a′∈A\{a}
EU(a′).

Proof. Considering Jensen’s inequality we have

max
a′∈A\{a}

E[ˆEUN(a′)] ≤ E[max
a′∈A\{a}

ˆEUN(a′)],

and from the definition EU(a∗) = maxa′∈A\{a} ˆEUN(a′) where expectation is taken
with respect to q. Also, since for non-negative utilities we have maxa′∈A\{a} ˆEUN(a′) ≤
∑ ˆEUN(a′) the lemma is proved.

Lemma 3. Assuming utility values are non-negative everywhere, for a given action a 6= a∗

we have

E

[
ˆEUN(a)− max

a′∈A\{a}
ˆEUN(a′)

]
≤ EU(a)− EU(a∗).

Proof. Applying the expectation to each term and considering Lemma 2 we conclude
the proof.

68 Loss-calibrated Monte Carlo Action Selection

Lemma 4. The following bound for a given action a 6= a∗ and u(a, θ) ≥ 0 holds:(
E
[

ˆEUN(a)− max
a′A\{a}

ˆEUN(a′)
])2

≤
(

∑
a′∈A

EU(a′)
)2

. (5.8)

Proof. From Lemma 2 we can expand the first term as(
E
[

ˆEUN(a)− max
a′A\{a}

ˆEUN(a′)
])2

≤ EU(a)2 − 2EU(a)EU(a∗) +
(

∑
a′∈A\{a}

EU(a′)
)2

(5.9)

and we know
(

∑a∈A EU(a′)
)2
=
(

EU(a) + ∑a′∈A\{a} EU(a′)
)2

which means

(
∑

a′∈A\{a}
EU(a′)

)2
=
(

∑
a′∈A

EU(a′)
)2
− EU(a)2 − 2EU(a)

(
∑

a′∈A\{a}
EU(a′)

)
. (5.10)

Substituting Equation 5.9 in Equation 5.10 indicates that the difference of the first
and second expressions in Equation 5.8 is always non-negative.

Lemma 5. The following bound for a given action a 6= a∗ and u(a, θ) ≥ 0 holds:(
E
[

max
a′A\{a}

ˆEUN(a′)− ˆEUN(a)
])2

≥
(

EU(a∗)− EU(a)
)2

.

Proof. Considering both sides in Lemma 3 are positive when multiplied by −1, we
can square them.

In the subsequent lemma, we upper bound the indicator function with a smooth
and convex upper bound that will be easier to minimize. The use of surrogate function
for minimizing indicator has also been used in similar problems (see e.g. [6]).

Lemma 6. For an optimal action a∗ and its estimate âN obtained from sampling, we have
∀t > 0,

P [âN 6= a∗] ≤ ∑
a 6=a∗

E

[(
t
(

ˆEUN(a)− max
a′∈A\{a}

ˆEUN(a′)
)
+ 1
)2
]

.

§5.1 Loss-calibrated Monte Carlo Importance Sampling 69

Proof. Since we know I[v > 0] ≤ (tv + 1)2, we have

P [âN 6= a∗] = ∑
a 6=a∗

P[a = âN]

= ∑
a 6=a∗

E

[
I

[
ˆEUN(a) > max

a′∈A\{a}
ˆEUN(a′)

]]

≤ ∑
a 6=a∗

E

[(
t
(

ˆEUN(a)− max
a′∈A\{a}

ˆEUN(a′)
)
+ 1
)2
]

.

Lemma 7. Assuming utility values are non-negative everywhere, the following bound holds
for some t > 0:

P [âN 6= a∗] ≤ (k− 1) + 2t ∑
a∈A\{a∗}

(
EU(a)− EU(a∗)

)

+ t2 ∑
a∈A\{a∗}

V

[(
ˆEUN(a)− max

a′∈A\{a}
ˆEUN(a′)

)]
+ t2

(
∑

a′∈A
EU(a′)

)2
.

Proof. Expanding the RHS of Lemma 6 we have

E

[(
t
(

ˆEUN(a)− max
a′∈A\{a}

ˆEUN(a′)
)
+ 1
)2
]

= 1 + 2tE

[(
ˆEUN(a)− max

a′∈A\{a}
ˆEUN(a′)

)]
+ t2E

[(
ˆEUN(a)− max

a′∈A\{a}
ˆEUN(a′)

)2
]

.

From Lemma 3 we can expand the first expectation and then considering E[X2] =
V[X] + E[X]2 and Lemma 4 we get the bounds in the Lemma 7.

Lemma 8. For the bounds detailed in Lemma 7, the value of t that minimizes the upper
bound of RHS is

t =
∆(

∑a∈A EU(a)
)2 ,

where ∆ = EU(a∗)−maxa′∈A\{a∗} EU(a′).

Proof. We know

∆ = EU(a∗)− max
a′∈A\{a∗}

EU(a′) ≤ EU(a∗)− EU(a)

considering maxa′∈A\{a∗} EU(a′) ≥ EU(a) for a 6= a∗, then

EU(a)− max
a′∈A\{a}

EU(a′) = EU(a)− EU(a∗) ≤ −∆

70 Loss-calibrated Monte Carlo Action Selection

and we can rewrite Lemma 7 by replacing the second term with its upper bound
(because the variance decreases with the number of samples n to ultimately approach
zero we disregard it here) as:

P [âN 6= a∗] ≤ (k− 1)

(
1− 2t∆ + t2

(
∑

a∈A
EU(a)

)2
)

, (5.11)

taking the derivative of RHS. with respect to t and equating to zero we will get the
solution.

Lemma 9. The following bounds on P[a∗ 6= âN] holds as N → +∞:

P [âN 6= a∗] ≤ (k− 1)

(
1−

(
∆

∑a∈A EU(a)

)2
)

. (5.12)

Proof. Replacing the value of t in the bounds in Equation 5.11 yields the proof.

In words, the probability of estimating the optimal action increases in proportion
with the gap between the expected utility of the best and second best actions. Also if,
without loss of generality, we assume that the minimum value of the expected utility
is zero, then for two action case the RHS of Equation 5.12 is also zero that indicates
the bound in this lemma is tight. These bounds are most didactic in two action case.

Putting everything together, the following theorem bounds the probability of sub-
optimal action selection:

Theorem 10 (Upper bound on the probability of suboptimal actions). We have the
following upper bound probability of suboptimal action selection for k actions in set A, true
expected utility EU(a) and its estimation ˆEUN(a) obtained from finite samples:

P [âN 6= a∗]≤ (k− 1) + ∑
a∈A\{a∗}

t

(
∆ + 2

(
EU(a)− EU(a∗)

)

+ tV
[

ˆEUN(a)− max
a′∈A\a

ˆEUN(a′)
])

, (5.13)

where t is given in Lemma 8.

Proof. Replacing the value of t obtained in Lemma 8 in Lemma 7, we have this theo-
rem.

The critical feature of Equation 5.13 is that all terms on the RHS other than the
variance are constant with respect to the sampling distribution q. Thus, this the-
orem suggests that a reasonable surrogate to minimize the regret in Equation 5.6
and consequently maximize the expected utility of the estimated optimal action is to
minimize the variance of the difference of the estimated utilities. This result is quite
intuitive – if we have a low-variance estimate of the differences of utilities, we will
tend to select the best action.

§5.1 Loss-calibrated Monte Carlo Importance Sampling 71

This is aligned with the importance sampling literature where it is well known
that the optimal distribution to sample from is the one that minimizes the variance
[34, 79] with a closed form solution as summarized in the following:

Corollary 11. [79] Define

E[H(s)] =
∫

H(s) f (s)ds =
∫

H(s)
f (s)
g(s)

g(s)ds.

Then, the solution to the variance minimization problem

min
g

V

[
H(s)

f (s)
g(s)

]
is given by

g∗(s) =
|H(s)| f (s)∫
|H(s)| f (s)ds

.

Our analysis shows the variance of the function that has to be minimized is of a
particular form that depends on the difference of the utilities (rather than each utility
independently).

Lemma 12. We have the following bound on the sum of variances

∑
a∈A\{a∗}

V

[
max

a′∈A\a
ˆEUN(a′)− ˆEUN(a)

])
≤ ∑

a∈A\{a∗}
E

(1
N

N

∑
i=1

Υ(θi, a)

)2
−C, (5.14)

where Υ(θi, a) = p(θi)
q(θi)

(
maxa′∈A\{a}u(θi, a′)− u(θi, a)

)
and C =

(
EU(a∗)− EU(a)

)2
.

Proof. We know V[X] = E[X2] − E[X]2 and the upper bound on the first term is
proved using the Jensen’s inequality (the weights are normalized as will be discussed
in Equation 5.16). Also, from Lemma 5 we have the second term.

5.1.3 Optimal q

We established that to find the optimal proposal distribution q∗ (i.e. optimal q), we
minimize the sum of variances obtained from Theorem 10. Since a∗ is unknown,
we consider actions in A, rather than just A\{a∗}. Since C is independent of q in
Equation 5.14, the objective is to minimize the RHS subject to

∫
q(θ)dθ = 1 so that

the resulting solution is a proper distribution.
The following theorem provides the solution to the optimization problem in

Equation 5.14 that we are interested in:

Theorem 13. Let A= {a1, . . . , ak} with non-negative utilities. The optimal distribution

72 Loss-calibrated Monte Carlo Action Selection

q∗(θ) is the solution to problem in Equation 5.14 and has the following form:

q∗(θ) ∝ p(θ)

√√√√∑
a∈A

(
max

a′∈A\{a}
u(θ, a′)− u(θ, a)

)2

. (5.15)

Proof. From the objective in Equation 5.14 we have the following value to minimize:

∫
q(θ1,...,N)

(
1
N

N

∑
i=1

Υ(θi, a)p(θi)

q(θi)

)2

dθ1,...,N

=
1

N2

∫ N

∑
i=1

N

∑
j=1

Υ(θi, a)Υ(θj, a)q(θ1, . . . , θN)dθ1 . . . θN .

Since all the samples are independent, the joint distribution factorizes as follows:
q(θ1, . . . , θN) = q(θ1) . . . q(θN). Now if i 6= j, it is easy to see that q vanishes and those
terms become independent of q. If i = j however, we have one of the terms in the
denominator canceled out with the joint. Also because the sum is over similar terms,
we have N times the same expression that lead to the Lagrangian of the optimization
to become:

L(q, λ) =
1
N ∑

a∈A

∫ Υ(θ, a)2 p(θ)2

q(θ)
dθ+ λ

(∫
q(θ)dθ− 1

)
.

Taking the derivative with respect to a fixed q(θ), we have

− 1
N ∑

a∈A

Υ(θ, a)2 p(θ)2

q(θ)2 + λ = 0⇒ ∑
a∈A

p(θ)2

q(θ)2 Υ(θ, a)2 = λN

which concludes the theorem since λN only induces a proportionality constant.

This is quite intuitive – the samples θ will be concentrated on regions where p(θ)
is large, and the difference of utilities between the actions is large, which is precisely
the intuition that motivated our work in Figure 5.1. This will tend to lead to the
empirically optimal action being the true one, i.e. that âN approaches a∗.

In practice, the normalization constants for p and q are likely to be unknown,
meaning that direct use of Equation 5.4 is impossible. However, there are well-
known self-normalized variants that can be used in practice with p(θ) ∝ p̃(θ) and
q(θ) ∝ q̃(θ), namely

ˆEUN(a) =
1
N

N

∑
i=1

u(θi, a)
p̃(θi)

q̃(θi)

/
1
N

N

∑
i=1

p̃(θi)

q̃(θi)
θi ∼ q̃. (5.16)

This simply means that for the case of unnormalized p̃ and q̃, all the utility values

have to now be reweighted by the slightly more complex value of
(

p̃(θi)
q̃(θi)

/
∑n

j=1
p̃(θj)

q̃(θj)

)
.

Furthermore, as it is hard to directly sample q, we must resort to Markov Chain

§5.2 Applications 73

Monte Carlo (MCMC) methods [57], e.g. Metropolis-Hastings (MH). This disregards
an important aspect, namely that the samples we obtain for q are not truly indepen-
dent. Rather, the number of effective samples are affected by the mixing rate of the
Markov chain. Our derivation above does not account for these mixing rates, which
could be important in many applications. For this reason, our experiments will
distinguish between two settings: First, one can run an extremely long chain, and
subsample from this, approximating nearly independent samples as in the deriva-
tion above, which we call “subsampled MC”. Secondly, one can run a single Markov
chain, as would be typical in practice, which we call “Multiple MC”.

5.2 Applications

As discussed earlier, many applications require optimal actions to be selected effi-
ciently given known (but complex) p and u. In this section we provide applications
and evaluate how well the samples drawn from p and q∗ compare. In these simula-
tions we are interested in finding the optimal action, that is, the one that maximizes
the expected utility with the minimum number of samples. As such we generate
samples from the true distribution p and the proposed optimal distribution q∗ (ob-
tained from Theorem 17 as per the application’s specifications) and compute the
expected utilities for each action. In case direct sampling is not possible we use
Metropolis-Hastings MCMC by initializing the chain at a random point and using
a Normal distribution centered at the current sample with isotropic covariance op-
timally tuned so that around 23% of samples are accepted [78]. In each experiment
n samples are generated 200 times and the mean of the percentage of times the true
optimal action is selected is reported.

We include two diagnostics for MCMC samplers: in the first one (Subsampled MC)
we have generated a large chain of 100000 samples and selected random subsam-
ples to compute the best action using the empirical expected utilities ˆEUN(a). Since
samples drawn from Markov chain is typically correlated, this diagnosis will help
with ensuring all the samples are independent. In the second diagnostic (Multiple
MC) we generate 200 chains with equal length each started at random point and run
independently to calculate the expected utilities for selecting the best action.

5.2.1 Power-plant Control

We consider a power plant where the temperature of the generator has to be kept in a
safe range or otherwise it has to be turned off so that the main generator is not melted
as the first example from [47]. Suboptimal actions that either keep the generator on
in high temperatures or turn it off in unnecessary cases when temperature is safe and
no maintenance is required leads to financial loss for the power plant and should be
avoided.

For this problem, we can model the distribution of the temperature at various
points in the generator and use a high utility for cases where a safe action of turning
the generator on or off is taken. Then we specify the distribution of this temperature

74 Loss-calibrated Monte Carlo Action Selection

and select the optimal action for the generator that maximizes the expected utility.
Formally, we specify a simple utility function as,

u(θ, a = on) =

{
Hon c(d)1 < θ(d) < c(d)2

Lon otherwise
(5.17)

and,

u(θ, a = off) =

{
Hoff c(d)3 < θ(d) < c(d)4

Loff otherwise
(5.18)

where θ(d) is the temperature at d-th point, H, L (for action on/off) is the value
gained from the power plant for the desired action in the temperature limits. Val-
ues of c(d)1 , c(d)2 , c(d)3 , c(d)4 are constants and define the utility functions. We use three
distinct one dimensional utilities for simulations:

1. c(1)1 = 15, c(1)2 = 20, c(1)3 = 15, c(1)4 = 21, Hon = 6.5, Hoff = 5, Lon = 1.5, Loff = 4;

2. c(1)1 = 45, c(1)2 = 50, c(1)3 = 35, c(1)4 = 40, Hon = 6.5, Hoff = 2.5, Lon = 1.5, Loff =
3;

3. c(1)1 = 5, c(1)2 = +∞, c(1)3 = −∞, c(1)4 = +∞, Hon = 5, Hoff = 3, Lon = 2.5, Loff =
3.

We perform 3 experiments and for each we specify a distribution. Corresponding
to each utility, the following three distributions are used to demonstrate how the
samples drawn from p and q∗ obtained from Theorem 17 perform in selecting the
optimal action:

1. p(θ) = 0.7 ∗ N (θ(1); 3, 7) + 0.3 ∗ N (θ(1); 12, 2) where N (θ(1); µ, σ2) is a normal
distribution with mean µ and variance σ2;

2. p(θ) = 0.05 ∗ N (θ(1); 3, 1) + 0.2 ∗ N (θ(1); 6, 1) + 0.05 ∗ N (θ(1); 10, 3)+0.3 ∗
N (θ(1); 15, 2) + 0.05 ∗N (θ(1); 20, 7) + 0.1 ∗N (θ(1); 25, 2) + 0.05 ∗N (θ(1); 30, 3) +
0.2 ∗ N (θ(1); 40, 5)

3. a log-normal distribution p(θ) = Log-N (θ(1); 0, 1).

These distributions represent various temperature behavior at different points in the
power-plant. In Figure 5.2, the utility functions in the first column with black in-
dicating the utility of action on as detailed in Equation 5.17 and purple specifying
action off in Equation 5.18. We further illustrate the corresponding distributions in
Figure 5.2 with p in blue from three experiments with varying distributions as de-
tailed above and q∗ in red in the second column are shown. In the third and fourth
columns the result of performing Subsampled MC and Multiple MC of the Metropolis-
Hastings sampler for selecting the best action is shown such that the x-axis repre-
sents the number of samples and the y-axis demonstrate the percentage of times the

§5.2 Applications 75

u(θ, a = on/off) distribution of p and q∗ Subsampled MC

Multiple MC

θ

-10 0 10 20 30

U
ti
lit

y
 V

a
lu

e

2

3

4

5

6
u(θ, on)
u(θ, off)

θ

-10 0 10 20 30
P

ro
b

a
b

ili
ty

0.01

0.02

0.03

0.04

0.05

No. Subsamples
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o

n
 S

e
le

c
te

d

60

70

80

90

100

Markov Chain Length
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o

n
 S

e
le

c
te

d

60

70

80

90

100

p

q
*

θ

0 20 40 60

U
ti
lit

y
 V

a
lu

e

2

3

4

5

6
u(θ, on)
u(θ, off)

θ

0 20 40 60

P
ro

b
a

b
ili

ty

0.005

0.01

0.015

0.02

0.025

0.03

0.035

No. Subsamples
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o

n
 S

e
le

c
te

d

20

40

60

80

100

Markov Chain Length
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o

n
 S

e
le

c
te

d

20

40

60

80

100

p

q
*

θ

20 40 60 80 100

U
ti
lit

y
 V

a
lu

e

3

3.5

4

4.5

5 u(θ, on)
u(θ, off)

θ

20 40 60 80 100

P
ro

b
a

b
ili

ty

0.02

0.04

0.06

0.08

0.1

0.12

No. Subsamples
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o

n
 S

e
le

c
te

d

20

40

60

80

100

Markov Chain Length
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o

n
 S

e
le

c
te

d

20

40

60

80

100

p

q
*

Figure 5.2: Power-plant simulations: the step-valued utility function (as in Equation
5.17 and 5.18) in the first column, the true distribution p (in blue) and q∗ (in red)
in the second column and in the third and forth columns the result of performing
Subsampled MC and Multiple MC (as described in the text) are shown. In the two right-
hand columns, note that q∗ achieves the same percentage of optimal action selection

performance as p in a mere fraction of the number of samples.

correct optimal action is selected. Here, in general we observe that a significantly
smaller number of samples from q∗ is needed to select the best action in comparison
to the number of samples from p required to achieve the same performance.

To investigate the performance of sampling from p and q∗ in higher dimen-
sions, we use a d-dimensional Gaussian mixture corresponding to temperatures at
each point in the plant as p(θ) = N (θ; 10, Σ) +N (θ; 20, Γ) where 10 and 20 are d-
dimensional vectors with constant value 10 and 20 as the mean and Σi,j = 5 + I[i =
j] and Γi,j = 3 + 7I[i = j] as d × d covariance matrix. In addition, the utility

function in Equation 5.17 and 5.18 is specified with c(d)1 = 23, c(d)2 = 25, c(d)3 =

20, c(d)4 = 22, Hon = 50d, Hoff = 13, Lon = 1.1, Loff = 1.5 log(d). In Figure 5.3 for
d ∈ {2, 4, 10, 20, 50, 80, 100}, we observe that in an average of 100 runs of the MCMC
with 200 samples, as the dimensions increase using q∗ is more efficient. In fact, for
a 100-dimensional bimodal Gaussian we are unable to find the optimal action using
only 200 samples from p, which should be contrasted with the significantly improved
performance given by sampling from q∗.

76 Loss-calibrated Monte Carlo Action Selection

Dimension
0 20 40 60 80 100

%
 O

p
ti
m

a
l
A

c
ti
o
n
 S

e
le

c
te

d

0

20

40

60

80

100
p

q
*

(a) Subsampled MC

Dimension
0 20 40 60 80 100

%
 O

p
ti
m

a
l
A

c
ti
o
n
 S

e
le

c
te

d

0

20

40

60

80

100
p

q
*

(b) Multiple MC

Figure 5.3: Performance of the decision maker in selecting the best action as the
dimension of the problem increases in the power-plant. Note that at 100 dimensions,
p is unable to select the optimal action whereas q still manages to select it a fraction

of the time (and would do better if more samples were taken).

(a) Environment’s Map

No. Subsamples
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o
n
 S

e
le

c
te

d

60

70

80

90

100

(b) Subsampled MC

Markov Chain Length
0 500 1000 1500 2000

%
 O

p
ti
m

a
l
A

c
ti
o
n
 S

e
le

c
te

d

60

70

80

90

100

p

q
*

(c) Multiple MC

Figure 5.4: A robot’s internal map showing the samples taken from its true belief
distribution p (two modes are shown in blue, the second one is slightly obfuscated
by the robot) and the optimal sampling distribution q∗ derived by our loss calibrated
Monte Carlo importance sampler in 5.4(a). In 5.4(b) and 5.4(c) we see the perfor-
mance (in terms of percentage of optimal action selected) of our loss-calibrated sam-
pling method using q∗ leads to near immediate detection of the optimal action in

only a few samples.

5.2.2 Robotic Navigation

Another application where sampling has been commonly used is localization in
robotics [87]. It is a risk-sensitive-decision making problem where wrong actions
may lead to catastrophic incidents like falling down the stairs or crashing into ob-
stacles. Meanwhile, the robot has to navigate to the charger when it has the chance
to maintain its power. Due to minimal resources on-board a robot and the nature of
the real-time localization problem, it is crucial for the robot to be able to select the
optimal action rapidly, yet safely.

The state of the robot is the combination of its coordinates on a map and its
heading direction. In our example for these experiments, we use a three dimensional
Gaussian belief state distribution with two locations in a room intended to model
that a robot’s belief update has been confused by symmetries in the environment:

§5.3 Conclusion and Future Work 77

one mode is at the robot’s true location and the other at the opposite end of the
room.

In this experiment, we consider a map as shown in Figure 5.4(a) where there
is a flat in-door environment that the robot can move by selecting one of the four
actions forward, backward, right or left. This action will lead to a movement step in
robot from the current point on map with the heading direction towards the selected
action. In doing so however, the robot has to avoid the stair (low utility region) and
select the charging source (high utility region).

Assuming a deterministic transition dynamics model θ′=T(θ, a) and denoting
(T(θx, a), T(θy, a)) as the location of the robot after taking action a from state θ (that
is, moving from the current location in the heading’s direction by the selected action)
and Rr the set induced by region r, we use the following utility function:

u(θ, a) =

H (T(θx, a), T(θy, a)) ∈ Rcharger

L (T(θx, a), T(θy, a)) ∈ Rstair

M otherwise

, (5.19)

where L < M < H and a ∈ {forward, backward, right, left}. Using distribution
q∗ from Theorem 17 as illustrated in Figure 5.4(a), the samples from q∗ (in red)
concentrated on the charger’s location which has higher utility value compared to
the samples from p (in blue) that are from the mode of the distribution.

As shown in Figure 5.4(b) and 5.4(c), using distribution q∗ and running the same
diagnostics as the previous experiment we see significant improvement in selection
of the optimal action, requiring only a fraction of the samples of p to achieve the
same optimal action selection percentage.

5.3 Conclusion and Future Work

In this chapter we examined an efficient Monte Carlo method for computing the ex-
pected utilities. We argued the our loss-sensitive framework improves the efficiency
of optimal Bayesian decision-theoretic action selection in comparison to conventional
loss-insensitive Monte Carlo methods. In doing so, we derived an “optimal” pro-
posal distribution for importance sampling that minimizes the regret bounds on the
expected utility for multiple actions. This regret bound was also related to the prob-
ability of selecting suboptimal actions and was subsequently upper bounded by the
variance of the utilities. We showed using an alternative distribution with the given
form, MC samples more heavily from regions of significance as identified by their
difference of utilities. Empirically, we showed that our loss-calibrated Monte Carlo
method yields high-accuracy optimal action selections in a fraction of the number of
samples required by loss-insensitive samplers in examples of up to 100 dimensions
and actual robotics applications.

Although we have seen empirical evidence for efficiency of this Monte Carlo
approach, the regret bounds derived in this chapter for multi-action problems are

78 Loss-calibrated Monte Carlo Action Selection

not very tight. Improving these bounds in the future can lead to better performance.
In addition, even though the problem was formulated in terms of all the actions
except the unknown optimal action, we had to consider all the actions which further
approximates the upper bound. Alternatively, we could consider finding the optimal
solution by iterating through the differences of each action with all the others. This
could lead to a tighter bound as well.

Altogether, this work opens avenues of further research and enables us to suggest
a new class of state-of-the-art loss-calibrated Monte Carlo samplers for efficient on-
line Bayesian decision-theoretic action selection. Such a sampling technique is crucial
for EEU framework where we need to compute integrals efficiently. This will have
a great impact in efficient optimal action selection in the environments where the
utility itself is unknown or imprecise. In addition, improving upon this framework,
we can see applications where EEU becomes more widely used.

In the subsequent chapter, we will summarize this thesis and will discuss future
works that can be built upon our contributions in this thesis.

Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, we investigated the problem of efficient Bayesian decision theoretic
representation, learning and inference of unknown utilities and performing optimal
action selection with respect to the state and utility uncertainty. In particular we were
motivated by autonomous interactive systems, recommender systems and robotics
scenarios. In these problems the environment is uncertain and the utility function has
to be modeled and learned. To this end, we leveraged expected expected utility (EEU)
as a general framework for decision making in uncertain environments and examined
the problem of (1) learning the distribution of uncertain utilities and (2) efficient
selection of the optimal action. In this thesis, we aimed to address both of these
problems. For (1), we took a Bayesian non-parametric approach to utility function
modeling and learning. We exploited community structure prevalent in collective
user preferences using a Dirichlet Process mixture of Gaussian Processes (GPs) and
showed how to sparsifying the GP model in order to preserve optimal decisions while
ensuring tractable expected utility computations. We addressed (2) in a Monte Carlo
framework by deriving an optimal loss-calibrated importance sampling distribution
and showed how it can be extended to uncertain utility representations developed in
the previous contributions. We briefly summarize our contributions as follows:

• The Von Neumann-Morgenstern theorem provides the necessary conditions for
using utilities as a convenient way to model preferences. Utilities, in this case,
can be learned from observed preferences. In Chapter 3, we exploited the ob-
servation that user populations often decompose into communities of shared
preferences and modeled user preferences as an infinite Dirichlet Process mix-
ture of communities. The preferences in each community were used to learn
the belief model of utilities in a Gaussian process. The resulting inference al-
gorithm scaled linearly with the number of users. This model was capable of
efficiently finding the communities by grouping their preferences.

• As discussed in Chapter 4, we sparsified a Gaussian Process utility model for
preference learning. By minimizing the loss incurred by removing a user or
item from the posterior in the EEU framework, we proposed a principled
method for sparsification. We referred to our method as the valuable vector

79

80 Conclusion

machine (VVM) to emphasize the importance of considering a loss-sensitive
sparsification approach. We showed several popular sparsification methods
were recovered in a generalized decision-theoretic framework by specifying the
appropriate loss. Overall, our approach contributes to the goal of bridging the
gap between decision theory and approximate Bayesian inference by greedily
minimizing the expected loss.

• Finally in Chapter 5, we examined another aspect of the EEU framework,
namely loss-calibrated Monte Carlo importance sampling methods to improve
the efficiency of optimal Bayesian decision-theoretic action selection in com-
parison to conventional loss-insensitive Monte Carlo methods. We derived an
optimal importance sampling distribution to minimize the regret bounds on
the expected utility for multiple actions. This, to the best of our knowledge,
is the first result linking the utility function and the optimal distribution for
Monte Carlo importance sampling in Bayesian decision theory.

In short, in the EEU framework we can compute the posterior from the observations
(preferences) by either considering their structure (communities) in Chapter 3 or
the loss incurred for sparsification in Chapter 4. Having obtained the posterior, we
can compute the expectations for finding the optimal action efficiently using the
proposed approach in Chapter 5.

In the following, we discuss further extensions and avenues of research that can
be investigated in the future.

6.2 Future Work

While this thesis addresses various aspects of EEU for learning from unknown util-
ities and computing the optimal action efficiently, there are many unexplored areas
for future research:

1. Loss Calibration in more general cases:

(a) Divergence measures for loss-sensitive inference: Inference in variational
methods and EP can be thought of as minimizing the log likelihood of the
desired posterior regardless of the task-at-hand. It seems natural to eval-
uate the approximated distribution with respect to the task loss. Using
other divergence measures such as f -divergence as in ([42]), we can bridge
this gap and obtain a task-specific measure to perform inference. This is
because f -divergence is defined based on a convex function f that can be
specified using the task-loss. Hence using a task-specific divergence in-
stead of a general purpose KL. For instance for two actions (binary prob-
lems) and convex loss functions, [64] provides appropriate f functions
and corresponding divergences. The relation between f -divergence, Breg-
man divergences and the binary experiment losses has been considered in
[36, 52, 76].

§6.2 Future Work 81

In another class of divergence measures, namely α-divergences, [54] dis-
cussed the general problem of inference that includes variational inference
and EP that corresponds to selection of α. It was argued that the α value
that determines the divergence measure leads to selection of different re-
gions of the true posterior. Different task losses correspond to divergences
that focus on different regions of the posterior.

(b) Loss-sensitive message passing in graphical models: Approximate mes-
sage passing ([92, 94]) is one of the main inference methods in graphical
models. Intractable factors in the graph are approximated and exact mes-
sage passing is performed on all the rest. In the factors that have to be
approximated, task loss can be incorporated to tailor the approximation
for a particular problem. In this case, the messages sent are calibrated
with the task loss incurred by the approximations.

2. Efficient Action Selection in more general cases:

(a) Continuously parameterized actions for decision-theoretic action selec-
tion: In many real-world problems, such as system control, the action
is better modeled continuously and discretization makes the solution in-
tractable [49]. In such problems efficient action selection, similar to the
one discussed in Chapter 5, is crucial. However, since the action space is
continuous, formulating a closed form solution for the proposal distribu-
tion that resembles the one found in this thesis is challenging because it
involves an integral that is again hard to compute.

(b) Uncontrollable sampling: When the utility partially depends on auxiliary
variables that cannot be directly observed, optimal action selection can
be challenging. In many real world applications there are aspects of the
problem, that even though hard to sample, affect the utility. For instance
in marketing when sampling individuals, age is an observable attribute
that can be easily sampled, however, other aspects such as their interest
in the product is not known in advance and only determined after the
samples are all collected. These latent variables can be sampled using
the efficient action selection algorithm discussed in this thesis however
since these latent variables indirectly affect the expected utility, this might
complicate the sampling.

(c) Applications in active learning: In active learning, the learner is able to
query the user or some other oracle for the label of a particular instance. A
common practice in active learning is to determine a hypothesis model for
sample selection based on the performance of that model. For example
selective sampling ([26]) and its improved weighted version ([10]), per-
forms active learning by iteratively selecting “regions” of the input space
and refining the hypothesis models. In the light of the discussions in this

82 Conclusion

thesis, the optimal hypothesis model is the optimal action sought using
minimum samples drawn from a region.

(d) Improving the bounds for optimal action selection: Although the upper
bounds in Chapter 5 led to a natural objective to loss-calibrated sampling,
i.e. variance reduction, these bounds are not very tight. Improvements in
these bounds may lead to other objectives that may exhibit better sampling
performance.

3. New Applications:

(a) Novel nonparametric approaches to community learning: As we showed
in Chapter 3, hierarchical Bayesian modeling of the users is useful in di-
rectly modeling and learning community-based preference structure. As
such, extensions of the current nonparametric approaches to learning the
communities from the preferences can be investigated. These nonpara-
metric approaches, e.g. as an extension of Indian Buffet Process ([35]) and
Mallows processes ([2]) that are specifically used for preference learning
without considering user communities can take advantage of the social
information available for each user.

(b) Improving optimization methods: Stochastic optimization methods, e.g.
stochastic gradient descent, use a noisy gradient computed from a subset
of training examples to efficiently update current solutions. These algo-
rithms are increasingly popular due to their simplicity of use and speed.
The ideas in this thesis can be used in the light of sampling the observa-
tions (i.e. as states) that are more important to finding the optimal param-
eters that optimize the objective loss function. In such cases, instead of
sampling the observations uniformly, one can sample instances that help
further reduce the expected loss. Although variance reduction is widely
used for improving stochastic optimization, further research in using the
loss function for efficient sampling may lead to further performance boost.
It might be used in the Bayesian optimization solutions as well ([19]) where
the function to be optimized is uncertain and only its values at particular
points are known.

(c) Extensions to sequential decision making: In sequential problems (e.g.
Markov Decision Processes (MDPs) and Partially Observable Markov De-
cision Processes (POMDPs)), a decision maker selects an action that affects
the world and changes its state stochastically ([17]). The objective of the
decision maker is to perform these series of actions in this uncertain en-
vironment to maximize some “value” function that may not be known in
advance. This requires exploration in the space with exponentially large
search space. The problem formulation is slightly different from the one
considered in this thesis, namely that sequential problems are looking for
a policy rather than a single action and the state distribution depends on

§6.3 Concluding Remarks 83

the current action. However, sampling combined with dynamic program-
ming is effective in finding the solution to these problems and is a natural
extension of what is discussed in this thesis. For instance Monte Carlo tree
search (MCTS) ([20]) as a framework for best action selection for current
state in online planning is a straightforward extension of our approach
where the samples from the tree paths are taken to maximize the value
function similar to the approach discussed in Chapter 5.

6.3 Concluding Remarks

In this thesis, we discussed efficient and scalable computation of expected expected
utility for optimal Bayesian decision-theoretic action selection. Applications in pref-
erence learning and robotics decision-making scenarios demonstrate the effectiveness
of the theoretical foundations laid in this thesis. We hope the ideas in this thesis pave
the way for future advances that address important practical problems at the inter-
section of Bayesian decision theory and scalable machine learning.

84 Conclusion

Appendix A

Alternative Formulation of the
Loss-calibrated MC Action
Selection

A.1 Minimizing the probability of suboptimal action

In this appendix, we provide an alternative formalization of the loss-calibrated Monte
Carlo method discussed in Chapter 5.

Lemma 14. For an optimal action a∗ and its estimate âN obtained from sampling, we have
∀t > 0,

P [a∗ 6= âN] ≤ ∑
a 6=a∗

∑
a′ 6=a

E
[(

t
(ˆEUN(a)− ˆEUN(a′)

)
+ 1
)2
]

.

Proof. Firstly, decompose P [a∗ 6= âN] as

∑
a 6=a∗

P[a = âN] ≤ ∑
a 6=a∗

∑
a′ 6=a

P[ˆEUN(a) > ˆEUN(a′)]

= ∑
a 6=a∗

∑
a′ 6=a

E
[
I
[ˆEUN(a) > ˆEUN(a′)

]]
.

Applying the inequality that I[v > 0] ≤ (tv + 1)2 gives the result.

The next theorem then relates the value inside the above expectation to the vari-
ance, thus bonding the probability of incorrect action selection by the sum of vari-
ances.

Theorem 15 (Upper bound on the probability of suboptimal actions). We have the
following upper bound on the probability of suboptimal action selection for k actions in set A,
true expected utility EU(a) and its estimation ˆEUN(a) obtained from finite samples:

P [a∗ 6= âN] ≤ ∑
a 6=a∗

∑
a′ 6=a

(
1 + 2t

(
EU(a)− EU(a′)

)

+t2V
[ˆEUN(a)− ˆEUN(a′)

]
+t2
(

EU(a)− EU(a′)
)2
)

, (A.1)

85

86 Alternative Formulation of the Loss-calibrated MC Action Selection

Proof. Expand the quadratic in Lemma 14 and use E[X2] = V[X]+E[X]2 and E[ˆEUN(a)−
ˆEUN(a′)] = EU(a)− EU(a′).

In general, one would like to select the constant t to minimize this bound. As this
depends on the variance, which is a function of q and the number of samples n, this
is difficult to do analytically. However, we expect the variance to decrease

Lemma 16. For the bounds detailed in Lemma 15, if the variance term is zero, the value of t
that minimizes the upper bound is

t =
∑a 6=a∗ ∑a′ 6=a EU(a′)− EU(a)

∑a 6=a∗ ∑a′ 6=a (EU(a)− EU(a′))2 .

Proof. In general, the value of t minimizing 2ta + t2b is t = −a/b.

The critical feature of Equation A.1 is that all terms on the RHS other than the
variance are constant with respect to the sampling distribution q. Thus, this the-
orem suggests that a reasonable surrogate to minimize the regret in Equation 5.6
and consequently maximize the expected utility of the estimated optimal action is to
minimize the variance of the difference of the estimated utilities. This result is quite
intuitive – if we have a low-variance estimate of the differences of utilities, we will
tend to select the best action.

This is aligned with the importance sampling literature where it is well known
that the optimal distribution to sample from is the one that minimizes the variance
[34, 79]. Our analysis shows the variance of the function that has to be minimized is
of a particular form that depends on the difference of the utilities (rather than each
utility independently).

A.1.1 Optimal q

We established that to find the optimal proposal distribution q∗ (i.e. optimal q), we
minimize the sum of variances obtained from Theorem 15. Since a∗ is unknown, we
sum over all actions in A, rather than just A\{a∗}. Since everything except variance
in Equation A.1 is independent of q, we formulate the objective

min
q ∑

a∈A
∑

a′∈A\{a}
V
[ˆEUN(a)− ˆEUN(a′)

]
s.t.

∫
q(θ)dθ = 1. (A.2)

Here, the constraint on q is to ensure the resulting solution is a proper probability
distribution.

The following theorem provides the solution to the optimization problem in
Equation A.2 that we are interested in.

§A.1 Minimizing the probability of suboptimal action 87

Theorem 17. Let A= {a1, . . . , ak} with non-negative utilities. The optimal distribution
q∗(θ) is the solution to problem in Equation A.2 and has the following form:

q∗(θ) ∝ p(θ)
√

∑
a∈A

∑
a′∈A\{a}

(u(θ, a)− u(θ, a′))2. (A.3)

Proof. Since we know V[X] = E[X2]− E[X]2, for computing the objective in Equa-
tion A.2 the second expectation becomes (EU(a)− EU(a′))2 and is independent of q,
then we only need to minimize E

[(ˆEUN(a)− ˆEUN(a′)
)2
]
. Consider this value for a

particular pair (a, a′). Denoting Υ(θi, a, a′) = u(θ, a)− u(θ, a′), this is equal to

∫
q(θ1,...,n)

(
1
N

N

∑
i=1

Υ(θi, a, a′)p(θi)

q(θi)

)2

dθ1,...,N

=
1

N2

∫ N

∑
i=1

N

∑
j=1

Υ(θi, a, a′)Υ(θj, a, a′)p(θi)p(θj)

q(θi)q(θj)

× q(θ1, . . . , θN)dθ1,...,N .

Since all the samples are independent, q(θ1, . . . , θN) = q(θ1) . . . q(θN). Now if i 6= j,
it is easy to see that q vanishes and those terms become independent of q. If i = j
however, only one of the terms in the denominator cancels out with the joint. Also
because the sum is over similar terms, we have n times the same expression, leading
to the Lagrangian of

1
N ∑

a∈A
∑

a′∈A\{a}

∫ Υ(θ, a, a′)2 p(θ)2

q(θ)
dθ+ λ

(∫
q(θ)dθ− 1

)
.

Taking the derivative with respect to q(θ), we have that

− 1
N ∑

a∈A
∑

a′∈A\{a}

Υ(θ, a, a′)2 p(θ)2

q(θ)2 + λ = 0

which concludes the theorem since λN only induces a proportionality constant.

This is quite intuitive – the samples θ will be concentrated on regions where p(θ)
is large, and the difference of utilities between the actions is large, which is precisely
the intuition that motivated our work in Figure 5.1. This will tend to lead to the
empirically optimal action being the true one, i.e. that âN approaches a∗.

88 Alternative Formulation of the Loss-calibrated MC Action Selection

Bibliography

1. Airoldi, E. M.; Blei, D. M.; Fienberg, S. E.; and Xing, E. P., 2008. Mixed mem-
bership stochastic blockmodels. Journal of Machine Learning Research, 9 (2008).
(cited on page 50)

2. Alnur Ali, M. M., Thomas Brendan Murphy and Chen, H., 2010. Preferences
in college applications – a nonparametric bayesian analysis of top-10 rankings.
In Neural Information Processing Systems (NIPS) Workshop on Computational Social
Science 2010. (cited on page 82)

3. Auer, P.; Cesa-Bianchi, N.; and Fischer, P., 2002. Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning Journal, 47, 2-3 (May 2002), 235–
256. (cited on page 56)

4. Azari, H.; Parks, D.; and Xia, L., 2012. Random Utility Theory for Social Choice.
In Advances in Neural Information Processing Systems, 126–134. (cited on page 32)

5. Bai, H.; Hsu, D.; Kochenderfer, M. J.; and Lee, W. S., 2011. Unmanned Aircraft
Collision Avoidance using Continuous-State POMDPs. In Robotics: Science and
Systems VII, University of Southern California, Los Angeles, CA, USA, June 27-30,
2011. (cited on page 1)

6. Bartlett, P.; Jordan, I. M.; and McAaliffe, J. D., 2006. Convexity, Classifica-
tion, and Risk Bounds. Journal of the American Statistical Association, 101, 473 (Mar.
2006), 138–156. (cited on page 68)

7. Berger, J., 2010. Statistical Decision Theory and Bayesian Analysis. Springer, 2nd
edn. ISBN 9781441930743. (cited on pages 3, 7, and 10)

8. Berger, J. O., 1985. Statistical Decision Theory and Bayesian Analysis. Springer
Series in Statistics. Springer New York, New York, NY. ISBN 978-1-4419-3074-3,
978-1-4757-4286-2. (cited on page 10)

9. Bernardo, J. M. and Smith, A. F. M., 1994. Bayesian Theory. John Wiley & Sons,
Inc. ISBN 9780470316870. (cited on page 7)

10. Beygelzimer, A.; Dasgupta, S.; and Langford, J., 2009. Importance Weighted
Active Learning. In Proceedings of the 26th Annual International Conference on Ma-
chine Learning, ICML ’09, 49–56. ACM, Montreal, Quebec, Canada. (cited on
page 81)

89

90 BIBLIOGRAPHY

11. Birlutiu, A.; Groot, P.; and Heskes, T., 2010. Multi-task preference learning
with an application to hearing aid personalization. In Neurocomputing, vol. 73.
(cited on pages 32 and 50)

12. Bishop, C., 2006. Pattern Recognition and Machine Learning \textbar Springer. (cited
on pages 9, 22, and 23)

13. Blei, D. M.; Ng, A. Y.; and Jordan, M. I., 2003. Latent Dirichlet Allocation.
Journal Machine Learning Research, 3 (Mar. 2003), 993–1022. (cited on page 13)

14. Bonilla, E. V.; Guo, S.; and Sanner, S., 2010. Gaussian process preference
elicitation. In Advances in Neural Information Processing Systems, 153–160. (cited
on pages 32, 35, 36, 37, and 50)

15. Boutilier, C., 2003. On the Foundations of Expected Expected Utility. In Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence, International
Joint Conference on Artificial Intelligence’03, 285–290. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA. (cited on pages 3 and 32)

16. Boutilier, C.; Das, R.; Kephart, J.; Tesauro, G.; and Walsh, W., 2003. Cooper-
ative Negotiation in Autonomic Systems using Incremental Utility Elicitation. In
Proceedings of the Nineteenth Conference Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI-03), 89–97. Morgan Kaufmann, San Francisco, CA. (cited on
page 2)

17. Boutilier, C.; Dean, T.; and Hanks, S., 1999. Decision-Theoretic Planning:
Structural Assumptions and Computational Leverage. Journal of Artificial Intelli-
gence Research, 1 (1999), 1–93. (cited on page 82)

18. Braziunas, D. and Boutilier, C., 2006. Preference elicitation and generalized
additive utility. In proceedings of the 21st national conference on Artificial intelligence-
Volume 2, 1573–1576. AAAI Press. (cited on page 31)

19. Brochu, E.; Cora, V. M.; and de Freitas, N., 2010. A Tutorial on Bayesian Op-
timization of Expensive Cost Functions, with Application to Active User Model-
ing and Hierarchical Reinforcement Learning. arXiv:1012.2599 [cs], (Dec. 2010).
ArXiv: 1012.2599. (cited on pages 32 and 82)

20. Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowling, P.; Rohlf-
shagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.; Colton, S.; et al., 2012. A
survey of monte carlo tree search methods. Computational Intelligence and AI in
Games, IEEE Transactions on, 4, 1 (2012), 1–43. (cited on page 83)

21. Chajewska, U. and Koller, D., 2000. Utilities as random variables: Density
estimation and structure discovery. In Uncertainty in Artificial Intelligence, 63–71.
Morgan Kaufmann Publishers Inc. (cited on page 50)

BIBLIOGRAPHY 91

22. Chajewska, U.; Koller, D.; and Parr, R., 2000. Making Rational Decisions
using Adaptive Utility Elicitation. In In Proceedings of the Seventeenth National
Conference on Artificial Intelligence. (cited on pages 2 and 31)

23. Chu, W. and Ghahramani, Z., 2005. Extensions of gaussian processes for rank-
ing: semi-supervised and active learning. In Workshop on Learning to Rank at
Advances in Neural Information Processing Systems. (cited on pages 35 and 38)

24. Chu, W. and Ghahramani, Z., 2005. Preference learning with Gaussian pro-
cesses. In International Conference in Machine Learning, 137–144. ACM, Bonn, Ger-
many. (cited on page 32)

25. Chu, W. and Ghahramani, Z., 2005. Preference learning with Gaussian pro-
cesses. In International Conference in Machine Learning (Bonn, Germany, 2005),
137–144. ACM, New York, NY, USA. (cited on page 50)

26. Cohn, D.; Ladner, R.; and Waibel, A., 1994. Improving Generalization with
Active Learning. In Machine Learning Journal, 201–221. (cited on page 81)

27. Eric, B.; Freitas, N. D.; and Ghosh, A., 2008. Active preference learning with
discrete choice data. In Advances in Neural Information Processing Systems, 409–416.
(cited on page 50)

28. Freed, M.; Harris, R.; and Shafto, M., 2004. Comparing methods for UAV-
based autonomous surveillance. Technical report, NASA. http://ntrs.nasa.gov/
search.jsp?R=20040068395. (cited on page 1)

29. Frigyik, B. A.; Kapila, A.; and Gupta, M. R., 2010. Introduction to the Dirichlet
Distribution and Related Processes. Technical Report UWEETR-2010-0006, Uni-
versity of Washington. (cited on pages 16 and 22)

30. Fürnkranz, J. and Hüllermeier, E., 2010. Preference Learning. Springer-Verlag
New York, Inc., New York, NY, USA, 1st edn. (cited on page 35)

31. Gelman, A.; Carlin, J. B.; and Stern, H. S., 2014. Bayesian data analysis, vol. 2.
(cited on pages 7, 12, and 24)

32. Gelman, A.; Christian, R.; Chopin, N.; and Rousseau, J., 1995. Bayesian Data
Analysis. CRC press. (cited on pages 3, 7, 12, and 26)

33. Geweke, J., 1989. Bayesian Inference in Econometric Models Using Monte Carlo
Integration. Econometrica, 57, 6 (1989), 1317–1339. (cited on page 65)

34. Glasserman, P., 2004. Monte Carlo Methods in Financial Engineering. Applications
of Mathematics. Springer, 1st edn. ISBN 0-387-00451-3, 978-0-387-00451-8. (cited
on pages 71 and 86)

35. Griffiths, T. L. and Ghahramani, Z., 2011. The Indian Buffet Process: An
Introduction and Review. Journal of Machine Learning Research, 12 (Jul. 2011),
1185–1224. (cited on pages 16 and 82)

http://ntrs.nasa.gov/search.jsp?R=20040068395
http://ntrs.nasa.gov/search.jsp?R=20040068395

92 BIBLIOGRAPHY

36. Grunwald, P. D. and Dawid, A. P., 2004. Game Theory, Maximum Entropy, Min-
imum Discrepancy and Robust Bayesian Decision Theory. The Annals of Statistics,
32, 4 (Aug. 2004), 1367–1433. (cited on page 80)

37. Guiver, J. and Snelson, E., 2009. Bayesian inference for Plackett-Luce ranking
models. In proceedings of the 26th annual international conference on machine learning,
377–384. ACM. (cited on page 32)

38. Guo, S. and Sanner, S., 2010. Real-time multiattribute Bayesian preference elic-
itation with pairwise comparison queries. In Artificial Intelligence and Statistics.
(cited on pages 31 and 50)

39. Hjort, N. L.; Holmes, C.; Peter, M.; and G., W. S., 2010. Bayesian Nonparametrics,
vol. 10. Cambridge University Press. (cited on pages 16, 20, 21, and 22)

40. Howard, R., 1966. Information Value Theory. Systems Science and Cybernetics,
IEEE Transactions on, 2, 1 (Aug. 1966), 22 –26. (cited on page 55)

41. Hunter, D. R., 2004. Mm algorithms for generalized bradley-terry models. Annal
of Statistics, 32, 1 (02 2004), 384–406. (cited on page 31)

42. John Lu, Z. Q., 2007. Statistical Inference Based on Divergence Measures. Journal
of the Royal Statistical Society: Series A (Statistics in Society), 170, 3 (Jul. 2007), 857–
858. (cited on page 80)

43. Kamishima, T., 2003. Nantonac collaborative filtering: recommendation based on
order responses. In Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 583–588. (cited on page 47)

44. Keerthi, S. S. and Chu, W., 2005. A Matching Pursuit Approach to Sparse
Gaussian Process Regression. In Advances in Neural Information Processing Systems.
(cited on page 51)

45. Koller, D. and Friedman, N., 2009. Probabilistic Graphical Models - Principles and
Techniques. MIT Press. (cited on pages 7, 9, 23, 25, and 30)

46. Krause, A. and Golovin, D., 2012. Submodular function maximization. Techni-
cal report, ETH Zurich. (cited on page 54)

47. Lacoste-Julien, S.; Huszar, F.; and Ghahramani, Z., 2011. Approximate Infer-
ence for the Loss-calibrated Bayesian. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics (AISTATS-11), vol. 15, 416–424.
(cited on pages 51, 52, 61, 65, and 73)

48. Lawrence, N.; Seeger, M.; and Herbrich, R., 2003. Fast sparse Gaussian pro-
cess methods: The informative vector machine. In Advances in Neural Information
Processing Systems. (cited on pages 51 and 53)

BIBLIOGRAPHY 93

49. Lazaric, A.; Marcello, R.; and Andrea, B., 2007. Reinforcement learning in
continuous action spaces through sequential monte carlo methods. In Advances
in Neural Information Processing Systems. (cited on page 81)

50. Luce, D., 1961. Journal of the American Statistical Association, 56, 293 (1961), 172–
174. (cited on page 32)

51. MacKay, D., 2003. Information Theory, Inference and Learning Algorithms. (cited on
pages 9, 17, and 19)

52. Masnadi-shirazi, H. and Vasconcelos, N., 2009. On the design of loss func-
tions for classification: theory, robustness to outliers, and SavageBoost. In Ad-
vances in Neural Information Processing Systems 21 (Eds. D. Koller; D. Schuur-
mans; Y. Bengio; and L. Bottou), 1049–1056. Curran Associates, Inc. (cited on
page 80)

53. Meeds, E. and Osindero, S., 2005. An alternative infinite mixture of gaussian
process experts. In Advances in Neural Information Processing Systems. (cited on
page 50)

54. Minka, T., 2005. Divergence Measures and Message Passing. Technical report.
(cited on pages 22 and 81)

55. Minka, T. P., 2001. A Family of Algorithms for Approximate Bayesian Inference. Ph.D.
thesis, Massachusetts Institute of Technology. AAI0803033. (cited on pages 22
and 24)

56. Müller, P. and Quintana, F. A., 2004. Nonparametric Byesian data analysis.
Statistical Science, 19 (2004), 95–110. (cited on pages 22 and 35)

57. Neal, R. M., 1993. Probabilistic Inference Using Markov Chain Monte Carlo
Methods. Technical report, University of Toronto, University of Toronto. (cited
on pages 26 and 73)

58. Neal, R. M., 1998. Markov chain sampling methods for dirichlet process mixture
models. Technical report, Deptartment of Statistics, University of Toronto. (cited
on page 42)

59. Neal, R. M., 1998. Monte Carlo Implementation of Gaussian Process Models for
Bayesian Regression and Classification. Technical report, University of Toronto.
(cited on page 64)

60. Neal, R. M., 2011. MCMC using Hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2 (2011). (cited on page 29)

61. Neil, H.; Ferenc, H.; Zoubin, G.; and Mate, L., 2011. Bayesian Active Learn-
ing for Classification and Preference Learning. In Computing Research Repository.
(cited on page 61)

94 BIBLIOGRAPHY

62. Neil, H.; Miguel, H.-L. J.; Ferenc, H.; and Zoubin, G., 2012. Collaborative
Gaussian Processes for Preference Learning. In Advances in Neural Information
Processing Systems. (cited on page 61)

63. Neumann, J. V. and Morgenstern, O., 1944. Theory of Games and Economic Be-
havior. Princeton University Press. ISBN 0691119937. (cited on page 36)

64. Nguyen, X.; Wainwright, M. J.; and Jordan, M. I., 2009. On surrogate loss
functions and f-divergences. The Annals of Statistics, 37, 2 (2009), 876–904. (cited
on page 80)

65. Nowicki, K. and Snijders, T. A. B., 2001. Estimation and prediction for stochas-
tic blockstructures. Journal of the American Statistical Association, 96 (2001). (cited
on page 50)

66. Patrascu, R.; Boutilier, C.; Das, R.; Kephart, J. O.; Tesauro, G.; and Walsh,
W. E., 2005. New Approaches to Optimization and Utility Elicitation in Au-
tonomic Computing. In Proceedings of the 20th National Conference on Artificial
Intelligence - Volume 1, AAAI’05, 140–145. AAAI Press, Pittsburgh, Pennsylvania.
(cited on page 2)

67. Peter, O. and Whye, T. Y., 2010. Bayesian Nonparametric Models. In Encyclopedia
of Machine Learning. Springer. (cited on pages 16 and 22)

68. Plackett, R. L., 1975. The analysis of permutations. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 24, 2 (1975), 193–202. (cited on page 32)

69. Platt, J. C.; Burges, C. J. C.; Swenson, S.; Weare, C.; and Zheng, A., 2002.
Learning a Gaussian Process Prior for Automatically Generating Music Playlists.
In Advances in Neural Information Processing Systems. (cited on page 35)

70. Postlewaite, A., 2011. Social norms and social assets. Annual Review of Eco-
nomics, 3 (2011), 239–259. (cited on page 35)

71. Quiñonero-Candela, J. and Rasmussen, C., 2005. A unifying view of sparse
approximate Gaussian process regression. In Journal of Machine Learning Research,
1939–1959. (cited on page 60)

72. Rasmussen, C. E., 2000. The infinite gaussian mixture model. In Advances in
Neural Information Processing Systems, vol. 12. (cited on page 42)

73. Rasmussen, C. E. and Ghahramani, Z., 2002. Infinite mixtures of gaussian
process experts. In Advances in Neural Information Processing Systems. (cited on
page 50)

74. Rasmussen, C. E. and Williams, C., 2006. Gaussian Processes for Machine Learn-
ing. (cited on pages 4, 16, 17, and 20)

BIBLIOGRAPHY 95

75. Rasmussen, C. E. and Williams, C., 2006. Gaussian Processes for Machine Learn-
ing. (cited on pages 35, 58, and 60)

76. Reid, M. D. and Williamson, R. C., 2011. Information, Divergence and Risk for
Binary Experiments. Journal of Machine Learning Research, 12 (Mar. 2011), 731–817.
(cited on page 80)

77. Robert, C., 2001. The Bayesian Choice. Springer Texts in Statistics. Springer, 2nd
edn. (cited on pages 3, 7, and 30)

78. Roberts, G. O.; Gelman, A.; and Gilks, W. R., 1997. Weak Convergence and
Optimal Scaling of Random Walk Metropolis Algorithms. The Annals of Applied
Probability, 7, 1 (Feb. 1997), 110–120. (cited on page 73)

79. Rubinstein, R. Y., 1981. Simulation and the Monte Carlo Method. John Wiley &
Sons, Inc., 1st edn. ISBN 0471089176. (cited on pages 26, 71, and 86)

80. Seeger, M. W., 2003. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation
Error Bounds and Sparse Approximations. Ph.D. thesis, University of Edinburgh.
(cited on page 58)

81. Smola, A. J. and Bartlett, P., 2001. Sparse greedy Gaussian process regression.
In Advances in Neural Information Processing Systems. (cited on page 51)

82. Snelson, E. and Ghahramani, Z., 2006. Sparse Gaussian processes using
pseudo-inputs. In Advances in Neural Information Processing Systems. (cited on
pages 51 and 60)

83. Snoek, J.; Larochelle, H.; and Adams, R. P., 2012. Practical bayesian optimiza-
tion of machine learning algorithms. In Advances in neural information processing
systems, 2951–2959. (cited on page 55)

84. Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M., 2009. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. In
Advances in Neural Information Processing Systems. (cited on pages 52 and 61)

85. Teh, Y. W., 2010. Dirichlet process. In Encyclopedia of machine learning, 280–287.
Springer. (cited on pages 4 and 16)

86. Teh, Y. W.; Jordan, M. I.; Beal, M. J.; and Blei, D. M., 2004. Hierarchical
Dirichlet Processes. Journal of the American Statistical Association, 101 (2004), 1566–
1581. (cited on page 16)

87. Thrun, S., 2000. Probabilistic Algorithms in Robotics. AI Magazine, 21 (2000),
93–109. (cited on pages 64, 65, and 76)

88. Tzikas, D.; Likas, C.; and Galatsanos, N., 2008. The variational approximation
for Bayesian inference. IEEE Signal Processing Magazine, 25, 6 (Nov. 2008), 131–
146. (cited on page 23)

96 BIBLIOGRAPHY

89. Von Neumann, J. and Morgenstern, O., 1944. Theory of Games and Economic
Behavior. Princeton University Press. Princeton University Press. (cited on page
29)

90. Wainwright, M. J. and Jordan, M. I., 2008. Graphical Models, Exponential
Families, and Variational Inference. Foundations and Trends in Machine Learning, 1,
1-2 (Jan. 2008), 1–305. (cited on pages 9, 23, and 24)

91. Wang, C. and Neal, R. M., 2013. MCMC methods for Gaussian process mod-
els using fast approximations for the likelihood. Technical report, University of
Toronto. (cited on page 64)

92. Winn, J. and Bishop, C. M., 2005. Variational Message Passing. The Journal of
Machine Learning Research, 6 (2005), 661–694. (cited on pages 23, 24, and 81)

93. Xu, Z.; Kersting, K.; and Joachims, T., 2010. Fast active exploration for link-
based preference learning using Gaussian processes. In The European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery. (cited on
page 35)

94. Yedidia, J. S., 2011. Message-Passing Algorithms for Inference and Optimization.
Journal of Statistical Physics, 145, 4 (2011), 860–890. (cited on page 81)

95. Yedidia, J. S.; Freeman, W. T.; and Weiss, Y., 2003. Exploring artificial intelli-
gence in the new millennium. chap. Understanding Belief Propagation and Its
Generalizations, 239–269. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA. ISBN 1-55860-811-7. (cited on page 25)

96. Yellott, J. I., 1977. The relationship between luce’s choice axiom, thurstone’s
theory of comparative judgment, and the double exponential distribution. Journal
of Mathematical Psychology, 15, 2 (1977), 109–144. (cited on page 32)

	Declaration
	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Basic Framework
	Contributions
	Thesis Outline

	Background
	Foundation of Decision Theory
	Basic Definitions
	Modeling Uncertainty
	Graphical Models

	Using Prior and the Bayesian View
	Bayesian Decision Theory

	Bayesian Modeling and Learning
	Parametric Bayesian Modeling
	Nonparametric Bayesian Modeling
	Gaussian Processes
	Dirichlet Processes

	Bayesian Inference
	Laplace Method
	Variational Inference
	Expectation Propagation (EP)
	Sampling and Markov Chain Monte Carlo (MCMC)
	Monte Carlo Methods
	Gibbs Sampling
	Metropolis-Hastings

	Bayesian Decision Theory and Preference Learning
	Preferences and Existence of the Utility
	Risk-seeking vs. Risk-averse Behavior
	Learning the Utility Function

	Summary

	Learning Community-based Preferences
	Gaussian process for Multi-user Preference Learning
	Prediction
	Optimizing the Kernel Hyper-parameters

	Dirichlet Process Mixtures of Community-based Preference GPs
	Inferring Community utilities
	Inferring Community Membership
	Prediction
	Final Algorithm

	Empirical Evaluation
	Related Work
	Conclusion

	Decision-theoretic Sparsification for Gaussian Process Preference Learning
	Decision-theoretic Sparsification
	Observation-driven Sparsification
	Item-driven Sparsification: Valuable Vector Machine
	Loss Functions and Risk
	Log loss and IVM
	Valuable Vector Machine – Value Of Information
	Valuable Vector Machine – Upper Confidence Bound

	Empirical Evaluation
	Datasets
	Results

	Related Work
	Conclusion

	Loss-calibrated Monte Carlo Action Selection
	Loss-calibrated Monte Carlo Importance Sampling
	Minimizing regret
	Minimizing the probability of suboptimal action
	Optimal q

	Applications
	Power-plant Control
	Robotic Navigation

	Conclusion and Future Work

	Conclusion
	Summary of Contributions
	Future Work
	Concluding Remarks

	Alternative Formulation of the Loss-calibrated MC Action Selection
	Minimizing the probability of suboptimal action
	Optimal q

