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Abstract

With the advance in communication networks and the use explosion of mobile de-

vices, distributed clouds consisting of many small and medium datacenters in geo-

graphical locations and cloudlets defined as “mini” datacenters are envisioned as the

next-generation cloud computing platform. In particular, distributed clouds enable

disaster-resilient and scalable services by scaling the services into multiple datacen-

ters, while cloudlets allow pervasive and continuous services with low access delay

by further enabling mobile users to access the services within their proximity. To re-

alize the promises provided by distributed clouds and mobile cloudlets, it is urgently

to optimize various system performance of distributed clouds and cloudlets, such as

system throughput and operational cost by developing efficient solutions. In this the-

sis, we aim to devise novel solutions to maximize the system throughput of mobile

cloudlets, and minimize the operational costs of distributed clouds, while meeting

the resource capacity constraints and users’ resource demands. This however poses

great challenges, that is, (1) how to maximize the system throughput of a mobile

cloudlet, considering that a mobile cloudlet has limited resources to serve energy-

constrained mobile devices, (2) how to efficiently and effectively manage and evalu-

ate big data in distributed clouds, and (3) how to efficiently allocate the resources of

a distributed cloud to meet the resource demands of various users. Existing studies

mainly focused on implementing systems and lacked systematic optimization meth-

ods to optimize the performance of distributed clouds and mobile cloudlets. Novel

techniques and approaches for performance optimization of distributed clouds and

mobile cloudlets are desperately needed. To address these challenges, this thesis

makes the following contributions.

We firstly study online request admissions in a cloudlet with the aim of maxi-

mizing the system throughput, assuming that future user requests are not known in

xi



xii Publications

advance. We propose a novel admission cost model to accurately model dynamic

resource consumption, and devise efficient algorithms for online request admissions.

We secondly study a novel collaboration- and fairness-aware big data manage-

ment problem in a distributed cloud to maximize the system throughput, while min-

imizing the operational cost of service providers, subject to resource capacities and

users’ fairness constraints, for which, we propose a novel optimization framework

and devise a fast yet scalable approximation algorithm with an approximation ratio.

We thirdly investigate online query evaluation for big data analysis in a dis-

tributed cloud to maximize the query acceptance ratio, while minimizing the query

evaluation cost. For this problem, we propose a novel metric to model the costs of dif-

ferent resource consumptions in datacenters, and devise efficient online algorithms

under both unsplittable and splittable source data assumptions.

We fourthly address the problem of community-aware data placement of online

social networks into a distributed cloud, with the aim of minimizing the operational

cost of the cloud service provider, and devise a fast yet scalable algorithm for the

problem, by leveraging the close community concept that considers both user read

rates and update rates. We also deal with social network evolutions, by developing a

dynamic evaluation algorithm for the problem.

We finally evaluate the performance of all proposed algorithms in this thesis

through experimental simulations, using real and/or synthetic datasets. Simulation

results show that the proposed algorithms significantly outperform existing algo-

rithms.
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Chapter 1

Introduction

In this chapter, we first introduce a cloud computing system architecture consisting

of mobile cloudlets and distributed clouds, we then demonstrate cost-effective re-

source allocations and throughput maximization in mobile cloudlets and distributed

clouds. We thirdly discuss research topics in cost-effective resource allocations and

throughput maximization. We finally state the expected contributions and organiza-

tion of this thesis.

1.1 Distributed Clouds and Mobile Cloudlets

Over the past decade, cloud computing has come to be seen as a promising paradigm

for providing various elastic and inexpensive services, ranging from popular on-

line storage services, and virtual desktops, to state-of-the-art big data analysis by

leveraging the abundant storage, computing, and network resources in a few pow-

erful centralized datacenters. Recently, advances in communication networks and the

ever growing usage of portable mobile devices have witnessed conventional central-

ized clouds with large-scale centralized datacenters further revolutionized to become

some promising platforms that are capable of rapidly scaling and delivering high

reliable services. This has manifested in two key developments: distributed clouds

consisting of many small and medium-sized datacenters that are located at differ-

ent geographical locations and interconnected by wide-area networks, and mobile

cloudlets defined as “mini” datacenters that can be accessed through WiFi and are

close to mobile users. Specifically, the geographical locations of datacenters that

1



2 Introduction

form distributed clouds permit computation closer to users, which can reduce net-

work capacity needs for high-bandwidth applications and reduce the access latency

compared to traditional centralized datacenters. Furthermore, serving as a comple-

mentary platform to distributed clouds, cloudlets can further move cloud resources

within the proximity of users, thereby supporting pervasive and continuous services

for mobile users with lower communication overhead and access delay. In this thesis

we consider such a cloud computing system architecture that consists of both dis-

tributed clouds and mobile cloudlets, as shown in Figure 1.1. The system consists

of two tiers: The top tier consists of geographically distributed datacenters intercon-

nected by high-speed links, and the bottom tier consists of wireless access points (APs)

and cloudlets that are clusters of servers.

Figure 1.1: An example of mobile cloud computing and distributed clouds
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In top tier of the system architecture, distributed clouds have been demonstrated

to be a successful platform for making current cloud services more cost-effective,

eco-sustainable, and disaster-resilient [4]. A distributed cloud can have many data-

centers located in different geographical locations, enabling pervasive access of cloud

services for various users such as enterprises, organizations, and individual users.

For example, millions of social network users can access cloud resources globally to

meet their ever-growing resource demands. Furthermore, more and more enterprise

users with constituent companies around the world nowadays outsource their big

data to distributed clouds to facilitate big data analytics for decision-making and

risk-reduction. The adoption of distributed clouds is not only eco-sustainable due

to the much lower energy consumption, but also resilient to natural disasters and

power outages due to the swift recovery capability of the network.

In bottom tier of the system architecture, cloudlets are trusted, resource-rich com-

puters or clusters of computers that are well-connected to the Internet and can be

accessed by nearby mobile devices for various pervasive mobile services, such as

augmented reality, speech recognition, navigation, natural language translation and

machine learning [100]. The cloudlets enable ubiquitous and pervasive services with

low access delays and high data-transfer speeds, which are ideal platforms for reliev-

ing resource poverty of mobile devices and providing services for mobile users. With

the deployment of cloudlets, we are able to address the resource poverty of mobile

devices, by offloading computing-intensive applications to their nearby resource-rich

cloudlets, while also meeting the demand of mobile users for real-time interactive

response times, through low-latency, one-hop, high-bandwidth wireless access to the

cloudlet.

1.2 Cost-Effective Resource Allocation and Throughput Max-

imization

To fully realize the promises of mobile cloudlets and distributed clouds, the perfor-

mance of the whole system in both the top and bottom tiers (as shown in Figure 1.1)
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should be jointly optimized.

Cost-effective resource allocation plays a vital role in optimizing the system per-

formance. In particular, in the top tier, with the increasing popularity of social net-

working and big data analytics applications, cloud service providers incur the sig-

nificant operational cost to provide adequate and available computing, storage, and

network resources across a distributed cloud. For example, the cost of Hadoop data

management system, including hardware, software, and other expenses, comes to

about US$1, 000 a terabyte [42]. To minimize the operational cost, it is vital to opti-

mize the performance of distributed clouds via efficient and cost-effective resource

allocations and scheduling. In the bottom tier, although cloudlets have distinct ad-

vantages in providing computing, storage, and bandwidth resources to mobile users,

saving energy consumption and extending the battery life of mobile devices, the

limited resource capacities of cloudlets negatively impact the cloudlet performance

with substantial increases in mobile users. Efficiently allocating cloudlet resources

to mobile users such that the system throughput is maximized thus is crucial, where

the system throughput is the ratio of the number of admitted tasks to the number of

tasks arriving in the system during a given time.

Performing cost-effective resource allocation and throughput maximization in a

cloud computing system consisting of both distributed clouds and cloudlets poses

several significant challenges as follows.

• Cloudlets are expected to reduce the network delay and provide computing

and storage resources to mobile users. However, the cloudlets do have serious

drawbacks. Specifically, as the resources in a cloudlet are not as abundant as

those in a powerful cloud, a cloudlet may run out of its resources quickly if

the resources are carelessly allocated, this would particularly be the case when

many requests requiring multiple cloudlet resources arrive in the system at

the same time. Efficient admission control is a key challenge to guarantee the

Quality of Service (QoS) of mobile users, and should be implemented by cost-

effectively allocating resources to mobile users.
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• Big data management in a distributed cloud is a major challenge, which is to

determine the efficient location of users’ big data and other dynamic applica-

tion data, so that as many users as possible can be served. At first glance,

the problem of big data placement seems simple: check a user’s location, and

migrate the user’s data to his/her closest datacenter. However, this simple

heuristic ignores the cost of cloud service providers, and neglects the features

of big data applications of users. The first feature is that as communication

and collaboration are increasingly important to modern big data applications,

more and more users share data and analysis results with each other to save

the user cost of big data analytics. For example, a metropolitan retail chain

consists of many collaborative retailers, each of them not only generates large

volume of data about customer mobility, but they also need intermediate re-

sults from its collaborators to better understand in-store traffic patterns and

optimize product placements and staffing levels throughout the day, and to

measure the impact of advertising and special promotions. The second feature

is that users typically have their QoS requirements. Fair allocation of cloud

resources to different users is crucial, otherwise, unfair allocation may result in

unsatisfied users no longer using the service, the service provider may then fall

into disrepute, and its revenue will be significantly reduced. The third feature

is that processing and analyzing the placed big data require massive comput-

ing resource. However, the computing resource in each datacenter typically is

limited. If the data placed in a datacenter cannot be processed as required, the

overhead on migrating the placed data to other datacenters for processing will

be high.

• With the advance of information and communication technology, various types

of data have grown at exponential rates. Efficiently and effectively manag-

ing and analyzing big data become crucial in creating competitive advantages,

in answering scientific questions, and making effective decisions. Evaluating

queries for big data analytics requires considerable storage, computing, and
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network resources across multiple datacenters. However, traditional data pro-

cessing techniques cannot be adopted for big data analytics due to the large

volume and complexity of the datasets that are dynamically generated and col-

lected. In contrast, the distributed cloud provides an excellent platform for this

by satisfying the resource demands of queries. As the computing capability

of a single datacenter in distributed clouds is limited, and query evaluation

can be made only when the resource requirement of the query is met, and fur-

ther, the original data required by the query must be co-located with the query,

the original data on which the query will be evaluated have to be replicated

to the datacenter that can satisfy the resource requirement of the query. This

however will incur a great communication cost among datacenters by replicat-

ing the source data of a query from the datacenters where the source data are

originally stored to the datacenters with abundant resource where the query

will be evaluated. Therefore, selecting suitable datacenters to undertake the

big data analytics and to admit as many queries as possible such that the re-

source requirements of queries are satisfied and the communication cost for

evaluating admitted queries are minimized, are the very first issue that should

be considered.

• The emergence of Online Social Networking (OSN) has been one of the most

exciting events in the recent decade. The use of OSN services such as Facebook,

Twitter, and LinkedIn, has become a popular and integral part of people’s

daily digital connection. Consequently, the data maintained by online social

networks increases rapidly with their expanding user base. Distributed clouds

that can offer reliable and scalable services and resources are ideal platforms for

OSN users. To improve system performance, increase data availability, and re-

duce Internet traffic due to the large quantity of data transfer, creating replicas

of each social data and placing both the social data and their replicas to multi-

ple datacenters, are essential to ensure the availability, fault-tolerance etc. An

intuitive solution is to divide the data of social users into partitions and place
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the partitions to a set of datacenters in a distributed cloud. However, there are

other aspects for OSN users in leveraging distributed cloud resources that must

be reconciled. First, online social network providers want to minimize the cost

spent in provisioning cloud resources, e.g., they may wish to minimize the stor-

age cost when replicating user data to more than one datacenter, or minimize

the inter-datacenter communication cost when users at one datacenter request

data of others that are hosted at different datacenters. Second, the providers

hope to provide social users with satisfactory QoS. To this end, they may want

to place the data of people who have intensive interactions to the same datacen-

ter, or a set of nearby datacenters. Third, the providers may also be concerned

with data availability, e.g., ensuring the number of users’ data replicas is no

fewer than a specified threshold across the whole distributed cloud. Address-

ing all such demands of cost, QoS, and data availability is further complicated

by the fact that online social networks continuously experience changing dy-

namics, e.g., new users join, existing users leave the social network, or some

users change their read or update rates.

To tackle the above-mentioned challenges, this thesis will devise performance-

optimized algorithms for both mobile cloudlets and distributed clouds. The distinc-

tions of the work here from existing ones lie in: (1) this thesis focuses on the system

throughput maximization of a cloudlet, by proposing a novel cost model, admission

policies, and efficient algorithms; and (2) this thesis incorporates diverse resource

demands of users, data sharing, resource allocation fairness requirements of users,

and social relationships of users, when utilizing cloud services in a distributed cloud.

The solutions are evaluated by simulations, using both real and synthetic data.

1.3 Research Topics

To optimize the performance of mobile cloudlets and distributed clouds (as shown

in Figure 1.1), such that system throughput is maximized and the operational cost of
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service providers is minimized through cost-effective resource allocations, this thesis

focuses on proposing efficient solutions to the following topics: (1) throughput maxi-

mization of a cloudlet in mobile cloud computing, (2) collaboration and ensuring fair

resource allocation for users for big data management in a distributed cloud, (3) cost

minimization of query evaluation for big data analytics in a distributed cloud, and

(4) operational cost minimization of a distributed cloud for data placement of online

social networks. Notice that these four topics are requisite for performance optimiza-

tion in the mobile cloudlets and distributed clouds. Since mobile cloudlets, as illus-

trated in the bottom tier of Figure 1.1, are at times under pressure to provide services

to all tasks of mobile users, solutions to topic (1) ensures that the cloudlet can admit

and process as many tasks as possible during a given time period by cost-effective

resource allocation, which maximize the profit of cloud service providers. Similarly,

due to the increasing resource demands of big data analysis applications and online

social networking applications, as shown in top tier of the cloud computing system

in Figure 1.1, solutions to topic (2) guarantee the system throughput maximization

while minimizing the operational cost of cloud service providers, where the com-

puting capacity constraint of each datacenter, the bandwidth capacity constraint of

each link, and the fairness requirements of users are integrated. Solutions to topic

(3) promise satisfactory resource demands for query evaluations on big data and the

maximum query acceptance ratio, and solutions to topic (4) assure a minimum oper-

ational cost for placing data and data replicas of social users into a distributed cloud,

integrating the dynamic feature of online social networks. Detailed summaries of the

topics in these problems, and the distinctions between them and existing studies are

as follows.

1.3.1 Throughput Maximization of Mobile Cloudlets

Admission control and throughput maximization are the key issues in the provision

of guaranteed QoSs in mobile cloud computing (MCC) environments. The design of
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admission control algorithms for MCC is especially challenging, given the limited yet

highly demanded resources and the mobility of users. Considerable research effort

has been directed on this issue in the past few years. Much existing literature focused

on developing admission control policies and resource allocation strategies. For ex-

ample, researchers investigated the admission control problem based on the Markov

Decision Process. They aimed to either maximize the revenue of the system or min-

imize the cost of service providers based on the prediction information [2, 50, 73].

Specifically, Hoang et al. [50] proposed a linear programming solution to the problem

by considering the QoS requirements of mobile users with the aim of maximizing the

revenue of the service providers. Liang et al. [73] formulated the adaptive resource

allocation problem as a semi-Markov decision process to capture the arrivals and

departures of users dynamically, with the objective of maximizing the rewards of the

overall system through a balance between the resource utilization and the resource

cost. Abundo et al. [2] employed the Markov forward-looking admission control

policy for a service broker to maximize profits of resource providers while guaran-

teeing the QoS requirements of admitted users. Almeidaa et al. [5] presented a joint

admission control and resource allocation scheme by formulating a convex optimiza-

tion problem with the objective of minimizing the cost of the service provider, i.e.,

maximizing the revenue of the provider.

These mentioned studies focused mainly on CPU resource and ignored other im-

portant resources that also impact system performance significantly, such as memory,

secondary storage, network bandwidth. For example, Srikantaiah et al. [104] consid-

ered the request consolidation problem in virtualized heterogeneous systems to min-

imize energy consumption while meeting the performance requirement, for which

they proposed an approach to jointly optimize multiple resources, such as CPU and

disk usage, using the bin-packing algorithm. The proposed approach required the

optimal operating point from profiling data and calculated the Euclidean distance

between the optimal point and the current workload allocation. However, finding
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such an optimal operating point is difficult due to its dependence on experimental

data.

Unlike existing studies in literature, we here deal with cloudlet resource alloca-

tions by responding to user requests without the knowledge of future request ar-

rivals. For which, we first design a novel admission cost model to accurately capture

the dynamic features of a cloudlet. Specifically, due to the fact that resources in a

cloudlet are consumed dynamically and their capacities are typically finite, the cost

of admitting a new request not only depends on the workload of the cloudlet but

also the amount of resource demands of the request. Building such an admission

cost model that models dynamic resource consumptions therefore is an imperative.

We then devise online algorithms by jointly allocating multiple types of resources

in cloudlets to user requests, considering that user requests usually require multiple

types of resources such as computing, storage, and network resources. Efficient ad-

mission policies that consider these types of resources are key, as the availability of

these resources jointly determines which requests should be admitted or rejected.

1.3.2 Collaboration- and Fairness-Aware Big Data Management in Dis-

tributed Clouds

Several studies on data placement in clouds have been conducted in the past [3, 9,

36, 60, 75, 129]. However, most of these studies did not consider the placement of

dynamically generated big data [36, 60, 129], and focused only on the communica-

tion costs [36, 75]. Furthermore, they took neither fairness of resource allocations [3]

nor the intermediate results of processed data into consideration [3, 60]. For ex-

ample, Golab et al. [36] studied the problem of data placement to minimize data

communication cost for data-intensive tasks. Their goal was to determine where to

store data and where to evaluate tasks in order to minimize data communication

costs. Jiao et al. [60] investigated multi-objective optimization for placing users’ data

for socially aware services over multiple clouds; they aimed to minimize the cost
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of updating and reading data by exploring trade-offs among the multiple optimiza-

tion objectives. They solved the problem by decomposing it into two sub-problems

- placement of master replicas and placement of slave replicas - and solving these

two sub-problems separately, thereby deriving a sub-optimal solution to the prob-

lem. Yuan et al. [129] provided an algorithm for data placement in scientific cloud

workloads, which grouped a set of datasets in multiple datacenters first, and then

dynamically clustered newly generated datasets to the most appropriate datacenters

based on data dependencies. Liu et al. [75] proposed a data placement strategy for

scientific workflows by exploring data correlation, aimed at minimizing the com-

munication overhead incurred by data movement. Agarwal et al. [3] proposed an

automated data placement mechanism named Volley for geo-distributed cloud ser-

vices, where the objective was to minimize the user-perceived latency.

In comparison with existing work, we study the problem of big data manage-

ment in the distributed cloud environments, where the problem consists of placing

data, processing data, and transmitting the intermediate results of data processing

to collaborative users located at different geographical locations. Specific novelties

of our study include: (1) we are the first to devise approximation algorithms to

enable collaboration-aware big data management in a distributed cloud, given that

data users such as enterprises, organizations, and institutes have considerable col-

laborations with their peers to build more wealth and improve the daily lives of

people through jointly analyzing their data in different datacenters. On one hand,

existing studies ignored such collaborations among users, and simply applying their

solutions will either incur useless analytic results with partial values, or high costs

due to repeated data analysis on identical source data. On the other hand, sim-

ple heuristics without performance guarantees may lead to sub-optimal solutions;

(2) we develop novel mechanisms to incorporate resource-allocation fairness into

collaboration-aware big data management. Specifically, in a distributed cloud, users

are typically located in different geographical locations, and generate data at those
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locations. Such data must be fairly placed to the distributed cloud, otherwise, biased

data placement may severely degrade access time, leading to degradation of the rep-

utation of service providers, thereby potentially reducing the revenue of the service

providers; and (3) we consider various types of resources with different capacities

of a distributed cloud, by designing efficient resource allocation and provisioning

mechanisms for collaboration- and fairness-aware big data management. Naive re-

source allocation methods that neglect resource capacities will incur high overheads

on migrating the placed data to other datacenters, if its current datacenter not have

adequate available resources.

1.3.3 Cost Minimization of Evaluating Big Data Analytic Queries in Dis-

tributed Clouds

Existing studies on big data analytics in clouds have been conducted in recent years [1,

13, 18, 30, 40, 45, 49, 59, 63, 66, 77, 81, 97, 99, 131]. Among the studies, Mian et al. [81]

examined query evaluation in a public cloud, by selecting a configuration for the

query such that the sum of computing and storage costs of the configuration is min-

imized, assuming that all data accessed by the query are the local data. Kllapi et

al. [66] provided a distributed query processing platform, Optique, to reduce the

query response time. However, none of them considered the communication cost of

query evaluation, which in fact cannot be ignored due to the massive data migration

and the limited bandwidth among servers in a datacenter. Bruno et al. [13] proposed

an optimization framework for continuous queries in cloud-scale systems. Particu-

larly, they continuously monitored the query execution, collected runtime statistics

and adopted different execution plans during the query evaluation. If a new plan is

better than the current one, they will adopt the new plan with minimal cost. A simi-

lar problem was studied in [63], the only difference is that [63] lies in a small sample

of data drawn for query execution to estimate the cost of the query evaluation plan.

However, providing an accurate execution plan is time-consuming due to the mas-
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sive data analysis in cloud-scale datacenters, and suboptimal plans can be disastrous

with large datasets. Liu et al. [77] proposed three information retrieval for ranked

query schemes to reduce the query overhead on the cloud. They assumed that users

can choose the query ranks to determine the percentage of matched results to return.

To this end, a mask matrix is used to filter out a certain percentage of matched re-

sults. Their primary motivation is providing users a scheme to restrict the number

of results. Unfortunately, the correct filtering and the returned results are difficult to

decide. There are other studies that focused mainly on minimizing the computing

cost [13, 63, 81, 114], the storage cost [81], the query response time [66], or the server

running cost [45]. Little attention has ever been paid to the communication cost in

big data analytic query evaluations in a distributed cloud. Also, source data locality

is another important issue which impacts the cost of query evaluation. Although

several recent works [88, 108, 114] considered data locality when dealing with query

evaluation, they focused only on one single location (datacenter). For example, Tung

et al. [108] investigated the query evaluation on databases, each of which is repre-

sented by a rooted, edge-labeled directed graph, i.e., a distributed graph. Authors

in [45] tackled the resource allocation problem in clouds based on big data system, by

developing a VM allocation model to handle big data tasks. Their objective is to min-

imize the cost for running physical servers instead of the communication cost of data

transfers between datacenters. In addition, some approaches are designed with of-

fline processing style and involves high overhead for starting and executing queries,

thus they are not ideal for online big data analytics. For example, authors in [97]

discussed offline batching disk I/Os to improve MapReduce performance, which is

not suitable for real-time query processing. They assumed that all related data are

sent to one datacenter for processing. However, the available cloud resources in this

datacenter may not meet the resource demands of the query. Other studies focused

only on delivering solutions through adopting different query evaluation strategies

that are commonly used in RDBMS [68], which ignored the optimization of the query
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evaluation cost.

There are several studies that focused on geo-distributed data analytics [48, 53,

91, 93, 111, 112]. For example, Heintz et al [48] considered streaming data analyt-

ics by designing aggregation algorithms to optimize WAN traffic and the delay in

obtaining the analysis results. Pu et al [91] proposed a system to reduce query re-

sponse times by optimizing the placement of both data and queries, and devised an

online heuristic to redistribute datasets among the datacenters prior to query arrivals

and to place the queries to reduce their response times. Rabkin et al [93] considered

real-time analysis of data that is continuously created across wide-area networks.

Vulimiri et al [112] considered the problem of evaluating big-data queries on data

distributed in a wide-area network, they designed an architecture and algorithms to

optimize query execution plans and data replication to minimize bandwidth cost, by

formulating the problems into an integer linear program (ILP) or a non-linear integer

program (NLIP), which however might not be scalable if the problem size is large.

These studies however limit their discussions on specific big-data analytics such as

real-time streaming data analytics in geo-distributed datacenters [48, 93], or only fo-

cused on bandwidth resource capacities while ignored the computing capacity of

datacenters [91, 111, 112].

Different from these mentioned studies, we consider efficient query evaluation

for big data analytics that are computationally intensive in a distributed cloud by

taking into account not only the computing capacity of each datacenter but also the

bandwidth capacity of each link. The first novelty of this study is to tightly couple

the source data and the computing resource demands of each query, since the source

data of each query usually are located at different datacenters, and a query can be

efficiently evaluated only when its source data are easily accessible and its computing

resource demands can be met. The second novelty is that we consider the source data

locality, the datacenter selection of query evaluation, source data replication, and the

online arrival of queries. Evaluating queries by incorporating these features is vital to
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maximize the query acceptance ratio and minimize the accumulative communication

cost for evaluating the admitted queries.

1.3.4 Cost Minimization of Distributed Clouds via Community-Aware User

Data Placements of Social Networks

Several studies on data placement in clouds have been conducted in the past [3, 9,

36, 60, 61, 75, 128, 129]. For example, Jiao et al. [60, 61] investigated a data placement

problem for a multi-cloud socially aware service, and formulated an optimization

problem with an aim to minimize the cost of reading data of users, the related Car-

bon footprint, and the distances travelled by read operations. They decomposed the

optimization problem into two optimization sub-problems: master replicas place-

ment, followed by the slave replicas placement. Specifically, they first randomly

placed master and slave replicas of all users to the cloud, and then refined the ran-

dom placement iteratively until no further cost reduction could be achieved, or an

expected number of iterations was reached. Yu et al. [128] studied the data placement

problem in distributed datacenters, where each user requested multiple data items

that were distributed in multiple datacenters. Their objective was to place the data

items that were often requested to the same datacenter. Liu et al. [75] proposed a data

placement strategy for scientific workflows by exploring data correlation, and their

objective was to minimize the communication overheads on data movement. Agar-

wal et al. [3] proposed an automated data placement mechanism - named Volley

- for geo-distributed cloud service, where the objective was to minimize the user-

perceived latency and make data placement decisions for individual users. Golab

et al. [36] studied the problem of data placements that minimized the data commu-

nication cost of data-intensive tasks. The goal was to decide where the data was

stored and where the tasks were evaluated in order to minimize the communica-

tion costs. Yuan et al. [129] proposed an algorithm for data placement problem

that grouped a set of datasets into multiple datacenters first, and then dynamically
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clustered newly generated datasets to the most appropriate datacenters based on

data dependencies. Unfortunately, these cited methods mainly placed user data at

a user-level granularity, which may lead to inefficient solutions for large-scale social

networks with tens of millions of users, as most of them formulated their problems

as (mixed) integer linear programming problems [36] or as maximum-flow based

multi-way partitioning problems that resulted in poor scalability [60, 128], and their

algorithms typically took prohibitive running time [60, 61, 128], and thus were only

suitable to small- and medium-size datacenters. It must be mentioned that some of

them focused only on the communication cost [36, 61, 75], while others considered

only social interactions among users in distributed clouds [3, 36, 75, 129]. None of

these mentioned works has taken into account both user read and update rates at

the same time [3, 36, 75, 128, 129]. On the other hand, there are several studies of

large-scale graph partitioning [65, 109, 127] by adopting traditionally graph partition-

ing methods [109, 127], while ignoring user data updating in dynamic graphs [109].

Furthermore, the mentioned studies mainly focused on user data management in a

single datacenter, which is different from the optimization problem in a distributed

cloud we deal with in this thesis. We study community-aware user data placements

of large-scale social networks to a distributed cloud with the objective to minimize

the operational cost, by leveraging the close community concept that groups user

data of a social network into different cohesive groups, by their users interactions

with each other and the update rates on their user data.

In contrast to existing work, we explore the following new issues for data place-

ment of online social networks into distributed clouds, with the aim of minimizing

the operational cost of cloud service providers. The first issue is that social relation-

ship of users should be fully integrated when placing user data of social networks

- data of users with more interactions is better to be placed together. Therefore, ef-

fectively capturing users with close relationships, i.e., finding a community where

users have frequent interactions, is crucial to reducing communication costs between
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these users and the running time for data placement. For which, we devise a novel

community fitness metric that considers both user read rates and update rates to de-

tect close communities. The second issue is that the dynamic features of online social

networks should be studied, as in reality social networks evolve over time; e.g., new

users join, existing users leave, and some users change their read or update rates. All

these changes have impacts on data placement strategies of online social networks.

Making data placements based on these features is vital to minimize the operational

cost of cloud service providers. To this end, we propose a novel algorithm for data

placement of dynamic social networks into distributed clouds.

1.4 Thesis Contributions

The main contributions of this thesis are to systematically study the throughput

maximization and operational cost minimization in mobile cloudlets and distributed

clouds, by formulating non-trivial optimization problems, proposing new cost mod-

els, and developing novel optimization frameworks and algorithms to the problems.

The proposed techniques enable optimized system performance by maximizing the

throughput of mobile cloudlets and minimizing operational costs of cloud service

providers via efficient resource allocations of mobile cloudlets and distributed clouds.

Specifically, the main contributions of this thesis are described as follows.

• Cloudlet resource allocation for mobile users in a mobile cloud computing envi-

ronment is considered at Chapter 2, where user requests are online without the

knowledge of future request arrival rates, and allocation of multiple resources is

targeted. Contributions involved in this topic include: (1) a novel cost model to

accurately model different resource consumptions; (2) novel admission policies;

and (3) efficient admission algorithms for online requests, which can effectively

and efficiently admit requests according to the current workload of each type of

resource in the system with the objective of maximizing the system throughput.
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• Big data management in the distributed cloud environment is studied in Chap-

ter 3. The process of big data management consists of placing data, processing

data, and transmitting the intermediate results of data processing to collabora-

tive users located at different geographical locations. Contributions involved in

this topic are as follows: (1) the dynamic generation of big data is considered;

(2) fairness among collaborative users when allocating resources is incorpo-

rated; (3) the computing capacity of datacenters and the bandwidth capacity of

links are considered; and (4) high system throughput and low operational cost

of the cloud service provider are achieved.

• Data locality may result in a waste of resources. For example, most of the

computing resource of a datacenter with less popular data may stay idle. This

low resource utility then causes more servers to be activated and hence higher

operational costs for cloud service providers. To enable high performance of

distributed clouds, Chapter 4 studies the problem of cost-effective big data pro-

cessing by jointly considering data locality and computing capacity constraints

of datacenters. Contributions include: (1) online query evaluation problems

for big data analytics in distributed clouds are formulated; (2) a novel metric

to model the usage cost of query evaluation is proposed by incorporating the

workloads among datacenter and the resource demands of different queries; (3)

efficient online algorithms for query evaluation are devised under both unsplit-

table and splittable source data assumptions; and (4) a high query acceptance

ratio and low accumulative communication cost are reached.

• Placing data of users in social networks to datacenters of a distributed cloud

is explored at Chapter 5, where data replicas are considered. The objective is

to minimize the operational cost of the cloud service provider by leveraging

the close community concept in large-scale social networks. The contributions

are in the following: (1) a novel community fitness metric to identify close

communities in large-scale social networks is devised by considering both read
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rates and update rates of user data; (2) the dynamic nature of online social

networks is integrated, e.g., new users can join, existing users leave the network,

and some users change their read or update rates over time; and (3) fast yet

scalable algorithms for the problems are proposed and empirically evaluated.

1.5 Thesis Organization

The reminder of this thesis is organized as follows. Chapter 2 addresses online re-

quest admissions in a cloudlet with the objective of maximizing the system through-

put. Chapter 3 studies a novel collaboration- and fairness-aware big data manage-

ment problem in a distributed cloud that aims to maximize system throughput, while

minimizing the operational cost of service providers to achieve the system through-

put, subject to resource capacities and user fairness constraints. Chapter 4 formulates

an online query evaluation problem for big data analytics in a distributed cloud, with

the objective of maximizing the query acceptance ratio while minimizing the accu-

mulative communication cost of query evaluations. Chapter 5 devises scalable and

fast algorithms for the community-aware data placements of social networks to a dis-

tributed cloud, with the objective of minimizing the operational cost of cloud service

providers. Chapter 6 summarizes the thesis and proposes future work.
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Chapter 2

Throughput Maximization for

Online Request Admissions in

Mobile Cloudlets

2.1 Introduction

Many mobile devices such as smart phones and tablets are becoming increasingly

popular, people now depend heavily on them to run various applications such as

image processing, facebook, twitter, games, and emails for social and business pur-

poses. However, due to small sizes and being powered by batteries, these portable

and lightweight mobile devices have only limited energy to support their operations.

To mitigate the severe energy constraint on mobile devices is to make use of the rich

resources provided by mobile cloud computing (MCC) platforms. That is to offload

data and computationally expensive tasks from mobile devices to cloud platforms

through wireless networks [26, 22, 69].

In MCC environments, wireless mobile devices access the cloud through wireless

communication such as WiFi, 3G/4G, etc. However, it is well known that wireless

communication is unreliable and constrained by its bandwidth. The long delay of

data transfer between a mobile device and the cloud is unavoidable. Thus, offloading

tasks from mobile devices to the cloud is not always a smart choice since the cloud is

typically far from mobile users. To overcome the long delay by offloading tasks to the

21
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remote clouds, the cloud has to be moved closer to the mobile users in the form of the

cloudlet [126], which consists of trusted, resource rich servers in vicinities of mobile

users (e.g., near or co-located with a wireless access point) [100, 110]. Although a

cloudlet may mitigate the delay latency, it does suffer serious drawbacks too. As the

resources in a cloudlet are not as abundant as that in a powerful cloud, a cloudlet may

run out of its resources quickly if its resources are carelessly allocated. Particularly,

when many requests are executed at the same time, this will lead to the cloudlet

overloaded.

In this chapter, we focus on developing efficient control algorithms for online

request admissions in the MCC environments with an objective to maximize the

system throughput of the cloudlets, where each request can be represented by a de-

mand resource vector in which each component is the amount of a specific resource

demanded by the request. We first propose a novel admission cost model to model

different resource consumptions in a cloudlet. We then devise efficient control al-

gorithms for online request admissions based on the proposed resource cost model.

We finally conduct experiments by simulations to evaluate the performance of the

proposed algorithms. Experimental results indicate that the proposed algorithms are

very promising, in comparison with other heuristics.

The remainder of this chapter is organized as follows. The system model and

problem definitions are introduced in Section 2.2. The online request and batch

admission algorithms are proposed in Section 2.3 and Section 2.4, respectively. The

performance evaluation of the proposed algorithms will be conducted in Section 2.5,

and a summary is given in Section 2.6.

2.2 Preliminaries

In this section, we first introduce the system model. We then define the problems

precisely.



§2.2 Preliminaries 23

2.2.1 System Model

We consider a mobile cloudlet computing environment as shown in Fig. 2.1, where

a cloudlet connecting to a remote powerful cloud computing platform through the

Internet provides cloud services to a set of local wireless mobile users. Denote by

{ui | 1  i  N} the set of local mobile users, where N is the number of mobile

users. Due to stringent constraints on mobile devices such as limited battery lifetime,

Figure 2.1: The system model of mobile cloud computing

limited storage, and relatively weak computation capability, mobile users usually

offload their computing intensive or large volume of data storage tasks to the cloudlet

to save the limited resources of mobile devices. To this end, mobile users first send

their requests in terms of amounts of resources needed to the cloudlet. The cloudlet

then decides whether to admit the requests according to its resource availability

and the admission costs of these requests. For the sake of convenience, we assume

that time is slotted into equal time slots. We further assume that the system has no

knowledge on the future request generation and arrival rates. The acceptance or

rejection of a request by the system is made at the beginning of each time slot t.

More specifically, we assume that the cloudlet provides K different resources. Let

Ck be the capacity of resource k for all k with 1  k  K. Let H(t) = hH1(t), . . . , HK(t)i

be the amounts of resources occupied by the admitted requests at time slot t. In all
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our discussions we assume that H(t) is given. Let A(t) = hA1(t), . . . , AK(t)i be the

vector of available resources in the cloudlet at time slot t, then Ak(t) = Ck � Hk(t)

for all k with 1  k  K. Denote by ri(t) = hri,1(t), . . . , ri,K(t); tii the amounts of

resource demanded by a request ri(t) at time slot t, where ri,k(t) 2 Z is the amount

of resource k requested and ti is the occupation period of the requested resources.

We further assume that requests arrive one by one and use hr1, . . . , rNi to denote the

sequence of requests.

Within each time slot, we consider two different request admission scenarios: one

is that only one request is evaluated, that is, the admission control algorithm will

determine whether the request is admitted, depending on not only whether there

are enough available resources for the request but also whether it is too high to

admit the request in terms of the admission cost. The other is that multiple requests

are evaluated, i.e., a set of requests will be admitted at each time slot.

2.2.2 Problem Definitions

Given a mobile cloudlet, each mobile user ui sends its request ri(t) at time slot t to

the cloudlet. Each request ri(t) consists of a set of specified amounts of resource de-

mands on the cloudlet and the occupation period ti, i.e., ri(t) = hri,1(t), . . . , ri,K(t); tii,

where ri,k(t) is the amount of resource k needed. Assuming that requests arrive one

by one, and there is no knowledge of future request generation and arrival rates.

The online request throughput maximization problem is to determine whether an ar-

rival request to be admitted or rejected by the system such that the system through-

put is maximized for a specified time period T. The system throughput is the ratio

of the number of admitted requests to the number of requests for period T, where a

request is admitted if the request will be implemented by the cloudlet. Otherwise,

it is rejected immediately at the current time slot, and can be resubmitted at future

time slots. The admission decision of a request depends on its requested resource

availability and its admission cost. Once a request is admitted, its processing in the
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cloudlet may last more than one time slot. If it cannot be finished within the cur-

rent time slot, it will continue occupying the system resources at the next time slot

until it finally finishes. In other words, we assume that the request scheduling is

non-preemptive scheduling.

The online batch requests throughput maximization problem is to maximize the system

throughput if multiple requests, instead of one request, will be admitted per time

slot.

As each of K different resources in a cloudlet can be treated as one dimension of

a K-dimension bin with capacity Ck of dimension k, the online request throughput

maximization problem is equivalent to packing as many online requests as possible

without knowing of future requests. If each request can be implemented within a

single time slot, then its occupied resources can be released at the next time slot.

Clearly, this special case of the problem is an online bin packing problem which is

NP-hard [23]. Thus, the online request throughput maximization problem is NP-

hard, too. Meanwhile, the online request throughput maximization problem is a

special case of the online batch requests throughput maximization problem when

there is only one request considered at each time slot, thus, the latter is NP-hard, too.

2.3 Algorithm for the Online Request Throughput Maximiza-

tion Problem

In this section, an algorithm for the online request throughput maximization problem

is devised. Let ri(t) = hri,1(t), . . . , ri,K(t); tii be the request being considered at this

moment. The system proceeds as follows. It first checks whether the requested

amount of each resource ri,k(t) can be met by the system. If not, the request is rejected

immediately; otherwise the system calculates the admission cost of processing the

request based on the load of each resource at this moment. If its admission cost

is beyond a specified threshold of each resource in the system, the request will be
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rejected; otherwise, it is admitted by the cloudlet. In the following we propose the

admission cost modelling of processing a request.

2.3.1 Admission Cost Modelling

We here model the admission cost of each demanded resource k as a convex function

of the quantity of the resource with an increasing marginal cost. Typically, the ability

of a type of resource to provide services to mobile users decreases with the increase

of its utilization ratio, as the resource with high resource utilization has a higher

probability of violating user resource demands or Service Level Agreements. With

the decrease of its ability, its cost of admitting a request is marginally increasing

That is, the cost of allocating a unit specific resource to a request increases with the

demand quantity of that resource. The unit admission cost of using resource k with

demand ri,k(t) ( 6= 0) by request ri(t) is defined as follows.

z(ri,k(t), Hk(t)) = a
Hk(t)

Ck
k (a

ri,k(t)
Ck

k � 1), (2.1)

where ak > 1 is a constant and Hk(t) is the amount of resource k occupied by admit-

ted requests at time slot t prior to request ri(t).

From Eq. (2.1), it can be seen that z(ri,k(t), Hk(t)) is in the range of (0, ak � 1].

Notice that the unit admission cost of demanding a resource is closely related to

the demanding quantities of that resource. That is, a higher ri,k(t) means a higher

admission cost of ri(t).

Denote by g(ri(t), H(t)) the admission cost of a request ri(t) with occupation period

ti for all resources at time slot t, then

g(ri(t), H(t)) = ti ·
K

Â
k=1

z(ri,k(t), Hk(t) | ri,k(t) 6= 0)

= ti ·
K

Â
k=1

a
Hk(t)

Ck
k (a

ri,k(t)
Ck

k � 1).

(2.2)
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2.3.2 Admission Policy

Given a request ri(t), there is an admission control strategy that determines whether

it will be admitted. That is, for each request ri(t), a threshold Bk of the unit admission

cost of using resource k is given. Recall that the value range of a unit admission cost

of using resource k is in (0, ak � 1], Bk thus is in the range of (0, ak � 1]. Let qk be

a constant with qk 2 (0, 1], Bk can be rewritten as (ak � 1) · qk. For each request, a

threshold of the average admission cost B of using all demanded resources is also given,

which is B = q · (a� 1) = q · (maxk=1,...,K{ak}� 1), where q 2 (0, 1]. Let ||ri(t)|| be

the number of resources requested by request ri(t), then ||ri(t)||  K. Thus, a request

ri(t) is admitted if it meets the following two inequalities:

(i) z(ri,k(t), Hk(t))  Bk for each its demanded amount of resource k, ri,k(t) with

ri,k(t) 6= 0;

(ii) g(ri(t),H(t))
||ri(t)||·ti

 B.

2.3.3 Algorithm Description

As mentioned in the previous subsection, the online request throughput maximiza-

tion problem is equivalent to the online K-dimensional bin packing problem. Mean-

while, different dimensions (e.g., wireless communication bandwidth requirement,

and the number of CPU instructions) have different attributes, we reduce this K-

dimensional bin packing problem to one dimension bin packing problem with admis-

sion control by introducing the admission cost (see Eq. (2.2)). The detailed algorithm

is described in Algorithm 1, which is also referred to as Algorithm Online-OBO.

Theorem 1 Given a mobile cloudlet environment and an online admission request sequence,

there is an online algorithm for the request throughput maximization problem, which takes

O(K) time per request at each time slot.

Proof Following Algorithm 1, there is only a single request ri(t) per time slot to be

determined. To respond to this incoming request, it checks whether the request is
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Algorithm 1 Algorithm for the online request throughput maximization problem

Input: Bk, B, an arrival request ri(t), the occupied information H(t) of resources at
time slot t, where ri(t) = hri,1(t), . . . , ri,K(t); tii and 1  k  K.

Output: Admit or reject request ri(t).

1: /* The admission cost of request ri(t) */;
g(ri(t), H(t)) 0;

2: for each ri,k(t) in ri(t) do
3: Calculate Ak(t) Ck � Hk(t), which is the available amount of resource k;
4: if ri,k(t) > Ak(t) then
5: Reject request ri(t);
6: EXIT;
7: else
8: if ri,k(t) 6= 0 then
9: Calculate the cost z(ri,k(t), Hk(t)) by Eq. (2.1);

10: if z(ri,k(t), Hk(t))  Bk then
11: g(ri(t), H(t)) g(ri(t), H(t)) + ti · z(ri,k(t), Hk(t))
12: else
13: Reject the request;
14: EXIT;
15: if g(ri(t),H(t))

||ri(t)||·ti
 B then

16: /* Update the amounts of occupied resources */;
H(t) hH1(t) + ri,1(t), . . . , HK(t) + ri,K(t)i;

17: return Admit request ri(t)
18: else
19: Reject request ri(t);
20: EXIT;

admitted. If yes, it takes O(K) time to update the amounts of occupied and available

system resources. Otherwise, the request is rejected. Thus, the Algorithm 1 takes

O(K) time to decide whether to admit a request ri(t) at time slot t.

2.4 Algorithm for the Batch Requests Throughput Maximiza-

tion Problem

In this section, we deal with multiple request admissions at each time slot by propos-

ing an algorithm. Specifically, let DS(t) be the set of requests arrived at time slot

t. We determine a subset DS0(t) ✓ DS(t) of requests to be admitted if not all the

requests in DS(t) are admitted.
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The basic idea for the online batch requests maximization problem is to admit a

set of requests one by one using a greedy strategy, according to the admission criteria

made by the system. Specifically, given the available resources A(t) and occupied

resources H(t) at time slot t, let DS(t) and DS0(t) be the set of requests arriving at

time slot t and the subset of these requests to be admitted by the system, respectively,

where DS0(t) ✓ DS(t).

The proposed algorithm proceeds as follows. Initially, DS0(t) = ∆. For each

request r 2 DS(t), compute its unit admission cost based on H(t), using the similar

admission criteria as we set for a single request in the previous section, Eq. (2.1) and

Eq. (2.2). If a request does not meet the criteria, it is rejected and removed from

DS(t). Otherwise, it becomes a candidate to be admitted. A candidate request with

the minimum admission cost is then identified. If two candidate requests have the

same minimum admission cost, the one with a smaller occupation period will be

chosen to add to the admission set DS0(t), and DS(t) = DS(t) � DS0(t). Let rt1 be

the request that has been admitted with 1  t1  |DS(t)|. The system then updates

its available resources A0(t) = hA1(t)� rt1,1(t), . . . , AK(t)� rt1,K(t)i. The algorithm

continues to identify the next request from DS(t) � {rt1(t)} based on the updated

available resources A0(t) to see whether it can be admitted. This procedure continues

until DS(t) = ∆.

The detailed algorithm is described in Algorithm 2, which is also referred to as

Algorithm Online-Batch.

Lemma 1 If a request is rejected in an iteration of the while loop of Algorithm 2, it will not

be admitted in the rest of iterations at time slot t, i.e, it is removed from further consideration

at time slot t.

Proof We show this by contradiction. Assume that a request ri(t) is rejected in an

iteration of the while loop, which means that (i) either its requested amount of a

specific resource k is larger than the available amount of resource k, if this is the

case, it will not be admitted in the future as well because the available amount of
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Algorithm 2 Algorithm for the online batch requests throughput maximization prob-
lem
Input: A set of requests DS(t), Bk, B, H(t) = {H1(t), . . . , HK(t)}.
Output: a subset of admitted requests DS0(t) ✓ DS(t) at time slot t.

1: U  DS; DS0(t) ∆; H0(t) H(t);
2: while U 6= ∆ do
3: /* A variable indicating the minimum admission cost */;

min_cost •;
4: /* A variable indicating the index of the request with the minimum admission cost */;

i0  •;
5: for each request ri(t) in U do
6: /* The admission cost by processing request ri(t) */;

g(ri(t), H0(t)) 0;
7: for each ri,k(t) in ri(t) do
8: Calculate the available amount of resource k: A0k(t) Ck � H0k(t);
9: if ri,k(t) > A0k(t) then

10: U  U � {ri(t)}; Reject request ri(t);
11: else
12: Calculate the unit admission cost z(ri,k(t), Hk(t)) of ri(t) by Eq. (2.1);
13: if z(ri,k(t), Hk(t)) > Bk then
14: U  U � {ri(t)}; Reject request ri(t);
15: else
16: g(ri(t), H0(t)) g(ri(t), H0(t)) + ti · z(ri,k(t), Hk(t));
17: if g(ri(t),H0(t))

||ri(t)||·ti
> B then

18: U  U � {ri(t)}; Reject request ri(t);
19: if g(ri(t),H0(t))

||ri(t)||·ti
< min_cost then

20: min_cost g(ri(t),H0(t))
||ri(t)||·ti

;
21: i0  i;
22: else
23: if g(ri(t),H0(t))

||ri(t)||·ti
= min_cost then

24: Select the request ri0(t) with a smaller occupation period between the
two requests, i.e., min_cost g(ri0 (t),H

0(t))
||ri0 (t)||·ti0

;
25: i0  i0;
26: DS0(t) DS0(t) [ {ri0(t)} where ri0(t) has the minimum admission cost;
27: U  U � {ri(t)};
28: Update the amounts of occupied resources H0(t) by taking the occupied re-

sources by ri(t) into H0(t);
29: return DS0(t) ✓ DS(t).
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resource k becomes smaller and smaller with more and more requests being added

to DS0(t); or (ii) the total admission cost of ri(t) is beyond the threshold. For each

resource it requested, the resource becomes less than that of it in the iteration that

ri(t) is rejected, the admission cost becomes larger in comparison with the one in

which it was rejected for the first time, i.e, its admission cost is still larger than the

given threshold, so it will be rejected.

Theorem 2 Given a cloudlet environment, there is an online algorithm for the batch requests

throughput maximization problem that takes O(K|DS(t)|2) time at each time slot, where

DS(t) is the set of requests at time slot t.

Proof Following Algorithm 2, within the while loop, updating the information of

occupied resources and calculating the amounts of available resources take O(K)

time, while checking whether the demanded amounts of resource k of the request can

be met takes O(K) time. It finally takes O(K) time to decide whether the admission

cost g(ri(t), ri,k(t)) of each required resource satisfies the threshold requirement. In

total, there are |DS(t)| iterations. Thus, Algorithm 2 takes Â|DS(t)|
i=1 O(i · K) = O(K ·

|DS(t)|2) time.

2.5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms and investi-

gate the impact of different parameters on the algorithm performance.

2.5.1 Simulation Settings

We consider a mobile cloudlet environment that consists of n servers [28] and a set

of mobile devices sending their requests to the cloudlet for processing as depicted in

Fig. 2.1. The cloudlet contains four resources: CPU, memory, and disk storage with

capacities 2.99 GHz, 8 GB and 1024 GB for each server, and the bandwidth capacity

of the wireless access point with 75 Mbps [102].
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Recall that Bk = qk · (ak � 1) and B = q · (a � 1) in the section 2.3.2, in our

default settings, we assume that all resources have the same threshold Bk = B. We

set qk = q = 0.3 and ak = a = 4 for algorithms Online-OBO and Online-Batch.

The number of server n is 16 in the default setting. Unless otherwise specified, we

will adopt these default settings in our simulations. Each value in all figures is the

average of the results by applying the nominated algorithm for 20 different request

sequences.

We assume that each time slot lasts 10 seconds [100] and the system monitoring

time period is T = 8, 000 time slots. We further assume that only a single request

is evaluated at each time slot for the online request throughput maximization prob-

lem, while the number of requests at each time slot is randomly generated within

the range of [2, 10] for the online batch requests throughput maximization problem.

The requirements of resources by each request are set according to Amazon Small

Instance [6] settings. If a request does require resource k, then the required amount

of resource k is generated randomly within the range of resource k listed in Table. 2.1,

of which the maximum occupation period tmax means the demanded occupation period

for the system resources of a request is at most tmax.

Table 2.1: Parameters of requests

Type One-by-one Batch
CPU power (GHz) [1, 6] [1, 6]

Memory (MB) [1, 400] [1, 400]
Storage (GB) [0.06, 1.2] [0.06, 1.2]

Bandwidth (Mbps) [0.05, 1.5] [0.05, 1.5]
Maximum occupation period (time slots) 20 20

We consider two heuristics as our evaluation benchmarks. The first heuristic ad-

mits requests according to the First-Come-First-Service strategy, and a request will

be admitted as long as the cloudlet can fulfill its resource demands, otherwise the

request will be rejected immediately. We refer to this algorithm as FCFS-OBO and

FCFS-Batch for the online request throughput maximization problem and the online
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batch requests throughput maximization problem, respectively. The second heuris-

tic [104] considers the request consolidation problem in a virtualized heterogeneous

server system with an aim to minimize the operation energy consumption of servers.

The proposed solution finds an optimal operating point which occurs at 70% CPU

utilization and 50% disk utilization from profiling data through the calculating of

the Euclidean distance between the optimal point and the current workload alloca-

tion [104]. As their objective is to minimize the energy consumption of the system,

we aim to maximize the system throughput in a cloudlet environment, we treat the

optimal point as the one that fully utilizes all resources in the system. That is, the

optimal point for each resource is the capacity of the resource. We refer to the mod-

ified algorithms as algorithms Euclidean-OBO and Euclidean-Batch for the two

problems.

2.5.2 Performance Evaluation of the Proposed Algorithms

We first evaluate the proposed algorithms against the benchmark algorithms in the

default parameter settings under different monitoring periods and with various max-

imum occupation periods of requests. The performance curves of these algorithms

are plotted in Fig. 2.2. From Fig. 2.2(a) and Fig. 2.2(b) we can see that the proposed al-

gorithms Online-OBO and Online-Batch outperform their counterparts Euclidean-

OBO, FCFS-OBO, Euclidean-Batch and FCFS-Batch in terms of the system through-

put over different monitoring periods T. For example, the system throughput of

Online-OBO is around 10% higher than that of Euclidean-OBO, and 30% higher than

that of FCFS-OBO. Also, the system throughput of Online-Batch is around 4% and

23% higher than its counterparts of algorithms Euclidean-Batch and FCFS-Batch.

The rationale behind is that the proposed algorithms will reject those requests that

have large quantity of resource demands and occupation of the demanded resources

for a long period, while these requests will reduce the future system throughput

since they occupy large amounts of resources for long periods if they were admitted.
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(c) The system throughput of algorithms
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with various maximum occupation periods at
T = 8, 000 time slots
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(d) The system throughput of algorithms
Online-Batch, Euclidean-Batch and
FCFS-Batch with various maximum occu-
pation periods at T = 8, 000 time slots

Figure 2.2: Performance evaluations of different algorithms.

In contrast, the other two heuristics failed to reject such requests. In addition, from

Fig. 2.2(c) and Fig. 2.2(d), it can be seen that the proposed algorithms Online-OBO

and Online-Batch significantly outperform all the other mentioned algorithms in

terms of the system throughput with various maximum occupation periods tmax of

requests for a given monitoring period T = 8, 000 time slots. It can also be seen from

Fig. 2.2(c) and Fig. 2.2(d) that the system throughput decreases with the increase of

the tmax, because a longer occupation period of a request leads to a higher load to

the system, which generates a smaller system throughput.
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2.5.3 Impact of Important Parameters on the Performance

We then study the impact of different parameters on the algorithm performance

under different maximum occupation periods tmax at T = 8, 000 time slots as follows.

Impact of parameter a: We first investigate the impact of the value of a on the

system throughput by varying a from 2 to 29. Fig. 2.3 plots the performance curves

of algorithms Online-OBO and Online-Batch with various maximum occupation

periods tmax. For the sake of convenience, we use t to represent tmax in Fig. 2.3,

from which it can be seen that the system throughput increases with the growth of a.

Specifically, the system throughput reaches the peak at a = 4, and follows decreasing.

We thus set a = 4 in our default setting. Notice that the system throughput decreases

with the growth of tmax of requests, the arguments are similar as we did in Fig. 2.2(c)

and Fig. 2.2(d).

2 2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

a

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
y
st

em
 t

h
ro

u
g
h
p
u
t

τ = 20
τ = 30
τ = 40
τ = 50

(a) The impact of a on the system throughput of
algorithm Online-OBO with various maximum
occupation periods

2 2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

a

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
y
st

em
 t

h
ro

u
g
h
p
u
t

τ = 20
τ = 30
τ = 40
τ = 50

(b) The impact of a on the system throughput
of algorithm Online-Batch with various maxi-
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Figure 2.3: The impact of values of a on the system throughput of algorithms
Online-OBO and Online-Batch with various maximum occupation periods at T =
8, 000 time slots.

Impact of parameter q: We then evaluate the impact of the threshold coefficient

q in Bk = B = q · (a� 1) on the system throughput of algorithms Online-OBO and

Online-Batch by varying q from 0.1 to 0.9. Fig. 2.4 (a) and Fig. 2.4 (b) imply that

the system throughput increases with the growth of q, reaches the peak at q = 0.2,
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then keeps stable until q = 0.5 and decreases subsequently. We thus choose q = 0.3.

Recall that a = 4, the threshold Bk = B = q · (a� 1) = 0.9 in our default setting. The

system throughput varies with the change of the threshold, this is because the system

tends to reject requests when the threshold is small, thereby reducing the system

throughput. However, when the threshold is large, requests with higher resource

demands can be admitted, which lead to a reduction of the system throughput due to

the large resource demands of such requests. That is, the optimal system throughput

arises only when the threshold neither large nor small. Also, the system throughput

decreases with the increase of tmax, following the similar arguments as we did in

Fig. 2.2(c) and Fig. 2.2(d).
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Figure 2.4: The impact of q on the system throughput of algorithms Online-OBO and
Online-Batch with various maximum occupation periods at T = 8, 000 time slots.

2.6 Summary

In this chapter, we considered the online request throughput maximization problem

in a cloudlet. We developed novel admission control algorithms through propos-

ing a novel admission cost model to model different resource consumptions. We

also conducted extensive experiments by simulations to evaluate the performance of

the proposed algorithms against existing heuristics in terms of system throughput.
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Experimental results demonstrate that the proposed algorithms are promising and

outperform the mentioned heuristics.



38 Throughput Maximization for Online Request Admissions in Mobile Cloudlets



Chapter 3

Collaboration- and Fairness-Aware

Big Data Management in

Distributed Clouds

3.1 Introduction

Distributed clouds, consisting of multiple datacenters located at different geograph-

ical locations and interconnected by high-speed communication routes or links, are

emerging as the next-generation cloud platforms, due to their rich cloud resources,

resilience to disasters, and low access delay [40, 119, 120, 130]. Meanwhile, with the

escalation of data-intensive applications from different organizations that produce

petabytes of data, such applications are relying on the rich resources provided by

distributed clouds to store and process their petabyte-scale data, i.e., big data man-

agement. For instance, the European radio telescope, LOFAR (Low-Frequency Array)

based on a vast array of omni-directional antennas located in Netherlands, Germany,

the Great Britain, France and Sweden, produces up to five petabyte of raw data every

four hours [78]. Another such an application, Large Hadron Collider in physics re-

search, generates over 60 TB data per day [72]. To share the collected data and obtain

valuable insights and scientific findings from such huge volume of data generated

from different locations, data users need to upload and process their big data in a

distributed cloud for cost savings. Thus, collaborative researchers at different geo-

39
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graphic locations can share the data by accessing and analyzing it. A naive placement

for such large volume of big data may incur huge costs on data transmission among

not only the datacenters but also the collaborated researchers. In addition, the data

generated at different locations must be fairly placed to the distributed cloud. Oth-

erwise, biased data placements may severely degrade the reputation of the service

provider, thereby reducing the potential revenue of the service provider.

The development of efficient solutions to the mentioned big data management

problem is challenging, which lies in several aspects: (i) The collaboration-aware user-

s/big data applications dynamically and continuously generate data from different

geographical locations, the high cost will be incurred when managing such data

due to their geo-distributions and large volumes. (ii) Users typically have Quality

of Service (QoS) requirements. Fair usage of cloud services is crucial, otherwise,

biased allocation of cloud resources may result in that unsatisfied users no longer

use the service, the service provider may fall into disrepute, and its revenue will

be significantly reduced. (iii) Processing and analyzing the placed big data require

massive computing resource. However, the computing resource in each datacenter

typically is limited [4]. If the data placed in a datacenter cannot be processed as re-

quired, the overhead on migrating the placed data to other datacenters for processing

will be high. (iv) Provisioning adequate computing and network resources for big

data applications usually incurs a high operational cost, including the energy cost of

powering servers in datacenters, the hardware cost on switches and routers between

datacenters, and the communication cost for transmitting data along Internet links.

To address these challenges, in this chapter we study the collaboration- and fairness-

aware big data management problem in a distributed cloud to fairly place continuously

generated data to the datacenters of the distributed cloud, the placed data are then

processed, and the generated intermediate results finally are utilized by other collab-

orative users. Our objective is to maximize the system throughput, while keeping the

operational cost of the service provider minimized, subject to the resource capacity
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and the fairness among users constraints, where the system throughput is the ratio

of the amount of generated data that are successfully placed and processed to the

total amount of data generated by each user. In other words, the system through-

put is identical for each user, i.e., the proposed algorithm can fairly place the same

percentage of data for each user into the system.

Despite that several studies in literature focused on big data management [129,

75, 9, 36, 3, 60], we are not aware of any studies on the collaboration- and fairness-

aware big data management problem yet. For example, the studies in [129, 9, 36, 60]

focused on data management based on given static data, while the work in [3, 60]

did not consider collaborations and the fairness issue among users. They neither take

the intermediate results of processed data nor the computing capacity of datacenters

into account.

The remainder of this chapter is organized as follows. The system model and

the problem definition are introduced in Section 3.2. The algorithm is proposed in

Section 3.3, followed by evaluating the performance of the proposed algorithm in

Section 3.4. The summary is given in Section 3.5.

3.2 Preliminaries

In this section we first introduce the system model, we then describe user collabora-

tion groups and the cost model of data management. We finally define the problem

precisely.

3.2.1 System Model

We consider a distributed cloud G = (V [ FE , E), consisting of a number of dat-

acenters located at different geographical locations and interconnected by Internet

links, where V and FE are the sets of datacenters and front-end servers, and E is

the set of communication links between datacenters and between datacenters and

front-end servers [57]. Let vi be a datacenter in V and eij a link in E between dat-
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acenters vi and vj. The storage and computing resources of each datacenter vi are

used to store and process data, and the bandwidth resource of each link is used for

data transmission between datacenters. For the sake of convenience, we here only

consider computing and network resources of G as storage resource provisioning is

similar to that of computing resource. Denote by Bc(vi) the capacity of computing

resource at datacenter vi 2 V, and Bb(eij) the bandwidth resource capacity of link

eij 2 E. Assuming that time is divided into equal time slots, the amount of available

computing resource of datacenter vi is represented by Ac(vi, t), and the amount of

available bandwidth resource of link eij is represented by Ab(eij, t) at time slot t. Let

FEm be a front-end server in FE , where 1  m  |FE|. Each front-end server FEm

serves as a portal node to the distributed cloud, and has a certain storage capacity

to buffer data from its nearby users [38]. Without loss of generality, we assume that

the number of front-end servers is proportional to the number of datacenters, i.e.,

|FE| = O(|V|).

Users, such as enterprises, organizations and institutions, nowadays are outsourc-

ing their big data to the distributed cloud G. Let uj be one of such users and FEm(uj)

the nearest front-end server of uj, the generated data by uj are buffered at FEm(uj),

and the placement of the data to the distributed cloud is scheduled at the beginning

of each time slot t. For security concern and ease of management of its data, we

assume that there is a set of candidate datacenters specified by user uj to place and

process its generated data. Let DC(uj) be the set of candidate datacenters specified by

user uj. Denote by S(uj, t) the dataset generated by user uj at time slot t. Each dataset

S(uj, t) can be further split into different fragments (or data blocks) and placed to

several candidate datacenters of uj, due to the limited resource availability at each

datacenter [4]. Computing and bandwidth resources are needed to process dataset

S(uj, t) and to transmit related data, let rc and rb be the amounts of computing and

bandwidth resources allocated to one unit of data [90]. If the accumulated available

resources of uj’s candidate datacenters are not enough for the whole dataset S(uj, t),
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a proportion of the dataset that cannot be placed at this time slot has to be stored at

uj’s nearby front-end server FEm(uj) temporarily and will be scheduled later. This

procedure continues until all proportions of the dataset are successfully placed and

processed. Once dataset S(uj, t) is placed to datacenters, it will be processed by the

datacenters in which it is placed to generate intermediate results. We assume that the

volume of the intermediate result of a dataset usually is proportional to the volume

of the dataset, i.e., a⇥ |S(uj, t)| [97, 131], where a is a constant that can be obtained

through statistical analysis on the data with 0 < a  1. The dataset S(uj, t) then can

be removed from the datacenters immediately after its intermediate result has been

obtained.

Figure 3.1: A big data management system

In addition to generating data, each user uj also requires the intermediate results

from its collaborators for further analysis and processing. For example, a metropoli-

tan retail chain consists of many collaborative retailers, each of them not only gen-

erates data about customer mobility but also needs intermediate results from its col-
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laborators to better understand in-store traffic patterns and optimize product place-

ments and staffing levels throughout the day, and measure the impact of advertising

and special promotions [113]. We thus assume that each user uj has a home datacenter

to process and analyze these intermediate results, denote by h(uj) the home datacen-

ter of uj. Fig. 3.1 illustrates the system model, where users u1, u2 and u3 buffer their

datasets at the front-end server FE1, users u4 and u5 buffer their datasets at FE2, the

candidate datacenter of u1, u2 and u3 is v6, the candidate datacenter of u4 and u5 is

v9, and the home datacenters of u1, u2, u3, u4 and u5 are h(u1), h(u2), h(u3), h(u4)

and h(u5), respectively. The datasets of u1, u2 and u3 are transferred to their candi-

date datacenter v6 to process, the intermediate results obtained from the processed

datasets are then transferred to h(u1), h(u2) and h(u3). Similarly, the datasets of u4

and u5 are transferred to their candidate datacenter v9 to process, the intermediate

results obtained are then transferred to h(u4) and h(u5), respectively.

3.2.2 Collaborations in Big Data Management

In this chapter we consider long-term close collaborations of a group of users. Two

collaborative users in the same group need to share, process and analyze the inter-

mediate results of each other in order to derive their own final results on a long term

basis. We thus use a collaboration group to model a set of collaborative users that make

use of the intermediate results of each other in the distributed cloud. Assume that

there are K collaboration groups in the system. Denote by gk, the kth collaboration

group for each k with 1  k  K. For the sake of bandwidth resource savings, we

assume that the intermediate result of each user uj in group gk will be multicast to all

members in the group. In this chapter, we consider data users like enterprises, orga-

nizations, and institutes, which tend to have more collaborations with their peers to

build more wealth and improve daily lives of people. However, in reality, large col-

laboration groups with many group numbers are hard to form and manage, because

many complicated commitments need to be negotiated among the members [78]. We
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thus assume that the number of members in each group is given as a priori and

do not change over time. However, a user may belong to multiple groups, which is

common in scientific collaborations where the members in one institution collaborate

with many research groups in other institutions.

3.2.3 Cost Model

Managing datasets incurs the operational cost of a cloud service provider, where

the operational cost includes the data storage cost, the data processing cost, and the

communication cost of transferring datasets and intermediate results between dat-

acenters. These costs are proportional to the volume of data stored, processed and

transferred. Let cs(vi) and cp(vi) be the storage and processing costs at datacen-

ter vi for storing and processing one unit of data, and denote by cb(eij) the cost of

occupying one unit of bandwidth along link eij [6, 7, 131].

Recall that dataset S(uj, t) of uj can be split into multiple segments that can be

placed and processed in different candidate datacenters of uj. Let lvi(uj, t) be the

proportion of dataset S(uj, t) that will be placed and processed by datacenter vi at

time slot t, then the storage and processing cost to store and process lvi(uj, t) of dataset

S(uj, t) in datacenter vi thus is

C1
�
S(uj, t), vi

�
= lvi(uj, t) · |S(uj, t)| ·

�
cs(vi) + cp(vi)

�
. (3.1)

Note that |S(uj, t)| represents the volume of dataset S(uj, t).

The communication cost by transferring a dataset and multicasting its intermediate

results through one link e 2 E along which data is routed is

C2
�
S(uj, t), e

�
=

�
le(t) · |S(uj, t)|+ l0e(t) · |S(uj, t)| · a

�
· rb · cb(e), (3.2)

where le(t) and l0e(t) are the proportions of dataset S(uj, t) and its intermediate

results that are routed through link e, and rb is the amount of bandwidth allocated

to one unit of data.
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3.2.4 Problem Definition

Given a distributed cloud G = (V [FE , E), a set U of users, each user uj 2 U has a

set DC(uj) of candidate datacenters, a home datacenter h(uj), and is in a collabora-

tion group gk. A dataset S(uj, t) is generated by each user uj at time slot t, and the

computing resource and the bandwidth resource assigned for processing and trans-

ferring a unit of data are rc and rb, respectively. There are K collaboration groups in

the distributed cloud. The collaboration- and fairness-aware big data management problem

for all groups is to place and process the same proportion l(t) of each dataset S(uj, t)

generated by user uj on its candidate datacenters and to multicast the intermediate

results of the processed data to the home datacenters of all users in group gk such that

the value of l(t) is maximized with 0 < l(t)  1. That is, we aim to find the largest

l(t) with l(t) = l(u1, t) = l(u2, t) = · · · = l(u|U |, t) such that the volume of dataset

S(uj, t) of each user uj 2 U that can be placed and processed in the distributed cloud

G at time slot t is maximized, where l(uj, t) is the proportion of dataset S(uj, t) that

will be placed to datacenters at time slot t and l(uj, t) = Âvi2DC(uj) lvi(uj, t), the

problem optimization objective thus is to

maximize l(t), (3.3)

while keeping the operational cost C(t) of the cloud service provider minimized,

subject to both computing and bandwidth resource capacity constraints, where

C(t) = Â
uj2U

⇣
Â

vi2DC(uj)

C1
�
S(uj, t), vi

�
+ Â

e2E
C2

�
S(uj, t), e

�⌘
. (3.4)

The maximum value of l(t) is referred to as the system throughput, which is the

ratio of the amount of placed and processed data to the amount of the generated data

by each user. The fairness here is referred to the same proportional of the dataset of

each user will be placed and processed in the distributed cloud at each time slot.

Notice that the occupied storage, computing and bandwidth resources by the
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placed and processed data will be released when data storage, processing and trans-

mission are finished. Without loss of generality, following the similar assumptions

in [130, 131], we assume that all data processing and transmission can be finished

within one time slot. This can be achieved by adjusting the length of each time slot.

3.3 Approximation Algorithm

In this section, we first propose a novel optimization framework for the collaboration-

and fairness-aware big data management problem. We then develop an efficient ap-

proximation algorithm with a guaranteed approximation ratio, based on the pro-

posed optimization framework. We finally analyze the time complexity and approx-

imation ratio of the proposed algorithm.

3.3.1 An Optimization Framework

Intuitively, a solution to the collaboration- and fairness-aware big data management

problem consists of two phases: (i) upload the dataset of each user uj to its candidate

datacenters for processing; and (ii) multicast the intermediate results obtained from

the processed datasets to the home datacenters of other users in the collaboration

group to which uj belongs. A naive solution thus is to optimize these two phases

separately, which will result in a sub-optimal solution. For example, given a user uj

in group gk, assuming phase (i) places datasets of user uj into a datacenter that is far

away from the home datacenters of other users in group gk, phase (ii) may incur a

high communication cost for multicasting the intermediate results from the placed

datasets to these home datacenters.

To provide a better solution for the problem, in the following we propose a novel

optimization framework by jointly considering these two phases. The optimization

framework essentially is to reduce the collaboration- and fairness-aware big data

management problem in a distributed cloud G = (V [ FE , E) to the minimum cost

multicommodity flow problem in an auxiliary flow network Gf = (Vf , Ef ; u, c) with
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a cost function c : E 7! R�0 and a capacity function u : E 7! R+, where the construc-

tion of Gf consists of two stages, which is described as follows.

We start by its construction in the first stage. Given each front-end server FEm 2

FE in G, there is a virtual front-end node FE f
m(uj) in Vf for each user uj whose data

are buffered at FEm. All virtual front-end nodes and a virtual source node s0 are added

to Gf . There is an edge in Ef from s0 to each FE f
m(uj) with the cost zero while the

capacity of the edge is set as the total volume of datasets generated by all users in U

at time slot t, i.e., u(s0, FE f
m(uj)) = Âuj2U |S(uj, t)|. For each candidate datacenter vi

in G, there is a datacenter node v f
i in Gf . For each datacenter node v f

i and group gk,

if the corresponding datacenter vi of v f
i is a candidate datacenter of any user in gk,

there is a virtual datacenter node v f
i,gk

for group gk, e.g., datacenter v0 is the candidate

datacenter of users u1 and u2, u1 and u2 are in groups g1 and g2 respectively, then, two

virtual datacenter nodes v f
0,g1

and v f
0,g2

are added to Gf . An edge from each virtual

front-end server FE f
m(uj) to each virtual datacenter node v f

i,gk
is added to Gf if uj is

a member of group gk and its corresponding datacenter vi is one of the candidate

datacenters of uj. Each such an edge, e.g., hFE f
m(uj), v f

i,gk
i, represents the shortest

routing path from FEm to datacenter vi in distributed cloud G, denoted by pFEm,vi . Its

cost thus is the accumulative communication cost of all links in the shortest path, i.e.,

c(FE f
m(uj), v f

i,gk
) = Âe2pFEm ,vi

ct(e), and its capacity is the amount of data that can be

routed through a bottleneck link in the shortest path that has the minimum available

bandwidth, i.e., u(FE f
m(uj), v f

i,gk
) = mine2pFEm ,vi

{ Ab(e,t)
rb

}.

We then proceed the construction of Gf in its second stage, i.e., multicasting the

intermediate results obtained from the processed source datasets, which is crucial to

maximize the system throughput, as multicasting consumes the bandwidth resource

of links in the distributed cloud G. There are two issues associated with multicasting

in Gf : One is how to handle multiple multicasts of intermediate results sourced from

each candidate datacenter within each group gk; and the other is how to deal with

the volume differences between the source data and their intermediate results.
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For the first issue, we consider the case where the intermediate results of multiple

users in the same group gk at each candidate datacenter vi will be transferred through

a shared multicast tree T(vi, t), because they share identical (multicast source) root

vi and the same terminal set gk. To this end, add an edge from each virtual datacen-

ter node v f
i,gk

to its corresponding datacenter node v f
i to the edge set Ef , this edge

represents a multicast tree that multicasts the intermediate results from source node

vi in G to other terminal nodes in gk, where the source data are processed and the

intermediate results are generated at vi. The terminals in a multicast tree are the

home datacenters of users in group gk.

For the second issue, we assign the capacity of edge hv f
i,gk

, v f
i i in Ef , which is the

minimum available capacity of links in the multicast tree T(vi, t). Specifically, the

actual capacity of edge hv f
i,gk

, v f
i i is the amount of data that can be routed through

the bottleneck link in tree T(vi, t). Here, we relax the capacity of edge hv f
i,gk

, v f
i i by

1/a times of the capacity of its bottleneck link, since we route data through a path

in the auxiliary graph Gf without considering the change of the data volume, while

in reality, the volume of an intermediate result in the multicasting tree usually is the

proportional of the volume of its dataset, i.e., a ⇥ |S(uj, t)| [97, 131], where a is a

constant with 0 < a  1. Therefore, the capacity of edge hv f
i,gk

, v f
i i is u(v f

i,gk
, v f

i ) =
mine2T(vi ,t){Ab(e,t)}

a·rb
, where rb is the amount of bandwidth assigned to a unit of data. The

cost of edge hv f
i,gk

, v f
i i is the accumulative cost of all edges in T(vi, t), i.e., c(v f

i,gk
, v f

i ) =

Âe2T(vi ,t) ct(e).

We finally add a virtual sink node t0 to Gf . For each datacenter node v f
i 2 Vf ,

there is an edge from v f
i to t0. The cost of each edge hv f

i , t0i is the cost of storing

and processing a unit of data at datacenter vi, that is c(v f
i , t0) = cs(vi) + cp(vi). Its

capacity is the total volume of data that can be processed by the available computing

resource of vi 2 V at time slot t, i.e., u(v f
i , t0) = Ac(vi ,t)

rc
, where rc is the amount of

computing resource allocated to one unit of data.

An example of the distributed cloud G = (V [FE , E) and the construction of the
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Figure 3.2: An example of the construction of an auxiliary flow network Gf =
(Vf , Ef ; u, c), where users u1 and u2 are in group g1, users u3 and u4 are in group
g2, i.e., g1 = {u1, u2}, g2 = {u3, u4}, the sets of candidate datacenters of users u1,
u2, u3 and u4 are DC(u1) = {v3, v4}, DC(u2) = {v4, v5}, DC(u3) = {v5, v10}, and
DC(u4) = {v13}, respectively. The home datacenters of u1, u2, u3 and u4 are h(u1),
h(u2), h(u3) and h(u4), respectively.
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auxiliary flow network Gf = (Vf , Ef ; u, c) are shown in Fig. 3.2, where both users u1

and u2 are in group g1, while users u3 and u4 are in group g2. The home datacenters

of u1, u2, u3 and u4 are h(u1), h(u2), h(u3) and h(u4) respectively. The candidate dat-

acenters of user u1 are v3 and v4, the candidate datacenters of user u2 are v4 and v5.

the candidate datacenters of user u3 are v5 and v10, and the candidate datacenter of

user u4 is v13. Recall that FE f
1 (u1) represents the front-end server where the dataset

S(u1, t) of u1 are buffered, the edge hs0, v f
3,g1
i of Gf corresponds to placing a propor-

tion of S(u1, t) from FE1(u1) to the candidate datacenter v3 of user u1 in G, while

hs0, v f
4,g1
i of Gf corresponds to placing another proportion of S(u1, t) from FE1(u1)

to the candidate datacenter v4 of user u1 in G. Similarly, hv f
3,g1

, t0i in Gf corresponds

to processing data on v3 and multicasting the intermediate results processed by v3 to

the home datacenters of users u1 and u2 in G. Similarly, hv f
4,g1

, t0i in Gf corresponds

to processing data on v4 and multicasting the intermediate results processed by v4

to home datacenters h(u1) and h(u2) of users u1 and u2 in G. The analysis of other

edges is similar as that of hs0, v f
3,g1
i, hv f

3,g1
, t0i, hs0, v f

4,g1
i and hv f

4,g1
, t0i.

Notice that the proposed optimization framework can be easily extended to the

scenario where a user belongs to multiple groups, for which we only need to modify

the flow network Gf to an augmented auxiliary flow network G0f . The only difference

between Gf and G0f is that, for a user uj in multiple groups that buffers its dataset at

the front-end server FEk(uj), there are multiple virtual candidate datacenter nodes

and one virtual front-end node FE f
k (uj). A set of edges are added, where there

is only one edge connecting to FE f
k (uj) from one of the multiple virtual candidate

datacenter nodes. For example, let u1 be the common user in groups g1 and g2,

let FE1(u1) be the front-end server of u1 and v1 the candidate datacenter of u1. The

constructed auxiliary flow network Gf is shown in Fig. 3.3 (a). The construction of the

augmented auxiliary flow network G0f is as follows. Remove edges hFE f
1 (u1), v f

1,g2
i

and hv f
1,g1

, v f
1i from Gf , and add edge hv f

1,g1
, v f

1,g2
i into it, as shown in Fig. 3.3 (b).

The capacity and cost of edge hv f
1,g1

, v f
1,g2
i are set to their corresponding one of the
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Figure 3.3: An example of the augmented auxiliary graph G0f , where user u1 is in
groups g1 and g2, the candidate datacenter of u1 is v1, the front-end server of u1 is
FE1(u1).

removed edge hv f
1,g1

, v f
1i.

3.3.2 Algorithm Description

In the following we reduce the collaboration- and fairness-aware big data manage-

ment problem in G to a minimum cost multicommodity flow problem in Gf . The

detailed reduction is given as follows.

Let U (FEm) be the set of users whose datasets are buffered at the front-end server

FEm. The data of each user is treated as a commodity with demand |S(uj, t)| at source

node FE f
m(uj) in Gf , which will be routed to the common destination t0. There are

Â|FE|
m=1 |U (FEm)| commodities in Gf to be routed to t0. Suppose that f is a maxi-

mum flow with minimum cost from s0 to t0 that routes the commodities from dif-

ferent source nodes to their common destination t0, and the constructed flow net-

work Gf satisfies the flow conservation: for any vertex v f , v f
0 2 Vf \ {s0, t0}, we have
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Âv f
02Vf

f (v f , v f
0) = Âv f

02Vf
f (v f

0 , v f ). For each commodity, f implies multiple routing

paths from s0 to t0 in Gf with each such a path p corresponding to processing a pro-

portion of a user’s dataset and multicasting the intermediate results of the dataset

to other group members of the user. However, considering routing all commodities,

the value of | f | of flow f may not be a feasible solution to the collaboration- and

fairness-aware big data management problem. This is because paths from s0 to t0 in

Gf may correspond to routing paths in distributed cloud G that share physical links

in G, and the physical link capacities may have been violated if the links are shared

by many routing paths (we will provide a formal proof later).

To obtain a feasible solution, flow f will be scaled down by an appropriate scale

factor so that the resulting flow f becomes feasible. Specifically, we first map flow f to

actual data routing in the original distributed cloud G. The amount of flow that goes

through edge hFE f
m(uj), v f

i,gk
i equals the amount of data routed through the shortest

path in G from FEm to datacenter vi, since each edge hFE f
m(uj), v f

i,gk
i in Gf represents

the shortest path in G from FEm to vi. Similarly, The a proportion of the amount

of flow that goes through edge hv f
i,gk

, v f
i i in Gf equals the amount of data routed

through the multicast tree rooted at v f
i with the terminal set consisting of the home

datacenters of users in gk. We then find the minimum overflow ratio of all edges in E

of G, i.e., rmin = mine2E{ At(e,t)
f 0(e)·rb

}, where f 0(e) is the flow through edge e. Notice that

in terms of “fair” big data management, we finally scale down the flow in all edges

a ratio rmin. The proposed approximation algorithm is described in Algorithm 3.

3.3.3 Analysis of the Proposed Algorithm

We now first show the correctness of the proposed algorithm. We then analyze the

performance and time complexity of algorithm 3.

Lemma 2 Given the auxiliary flow network Gf = (Vf , Ef ; u, c) derived from the distributed

cloud G = (V [FE , E) and the capacity and cost settings of Gf , assume that the dataset of

a user uj 2 U is buffered in the front-end server FEm(uj), then, each path p in Gf from s0
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Algorithm 3 An approximation algorithm for the collaboration- and fairness-aware big data
management problem at each time slot t

Input: A distributed cloud G = (V [ FE , E) with a set V of datacenters, a set FE
of front-end servers serving as portals to the datacenters, and a set E of com-
munication links; A number K of collaboration groups of data users with each
group gk consisting of data users to share data with each other; A set of users
U who generated a set of datasets to be placed at each time slot t. The accuracy
parameter e with 0 < e  1.

Output: The proportion l(t) of datasets that are placed and processed, the minimum
operational cost C, and the datacenters for storing and processing the data.

1: Find all shortest paths from each front-end server FEm 2 FE to the candidate
datacenters of all users;

2: For each candidate datacenter vi and each user uj who are in group gk and spec-
ifies vi as a candidate datacenter, find a multicast tree whose root is vi and the
terminal set is the home datacenters of users in gk;

3: Construct an auxiliary flow network Gf , in which there are Â|FE|
i=1 |U (FEm)| com-

modities to be routed from their source node FE f
m(uj) to the destination t0;

4: Let f be the minimum cost flow for the minimum cost multicommodity flow
problem in Gf delivered by applying Garg and Könemann’s algorithm [33];

5: According to f , calculate the amount of data routed through each link e 2 E
of distributed cloud G, where the amount of flow through edge hFE f

m(uj), v f
i,gk
i

equals to the amount of data routed through the shortest path from FEm to dat-
acenter vi of G, and a proportion of the amount of flow through edge hv f

i,gk
, v f

i i
equals to the amount of data routed through the multicast tree whose root is v f

i
and terminal set is the home datacenters of users in gk;

6: Let f 0(e) be the amount of all data routed through each link e 2 E of G, find the
overflow ratio r(e) of the link, r(e) = At(e,t)

f 0(e)·rb
;

7: rmin  min{r(e) | e 2 E}; /* rmin is the minimum overflow ratio */
8: | f 0(e)| | f 0(e)| · rmin, 8e 2 E; /* scale down the flow */
9: Calculate the amount of routed data of uj, and l(t) that is the ratio of the amount

of routed data to the size of source dataset S(uj, t).
10: Calculate the cost by Eq. (3.4).

to t0 derived by flow f corresponds to the processing of a proportion of dataset S(uj, t) and

multicasting of the intermediate results of the processed data to the home datacenters of other

users in the group of uj.

Proof We first show that the amount of flow (data) entering to each datacenter node

v f
i in Gf will be processed by datacenter vi in G. For the sake of clarity, we assume

that uj is in group gk and one of its candidate datacenters is vi. From the construction
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of Gf , it can be seen that there is a directed edge from the virtual front-end server

node FE f
m(uj) of dataset S(uj, t) to each virtual datacenter node v f

i,gk
, and a directed

edge from virtual datacenter node v f
i,gk

to its corresponding datacenter node v f
i . The

value of the fractional flow on a path p from s0 to v f
i is the amount of data that are

routed to datacenter vi in G for processing. In addition, there is a directed edge from

v f
i to virtual sink t0, which means that the proportional of dataset S(uj, t) represented

by the fractional flow f has been processed by vi when flow f goes through edge

hv f
i , t0i.

We then show that the a proportion of flow f entering into edge hv f
i,gk

, v f
i i of path

p corresponds to the intermediate results, which will be multicast from datacenter vi

to all home datacenters of the users in gk. Recall that the volume of the intermediate

result is a proportional of the amount of data to be processed, where a is a constant

with 0 < a  1. To guarantee that all intermediate results can be routed along

edge hv f
i,gk

, v f
i i that represents a multicast tree in the distributed cloud G without

violating the edge capacity constraint, we relax the capacity of edge from hv f
i,gk

, v f
i i

to
mine2T(vi ,t){At(e,t)}

a·rb
, while the actual amount of data that will be sent through the

multicast tree in G is | f | ⇥ a, which is the volume of intermediate results that are

analyzed from the data in flow f (i.e., the data processed in datacenter v f
i ).

Lemma 3 Given the auxiliary flow network Gf = (Vf , Ef ; u, c) derived from the distributed

cloud G = (V [ FE , E), the capacity and cost settings of edges in Gf , and users in U

whose data to be processed and multicast, there is a feasible solution to the collaboration- and

fairness-aware big data management problem if none of the routing paths and multicast trees

share links in G; otherwise, the solution may not be feasible.

Proof We first show that there is no resource sharing between routing paths for

dataset transfer and multicast trees, since the processing of a dataset in a datacenter

can start after the dataset has been received by the datacenter.

We then analyze a case where no links are shared among all routing paths in

G from front-end servers to candidate datacenters and the multicast trees rooted at
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the candidate datacenters to the home datacenters of the users in each collaboration

group. This means that no two fractional flows in Gf , say f1 and f2 from s0 to t0, cor-

responding to paths and multicast trees in G that share links in the distributed cloud

G. Also, by Lemma 2, each path in Gf from s0 to t0 derived by flow f corresponds

to placing and processing a proportion of a dataset and multicasting the processed

intermediate results to the home datacenters of all users in that collaboration group.

Thus, a feasible flow f in Gf from s0 to t0 corresponds to a feasible solution to the

problem of concern.

We finally show the case where both the paths and multicast trees do not share

links by contradiction. Suppose there are two shortest paths p1 and p2 from front-end

servers of users u1 and u2 to one common candidate datacenter v1 in the distributed

cloud G, and a link e 2 E is shared by both p1 and p2. Let g1 and g2 be the two

groups in which u1 and u2 are, and let FE1(u1) and FE2(u2) be the front-end servers

of u1 and u2, respectively. In the construction of Gf , p1 and p2 are denoted by edges

hFE f
1 (u1), v f

1,g1
i and hFE f

2 (u2), v f
1,g2
i, respectively. Their capacities are set the amounts

of available bandwidth resources of the bottleneck links for p1 and p2. We assume

link e is the bottleneck link of both p1 and p2 in G. A feasible flow f from s0 to t0 will

saturate both edges hFE f
1 (u1), v f

1,g1
i and hFE f

2 (u2), v f
1,g2
i. This however will overflow

the bandwidth capacity of link e, due to the fact that link e is the bottleneck link of

paths p1 and p2 in G. The lemma thus follows.

The rest is to analyze the approximation ratio and time complexity of the pro-

posed algorithm. For the sake of completeness, in the following we first introduce

Theorem 3 [33] and then elaborate Theorem 4.

Theorem 3 (see [33]) There is an approximation algorithm for the minimum cost multicom-

modity flow problem in a directed graph G = (V, E; u, c) with n commodities to be routed

from their sources to their destinations. The algorithm delivers an approximate solution with

an approximation ratio of (1� 3e) while the associated cost is the minimum one, and the algo-
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rithm takes O⇤(e�2m(n + m)) time1, where m = |E| and e is a constant accuracy parameter

that is moderately small.

Theorem 4 Given a distributed cloud G = (V [FE , E) consisting of |V| datacenters, |FE|

front-end servers, and a set U of users in K collaboration groups, there is an approximation

algorithm with the approximation ratio 1
|U ||V| � e0 for the collaboration- and fairness-aware

big data management problem in G, while the cost of achieving the system throughput is no

more than 2 times of the optimal solution C⇤. The time complexity of the proposed algorithm

is O⇤(e�2(K|FE||V||U |+ K2|FE|2|V|2) + |V|3), where e0 is constant with e0 = 3e
|U ||V| .

Proof We first analyze the approximation ratio of algorithm 3 in terms of the system

throughput. Let f 0 and f ⇤ be a feasible and the optimal solutions to the problem.

Let f be the flow in Gf delivered by Garg and Könemann’s algorithm, then | f | �

(1� 3e)| f ⇤| by Theorem 3, where e is a constant accuracy parameter. Note that if f

is infeasible, it becomes feasible by scaling a factor of rmin. Thus, there is a feasible

solution f 0 to the problem (i.e., the system throughput | f 0| � rmin(1� 3e)| f ⇤|). The

rest is to show that rmin � 1
|U ||V| by the two cases: (i) all shortest paths from front-

end servers to candidate datacenters share one common bottleneck link in G; (ii) all

multicast trees to collaboration groups share one common bottleneck link in G. For

case (i), recall that a set U of users form K groups. If all these |U | users have data

to be processed to their candidate datacenters, there will be at most |U ||V| shortest

routing paths in G from front-end servers to candidate datacenters. We thus have

rmin = 1
|U ||V| . For case (ii), the worst case is that each user has its intermediate results

generated at all the |V| datacenters, and all users are multicasting their intermediate

results to their collaborators. In total, there will be |U ||V| multicast sessions sharing

one bottleneck link in the worst case. Thus, rmin = 1
|U ||V| . By taking both cases (i)

and (ii) into consideration, we have rmin = 1
|U ||V| . The approximation ratio of the

proposed algorithm thus is rmin(1� 3e) = 1
|U ||V| � e0, where e0 = 3e

|U ||V| .

We then show the approximation ratio of the cost to achieve the specified system

1O⇤( f (n)) = O( f (n) logO(1) n)
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throughput. From Theorem 3, we know that the cost of the feasible flow f in Gf

is minimized. This however does not mean that the cost of managing datasets is

minimized too, since finding a minimum-cost Steiner tree is a classic NP-hard prob-

lem. Let C1 be the cost of transferring and processing the data of users in U , and C2

be the cost of transferring intermediate results by algorithm 3. Then, C = C1 + C2.

Denote by C⇤1 and C⇤2 the corresponding components in the optimal solution of C1

and C2. We then have C1 = C⇤1 as the datasets are routed to candidate datacen-

ters through the shortest paths in G. Similarly, C2  2C⇤2 following the well-known

approximate solution to find a minimum-cost terminal Steiner tree. We thus have

C
C⇤ =

C1+C2
C⇤1+C⇤2

 C⇤1+2C⇤2
C⇤1+C⇤2

 2.

We finally analyze the running time of the proposed algorithm. The most time

consuming component in the construction of Gf is to find the shortest paths from

front-end servers to candidate datacenters and multicast trees for all groups. The

construction of Gf thus takes O(K2|FE||V|2 + |V|3). Delivering a feasible flow on

Gf takes O⇤(e�2m(n + m)) time by Theorem 3, where n = Â|FE|
i=1 |U (FEm)| = |U | and

m = K|FE||V|. The time complexity of the proposed algorithm thus is O⇤(e�2(K|FE|

|V||U |+ K2|FE|2|V|2) + |V|3).

3.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm, and investi-

gate the impact of important parameters on the algorithmic performance.

3.4.1 Simulation Settings

We consider a distributed cloud consisting of 20 datacenters and 10 front-end servers,

there is an edge between each pair of nodes with a probability of 0.2 generated by

the GT-ITM tool [39]. The computing capacity of each datacenter and the bandwidth

capacity of each link are randomly drawn from value intervals [1, 000, 2, 000] units

(GHz), and [1, 10] units (Gbps), respectively [10, 41, 116]. We set each time slot as

one hour [131]. Each user produces several Gigabytes of data per time slot, we thus
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emulate the volume of dataset generated by each user per time slot is in the range

of [4, 8] GB [131], and the amount of computing resource assigned to the processing

of 1GB data is a value in the range of [8, 12] GHz. These generated data will be

placed and processed from 1 to 5 datacenters. The costs of transmitting, storing and

processing 1 GB of data are set within [$0.05, $0.12], [$0.001, $0.0015], and [$0.15,

$0.22], respectively, following typical charges in Amazon EC2 and S3 with small

variations [6, 7]. Unless otherwise specified, we will adopt these default settings in

our experiments. Each value in the figures is the mean of the results by applying the

mentioned algorithm 15 times on 15 different topologies of the distributed cloud.

To evaluate the performance of the proposed algorithm, referred to as Appro-Alg,

two heuristics are employed as evaluation baselines. One is to choose a candidate

datacenter with the maximum amount of available computing resource, and then

place as much data of a user as possible to the datacenter. If the datacenter can-

not accommodate the whole dataset of the user, it then picks the next candidate

datacenter with the second largest amount of available computing resource. This

procedure continues until the dataset is placed or there is not any available comput-

ing resource in the set of candidate datacenters of this user. We refer to this heuristic

as Greedy-Alg. Another is to select a candidate datacenter randomly and place as

much datasets of a user as possible to the datacenter. If the available computing re-

source in the chosen datacenter is not enough to process all datasets, it then chooses

the next one randomly. This procedure continues until there is no available comput-

ing resource in the set of candidate datacenters of this user, or all data of this user

are placed to the distributed cloud. We refer to this algorithm as Random-Alg.

3.4.2 Performance Evaluation of the Proposed Algorithm

We now evaluate the performance of different algorithms, the amount of placed

data, the operational cost, and the average operational cost of placing one unit of

data by these algorithms. Fig. 3.4(a) plots the curves of system throughput delivered

by the three mentioned algorithms Appro-Alg, Greedy-Alg and Random-Alg, from
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Figure 3.4: The performance of algorithms Appro-Alg, Greedy-Alg, and
Random-Alg, in terms of system throughput, the amounts of data placed, the op-
erational cost, and the average cost for placing one unit of data.

which it can be seen that the algorithm Appro-Alg achieves a nearly optimal sys-

tem throughput of 98%, which is higher than those of algorithms Greedy-Alg and

Random-Alg by 13% and 23%, respectively. Fig. 3.4(b) shows the volume of placed

data by the three comparison algorithms, from which it can be seen that the volumes

of placed data by algorithms Appro-Alg, Greedy-Alg, and Random-Alg are 7,600 GB,

6,700 GB and 5,800 GB, respectively. Specifically, the volume of placed data by algo-

rithm Appro-Alg is 14% and 31% larger than those by algorithms Greedy-Alg and

Random-Alg. Fig. 3.4(c) illustrates the operational cost of these algorithms. It can be

seen that at time slot 100 the operational costs of algorithms Appro-Alg, Greedy-Alg
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and Random-Alg are $4,300, $3,850 and $3,450. These figures demonstrate that al-

though the operational cost of algorithm Appro-Alg is 12% and 25% higher than that

of the two benchmark algorithms, the amount of placed data by it is 14% and 31%

larger than the other two, respectively. The average cost for placing one unit of data

by different algorithms are shown in Fig. 3.4(d), from which it can be seen that the

unit cost of placed data by algorithm Appro-Alg is around 5% and 9% cheaper than

that of algorithms Greedy-Alg and Random-Alg. This means the proposed algorithm

Appro-Alg places more data in a more economic way (lower cost for placing one unit

of data).

3.4.3 Impact of Important Parameters on the Performance
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Figure 3.5: Impact of q on the performance of algorithm Appro-Alg, where q is a
ratio of the number of users who have data to be placed to the number of users in a
group.

We now study the impact of the number of users in each group having datasets

to place on the algorithm performance at each time slot, since not every one in a

group at each time will have data to be placed. Assume that the number of users in a

group is a value randomly drawn from [5, 20], so different groups may have different

numbers of users. We thus define a parameter q that is a ratio of the number of users

who have data to be placed to the number of users in a group, to evaluate the impact

of these users having data to be placed on the algorithm performance, e.g., there are
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4 users in group g1 having their data to be placed at time slot 1, while the number of

users in g1 is 10, then q = 0.4. Fig. 3.5 plots the curves of system throughput and the

operational costs by varying q from 0.2 to 1.0. It can be seen from Fig. 3.5(a) that the

system throughput drops from 96% to 65% with the growth of q. The reason behind is

that the larger q implies that more users will place their data to the distributed cloud

at this time slot, however the accumulated volume of placed data cannot exceed the

processing capability of datacenters and the transmission capability of links in the

distributed cloud. Fig. 3.5(b) depicts the curves of the operational costs of algorithm

Appro-Alg by varying the value of q, from which it can be seen that the operational

cost increases with the growth of q. Specifically, the operational cost increases from

$2,000 to $8,000 when q increases from 0.2 to 1.
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Figure 3.6: Impacts of group size |g| of each group on the performance of algorithm
Appro-Alg.

We then evaluate the impact of the group size |g| of each group g on the system

throughput and operational cost of algorithm Appro-Alg, by varying |g| from 10 to

30. Fig. 3.6(a) plots the system throughput curves, from which it can be seen that the

system throughput decreases with the increase of the value of |g|. To be specific, the

system throughput delivered by algorithm Appro-Alg is 98% when |g| = 10 and 50%

while |g| = 30. Fig. 3.6(b) depicts the operational cost of algorithm Appro-Alg. It can

be seen that the operational cost initially increases from $6,000 to $10,000 when the



§3.4 Performance Evaluation 63

5 10 15 20 25 30 35 40 45 50
Time ( hour )

0.8

0.84

0.88

0.92

0.96

1
S

y
st

em
 t

h
ro

u
g
h
p
u
t

The number of datacenters = 10
The number of datacenters = 20 
The number of datacenters = 30 
The number of datacenters = 40 

(a) The impact of the number of datacenters on
the system throughput

10 20 30 40 50 60 70 80 90 100
Time ( hour )

0

4,000

8,000

12,000

T
h
e 

o
p
er

at
io

n
al

 c
o
st

The number of datacenters = 10
The number of datacenters = 20
The number of datacenters = 30
The number of datacenters = 40

(b) The impact of the number of datacenters on
the operational cost

Figure 3.7: Impacts of the number of datacenters on the performance of algorithm
Appro-Alg.

group size varies from 10 to 20, and then drops a bit after |g| = 20, as the intermediate

results generated by datasets will be multicast to more users in group g with the

growth of the value of |g|. However, the available resources (both computing resource

and bandwidth resource) are limited, the amounts of data that can be processed

by datacenters and transmitted on Internet links are limited. With the increase on

the group size in a multicast tree, the probability of sharing a common link among

multicast sessions increases too, the system throughput therefore decreases with the

increase of the group size |g|, and so is the operational cost.

We finally study the impact of the number of datacenters on the system through-

put and the operational cost of the proposed algorithm Appro-Alg, by varying the

number from 10 to 40. Fig. 3.7(a) plots the system throughput curves, from which

it can be seen that the system throughput first grows very quickly from 91% to 97%

when the number of datacenters increases from 10 to 20. The reason is that with the

increase on the number of datacenters, more data can be placed and processed by the

system. However, the bandwidth capacities of links now become the bottlenecks for

data transmission within the system, the system throughput thus keeps stable when

there are 20 datacenters in the distributed cloud. Fig. 3.7(b) depicts the operational

cost curves, which grows with the increase on the number of datacenters, and keeps
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stable after there are 20 datacenters in the system, this is due to the fact that more

cost will be incurred to manage more data.

3.5 Summary

In this chapter, we considered a collaboration- and fairness-aware big data man-

agement problem in distributed cloud environments. We developed a novel opti-

mization framework, under which we then devised a fast approximation algorithm

for the problem. We also analyzed the time complexity and approximation ratio

of the proposed algorithm. We finally conducted extensive experiments by simula-

tions to evaluate the performance of the proposed algorithm. Experimental results

demonstrated that the proposed algorithm is promising, and outperforms other two

mentioned heuristics.



Chapter 4

Cost Minimization of Big Data

Analytic Query Evaluation in

Distributed Clouds

4.1 Introduction

With the advances in information and communication technologies, various data are

generated at exponential rates. For example, there are 4.5 quintillion bytes of data

generated daily (IBM 2015) [54], 90 percent of which have been created in the last two

years. Big data has emerged as a strategic property of nations and organizations,

and there are driving needs to generate values from these data. Big data analytics

that is a practice of rapidly crunching big data to identify interesting patterns and

improve business strategies, has become a rapidly evolving field in the technology-

driven business world [44, 116]. Private and public organizations are eagerly waiting

to collect the promised results from such data analysis. Moreover, as data pile up,

efficiently managing and analyzing the data become crucial in creating competitive

advantage, answering science questions, and making effective decisions.

Evaluating queries of big data analytics requires large quantity of storage, com-

puting and network resources that can be met by cloud computing platforms [118].

Cloud computing has emerged as the main computing paradigm in the 21st cen-

tury [6, 37, 116, 119, 120, 121], by providing a plethora of cloud services, including
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Figure 4.1: A motivation example of query evaluation for big data analytics.

online shopping, data analysis, and IT service outsourcing. The current de-facto ar-

chitecture of cloud computing, i.e., the centralized datacenters, has demonstrated the

limited success in big data analytics, e.g., MapReduce and Hadoop. However, to meet

ever-growing resource demands by users, the centralized datacenters are built larger

and larger, consuming more and more electricity, thus this is not eco-sustainable.

In contrast, the distributed cloud, consisting of many small- and medium-sized dat-

acenters located at different geographic regions and interconnected by high-speed

communication links, has been envisioned as the premier architecture of the next-

generation computing platform [4].

Query evaluation for big data analytics in distributed clouds typically requires

lots of computing, storage and communication resources across multiple datacen-

ters. However, such resource demands may be beyond the supplies of any single

datacenter at that moment. In addition, such query evaluation may incur huge com-

munication cost among the datacenters, by replicating the source data of the query

from their datacenters to the datacenters where the query will be evaluated. To effi-

ciently evaluate a query for big-data analytics in a distributed cloud, two important

issues must be addressed: one is to identify a set of datacenters with sufficient com-

puting and storage resources to meet the resource demands of the query evaluation;

another is to minimize the communication cost of query evaluation, as large quantity
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of data transfers among datacenters during the query evaluation are needed, and the

bandwidth availability between different datacenters significantly varies over time

which usually is the bottleneck of such an evaluation [6, 38, 112]. To motivate our

study, we here use an example to illustrate the query processing for big data analyt-

ics in a distributed cloud (see Fig. 4.1), where there is a query whose source data are

located at two datacenters, v1 and v2, respectively. A naive evaluation plan for the

query is to replicate its source data from one datacenter to another, e.g., from v1 to v2,

or from v2 to v1, and then evaluate the query at v2 or v1, as shown in Fig. 4.1(a). This

evaluation plan however may not be feasible if neither v1 nor v2 has enough avail-

able computing and storage resources to meet the resource demands of the query.

A better solution is to find an ideal datacenter v3 with sufficient computing and

storage resources that is not far away from both of them, as depicted in Fig. 4.1(b).

Unfortunately, it is very likely that such an ideal datacenter may not exist when all

datacenters are working at their high workloads at this moment. To respond to the

query on no time, sometimes multiple datacenters must be employed so that their

aggregate available resources can meet the resource demands of the query (e.g., v3

and v4 are employed). Thus, the available communication bandwidth between v3

and v4, v1 and v4, and v2 and v3 will be crucial in order to meet the SLA requirement

(the response time requirement) of the query, as shown in Fig. 4.1(c). Notice that, to

reduce the cost of data transfer in the network, we need to deal with data transfer

within the network carefully. Specifically, for each big data analytic query, we first try

to move query analytics to the datacenter hosting the source data of the query. Only

when the hosting datacenter does not have enough available computing resource to

evaluate the query at the moment (although its computing capacity may meet the

resource demands while the resource is being occupied by existing jobs), the source

data will be duplicated to other datacenters for processing.

Motivated by the mentioned example in Fig. 4.1, in this chapter we deal with

online query evaluation for big data analytics in a distributed cloud. That is, for a
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given monitoring period, user queries of big data analytics arrive into the system

one by one, the source data of each query are located at different datacenters in the

distributed cloud [93, 111, 112] and need to be replicated to the other datacenters

with enough computing resource for its evaluation. We here consider two different

types of source data transfers between datacenters: one is that the source data are

unsplittable and must be transferred to only one datacenter; another is that the source

data are splittable and can be replicated to multiple datacenters. The rationale behind

splittable and unsplittable source data lies in that the analysis of big data involves

different sorts of data. For example, compressed data (in GZip formats) cannot be

retained if they are split into different datacenters and uncompressed separately.

Further, data splitting may make the big data analytics deliver useless results in

some specific applications due to high correlations between different segments of the

data, such as stock-price prediction on massive data containing various correlated

observations and variables. On the other hand, the analysis based on the text data can

be partitioned into different blocks and each block can be analyzed in parallel. The

online query evaluation problem under both splittable and unsplittable source data

assumptions is to admit as many big data analytic queries as possible (i.e., the query

acceptance ratio) as long as there are enough resources to support the evaluations

of the admitted queries, while minimizing the accumulative communication cost of

the admitted queries, where the accumulated communication cost is defined as the

total communication cost incurred by source data replicating and intermediate data

transferring for each of the queries over the entire monitoring period.

Although extensive studies on query evaluation in clouds have been taken in the

past several years [1, 13, 30, 40, 45, 63, 66, 81, 97, 99, 108, 131], most of them focused

mainly on minimizing the computing cost [13, 63, 81], storage cost [81], the server

running cost [45] or the response time in a single datacenter [66], little attention had

been paid to the communication cost when replicating source data and exchanging

intermediate results of queries among datacenters, not to mention the impact of
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the source data locality on the cost of query evaluation. Despite that some of the

studies [14, 16, 88, 108, 114, 131] considered the data locality issue, they focused only

on a single datacenter, not on multiple datacenters at different geographic locations.

In contrast, in this chapter we consider query evaluation for big data analytics in a

distributed cloud.

The main contributions of this chapter are summarized as follows. We first pro-

pose a novel metric to model the consumptions of computing, storage and network

resources in a distributed cloud. We then devise online evaluation algorithms for

queries of big data analytics in the distributed cloud with the aim to maximize the

query acceptance ratio while keeping the accumulative evaluation cost minimized,

under the assumptions of the source data being either splittable or unsplittable. We

finally conduct experiments by simulations to evaluate the performance of the pro-

posed algorithms. Experimental results demonstrate that the proposed algorithms

are promising.

The reminder of this chapter is organized as follows. Section 4.2 introduces the

system model and problem definition. The online evaluation algorithms for big data

analytics are proposed in Section 4.3 and Section 4.4, respectively. The performance

evaluation of the proposed algorithm is given in Section 4.5. The summary is given

in Section 4.6.

4.2 Preliminaries

In this section we first introduce the system model and query evaluation for big data

analytics in distributed clouds. We then define the problems precisely.

4.2.1 System Model

We consider a distributed cloud G = (V, E) that consists of a number of datacenters

located at different geographical locations and interconnected by high speed links,

where V and E are the sets of datacenters and high speed links. Let vi be a datacenter
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in V and ei,j a link in E between datacenters vi and vj. Denote by C(vi) and C(ei,j)

the computing and bandwidth resource capacities of vi 2 V and ei,j 2 E, respectively.

Assume that each datacenter vi 2 V operates in an Infrastructure-as-a-Service (IaaS)

environment to lease its virtualized resources (virtual machines) to users, and each

link ei,j has bandwidth resource for lease too [121]. Since query evaluation for big

data analytics usually is both computing and bandwidth intensive, to evaluate the

query, the computing resource in datacenters and the communication bandwidth on

links between inter-datacenters must meet its resource demands. Following existing

studies [49, 99, 131], we assume that the computing resource demand of each query

is given in advance, represented by the number of virtual machines (VMs). Even if

a query does not specify its demanded number of VMs, the demand can be derived

through analyzing its historic evaluations or the demand of other similar query eval-

uations, by offline predictions and online calibrations. By referring to the amount

of data processed by a VM as the data chunk size, we further assume that the data

processing rate of a VM is given. Notice that the data processing rate of a VM for

IO-intensive operations may be easy to obtain, while the data processing rate of a

VM for CPU-intensive operations is hard to get. Since profiling the data processing

rates of VMs for different types of operations is out of the scope of this chapter, we

thus assume that the data processing rate of a VM is given and fixed.

In the rest of this chapter, we assume that time is slotted into equal time slots,

the resources in G are scheduled at the beginning of each time slot. The amounts

of available resources of vi 2 V and ei,j 2 E at different time slots may be signifi-

cantly different, depending on their workloads. Denote by B(vi, t) the amount of the

available computing resource in datacenter vi and B(ei,j, t) the amount of available

communication bandwidth on link ei,j at the beginning of time slot t. In this chap-

ter we focus on the inter-datacenter communications (bandwidth consumptions) be-

tween datacenters, while ignoring the intra-datacenter communications within each

datacenter, as the former usually is the bottleneck in such query evaluations [20]. We



§4.2 Preliminaries 71

here assume that the global information of all datacenters in the distributed cloud

can be monitored by a hypervisor, data transfers among datacenters can be executed

asynchronously, and the synchronization can be carried out at some certain stages of

the query evaluation. Such monitoring can be implemented by the Software-Defined

Networking (SDN) techniques through a centralized SDN controller.

4.2.2 Query Evaluation

Given a query Q for big data analytics with its source data located at multiple dat-

acenters in G, let VQ ✓ V be the set of datacenters in which the source data are

located, and S(vi, Q) the size of the source data of Q at datacenter vi 2 VQ. The eval-

uation of query Q usually involves not only source data replication to datacenters

with enough resources but also intermediate result migrations among the datacen-

ters. This means that the datacenters in which the query will be evaluated should

be close to each other for intermediate result migrations and they should not be

far away from datacenters in VQ to reduce the communication cost of data replica-

tion. The evaluation of query Q therefore consists of two stages: identify a set VP

of datacenters that are close to each other to meet the resource demands of Q; and

choose a subset VS ✓ VP of datacenters such that the achieved communication cost

of evaluating query Q is minimized.

The communication cost of evaluating Q is the sum of the communication cost

incurred by replicating its source data from the datacenters in VQ to the datacenters

in VS and the communication cost between the datacenters in VS, due to intermediate

result exchanges.

To replicate the source data from a datacenter in VQ to another datacenter in VS

or migrate intermediate results between two datacenters in VS, a routing path be-

tween the two datacenters must be built if the source data is unsplittable; otherwise,

multiple paths may be identified. Let pi,k be a routing path in G between a pair of

datacenters vi and vk, and ri,k the portion of vi’s source data that is routed to vk.
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The communication cost incurred by transferring source data S(vi, Q) from vi 2 VQ

to vk 2 VS along pi,k is S(vi, Q) · ri,k · c(pi,k), where c(pi,k) = Âe2pi,k
c(e) is the cost

of replicating a unit of data along pi,k, and e is a link in pi,k [130, 131]. Notice that

the choice of pi,k will be dealt with later. The intermediate results generated at each

datacenter vk 2 VS may need to migrate to the other datacenters in VS for the sake of

query evaluation. Let I(vk, Q) be the size of the intermediate result of Q in vk 2 VS,

the communication cost incurred is (I(vk, Q) + I(vl , Q)) · c(pk,l) by exchanging its

intermediate result with the one in another datacenter vl 2 VS via a routing path

pk,l , where c(pk,l) = Âe2pk,l
c(e) is the accumulative cost of replicating a unit of data

via each edge e 2 pk,l . Denote by GQ the communication cost of evaluating query Q,

then,

GQ = Â
vi2VQ

Â
vk2VS

S(vi, Q) · ri,k · c(pi,k) + Â
vk ,vl2VS

(I(vk, Q) + I(vl , Q)) · c(pk,l), (4.1)

where the first item in the right-hand side of Eq. (4.1) is the sum of communication

costs between the datacenters containing source data and the datacenters processing

query Q, while the second item is the communication cost among the datacenters in

VS by exchanging intermediate results of Q.

We consider a monitoring period that consists of T time slots. Queries may arrive

at any time slot within the monitoring period, they will be either admitted or rejected

at the beginning of each time slot. A rejected query can be put back to the waiting

queue and treated as a ‘new query’ in the next time slot. Let DQ(t) be the set of

queries arrived between time slots t� 1 and t, and DA(t) the set of admitted queries

by the system at each time slot t with 1  t  T. Denote by r(T) the query acceptance

ratio for a monitoring period T, which is the ratio of the number of admitted queries

to the number of arrived queries during this monitoring period, i.e.,

r(T) = ÂT
t=1 |DA(t)|

ÂT
t=1 |DQ(t)|

. (4.2)
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The accumulative communication cost of evaluating all admitted queries for a period of

T, G(T), is thus

G(T) =
T

Â
t=1

Â
Q2DA(t)

GQ. (4.3)

4.2.3 Problem Definitions

Given a distributed cloud G = (V, E) and a monitoring period T, a sequence of

queries for big data analytics arrives one by one without the knowledge of future

arrivals. Assume that for each query Q, the computing resource demand R(Q) (the

number of VMs required by it) and its source data set VQ (✓ V) are given in advance,

the data locality-aware online query evaluation problem with unsplittable source data in G

for a monitoring period T is to deliver an query evaluation plan for each admitted

query, such that the query acceptance ratio r(T) is maximized, while the accumula-

tive communication cost G(T) is minimized. Similarly, the data locality-aware online

query evaluation problem with splittable source data in G for a monitoring period T is

to deliver a query evaluation plan for each admitted query that its source data are

allowed to be split and distributed into multiple datacenters, such that the query

acceptance ratio r(T) is maximized, while minimizing the accumulative cost G(T).

The data locality-aware online query evaluation problems with unsplittable and

splittable source data are NP-hard through simple reductions from two NP-hard

problems - the unsplittable minimum cost multi-commodity problem [67] and the

minimum cost multi-commodity flow problem [29], respectively. For example, we

can reduce the unsplittable minimum cost multi-commodity problem to the data

locality-aware online query evaluation problem with unsplittable source data as fol-

lows. Consider a special case of the data locality-aware online query evaluation prob-

lem with unsplittable source data, i.e., each link has infinity bandwidth resource and

the query evaluation has no intermediate result exchanges. A virtual sink t0 is added

to the distributed cloud, and there is a link between each datacenter and t0. Eval-

uating a query in this special case is exactly the unsplittable minimum-cost multi-
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commodity flow problem, which is to route its required source data (commodities)

into their common sink t0, where the communication cost corresponds to the path

cost of routing the commodities from their sources to sink t0. Since unsplittable min-

imum cost multi-commodity problem is NP-Hard [67], the data locality-aware online

query evaluation problem with unsplittable source data is NP-Hard too. Similar re-

duction techniques can be applied to the data locality-aware online query evaluation

problem with splittable source data.

4.3 Algorithm with Unsplittable Source Data

In this section, we devise an efficient evaluation algorithm for the data locality-aware

online query evaluation problem with unsplittable source data. The algorithm is ex-

ecuted at the beginning of each time slot t. For each arrived query Q 2 DQ(t), the

algorithm first checks whether the available VMs (computing resource) of datacen-

ters in the distributed cloud can meet its VM demands. If yes, the query will be

processed; otherwise it is rejected. A rejected query can be sent back to the query

waiting pool as a new query for scheduling in the next time slot. In the following,

we deal with the evaluation of query Q in two stages (4.3.2 and 4.3.3).

4.3.1 Algorithm Overview

Evaluating a query includes examining its source data that is distributed in multiple

datacenters and exchanging intermediate results among different datacenters. One

key to the evaluation is how to select a set of datacenters that have not only enough

computing resource to analyze its source data, but also abundant bandwidth re-

sources to exchange intermediate results and transfer source data when the selected

datacenters do not have its source data. The basic idea of the proposed algorithm is

to first find a set of potential datacenters that have enough computing resource and

the links between them have enough bandwidth resource to exchange intermediate

results. The algorithm then finds a subset of the potential datacenters that are ‘close’

to the datacenters that store the source data to reduce the cost incurred by source
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data migrating.

4.3.2 Identification of a Set VP of Potential Datacenters

To identify a set of datacenters that meets the VM demands of query Q, a metric

measuring the usage cost of computing resource among the datacenters is needed.

Such a metric should take into account not only the quantity of available computing

resource but also the utilization ratio of the resource at each datacenter. Typically, the

computing ability of a datacenter vi decreases with the increase of its utilization ratio,

as a datacenter with high resource utilization has a higher probability of violating

user resource demands or Service Level Agreements (SLAs), i.e., a datacenter with

more available computing resource and low utilization ratio is a good candidate to

evaluate a query Q. The computing ability of datacenter vi thus is modelled as its

datacenter metric, denoted by F(vi, t) at time slot t, then

F(vi, t) = B(vi, t) · a
B(vi ,t)
C(vi) , (4.4)

where a is a constant with a > 1 that reflects the weighting in which degree the

usage cost of a resource is, B(vi, t) is the amount of available computing resource of

vi, and B(vi ,t)
C(vi)

is the utilization ratio of computing resource of vi. A higher F(vi, t)

means that vi has more available computing resource and a lower usage cost of the

resource, and has a higher probability to become a potential processing datacenter

for query Q. Similarly, the link metric Y(ei,j, t) of a link ei,j between two datacenters

vi and vj at time slot t is defined by

Y(ei,j, t) = B(ei,j, t) · b
B(ei,j ,t)
C(ei,j) , (4.5)

where b > 1 is a similar constant, and B(ei,j, t) is the available bandwidth resource of

link ei,j at time slot t. The arguments for ratio B(ei,j,t)
C(ei,j)

and Y(ei,j, t) are similar as the

ones for B(vi ,t)
C(vi)

and F(vi, t).

The allocated VMs for evaluating query Q require communications with each
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other in order to exchange their intermediate results. This can be implemented

through building multiple routing paths between the datacenters accommodating

the VMs. To find a cheaper routing path p, the ‘length’ of path p is defined as the

sum of lengths of links in p. Let d(e, t) be the length of link e in p at time slot t, if

Y(e, t) > 0, then d(e, t) = 1
Y(e,t) ; d(e, t) = • otherwise. This implies that the shorter

the length of a link, the more available bandwidth it has.

Having defined the cost metrics of resource usages in a distributed cloud, we

now identify a set VP of potential datacenters for evaluating query Q. Notice that, to

enable efficient intermediate result exchanges during the evaluation of query Q, such

a set of datacenters should be ‘close’ to each other, and the links interconnecting them

should have both enough available bandwidth resource and low utilization. Thus, to

find such a set of datacenters, we first identify the ‘center’ of the set VP by assigning

each datacenter vi 2 V a rank, NR(vi, t), that is the product of datacenter metric F(vi, t)

of vi and the accumulative metric of links incident to vi, i.e.,

NR(vi, t) = F(vi, t) · Â
ei,j2L(vi)

Y(ei,j, t), (4.6)

where L(vi) is the set of links incident to vi in G. The rationale behind Eq. (4.6) is

that the more available computing resources a datacenter vi has, the more available

accumulative bandwidth of links incident to it, and the higher rank the datacenter vi

will have. A datacenter with the highest rank will be selected as the ‘center’ of the

set of datacenters VP, denoted by vc. If the available computing resource F(vc, t) of

vc cannot meet the resource demands of query Q, the next datacenter will be chosen

and added to VP greedily. Specifically, each datacenter vi 2 V \ VP is assigned a rank

by the product of the inverse of F(vi, t) and the accumulative shortest length from vi

to all the selected datacenters vj 2 VP, i.e.,

1
F(vi, t)

· Â
vj2VP

Â
ei,j2pi,j

d(ei,j, t), (4.7)
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where pi,j is the one with the minimum accumulative length of links, i.e., the sum

of costs of links between vi 2 V \ VP and each selected datacenter vj 2 VP is the

smallest one. The datacenter with the smallest rank is chosen and added to VP.

This procedure continues until the accumulative computing resource of all chosen

datacenters in VP meets the demanded number of VMs of query Q.

4.3.3 Selecting a Subset VS of VP

Recall that the source data of query Q in datacenter vi 2 VQ will be replicated to

another datacenter for the query evaluation, i.e., we assume that this source data

cannot be split and replicated to multiple datacenters for independent processing.

Such an assumption is purely for the sake of simplicity of discussion, which will

remove this assumption in Section 4.4. The stage 2 of the evaluation algorithm is to

identify a subset VS of VP to reduce the communication cost between the datacenters

hosting the source data and the datacenters performing the query evaluation. To

this end, we reduce the problem of selecting datacenters in VP and routing paths in

this stage into an unsplittable minimum cost multi-commodity flow problem in an

auxiliary directed flow graph G0 = (V 0, E0) whose construction is as follows.

A virtual sink node t0 and all datacenter nodes in G are added to G0, i.e., V 0 =

V [ {t0}. There is a directed link from each node vj 2 VP to the virtual sink node t0.

The capacity of edge evj,t0 is the volume of source data that vj can process at time slot

t, and its cost is set to zero. Given a pair of datacenters, there are two directed edges

in G0 between them if there is an edge in G between them. The capacity of each edge

in E0 \ {hvj, t0i|vj 2 VP, VP ✓ V} is set to the total volume of source data of query Q,

and the cost of each such edge is set to the communication cost by replicating a unit

of source data along it. The source data of query Q in each datacenter vi 2 VQ are

treated as a commodity with demand S(vi, Q) at a source node in G0, which will be

routed to the destination node t0 through a potential datacenter vj 2 VP, where the

potential datacenter vj will be added into VS in which the source data of Q will be
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Figure 4.2: An example of the auxiliary directed flow graph G0 in stage 2 of algo-
rithm 4, where VQ is the set of datacenters in which the source data of query Q
are located, VP is a set of potential datacenters for evaluating Q, VS ✓ VP is the set
of datacenters for the evaluation of Q, and the highlighted edges are the edges via
which data are replicated to their destination datacenter. Notice that VP is identified
by stage 1 of algorithm 4, and VS (⇢ VP) is computed in its stage 2.

migrated and evaluated. Specifically, to find a feasible solution in G0, we first find a

shortest routing path in terms of link cost for each commodity from the source node

vi 2 VQ to a datacenter vj 2 VP. We then calculate the ratio of the shortest path

cost to the source data size |S(vi, Q)|. We finally route the commodity from vi to the

datacenter vj along a routing path with the minimum ratio.

Fig. 4.2 uses an example to illustrate the construction of the flow graph G0, where

the set of source data locations of query Q is VQ = {v2, v3, v4, v5}. Due to insufficient

computing resource of datacenters in VQ, the source data of Q have to be migrated

to other set VP of potential datacenters with sufficient computing resource, where

VP = {v7, v8, v9, v10, v11, v12}. Each source data in VQ is treated as a commodity,

which will be routed to a virtual destination node t0 through a potential datacenter

in Vp, and this datacenter will be added into VS ✓ VP. Here, VS = {v8, v9, v12}.



§4.3 Algorithm with Unsplittable Source Data 79

Algorithm 4 Algorithm for the data locality-aware online query evaluation problem with
unsplittable source data.
Input: The distributed cloud graph G = (V, E), query set DQ(t), the monitoring period consisting of

T time slots.
Output: The query acceptance ratio and the accumulative communication cost of evaluating admitted

queries.
1: for t 1 to T do
2: Q 2 DQ(t) is the query being evaluated;
3: Get the amount of available computing resources of G at t, i.e., B(G, t), and resource demand of

Q, i.e., R(Q);
4: if B(G, t) < R(Q) then
5: Q is rejected;
6: else
7: /* Stage 1 */:
8: Vp  ∆;
9: Calculate rank NR(vi, t) for each datacenter vi 2 V according to Eq. (4.6), and select the

datacenter with the maximum rank, i.e., vc;
10: VP  VP [ {vc};
11: Get the total amount of available computing resource of all datacenters in VP at time slot t,

i.e., B(VP, t);
12: while B(VP, t) < R(Q) and V \ Vp 6= ∆ do
13: Find vi 2 V \ Vp, with minimum value of Eq. (4.7), Vp  VP [ {vi};
14: /* Stage 2 */:
15: nQ  |VQ|; /* the number of commodities of Q */
16: while nQ > 0 do
17: Create an auxiliary graph G0 = (V0, E0), E0  E, and V0  V [ t0, where t0 represents a

virtual destination for all commodities of Q, i.e., S(vi, Q), 8vi 2 VQ;
18: for each potential datacenter vj 2 VP do
19: Add an edge ej,t0 from vj to t0;
20: The cost of ej,t0 is 0, and its capacity is the volume of source data that vj can process at

time slot t;
21: for each edge e in E0 do
22: The capacity of e is set to the total volume of source data of query Q;
23: The cost of e, c(e), is set to the communication cost for replicating one unit of data of Q;
24: while nQ > 0 and there is one datacenter in VP that can accommodate one of the left

commodities do
25: for each commodity S(vi, Q) do
26: Find a path pi,t0 from vi to t0 with minimum accumulated cost of all edges along the

path;
27: Calculate the ratio Âe2pi,t0

c(e)/S(vi, Q);
28: Route the commodity with the minimum ratio Âe2pi,t0

c(e)/S(vi, Q); delete this com-
modity;

29: nQ  nQ � 1;
30: Update capacities and costs of edges in G0;
31: if nQ > 0 and V \ Vp 6= ∆ then
32: Add the datacenter in V \ Vp with minimum value of Eq. (4.7) into VP;
33: Update available computing resources of datacenters and bandwidth resources of links

in G;
34: else
35: if nQ > 0 and V \ Vp = ∆ then
36: Q is rejected;
37: Break;
38: if nQ = 0 then
39: Q is admitted;
40: Return;
41: DQ(t) DQ(t) \ {Q};
42: Return the query acceptance ratio and the accumulative communication cost of evaluating admitted

queries.
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This procedure continues until all commodities are successfully routed. The detailed

algorithm is described in Algorithm 4.

Theorem 5 Given a distributed cloud G = (V, E) for a given monitoring period of T time

slots, assume that queries for big data analytics arrive one by one without future arrival

knowledge. There is an online algorithm, i.e., Algorithm 4, for the data locality-aware

online query evaluation problem with unsplittable source data, which takes ÂT
t=1 O(|DQ(t)| ·

(|V|3 log |V|+ |V|2 · |E|)
�

time, where DQ(t) is a set of arrived queries during each time

slot t, 1  t  T.

Proof To evaluate each query Q 2 DQ(t), Algorithm 4 consists of two stages: identi-

fying a set VP of potential datacenters that not only have enough computing resource

but also are interconnected by links with abundant bandwidth resource; and select-

ing a subset VS of VP to evaluate query Q.

In stage 1, Algorithm 4 identifies a cluster VP of potential datacenters according

to the defined node and link metrics. Specifically, it first selects a datacenter with

the highest rank as defined in Eq.(4.6), which takes O(|V|) time. It then iteratively

adds datacenters into the cluster one by one until the cluster has enough computing

resource to evaluate the query, and this procedure takes O(|V|2) time. stage 1 thus

takes O(|V|2) time.

Stage 2 of the algorithm finds a subset VS of VP as the datacenters to evalu-

ate query Q by transferring the problem into an unsplittable minimum cost multi-

commodity flow problem in an auxiliary graph G0 = (V 0, E0). Clearly, the con-

struction of G0 takes O(|V| + |E|) time. Then, the algorithm routes each commod-

ity in the auxiliary graph by selecting a commodity S(vi, Q) with the minimum ra-

tio of minvi2V
S(vi ,Q)

Âe2pi,t0
c(e) , where pi,t0 is the shortest path between vi and t0. This

takes O(|V|2 log |V| + |V| · |E|
�

time to find all pairs of shortest paths in G for the

|V| commodities. The total amount of time of routing all commodities is O(|V| ·

(|V|2 log |V|+ |V| · |E|)) = O
�
|V|3 log |V|+ |V|2 · |E|

�
. There are |DQ(t)| queries at

time slot t, Algorithm 4 thus takes O
�
|DQ(t)| · (|V|3 log |V|+ |V|2 · |E|)

�
time at time
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slot t.

The total amount of time taken by the online algorithm for the monitoring period

T thus is ÂT
t=1 O

�
|DQ(t)| · (|V|3 log |V|+ |V|2 · |E|)

�
.

4.4 Algorithm with Splittable Source Data

So far, we have assumed that the source data of query Q at each datacenter can only

be replicated to a single datacenter. In reality, the source data of many query evalua-

tions can be split and distributed to multiple datacenters. We here devise an efficient

evaluation algorithm for the data locality-aware online query evaluation problem

with splittable source data, by modifying Algorithm 4. Recall that Algorithm 4

consists of two stages: selecting a set VP of potential datacenters, and replicating

the source data to a subset VS of VP. Source data replications usually dominate the

query response time due to large amounts of source data and intermediate results to

be replicated through the network [58]. We thus devise a fast routing algorithm for

the source data replication as follows.

Having selected the set Vp of potential datacenters, we first construct an auxiliary

graph G0 = (V 0, E0) as follows. A virtual sink node t0 and all datacenter nodes in G

are added to G0, i.e., V 0 = V [ {t0}. There is a directed link from each node vj 2 VP

to the virtual sink node t0. The capacity of link evj,t0 is the amount of source data that

vj can process at time slot t, and the cost of the link is set to zero. For each pair of

datacenters, there are two directed edges in G0 between them if there is a link in G

between them. The capacity of each link in E0 \ {hvj, t0i | vj 2 VP, VP ✓ V} is set to

the total volume of source data of query Q, since all source data of query Q may be

routed through an edge in E0 \ {hvj, t0i | vj 2 VP, VP ✓ V}, and the cost of each such

edge is set to the communication cost by replicating a unit of source data along it.

The source data in each datacenter vi 2 VQ are treated as a commodity with demand

S(vi, Q) in G0, which will be routed to the destination node t0.

We then reduce the source data replication problem to the minimum cost multi-
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commodity flow problem in G0. A feasible solution to the minimum cost multi-

commodity flow problem in G0 will return a feasible solution to the source data

replication problem in G. To speed up the source data replication, we employ a fast

approximation algorithm for the minimum cost multi-commodity flow problem, due

to Garg and Könemann [33]. Note that the use of Garg and Könemann’s algorithm

allows us to explore a fine-grained trade-off between the source data replication

accuracy and its running time by an appropriate accuracy e with 0 < e  1/3. Only

the queries whose source data can be fully replicated will be admitted by the system;

otherwise, the query will be rejected. The details of the algorithm are described in

Algorithm 5.

Theorem 6 Given a distributed cloud G = (V, E) for a given monitoring period of T time

slots, assume that queries for big data analytics arrive into the system one by one without

the knowledge of future arrivals, and the source data of each query can be split to multiple

datacenters for independent evaluation. There is an online algorithm, i.e., Algorithm 5, for

the data locality-aware online query evaluation problem with splittable source data, which

takes ÂT
t=1 O⇤

�
|DQ(t)| · e�2|V|4

�
time1, where e is a given accuracy parameter with 0 <

e  1/3.

Proof The difference between Algorithm 5 and Algorithm 4 lies in the stage 2 that

selects a subset VS from the identified set VP of potential datacenters. Following

Theorem 5, stage 1 takes O(|V|2) time to identify the set of datacenters VP with

sufficient computing resource to meet the VM demands of query Q 2 DQ(t). We

thus only analyze the time complexity of stage 2 of Algorithm 5 as follows.

Stage 2 constructs an auxiliary graph G0 = (V 0, E0), and transfers the problem

of selecting a set VS of datacenters from VP to the minimum cost multi-commodity

problem by treating the source data of each query as a commodity. The construction

of the auxiliary graph G0 takes O(|V| + |E|) time, where |V 0| = |V| and |E0| =

O(|E|). Following Garg and Könemann’s algorithm for the minimum cost multi-

1O⇤( f (n)) = O( f (n) logO(1) n)
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Algorithm 5 Algorithm for the data locality-aware query evaluation problem with splittable
source data.
Input: The distributed cloud graph G = (V, E), a set of queries DQ(t), the set of

VMs to evaluate each query Q 2 DQ(t) at each time slot t, the monitoring period
consisting of T time slots, the accuracy parameter e.

Output: The query acceptance ratio and the accumulative communication cost of
evaluating admitted queries.

1: for t 1 to T do
2: Q 2 DQ(t) is the query being evaluated;
3: Get the total amount of available computing resources of G at time slot t, i.e.,

B(G, t);
4: Get the total amount of computing resource to process all source data of Q,

i.e., R(Q);
5: if B(G, t) < R(Q) then
6: Q is rejected;
7: else
8: /* stage 1 */:
9: Vp  ∆; /* the set of potential datacenters to process Q */

10: Calculate rank NR(vi, t) for each datacenter vi 2 V according to Eq. (4.6),
and select the datacenter with the maximum rank, i.e., vc;

11: VP  VP [ {vc};
12: Get the total available computing resources of all datacenters in VP at time

slot t, i.e., B(VP, t);
13: while B(VP, t) < R(Q) and V \ Vp 6= ∆ do
14: Find vi 2 V \ Vp, with minimum value of

Eq. (4.7), Vp  VP [ {vi};
15: /* stage 2 */:
16: Create an auxiliary graph G0 = (V 0, E0), E0  E, and V 0  V [ t0, where t0

represents a virtual destination for all commodities of Q, i.e., S(vi, Q), 8vi 2
VQ;

17: for each potential datacenter vj 2 VP do
18: Add an edge ej,t0 from vj to t0;
19: The cost of ej,t0 is 0, and its capacity is the volume of source data that vj

can process at time slot t;
20: for each edge e in E0 do
21: The capacity of e is set to the total volume source data of query Q;
22: The cost of e, c(e), is set to the communication cost for replicating one unit

of source data of Q;
23: Call Garg and Könemann’s algorithm on flow graph G0 with |VQ| commodi-

ties;
24: if All source data of Q are routed then
25: Q is admitted;
26: else
27: Q is rejected;
28: DQ(t) DQ(t) \ {Q};
29: Return the query acceptance ratio and the accumulative communication cost of

all admitted queries.
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commodity problem, it takes O⇤(e�2M2|V 0|2) time to route M commodities from

their sources to a common destination t0 in the auxiliary graph G0, where |V 0| =

|V| + 1. There are |DQ(t)| queries at each time slot t, and each query has |VQ|

commodities (source data) to route, |VQ|  |V|, i.e., M = |DQ(t)| · |VQ|. Stage 2

of Algorithm 5 takes O⇤(e�2|V 0|4) = O⇤(e�2|V|4) time. Algorithm 5 thus takes

ÂT
t=1 O⇤

�
|DQ(t)| · e�2(|V|4

�
time.

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms and investi-

gate the impact of different parameters on the algorithm performance.

4.5.1 Simulation Settings

We consider a distributed cloud G(V, E) consisting of 20 datacenters. There is an

edge between a pair of nodes with a probability of 0.2 generated by the GT-ITM

tool [39]. The computing capacity of each datacenter and the bandwidth capacity

of each link are randomly drawn from value intervals [1,000, 3,000] GHz, and [100,

1,000] Mbps, respectively [10, 41]. The total volume of source data of each query is in

the range of [128, 512] GB, which is randomly distributed between 1 and 4 datacen-

ters. Each virtual machine has the computing capacity of 2.5 GHz and can process

256 MB data chunk [80], according to the settings of Amazon EC2 Instances [6].

Parameters a and b are set as 24 and 26 in default settings. We assume that the mon-

itoring period T is 800 time slots with each time slot lasting 5 minutes. We further

assume that the number of queries issued within each time slot is ranged between

5 and 45, and each query evaluation spans between 1 and 10 time slots. According

to the on-demand pricing of Amazon CloudFront, users pay only for the contents

that are delivered to them through the network without minimum commitments or

up-front fees, and the fee charged for transmitting 1 GB data is in the range of [$0.02,

$0.06]. Unless otherwise specified, we will adopt these default settings. Each value in
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the figures is the mean of the results by applying the mentioned algorithm 15 times.

Also, 95% confidence intervals for these mean values are presented in all figures.

To evaluate the proposed algorithms, two heuristics are used as evaluation base-

lines: One is to choose a datacenter with the maximum number of available VMs

and then replicate as much source data as possible to the datacenter. If the datacen-

ter cannot meet the query resource demands, it then picks the next datacenter with

the second largest number of available VMs. This procedure continues until the VM

demands of the query are met. Another is to select a datacenter randomly and places

as much source data as possible to the datacenter. If the available number of VMs

in the chosen datacenter is not enough to process the query, it then chooses the next

one randomly. This procedure continues until the VM demands of the query are

satisfied. For simplicity, we refer to the proposed Algorithm 4 for the data locality-

aware online query evaluation problem with unsplittable source data, Algorithm 5

for data locality-aware online query evaluation problem with splittable source data,

and the two baselines algorithms as algorithms DL-Unsplittable, DL-Splittable,

Greedy, and Random, respectively.

4.5.2 Performance Evaluation of the Proposed Algorithms

We first evaluate the performance of the proposed algorithms DL-Unsplittable and

DL-Splittable, in terms of the query acceptance ratio, the total accumulative com-

munication cost, the accumulative communication cost for source data replication,

and the accumulative communication cost for intermediate result exchanges, where

the accumulative communication cost is the average communication cost of all ad-

mitted queries during a monitoring time period T.

Fig. 4.3(a) plots the curves of query acceptance ratios of DL-Unsplittable, DL-Sp

littable, Greedy, and Random respectively, from which it can be seen that the query

acceptance ratios of algorithms DL-Unsplittable and DL-Splittable are much

higher than these of the other algorithms, because algorithms DL-Unsplittable and
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(b) The accumulative communication cost of dif-
ferent algorithms
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(c) The accumulative communication cost for
source data replication of different algorithms
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Figure 4.3: Performance evaluation of different algorithms.
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DL-Splittable consider the data-locality of queries and identify datacenters with

enough computing and bandwidth resources. Furthermore, algorithm DL-Splittable

delivers the highest acceptance ratio among the mentioned algorithms, which is

3%, 11%, and 22% higher than those of algorithms DL-Unsplittable, Greedy, and

Random, respectively. The rationale is that algorithm DL-Splittable can move por-

tions of source data through multiple paths to multiple datacenters with the mini-

mum communication cost. The query thus has a higher probability to be accepted by

the system, and the total accumulative communication cost for evaluating the query

and replicating its source data is reduced, while algorithm DL-Unsplittable may

not move the source data along a path to a datacenter with the minimum commu-

nication cost, as the datacenter may not meet the computing resource demand of

the source data. For algorithms Greedy and Random, the former selects the data-

center with the most computing resource while ignoring the paths from source data

to the selected datacenter. This causes a higher communication cost, and the latter

randomly chooses a datacenter, neglecting both computing resource and bandwidth

resource demands. This may decrease the acceptance ratio and increase the commu-

nication cost, as there is no guarantees that the selected datacenters and their links

have enough resources for the query evaluation.

Fig. 4.3 (b) plots the curves of the accumulative communication costs of the

four mentioned algorithms. Clearly, the accumulative communication costs of al-

gorithms Greedy and Random are worse in comparison with these of algorithms

DL-Unsplittable and DL-Splittable, which are around 1.6 times that of algo-

rithms DL-Unsplittable and DL-Splittable. The accumulative communication

cost of algorithm DL-Splittable is higher than that of algorithm DL-Unsplittable,

because it accepts more queries than that of algorithm DL-Unsplittable as shown

by Fig. 4.3(a).

Fig. 4.3 (c) depicts the accumulative communication cost of source data repli-

cation of different algorithms. It can be seen that algorithm DL-Splittable has
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the lowest accumulative communication cost. However, as shown by Fig. 4.3 (d),

it does incur a higher accumulative communication cost on the intermediate result

exchanges than those of other algorithms. The reason is that each source data of algo-

rithm DL-Splittable is split into multiple portions with each moving to a different

datacenter, these portions need to exchange their intermediate results to form the

final result, which result in the highest cost of exchanging intermediate results. In

addition, from Fig. 4.3 (d), it can be seen that algorithm Greedy has almost zero com-

munication cost for intermediate result exchanges, as this algorithm always chooses

a datacenter with the maximum available computing resource, which may satisfy

the demand of all source data of a query, meaning that all source data of the query

may have been moved to one datacenter, and there is no communication incurred by

exchanging intermediate results.

Fig. 4.3 (e) depicts the running time of different algorithms, from which it can

be seen that the running time of algorithm DL-Splittable is the longest one, al-

gorithm DL-Unsplittable takes the second highest running time, while algorithms

Greedy and Random spend much less time. Although algorithms DL-Splittable and

DL-Unsplittable take more running time than those of the other two algorithms,

they however achieve much better performance, i.e., higher query acceptance ratios.

Notice that the query acceptance ratios of different algorithms may drop with the

arrivals of large number of queries that demand high quantity of computing resource

within very short time, as the accumulative computing resource in the system is

limited. This may lead to an unstable system if such queries are rejected frequently

due to lack of resources. Although query evaluation in such a scenario is out of the

scope of this chapter, our solution can be extended to enhance the system stability in

this mentioned scenario. That is, a certain fraction of the resources in a distributed

cloud can be reserved to handle queries demanding high quantity of resources. The

proposed algorithm can be applied to the admissions of such queries, by considering

the reserved amounts of computing and bandwidth resources as ‘resource capacities’,
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and the reserved amounts can be calculated according to historical arrival patterns

of queries. In case there is no resource reserved, resource sharing can be enabled to

allow the resources to be shared with other queries.

4.5.3 Impact of Important Parameters on the Performance
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(a) The impact on the query acceptance ratio.
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(b) The impact on the accumulative communica-
tion cost.
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(c) The impact on the accumulative communica-
tion cost on source data replication.
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(d) The impact on the accumulative communica-
tion cost on intermediate result exchanges.

Figure 4.4: Impacts of the number of datacenters on the performance of algorithm
DL-Unsplittable over various monitoring periods.

Impact of the number of datacenters on the performance of different algo-

rithms: We now study the impact of the number of datacenters on the query accep-

tance ratio, the accumulative communication cost, the accumulative communication

cost for source data replication, and the accumulative communication cost for inter-

mediate result exchanges of algorithms DL-Unsplittable and DL-Splittable, by

varying the number from 10 to 40. For the sake of convenience, we use n to represent
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the number of datacenters in Figures 4.4 and 4.5.
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(a) The impact on the query acceptance ratio.
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(b) The impact on the accumulative communica-
tion cost.

100 200 300 400 500 600 700 800
Monitoring periods (time slots)

0

10,000

20,000

30000

  
A

cc
u
m

u
la

ti
v
e 

co
m

m
u
n
ic

at
io

n
 

 c
o
st

 f
o
r 

so
u
rc

e 
d
at

a 
re

p
li

ca
ti

o
n

n = 10 (DL-Splittable)
n = 20 (DL-Splittable)
n = 30 (DL-Splittable)
n = 40 (DL-Splittable)

(c) The impact on the accumulative communica-
tion cost on source data replication.

100 200 300 400 500 600 700 800
Monitoring periods (time slots)

0

10,000

20,000

30,000

40,000

A
cc

u
m

u
la

ti
v
e 

co
m

m
u
n
ic

at
io

n
 c

o
st

 
 f

o
r 

in
te

rm
ed

ia
te

 r
es

u
lt

 e
x
ch

an
g
es

n = 10 (DL-Splittable)
n = 20 (DL-Splittable)
n = 30 (DL-Splittable)
n = 40 (DL-Splittable)

(d) The impact on the accumulative communica-
tion cost on intermediate result exchanges.

Figure 4.5: Impacts of the number of datacenters on the performance of algorithm
DL-Splittable over various monitoring periods.

Fig. 4.4(a) and Fig. 4.5(a) plot the query acceptance ratio curves of algorithms

DL-Unsplittable and DL-Splittable, from which it can be seen that the query ac-

ceptance ratios first grow with the increase of n, and then keep stable after n = 30.

Specifically, the acceptance ratios grow by 27% and 25% when the value of n in-

creases from 10 to 20 in Fig. 4.4(a) and Fig. 4.5(a), respectively. The reason is that

with the increase of the number of datacenters, more and more queries are admitted

by the system as more computing resource is available. The query acceptance ratio

approaches 100% when n = 40. Fig. 4.4(b) illustrates the accumulative communi-

cation cost curve of algorithm DL-Unsplittable. As shown in Fig 4.4(b), the ac-

cumulative communication cost by algorithm DL-Unsplittable decreases, with the
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growth of the number of datacenters n. This is because that more datacenters mean

more routing paths with lower communication costs from source data transfers. In

addition, more datacenters also imply the selected datacenters have more comput-

ing resource with high bandwidth resource in their links. Fig. 4.4(c) depicts curves

of the accumulative communication cost for source data replications of algorithm

DL-Unsplittable, from which it can be seen that the accumulative communication

cost for source data replication first increases and then decreases with the growth of

n. The reason is that when n is small, the number of datacenters to which source

data will be replicated is small, the cost of routing paths along which source data

are replicated is small. While with the increase of the number of datacenters, some

longer routing paths with abundant computing resource are selected to replicate the

source data. When n is sufficiently large, say n = 30, some datacenters that have

abundant computing resource and are close to the source data locations are selected,

the accumulative communication cost for source data replication thus decreases.

The accumulative communication cost of algorithm DL-Splittable first increases

from n = 10 to n = 20, and then decreases with the increase of the value of n, as

depicted in Fig. 4.5(b). The rationale is that more queries are admitted from n = 10 to

n = 20 as shown in Fig. 4.5(a). Due to the limited available computing resource when

n = 20, portions of the source data of each query need to be moved to the chosen

datacenters for their query evaluations, thereby greatly increasing the communica-

tion costs for intermediate result exchanges as shown in Fig. 4.5(d). The decrease

on the accumulative communication cost from n = 20 to n = 40 is due to the fact

that algorithm DL-Splittable-Alg has more opportunities to choose datacenters

that are close to each other to reduce the communication cost of intermediate result

exchanges, as clearly shown by Fig. 4.5(d). The accumulative communication cost

of source data replication decreases with the increase of n as depicted in Fig. 4.5(c),

since more datacenters imply more routing paths with lower communication costs

for source data transfers. Notice that although the communication cost (i.e., band-
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width resource consumption) increases from n = 10 to n = 20, the query acceptance

ratio increases too, as shown in Fig. 4.5(a). With the increase of n, the bandwidth

consumption of each query may increase, the computing resource capacity of the

distributed cloud increases too, allowing to admit more queries.
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Figure 4.6: The impact of the number of source data locations on the performance of
algorithm DL-Unsplittable over different monitoring periods.

Impact of the number of source data locations on algorithm performance: We

then evaluate the impact of the maximum number of data sources of each query on

the query acceptance ratio, the accumulative communication cost, the accumulative

communication cost for source data replication, and the accumulative communica-

tion cost for intermediate result exchanges by varying the value from 2 to 8. Fig. 4.6

and Fig. 4.7 are the result charts, where S(Q) is employed to represent the maximum
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number of source data locations of query Q.
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Figure 4.7: The impact of the number source data locations on the performance of
algorithm DL-Splittable over different monitoring periods.

Figures 4.6(a) and 4.7(a) plot the query acceptance ratio curves of algorithms

DL-Unsplittable and DL-Splittable, respectively. From Fig. 4.6(a), it can be seen

that the query acceptance ratio of algorithm DL-Unsplittable grows first and then

decreases with the increase of S(Q). For example, in Fig. 4.6(a) the query acceptance

ratio increases from 88% to 94% when S(Q) = 2 and S(Q) = 4 respectively, and then

decreases to 55% and 30% when S(Q) = 6 and S(Q) = 8. The rationale is that, fewer

data sources mean that it has a larger volume of source data at each of source data

locations (datacenters). This may also increase the probability of query rejection rate

due to the lack of computing resource. However, if the number of data sources S(Q)
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is quite high (i.e., the source data of the query are distributed more datacenters), then

more frequent source data replication and intermediate result exchanges are needed.

Such queries also tend to be rejected by the system as limited bandwidth resource is

imposed between datacenters. In contrast, the query acceptance ratio by algorithm

DL-Splittable steadily decreases with the growth of S(Q). This is because the

volume of source data of a query at each datacenter does not affect the admission

decision of the query, as the source data may be split to multiple datacenters, and

more source data replications are therefore incurred, which increases the rejection

probability of the query.

Figures 4.6(b) and 4.7(b) plot the accumulative communication cost curves of

algorithm DL-Unsplittable. It can be seen that the accumulative communication

cost increases with the growth of S(Q). For example, in Fig. 4.6(b), when S(Q) is

8, the accumulative communication cost is 1.1 times, 1.3 times, and 2.3 times of that

when the values of S(Q) are 2, 4, and 6 respectively, while the cost for intermediate

result exchanges can be seen from Fig. 4.6(d) and Fig. 4.7(d). The accumulative cost

for source data replication of algorithm DL-Unsplittable as depicted in Fig. 4.6(c)

decreases with the increase of S(Q). The cost of source data replication by algorithm

DL-Splittable as illustrated in Fig. 4.7(c) first increases and then decrease with the

growth of S(Q).

Impact of parameters a and b on the performance of different algorithms: We

finally investigate the impact of parameters a and b on algorithms DL-Unsplittable

and DL-Splittable on the query acceptance ratio and accumulative communica-

tion cost, by varying their values from 21 to 211 when T = 800. It can be seen

from Fig. 4.8(a) that the query acceptance ratios of algorithms DL-Unsplittable and

DL-Splittable reach their peaks when a = 24. The rationale behind is that when

a < 24, the datacenter metric of each datacenter vi, F(vi, t), is not large enough to

impact its ranking in the selection of processing datacenters. This results in that the

algorithms may choose datacenters with less available computing resource, thereby
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Figure 4.8: The impact of a and b on the query acceptance ratio and the accumulative
communication cost of algorithm DL-Splittable under T = 800 time slots.

increasing the rejection probability of queries with large volume of source data. On

the other hand, when a > 24, the algorithms may select datacenters whose incident

links have less available bandwidth resource, since the datacenter metric dominates

the ranking of datacenters, queries with high communication demands tend to be

rejected. Similar behavior patterns can be observed in Fig. 4.8(b). Fig. 4.8(c) demon-

strates that the acceptance ratios of the two algorithms reach their peaks when b = 26

and then decrease when b > 26. The rationale is that when b < 26, the link metric

(Y(ei,j, t) ) of incident links of a datacenter is too low to dominate the ranking of the

datacenter. This may lead to some datacenters with insufficient network resource

on their incident links to be selected, thereby increasing the rejection probability of

queries with more communication demands. In contrast. when b > 26, the rank-
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ing of a datacenter will be dominated by its incident link metric Y(ei,j, t), and the

selected datacenters may reject some queries as they may not have enough avail-

able computing resource. Similarly, it can be seen from Fig. 4.8(d) the accumulative

communication cost is its minimum when b = 26.

In summary, the values of a and b impact not only the selected datacenters di-

rectly but also the query acceptance ratio and accumulative communication cost.

Such impact can be seen from Fig. 4.8. Although it is difficult to derive the ‘optimal’

values of a and b for a distributed cloud, they can be easily set (or adjusted dynami-

cally) in experiments by a simple rationale. That is, larger values for a and b lead to

higher marginal costs in resource usages, implying allocating overloaded resources

conservatively.

4.6 Summary

In this chapter, we considered online query evaluation for big data analytics in a

distributed cloud, with an objective to maximize the query acceptance ratio while

keeping the accumulative communication cost minimized, for which we first pro-

posed a novel metric to model the usages of various cloud resources at different

datacenters of the distributed cloud. We then devised efficient online algorithms for

the problem under both splittable and unsplittable source data assumptions, based

on the proposed cost model. We finally conducted extensive experiments by sim-

ulation to evaluate the performance of the proposed algorithms, and experimental

results demonstrate that the proposed algorithms are promising, and outperform

two mentioned heuristics at 95% confidence intervals.

We will explore the following topics based on this work as our future work: the

consideration of big data queries based on dynamically-changing source data and

resource sharing between different queries within each datacenter. In our future

work, we will explore efficient updating and synchronizing mechanisms of placed

source data to avoid source data transfers if there are only small changes in source
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data. In addition, different queries can share resources with each other for cost

savings. Since resource sharing only happens if the VMs of different queries are

allocated in the same physical server, we will propose further refinement of query

evaluations within each datacenter.
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Chapter 5

Cost Minimization of Distributed

Clouds via Community-Aware User

Data Placements of Social

Networks

5.1 Introduction

Today’s Online Social Networking (OSN) has many features to assist people socializ-

ing, allowing different scientific communities to expand their knowledge bases and

helping individual researchers keep updated activities of peer colleagues. It is es-

timated that the number of worldwide OSN users will reach 2.5 billion by 2018,

around one third of Earth’s entire population [87]. Such an intense use of OSNs

has generated huge amount of data. For example, the micro-blogging site of Twit-

ter serving more than 320 million monthly active users, produces about 500 million

tweets per day [79]. One fundamental issue in dealing with such scales of user data

for an OSN is how to efficiently place the user data in a distributed cloud while

ensuring the availability, reliability and scalability of the placed user data such that

the operational cost of cloud service providers is minimized, where a distributed

cloud usually consists of multiple datacenters located at different geographical loca-

tions and interconnected by high-speed Internet links [120, 122, 123]. To ensure the

99
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availability of user data at different geo-locations, user data are needed to be repli-

cated to other datacenters in the distributed cloud, where a replicated user data is

referred to as a slave replica of its user data, while the original user data is referred

to as its master replica of the user data. To efficiently place and replicate user data of

large-scale social networks into the distributed cloud, the following issues must be

taken into account: (i) users who are close friends with each other may be grouped

into different cohesive groups (communities), while the users in the same group may

frequently access the data of each other [35, 60]. It is thus desirable to place the

user data in each cohesive group into a single datacenter, or a set of datacenters

close to each other to reduce inter-datacenter traffic if there are no sufficient resource

supplies by a single datacenter; otherwise, the user data within the group must be

accessed from remote datacenters, compromising the ease-of-use service property

of distributed clouds. (ii) Cloud service providers make every endeavor to reduce

their operational costs that consist of the energy cost to power their datacenters and

the communication cost to enable inter-datacenter data access and updating. Specif-

ically, cloud service providers prefer to place user data of social networks into the

datacenters with inexpensive electricity to reduce energy costs. They also place the

slave replicas of each user data into the datacenters that are not far away from the

datacenter hosting its master replica to reduce the inter-datacenter communication

cost due to updating the slave replicas. (iii) Considering that social networks evolve

over time with new users joining in, existing users leaving or changing their read-

/update rates [82], a critical question is how to maintain the placed user data in

the distributed cloud efficiently while minimizing the maintenance cost of the cloud

service providers. In other words, to minimize the operational cost of cloud service

providers in provisioning OSN services, several key challenges on user data place-

ments of social networks must be addressed. These include, where the master and

slave replicas of user data should be placed? how to maintain the placed user data

efficiently and effectively when users fluctuate their read and update rates, join in or
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depart from their social networks over time?

The placement of user data in distributed storage systems has been extensively

studied in the past [17, 36, 47, 60, 61, 75, 128, 129]. For example, systems HDFS [47]

and Cassandra [17] are hash-based. The other studies focused on developing a

mixed integer linear programming solution [36], or a maximum-flow based solution

through multi-way partitioning that places user data in the granularities of coarse-

grained user groups or even individual users [60, 128]. Considering the scale of

a typical social network with millions of users, these mentioned methods may take

prohibitive running time to deliver a feasible solution for a reasonable-size social net-

work, resulting in poor scalability [60, 61, 128]. Furthermore, several studies focused

on the communication cost optimization of user data placements [36, 61, 75]. Unfor-

tunately, most existing solutions did not jointly take both communication and energy

costs into consideration when dealing with user data placements of social networks

into clouds [3, 36, 75, 128, 129]. In contrast, we here investigate community-aware

user data placements of social networks, by leveraging the community concept that

groups users into different communities and places the master replicas of the user

data in each community into a single datacenter and their slave replicas into nearby

datacenters, to minimize the operational cost of the cloud service provider. The key

of our method is how to efficiently identify communities from a social network that

collectively reflect the read and update rates of user data within each community,

based on a novel community fitness metric. A collection of user data with high read

rates but low update rates will be grouped into a community. Although community

identification in databases has been extensively studied and various community fit-

ness metrics have been proposed [46, 64, 71], all of these metrics only considered user

read rates, and none of them ever considered user update rates. Unlike these exist-

ing community fitness metrics, in this chapter we propose a novel community fitness

metric for community identifications that jointly takes into account both read and

update rates of user data. To the best of our knowledge, this is the first time that a
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generic community concept of social networks is invented and employed for efficient

user data placements into a distributed cloud with an aim to minimize the opera-

tional cost of the cloud service provider by accommodating various large-volume,

dynamic social networks.

The main contributions of this chapter are as follows. We first formulate user

data placement for placing user data of a social network into a distributed cloud

such that the operational cost of the cloud service provider is minimized, where the

operational cost consists of inter-datacenter communication costs and energy con-

sumption costs at datacenters. We then propose a novel community fitness metric

by taking both read and update rates of user data into consideration which will

be used for community identifications, and devise a fast yet scalable algorithm for

user data placements in the distributed cloud based on the proposed community

fitness metric. Also, we deal with the dynamic maintenance of the placed user data

of social networks due to new users joining in the networks, existing users leaving

from the networks or changing their read/update rates. We finally evaluate the per-

formance of the proposed algorithms against state-of-the-arts through experimental

simulations, using real social network datasets. The simulation results show that the

performance of the proposed algorithms is promising, and the proposed algorithms

outperform existing ones.

The remainder of this chapter is organized as follows. The system model and

problem definition are introduced in Section 5.2. The data placement algorithms

for static and dynamic social networks are proposed in Section 5.3 and Section 5.4,

respectively. The performance evaluations of the proposed algorithms are presented

in Section 5.5. The summary is given in Section 5.6.

5.2 Preliminaries

In this section, we first introduce the system model, notations, and the cost model

of user data placements. We then define the community-aware user data placement

problems precisely.
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5.2.1 System Model

We consider a distributed cloud Gc = (DC, Ec) that consists of a number of data-

centers located at different geographical locations and interconnected by the Internet

links, where DC is the set of datacenters, and Ec is the set of communication links

that interconnect the datacenters in DC, as shown in Fig. 5.1. Following existing stud-

ies [83], we adopt the same assumption that each datacenter DC 2 DC has unlimited

storage capacity as the storage medium is quite cheap. However, the processing of

users data such as reading and/or updating user data at their hosting datacenters

will consume cloud resources, thus will incur the cost of the cloud service provider.

Furthermore, data transfers between datacenters occupy the link bandwidth along

routing paths, thus the transmissions of users data between different datacenters

will incur the communication cost.

A social network (e.g., Facebook, ResearchGate, LinkedIn, or Twitter) usually

consists of a set of users and a set of links representing the relationships between the

users. The user data of each user in the social network needs to be placed into one

or multiple datacenters in the distributed cloud Gc for storage, reading access and

updating. To model user behaviors in a social network such as uploading a piece

of new data to the cloud, reading their friends’ data, and updating their own data,

a node and edge weighted, directed graph Gs = (Us, Es; w) is used to represent such a

social network, where Us is the set of users, and Es is the set of directed edges. Each

directed edge eij
s 2 Es from user ui 2 Us to user uj 2 Us represents that user ui can

read the data of user uj, and the weight w(eij
s ) associated with the edge represents

the read rate rij that user ui reads the data of user uj, i.e., w(eij
s ) = rij. The weight of

node ui denotes the update rate wi of user ui, i.e., w(ui) = wi.

To make the placed user data of a social network in the distributed cloud highly

available, reliable, and scalable, the user data of each user ui will be stored with

multiple copies that are distributed at different datacenters. Typically, there is one

master replica and K slave replicas of each user’s data, which are placed into K + 1
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different datacenters in Gc, assuming that |DC| � K + 1. The datacenter hosting the

master replica of user ui is referred to as its master datacenter, denoted by MC(ui).

The rest of K datacenters hosting the K slave replicas of the user are referred to as

the slave datacenters, denoted by SC(ui, k) the kth slave datacenter of user ui with

1  k  K. Without loss of generality, we assume that the slave replicas of user

ui are only allowed to be updated by ui if the user updates its master replica. To

maintain the data consistence between the master replica and its K slave replicas, we

further assume that weak data consistency between the master replica and its K slave

replicas will be maintained, i.e., the slave replicas of a user may not be necessarily

always consistent with its master replica at any moment, it however will be consistent

with the master one ultimately. The K + 1 replicas of user ui can be read by his/her

friends, denote by F(ui) the set of friends of ui, i.e., the set of neighbors of node ui in

Gs, and denote by rji the read rate of a user uj 2 F(ui) reading the user data of ui. The

user data accessed (read) by uj will be transferred to its master datacenter MC(uj)

for further processing if their user data are not placed in the same datacenter. To

reduce the operational cost of cloud service providers, user uj usually reads the user

data of user ui from the datacenter hosting the user data with the least operational

cost, denote by DCmin
ji the datacenter, which may be the master datacenter or one of

its K slave datacenters.

Following [12, 106], we assume that the read and update rates of each user are

given in advance. If not, they can be estimated by adopting existing prediction meth-

ods in [60, 61], or performing linear-regressions through analyzing the user’s his-

torical read and update traces/patterns. Notice that we here do not consider the

impact of user locations on the bandwidth consumptions and access latencies due to

the following reasons. First, we consider a distributed cloud and its datacenters are

connected by a backbone network, using high-speed optical fibers, the bandwidth

capacities of such inter-datacenter links thus typically are unlimited. Second, a user

access latency usually are mainly determined by the user access network (e.g., WiFi
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access or 4G networks via smartphones) [124, 125, 117], not the backbone network.

Fig. 5.1 uses an example to illustrate community-aware user data placements by

placing user data of a social network Gs to a distributed cloud Gc, where a collection

of user data with high read but low update rates will form a community, and the

master replica and its K slave replicas of each user data in each community will be

placed to K + 1 (=4) different datacenters, assuming that K = 3 [24].

Figure 5.1: An example of community-aware user data placements in a distributed
cloud.

5.2.2 Cost Model

Placing user data of a social network Gs to the datacenters in a distributed cloud

Gc will consume the various resources of Gc that will be taken into account as the

operational cost of the cloud service provider. The operational cost thus consists

of (i) the energy cost at datacenters for reading and updating data replicas of user

data; and (ii) the communication cost of transferring user data between different

datacenters, which are defined as follows.
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The energy cost of a datacenter DC will be incurred when reading and updating the

master replica and K slave replicas of each user ui at different datacenters. Let ew
DC

and er
DC be the amounts of energy consumed by a single update and read operations

on a datacenter DC 2 DC, respectively [32, 119, 120, 122]. The cost Ye of energy

consumptions in Gc incurred by the read and update operations of all users in Gs

thus is

Ye = Â
ui2Us

✓
ew

MC(ui)
· wi +

K

Â
k=1

ew
SC(ui ,k)

· wi + Â
uj2F(ui)

er
DCmin

ji
· rji

◆
, (5.1)

where the first term ew
MC(ui)

·wi in the right hand side of Eq. (5.1) is the cost of energy

consumed by updating the master replica of ui, the second term ÂK
k=1 ew

SC(ui ,k)
· wi is

the cost of energy consumed by updating the K slave replicas of ui, and the third

term Âuj2F(ui) er
DCmin

ji
· rji is the cost of energy consumed by reading one of the K + 1

replicas of ui by its neighbors.

The communication cost of user data transfer will be incurred when transferring user

data between inter-datacenters due to updating and reading data replicas of user

data. There are two types of data transfers of each user ui: one is that ui updates

its K slave replicas to keep data consistency among the copies of the data; another

is that a friend uj 2 F(ui) of user ui reads ui’s master replica or slave replicas when

users ui and uj are grouped into two different communities, and thus are placed

to two different datacenters. Let hw and hr be the amounts of data generated by a

single update (write) and read operations, respectively, and let c(ec) be the cost of

transmitting one unit of data along a link ec 2 Ec in Gc, the communication cost Yh

of all users of a social network Gs in Gc then is

Yh = Â
ui2Us

✓ K

Â
k=1

Â
ec2pi,k

wi · c(ec) · hw + Â
uj2F(ui)

Â
e0c2pi,j

rij · c(e0c) · hr

◆
, (5.2)

where pi,k is the shortest routing path in Gc from the master datacenter MC(ui) of

ui to its slave datacenter SC(ui, k) in terms of the geographic distance or the number

of hops between them for any k with 1  k  K, pi,j is the shortest path in Gc from

datacenter DCmin
ji to the master datacenter DC(uj) of uj, and DCmin

ji is the datacenter
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hosting one of the K + 1 replicas of ui that results in the lowest operational cost when

uj accesses ui’s data.

5.2.3 Problem Definitions

Given a distributed cloud Gc = (DC, Ec) and a social network Gs = (Us, Es; w) with

both read and update rates of its user data, the community-aware user data placement

problem is to efficiently place the master replica and K slave replicas of the user data of

each user in Gs to the K + 1 datacenters in Gc such that the operational cost (Ye +Yh)

(defined in Eqs. (5.1) and (5.2)) of the cloud service provider is minimized, assuming

that K  |DC|.

Given a dynamically evolving social network Gs = (Us, Es; w), assuming that

the user data of social network Gs have been placed into a distributed cloud Gc

already, and for a given monitoring period that consists of T equal time slots, the

online community-aware user data placement problem in Gs for the given monitoring

period T is to efficiently and effectively maintain the placed user data of Gs in Gc

such that the accumulative operational cost ÂT
t=1(Ye(t) + Yh(t)) of the cloud service

provider is minimized, where Ye(t) and Yh(t) are the energy and communication

costs at time slot t, whose definitions are similar to the ones in Eqs. (5.1) and (5.2)

with 1  t  T.

5.3 Algorithm for the Community-Aware User Data Place-

ment Problem

In this section, we devise an efficient algorithm for the community-aware user data

placement problem. We first provide an overview of the proposed algorithm. We

then introduce a novel community fitness metric to identify communities in a social

network. We finally propose the algorithm based on the identified communities.
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5.3.1 Algorithm Overview

Given a social network Gs = (Us, Es; w), one simple placement of its user data to a

distributed cloud Gc is to randomly place its user data in the user-level granularity

to Gc one by one, followed by adjusting the placement to reduce the operational

cost through user data swapping between different datacenters. Another placement

method is to partition the users in Gs into different connected components, using the

flow-based partition algorithms [60], and then assign the user data in each connected

component to a single datacenter. Although both of these placement methods are

able to deliver feasible solutions to the problem, they are very time-consuming, since

a typical large social network contains millions of users and links.

We here propose a novel placement approach that is essentially different from

existing ones [3, 36, 75, 128, 129]. That is, we first construct a condensed graph from the

original social network Gs such that the number of nodes and edges in the condensed

graph is several orders of magnitude less than those in Gs, by grouping the users of Gs

into different communities. We then place the master replicas of the user data in each

community into a single datacenter and their slave replicas into nearby datacenters

of the master datacenter. To this end, two issues must be resolved. One is to design a

novel community fitness metric that takes both read and update rates of user data into

consideration. This metric later will be used for community identifications, and the

quality of the found communities will determine the efficiency of user data grouping.

Another is to place the user data of each community to which datacenter(s) such that

the operational cost of the cloud service provider is minimized. The rest of this

section will address these two issues.

5.3.2 A Novel Community Fitness Metric

For the community-aware user data placement problem, we aim to group the users

of a social network into different groups by a community fitness metric such that the

users within each group have intensive interactions with each other while their accu-
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mulative update rate is relatively low. Thus, a good community fitness metric must

take both read rates (the edge weights of the social network) and the update rates

(the node weights of the social network) of users into consideration. The rationale

of the proposed community behind is as follows. On one hand, user data placed at

different datacenters may have high read rates with each other by accessing the data

of each other regularly. If the master replicas of these user data are placed into the

same datacenter, this can reduce the operational cost of the cloud service provider,

by reducing the inter-datacenter communication cost. On the other hand, some of

very active users may update their master replicas frequently, this will trigger the

system to update their slave replicas to maintain data consistency. Each of such up-

dates must be performed by the system to their K slave replicas located at K different

datacenters, thereby incurring the inter-datacenter communication cost.

We propose a community fitness metric that takes into account both read and

update rates of user data, where the users in a community are expected to have high

read rates with each other and low update rates by themselves. Furthermore, the

community fitness metric should incorporate user behaviors on their read and up-

date rates, as some users may frequently update theirs data, whereas other users may

frequently read the user data of each other. The accumulative read and update rates

of users in each community will determine the operational cost of the cloud service

provider if the user data are properly placed into the distributed cloud. Specifically,

a high accumulative read rate of the users in a community implies a higher inter-

datacenter communication cost, if the users in this community are placed to different

datacenters. Also, a high accumulative update rate of the users in a community im-

plies a larger energy cost at datacenters and a higher inter-datacenter communication

cost on data replica updates, since the K slave replicas of the users in the community

are placed into K different datacenters.

A smart way to identify high-quality communities in a social network is to assign

different weights a (> 0) and b (> 0) on the accumulative inter-community reading
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and accumulative intra-community updating. That is, when a community C has a

higher accumulated update rate, i.e., K ·
�

Â
ui2C

wi
�
> Â

ui2C
Â

ul /2C
(ril + rli), the accumula-

tive updating in C will outweigh its accumulative inter-community reading. We thus

set the values of a and b with a < b, the impact of the update rates of users in each

community then will become dominant in the fitness metric. Similarly, when a com-

munity C has a higher accumulative read rate, i.e., Â
ui2C

Â
ul /2C

(ril + rli) > K ·
�

Â
ui2C

wi
�
,

the values of a and b are set with a � b. As different communities contain different

numbers of users, the fitness metric of a community should incorporate the number

of users in the community as well. Thus, the fitness metric for a community C, f (C)

is defined as follows.

f (C) =

Â
ui2C

Â
uj2C

(rij + rji)

⇣�
Â

ui2C
Â

ul /2C
(ril + rli)

�a
+ K ·

�
Â

ui2C
wi

�b
⌘
· |C|

, (5.3)

where rij is the weight of edge eij
s representing the read rate of user ui reading

the data of user uj, wi is the weight of ui representing the update rate of ui, K is

the number of slave replicas of each user data, and |C| is the number of users in

community C. Notice that why a and b are put as the powers of Â
ui2C

Â
ul /2C

(ril + rli)

and Â
ui2C

wi
�b is to make f (C) more sensitive to the changes on read and update rates

of the users in community C.

It can be seen from Eq. (5.3) that a community C will have a larger f (C) if its

user read interactions are high within C, while their read interactions with the users

outside of C are low. Also, the value of f (C) is inversely proportional to the ac-

cumulative update rate of the users in C, i.e., a larger Â
ui2C

Â
uj2C

(rij + rji), a smaller

Â
ui2C

Â
ul /2C

(ril + rli), and a smaller K · Â
ui2C

wi will get a larger f (C), as C will become

less fit (a smaller value of f (C)) if the accumulative updating rate of all users in C is

high and all the K slave replicas of the user data of users in C need to be updated

accordingly. In other words, the larger f (C) is, the higher quality the community C
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is. When a = b = 1, we have

f (C) =

Â
ui2C

Â
uj2C

(rij + rji)

�
Â

ui2C
Â

ul /2C
(ril + rli) + K · Â

ui2C
wi

�
· |C|

. (5.4)

For the sake of simplicity of discussions, we will adopt the fitness metric f (C) as

the default community fitness metric in the rest discussion of this chapter.

5.3.3 Community Identifications

To identify communities in Gs for its user data placements to Gc, we will adopt the

proposed community fitness metric with a given fitness threshold q (> 0) to guide

the community finding, i.e., when a community C with f (C) � q, the community is

found. Specifically, the community identifications in Gs are as follows.

Denote by m the number of initial seeds of communities. It first chooses m seeds

(users) randomly from Gs as the initial communities. Let C be the collection of com-

munities. It then calculates the community fitness metric f (Ci) for each community

Ci 2 C, and expands Ci, by adding one neighbor of a user in Ci, u 2 Us \
S

Ci2C Ci,

into Ci if f (Ci [ {u}) < q, where u = argmaxu2Us\
S

Ci2C Ci
f (Ci [ {u}). This procedure

continues until none of the communities in C can be further expanded, i.e., 8 Ci 2 C

and 8 u 2 Us \
S

Ci2C Ci, we have that f (Ci [ {u}) � q for those nodes that do not

belong to any communities itself forms a community.

Notice that the number of seeds m and the community fitness threshold q jointly

determine the number of communities found. If both of them are small, a large

number of small-size communities in Gs will be identified. Although small-size com-

munities enable fine-grained placements of the user data in Gs, identifying these

communities may take a long time. To exploit the tradeoff between fine-grained user

data placements and the amount of time spent on community identifications. Let

m = g · |DC|, where g is a constant with g � 1, which is a parameter to tune the
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number of identified communities. A large value of g implies that more seeds are

used to generate the communities, leading to more found communities.

The detailed algorithm for community identifications is given by Algorithm 6.

Algorithm 6 CommuIdentification(Gs, f (C), C, q)

Input: A social network Gs = (Us, Es; w), the community fitness metric f (C), a set C
of initial communities, and the community fitness threshold q.

Output: The set of found communities of social network Gs = (Us, Es; w).
1: Select a subset of C consisting of m communities as seeds if C 6= ∆; otherwise,

select m(= g · |DC|) users from Us as seeds with each representing a community
and add them into C.

2: while Us \ ÂCi2C Ci 6= ∆ do
3: Calculate the community fitness metric f (Ci) for each community Ci 2 C;
4: while ( 9 Ci 2 C : f (Ci) < q) and ( Us \ ÂCi2C Ci 6= ∆) do
5: for (each Ci 2 C : f (Ci) < q) do
6: u = argmaxu2Us\

S
Ci2C Ci

f (Ci [ {u}); /* u is the user leading to the highest

f (Ci [ {u}) with u 2 Us \
S

Ci2C Ci */
7: Ci  Ci [ {u};
8: if Us \ ÂCi2C Ci 6= ∆ then
9: Select m users randomly from Us \ ÂCi2C Ci as new seeds and add them to

C;
10: return C;

An illustrative example of community identifications by Algorithm 6 is given in

Fig. 5.2, where C1, C2, C3, C4, C5, C6 and C7 are seven identified communities in a

social network Gs. Users within each community have high interactions with each

other, and low interactions with the users outside of their community. If a user is not

in any community, it forms a community by itself, e.g., the only user in C6.

5.3.4 Algorithm Description

Having identified all communities in Gs, a condensed graph Gv = (Nv, Ev) derived

from Gs is then constructed, where each node nv 2 Nv is a community in Gs (or

a ‘super-vertex’), and its weight is the sum of the update rates of the users in the

community. There is a directed link in Ev between two communities if there is at

least one directed edge between their users in Gs, and the weight of the link is the
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Figure 5.2: An example of the community identification.

sum of edge weights in Gs between their users. Clearly, Gv is a node- and edge-

weighted directed graph.

To place the user data of users in communities of the condensed graph Gv, one

placement method is to adopt the maximum flow and minimum cut algorithm by

graph partitioning on Gv. This method however does not consider node weights

(i.e., the accumulative update rate of users in each community). As a result, it may

produce an inefficient placement.

We here instead propose a node-ranking method that jointly considers both read

and update rates of each user in a community (a super-vertex in Gv). Specifically,

a community (a super-vertex) with high accumulative read or update rates should

be placed first, since this brings more opportunities for its users to be placed to a

datacenter with a less operational cost. To this end, we assign each node nv 2 Nv

a rank, which is the product of the weight of the node and the weighted sum of its

incident edges. This implies that the rank of a node nv in Gv is determined by both

the update and read rates of the users in nv and the users in other super-vertices that

connect to the users in nv. A higher ranked node will be placed first. Let L(nv) be

the set of condensed links incident on nv, the rank R(nv) of node nv is defined as

R(nv) = U(nv) · Â
ev2L(nv)

U(ev), (5.5)
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where U(nv) ( = Âui2nv w(ui)) is the node weight of nv while Âev2L(nv) U(ev) is the

sum of the weights of edges incident on nv.

Having ranked all the nodes in Gv, we then place the user data of the nodes

greedily, where the user data of a node will be placed to one datacenter only, and

the nodes will be placed one by one in non-increasing order of their ranking. Let

Npl
v be the set of nodes whose user data have already been placed and DC pl the

set of datacenters in which the user data in Npl
v are placed. Denote by DC(npl

v ) the

datacenter in which the user data of node npl
v 2 Npl

v are placed. Let nv 2 Nv be a

community that is being considered, the master datacenter MC(nv) and its K slave

datacenters of nv will be identified in Gc and its user data will be placed if such a

placement will minimize the increase on the operational cost. To find these K + 1

datacenters for each node nv, we first calculate the operational cost if the master

replica of nv is placed to a datacenter DC 2 DC while its slave replicas are placed to

the first K closest (in terms of the communication cost) datacenters to DC. We refer

to this datacenter DC and the K datacenters as a ‘combination’. We then select a

combination for each node nv that leads to the minimum increase on the operational

cost as the user data placement of node nv. The detailed algorithm is described in

Algorithm 7.

5.3.5 Analysis of the Proposed Algorithm

We now analyze the correctness and performance of the proposed algorithm, Algorithm 7,

in the following.

Theorem 7 Given a distributed cloud Gc = (DC, Ec), a social network Gs = (Us, Es; w),

and a given positive integer K � 1, there is an efficient algorithm, Algorithm 7, for the

community-aware user data placement problem. The algorithm takes O(|Us| · |Es|), O(|Us| ·

|Es|), and O(|Us| · |Es|+ |Us|3/2 · log |Us|) time, respectively, if |Nv| = r1|DC|, |Nv| =

r2|DC|2, and |Nv| = r3
p
|Us|, where r1, r2 and r3 are constants with ri � 1 and 1  i  3.

Proof We first show the feasibility of the solution by Algorithm 7. This is to show
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Algorithm 7 Algorithm for the community-aware user data placement problem
Input: A distributed cloud Gc = (DC, Ec), a social network Gs = (Us, Es; w), and the com-

munity fitness threshold q for identifying communities in Gs.
Output: A solution of data placement of user data in Gs.

1: Y0  •; /* the operational cost of placing data of Gs following a community identifica-
tion */

2: N0v  ∆; /* the set of communities of Gs that achieves operational cost Y0 */
3: Y 0; /* the operational cost */
4: while

�
Y0 �Y > 0

�
do

5: if Y 6= 0 then
6: Y0  Y, N0v  Nv;
7: Find all communities Nv by invoking Algorithm 6, i.e., CommuIdentification(Gs,

f (C), N0v, q);
8: A condensed graph Gv = (Nv, Ev) is constructed based on the identified communities;

9: Calculate the rank of each node nv 2 Nv;
10: Sort all nodes in Nv in a non-increasing order of ranks defined in Eq. (5.5);
11: Npl

v  ∆; /* the set of communities whose user data have been placed into Gc */
12: Y

Npl
v
 0; /* the operational cost for placing user data of communities in Npl

v */
13: for each nv 2 Nv do
14: Y

Npl
v [{nv}

(DC)  •; /* the operational cost for placing user data of communities

in Npl
v [ {nv} to Gc, when the user data of nv is placed to DC and the slave replicas

of nv are placed to the first K closest datacenters to DC. */
15: DC0  argmin(Y

Npl
v [{nv}

(DC)); /* DC0 is the datacenter that achieves the mini-

mum operational cost for placing the user data of communities in Npl
v [ {nv} */

16: Place the user data of nv to DC0 and the slave replicas of nv to the first K closest
datacenters to DC0;

17: Npl
v  Npl

v [ {nv};
18: Calculate the operational cost Y for placing user data of Nv to Gc;

that the master replica and its K slave replicas of each user in a social network are

placed to K + 1 different datacenters in Gc. Recall that Algorithm 7 consists of two

stages: (1) identify communities in a social network Gs, and construct a condensed

graph Gv = (Nv, Ev) with each its node nv representing a community; and (2) place

the user data in each community into a node in Gc. We thus only need to show

that each user in Gs will be included by a community in stage (1), and the master

replica and its K slave replicas of each node (or a super-vertex) in Gv are placed

to K + 1 datacenters in stage (2). On one hand, it is clear that all users in Gs are

included in identified communities, as Algorithm 6 expand the communities until
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all users will be included into different communities. On the other hand, it can be

seen at Step 13 of Algorithm 7 that the super-vertices in Nv are treated one by one,

by placing the master replica of each user data in each super-vertex to one datacenter,

and replicating its K slave replicas to the other K closest datacenters. The solution by

Algorithm 7 thus is a feasible solution as the master replica and its K slave replicas

of user data of each user ui 2 Us are placed to the K + 1 datacenters in Gc.

We then analyze the time complexity of Algorithm 7. Recall that Algorithm 7

proceeds iteratively. Within each iteration, it consists of two phases, (i) the commu-

nity identifications; and (ii) user data placements by placing the user data in each

community into K + 1 datacenters. Recall that F(ui) is the neighbor set of ui in Gs.

Since most real social networks are sparse graphs, we assume that each user ui has

a constant number of neighbors, i.e., |F(ui)| is a constant. We further assume that

the number of initial community seeds is |C| with |C| ⌧ |Us|. To expand these |C|

seeds into communities, all edges in Gs will be examined. Thus, the time spent for

community identifications is O(|Us| + |Es|) = O(|Es|). We now analyze the time

spent on phase (ii), i.e., placing the user data of the identified communities to the

nodes in Gs. All user data in each community will be treated as a whole and the

master replica and its K slave replicas of each such user data will be placed to K + 1

datacenters of Gc, the time used for the user data placements in this phase will be

determined by the number |Nv| of communities in Gv. Further, the ranking of super-

vertices (i.e., communities) in Nv and placing the user data of each super-vertex takes

O(|Nv| log |Nv|+ |Nv| · |DC|) time.

As different social networks have different topological structures, there are dif-

ferent numbers of communities of different social networks. We here consider three

typical cases of |Nv| in Gv: (1) |Nv| = r1|DC|, (2) |Nv| = r2|DC|2, and (3) |Nv| =

r3
p
|Us|, which correspond to small, medium, and large numbers of communities

in Gs, where ri is a positive constant with ri � 1 and 1  i  3. The time spent

in phase (ii) thus are O(|DC|2), O(|DC|3), and O(
p
|Us|(log |Us| + |DC|)), respec-
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tively for these three cases. The number of iterations in Algorithm 7 is O(|Us|),

since one user will be included in a community within each iteration, and there

are |Us| users. Algorithm 7 thus takes O(|Us|(|Es|+ |Nv| log |Nv|+ |Nv| · |DC|)) =

O(|Us| · |Es|+ |Us| · |Nv| · log |Nv|+ |Us| · |Nv| · |DC|) time.

Considering the mentioned three cases on Nv where (1) |Nv| = r1|DC|; (2)

|Nv| = r2|DC|2; and (3) |Nv| = r3
p
|Us|, the corresponding time complexity of

Algorithm 7 is O(|Us| · |Es|), O(|Us| · |Es|), and O(|Us| · |Es|+ |Us|3/2 · log |Us|), re-

spectively, assuming that |DC|⌧ |Us|. The theorem thus holds.

5.4 Algorithm for the Online Community-Aware User Data

Placement Problem

So far Algorithm 7 for the community-aware user data placement problem has as-

sumed that a social network Gs is static, neither the number of users nor the read

and update rates of the users change over time. In reality, almost all social networks

dynamically evolve over time, where new users join in and existing users leave from

the networks. Furthermore, users sometimes may change their read and update rates

as well. In this section, we propose an online algorithm for the dynamic maintenance

of the placed user data in a dynamically evolving social network with an objective to

minimize the operational cost of the cloud service provider.

The value f (C) of a community fitness metric for a community C may change due

to any of the mentioned changes in a social network, so do its user data placements

in the distributed cloud. To respond to such changes, a naive solution is to run the

proposed algorithm for the community-aware user data placement problem in the

previous section from the scratch whenever there are any changes. However, adopt-

ing this strategy may incur a high overhead on user data placements. Intuitively,

the marginal difference of the value of f (C) before and after any changes does not

affect the operational cost of the cloud service provider significantly, we thus have
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a variation tolerable threshold d of the community fitness metric to determine whether

an adjustment to existing communities will be performed, if there is any change of

users in the network. The user data placement adjustment will only be performed

when the variation of f (C) in a community C is above the given threshold d.

Maintenance algorithm

The proposed algorithm proceeds as follows. Consider a time slot t within a mon-

itoring period, when a user leaves from Gs, its master replica and K slave replicas

will be removed from the distributed cloud Gc. The removal of the user and its inci-

dent edges in Gs may significantly change the community fitness metric value of all

involving communities if the removed user has intensive communications with the

users in these communities. To determine whether an involving community is bro-

ken or merged with other communities, we calculate the community fitness metric

f (C) of each involving community C to see whether the change of f (C) is within

the given threshold d, i.e., whether | f u(C)� f u(C)|  d, where f u(C) and f u(C) are

the community fitness metrics of C before and after the removal of user u. If yes, no

action will be taken; otherwise, the rest of users in C will be merged into the other

communities or all communities in the updated social network will be identified, by

invoking Algorithm 7. When a new user joins in, it is assumed that the user has

his friends in Gs already. The maintenance algorithm will place its user data to a

community that leads to the minimum increase on the operational cost of the cloud

service provider. When the read rates and/or the update rates of some users in Gs

change, the maintenance algorithm will calculate the community fitness metric f (C)

of each involving community C if the value change of the community fitness metric

f (C) is larger than d. The users in C will be merged with the other communities,

or Algorithm 7 will be applied to the updated social network to identify all new

communities. The detailed maintenance algorithm is described in Algorithm 8.
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Algorithm 8 Algorithm for the online community-aware user data placement prob-
lem
Input: A distributed cloud Gc = (DC, Ec), a social network Gs = (Us, Es; w), the

fitness threshold q, the variation threshold d for determining the variety of com-
munities in Gs, a monitoring period of T time slots, and users joining in and
leaving requests.

Output: The maintenance of user data placements at each time slot t.

1: /* Assume that the user data of Gs has been placed in Gc at time slot 0 */
2: for each time slot t 2 [1, 2, · · ·, T] do
3: Let D(t), A(t), and U(t) be the sets of existing users leaving from Gs, new

users joining in Gs, edges and nodes in Gs whose read rates and update rates
change at time slot t;

4: W(t) A(t)[D(t)[U(t);/*W(t) is the set of changes happened in the social
network*/

5: while W(t) 6= ∆ do
6: Case one : D(t) 6= ∆
7: for each community C that has a user in D(t) do
8: Calculate the community fitness metric of C, i.e., f u(C);
9: for each user u 2 D(t) that is in community C do

10: Delete all data replicas of u and all edges incident on u in Gs;
11: Calculate the community fitness metric of C after the deleting, i.e.,

f u(C);
12: if | f u(C)� f u(C)| > d then
13: Merge the remaining users of C into other communities or newly

identified communities by invoking Algorithm 7;
14: W(t) W(t) \ D(t);
15: Case two : A(t) 6= ∆
16: for each user u 2 A(t) do
17: for each community C do
18: Calculate the operational cost if placing the data of u to the datacen-

ters where the user data of C are placed;
19: Place the data of u to the datacenters resulting in the minimum increase

on the operational cost;
20: W(t) W(t) \ A(t);
21: Case three : U(t) 6= ∆
22: for each community C do
23: Calculate the community fitness metric of C, i.e., f u(t);
24: for each user u 2 U(t) that is in community C do
25: Calculate the community fitness metric of C after the change of read

and update rates of user u, i.e., f u(t);
26: if | f u(C)� f u(C)| > d then
27: Merge the users of C into other communities or newly identified com-

munities by invoking Algorithm 7;
28: W(t) W(t) \ U(t);
29: Consider the left communities as seeds in the community identification, and

expand each seed until all users in the social network are assigned to identified
communities;

30: Place the identified communities following Algorithm 7;
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Algorithm analysis

In the following we show the correctness of Algorithm 8 and analyze its time com-

plexity.

Lemma 4 Given a distributed cloud Gc = (DC, Ec) and a dynamically evolving social net-

work Gs = (Us, Es; w) that contains a set D(t) of leaving users, a set A(t) of new users

joining in Gs, and a set U(t) of users changing their read or update rates at time slot t,

Algorithm 8 delivers a feasible solution for the online community-aware user data place-

ment problem.

Proof To ensure the correctness of Algorithm 8, all user data in an updated social

network Gs at time slot t must be properly maintained in the distributed cloud Gc

to respond to any changes from sets D(t), A(t) and U(t). That is, the master and

slave replicas of the user data of each newly arrived user must be placed into K + 1

datacenters in Gc, while both its master replica and K slave replicas of the user data

of a leaving user will be removed from Gc and Gs. Note that if the value of the

community fitness metric of a community has been changed significantly after the

removal of its users, the rest users in the community will be either merged with other

communities, or a set of new communities will be found, by applying Algorithm 7

to the updated social network. As shown in Theorem 7, each user will be included

in a community after the community identification stage. Similarly, the users with

updated read or update rates will be re-placed to the datacenters in Gc, if the values

of their community fitness metrics are greater than the given threshold d. The lemma

thus holds.

Theorem 8 Given a distributed cloud Gc = (DC, Ec), a dynamically evolving social net-

work Gs = (Us, Es; w) with a set D(t) of leaving users, a set A(t) of newly joining in

users, and a set U(t) of users changing their read and update rates at time slot t, and a

given variation threshold d > 0, there is an efficient algorithm, Algorithm 8 for the on-

line community-aware user data placement problem, which delivers a feasible solution. The



§5.4 Algorithm for the Online Community-Aware User Data Placement Problem 121

algorithm takes O(|Us| · |Es|), O(|Us| · |Es|), and O(|Us| · |Es|+ |Us|3/2 · log |Us|) time if

|Nv| = r1|DC|, |Nv| = r2|DC|2, and |Nv| = r3
p
|Us| respectively, where ri is a constant

with ri � 1 and 1  i  3.

Proof Following Lemma 4, the solution delivered by Algorithm 8 is a feasible so-

lution. The rest is to analyze its time complexity by distinguishing into three cases.

Case 1: a set D(t) of existing users leaving from Gs; Case 2: a set A(t) of new users

joining in Gs; and Case 3: a set U(t) of users changing their read or update rates.

Case 1. The removal of data replicas of all users in D(t) from their existing user

data placements takes (K + 1)|D(t)| time, as each user has one master replica and

K slave replicas to be removed from the K + 1 datacenters in Gc. Such removals

however may change the values of community fitness metrics of the communities in

which the users are contained. That is, if the value of an updated community fitness

metric is above the given threshold d, all the users in it will be merged with the

other communities or new communities will be generated by invoking Algorithm 6.

The number of merged users thus will play a vital role in determining the running

time of Algorithm 8. In the worst scenario, all users in existing communities may

merge with each other. Algorithm 8 thus takes O(|Us| · |Es|), O(|Us| · |Es|), and

O(|Us| · |Es|+ |Us|3/2 · log |Us|) time for Case 1 if |Nv| = r1|DC|, |Nv| = r2|DC|2, and

|Nv| = r3
p
|Us|, respectively, assuming that |DC|⌧ |Us| and |D(t)|⌧ |Us|.

Case 2. To place the user data of newly arrived users to the distributed cloud

Gc, Algorithm 8 places the user data of each new user to an existing community

C that results in the minimum increase on the operational cost of the cloud service

provider. This takes O(|Nv| · |A(t)|) time in total for all users in A(t), assuming that

|A(t)|⌧ |Us|, the algorithm thus takes O(|Us|) time for Case 2.

Case 3. The user data maintenance for the users with updated read or update

rates is similar to the one for Case 1. The most time consuming part for this case

is to merge the users in the communities whose fitness value changes are greater

than the given threshold d. Algorithm 8 thus takes O(|Us| · |Es|), O(|Us| · |Es|), and



122 Cost Minimization of Distributed Clouds via Community-Aware Data Placements

O(|Us| · |Es|+ |Us|3/2 · log |Us|) time for Case 3 if |Nv| = r1|DC|, |Nv| = r2|DC|2, and

|Nv| = r3
p
|Us|, respectively.

The theorem thus holds.

5.5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms in terms of

the operational cost and the running time through simulation, using realistic social

network datasets. We also investigate the impact of important parameters on the

performance of the proposed algorithms.

5.5.1 Experiment Settings

We consider a distributed cloud Gc = (DC, Ec) consisting of 10 datacenters located at

different geographical locations [100, 122, 123]. There is an edge between each pair

of datacenters with a probability of 0.4, generated by the GT-ITM tool [39]. The cost

of transmitting, storing and processing 1 GB data at a datacenter is a random value

drawn from an interval [$0.05, $0.12], following the typical commercial charges in

Amazon EC2 and S3 [6].

We adopt real-world datasets of social networks from the Stanford Network Anal-

ysis Project (SNAP) [105]. Three social networks: Facebook, Twitter, and WikiV-

ote, are chosen from SNAP to evaluate the performance of the proposed algorithms,

where there are 4, 039 users and 176, 468 edges in Facebook, 7, 115 users and 103, 689

edges in WikiVote, and 81, 306 users and 1, 768, 149 edges in Twitter, respectively.

Notice that the Facebook is an undirected graph with 4, 039 nodes and 88, 234 edges.

As the social networks considered in this chapter are directed graphs, we replace

each undirected edge in the undirected graph by two directed edges in the directed

graph.

We assume that the user data of each user ui in a social network includes the

user’s profile, posts, images, video clips, the list of the user’s followers, etc. The



§5.5 Performance Evaluation 123

volume of each user data typically occurs several Gigabytes in the system. Assume

that each user data has K = 3 slave replicas [24]. Following [12], the ratio between

the total read rate and the total update rate of all users in a social network is around

0.92/0.08. The update rate w(ui) of each user ui and its read rate w(eij
s ) on the user

data of another user uj is a random value drawn between 10 and 20, and each update

or read operation involves 256 MB volume of data. The community fitness threshold

q is set at 0.03. Unless otherwise specified, we will adopt these default settings in our

experiments. All experiments are performed in a high-performance super computer

at the National Computational Infrastructure (NCI) in Australia [85]. The computing

resource used in this experiment is two Intel Sandy Bridge E5-2670 processors with

each having eight 2.6 GHz cores and 64 GB memory [85]. Each value in the figures

is the mean of the results by applying each mentioned algorithm 15 times on 15

different topologies of the distributed cloud of the same size.

To evaluate the performance of the proposed algorithms, we adopt three widely-

adopted benchmarks: (1) A naive algorithm that randomly places the master replica

and K slave replicas of each user into K + 1 datacenters. (2) The algorithm in [60] that

decomposes the data placement problem into two local optimization problems: the

master replicas placement, followed by the slave replicas placement. Specifically, the

algorithm starts with an initial placement of all master replicas and slave replicas,

and then solves the two subproblems iteratively to reduce the total cost further until

an expected number of iterations reaches. When optimizing the placement cost of

users’ master replicas, the max-flow and min-cut algorithm (MFMC) for finding a

minimal s-t cut for each pair of datacenterss and t is employed, based on a random

placement of master and slave replicas; followed by greedily finding a datacenter

with the lowest cost for each slave replica of a user to optimize the cost of placing the

slave replicas. (3) The algorithm in [106] first places the master replicas of the users

in Gs, it then creates a slave replica on a datacenter DCj for a user with its master

replica placed on a datacenter DCi if the placed slave replica can improve the inter-
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datacenter communication cost between datacenters DCi and DCj. It finally refines

the placement of master replicas through swapping to see whether this can reduce

the inter-datacenter communication cost. Notice that this algorithm considers neither

the energy cost at datacenters nor the number K of slave replicas as a constraint. For

the sake of simplicity, we refer to the proposed algorithm, Algorithm 7, as algorithm

DPCI, and the three benchmarks as algorithms Random, MFMC, and TOPR, respectively.

In addition to conducting performance evaluation of the proposed algorithms, we

also validate the effectiveness of the proposed fitness metric against that of a state-of-

the-art metric that is widely adopted by studies in the literature [31, 70, 71]. Specif-

ically, the proposed metric in this chapter is the one defined in Eq. (5.3) that takes

into account both read rates and update rates of users in a social network, while the

state-of-the-art metric [31, 70, 71] only considers the read rates of users while ignor-

ing the update rates of these users in a social network. For simplicity, we refer to the

proposed metric as Proposed-Metric and the existing metric as Benchmark-Metric

accordingly.

5.5.2 Performance Evaluation of Algorithms in Static Social Networks

We first evaluate the proposed algorithm DPCI against algorithms TOPR, MFMC and

Random, in terms of the operational cost and the running time, using different social

networks as follows.

It can be seen from Fig 5.3(a) that the operational cost by algorithm DPCI is sub-

stantially less than those by algorithms TOPR, MFMC and Random. For example, its

operational cost is only about 73%, 43% and 35% of those by algorithms TOPR, MFMC

and Random on Facebook; 89%, 75% and 56% of those by algorithms TOPR, MFMC and

Random on WikiVote; and 80%, 62% and 45% of those by algorithms TOPR, MFMC and

Random on Twitter. The rationale behind is that algorithm DPCI groups the user data

of users in a social network as communities and places the user data of each commu-

nity into a single datacenter in the distributed cloud, thus, the communication cost
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due to reading and updating data among datacenters can be significantly reduced.

Furthermore, each community is ranked. A community with a higher rank has a

higher priority to be placed into a datacenter, resulting in the less energy cost. In

addition, It must be mentioned that despite that algorithm TOPR does not have the

restriction on the fixed number K of slave replicas, its solution of the operational cost

is still quite high. Although it reduces the inter-datacenter communication cost, this

is achieved at the cost of more slave replicas deployments. The solution delivered by

algorithm DPCI thus has a much less operational cost, compared with the costs by

algorithms TOPR, MFMC and Random.

Fig. 5.3(b) plots the running times of different algorithms. From Table 5.1, it

can be seen that the condensed graph Gv contains substantial less numbers of edges

and nodes, compared with those in Gs. For example, there are 4, 039 nodes in the

Facebook, whereas there are only 73 nodes in its corresponding condensed graph

when q = 0.03. Although the running time of algorithm Random is the smallest as

shown in Fig 5.3(b), the operational cost of the solution delivered by it is the highest,

around twice the operational cost by algorithm DPCI as illustrated in Fig. 5.3(a).
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(a) Operational costs of different algorithms
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(b) Running times of different algorithms

Figure 5.3: The performance of different algorithms in terms of the operational cost
(US dollars) and running time (milliseconds) on real social networks: Facebook,
WikiVote, and Twitter, under q = 0.03.

We then study the impact of the number of slave replicas K on the operational

cost and the running time of algorithms DPCI, TOPR, MFMC and Random. Figures 5.4 (a),
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(b) The operational cost on WikiVote
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(c) The operational cost on Twitter
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(d) The running time on Facebook
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(e) The running time on WikiVote
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(f) The running time on Twitter

Figure 5.4: The impact of the number K of slave replicas on the operational cost (US
dollars) and running time (milliseconds) of algorithms DPCI, TOPR, MFMC, and Random
for different social networks: Facebook, WikiVote, and Twitter under q = 0.03.
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Table 5.1: The size of social networks Gs and the size of their condensed graphs Gv
with different values of q

Name of the so-
cial network

|Us| |Es| |Nv| |Ev| |Us|
|Nv|

|Es|
|Ev| q

Facebook
4, 039 176, 468 399 5205 10 34 0.01
4, 039 176, 468 73 1640 56 108 0.03
4, 039 176, 468 51 960 80 184 0.05

WikiVote
7, 115 103, 689 454 51410 16 2.2 0.01
7, 115 103, 689 340 43413 21 2.4 0.03
7, 115 103, 689 320 37406 22.2 2.8 0.05

Twitter
81, 306 1, 768, 149 560 89, 193 145.2 19.8 0.01
81, 306 1, 768, 149 515 82, 585 157.8 21.4 0.03
81, 306 1, 768, 149 500 79, 052 162.6 22.3 0.05

(b) and (c) show that with the growth of K, the operational cost by algorithm DPCI

decreases, followed by increasing. For example, its operational cost on the Facebook

in Fig. 5.4(a) decreases with the increase on the number of slave replicas from 1 to

2, while it increases when K > 2. This is due to the fact as follows. On one hand,

when K is small, the communication cost for reading will be high as users have to

read data from remote datacenters hosting the slave replicas or the master replica

of a user data. On the other hand, when the number K of slave replicas is large,

the communication cost decreases as each user can read the slave replicas of other

users from a datacenter close to the user. It is also noticed that the communication

cost for updating the K slave replicas of a user will significantly increase with the

growth on the number of slave replicas. For instance, when the value of K increases

from 1 to 5, the corresponding communication costs in reading and updating by

algorithm DPCI on Facebook is significantly different. The communication costs for

reading are 15,523.5, 14,148.6, 11,238.4, 8,757.4, and 7,022.6, while those for updating

are 1,642.9, 3,783.4, 5,881.5, 9,196.1, and 12,327.9, respectively. In addition, algorithm

DPCI consistently delivers a solution with a much less operational cost, compared

with these by algorithms TOPR, MFMC and Random. For example, the operational cost

by algorithm DPCI is only 89%, 82% and 59% of the ones by algorithms TOPR, MFMC
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and Random on WikiVote, 77%, 65% and 45% on Twitter when K = 3, as depicted in

Figures 5.4 (b) and (c). Figures 5.4 (d), (e), and (f) depict the impact of the number

of slave replicas K on the running time of different algorithms on the Facebook,

WikiVote and Twitter, respectively. It can be seen that the running times of the four

comparison algorithms will grow with the increase of K, as they have to place more

slave replicas of each user data into different datacenters, and the operational cost

refinement by swapping slave replicas between different datacenters will take a much

longer time too.

We thirdly investigate the impact of the community fitness metric threshold q

on the operational cost and the running time of algorithm DPCI, by varying q from

0.005 to 0.06. Figures 5.5 (a), (b), and (c) illustrate the impacts of threshold q on the

performance of algorithm DPCI. Specifically, the operational costs of algorithm DPCI

on the Facebook, WikiVote, and Twitter increase with the growth of q, and reach

the peaks when the value of q is 0.01, 0.01, and 0.04, respectively, and then become

flat. The reason behind this is as follows. Take the Facebook as an example, when

the threshold q is very small (e.g., q  0.01), more small-size communities will be

identified and placed to the distributed cloud in a fine-grained manner. This will

result in a lower operational cost. As the value of q increases, large-size communities

will be obtained. The accumulated update rate by all users in each community will

become higher, resulting in the increase on the communication cost for updating the

K slave replicas of the users in these communities. Note that when q > 0.06, the

algorithm delivers a stable operational cost, which is similar as the one delivered

when q = 0.06. Therefore, the results when q > 0.06 are not included in the figures

for the sake of clarity. Figures 5.5 (d), (e) and (f) depict the impact of the threshold

q on the running time of algorithm DPCI on the Facebook, WikiVote, and Twitter.

It can be seen that its running time decreases with the growth of threshold q. This

is due to the fact that with the growth of q, less numbers of communities will be

obtained, the user data placements of the identified communities and the operational



§5.5 Performance Evaluation 129

0.01 0.02 0.03 0.04 0.05 0.06
Threshold  θ

30,000

35,000

40,000

45,000

50,000

T
h

e 
o

p
er

at
io

n
al

 c
o

st

The operational cost (Facebook)

(a) The cost on Facebook (US dollars)

0.01 0.02 0.03 0.04 0.05 0.06
Threshold  θ

20,000

30,000

40,000

50,000

T
h

e 
o

p
er

at
io

n
al

 c
o

st

The operational cost (WikiVote)

(b) The cost on WikiVote (US dollars)

0.01 0.02 0.03 0.04 0.05 0.06
Threshold  θ

4e+05

4.5e+05

5e+05

5.5e+05

T
h

e 
o

p
er

ai
o

n
al

 c
o

st

The operational cost (Twitter)

(c) The cost on Twitter (US dollars)

0.01 0.02 0.03 0.04 0.05 0.06
Threshold  θ

30,000

40,000

50,000

60,000
T

h
e 

ru
n

n
in

g
 t

im
e

The running time (Facebook)

(d) The running time on Facebook (millisec-
onds)

0.01 0.02 0.03 0.04 0.05 0.06
Threshold  θ

20,000

25,000

30,000

35,000

40,000

45,000

T
h

e 
ru

n
n

in
g

 t
im

e

The running time (WikiVote)

(e) The running time on WikiVote (milliseconds)

0.01 0.02 0.03 0.04 0.05 0.06
Threshold  θ

5e+05

6e+05

7e+05

8e+05

T
h

e 
ru

n
n

in
g

 t
im

e

The running time (Twitter)

(f) The running time on Twitter (milliseconds)

Figure 5.5: The impact of the threshold q on the performance of algorithm DPCI on
different social networks: Facebook, WikiVote, and Twitter.
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cost refinements will take less time.
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Figure 5.6: The impact of the parameters a and b on the operational cost (US dollars)
of algorithm DPCI under q = 0.03.

We finally evaluate the impact of parameters a and b in the community fitness

metric f (C) on the operational cost by algorithm DPCI in Figure 5.6. Note that the

ratio of a to b plays a vital role in calculating the community fitness metric f (C), as

it explores the non-trivial tradeoff between the accumulative read rate and the accu-

mulative update rate of users in a social network. Specifically, for a social network

with intensive reading, it is expected that the read rates will heavily impact its com-

munity identifications. This implies that the value of a is typically larger than the

value of b. To testify the impact of the ratio a
b on the performance of algorithm DPCI

by varying the ratio from 0.8 to 2.1. Fig. 5.6 shows that the operational costs become

the minimum ones for the Facebook, WikiVote, and Twitter, when the ratio a
b is 1.2,
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1.3, and 1.1, respectively, because the finest tradeoff between the read rates and the

update rates of users in these tree networks is achieved.

5.5.3 Performance Evaluation of Algorithm in Dynamic Social Networks

The rest is to evaluate the performance of the proposed online algorithm Online-DPCI,

which maintains the placed user data for a dynamically evolving social network over

time. We compare algorithm Online-DPCI against algorithm DPCI that places all

user data in a social network from scratch when there is any change on the social

network. Specifically, assume that the maximum percentages of users joining in and

leaving from a social network are from 1% to 16%. Similarly, let the maximum per-

centages of updated read and update rates are from 1% to 16%. For the sake of

simplicity, we refer to these percentages as the changing percentages.

Fig. 5.7 depicts the impact of the changing percentages on the accumulative oper-

ational cost of the cloud service provider for a monitoring period of 50 time slots

and the accumulative running times of algorithms Online-DPCI and DPCI, respec-

tively. It can be seen that algorithm DPCI will deliver a solution with a much lower

accumulative operational cost while taking a much higher running time, compared

with that by algorithm Online-DPCI. The rationale lies in that algorithm DPCI in-

vokes user data placements from scratch at each time slot whenever there is any

change on the social network, while algorithm Online-DPCI only performs the user

data placements only when the value difference of the community fitness metric of

a community before and after the change is beyond a given threshold d, thereby

incurring a much less overhead on the maintenance of communities, thereby less

operational cost on the placed user data in the distributed cloud.

Impact of different metrics on the algorithm performance

We now evaluate the impact of the proposed metric Proposed-Metric in this chapter

against a state-of-the-art metric Benchmark-Metric for community identifications
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(c) The accumulative operational cost on Twitter
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Figure 5.7: The impact of changing percentages on the accumulative operational
costs (US dollars) and the running times (milliseconds) of algorithms Online-DPCI
and DPCI with q = 0.03 and d = 0.006.



§5.5 Performance Evaluation 133

on the performance of the proposed algorithm DPCI for static social networks and

algorithm Online-DPCI for dynamic social networks in a given monitoring period of

50 time slots.
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Figure 5.8: The impact of different metrics on the operational cost (US dollars) of
algorithm DPCI for static social networks.

Figures 5.8 and 5.9 depict the performance curves of the mentioned algorithms by

adopting these two metrics on the operational cost of algorithms DPCI and Online-DP

CI under different monitoring period. It can be seen that both algorithms by adopt-

ing the proposed metric - Proposed-Metric deliver a much lower operational cost

for static social networks and an accumulative operational cost for dynamic so-

cial networks, respectively, compared with those by adopting the existing metric -

Benchmark-Metric. The rationale behind is that the proposed metric Proposed-Metr

ic strives for a finest trade-off between the read rates and the update rates of users in

the community identification, and communities with high read rates and low update

rates can then be identified. The operational cost thus can be significantly reduced

by placing user data in the same community to a datacenter. Contrarily, as the metric

Benchmark-Metric only considers the read rates of users while ignores their update

rates when identifying the communities in a social network, and communities with

both high read rates and high update rates can be formed. Although the high read

rates of identified communities can reduce the communication cost of reading data

of users when placing the user data, the high update rates of these identified commu-

nities however will increase the communication cost for updating the slave replicas
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(c) The accumulative operational cost on Twitter

Figure 5.9: The impact of different metrics on the accumulative operational cost
(US dollars) of algorithm Online-DPCI for dynamic social networks during different
monitoring periods.

of user data of these users.

Table 5.2 illustrates the impact of both metrics Proposed-Metric and Benchmark-M

etric on the running times of algorithms DPCI and Online-DPCI. It can be seen

from the table that both algorithms DPCI and Online-DPCI that adopt the metric

Proposed-Metric take less time, compared with those using the metric Benchmark-M

etric.

5.6 Summary

In this chapter, we studied user data placements of social networks into a distributed

cloud to ensure that the placed user data can be not only easily accessed and updated
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Table 5.2: The impact of different metrics on the running times (milliseconds) of
algorithm DPCI for static social networks and algorithm Online-DPCI for dynamic
social networks.

Name of
the social
network

Proposed
Metric (DPCI)

Benchmark
Metric (DPCI)

Proposed
Metric
(Online-DPCI)

Benchmark
Metric
Online-DPCI

Facebook 35, 000 mil-
liseconds

39, 399 mil-
liseconds

2, 010 millisec-
onds

3, 283 millisec-
onds

WikiVote 35, 838 mil-
liseconds

41, 716 mil-
liseconds

3, 274 millisec-
onds

3, 757 millisec-
onds

Twitter 569, 303 mil-
liseconds

669, 995 mil-
liseconds

114, 968 mil-
liseconds

172, 735 mil-
liseconds

but also highly available, reliable, and scalable. We first formulated the problem as

the community-aware user data placement problem with an objective to minimize

the operational cost of cloud service providers. We then proposed a fast yet scalable

algorithm for the problem by leveraging the community concept of social networks.

We also proposed an efficient algorithm for the dynamic maintenance of user data

in an evolving social network. We finally evaluated the performance of the proposed

algorithms through experimental simulations, using three real social networks: Face-

book, WikiVote, and Twitter. Simulation results demonstrate that the proposed algo-

rithms are promising, and outperform existing algorithms.
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Chapter 6

Conclusions and Future Directions

This chapter summarizes the contributions we made in this thesis, followed by dis-

cussing potential research topics derived from this work.

6.1 Summary of Contributions

Performance optimization in mobile cloudlets and distributed clouds has been stud-

ied in this thesis. Novel concepts, models and optimization techniques were pro-

posed to enable better system performance. Efficient online algorithms for request

admissions in mobile cloudlets were designed to maximize the system throughput.

A collaboration- and fairness-aware big data management problem was formulated

in a distributed cloud to maximize the system throughput. An approximation al-

gorithm for the problem was designed to maximize the system throughput while

minimizing the operational cost of service providers to achieve the system through-

put. Novel problems of evaluating queries for big data analytics in distributed clouds

ware proposed, and efficient algorithms were devised for the problems. Strategies

for placing user data of social networks into distributed cloud were devised to min-

imize the operational cost for data placement. The main contributions of this thesis

are summarized as follows.

• We addressed the online request admission issue in a mobile cloudlet with an

objective to maximize the system throughput, for which we first proposed a

novel admission cost model to model resource consumptions. We then devised

137
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efficient online algorithms for online request admissions.

• We studied a novel collaboration- and fairness-aware big data management

problem in distributed cloud environments that aims to maximize the sys-

tem throughput, while minimizing the operational cost of service providers

to achieve the system throughput, subject to resource capacity and users fair-

ness constraints. We first proposed a novel optimization framework for the

problem. We then devised a fast yet scalable approximation algorithm based

on the built optimization framework. We also analyzed the time complexity

and approximation ratio of the proposed algorithm.

• We formulated online query evaluation problems for big data analytics in dis-

tributed clouds, with an objective to maximize the query acceptance ratio while

minimizing the accumulative communication cost, for which we first proposed

a novel metric to model the usage costs of different resources in datacenters, by

incorporating the workload among datacenters and the resource demands of

different queries. We then devised efficient online algorithms for query evalu-

ations under unsplittable and splittable source data assumptions.

• We investigated community-aware data placements of social networks into a

distributed cloud that consists of multiple datacenters located at different ge-

ographical regions with an aim to minimize the operational cost of the cloud

service provider, for which, we first formulated a novel user data placement

problem. We then devised a fast yet scalable algorithm for the problem, by

leveraging the close community concept in social networks. The key ingredient

of the proposed algorithm is to detect close communities and make use of them

in user data placement that incorporates user data read and update rates.

• We conducted extensive experiments by simulations using both real and syn-

thetic datasets to evaluate all proposed algorithms including investigating the

impact of constraint parameters on their performance, and comparing their



§6.2 Future Directions 139

performance with that of comparable algorithms. Experimental results showed

that the proposed algorithms outperform the existing ones significantly in as-

pects of maximizing system throughput, minimizing operational costs and

meeting fairness and Service Level Agreement (SLA) requirements.

6.2 Future Directions

There are several potential research topics that can be explored based on the work in

this thesis.

Firstly, we will further enlarge the two-tiered mobile cloud computing environ-

ment by motivating more cloudlets to join the network, enabling mobile users more

choices to select cost-effective platforms to offload and execute their tasks. In addi-

tion, we will study the problem of motivating mobile devices that have more pow-

erful computing capabilities and higher residual batteries to join the network, which

can further improve the system performance.

Secondly, we will explore efficient selection scheme of WiFi access points to find

the most energy-efficient access points for offloading tasks of mobile users. The en-

ergy of mobile devices will be wasted due to frequently connecting new access points

and paused task offloading, while wireless network connections are not consistent

because of the frequent mobile user movements and unstable network quality. Devis-

ing efficient WiFi access point selection algorithms based on predicting user move-

ment traces is promising to optimize the energy consumption of mobile devices.

Thirdly, we will further improve the performance of data placement and replica-

tion in distributed clouds, by incorporating the QoS requirement in terms of query

response time of queries in a distributed cloud environment, where the number of

replicas of each data item is not fixed and depends on the access rate of queries,

computing cost of datacenters, the transmission delay and cost of links etc. Further-

more, as the rise of big data, we target to process the QoS-aware big data placement

and replication in a distributed cloud, where data sampling and approximate query
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processing techniques may be jointly employed to minimize the cost for evaluation

all queries in the system while meeting the various QoS requirements of queries.

Finally, we will explore the evaluation of big data queries based on dynamically-

changing source data, and resource sharing between different queries within each

datacenter. Specifically, we have considered query evaluations for static source data

that does not change during the query evaluation. In case there is any update on

the source data, a simple extension of the proposed algorithms is to use the updated

source data for future queries. This extension however may migrate the source data

frequently, even for the source data with small changes. In our future work, we will

explore efficient updating and synchronizing mechanisms of placed source data to

avoid such transfer of source data with small changes. In addition, queries can share

resources with others for cost savings. Since resource sharing only happen if the

VMs of different queries are allocated in the same physical server, we will propose

further refinement of query evaluations within each datacenter.
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on Computer Systems, Vol. 31, No. 3, pp.1-8, ACM, 2013.

25. T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

3rd Ed., MIT Press, 2009.

26. E. Cuervo, A. Balasubramanian, D. Cho, A Wolman, S. Saroiu, R. Chandra, and P.

Bahl. MAUI: making smartphones last longer with code offload. Proc. of MobiSys,

ACM, 2010.

27. Follow these datacenter trends in 2016. http://www.datacenterknowledge.

com/archives/2015/12/31/follow-these-data-center-trends-in-2016/,

2016.

28. Dell data-center-in-a-box. http://www.dell.com, 2016.

29. S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-

commodity flow problems. Proc. of FOCS, IEEE, 1975.

30. W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed reachability

queries. Proc. of the VLDB Endowment, ACM, 2012.

31. S. Fortunato. Community detection in graphs. Physics Reports, Vol. 486, pp.75-

174, Elsevier, 2010.



144 References

32. A. Fu, E. Modiano, and J. Tsitsiklis. Optimal energy allocation for delay-

constrained data transmission over a time-varying channel. Proc. of Infocom, IEEE,

2003.

33. N. Garg and J. Könemann. Faster and simpler algorithms for multi-commodity

flow and other fractional packing problems. Proc. of FOCS, IEEE, 1998.

34. E. Gelenbe, R. Lent, and M. Douratsos. Choosing a local or remote cloud. Sym-

posium on NCCA, IEEE, 2012.

35. N. Girvan, and M. E. J. Newman. Community structure in social and biological

networks. Proc. of the National Academy of Science, Vol. 99, No. 12, pp.7821-7826,

2002.

36. L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha. Distributed data place-

ment to minimize communication costs via graph partitioning. Proc. of SSDBM,

ACM, 2014.

37. Google Cloud Platform. https://cloud.google.com/, 2016.

38. A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research

problems in data center networks. J. of Computer Communication Review, Vol. 39,

No. 1, pp.68-73, ACM, 2009.

39. GT-ITM. http://www.cc.gatech.edu/projects/gtitm/, 2016.

40. L. Gu, D. Zeng, P. Li, and S. Guo. Cost minimization for big data processing in

geo-distributed data centers. Trans. on Emerging Topics in Computing, Vol. 2, No. 3,

pp.314-323, IEEE, 2014.

41. C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. Sec-

ondNet: a data center network virtualization architecture with bandwidth guar-

antees. Proc. of CONEXT, ACM, 2010.



References 145

42. How Hadoop cuts big data costs. http://www.informationweek.com/softwa

re/how-hadoop-cuts-big-data-costs/d/d-id/1105546?, 2016.

43. D. Hallac, J. Leskovec, and S. Boyd. Network lasso: clustering and optimization

in large graphs. Proc. of KDD, ACM, 2015.

44. I. A. T. Hashema, I. Yaqooba, N. B. Anuara, S. Mokhtara, A. Gania, and S. U.

Khanb. The rise of “big data” on cloud computing: review and open research

issues. Journal of Information Systems, Vol. 47, pp.98-115, Elsevier, 2015.

45. M. M. Hassan, B. Song, M. S. Hossain, and A. Alamri. QoS-aware resource

provisioning for big data processing in cloud computing environment. Proc. of

Computational Science and Computational Intelligence, IEEE, 2014.

46. F. Havemann, M. Heinz, A. Struck, and J. Gl’́aser. Identification of overlapping

communities and their hierarchy by locally calculating community-changing res-

olution levels. J. of Statistical Mechanics: Theory and Experiment, Vol. 2011, No. 1,

pp.1-23, IOP Publishing Ltd, 2011.

47. HDFS architecture guide. https://hadoop.apache.org/docs/r1.2.1/hdfs_d

esign.html, 2016.

48. B. Heintz, A. Chandra, and R.K. Sitaraman. Optimizing grouped aggregation in

geo-distributed streaming analytics. Proc. of HPDC, ACM, 2015.

49. H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu.

Starfish: a self-tuning system for big data analytics. Proc. of CIDR, Computing

Community Consortium, 2011.

50. D. T. Hoang, D. Niyato and P. Wang. Optimal admission control policy for mobile

cloud computing hotspot with cloudlet. Proc. of WCNC, IEEE, 2012.

51. H. Hu, Y. Wen, T. Chua, and J. Huang. Joint content replication and request

routing for social video distribution over cloud CDN: A community clustering



146 References

method. Trans. on Circuits and Systems for Video Technology, Vol. 26, No. 7, IEEE,

2016.

52. H. Hu, Y. Wen, T. Chua, and Z. Wang. Community based effective social video

contents placement in cloud centric CDN network. Proc. of ICME, IEEE, 2014.

53. C. Hung, L. Golubchik, and M. Yu. Scheduling jobs across geo-distributed data-

centers. Proc. of SoCC, ACM, 2015.

54. IBM interConnect 2015 day 2 recap: a new way to work with storage. https:

//community.spiceworks.com/topic/813495-ibm-interconnect-2015-day

-2-recap-a-new-way-to-work-with-storage, 2016.

55. IBM zEC12 (microprocessor). en.wikipedia.org/wiki/IBM_zEC12_(micropro

cessor), 2016.

56. IEEE 802.11. en.wikipedia.org/wiki/IEEE_802.11, 2016.

57. Y. Jadeja and K. Modi. Cloud computing-concepts, architecture and challenges.

Proc. of ICCEET, IEEE, 2012.

58. H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R.

Ramakrishnan, and C. Shahabi. Big data and its technical challenges. Communica-

tions of the ACM, Vol.57, No.7, pp.86-94, ACM, 2014.

59. C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li. Big data processing in cloud computing

environments. Proc. of ISPAN, IEEE, 2012.

60. L. Jiao, J. Li, W. Du, and X. Fu. Multi-objective data placement for multi-cloud

socially aware services. Proc. of INFOCOM, IEEE, 2014.

61. L. Jiao, J. Li, T. Xu, W. Du, and X. Fu. Optimizing cost for online social networks

on geo-distributed clouds. IEEE/ACM Trans. on Networking, Vol. 24, No. 1, pp.99-

112, IEEE/ACM, 2016.



References 147

62. Press release: over 160 billion consumer Apps to be downloaded in 2017,

driven by free-to-play games, Juniper Research finds. http://www.juniper

research.com/viewpressrelease.php?pr=383, 2016.

63. K. Karanasos, A. Balmin, M. Kutsch, F. Ozcan, V. Ercegovac, C. Xia, and J. Jack-

son. Dynamically optimizing queries over large scale data platforms. Proc. of

SIGMOD, ACM, 2014.

64. S. Kelley, M. Goldberg, M. Magdon-Ismail, K. Mertsalov, and A. Wallace. Defin-

ing and discovering communities in social networks. Handbook of Optimization in

Complex Networks, pp.139-168, Springer, 2011.

65. Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis.

Mizan: a system for dynamic load balancing in large-scale graph processing. Proc.

of EuroSys, ACM, 2013.

66. H. Kllapi, D. Bilidas, I. Horrocks, Y. Ioannidis, E. Jim ÌĄnez-Ruiz, E. Kharlamov,
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