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Abstract

The notions of electron correlation and correlation problem arising in the framework of

approximate solutions to the Schrödinger equation are presented. Then, we briefly review the

original ideas of explicit inclusion of the interelectronic distance, r12, into the wavefunction

as a solution to this problem.

Exemplifying the efficiency of the explicit correlation for achieving high accuracy, we

analyze the Nakatsuji’s free-complement (FC) method. We demonstrate that at each FC

order, fewer number of complement functions is required to get lower energies compared

with those resulting from the conventional FC method. Applying the FC method to the triplet

excited state of the He atom, we have discovered the appearance of permanents in addition to

the determinants in the FC expansion of the wavefunction. These permanents are shown to

be important for the energy convergence.

To achieve a better understanding about the explicitly correlated methods, especially,

the R12 and F12 methods, we analyzed three possible candidates with various correlation

functions F(r12) for a compact and efficient ansatz. Our main focus on the linear correlation

factor r12 has led this analysis to the investigation of the correlated molecular orbital (CMO)
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theory of the Frost and Braunstein (FB). We revisit CMO theory within both restricted (R)

and unrestricted formalisms (U). We also introduce the unrestricted FB (UFB) ansatz for

the first time and derive the necessary expressions for both RFB and UFB overlap, kinetic,

nuclear-attraction and interelectronic Coulomb repulsion matrix elements. All integrals have

been obtained in closed form except one for which, we have used an accurate one-dimensional

quadrature.

Finally, we investigate the potential energy curve (PEC) of UFB for H2 at small, inter-

mediate and large internuclear distances. Then, we compare its performance with that of

RFB, restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF) and configuration

interaction (CI) wavefunctions. Reproducing the RFB results for a much wider range of

bond lengths in H2 reveals that the calculations of FB contain significant errors. We have

also found a pole in the RFB linear correlation coefficient. Our UFB ansatz provides signifi-

cant improvement over the RFB where passing the symmetry breaking point it completely

removes the hump in the RFB PEC. The UFB ansatz also shows surprising features such

as the presence of multiple solutions, non-smooth PEC, symmetry-broken solutions that

are higher in energy than the restricted solution and RFB→UFB stability in the presence

of lower UFB solutions. These phenomena can have significant impacts on the explicitly

correlated calculations such as R12 and F12 within the unrestricted framework. Also, a

detailed discussion on the large-R asymptotic analysis of these five wavefunctions shows

that none of these PECs has the correct O(R−6) decay within the minimal basis model. The

UFB energy, however, demonstrates dispersion-like O(R−8) decay which is an improvement

over the CI and UHF with exponential decays. Considering the generalized FB (GFB)

wavefunction where rn
12 is the correlation factor and n is a positive integer, we have shown

that no analytic function of r12 can capture the dispersion within the minimal basis.
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CHAPTER1

Electron Correlation and Explicitly Correlated

Wavefucntions

The electron correlation problem as one of the central challenges in modern quantum chemistry

has been briefly reviewed. Various definitions and concepts for describing the electron correlation

including those which are based on probabilistic or statistical interpretation have been discussed.

Furthermore, qualitative electron correlation concepts such as radial, angular, left-right, static and

dynamic correlations have been summarized. We also briefly refer to the quantitative tools for

measuring the electron correlation. Considering one of the main drawbacks of standard approximate

quantum mechanical methods which are based on the configuration interaction (CI)-type expansions
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of the wavefunction, i.e., the slow convergence of the energy to the basis set limit, the origins of the

ideas of introducing the interelectronic distance into the wavefunction were discussed. Atomic units

have been used throughout this thesis.

1.1 Introduction to the Correlation Problem

As one of the most fundamental characteristics of the many-electron systems and based on

the probabilistic interpretation of the quantum mechanics, [1] the electron correlation can

find its roots in the correlation concept arising in probability theory [2, 3]. This issue is

of crucial importance in quantum chemistry possibly because most popular approximate

methods in this field are based on independent particle model or mean–field approach to

describe the N-electron systems. [1, 4] Therefore, because of relying on the independent

particle or mean–field models, one makes an error that is considered as correlation problem.

[1, 5, 6] There are two main sources responsible for the electron correlation: [1, 5]

i. Fermi Correlation: Electrons as countable but indistinguishable fermions should obey

Fermi statistics and satisfy the Pauli principle meaning that the N-electron wavefunction

should be antisymmetric with respect to the simultaneous exchange of the (spatial and

spin) coordinates of any pairs of electrons.

ii. Coulomb Correlation: Electrons as charged particles repel each other through (pair-

wise) Coulombic electrostatic forces.

In relation to the concept of electron correlation, one can refer to the Löwdin’s classical

definition of the correlation energy which is the difference between the exact non-relativistic

energy and the restricted Hartree-Fock (RHF) energy: the lowest variational energy obtainable

with a single-determinant wavefunction. [7] Pople and Binkley extended the scope of this

definition to the unrestricted HF (UHF) wavefunctions. [8] However, these definitions

have been criticized by several authors for various ambiguities in them. [1, 5] Kutzelnigg
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encourages the quantum chemistry community to abandon these traditional definitions in

favor of a modern definition of the correlation energy which intrinsically arises in the second-

quantization formulation in Fock-space using the cumulants [9–14] of the density matrices.

[1]

1.1.1 Electron Correlation in Statistical Sense

Let us assume two variables, say, x1 and x2 in a two-variable distribution with the (joint or

pair) probability distribution function P12(x1,x2). The individual (or marginal) probability

distribution functions for each variable can be obtained by integrating out the other variable,

i.e., [3]

P1(x1) =
∫

P12(x1,x2) dx2 or P2(x2) =
∫

P12(x1,x2) dx1 (1.1)

The two variables, x1 and x2 are independent from each other if [15, 16]

P12(x1,x2) = P1(x1) P2(x2) (1.2)

For distinguishable particles, the individual probability distribution functions P1(x1) and

P2(x2) can be different from each other and hence, the pair probability distribution function

P12(x1,x2) may be different for every particle pair. [5] Let Ψ(x1,x2,x3, . . . ,xN) be an N-

electron wavefunction in which, xi collectively shows the spatial, ri and spin, ωi coordinates.

The electrons are indistinguishable particles and therefore, P1(x1) = P2(x2). Hence, the

normalized one-electron ρ(x) and pair densities ρ2(x1,x2) can be defined as

ρ(x) = NP1(x1) (1.3)

ρ2(x1,x2) = N(N −1) P12(x1,x2) (1.4)
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where

P1(x1) =
∫

dx2 · · ·
∫

dxN Ψ∗(x1,x2,x3, . . . ,xN)Ψ(x1,x2,x3, . . . ,xN) (1.5)

P12(x1,x2) =
∫

dx3 · · ·
∫

dxN Ψ∗(x1,x2,x3, . . . ,xN)Ψ(x1,x2,x3, . . . ,xN) (1.6)

Here, P1(x1) shows the probability of finding an electron at x1, and the pair density P12(x1,x2)

is the probability of finding an electron at x1 and simultaneously, another electron at x2. [5]

When the electrons are (statistically) uncorrelated or independent, one can write

ρ2(x1,x2) =
N −1

N
ρ(x1)ρ(x2) (1.7)

In the non-relativistic regime, each electron can be described by a spin-orbital χ(x) which is

the product of a spatial function ψ(r) of the position vector r and one of the two orthonormal

spin functions α(ω) (spin-up) or β (ω) (spin-down), i.e. [17]

χ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ(r)α(ω)≡ ψ(r)

or

ψ(r)β (ω)≡ ψ(r)

(1.8)

Also, an equivalent notation has been presented in Eq. 1.8 by which, each spin-orbital is

indicated by its spatial part and lacking or having the bar denotes the presence of the α(ω) or

β (ω) spin function, respectively. Since the spatial probability densities are of more interest in

the non-relativistic framework, one can obtain ρ(r) and ρ2(r1,r2) from ρ(x) and ρ2(x1,x2),

respectively, through integration over all spin variables ωi. [18]
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1.1.2 Hartree Product and Slater Determinants

The general form for the Hartree product (HP) can be written as [1, 5, 17]

ΨHP(x1,x2,x3, . . . ,xN) =
N

∏
i=1

χi(xi) (1.9)

where χ(x) are orthonormal spin-orbitals. The form of the HP wavefunction implicitly

assigns each electron to a specific spin-orbital and thus, incorrectly assumes that the electrons

are distinguishable particles. Hence, for every pair of electrons i and j, there is a different set

of one- and two-particle probability distribution functions

Pi(xi) = χ∗
i (xi) χi(xi) (1.10a)

Pj(x j) = χ∗
j (x j) χ j(x j) (1.10b)

Pi j(xi,x j) = Pi(xi) Pj(x j) (1.10c)

Here, the contentious issue of the presence of the electron correlation in the electronic HP

wavefunction arises. Based on Eqs. 1.10a-1.10c, a large group of quantum chemists believe

that the HP wavefunction is statistically uncorrelated. [17] However, the second group of

scientists, for which, we directly quote Hättig et al.’s [5] comments as an example, show

that the HP wavefunction for an electronic system is statistically correlated. Considering

Eqs. 1.10a-1.10c, they say: "Since for every pair (of electrons), the two-particle probability

distribution function factorizes into a product of one-particle distribution functions, one may

be tempted to say that the electrons are statistically uncorrelated (Eq. 1.2). This is only true

if the electronic coordinates are treated as distinguishable. However, because electrons are

in fact indistinguishable, the correct measure for statistical correlation between electrons is
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Eq. 1.7. For the HP wavefunction, the density and pair density functions take the form of

ρ(x1) =
N

∑
i=1

Pi(x1) (1.11)

ρ2(x1,x2) =
N

∑
i, j=1
i�= j

Pi j(x1,x2) (1.12)

which leads to

ρ2(x1,x2) = ρ(x1)ρ(x2)−
N

∑
i=1

Pi(x1)Pi(x2) (1.13)

Regarding Eq. 1.13, Hättig et al. [5] then add: "Thus, the electron pair probability distribution

derived from a Hartree product wavefunction is statistically correlated." Note that in Eq.

1.12, one must exclude the i = j term from the summation. In order to provide further

understanding of the nature of the correlation, existing in HP wavefunction, the authors of

Ref. [5] present another example in which, they consider HP wavefunction for a specific

state of bosonic particles. In this bosonic system, all particles can occupy the same orbitals.

It can be easily shown that in such a system, described by the HP wavefunction, the particles

are statistically uncorrelated. [5] Kutzelnigg also comments on this issue using the same

strategy. [1] He mentions: "With the just given definition of independent electrons (Eq. 1.7),

even a Hartree product does not generally describe independent electrons, since the density

and the pair density given by Eqs. 1.11 and 1.12, respectively, do not satisfy Eq. 1.7." [1] He

refers to the ground state of the two-electron atom described by the HP wavefunction and the

electron gas described by a HP of plane wave states as exceptions where the HP can describe

them as systems of independent particles. [1]

There are positive [1] and negative criticisms [1, 5] about the HPs. The criticisms are

mainly focused on three major aspects:
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i. The HP does not fulfill the Pauli principle and implies that the electrons are dis-

tinguishable particles. There is a different effective one-particle operator for each

spin-orbital.

ii. The HP is not invariant with respect to a unitary transformation among the occupied

spin-orbitals. [1]

iii. The HP wavefunction is an eigenfunction of the Ŝz operator but not an eigenfunction

of the total spin operator Ŝ2, generally.

As noted by Slater, [19], an improvement over the HP ansatz can be made by using

a linear combination of HPs [17] which satisfies the Pauli principle. Considering a set

of M (orthonormal) spatial orbitals {ψi|i = 1,2, . . . ,M}, one can construct a set of 2M

(orthonormal) spin-orbitals {χi|i = 1,2, . . . ,2M}. Using this set of spin-orbitals, a Slater

determinant, describing the simplest antisymmetric wavefunction [20] for a N-electron

system, can be constructed as [4, 17]

Ψ(x1,x2, . . . ,xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χ j(x1) . . . χk(x1)

χi(x2) χ j(x2) . . . χk(x2)

...
...

...

χi(xN) χ j(xN) . . . χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.14)

=
1√
N!

A
N

∏
i=1

χi(xi) (1.15)

in which, the N-electron antisymmetrizer, A, is defined as [1, 5]

A=
N!

∑
q=1

εqPq (1.16)
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where depending on the parity of the permutation, Pq, the Levi-Civita symbol ε takes the

value of [3]

εq =

⎧⎪⎨
⎪⎩

+1 even permutation

−1 odd permutation

(1.17)

Compared with the HP, the wavefunction approximated by the Slater determinant(s) satisfies

the Pauli principle and is invariant under the unitary transformation among the occupied

spin-orbitals, [1]. The Slater determinants are the eigenfunction of Ŝz operator, and also,

the eigenfunctions of the total spin operator Ŝ2 for electronic states with closed-shell or

high-spin open-shell configurations. However, for low-spin open-shell configurations, one

can use configuration state functions (CSFs) that can be the eigenfunctions of both Ŝz and Ŝ2

operators. Generally, CSFs are defined as the linear combination of the Slater determinants.

[21]

For a wavefunction approximated by a single Slater determinant, the one-electron and

pair densities can be expressed as

ρ(x) = NPi(x) =
N

∑
i=1

χi(x)χ∗
i (x) (1.18)

ρ2(x1,x2) = ρ(x1)ρ(x2)−
N

∑
i=1

Pi(x1)Pi(x2)

=
N

∑
i, j=1
i�= j

[
χi(x1)χ j(x2)χ∗

i (x1)χ∗
j (x2)−χi(x1)χ j(x2)χ∗

j (x1)χ∗
i (x2)

]
(1.19)

Note that the inclusion of the i = j term in Eq. 1.19 leaves the pair density unchanged

because this contribution would be canceled between the first (direct) and second (exchange)

terms in the square brackets. Therefore, one can safely remove the i �= j restriction from the

summation. However, exclusion of the self-pairing contribution in the HP case was necessary

because of the Pauli principle. [1] Considering a Slater determinant for a two-electron

wavefunction and Eq. 1.19, one can easily verify that there is a finite probability of finding

two electrons with opposite spin at the same point in space, i.e., ρ2(r1,r1) �= 0. However, for
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electrons of parallel spins, ρ2(r1,r1) = 0 and one can speak of the existence of the Fermi hole

around each electron. [5, 17] Kutzelnigg criticizes statements such as "there is a negative

Fermi correlation for electrons with the same spin and no correlation for electrons with

opposite spin." [1] He shows that what is crucial is not the individual spins of the electrons

but the total spin to which, their spins are coupled.

1.1.3 Electron Correlation in Qualitative Sense

The conceptual explanation and pictorial intuition can be achieved for the electron correlation

using simple descriptors which are based on the pair density functions and arise in both

Fermi and Coulomb correlation contexts. These are [1, 5]

i. Radial (or in-out) correlation: If an electron spends most of its time close to a nucleus,

it is more probable for the other electron(s) to be found far out from the nucleus.

ii. Angular correlation: If one electron is on one side of the nucleus, the other electron is

more likely to be found on the opposite side.

iii. Left-right correlation: If an electron spends most of its time close to a nucleus, it is

more probable for the other electron to be found close to the other nucleus.

The radial and angular descriptors are convenient for describing the electron correlation

in atoms or for regions which are close to nuclei in molecules. The left-right correlation,

however, is useful for describing the electron correlation in the regions between atoms in

molecules. [5] To exemplify these concepts, one can consider the leading configuration in

the ground state of the H2 molecule, which is 1σ2
g , the admixture of which with the 2σ2

g and

1π2
u configurations can account for the radial and angular correlation, respectively. [1]

In chapter 4, we will see in the configuration interaction (CI) calculation on the ground

state energy of the H2 molecule that mixing the 1σ2
g state with 1σ2

u state leads to a negative

left-right correlation and reduces the probability of finding the electrons being found close
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to each other in space. This correlation is purely due to the Coulombic repulsion force

between the electrons. [5] From this CI picture, in which different CSFs can mix, the notion

of static correlation emerges. On the other hand, one can speak of dynamic correlation when

(compared to the mean-field picture) an electron can "feel" the instantaneous interaction with

another electron when they are in similar regions of space.

1.1.4 Electron Correlation in Quantitative Sense

Probability theory not only provides us a way to define the electron correlation from the

statistical point of view, but also a tool to "measure" it. Considering the two variables x and

y of individual probability densities P1(x) and P2(y), respectively, and the joint probability

density P12(x,y), one can define the mean values 〈x〉 and 〈y〉, the variances σ2
x and σ2

y [3]

〈x〉=
∫ ∞

−∞
x P1(x) dx 〈y〉=

∫ ∞

−∞
y P2(y) dy (1.20a)

σ2(x) =
∫ ∞

−∞
(x−〈x〉)2 P1(x) dx σ2(y) =

∫ ∞

−∞
(y−〈y〉)2 P2(y) dy (1.20b)

and covariance, cov(x,y), as [3]

cov(x,y) =
∫ ∞

−∞

∫ ∞

−∞
(x−〈x〉)(y−〈y〉) P12(x,y)dxdy (1.21)

It can be easily shown that the normalized covariance (or correlation coefficient, τ) is bounded

between -1 and 1. [3], In other words

τ =
cov(x,y)

σ(x) σ(y)
; −1 ≤ τ ≤+1 (1.22)

Here, τ =−1 and τ =+1 indicate perfect negative and positive correlations, respectively.

Although τ = 0 shows that the variables x and y are uncorrelated, it should not be mixed up

with the statistical independence of the variables (Eq. 1.7). In order to define quantitative
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measures of the electron correlation such as radial, τr, and angular, τa, correlation coefficients,

the vector variables r1, r2 and r1 · r2 can be used in τ instead of the variables x, y and xy,

respectively. [15, 16] For example, for the ground state of the helium atom, the radial and

angular correlation coefficients are equal to τr =−0.112 and τa =−0.054, respectively. [1]

Other measures of correlation such as correlation entropy have also been proposed for the

quantitative description of the electron correlation. [22]

1.2 Explicit Correlation in Electronic Wavefunctions

After about nine decades from the discovery of the most fundamental equation in quantum

mechanics, the Schrödinger equation (SE), [23] the mystery of having the exact solution to

this equation, describing the correlated motion of N interacting particles, stands still except

for a small number of special cases. Considering the astonishing technological advancements

in the computational resources and albeit of numerical accuracy that one can achieve for

some small systems, even for the helium atom, [24] the exact analytic solution to SE is still

unknown. Consequently, adopting pragmatic approximations for solving the SE has been the

main focus of the quantum chemistry community so far. [4]

In construction of the trial wavefunction for variational calculations, one should retain as

many symmetries and properties of the exact wavefunction as possible. [4] For instance, the

wavefunction of fermions should be antisymmetric with respect to the permutation of any

pair of electrons. Some of the properties of the exact wavefunction have more crucial impacts

on the variational calculations with trial wavefunctions than the others, especially, when one

deals with highly accurate calculations. For example, based on the Kato’s analysis of the

properties of the exact wavefunction [25] near Coulomb singularities, [26] the eigenfunctions

of the N-electron SE are continuous and have bounded continuous first derivatives. [6]

The results of his work showed that the structure of the first derivative of the wavefunction

can be universally described in terms of the interparticle coordinates. Therefore, the trial
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wavefunctions with the same types of singularities would be a more efficient approximation

to the exact solution. [6]

In 1927, for the first time, Slater proposed an approximate wavefunction including

the interelectronic distance which turned out to be a proper candidate for both core and

Rydberg limits of a two-electron atom. [27] About the same time, Hylleraas performed a

calculation on the ground state of the helium atom. [28] Hylleraas’ calculation showed that

compared with the slow convergence rate for the energy of the CI-type expansions, a rapid

convergence to the basis set limit can be achieved for the energy using explicitly correlated

wavefunctions. Adopting a three-term wavefunction, he managed to achieve a variational

energy of E = −2.90243. [28] Following Hylleraas’ ideas, James and Coolidge designed

a 13-term explicitly correlated wavefunction and used it for the ground state of the H2

molecule to obtain E =−1.173465 at R = 1.4. They also generalized Hylleraas’ expansion

for Li atom [29] which has been considered as the essence of the Hylleraas-configuration

interaction (Hy-CI) method [5] introduced by Preiskorn and Woźnicki. [30] Since then, there

were numerous improvements in the field of explicitly correlated calculations in general

and on Hylleraas-type expansions, in particular. An interesting survey can be found in Refs.

[5, 6, 31]. Because of the complexity and difficulty of the many-electron integrals arising in

the explicitly correlated methods, the application of these methods has been mainly restricted

to highly accurate calculations on small systems.

Recent developments, however, have been mostly focused on invention of the practically

affordable methods for larger systems. The key paper on this route was published in 1985

by Kutzelnigg [32] who introduced the R12 method to show that the augmentation of the

reference determinant in the traditional CI expansion with the linear r12 correlation factor,

satisfying the cusp condition, results in the rapid convergence of the energy to its basis

set limit value. [32] Kutzelnigg not only presented his result for the He atom and He-

like ions, but also proposed a way for generalization of this ansatz toward many-electron
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systems. [5] Today, the R12 and (and its modified modern version F12) method [33, 34]

and its combinations with various standard correlated methods such as second-order Møller-

Plesset (MP2) perturbation and coupled cluster (CC) theories, [35] armed with mathematical

approximations and numerical methods to avoid direct calculation of many-electron integrals,

[5] have made it possible to have an acceptable balance between accuracy and computational

resources for larger systems of chemical interest.

1.3 Concluding Remarks

A brief introduction to the correlation problem in quantum chemistry is presented. Consider-

ing both qualitative and quantitative aspects of the electron correlation, different definitions

and concepts such as statistical interpretation of the electron correlation, radial, angular, left-

right, static and dynamic correlation were discussed. Regarding the slow rate of convergence

of the energy toward its basis set limit value in the CI-type expansions of the wavefunction,

the explicit insertion of the interelectronic distance in the wavefunction has been considered

as an efficient solution.

In the next chapter, we consider the free-complement (FC) method, which is based on the

theory of the structure of the exact wavefunctions presented by Nakatsuji. Through a careful

analysis, we will discuss the strengths and weaknesses of the FC method to be able to think

about the best way to construct a compact but efficient ansatz which is generalizable for large

systems.





CHAPTER2

Structure of the Exact Wavefunction: Free

Complement Method

We present a brief review on the structure of the exact wavefunction investigated by Nakatsuji.

Exploring the fundamental aspects of the free complement (FC) or iterative configuration interaction

(ICI) method, we try to understand its mechanism of work. Through reproducing the results of the

FC method for helium atom and H+
2 molecular ion, we analyze this method to identify its strengths

and weaknesses. Similar to the works of Koga on finding the optimal and compact Hylleraas and

Kinoshita expansions, we have found that FC method produces some energetically unimportant

complement functions in each iteration the population of which, are rapidly increasing with iteration
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number. It can be shown that at a specific FC order, lower energies can be obtained using fewer

complement functions. In the study of the first triplet excited state of the He atom, we have found that

in addition to the determinants, permanents also appear in the FC expansion of the wavefunction. We

have demonstrated that the presence of permanents in the FC expansion is important for the energy

convergence. However, they have either been overlooked in Nakatsuji’s works or discarded because of

their computational costs without any comments. These results led us to think about designing a new

correlation factor F(r12) with which one can have an optimally compact and efficient wavefunction.

2.1 Introduction

In 2000, H. Nakatsuji began to report a series of studies under the topic of the structure of

the exact wavefunction. [36–40] He based the foundation of this research on the fact that the

exact "Hamiltonian is composed of only one- and two- particle operators and there are no

physical operators that involve more-than-three body interactions". [36] That is

H = F +G (2.1)

in which, the one-electron operator F and two-electron operator G have been defined in the

first-quantization as

F = ∑
i
−1

2
∇2

i −∑
i

∑
A

ZA/riA (2.2)

G = ∑
i> j

1/ri j (2.3)
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or in the second-quantized form as

F = ∑
PQ

fPQ a†
PaQ (2.4)

G =
1

2
∑
PQ

gPQRS a†
Pa†

RaSaQ (2.5)

where in Eqs. 2.4 and 2.5, summations are over all spin-orbitals. [4, 41] Here, the creation

operator a†, and annihilation operator a, satisfy the anticommutation relations

a†
PaQ +aQa†

P = [a†
P,aQ]+ = δPQ

a†
Pa†

Q +a†
Qa†

P = [a†
P,a

†
Q]+ = 0

aPaQ +aQaP = [aP,aQ]+ = 0

(2.6)

He then proposed two theorems to indicate the possibility of the description of the exact

wavefunction in terms of single and double excitations. [36] The first theorem is

Theorem 2.1.1 The wavefunction Ψ that satisfies both conditions

〈Ψ|(H −E )a†
PaQ|Ψ〉= 0 (2.7a)

〈Ψ|(H −E )a†
Pa†

RaSaQ|Ψ〉= 0 (2.7b)

is exact in a necessary and sufficient sense.

and the second theorem states that

Theorem 2.1.2 Assume that Ψ has the variables of the order of only singles and doubles

Ψ = Ψ(cP
Q a†

PaQ, cPR
QS a†

Pa†
RaSaQ,Φi) (2.8a)
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where Φi is the given reference wavefunction. If Ψ satisfies the variational condition for the

coefficients cP
Q and cPR

QS, i.e.,

∂Ψ
∂cP

Q
= a†

PaQΨ (2.8b)

∂Ψ
∂cPR

QS
= a†

Pa†
RaSaQΨ (2.8c)

then Ψ is exact in the sufficient sense.

Note that theorem 2.1.2 is not a necessary condition because the space defined by Ψ in this

theorem may be smaller than the real space of the exact wavefunction. Proof of both theorems

is presented by Nakatsuji. [36] Based on theorem 2.1.2, he considered the variational

exponential ansatz [36, 38, 39] and examined coupled-cluster singles (CCS), coupled-cluster

singles and doubles (CCSD) and full-configuration interaction (FCI) wavefunctions for these

conditions. [36] After this analysis, he proposed an ansatz based on the structure of the exact

wavefunction which satisfies both theorems 2.1.1 and 2.1.2. This is the starting point for his

free complement (FC) method’s proposal.

In his second paper in this series, Nakatsuji generalized the second theorem by dividing

the Hamiltonian into ND parts to obtain a set of ND equations which are equivalent to the

Schrödinger (SE) equation. [37] In this way, the FC method could be generalized to calculate

the exact wavefunction with ND variables where 1 ≤ ND ≤ m2 +
[

m(m−1)
2

]2
in which, m

is the number of active orbitals. [37] This method has been applied to molecular systems

using finite basis-sets. [40] Armed with inverse Schrödinger equation (ISE) [42] and scaled

Schrödinger equation (SSE) [43] which are equivalent to the SE and are proposed to remove

the nuclear and electronic singularity problems, the FC method has been further generalized

to its final form. This method is now considered as an analytic way of generating arbitrarily

accurate wavefunctions and energies the scope of which is again restricted to small systems

where the necessary integrals are available in closed form. [5, 6, 24]
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When the analytic form of the overlap and Hamiltonan matrix elements are not available,

Nakatsuji proposes the use of local SE (LSE) with the standard Monte Carlo sampling.

[44–46] In the present thesis, in order to be able to propose a compact form for an accurate

wavefunction for molecular systems, the analytic solutions to the explicitly correlated prob-

lems will be the main focus. Consequently, integral-free methods such as FC-LSE will not

be considered further.

2.2 Free-Complement Method and Scaled-Schrödinger Equa-

tion

We now embark on a more detailed analysis of the FC method within the framework of the

SSE. [24] The original form of SE

H Ψ = E Ψ (2.9)

where the general Hamiltonian defined in Eq. 2.1, has nuclear (Eq. 2.2) and electronic

(Eq. 2.3) singularities. Since the right-hand side of Eq. 2.9 has no singularities, these sharp

changes must be canceled out in the left hand side of this equation. In the case of the exact

wavefunction, satisfying the Kato’s cusp conditions, [26] no such singularities exist in the

SE. However, in case of an approximate wavefunction, this precise cancelation does not

happen and some of the matrix elements (e.g., those involving −1/rm factor where m ≥ 3 or

matrix elements in different ansätze) may diverge. [43] In the ISE scheme, one uses H −1

instead of H and therefore, no such difficulties regarding to the singularities occur. [42]

One of the issues which arises in the ISE approach is that one needs to know how to write

the inverse Hamiltonian in closed form. [42] The SSE is free from such problems [43] and

can be written as

g(H −E )Ψ = 0 (2.10)
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in which, g stands for the scaling factor which is a function of electron coordinates. [43]

This multiplicative operator, g, does not generally commute with Hamiltonian and is always

non-zero except at singular point r0 where it can be zero. The g factor also satisfies

lim
r→r0

gV �= 0 (2.11)

where V is the potential operator in the Hamiltonian. This condition is necessary because

g should not eliminate information at singularity. There are various possible forms for g

function, [47] however, Nakatsuji favors the following form [24]

g = ∑
i

∑
A

riA +∑
i> j

ri j (2.12)

The construction of the FC wavefunction in the SSE framework begins with the simplest ICI

(SICI) formula

Ψn+1 = [1+Cng(H −En)]Ψn (2.13)

where Cn is the variational parameter at each order n. The FC wavefunction is guaranteed

to converge to the exact solution of the SSE without encountering the singularity problem.

[43, 47] Applying the g and gH operators for n times on Ψ0 in Eq. 2.13, the right-hand side

of this equation becomes a sum of analytical complement functions φi

Ψn =
Mn

∑
i=1

c(n)i φ (n)
i (2.14)

Here, the coefficients {c(n)i } are determined variationally [47] and Mn is the number of

complement functions. This is important to note that when one uses g and gH operators in

Eq. 2.13, some diverging functions are also generated in Eq. 2.14. Nakatsuji points out that

they should be discarded because the wavefunction must be integrable and finite. [24, 47]

Considering Eq. 2.14, in the FC method, the Hamiltonian itself is responsible for generating
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the basis (complement) functions. [24] The functional form of the complement functions is

determined by the form of the initial wavefunction Ψ0. [24]

2.2.1 Free-Complement Electronic Energies

In the present section, we apply the FC method to calculate the energy of the H+
2 molecular

ion [48, 49], and He atom in both singlet ground [47] and triplet excited states. [50] We also

use spatial representation for constructing our initial wavefunctions because of its simplicity

and convenience in the absence of external fields. [18]

2.2.1.1 Hydrogen Molecular Ion: The Ground State

The H+
2 molecular ion is a special case of a molecular system for which, the exact solution

to the non-relativistic SE is known. [48, 49, 51] Because of the Born-Oppenheimer (BO)

approximation, this three-body problem can be reduced to one-body two-center problem in

(confocal spheroidal or) elliptic coordinate system shown in Fig. 2.1. [52]

λ =
rA + rB

R
, μ =

rA − rB

R
, ω (2.15)

where λ , μ and ω are defined on the ranges of [1,∞), [−1,1] and [0,2π], respectively and

the volume element is R3(λ 2 −μ2)/8. [52] Also, rA stands for the distance of the electron

from center A, rB is the distance of the electron from center B and R is the distance between

two centers A and B (Fig. 2.1). In this coordinate system, the Hamiltonian operator can be

written as

H =− 2

R2 (λ 2 −μ2)

[
∂

∂λ
(
λ 2 −1

) ∂
∂λ

+
∂

∂ μ
(
1−μ2

) ∂
∂ μ

+

(
λ 2 −μ2

)
(λ 2 −1)(1−μ2)

∂ 2

∂ω2

]

− 4λ
R(λ 2 −μ2)

(2.16)
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Fig. 2.1 The hydrogen molecular ion H+
2 aligned on the Z axis in the elliptic coordinate

system.

where the first line of Eq. 2.16 comes from the kinetic part and the second line results from

the nuclear-attraction term. [49] We need to choose an appropriate g factor to eliminate

the singularity issue arising from the nuclear attraction term in the Hamiltonian. Therefore,

based on Eq. 2.12, the g factor takes the form of [49]

g =− 1

VNe
=

R
(
λ 2 −μ2

)
4λ

(2.17)

The sign of the VNe is inverted to make g positive everywhere except at singularity. Using

spatial notation, [18] the initial wavefunction Ψ0 for X2Σ+
g (or 1σg) gerade ground state of

H+
2 can be constructed as

Ψ0 = exp[−ζ ′(rA + rB)] = exp(−ζ λ ) (2.18)

where ζ ′ = ζ/R. Successive application of the g and gH operators on Ψ0 (Eq. 2.13) and

removing the duplications and singular terms results in the general form (Eq. 2.14) of the FC
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wavefunction

Ψ =
Mn

∑
i=1

ciλ mi μni exp(−ζ λ ) (2.19)

in which, mi can be a positive or negative integer and ni can be zero or positive even integer

for the gerade ground state (X2Σ+
g ) of H+

2 . [49] Considering the general form of the FC

wavefunction, the Hamiltonian and overlap matrix elements over complement functions {φi}
become

〈φi|H |φ j〉= R3

8

∫ 2π

0

∫ 1

−1

∫ ∞

1

(
λ mi μnie−ζ λ

)
H

(
λ m j μn j e−ζ λ

)(
λ 2 −μ2

)
dλ dμ dω (2.20a)

〈φi|φ j〉= R3

8

∫ 2π

0

∫ 1

−1

∫ ∞

1

(
λ mi μnie−ζ λ

)(
λ m j μn j e−ζ λ

)(
λ 2 −μ2

)
dλ dμ dω (2.20b)

The explicit forms for the integrals can be obtained using a symbolic mathematical program

package such as Mathematica [53] or can be found in Nakatsuji’s paper. [48] Solving the

generalized eigenvalue equation and diagonalizing the Hamiltonian matrix with respect to

the overlap matrix gives the energies that are shown in Table 2.1.

Table 2.1 The free-complement ground state (X2Σ+
g ) electronic energy E, and exponent ζ ,

for the hydrogen molecular ion H+
2 at R = 2.

n Mn ζ a -Ea -Eζ
b ΔE = Eζ −E

0 1 1.3 1.079 384 965 831 435 1.079 384 965 831 435 0

1 4 1.1 1.101 421 270 731 672 1.100 681 090 163 764 7.4×10−4

2 13 0.8 1.102 627 432 357 877 1.102 623 480 965 489 4.0×10−6

3 26 1.2 1.102 634 208 423 548 1.102 634 208 390 056 3.4×10−11

4 43 1.1 1.102 634 214 493 685 1.102 634 214 492 225 1.5×10−12

a Refs. [48, 49]
b Eζ is the FC energy calculated using a fixed value of ζ = 1.3 for the exponent.

The first row of this table shows a simple variational calculation using Ψ0 in minimal

basis model. In order to find the optimized energy and the exponent for the minimal basis,

one can normalize Ψ0

1 = 〈Ψ0|Ψ0〉= R3

8
C2

∫ 2π

0

∫ 1

−1

∫ ∞

1
exp(−2ζ λ )

(
λ 2 −μ2

)
dλ dμ dω (2.21)
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to get

Ψ0 =

[
24ζ 3e2ζ

πR3 (4ζ 2 +6ζ +3)

]1/2

exp(−ζ λ ) (2.22)

Assuming ζ > 0, the Hamiltonian matrix element in Eq. 2.20b becomes

E =
〈Ψ0|H |Ψ0〉
〈Ψ0|Ψ0〉

=
R3

8

[
24ζ 3e2ζ

πR3 (4ζ 2 +6ζ +3)

]∫ 2π

0

∫ 1

−1

∫ ∞

1
exp(−ζ λ )H exp(−ζ λ )

(
λ 2 −μ2

)
dλ dμ dω

=
6ζ (2ζ +1)(ζ −2R)
(4ζ 2 +6ζ +3)R2

(2.23)

The potential energy curve (PEC) is produced after adding the 1/R nuclear repulsion term

to the optimized electronic energy at each specific bond length. At Re ≈ 2.00, [54] the

optimized exponent and the electronic energy for the minimal basis model are ζ = 1.3337 · · ·
and E =−1.079 754 641 · · · , respectively. Note that the difference in the calculated energy

presented here compared with that demonstrated in the first row of the Table 2.1 comes

from the difference between the number of digits considered for ζ in the corresponding

calculations.

The FC energies in the fourth column of Table 2.1 were reproduced using the optimal

values for ζ reported in Refs. [48, 49] and agree perfectly with the energies presented in

these references. The number of accurate digits, shown in boldface, increases as the structure

of the FC wavefucntion converges to the exact solution of the SE with increasing the FC

order, n.

The FC energies calculated using the fixed exponent ζ = 1.3 and energy differences are

collected in fifth and sixth columns of Table 2.1, respectively. These values demonstrate

that fixing the exponent to its initially optimized value has small effect on the calculated

FC energy at higher orders. In fact, the number of accurate digits remains unchanged in

this case. Hence, one can choose a reasonable value as an initial guess for the exponent
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and keep it fixed during the FC calculations. The initial guess exponents can be obtained in

a minimal–basis variational calculation or can be estimated from Slater’s rules [55]. This

eliminates the cost of non-linear optimization which is both time-consuming and difficult at

higher orders.

2.2.1.2 Helium Atom: The Ground State

Since the ground state of the helium atom has zero spatial angular momentum or S symmetry,

we adopt Hylleraas {s, t,u} interparticle coordinates defined as

s = r1 + r2

t = r1 − r2

u = |r1 − r2|= r12

(2.24)

to solve the SSE (or equivalently SE) using FC method. In this coordinate system, [56] the

nucleus is considered to be fixed at the origin. Hence, the Hamiltonian can be written as

H =−
(

∂ 2

∂ s2
+

∂ 2

∂ t2
+

∂ 2

∂u2

)
−2

s(u2 − t2)

u(s2 − t2)

∂ 2

∂ s∂u
−2

t(s2 −u2)

u(s2 − t2)

∂ 2

∂u∂ t
− 4s

s2 − t2

∂
∂ s

− 2

u
∂

∂u
+

4t
s2 − t2

∂
∂ t

− 4sZ
s2 − t2

+
1

u

(2.25)

where the last two terms in this equation belong to the Coulomb potential

V =VNe +Vee =− 4sZ
s2 − t2

+
1

u
(2.26)

in which, Z is the nuclear charge. The remaining terms in Eq. 2.25 come from the kinetic

part. According to Eq. 2.12, we choose g such that

g =

(
8s

s2 − t2

)−1

+

(
1

u

)−1

(2.27)
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where for the He atom, Z = 2. The sign of the VNe is inverted to make g positive everywhere

except at singularity. Neglecting the spin part, our initial guess in spatial form would be the

product of two atomic orbitals (AOs) for two electrons

Ψ0 = exp[−ζ (r1 + r2)] = exp(−ζ s) (2.28)

Applying the g and gH operators on Ψ0 in Eq. 2.13 and removing the duplications and

singular terms, one finds that Eq. 2.14 becomes

Ψ1 =
[
c1 s0t0u0 + c2 s−1t2u0 + c3 s1t0u0 + c4 s0t0u1

]
exp(−ζ s) (2.29)

continuing the FC process to higher orders, i.e., applying g and gH operators in a consecutive

way, one discovers that the generated FC wavefunctions have the general form of

Ψ =
Mn

∑
i=1

cislitmiuni exp(−ζ s) (2.30)

where ci is the variational parameter. For singlet state, li runs over all integers while, mi

is a non-negative and even integer and ni runs over all non-negative integers. [47] By the

present choice of the g factor (Eqs. 2.12 and 2.27), the negative powers of the variable s

are also generated in the {s, t,u} expansion of the FC wavefunction (Eq. 2.30). In 1957,

Kinoshita [57] reported the importance of the inclusion of the negative powers of s in the

wavefunction expansion for which, the resulting energy was remarkably improved compared

with the ansätze that were bereft of these terms.

Instead of the tedious way of applying the FC operators, Nakatsuji proposed a combina-

tion of equalities and inequalities- the conditions imposed on {li,mi,ni} for generating the

complement functions at each specific order. [46, 50] Using these rules seem to have some
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ramifications for the first triplet excited state of the helium atom. This issue will be discussed

in the next subsection.

The general Hamiltonian and overlap matrix elements over the complement functions

{φi} become [56]

〈φi|H |φ j〉= 2π2
∫ ∞

0

∫ s

0

∫ s

t

(
slitmiunie−ζ s

)
H

(
sl j tm j un j e−ζ s

)(
s2 − t2

)
u du dt ds (2.31a)

〈φi|φ j〉= 2π2
∫ ∞

0

∫ s

0

∫ s

t

(
slitmiunie−ζ s

)(
sl j tm j un j e−ζ s

)(
s2 − t2

)
u du dt ds (2.31b)

The explicit forms for the integrals can be achieved using Mathematica [53] or can be looked

up in Nakatsuji’s paper. [47] Diagonalizing the Hamiltonian matrix with respect to the

overlap matrix gives the energies that are shown in Table 2.2.

Table 2.2 The free-complement singlet ground state (1S) electronic energy E, and exponent

ζ , for the helium atom.

n Mn ζ -E -Eζ
a ΔE = Eζ −E

0 1 1.688 2.847 656 250 2.847 656 250 0

1 4 1.690 2.901 338 005 2.901 337 708 3.0×10−7

2 16 1.736 2.903 642 984 2.903 638 631 4.4×10−6

3 37 1.779 2.903 720 264 2.903 719 381 8.8×10−7

4 71 1.837 2.903 724 019 2.903 723 761 2.6×10−7

a Eζ is a FC energy calculated using a fixed value of ζ = 27/16 for the exponent.

Here, the boldface digits show the exact and accurate digits (after rounding up to a

specific decimal place) in the energy. Normalizing Ψ0 =Ce−ζ s (Eq. 2.28) using Eq. 2.31b

and solving the equation for C,

1 = 〈Ψ0|Ψ0〉= 2π2C2
∫ ∞

0

∫ s

0

∫ s

t
e−2ζ s (s2 − t2

)
u du dt ds (2.32)
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one can find that C = ζ 3/π . Assuming ζ > 0, the minimization of the energy with respect to

ζ using Rayleigh-Ritz technique [3]

E =
〈Ψ0|H |Ψ0〉
〈Ψ0|Ψ0〉

= 2π2
∫ ∞

0

∫ s

0

∫ s

t

(
s2 − t2

)
u
(

ζ 3

π
e−ζ s

)
H

(
ζ 3

π
e−ζ s

)
du dt ds

= ζ 2 − 27

8
ζ

(2.33)

gives the well-known [58] values of E =−(27/16)2 and ζ = 27/16 for the helium atom.

The first-order FC energy (second row in Table 2.2) can be obtained through diagonaliza-

tion of the 4×4 Hamiltonian matrix with respect to the overlap matrix in the generalized

eigenvalue equation. The process is almost the same for higher orders as well. The fifth col-

umn of the Table 2.2 shows the FC energies Eζ calculated using the fixed value of ζ = 27/16

for the exponent. As is shown by the last column of the Table 2.2, the non-linear optimization

of the exponent can contribute to the energy at sixth decimal place or higher. Thus, depending

on the accuracy that we are seeking and/or the number of non-linear parameters that may

be optimized, fixing the exponent(s) to a reasonable value makes the FC calculations faster

because the bottleneck of the FC calculations becomes the diagonalization of the Hamiltonian

matrix.

In Table 2.2, one can see that as we increase the order, the energy and the structure of

the FC wavefunction become closer to being exact as it is guaranteed by the theorems 2.1.1

and 2.1.2. Comparing the data in Tables 2.2 and 2.1 and considering the boldface digits, one

can see that the convergence rate for the H+
2 is faster than that of the helium atom. This is

possibly because of the presence of the electronic cusp in the He atom. Although initially, the

rate of convergence in terms of acquiring more accurate digits is quite rapid with increasing

the order, it becomes slower at higher orders. For example, going from n = 9 to n = 12, by

almost doubling the number of complement functions from Mn = 541 to Mn = 1171, one can
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add only one more exact digits (at the tenth decimal place) to the energy. As discussed by

Bartlett, [59] Gronwall [60] and Fock, [61, 62] fulfilling the three-body collision conditions

may become an important factor for obtaining highly-accurate results. Nakatsuji adopted

various ansätze inserting the interelectronic distance in the logarithmic form into the initial

wavefunction to achieve an accuracy of over 40 digits in the energy of the ground state of the

helium atom using Mn = 22709 complement functions generated at the order of n = 27. [47]

It is important to note that at a specific FC order, lower energies can be obtained using

fewer complement functions. For instance, the energy of the first-order FC wavefunction

(Table 2.2) with four terms (E = −2.9013) can be compared with that of the optimized

three-terms Hylleraas wavefunction (E = −2.9024)) [63]. We have verified this fact for

second-order where lower energy was obtained with the number of terms fewer than 16.

Although the structure of the FC wavefunction converges to that of the exact wavefunction

at the n → ∞ limit, one can be more efficient by generating fewer but energetically more

important functions.

2.2.1.3 Helium Atom: The Triplet Excited State

The FC method is equally applicable to both ground and excited states in the sense that

when one tries to find the variational energies by diagonalizing a Mn ×Mn Hamiltonian, the

approximate ground and excited state energies (of the same symmetry) are obtained within

a same eigenvalue problem. [50] Therefore, similar to the helium in the ground state, we

can use the FC method to calculate the first triplet excited state energy with the electronic

configuration 1s2s. The Hamiltonian operator H and the g factor remain the same as those

introduced in Eqs. 2.25 and 2.27 for {s, t,u} coordinate system. As noted by Nakatsuji,

[50], in order to calculate the energy of the 1sNs state of the helium atom, at least about N

different exponential functions should be included in the initial wavefuntion Ψ0 to mimic

the 1s and higher Ns atomic orbitals. [50] Therefore, a different Ψ0 should be considered
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because of the antisymmetric spatial part of the triplet state [18] and also the fact that the 2s

orbital is more diffuse than the 1s orbital. Dropping the spin part, the initial wavefunction

can be expressed as

Ψ0 =

∣∣∣∣∣∣∣
e−αr1 e−β r1

e−αr2 e−β r2

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
e−α(s+t)/2 e−β (s+t)/2

e−α(s−t)/2 e−β (s−t)/2

∣∣∣∣∣∣∣ (2.34)

The normalization factor for Ψ0 can be found through

1 = 〈Ψ0|Ψ0〉= 2π2C2
∫ ∞

0

∫ s

0

∫ s

t

∣∣∣∣∣∣∣
e−α(s+t)/2 e−β (s+t)/2

e−α(s−t)/2 e−β (s−t)/2

∣∣∣∣∣∣∣
2 (

s2 − t2
)

u du dt ds (2.35)

to give the normalized Ψ0 as

Ψ0 =

[
2π2

(
1

α3β 3
− 64

(α +β )6

)]−1/2

∣∣∣∣∣∣∣
e−α(s+t)/2 e−β (s+t)/2

e−α(s−t)/2 e−β (s−t)/2

∣∣∣∣∣∣∣ (2.36)

Assuming α > 0 and β > 0, the Rayleigh-Ritz expression for obtaining the variational energy

is

E =
〈Ψ0|H |Ψ0〉
〈Ψ0|Ψ0〉

= 2π2

[
2π2

(
1

α3β 3
− 64

(α +β )6

)]−1

×
∫ ∞

0

∫ s

0

∫ s

t

(
s2 − t2

)
u

∣∣∣∣∣∣∣
e−α(s+t)/2 e−β (s+t)/2

e−α(s−t)/2 e−β (s−t)/2

∣∣∣∣∣∣∣H
∣∣∣∣∣∣∣
e−α(s+t)/2 e−β (s+t)/2

e−α(s−t)/2 e−β (s−t)/2

∣∣∣∣∣∣∣du dt ds

=
α2

2
+

β 2

2
−2α −2β +

αβ
(
α3 +8α2β +32α2β 2 +8αβ 2 +β 3

)
α4 +8α3β +30α2β 2 +8αβ 3 +β 4

(2.37)

Minimizing the energy expression with respect to the exponents α and β can result in the

variational energy of E =−2.160 645 710 · · · and optimized exponents α = 1.9686 · · · and
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β = 0.3210 · · · to arbitrary accuracy. The difference between the variational energy value

presented here and the energy value reported in the first row and third column of the Table

2.3 comes from the different number of digits considered for the exponents.

Table 2.3 The first triplet excited state (3S) FC electronic energy (E or E ′ b) a of the helium

atom with the electronic configuration 1s2s.

n Mn -E M′
n

b -E ′ b ΔE = E ′ b −E
0 1 2.160 644 009 1 2.160 644 009 0

1 4 2.161 240 437 5 2.163 221 387 -0.001 980 950

2 16 2.168 856 982 21 2.173 532 754 -0.004 675 772

6c 5724 2.175 229 378 236 791 305 738 966 – – –

a The exponents of the 1s and 2s orbitals were optimized for the minimal basis and kept fixed to α = 1.97

and β = 0.32 during the FC calculations.
b The primed values were calculated using FC wavefunctions that included the permanents in addition to

the usual complement functions generated during the FC process.
c Ref. [48] The initial wavefunction Ψ0 included 6 exponential functions in this calculation.

Beginning the FC procedure by applying the g and gH operators on Ψ0 in Eq. 2.34

and removing the duplications and singular terms, one finds that the general form of the

FC wavefunction becomes different from our expectations. That is, in addition to having

a usual sum over antisymmetric determinants of Slater orbitals in Ψ0, the symmetric anti-

determinants or "permanents" also appear in the FC expansion.

Before presenting a simple definition for the permanents, we shall consider the Laplacian

development of a general n×n determinant Dn in terms of minors Mi j [3]

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n

∑
j=1

(−1)i+ jMi jai j (2.38)

where the minor Mi j, corresponding to the element ai j, is defined as a determinant of order

n−1 generated through striking out the ith row and jth column of the original determinant.
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The factor (−1)i+ jMi j is called cofactor of the element ai j. In this way, determinants (as

well as permanents) are polynomials in entries of the matrix. [3]

Permanents can be considered as an analog of a determinant in which, all signs in the

expansion by minors in Eq. 2.38 are taken as positive. For example, the permanent of a 2×2

matrix A will be

perm(A) =

∣∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣∣
+ +

= a11a22 +a12a21 (2.39)

where the "perm()" as well as the vertical bars with plus signs, | |
+ +

, indicate permanents.

[64, 65] After this short digression, we get back to the FC expansion (Eq. 2.14) which now

includes both determinants and permanents

Ψ′ =
M′

n

∑
i=1

ci slitmiuni

∣∣∣∣∣∣∣
e−α(s+t)/2 e−β (s+t)/2

e−α(s−t)/2 e−β (s−t)/2

∣∣∣∣∣∣∣+ c′i sl′i tm′
iun′i

∣∣∣∣∣∣∣
e−α(s+t)/2 e−β (s+t)/2

e−α(s−t)/2 e−β (s−t)/2

∣∣∣∣∣∣∣
+ +

(2.40)

where m′
i and mi run over odd and even positive integers, respectively. Also, li and l′i vary

over all integers and ni and n′i run over all non-negative integers. Note that the multiplications

of either the odd polynomial part with permanents or even polynomial part with determinants

generates correct symmetry for the spatial part of the triplet state. The new FC wavefunction

Ψ′ should be compared with that which results from applying Nakatsuji’s rules and conditions

(Table 1 in Ref. [50]) imposed on {li,mi,ni} using different numbers of exponential functions

in Ψ0. Based on his FC method, we have used the minimum number of exponential functions

(N = 2) in the initial wavefunction to calculate the energy of the 1s2s triplet state of the

helium atom. The results of these calculations are gathered in Table 2.3. This table clearly

shows that including the permanents in the FC calculations although is not favorable from

computational and technical point of view, is energetically important. For example, at n = 1

by adding one permanent, the energy gain is about 2 mEh. Thus, keeping permanents in the
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FC wavefunction seems necessary for obtaining a faster convergence to the desired accuracy

in the calculated energy values.

2.2.2 Examples of Compact Explicitly Correlated Wavefucntions: A

Case Study

Seeking the optimal forms for the N-term Hylleraas [66–68, 63] and the Kinoshita wave-

functions, [67, 69, 70], Koga performed several investigations with different optimization

techniques on these two wavefunctions for the helium atom and helium-like ions. He showed

that, for positive integer values of {li,mi,ni} in Eq. 2.30, the optimal form of a N-term Hyller-

aas wavefunction depends on the nuclear charge Z. [68, 63] The reason of this observation

has been related to the different significance in the radial and angular correlation effects. In

this way, based on Eq. 2.24, it may be inferred that the terms including the variables s and

t contribute mainly to the radial correlation energy whereas terms involving the variable u

mainly contribute to the angular correlation energy. [68, 63]

An important lesson than can be learnt from Koga’s studies on the N-term Hylleraas

wavefunctions is that the perturbational approaches are inappropriate for finding the optimal

form of the Hylleraas expansion shown in Eq. 2.30. [68, 63] This is because of the fact that

the terms that appear in the optimal N-term Hylleraas expansion does not necessarily appear

in the optimal N′-term expansion of the same form where N′ > N. [68, 63] Kong et al. [6]

performed an experiment (Tables 2 and 3 in Ref. [6]) on the calculation of the energy of the

helium atom using the 3-term Hylleraas expansion of the form

Ψ =C
[
1+ c1(r1 − r2)

2 + c2F(r12)
]

Ψ0 (2.41)
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where C is the normalization factor, and Ψ0 = φ(r1)φ(r2) in which, φ(r) is a spherically

symmetric orbital. They demonstrated that there are three factors that play crucial roles in

the calculation of the electronic energy of the helium atom:

i. For having a compact wavefunction suitable for high-precision calculations, the inclu-

sion of both second and third term in Eq. 2.41 is necessary.

ii. Reoptimization of the orbitals φ(r) in the explicitly correlated ansatz of Eq. 2.41 is

also important for high-precision calculations.

iii. The functional form of the correlation factor F(r12) does not seem to be important as

long as its Taylor expansion includes linear r12 terms. [6]

Although these results seem plausible, care must be taken in their interpretation. Based

on Koga’s results in his study on finding the optimal N-term Hylleraas expansions, [63]

the optimal form for the 3-term Hylleraas expansion has different terms for Z = 1 and

Z ∈ {2,3,5,10}. Therefore, all results may become different due to the nuclear charge (or

in general, system-) dependency of the optimal form of the N-term Hylleraas wavefunction.

[63]

Although we have found that it is possible to construct shorter expansions than those

generated by FC method at each order which can give lower energies, finding the optimal

form of the FC wavefunction at each FC order and the best way of doing it is not our goal.

The plan here is to consider 3 different ansätze as possible candidates for constructing a

compact explicitly correlated wavefunction applicable for large systems which can give us

accurate energies. [5, 6] Hence, assuming the general form of

Ψ = [1+ pF(u)]Ψ0 (2.42)

where p is the linear variational parameter and Ψ0 is defined in Eq. 2.28, we now seek a

suitable form for the correlated part F(u)Ψ0 of our two-term explicitly correlated wave-
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function. The test ground will be the helium atom in its singlet ground state considered

in the interparticle {s, t,u} or Hylleraas coordinate system. In order to extract maximum

information from each ansatz,

Ψa = [1+ pa ln(u)]Ψ0 (2.43)

Ψb = [1+ pbu]Ψ0 (2.44)

Ψc = [1+ pc exp(−βu)]Ψ0 (2.45)

all non-linear as well as linear parameters in each trial wavefunction were fully optimized

and their corresponding variationally optimized energies and parameters are shown in Table

2.4.

Table 2.4 The variational electronic energy E, exponents ζ and β and linear correlation

coefficient p for the singlet ground state of the helium atom.

Ψi ζ β p −E ΔE = Ei −E0

Ψ0 1.6875 – 0 2.847 656 0

Ψa 1.7553 – 0.1174 2.875 318 -0.027 661

Ψb 1.8497 – 0.3658 2.891 121 -0.043 464

Ψc 1.8487 0.0156 -0.9598 2.891 125 -0.043 468

Here, the energy of the Ψ0 (Table 2.2) has been added as a reference value. The

calculated electronic energies shown in Table 2.4 indicate that the idea of having logarithmic

correlation factor, originating from the three-particle coalescence condition, [59–62] may

play an important role in highly-accurate calculations but not in a compact two-terms

wavefunction designed for more moderate accuracies.

The ΔE values shown in the last column of the Table 2.4 are consistent with the third

result coming from the Kong et al. report (mentioned after Eq. 2.41) because the second

term in the Taylor expansion of the exponential function is the linear r12 term. Hence, one

can see that the difference in the calculated correlation energies corresponding to the linear

correlation factor in Ψb and exponential correlation factor in Ψc is of the order of 10−6. This
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energy lowering can be related to the contributions from quadratic, cubic etc. powers of the

r12 in the Taylor expansion of the exponential correlation factor. [71, 33] In the minimal

basis, the values of the linear coefficients resulting from Kato’s cusp condition for Ψb and

Ψc are pb = 0.3658 and −β pc/(pc +1) = 0.3725, respectively. These values are different

from Kato’s cusp value (1/2) for the exact wavefunction. [26]

Armed with the results gathered in this section for small one- and two-electron systems,

we are now in a position to propose a general compact form for an explicitly correlated

wavefunction which can be applied to many-electron (atomic and molecular) systems. Among

the ansätze proposed in Eqs. 2.43, 2.44 and 2.45, a good candidate can be the wavefnction

shown in Eq. 2.44. This is because of its simple form and the presence of the linear term

in the correlated part of the wavefunction. Also, as we will show in the final chapter, the

results of the wavefunction with linear correlation factor can be generalized to any positive

integer powers of r12 as a correlation factor. Moreover, our experiments with combinations

of different powers of r12 produce the outcomes that are consistent with our expectations.

These studies are presented in Chapter 4 where we analyzed the behavior of the Frost and

Braunstein (FB) wavefunction for a simple molecular system, H2.

2.3 Concluding Remarks

The details and mechanism of the work of the FC method proposed by Nakatsuji based on his

series of studies on the structure of the exact wavefunction have been reviewed. Presenting

the necessary foundations of this theory, the strengths and weaknesses of the FC method

were discussed. Also, we analyzed the FC method through the calculation of the electronic

energy of the ground state (X2Σ+
g ) of the H+

2 molecular ion and helium atom in its singlet

ground state (1S–with the electronic configuration 1s2) and triplet excited state (3S–with the

electronic configuration 1s2s).
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In our experiments on the triplet excited state of the helium atom, it has been found

that the presence of a group of terms involving permanents in the FC expansion of the

wavefunction were neglected (or ruled out) so far. This is probably because of the conditions

which are imposed on the polynomial part of the Hylleraas expansion in order to automatize

the generation of the FC functions. We also showed that considering permanents in the

Hylleraas expansion of the helium atom wavefunction is energetically important in a sense

that their inclusion seems necessary to have a more rapid convergence of the energy to its basis

set limit. The presence of permanents while energetically beneficial, is not computationally

favorable for large FC orders where the number of terms in the Hylleraas expansion rapidly

increases.

Finally, based on our experiences with FC methods and Koga’s studies on the optimal form

of the Hylleraas and Kinoshita expansions, it can be shown that at a specific FC order, lower

energies can be obtained using fewer complement functions. In this way, we have proposed

three ansätze as suitable candidates for a compact explicitly correlated wavefunction which

can simply be generalized and applied to many-electron systems. Among these candidates,

the wavefunction with linear correlation factor, will be subject of our careful analysis in

Chapter 4 for a simple molecular system, H2.





CHAPTER3

Investigation of the Frost-Braunstein

Wavefunction for H2: Theory

The analysis of the compact wavefunctions, presented in the previous chapter, has led us to the ideas

of "Correlated Molecular Orbital" (CMO) theory of Frost and Braunstein (FB) to achieve a better

understanding about the mechanism of work of correlation functions in the explicitly correlated

methods such as R12 (and F12). Therefore, we revisit the CMO theory within both restricted (R) and

unrestricted (U) formalisms. Our investigation involves five approximate wavefunctions: restricted

Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF), configuration interaction (CI), restricted

Frost-Braunstein (RFB), which is equivalent to the CMO ansatz, and unrestricted Frost-Braunstein
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(UFB) wavefunctions among which, the last one has been introduced by us for the first time. To be

able to analyze the performance of each of these wavefunctions, in describing the electron correlation

effects in H2, one needs to calculate all necessary one- and two-electron integrals. Since some of

the two-electron integrals in the FB calculations are problematic, we have modeled our exponential

atomic wavefunctions by their STO-nG expansions and used an extrapolation formula to predict

the Slater-type orbitals’ (STOs) energy limit (n = ∞). We believe that our extrapolated results

are indistinguishable from those from exact STOs. We provide most of the required integrals over

the Gaussian-type orbitals (GTOs) in closed form while the most difficult ones (nuclear-attraction

integrals with r12) can be reduced to a straightforward one-dimensional quadrature.

3.1 Introduction

Following the pioneering works of Hylleraas on helium atom [28], and James and Coolidge

[72] on the hydrogen molecule, Frost, Braunstein and Schwemer introduced the concept

of the "correlated molecular orbital" (CMO) in 1948 [73] in favor of explicit inclusion of

the interelectronic distances in the molecular wavefunctions. After three years, Frost and

Braunstein (FB) published a paper [74] in which, they calculated the electronic energy of

H2 using the CMO wavefunction defined in Eq. 3.4. The motivation for introducing the

CMO ansatz is that the r12 factor can bring some electron correlation which is known to be

present at normal bond lengths. Furthermore, adding the linear correlation factor provides the

advantage of leading to the correct asymptotic limit at infinitely large internuclear distances

over the ordinary molecular orbital (MO) wavefunctions. [74] Minimizing the energy with

respect to the orbital exponents ζ , and the linear correlation coefficient p, FB managed to

calculate the potential energy curve (PEC) of the H2 molecule. The minimum of the CMO

PEC was found to be at R = 1.34 bohr with the energy of -1.151 Eh which correspond to the

internuclear distance of 0.71 Å and the binding energy of 4.11 eV. [74]
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Throughout the present chapter, we might switch between spin-orbital or spatial orbital

frameworks: Using spin-orbitals is more general and one can greatly simplify and reduce

algebraic manipulations which is useful for the formulation of many theories of quantum

chemistry in the first-quantization regime. [4] On the other hand, one has to integrate out

the spin functions to reduce the spin-orbital formulations to those which involve only spatial

orbitals that are more suitable for computational and numerical purposes. [17]

3.2 Theoretical Framework

For deep understanding of the effect of the explicit correlation factor r12 in the CMO or FB

wavefunction, we will consider five approximate ansätze:

ΨRHF = ψ1(r1)ψ1(r2) (3.1)

ΨUHF = ψα(r1, t)ψβ (r2, t) (3.2)

ΨCI = ψ1(r1)ψ1(r2)cos(θπ
4 )−ψ2(r1)ψ2(r2)sin(θπ

4 ) (3.3)

ΨCMO ≡ ΨRFB = ψ1(r1)ψ1(r2)(1+ pr12) (3.4)

ΨUFB = ψα(r1, t)ψβ (r2, t)(1+ pr12) (3.5)

where the RHF, UHF, CI, RFB and UFB stand for restricted Hartree-Fock, unrestricted

Hartree-Fock, configuration interaction, restricted Frost-Braunstein and unrestricted Frost-

Braunstein wavefunctions, respectively. Also, we have rewritten the CMO wavefunction in

its more compact but equivalent RFB form by using the definition of the spin-restricted MOs

[75, 76] given by

ψ1(r) =
[
φ S

A(r)+φ S
B(r)

]
/
√

2(1+SAB) (3.6a)

ψ2(r) =
[
φ S

A(r)−φ S
B(r)

]
/
√

2(1−SAB) (3.6b)
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Rotations of these spin-restricted MOs yield the spin-unrestricted MOs [77]

ψα(r, t) = ψ1(r)cos( tπ
4 )+ψ2(r)sin( tπ

4 ) (3.7a)

ψβ (r, t) = ψ1(r)cos( tπ
4 )−ψ2(r)sin( tπ

4 ) (3.7b)

where t is the symmetry-breaking or mixing parameter. Our basis functions are the 1s

Slater-type orbitals (STOs)

φ S
A(r) =

√
ζ 3/π exp(−ζ |r−R/2|) (3.8a)

φ S
B(r) =

√
ζ 3/π exp(−ζ |r+R/2|) (3.8b)

Where R is a vector that joins the two centers A and B. The overlap integral is therefore

[4, 78, 3]

SAB = (1+λ−1 +λ−2/3)exp(−1/λ ) (3.9)

where λ = (ζ R)−1.

In this chapter, we study the FB model within both spin-restricted and unrestricted

formalisms. We derive the Hamiltonian and overlap matrix elements for both RFB and

UFB within the same section due to their similarities. For the sake of completeness, we

will also provide a brief theoretical background for RHF, UHF and CI ansätze. However,

a comprehensive introduction to each of these methods can be found in various textbooks.

[4, 17, 79]

3.2.1 Restricted Hartree-Fock

The HF ground-state wavefunction of the H2 molecule within the minimal basis model can

be written as

|Ψ0〉= |χ1χ2〉= |ψ1ψ1〉= |11̄〉 (3.10)
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The Hamiltonian for such a two-electron system is

H =

(
−1

2
∇2

1 −∑
A

ZA

r1A

)
+

(
−1

2
∇2

2 −∑
A

ZA

r2A

)
+

1

r12

= h(1)+h(2)+
1

r12

(3.11)

where the kinetic and potential energies of the ith electron in the field of the nuclei have been

incorporated in h(i) which is called core-Hamiltonian for this reason. As shown in Eq. 3.11,

one can write the total Hamiltonian as a sum of one-electron F and two-electron G operators

F = h(1)+h(2) (3.12)

G = r−1
12 (3.13)

Using the orthonormality of the spin functions, the matrix element expressions of the one-

and two-electron operators in terms of spin-orbitals,

〈i|h| j〉= 〈χi|h|χ j〉=
∫

χ∗
i (x1)h(r1)χ j(x1)dx1 (3.14a)

〈i j|kl〉= 〈χiχ j|χkχl〉=
∫

χ∗
i (x1)χ∗

i (x2)r−1
12 χk(x1)χl(x2)dx1dx2 (3.14b)

can be further reduced to the integral expressions that involve only the spatial functions

〈i|h|i〉= hii =
∫

ψ∗
i (r1)h(r1)ψi(r1)dr1 (3.15a)

〈i j|i j〉= Ji j =
∫

|ψi(r1)|2r−1
12 |ψ j(r2)|2dr1dr2 (3.15b)

〈i j| ji〉= Ki j =
∫

ψ∗
i (r1)ψ∗

j (r2)r−1
12 ψ j(r1)ψi(r2)dr1dr2 (3.15c)

where Ji j and Ki j are the Coulomb repulsion and exchange integrals, respectively. Note that

in case of the one-electron operator h, the matrix element between spin-orbitals of different

spin functions is zero. Whether 〈i j|kl〉 refers to an integral over spin-orbitals or spatial
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orbitals can only be determined from the context. [17] The RHF energy ERHF of the ground

state |Ψ0〉 and the first doubly excited state |Ψ22̄
11̄
〉 of the H2 molecule can be written as

E0 = 〈Ψ0|H |Ψ0〉

= 2〈ψ1|h|ψ1〉+ 〈ψ1ψ1|ψ1ψ1〉

= 2h11 + J11

(3.16)

and

〈Ψ22̄
11̄
|H |Ψ22̄

11̄
〉

= 2〈ψ2|h|ψ2〉+ 〈ψ2ψ2|ψ2ψ2〉

= 2h22 + J22

(3.17)

respectively. Using exponential integral functions, [3, 80, 81] Sugiura [82] presented analytic

expressions for all necessary integrals over STOs in closed form for H2 within the minimal

basis model. We provide these expressions in the Appendix A for the sake of clarity and

completeness. In the next chapter, using Eq. 3.16 and the expressions given in Appendix A,

we will calculate RHF PEC by minimizing ERHF with respect to orbital exponents at various

bond lengths for further investigations.

3.2.2 Unrestricted Hartree-Fock

The RHF wavefunction (Eq. 3.1) considers identical spatial distributions for the electrons of

opposite spin in the MO description of the ground state wavefunction of H2. Mathematically,

this means that the coefficients of the STO basis functions φ S
A and φ S

B in the spin-restricted

MOs (Eqs. 3.6a and 3.6b) have to be the same. [75, 76] However, there are special situations

such as homolytic cleavage of the H2 bond in which, we need to relax the symmetry restriction

for a more proper description of the process. This relaxation can be performed by rotating
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the spin-restricted MOs to obtain the spin-unrestricted MOs. [77] In other words, the rotation

or mixing parameter t in Eqs. 3.7a and 3.7b relaxes the restriction over the coefficients of

STOs to generate asymmetric MOs. If required, the mixing coefficient t can change between

0 ≤ t ≤ 1. Assuming different spatial distributions for electrons with different spin states in

the wavefunction, the mixing coefficient t takes the effect of spin-polarization into account.

Therefore, EUHF can be expressed as [17]

EUHF = 〈ψα |h |ψα〉+
〈
ψβ

∣∣h ∣∣ψβ
〉
+
〈
ψαψβ

∣∣ψαψβ
〉

(3.18)

or more explicitly,

EUHF = 2h11 cos2( tπ
4 )+2h22 sin2( tπ

4 )+ J11 cos4( tπ
4 )

+J22 sin4( tπ
4 )+(2J12 −4K12) cos2( tπ

4 ) sin2( tπ
4 )

(3.19)

Minimization of EUHF with respect to both the orbital exponents ζ and the mixing coefficient

t at various internuclear distances R enables us to calculate the UHF PEC of H2 for our future

analysis in the next chapter. Calculation of the UHF energy (Eq. 3.19) within the minimal

basis model requires exactly the same one- and two-electron integral expressions as provided

in Appendix A.

3.2.3 Configuration Interaction

Considering the spatial orbitals ψ1 and ψ2 in the H2 molecule within the minimal basis

model, one can construct a set of 2M = 4 (Sec. 2.2.1) spin-orbitals

χ1 ≡ ψ1 χ2 ≡ ψ1

χ3 ≡ ψ2 χ4 ≡ ψ2

(3.20)
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Since the exact ground state of the H2 molecule is of gerade symmetry, one might impose

this symmetry condition on the CI wavefunction to be of the same spatial symmetry. [4]

Therefore, the CI ground state wavefunction (Eq. 3.3) will be the linear combination of the

HF ground state, |Ψ0〉= |χ1χ2〉= |11̄〉, and the doubly excited state |Ψ22̄
11̄
〉= |χ3χ4〉= |22̄〉.

The determinantal mixing parameter θ allows the HF ground state determinant to mix with

the first doubly excited state determinant. Hence, the 2 × 2 CI Hamiltonian matrix, H, can

be constructed in the basis of the |Ψ0〉 and |Ψ22̄
11̄
〉 determinants [17]

H =

⎡
⎢⎣ 〈Ψ0|H |Ψ0〉 〈Ψ0|H |Ψ22̄

11̄
〉

〈Ψ22̄
11̄
|H |Ψ0〉 〈Ψ22̄

11̄
|H |Ψ22̄

11̄
〉

⎤
⎥⎦ (3.21)

which, using Eqs. 3.15, 3.16 and 3.17, one can simplify this matrix a bit more

H =

⎡
⎢⎣2h11 + J11 K12

K12 2h22 + J22

⎤
⎥⎦ (3.22)

Finally, ECI can be obtained through diagonalizing the CI Hamiltonian matrix H. Equiva-

lently, it is possible to minimize the Rayleigh-Ritz expression

ECI = (2h11 + J11) cos2
(θπ

4

)
+(2h22 + J22) sin2

(θπ
4

)−2K12 sin
(θπ

4

)
cos

(θπ
4

)
(3.23)

with respect to both orbital exponent ζ and mixing coefficient t at different bond lengths R.

Again, the necessary integral expressions are given in Appendix A. Since the restricted MOs

have been used in the construction of the CI wavefunction, we use acronyms CI and RCI

interchangeably throughout the thesis.
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3.3 Frost-Braunstein Wavefunction

So far, the basic concepts of the three wavefunctions RHF, UHF, and CI (Eqs. 3.1–3.3) have

been reviewed. All these methods belong to a group of quantum mechanical theories called

algebraic approximations which are based on the expansions in terms of antisymmetrized

products (Eq. 1.14) of orthonormal spin-orbitals. [5, 6] These spin-orbitals can be obtained

through a self-consistent field (SCF) procedure such as the HF method. [17] These traditional

single- and/or multi-determinant CI-type expansions suffer from a known problem [34]- a

frustratingly slow rate of convergence of the calculated energies toward the one-particle

basis set limit [83–87] which is due to the improper description of the electronic cusp (see

Sec. 1.2). [26] Since this slow convergence rate of the CI-type expansions happens because

of the linear dependence of the exact wavefunction on the interelectronic distance in the

region of the electron-electron coalescence, the explicit inclusion of the r12 correlation

factor into the approximate wavefunction can be a natural way of dealing with this problem.

[28, 27] Mathematically, in the simplest but still general case, one can represent the electronic

wavefunction for atoms and molecules through adding an explicit function of interelectronic

distance to the wavefunction [88]

Ψ = ΦF(r12) (3.24)

where Φ is the CI-type expansion part in terms of spin-orbitals or MOs. Note that in case of

the CMO or RFB wavefunction, Φ corresponds to the ground state Slater determinant and

F(r12) = (1+ r12). Although such an explicitly correlated wavefuction converges rapidly

to the basis set limit with basis set size, the matrix elements of the H operator can no

longer be factorized into products of only one- and two-electron integrals. Thus, one needs a

completely different strategy to deal with this new group of integrals as we will see in the

next subsection.



48 Investigation of the Frost-Braunstein Wavefunction for H2: Theory

3.3.1 Frost-Braunstein Integrals

For calculating EFB at different bond lengths and obtaining the corresponding FB PEC, one

needs to construct the Hamiltonian H, and overlap S, matrices. The electronic energies can

be obtained through solving the generalized 2 × 2 eigenvalue equation of the form

HC = E SC (3.25)

where E and C are 2 × 2 matrices of eigenvalues (energies) and eigenfunctions. The

Hamiltonian and overlap matrices for the RFB take the form of,

H =

⎡
⎢⎣ 〈ψ1ψ1|H |ψ1ψ1〉 〈ψ1ψ1|H r12|ψ1ψ1〉
〈ψ1ψ1|r12H |ψ1ψ1〉 〈ψ1ψ1|r12H r12|ψ1ψ1〉

⎤
⎥⎦ (3.26)

and

S =

⎡
⎢⎣〈ψ1ψ1|r0

12|ψ1ψ1〉 〈ψ1ψ1|r1
12|ψ1ψ1〉

〈ψ1ψ1|r1
12|ψ1ψ1〉 〈ψ1ψ1|r2

12|ψ1ψ1〉

⎤
⎥⎦ (3.27)

and for the UFB,

H =

⎡
⎢⎣ 〈ψαψβ |H |ψαψβ 〉 〈ψαψβ |H r12|ψαψβ 〉
〈ψαψβ |r12H |ψαψβ 〉 〈ψαψβ |r12H r12|ψαψβ 〉

⎤
⎥⎦ (3.28)

and

S =

⎡
⎢⎣〈ψαψβ |r0

12|ψαψβ 〉 〈ψαψβ |r1
12|ψαψβ 〉

〈ψαψβ |r1
12|ψαψβ 〉 〈ψαψβ |r2

12|ψαψβ 〉

⎤
⎥⎦ (3.29)
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For the sake of clarity and convenience, it is best to break the Hamiltonian matrix into

different pieces, i.e.

H = T+U1 +U2 +V (3.30)

and consider each of those terms separately. Here, T is the kinetic matrix, U1 and U2 are the

nuclear attraction matrices in the field of both nuclei for the electron 1 and 2, respectively,

and V stands for the electron-electron Coulomb repulsion matrix.

In the following subsections, we will consider each of these four T, U1, U2, and V

matrices and try to find a way to calculate them accurately. Since some of the two-electron

integrals in the FB calculations in the single-ζ basis are problematic, we have modeled

our exponential atomic wavefunctions by their STO-nG expansions. Therefore, we need to

consider these integrals over 1s primitive Gaussian type-orbitals (GTOs). A normalized 1s

GTO centered at A can be written as [17]

φ G
A (r−A) = (2α/π)3/4 exp(−α|r−A|2) (3.31)

where α is the Gaussian orbital exponent.

3.3.1.1 Overlap and Coulomb Repulsion Integrals

In quantum mechanics or more generally, in mathematical physics, there are situations in

which, we face problems such that if they can be solved at all, it can be done only with

difficulty. However, sometimes it is possible to transform our problem from its ordinary,

direct or physical space to a transformed space where the solution of that problem might

become relatively easier. After obtaining the solution in the transformed space, the reverse

transformation into its direct space can be performed. [3] In such cases, it is often possible to
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consider pairs of functions f and g which are related to each other through

g(x) =
∫ b

a
f (t)K(x, t)dt (3.32)

where a, b and the kernel K(x, t) are the same for such pairs of functions. [3] In the calculation

of FB matrix elements, the method of (3-dimensional) Fourier transform proved itself very

useful as we show here. In this method, the kernel is an exponential function of the form

exp(ix · t) and the integration is over the whole 3-D space.

Suppose in the ordinary space, we are given a function f (r) of the vector r pointing at

the position of an electron. The 3-D Fourier transform of this function, g(k), is given by

g(k) =
∫

f (r)e−ik·rdr (3.33)

where the vector k is the transform variable in the transformed space. The Fourier transfor-

mation allows us to back-transform to the ordinary space by

f (r) = (2π)−3
∫

g(k)eik·rdk (3.34)

Thus, according to Eq. 3.32, f (r) and g(k) are called a Fourier transform pair. [3] In order

to calculate the FB overlap matrix elements, the Fourier (integral) representations of r−1 and

r0 can be used, from which, the following formal Fourier representations are formed as

δ (r) =
∫ (

Γ(1)
8π3k0

)
eik·rdk r−2 =

∫ (
1

4πk

)
eik·rdk

r−1 =
∫ (

Γ(1)
2π2k2

)
eik·rdk r0 =

∫
δ (k)eik·rdk

r+1 =−
∫ (

Γ(3)
2π2k4

)
eik·rdk r+2 =−

∫
∇2

kδ (k)eik·rdk

(3.35)
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Here, we have used the Laplacian identity

∇2
r

∫
k−neik·rdk =−

∫
k−(n−2)eik·rdk (3.36)

Armed with these relations, the overlap matrix elements over primitive GTOs can take the

form of

Smn = 〈rm
12e−α(r1−A)2

e−β (r2−B)2 |e−γ(r1−C)2
e−δ (r2−D)2

rn
12〉 (3.37)

which can be further simplified using p = m+n

Sp = 〈e−α(r1−A)2
e−β (r2−B)2 |rp

12|e−γ(r1−C)2
e−δ (r2−D)2〉 (3.38)

For p = 0 case, one can write

S0 = 〈e−α(r1−A)2
e−β (r2−B)2 |r0

12|e−γ(r1−C)2
e−δ (r2−D)2〉

= GACGBD

∫ ∫
e−ζ (r1−P)2 [

r0
12

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ ∫
e−ζ (r1−P)2

[∫
δ (k)eik·(r1−r2)dk

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫
δ (k)

[∫
e−ζ (r1−P)2+ik·r1dr1

][∫
e−η(r2−Q)2−ik·r2dr2

]
dk

= GACGBD (π/ζ )3/2 (π/η)3/2
∫

δ (k)eik·(P−Q)e−(k2/4ζ)−(k2/4η)dk

= GACGBD (π/ζ )3/2 (π/η)3/2

[
2 Γ(3

2 +
0
2)√

π

](
ζ η

ζ +η

)0/2

M
(

0

2
,
3

2
,− ζ η

ζ +η
(P−Q)2

)
(3.39)

where Γ(n+ 1) = n! and M(a,b,z) is the confluent hypergeometric function (CHGF) or

Kummer function defined as [3, 80, 81]

1F1(a;b;z) = M(a,b,z) =
∞

∑
n=0

(a)n

(c)n

zn

n!
(3.40)
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in which, (a)n is the Pochhammer symbol. M(a,b,z) is convergent for all finite z (real or

complex) and becomes a polynomial if the parameter a is 0 or a negative integer. [3, 80, 81].

It has a regular singularity at z = 0 and an irregular one at z = ∞. Also, M becomes

indeterminate for certain parameter values, e.g., when c is an integer. [3]

Going from the first line to the second line of the set of Eqs. 3.39, the GAC and GBD were

introduced as

GAC = exp

(
− αγ

α + γ
|A−C|2

)

GBD = exp

(
− βδ

β +δ
|B−D|2

) (3.41)

and the exponents ζ and η were defined as

ζ = α + γ

η = β +δ
(3.42)

Here, we have used an important property of the 1s Gaussian functions which simplifies the

multi-center integrals like the overlap integral in the first line of Eqs. 3.39: The product of

two 1s Gaussian functions φ G
A and φ G

B , focused on different nuclei A and B centered at A and

B, is another 1s Gaussian function (apart from a constant factor) with the new exponent p on

a third center P. In other words, for unnormalized 1s Gaussians

exp
(−α|r−A|2)exp

(−β |r−B|2)= K exp
(−p|r−P|2) (3.43)

where the proportionality constant K is

K = exp

(
− αβ

α +β
|A−B|2

)
(3.44)
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and the new center P is located on a line that joins centers A and B

P =
αA+βB

α +β
(3.45)

Also, the exponent of the new Gaussian becomes

p = α +β (3.46)

Passing to the third line of Eqs. 3.39, we substituted r0
12 by its Fourier representation provided

in Eq. 3.35. The off-diagonal elements of the FB overlap matrices (Eqs. 3.27 and 3.29) can

be calculated in the same manner

S1 = 〈e−α(r1−A)2

e−β (r2−B)2 |r1
12|e−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD

∫ ∫
e−ζ (r1−P)2 [

r1
12

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ ∫
e−ζ (r1−P)2

[
−Γ(3)

2π2

∫ eik·(r1−r2)

k4
dk

]
e−η(r2−Q)2

dr1dr2

= GACGBD

(
−Γ(3)

2π2

)∫
k−4

[∫
e−ζ (r1−P)2+ik·r1dr1

][∫
e−η(r2−Q)2−ik·r2dr2

]
dk

= GACGBD (π/ζ )3/2 (π/η)3/2

(
−Γ(3)

2π2

)∫
k−4eik·(P−Q)e−(k2/4ζ)−(k2/4η)dk

= GACGBD (π/ζ )3/2 (π/η)3/2

[
2 Γ(3

2
+ 1

2
)√

π

](
ζ η

ζ +η

)−1/2

M
(
−1

2
,
3

2
,− ζ η

ζ +η
(P−Q)2

)
(3.47)

in which, we have again used Gaussian product rule (Eqs. 3.43–3.46) and the Fourier

representation of the r1
12 given in Eqs. 3.35. Finally, the last FB overlap matrix element can
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be obtained in a slightly different fashion as

S2 = 〈e−α(r1−A)2
e−β (r2−B)2 |r2

12|e−γ(r1−C)2
e−δ (r2−D)2〉

= GACGBD

∫ ∫
e−ζ (r1−P)2 [

r2
12

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ ∫
e−ζ (r1−P)2

[
−
∫

∇2
kδ (k)eik·(r1−r2)dk

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ [−∇2
kδ (k)

][∫
e−ζ (r1−P)2+ik·r1dr1

][∫
e−η(r2−Q)2−ik·r2dr2

]
dk

= GACGBD (π/ζ )3/2 (π/η)3/2
∫ [−∇2

kδ (k)
]

eik·(P−Q)e−(k2/4ζ)−(k2/4η)dk
(3.48a)

Integrating by parts twice, one can write

S2 = GACGBD (π/ζ )3/2 (π/η)3/2
∫ (−∇2

k
)[

eik·(P−Q)e−(k2/4ζ)−(k2/4η)
]

δ (k) dk

= GACGBD (π/ζ )3/2 (π/η)3/2
∫ [

−k2/4
(
ζ−1 +η−1

)2
+ i

(
ζ−1 +η−1

)
k · (P−Q)

+ 3/2
(
ζ−1 +η−1

)
+(P−Q)2

][
eik·(P−Q)e−(k2/4ζ)−(k2/4η)

]
δ (k) dk

= GACGBD (π/ζ )3/2 (π/η)3/2
[
3/2

(
ζ−1 +η−1

)
+(P−Q)2

]

= GACGBD (π/ζ )3/2 (π/η)3/2

[
2 Γ( 3

2
+ 2

2
)√

π

](
ζ η

ζ +η

)−2/2

M
(
−2

2
,
3

2
,− ζ η

ζ +η
(P−Q)2

)
(3.48b)

Looking at the final lines of Eqs. 3.39, 3.47 and 3.48, one can easily see that there is a certain

pattern in the final form of the FB overlap matrix element’s formulas. It can be shown that

the general overlap matrix element, Sp, takes the form of

Sp = 〈e−α(r1−A)2

e−β (r2−B)2 |rp
12|e−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD (π/ζ )3/2 (π/η)3/2

[
2 Γ(3

2
+ p

2
)√

π

](
ζ η

ζ +η

)−p/2

M
(
− p

2
,
3

2
,− ζ η

ζ +η
(P−Q)2

)
(3.49)

This completes the derivation of the general formula for calculating the FB overlap matrix

elements over the primitive Gaussian functions.
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Note that the FB matrix elements of the Coulomb electron-electron repulsion are very

similar in form to those of the FB overlap matrix elements. Thus, calculating the FB electronic

repulsion matrix elements using Eq. 3.49 is a straightforward task.

3.3.1.2 Kinetic Integrals

Before we begin to calculate the matrix elements of the Laplacian operator over primitive

GTOs, one needs to know the effect of the differential gradient operator on the product of a

Gaussian function and the r12 correlation factor. It can simply be shown that

∇1

(
r12e−α(r1−A)2

)
=

(r1 − r2)

r12
e−α(r1−A)2 −2αr12 (r1 −A)e−α(r1−A)2

(3.50)

The second term in the expression above can be considered as the result of the effect of a

differential gradient operator on the same Gaussian function with respect to the position of

the nuclear center, which in this case is A. In other words,

∇A

(
r12e−α(r1−A)2

)
= 2αr12 (r1 −A)e−α(r1−A)2

(3.51)

Therefore, Eq. 3.50 can be further simplified to

∇1

(
r12e−α(r1−A)2

)
=

[
(r1 − r2)

r2
12

−∇A

](
r12e−α(r1−A)2

)
(3.52)

In this way, we have constructed a hybrid operator, shown in the square brackets on the

right-hand side of Eq. 3.52 that gives us the effect of a differentiation with respect to the

coordinates of the electron in an indirect way. This makes the calculation of the matrix

elements of kinetic operators much simpler as we demonstrate shortly. Note that, generalizing
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this result for any power of r12, one can obtain

∇1

(
rq

12e−α(r1−A)2
)
=

[
q
(r1 − r2)

r2
12

−∇A

](
rq

12e−α(r1−A)2
)

(3.53)

The primitive kinetic integral is

Tpq = 〈e−α(r1−A)2
e−β (r2−B)2

rp
12|
(
−∇2

1

2
− ∇2

2

2

)
|rq

12e−γ(r1−C)2
e−δ (r2−D)2〉 (3.54)

Integration by parts gives

Tpq = 〈e−α(r1−A)2
e−β (r2−B)2

rp
12|
(

∇1 ·∇1

2
+

∇2 ·∇2

2

)
|rq

12e−γ(r1−C)2
e−δ (r2−D)2〉 (3.55)

Adopting the convention that the left-side and right-side operators in a dot product like L ·R
can operate on their left and right, respectively, one can transform the operator to sum of

differential operators with respect to the Gaussian centers. That is,

∇1 ·∇1 +∇2 ·∇2

=
[

p (r1−r2)

r2
12

−∇A

]
·
[
q (r1−r2)

r2
12

−∇C

]
+
[

p (r2−r1)

r2
12

−∇B

]
·
[
q (r2−r1)

r2
12

−∇D

]
= ∇A ·∇C +∇B ·∇D +

(
p/r2

12

)
(r1 − r2) · (∇D −∇C)+

(
q/r2

12

)
(∇B −∇A) · (r1 − r2)+

(
2pq/r2

12

)
(3.56)

Adding and subtracting Gaussian centers’ position vectors from r1 and r2 in the parentheses,

the last line in Eq. 3.56 can be written as

∇1 ·∇1 +∇2 ·∇2

= ∇A ·∇C +∇B ·∇D +
(

p/r2
12

)
[(r1 −A)− (r2 −B)+(A−B)] · (∇D −∇C)

+
(
q/r2

12

)
(∇B −∇A) · [(r1 −C)− (r2 −D)+(C−D)]+

(
2pq/r2

12

)
(3.57)
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Once again, Eq. 3.51 can be used but this time, for the gradient of a Gaussian function

without a correlation factor. This casts Eq. 3.57 into its final form

∇1 ·∇1 +∇2 ·∇2

= ∇A ·∇C +∇B ·∇D +
(

p/r2
12

)
[∇A/2α −∇B/2β +(A−B)] · (∇D −∇C)

+
(
q/r2

12

)
(∇B −∇A) · [∇C/2γ −∇D/2δ +(C−D)]+

(
2pq/r2

12

)
(3.58)

which has been written only in terms of derivatives with respect to the Gaussian centers.

Multiplying Eq. 3.58 by a factor of 1/2 and inserting it into Eq. 3.55, one can obtain the

general FB primitive kinetic matrix element as

Tpq = 1/2(∇A ·∇C +∇B ·∇D)Sp+q +1/2(p [∇A/2α −∇B/2β +(A−B)] · (∇D −∇C)

+q(∇B −∇A) · [∇C/2γ −∇D/2δ +(C−D)]+2pq)Sp+q−2

(3.59)

Therefore, the FB kinetic matrix elements can be written in terms of the FB overlap matrix

elements (Eq. 3.49) and differential gradient operators with respect to the Gaussian centers.

3.3.1.3 Nuclear-Attraction Integrals

The diagonal FB nuclear-attraction matrix elements Up where p ∈ {0,2} can be obtained in

closed form as we show here. The most difficult integrals in the FB calculations, however,

are the nuclear-attraction integrals with p = 1 that can be reduced to a straightforward one-

dimensional quadrature. [89, 90] Although the U0 FB nuclear-attraction matrix elements

were given in closed form somewhere else, [4, 17] for the sake of clarity and completeness,

we adopt our usual strategy of using the Fourier representations (Eqs. 3.35) to evaluate these

integrals here again. The U (1)
0 FB nuclear-attraction matrix element (for electron 1 focused

on center at P and attracted by a positive charge centered at Z) over the primitive Gaussian
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functions is

−U (1)
0 = 〈e−α(r1−A)2

e−β (r2−B)2 | r0
12

|r1 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD

∫ ∫
e−ζ (r1−P)2

[∫ (
Γ(1)

2π2k2

)
eik·(r1−Z)dk

]
e−η(r2−Q)2

dr1dr2

= GACGBD

(
Γ(1)
2π2

)∫
k−2e−ik·Z

[∫
e−ζ (r1−P)2+ik·r1dr1

][∫
e−η(r2−Q)2

dr2

]
dk

= GACGBD (π/ζ )3/2 (π/η)3/2

(
Γ(1)
2π2

)∫
k−2e−ik·Z

(
e−(k2/4ζ)eik·P

)
dk

= GACGBD (π/ζ )3/2 (π/η)3/2

(
Γ(1)
2π2

)[
2π2 erf(

√
ζ |P−Z|)

|P−Z|

]

= GACGBD (π/ζ )3/2 (π/η)3/2

[
2 Γ(3

2
− 1

2
)√

π

]√
ζ M(

1

2
,
3

2
,−ζ |P−Z|2)

(3.60)

in which, we have adopted the Fourier representation of r−1 for the nuclear-attraction operator

|r−Z|−1. Also, to obtain the last line of the Eq. 3.60, we have used the relation

erf(x) = (2/
√

π)
∫ x

0
e−t2

dt = (2x/
√

π) M(
1

2
,
3

2
,−x2) (3.61)

which corresponds the CHGF to the more elementary error function erf. [3] Frequently, one

faces a form of these Coulomb-interaction integrals over Gaussian functions which includes

a class of functions referred to as Boys Functions [4, 17]

Fn(x) =
∫ 1

0
exp(−xt2)t2ndt (3.62)

which are related to the error functions and CHGFs thorough the expressions [4]

F0(x) =
√

π
4x

erf(
√

x) (3.63a)

Fn(x) =
M(n+ 1

2 ,n+
3
2 ,−x)

2n+1
(3.63b)
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The U (2)
0 FB nuclear-attraction matrix element (for electron 2 located at Q and attracted by a

positive charge centered at Z) over the primitive Gaussian functions is

−U (2)
0 = 〈e−α(r1−A)2

e−β (r2−B)2 | r0
12

|r2 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD (π/ζ )3/2 (π/η)3/2

[
2 Γ(3

2
− 1

2
)√

π

]
√

η M(
1

2
,
3

2
,−η |Q−Z|2)

(3.64)

Thus, U0 is

−U0 =−(U (1)
0 +U (2)

0 )

= 〈e−α(r1−A)2

e−β (r2−B)2 | r0
12

|r1 −Z| +
r0

12

|r2 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD (π/ζ )3/2 (π/η)3/2 (2/√π
)[√

ζ M(
1

2
,
3

2
,−ζ |P−Z|2)+√

η M(
1

2
,
3

2
,−η |Q−Z|2)

]
(3.65)

The U (1)
2 FB nuclear-attraction matrix element (for electron 1 focused on center at P and

attracted by a positive charge centered at Z) over the primitive Gaussian functions can

be calculated in two different ways. The first one is the usual way of using the Fourier

representation provided in the set of Eqs. 3.35 for |r−Z|−1 operator and proceed quite

similar to what we did for S2 case as

−U (1)
2 = 〈e−α(r1−A)2

e−β (r2−B)2 | r2
12

|r1 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD

∫ ∫ e−ζ (r1−P)2

|r1 −Z|
[
r2

12

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ ∫ e−ζ (r1−P)2

|r1 −Z|
[
−
∫

∇2
kδ (k)eik·(r1−r2)dk

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ [−∇2
kδ (k)

][∫ e−ζ (r1−P)2+ik·r1

|r1 −Z| dr1

][∫
e−η(r2−Q)2−ik·r2dr2

]
dk

= GACGBD (2π/ζ )(π/η)3/2
∫ [−∇2

kδ (k)
]

M

(
1

2
,
3

2
,−ζ

(
P−Z+

ik
2ζ

)2
)

× eik·(P−Q)−(k2/4ζ)−(k2/4η)dk

(3.66)
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To proceed, we need to recall the following property of the Dirac delta "function" [3]

δ (x) = 0 x �= 0, (3.67a)

f (0) =
∫ b

a
f (x)δ (x)dx (3.67b)

where integration includes the origin and f (x) is any well-behaved function. Considering the

special case of Eq. 3.67b, ∫ ∞

−∞
δ (x) dx = 1 (3.68)

and integrating by parts, one can get

−U (1)
2 = GACGBD (2π/ζ )(π/η)3/2

× (−∇2
k
)[

eik·(P−Q)−(k2/4ζ)−(k2/4η)M

(
1

2
,
3

2
,−ζ

(
P−Z+

ik
2ζ

)2
)]

k=0

= GACGBD (2π/ζ )(π/η)3/2

×
{[(−∇2

k
)

eik·(P−Q)−(k2/4ζ)−(k2/4η)
]

k=0

[
M

(
1

2
,
3

2
,−ζ

(
P−Z+

ik
2ζ

)2
)]

k=0

−2
[
∇k eik·(P−Q)−(k2/4ζ)−(k2/4η)

]
k=0

·
[

∇k M

(
1

2
,
3

2
,−ζ

(
P−Z+

ik
2ζ

)2
)]

k=0

+
[
eik·(P−Q)−(k2/4ζ)−(k2/4η)

]
k=0

[(−∇2
k
)

M

(
1

2
,
3

2
,−ζ

(
P−Z+

ik
2ζ

)2
)]

k=0

}

= GACGBD (2π/ζ )(π/η)3/2

{[
(P−Q)2 +

3

2ζ
+

3

2η

]
M(

1

2
,
3

2
,−ζ |P−Z|2)

− 2

3
(P−Q) · (P−Z)M(

3

2
,
5

2
,−ζ |P−Z|2)− e−ζ |P−Z|2

2ζ

}

(3.69)



3.3 Frost-Braunstein Wavefunction 61

Similarly, for the U (2)
2 FB nuclear-attraction matrix element (for electron 2 sitting at Q center

and attracted by a positive charge centered at Z) over the primitive GTOs, we have

−U (2)
2 = 〈e−α(r1−A)2

e−β (r2−B)2 | r2
12

|r2 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD (2π/η)(π/ζ )3/2

{[
(P−Q)2 +

3

2ζ
+

3

2η

]
M(

1

2
,
3

2
,−η |Q−Z|2)

− 2

3
(P−Q) · (Z−Q)M(

3

2
,
5

2
,−η |Q−Z|2)− e−η |Q−Z|2

2η

}
(3.70)

Finally, for the U2 FB nuclear-attraction matrix element, one can obtain

−U2 =−(U (1)
2 +U (2)

2 )

= 〈e−α(r1−A)2

e−β (r2−B)2 | r2
12

|r1 −Z| +
r2

12

|r2 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD

{
(2π/ζ )(π/η)3/2

[(
(P−Q)2 +

3

2ζ
+

3

2η

)
M(

1

2
,
3

2
,−ζ |P−Z|2)

− 2

3
(P−Q) · (P−Z)M(

3

2
,
5

2
,−ζ |P−Z|2)− e−ζ |P−Z|2

2ζ

]
+(2π/η)(π/ζ )3/2

×
[(

(P−Q)2 +
3

2ζ
+

3

2η

)
M(

1

2
,
3

2
,−η |Q−Z|2)

− 2

3
(P−Q) · (Z−Q)M(

3

2
,
5

2
,−η |Q−Z|2)− e−η |Q−Z|2

2η

]}

(3.71)

In the second possible way of calculating U (1)
2 (or U (2)

2 ), one can rewrite the r2
12 operator in

terms of the vectors r1 −P and r2 −Q.

−U (1)
2 = 〈e−α(r1−A)2

e−β (r2−B)2 | r2
12

|r1 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD

∫ ∫
e−ζ (r1−P)2

[
((r1 −P)− (r2 −Q)+(P−Q))2

|r1 −Z|

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ ∫
e−ζ (r1−P)2

[
1

|r1 −Z|
(
(r1 −P)2 +2(P−Q) · (r1 −P)+(r2 −Q)2

− 2(P−Q) · (r2 −Q)+(P−Q)2 −2(r1 −P) · (r2 −Q)
)]

e−η(r2−Q)2

dr1dr2

(3.72)
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Expanding r2
12 in this form results in an expression for U (1)

2 integral which is now a sum of

six separable integrals

−U (1)
2 =

(
− ∂

∂ζ

∫ e−ζ (r1−P)2

|r1 −Z| dr1

)(∫
e−η(r2−Q)2

dr2

)

+2

(
(P−Q) · ∇P

2ζ

∫ e−ζ (r1−P)2

|r1 −Z| dr1

)(∫
e−η(r2−Q)2

dr2

)

+

(∫ e−ζ (r1−P)2

|r1 −Z| dr1

)(
− ∂

∂η

∫
e−η(r2−Q)2

dr2

)

−2

(∫ e−ζ (r1−P)2

|r1 −Z| dr1

)(
(P−Q) · ∇Q

2η

∫
e−η(r2−Q)2

dr2

)

+

(
(P−Q)2

∫ e−ζ (r1−P)2

|r1 −Z| dr1

)(∫
e−η(r2−Q)2

dr2

)

−2

(
∇P

2ζ

∫ e−ζ (r1−P)2

|r1 −Z| dr1

)
·
(

∇Q

2η

∫
e−η(r2−Q)2

dr2

)

(3.73)

Calculation of integrals in each parentheses is straightforward

∫ e−ζ (r1−P)2

|r1 −Z| dr1 = (π/ζ )3/2 erf(
√

ζ |P−Z|)
|P−Z|

∫
e−η(r2−Q)2

dr2 = (π/η)3/2

∇P

2ζ

∫ e−ζ (r1−P)2

|r1 −Z| dr1 =

[
πe−ζ |P−Z|2

ζ 2|P−Z|2 − π3/2 erf(
√

ζ |P−Z|)
2ζ 5/2|P−Z|3

]
(P−Z)

∇Q

2η

∫
e−η(r2−Q)2

dr2 = 0

− ∂
∂ζ

∫ e−ζ (r1−P)2

|r1 −Z| dr1 =

[
3π3/2 erf(

√
ζ |P−Z|)

2ζ 5/2|P−Z| − πe−ζ |P−Z|2

ζ 2

]
− ∂

∂η

∫
e−η(r2−Q)2

dr2 =
3π3/2

2η5/2

(3.74)

Using the above elementary integrals (Eqs. 3.74) and the relation between CHGFs and error

functions (Eq. 3.61), one can simplify the Eq. 3.73 to reach at U (1)
2 (same as Eq. 3.69).

So far, we have achieved closed-form expressions for U0 and U2 FB nuclear-attraction

matrix elements. However, for the U1 matrix element which is the most difficult integral,

we have managed to reduce it to a one-dimensional integral. The U (1)
1 matrix element over
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primitive Gaussian functions is defined as

−U (1)
1 = 〈e−α(r1−A)2

e−β (r2−B)2 | r1
12

|r1 −Z| |e
−γ(r1−C)2

e−δ (r2−D)2〉

= GACGBD

∫ ∫ e−ζ (r1−P)2

|r1 −Z|
[
r1

12

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ ∫ e−ζ (r1−P)2

|r1 −Z|
[∫ (

− Γ(3)
2π2k4

)
eik·(r1−r2)dk

]
e−η(r2−Q)2

dr1dr2

= GACGBD

∫ [
− Γ(3)

2π2k4

][∫ e−ζ (r1−P)2

|r1 −Z| eik·r1dr1

][∫
e−η(r2−Q)2

e−ik·r2dr2

]
dk

= GACGBD (2π/ζ )(π/η)3/2
∫ [

− Γ(3)
2π2k4

]
M

(
1

2
,
3

2
,−ζ

(
P−Z+

ik
2ζ

)2
)

× eik·(P−Q)−(k2/4ζ)−(k2/4η)dk

(3.75)

We now use Eq. 3.61 and substitute the CHGF by its corresponding integral representation

M
(

1

2
,
3

2
,−x2

)
=
∫ 1

0
e−x2t2

dt (3.76)

to get

−U (1)
1 = GACGBD (2π/ζ )(π/η)3/2

∫ [
− Γ(3)

2π2k4

][∫ 1

0
exp

(
−ζ

(
P−Z+

ik
2ζ

)2

t2

)
dt

]

× eik·(P−Q)−(k2/4ζ)−(k2/4η)dk

= GACGBD (2π/ζ )(π/η)3/2

×
∫ 1

0

[∫ (
− Γ(3)

2π2k4

)
exp

(
−
[

1

η
+

1− t2

ζ

]
k2

4
+ ik · [(P−Q)− (P−Z)t2

])
dk
]

× exp(−ζ (P−Z)2t2)dt

(3.77)

The last step of this derivation requires the following integral

∫ (
− Γ(3)

2π2k4

)
exp(−k2

4
x+ ik ·R) dk = (2/

√
π) Γ

(
1+3

2

)
x1/2M

(
−1

2
,
3

2
,−R2

x

)
(3.78)
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to give us

−U (1)
1 = GACGBD (2π/ζ )(π/η)3/2

×
∫ 1

0

[∫ (
− Γ(3)

2π2k4

)
exp

(
−
[

1

η
+

1− t2

ζ

]
k2

4
+ ik · [(P−Q)− (P−Z)t2

])
dk
]

× exp(−ζ (P−Z)2t2)dt

= GACGBD

(
4π1/2/ζ

)
(π/η)3/2 Γ

(
1+3

2

)

×
∫ 1

0

(
1

η
+

1− t2

ζ

)1/2

M

(
−1

2
,
3

2
,−
[
(P−Q)− (P−Z)t2

]2

1
η + 1−t2

ζ

)
exp(−ζ (P−Z)2t2)dt

(3.79)

This is the final form for U (1)
1 matrix element which has been reduced to a one-dimensional

integral which can be calculated using quadrature methods. Similarly, U (2)
1 matrix element

can be expressed as

−U (2)
1 = GACGBD

(
4π1/2/η

)
(π/ζ )3/2 Γ

(
1+3

2

)

×
∫ 1

0

(
1

ζ
+

1− t2

η

)1/2

M

(
−1

2
,
3

2
,−
[
(P−Q)− (−Q+Z)t2

]2

1
ζ + 1−t2

η

)
exp(−η(Q−Z)2t2)dt

(3.80)

Finally, the U1 FB nuclear-attraction matrix element is

U1 =U (1)
1 +U (2)

1 (3.81)

To proceed with the calculation of U1 matrix element, we need an accurate way of evaluation

of the one-dimensional integral in the last line of Eq. 3.79, Eq. 3.80 and therefore, Eq. 3.81.

In numerical analysis, one can approximate the definite integral of a function f (x) through a

quadrature rule which expresses that integral as a weighted sum of the function values f (xi)

at specific points in the domain of integration. For a system of orthogonal polynomials fn(x)

of degree n satisfying ∫ b

a
fm(x) fn(x)W (x)dx = hnδmn

hn =
∫ b

a
f 2
n (x)W (x)dx

(3.82)
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where W (x)≥ 0 is a weight in the interval [a,b], one can consider the fact that fn(x) has n

distinct roots or zeros in the interval [a,b]

fn(xi) = 0 1 ≤ i ≤ n (3.83)

In Eqs. 3.82, if hn = 1, then the polynomials are orthonormal. [81, 91] Based on the

fundamental theorem of Gaussian quadrature, the optimal abscissas of the n-point quadrature

formulas are precisely the roots of the orthogonal polynomial for the same interval and

weighting function W (x). [92] Therefore, one can design a suitable quadrature to have an

accurate evaluation of an integral through selecting optimal abscissas xi for which, we need

to calculate f (xi). Hence, for a general polynomial fk(x) of degree k [4, 81]

fk(x) =
k

∑
i=1

cixi (3.84)

it can be shown that if k < 2n, then

∫ b

a
fk(x)W (x)dx =

n

∑
i=1

wi fk(xi) (3.85)

in which,

wi =
∫ b

a
W (x)

n

∏
j=1
j �=i

x− x j

xi − x j
dx (3.86)

The abscissas xi and weights wi depend on the number of quadrature points n but are

independent of the polynomial fk(x). [4] An n-point quadrature rule within the framework

of Gaussian quadrature will be exact for the calculation of the integrals with the n-fold

sum. [4] In order to calculate the (xi,wi) pairs, we used Numerical Differential Equation

Analysis package in Mathematica 10.4 program [53] to design various n-point quadratures

where n = 5,10,15,20,30,40 and 50. This experiment showed us that adopting a 50-point

quadrature, the U1 FB nuclear-attraction integrals can accurately be calculated for the whole
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range of bond lengths considered in this work. The table of the calculated abscissas and

weights is provided in Appendix B.

3.4 Concluding Remarks

In this chapter, we have presented the main ideas of the CMO theory introduced by FB. [74]

In addition to the comparison with other three approximate RHF, UHF and CI wavefunctions

(Eqs. 3.1-3.3), for the first time, we have introduced UFB wavefunction (Eq. 3.5) as a new

form of a compact explicitly correlated wavefunction. After a short introduction to each of

these five RHF, UHF, CI, RFB and UFB ansätze, we embarked on constructing the required

Hamiltonian and overlap matrix elements to be able to calculate the electronic energies

through solving the Schrödinger equation. We have managed to have all matrix elements

in closed form except that of the nuclear-attraction matrix element with linear r12 factor.

This element has been reduced to a straightforward one-dimensional quadrature. In this way,

we are be able to calculate PECs for all five approximate wavefunctions and analyze them

separately and thoroughly in the short, intermediate and long internuclear distances. This

will be one of the main goals in the next chapter.



CHAPTER4

Investigation of the Frost-Braunstein

Wavefunction for H2: Application

In the present chapter, we embark on an in-depth investigation the five wavefunctions for H2 molecule,

namely restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF), configuration interaction

(CI), restricted Frost-Braunstein (RFB), which is equivalent to the correlated molecular orbital

(CMO) ansatz, and unrestricted Frost-Braunstein (UFB). We provide RHF, UHF, CI, RFB and UFB

potential energy curves (PECs) for H2 and analyze them for small, intermediate and large internuclear

distances. We will also show that some spectroscopic parameters of the CMO (or RFB) PEC (such

as Re and De etc.) and the linear coefficient p in the CMO wavefunction at a specific bond length
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reported by FB were inaccurate. Therefore, we provide a much wider range of bond lengths for

our analysis and show that there is a pole in the linear coefficient. In exploring the properties of

the UFB wavefunction, we have discovered that for a certain range of R values, there are multiple

symmetry-broken (SB) solutions. The presence of these multiple solutions cause the UFB PEC to have

a kink. We propose a simple model to demonstrate how these SB solutions evolve with increasing

R. We indicate that there is a certain range of R for which these SB solutions are higher in energy

than that of the symmetric and restricted solution. The discovery of multiple solutions in UFB

PEC can have significant impacts on the explicitly correlated methods especially on R12 and F12

calculations performed within the unrestricted regime. The correlation energy curves of the CI and

UFB approximations will be compared to that of the near-exact case provided by Rassolov et al. . [93]

Finally, we perform a thorough asymptotic analysis for the five mentioned wavefunctions and show

that the UFB wavefunction within the single-ζ basis shows R−8 "dispersion-like" behavior. This can

be compared with the correct behavior of R−6 due to the dispersion interaction. The generalization of

the FB (GFB) wavefunction using rn
12 where n is a positive integer, shows that variation of n does not

change the R−8 behavior of the GFB energy but the coefficient of the R−8 term is affected. Therefore,

no analytic correlation function of r12 can capture the dispersion in the minimal basis.
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4.1 Introduction

In this chapter, we use the results of our derivations of the Hamiltonian and overlap matrix

elements presented in chapter 3 to calculate potential energy curves (PECs) for the restricted

Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF), configuration interaction (CI), re-

stricted Frost-Braunstein (RFB) and unrestricted Frost-Braunstein (UFB) wavefunctions.

In order to extract the maximum accuracy from each of the wave functions (Eqs. 3.1 –

3.5) at any bond length R, one should fully optimize the exponent ζ , the linear correlation

coefficient p, and the mixing parameter t and the amplitudes θ .

As we have seen in Chapter 3, some of the two-electron integrals in FB calculations

are problematic, [74] so we have modeled the exponentials (Eq. 3.8) by their STO–nG

expansions [94–97] of Gaussian-type orbitals (GTOs) and extrapolated these energies to the

Slater-type orbital (STO) limit (i.e. n = ∞) using

En ≈ E∞ +aexp(−πn
5
8 ) (4.1)

Most of the required Gaussian integrals can be found in closed form [98] and the hardest ones

(nuclear-attraction integrals with r12) can be reduced to a straightforward one-dimensional

quadrature (Sec. 3.3.1.3). [90] Based on recent convergence analyses, [99–101] we believe

that our extrapolated STO–nG results are indistinguishable from those from exact STOs.

At large bond lengths R, the most difficult integrals become exponentially small and the

behaviors of the RHF, UHF, CI, RFB and UFB energies can be investigated by asymptotic

analysis in which only algebraic (and/or exponential) terms are retained.
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Let λ = (ζ R)−1. The required Coulomb integrals become

〈AA |rn
12 |AA〉= (n+2)!(n+4)(n+6)

48(2ζ )n (4.2a)

〈
AA

∣∣∣∣ rn
12

r1A

∣∣∣∣AA
〉
=

(n+2)!(n+4)

16(2ζ )n−1
(4.2b)

〈
AA

∣∣∣∣ rn
12

r1B

∣∣∣∣AA
〉
∼ (n+2)!(n+4)(n+6)

48(2ζ )nR
(4.2c)

〈AB |rn
12 |AB〉 ∼ Rn

3F0

(
−n

2
,−n+1

2
,4,λ 2

)
(4.2d)

〈
AB

∣∣∣∣ rn
12

r1A

∣∣∣∣AB
〉
∼ ζ Rn

3F0

(
−n

2
,−n+1

2
,3,λ 2

)
(4.2e)

〈
AB

∣∣∣∣ r12

r1B

∣∣∣∣AB
〉
∼ (

2− (λ −2)e2Rζ Ei(−2Rζ )+(λ +2)e−2Rζ Ei(2Rζ )
)
/2 (4.2f)

〈
AB

∣∣∣∣ r2
12

r1B

∣∣∣∣AB
〉
∼ R(1+4λ 2) (4.2g)

where 3F0 is a generalized hypergeometric function and Ei is the exponential integral, [80] and the

kinetic integrals are

〈
rm

12AA
∣∣∣∣−∇2

2

∣∣∣∣rn
12AA

〉
= ζ 2 (q+4)!

192(2ζ )q
6+5q− (m−n)2

(q+1)(q+3)
(4.2h)

〈
rm

12AB
∣∣∣∣−∇2

2

∣∣∣∣rn
12AB

〉
∼ ζ 2Rq

[
3F0

(
−q

2
,− q+1

2
,4,λ 2

)

− m(m+1)+n(n+1)

2
λ 2

3F0

(
−q−2

2
,− q−1

2
,4,λ 2

)]
(4.2i)

where q = m+n. We will briefly discuss the asymptotic analysis of the five RHF, UHF, CI,

RFB and UFB approximate wavefunctions in the section 4.3 but a more detailed discussion

is presented in Sec. 4.5.
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4.2 STO-nG Basis Sets

The STOs and GTOs have well-known strengths and weaknesses in describing the expansion

of the wavefunction. In order to have the correct behavior of the wavefunction at small

and large R, [79] one can model the exponentials (Eq. 3.8) by their STO–nG expansions.

[94–97, 102] It is often required to calculate the electronic energies with large enough n

values in the STO–nG expansion [97, 102]

φ S(ζ ;r)≈ φCG(ζ ;r) =
n

∑
μ=1

cμφ G(αμ ;r) (4.3)

to be able to extrapolate the calculated energies to the STO limit (i.e. n → ∞). In Eq. 4.3,

the superscript CG stands for contracted Gaussian function. The STOs, φ S(ζ ;r), and GTOs,

φ G(αμ ;r), are defined in Eqs. 3.8 and 3.31, respectively. Here, the Slater orbital and

Gaussian orbital exponent dependencies are explicitly shown for clarity and completeness.

The Eq. 4.3 is exact in the n → ∞ limit. Although the list of necessary coefficients cμ and

exponents αμ for constructing the STO–nG basis sets can be found in literature, [94–96] the

accuracy of these parameters were not enough for our goals. Therefore, devising a suitable

method for calculating the coefficients and parameters of the STO–nG expansions to arbitrary

precision seemed crucial.

Construction of the STO–nG expansions where n = 1, 2 or 3 is easy and fairly straightfor-

ward. For example, it is possible to find the coefficients cμ and exponents αμ of the STO–nG

expansion in a way that they minimize the fitting criterion

I =
∫
[φ S(ζ = 1;r)−φCG(ζ = 1;r)]2dr

=
∫
[φ S(ζ = 1;r)−

n

∑
μ=1

cμφ G(αμ ;r)]2dr
(4.4)
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which provides the best fit for the expansion of the STO in terms of GTOs in the least-

square (LSQ) sense. [17, 94] In Eq. 4.4, the integration should be performed over all

space. Assuming positive exponents, minimization of I can be performed numerically in

Mathematica [53] with arbitrary precision.

In order to accurately describe the single-ζ basis function and also, to be able to use the

extrapolation methods, one needs CG functions composed of larger number of Gaussian

functions. However, as one increases n in the STO-nG expansion, the number of linear

and nonlinear parameters are also increases. Therefore, minimization of the LSQ integral I

becomes more and more difficult because of the high-nonlinearity of the problem and extra

dimensions: the basis functions become linearly dependent and the energy becomes a very

flat function of the exponents. [79]

To overcome this obstacle we have proposed a method to calculate the optimized co-

efficients cμ and exponents αμ for constructing the STO–nG basis sets with an arbitrary

precision. We exemplify this method by constructing the STO-3G basis from STO-2G

parameters because the analytic expressions for the integral I can be easily obtained and thus,

the accuracy of our method can be checked conveniently.

The analyses of the variationally optimized basis sets show that the ratio of the two

successive exponents in such basis sets are approximately constant. [79, 103, 104] Taking

this ratio to be a constant reduces the optimization problem to only two parameters regardless

of the size of the basis set. Such basis sets are called even-temperered basis sets. In even-

tempered basis sets, the μth exponent can be given by

ζμ = αβ μ (4.5)

ln(ζμ) = ln(α)+μ ln(β ) (4.6)
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where μ ∈ {1,2,3, . . . ,n} and n is the maximum number of Gaussian functions in the STO–

nG expansion (Eq. 4.3). The STO–3G basis set can be constructed from STO–2G parameters

as follows:

i. Taking the natural logarithm of the STO-2G exponents and fitting them using Eq. 4.6,

one can find the even-tempered parameters αSTO-3G and βSTO-3G from the intercept

and slope of the resulting line, respectively.

ii. A geometric series of three exponents for the STO-3G basis set can be constructed by

using Eq. 4.5.

iii. The resulting exponents from the previous step can be inserted into Eq. 4.4 to fit a

CG function composed of three Gaussian functions to a STO with the exponent ζ = 1.

This results in an expression in terms of three coefficients c1,c2 and c3 as unknowns.

iv. The best coefficients should minimize LSQ integral I. This means that all coefficients

satisfy

∂ I
∂cμ

= 0, μ ∈ {1,2,3, . . . ,n} (4.7)

This condition leads to a system of n simultaneous equations in n unknowns.

v. The coefficients and exponents that have been obtained in previous steps are now

used as initial guesses for minimizing the LSQ integral I defined in Eq. 4.4. The

"findminimum" function of the Mathematica 10.4 program package provides a mean

for local optimization of the parameters using initial guesses. This minimization

process can be performed with arbitrary precision. [53]

It is important to note that, as mentioned by Hehre et al., [94], the optimized coefficients

and exponents resulting from minimizing the LSQ integral I appear to produce basis sets

which are not fully normalized. Therefore, the resulting coefficients should be multiplied by
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appropriate normalization factors. [94] The optimized coefficients cμ and exponents αμ for

the normalized STO–nG expansion where n = 8 and 9 are provided in Appendix D.

4.3 The Electronic Energy

In this section, we discuss the general properties of the calculated electronic energies and

the trends in optimized variables in each wavefunction shown in Table 4.1 and the specific

characteristics of the RHF, UHF, CI, RFB and UFB PECs for H2 at short, intermediate and

long internuclear distances.

4.3.1 Restricted Hartree-Fock

The RHF electronic energy expression for H2 is [17]

E = 2〈ψ1 |h |ψ1〉+ 〈ψ1ψ1 |ψ1ψ1〉 (4.8)

and Sugiura showed [82] that this can be evaluated in terms of the exponential integral func-

tion. [80] The required integral expressions have been given in the Appendix A. Minimizing

this energy with respect to ζ , for various bond lengths R, yields the ERHF and ζRHF in Table

4.1.

Kellner showed [58] that for H2 molecule at R = 0, the optimal energy and exponent are

ERHF =−(27/16)2 and ζRHF = 27/16, respectively.

As R increases, the energy ERHF increases monotonically, but the exponent ζRHF de-

creases to a minimum (0.8402) at R ≈ 8.4 and then increases slightly as the bond lengthens

further.



Hartree-Fock Configuration Interaction Frost-Braunstein
R −ERHF −EUHF ζRHF ζUHF tUHF −ECI ζCI θCI −ERFB −ESB ζRFB ζSB pRFB pSB tRFB tSB

0.00 2.84766 1.6875 0 2.84766 1.6875 0 2.89112 1.8497 0.3658 0
0.50 2.48078 1.4930 0 2.48883 1.4949 0.0526 2.51779 1.6486 0.3477 0
0.60 2.39122 1.4494 0 2.40029 1.4519 0.0602 2.42680 1.6013 0.3413 0
0.70 2.30596 1.4084 0 2.31610 1.4115 0.0684 2.34014 1.5559 0.3342 0
0.80 2.22560 1.3700 0 2.23687 1.3739 0.0772 2.25846 1.5128 0.3268 0
0.90 2.15029 1.3342 0 2.16276 1.3390 0.0866 2.18195 1.4722 0.3197 0
1.00 2.07993 1.3009 0 2.09366 1.3067 0.0966 2.11052 1.4342 0.3131 0
1.10 2.01427 1.2699 0 2.02934 1.2769 0.1072 2.04393 1.3989 0.3074 0
1.20 1.95301 1.2411 0 1.96951 1.2493 0.1185 1.98191 1.3661 0.3026 0
1.30 1.89585 1.2144 0 1.91385 1.2239 0.1305 1.92413 1.3358 0.2989 0
1.32 1.88488 1.2093 0 1.90319 1.2191 0.1330 1.91306 1.3300 0.2983 0
1.34 1.87406 1.2042 0 1.89269 1.2143 0.1355 1.90214 1.3244 0.2977 0
1.36 1.86339 1.1992 0 1.88233 1.2097 0.1380 1.89137 1.3188 0.2972 0
1.37 1.85811 1.1968 0 1.87721 1.2073 0.1393 1.88605 1.3160 0.2970 0
1.38 1.85286 1.1943 0 1.87212 1.2051 0.1406 1.88076 1.3132 0.2967 0
1.39 1.84765 1.1919 0 1.86708 1.2028 0.1419 1.87551 1.3105 0.2965 0
1.40 1.84247 1.1895 0 1.86206 1.2005 0.1432 1.87029 1.3078 0.2963 0
1.42 1.83223 1.1847 0 1.85214 1.1961 0.1458 1.85997 1.3025 0.2960 0
1.44 1.82211 1.1800 0 1.84237 1.1917 0.1485 1.84978 1.2973 0.2956 0
1.46 1.81214 1.1754 0 1.83273 1.1874 0.1512 1.83974 1.2921 0.2954 0
1.48 1.80229 1.1709 0 1.82322 1.1832 0.1539 1.82984 1.2870 0.2951 0
1.50 1.79258 1.1664 0 1.81386 1.1790 0.1567 1.82008 1.2820 0.2950 0
1.60 1.74589 1.1448 0 1.76896 1.1592 0.1709 1.77321 1.2583 0.2948 0
1.70 1.70214 1.1247 0 1.72711 1.1411 0.1859 1.72942 1.2365 0.2958 0
1.80 1.66110 1.1060 0 1.68809 1.1245 0.2017 1.68847 1.2164 0.2981 0
1.90 1.62256 1.0886 0 1.65169 1.1093 0.2184 1.65015 1.1981 0.3016 0
2.00 1.58631 1.0723 0 1.61771 1.0954 0.2359 1.61424 1.1812 0.3065 0
2.10 1.55218 1.0571 0 1.58598 1.0828 0.2542 1.58058 1.1659 0.3126 0
2.20 1.52001 1.0429 0 1.55636 1.0714 0.2734 1.54900 1.1518 0.3201 0
2.27 1.49857 1.0336 0 1.53680 1.0641 0.2873 1.52804 1.1427 0.3263 0
2.28 1.49558 1.49559 1.0323 1.0327 0.0755 1.53408 1.0631 0.2893 1.52512 1.1415 0.3272 0
2.30 1.48965 1.48973 1.0297 1.0311 0.1350 1.52869 1.0612 0.2934 1.51934 1.1390 0.3291 0
2.40 1.46097 1.46249 1.0173 1.0242 0.2807 1.50286 1.0519 0.3142 1.49148 1.1274 0.3397 0
2.50 1.43384 1.43827 1.0057 1.0187 0.3688 1.47873 1.0437 0.3358 1.46530 1.1169 0.3519 0
2.80 1.36077 1.37956 0.9751 1.0080 0.5380 1.41560 1.0242 0.4045 1.39579 1.0912 0.4000 0
3.00 1.31807 1.34907 0.9578 1.0042 0.6147 1.38029 1.0151 0.4527 1.35609 1.0785 0.4437 0
3.04 1.31004 1.34361 0.9546 1.0036 0.6280 1.37380 1.0136 0.4625 1.34872 1.0763 0.4538 0
3.05 1.30805 1.34228 0.9538 1.0035 0.6312 1.37221 1.0132 0.4650 1.34690 1.34435 1.0758 1.0323 +0.4564 0.1108 0 0.5018
3.10 1.29829 1.33577 0.9499 1.0029 0.6468 1.36442 1.0115 0.4773 1.33800 1.33731 1.0732 1.0232 +0.4699 0.0710 0 0.5725
3.11 1.29637 1.33451 0.9492 1.0027 0.6498 1.36289 1.0111 0.4798 1.33623 1.33597 1.0727 1.0222 +0.4726 0.0672 0 0.5806
3.12 1.29445 1.33325 0.9484 1.0026 0.6528 1.36138 1.0108 0.4822 1.33452 1.33464 1.0723 1.0212 +0.4755 0.0640 0 0.5880
3.20 1.27948 1.32356 0.9426 1.0019 0.6756 1.34964 1.0084 0.5020 1.32101 1.32452 1.0687 1.0158 +0.4994 0.0465 0 0.6335
3.30 1.26157 1.31231 0.9357 1.0011 0.7016 1.33589 1.0059 0.5266 1.30506 1.31294 1.0647 1.0115 +0.5328 0.0344 0 0.6741
3.40 1.24451 1.30190 0.9292 1.0005 0.7252 1.32309 1.0038 0.5510 1.29009 1.30233 1.0614 1.0085 +0.5705 0.0268 0 0.7060
3.50 1.22824 1.29224 0.9231 1.0001 0.7468 1.31117 1.0022 0.5752 1.27604 1.29255 1.0585 1.0065 +0.6132 0.0215 0 0.7328
4.00 1.15739 1.25271 0.8978 0.9993 0.8300 1.26278 0.9981 0.6874 1.21817 1.25278 1.0504 1.0018 +0.9347 0.0094 0 0.8261
5.00 1.05497 1.20046 0.8660 0.9996 0.9221 1.20278 0.9984 0.8466 1.14843 1.20047 1.0478 1.0003 +3.7010 0.0034 0 0.9214
6.00 0.98690 1.16674 0.8498 0.9999 0.9643 1.16721 0.9995 0.9289 1.11423 1.16675 1.0456 1.0002 −5.2869 0.0016 0 0.9642
7.00 0.94012 1.14287 0.8426 1.0000 0.9839 1.14296 0.9999 0.9678 1.09630 1.14287 1.0410 1.0001 −2.1375 0.0009 0 0.9838
8.00 0.90691 1.12500 0.8404 1.0000 0.9928 1.12502 1.0000 0.9856 1.08556 1.12500 1.0356 1.0001 −1.5304 0.0005 0 0.9928
9.00 0.88250 1.11111 0.8404 1.0000 0.9968 1.11111 1.0000 0.9937 1.07817 1.11111 1.0304 1.0000 −1.2711 0.0003 0 0.9968
10.00 0.86392 1.10000 0.8412 1.0000 0.9986 1.10000 1.0000 0.9973 1.07248 1.10000 1.0258 1.0000 −1.1265 0.0002 0 0.9986
15.00 0.81197 1.06667 0.8436 1.0000 1.0000 1.06667 1.0000 1.0000 1.05401 1.06667 1.0122 1.0000 −0.8572 0.0000 0 1.0000
∞ 0.71191 1 0.84375 1 1 1 1 1 1 1 1 1 −0.625 0 0 1

Table 4.1 Single-zeta electronic energies E, exponents ζ , mixing parameters t, and linear

coefficients p for H2 at bond length R. The boldface numbers correspond to the lowest energy

UFB solution.

,
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At large R, the Eq. 4.8 becomes asymptotic to

E ∼ ζ 2 − 27

16
ζ − 3

2R
+ . . . (4.9)

and minimization of this yields

ζRHF(R)∼ 27

32
− 5 ·38

220
R3 exp

(−27
32R

)
+ . . . (4.10)

ERHF(R)∼−
(

27

32

)2

− 3

2R
− 5 ·38

219
R2 exp

(−27
32R

)
+ . . . (4.11)

Thus, the total energy (including nuclear repulsion)

E tot
RHF(R)∼−

(
27

32

)2

− 1

2R
− 5 ·38

219
R2 exp

(−27
32R

)
+ . . . (4.12)

is wrong at R → ∞ limit and the way that it is approached is also incorrect. This is because,

in this limit, the RHF description of the molecule is a superposition of atoms and ions. [105]

4.3.2 Unrestricted Hartree-Fock

The UHF electronic energy expression is [17]

E = 〈ψα |h |ψα〉+
〈
ψβ

∣∣h ∣∣ψβ
〉
+
〈
ψαψβ

∣∣ψαψβ
〉

(4.13)

and this requires exactly the same one- and two-electron integrals as the RHF energy (Eq.

4.8) presented in Appendix A. Minimizing EUHF with respect to both the exponent ζ and the

mixing parameter t at various bond lengths R yields the EUHF, ζUHF and tUHF values in Table

4.1.

As for RHF at R = 0, the optimal energy and exponent are the Kellner values EUHF =

−(27/16)2 and ζUHF = 27/16.
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As R increases, the energy EUHF increases monotonically, but the exponent ζUHF de-

creases to a minimum (0.9993) at R ≈ 4.1 and then increases at longer bond lengths. The

mixing parameter tUHF is zero until the symmetry-breaking point R ≈ 2.28 and then rises

monotonically to unity as R grows.

At large R, the expression (Eq. 4.13) becomes

E ∼ ζ 2 −2ζ − 1

R
+ . . . (4.14)

and minimization of this yields

ζUHF(R)∼ 1− 1

6
R3 exp(−2R)+ . . . (4.15)

tUHF(R)∼ 1− 2

3π
R2 exp(−R)+ . . . (4.16)

EUHF(R)∼−1− 1

R
− 1

6
R2 exp(−2R)+ . . . (4.17)

Thus, the total energy (including nuclear repulsion)

E tot
UHF(R)∼−1− 1

6
R2 exp(−2R)+ . . . (4.18)

is correct at R → ∞ limit but the way that it is approached is incorrect. This is because, in this

limit, the UHF description of the molecule is a superposition of singlet- and triplet-coupled

atoms without any dispersion interaction.

4.3.3 Configuration Interaction

Since at R = 0 the doubly-excited determinant has an infinite energy, the mixing parameter

is θCI = 0 and the optimal energy and exponent are the RHF values ECI =−(27/16)2 and

ζCI = 27/16.
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As R increases, the energy ECI increases monotonically but the exponent ζCI decreases

to a minimum (0.9976) at R ≈ 4.3 and then increases at longer bond lengths. The mixing

parameter θCI grows monotonically from zero toward its limit.

At large R, the Hamiltonian matrix is asymptotically

HCI ∼

⎡
⎢⎣ζ 2 − 27

16ζ − 3
2R + . . . 5

16ζ − 1
2R + . . .

5
16ζ − 1

2R + . . . ζ 2 − 27
16ζ − 3

2R + . . .

⎤
⎥⎦ (4.19)

and minimization of its lowest eigenvalue yields

ζCI(R)∼1+
1

45

[
6(γ + lnR)−23

]
R4 exp(−2R) (4.20)

θCI(R)∼1− 4

3π
R2 exp(−R) (4.21)

ECI(R)∼−1− 1

R
+

1

45

[
6(γ + lnR)−28

]
R3 exp(−2R) (4.22)

where γ = 0.577215664901 . . ., is the Euler-Mascheroni constant. [106] Thus, the total

energy (including nuclear repulsion)

E tot
CI (R)∼−1+

1

45

[
6(γ + lnR)−28

]
R3 exp(−2R) (4.23)

is correct at R → ∞ limit but the way that it is approached is incorrect. Because of the

restricted nature of the orbitals in the present CI wavefunction, there is a root around

R ≈ 51.3 for E tot
CI and around R ≈ 17.3 for the ζCI. This means that the CI energy curve

within the single-ζ basis has a hump– with a maximum of a very small value of 1.9×10−43

above the limit– around R ≈ 51.8 and goes to its limit, −1, from above. A similar maximum

exists in ζRCI expansion with the value of 1.0×10−13 which occurs around R ≈ 17.8. We

have verified that the use of unrestricted CI can cure this small hump but we do not analyze

this wavefunction here. Similar behaviors have been observed for RFB as we show in the
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next subsection. It should be noted that although CI correctly dissociates the molecule into

singlet-coupled atoms and recovers some static correlation at moderate bond lengths, it

completely lacks any dispersion interaction in this basis.

4.3.4 Restricted Frost-Braunstein

The RFB results shown in Table 4.1 are more accurate and complete than those previously

reported by FB [74] which enable us to analyze and understand the behavior of the RFB

wavefunction more thoroughly.

Hylleraas showed [28] that for H2 molecule at R = 0, the optimal energy, exponent and

linear coefficient are ERFB =−2.89112, ζRFB = 1.8497 and pRFB = 0.3658, respectively.
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Fig. 4.1 Variation of pRFB with the bond length R.

As R increases, the exponent ζRFB decreases monotonically but slowly toward unity.

The linear coefficient pRFB (see Fig. 4.1) is remarkably constant, and somewhat lower than

the Kato cusp [26] value (1/2) until R ≈ 3, but then increases rapidly and has a pole at

R ≈ 5.5, where pRFB changes sign, just as it does for two electrons on a sphere of increasing
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radius. [107] The pole occurs when the relative weight of ΨRHF goes to zero and the RFB

wavefunction simply becomes proportional to r12ΨRHF.

Beyond the pole, the coefficient pRFB is negative and slowly approaches its asymptotic

value of −5/8. Our analysis of pRFB can be compared with that reported by FB, [74] however,

they plotted pRFB only for R < 5.5 and, consequently, did not comment on the presence of

the pole and sign change of pRFB for longer bond lengths.

The r12 factor amplifies the covalent part of the RHF wavefunction but not the ionic

part. [74] However, whereas this amplification should grow exponentially [108] with R, it

grows only linearly in the RFB wavefunction. Because the ionic contaminant is not removed

quickly enough as R grows, the energy ERFB increases monotonically but approaches its limit

too slowly.

At large R, the overlap, kinetic, nuclear-attraction and electron-repulsion matrices are

asymptotic to

SRFB ∼

⎡
⎢⎣ 1 R

(
1
2
+ 35

32
λ +λ 2

)
R
(

1
2
+ 35

32
λ +λ 2

)
R2
(

1
2
+6λ 2

)
⎤
⎥⎦ (4.24)

TRFB ∼ ζ 2

⎡
⎢⎣ 1 R

(
1
2
+ 25

32
λ + 1

2
λ 2
)

R
(

1
2
+ 25

32
λ + 1

2
λ 2
)

R2
(

1
2
+4λ 2

)
⎤
⎥⎦ (4.25)

URFB ∼−ζ

⎡
⎢⎣ 2+2λ R

(
1+ 23

8
λ + 59

16
λ 2 +λ 3 +λ 5 + . . .

)
R
(
1+ 23

8
λ + 59

16
λ 2 +λ 3 +λ 5 + . . .

)
R2
(
1+λ +9λ 2 +10λ 3

)
⎤
⎥⎦ (4.26)

VRFB ∼ ζ

⎡
⎢⎣

5
16
+ 1

2
λ Rλ

Rλ R2
(

1
2
λ + 35

32
λ 2 +λ 3

)
⎤
⎥⎦ (4.27)
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Minimization of the energy yields

ζRFB(R)∼ 1+
367

160R2
+ . . . (4.28)

pRFB(R)∼−5

8
− 127

64R
+ . . . (4.29)

ERFB(R)∼−1− 1

R
+

207

80R2
+ . . . (4.30)

Thus, the total energy (including nuclear repulsion)

E tot
RFB(R)∼−1+

207

80R2
+ . . . (4.31)

is correct at R → ∞ limit but approaches its limit slowly from above. [74] This is the

most serious deficiency of the RFB wave function and arises because, although it correctly

dissociates the molecule into singlet-coupled atoms, the ionic contaminant of the RHF wave

function is removed far too slowly as the bond is lengthened.

4.3.5 Unrestricted Frost-Braunstein

To our knowledge, this is the first report on the UFB wavefunction for H2, the analysis of

which reveals some new features that have wider implications for explicitly correlated calcu-

lations. We searched for stationary points of the UFB energy expression which correspond to

either symmetric, t = 0, or symmetry-broken (SB), t �= 0, solutions and showed the results in

Table 4.1. We define the UFB energy to be the lowest energy solution at each R. The UFB

results are shown in bold in Table 4.1.

At R = 0, as for RFB, the optimal energy, exponent and linear coefficient are EUFB =

−2.89112, ζUFB = 1.8497 and pUFB = 0.3658. The EUFB values in Table 4.1 increase

monotonically towards their limiting value of 1 as the bond length increases. A SB solution

appears around R ≈ 3.05, however, between R ≈ 3.05 and R ≈ 3.11, we observe that this
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Fig. 4.2 Variation of pUFB and pSB2 with the bond length R.

solution is higher than ERFB. This is in contrast to the more familiar HF picture where the

SB solution always lies below ERHF.

Up until R ≈ 3.05, tUFB = tRFB = 0 and only the restricted solution exists. At this bond

length, a SB solution appears with t = 0.5018. Between 3.05 < R < 3.12 this solution is

higher in energy than ERFB, but beyond R = 3.12 it drops below ERFB and permits EUFB to

split away from the restricted solution. At this bifurcation point, tUFB jumps discontinuously

from 0 to 0.5880.

A similar discontinuity exists for the linear coefficient p. The boldface path in Table 4.1

shows that pUFB behaves like pRFB as the bond lengthens until R = 3.12 where it shows

an abrupt change from pUFB ≈ 0.47 to 0.0640 (Fig. 4.2). Although, the exponent ζUFB

is monotonically decreasing toward unity, it shows similar jump going from 1.0727 at

R = 3.11 to 1.0212 at R = 3.12. At large R, the overlap, kinetic, nuclear-attraction and
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electron-repulsion matrices are asymptotic to

SUFB ∼

⎡
⎢⎣ 1 R

(
1+2λ 2

)
R
(
1+2λ 2

)
R2
(
1+6λ 2

)
⎤
⎥⎦ (4.32)

TUFB ∼ ζ 2

⎡
⎢⎣ 1 R

(
1+λ 2

)
R
(
1+λ 2

)
R2
(
1+4λ 2

)
⎤
⎥⎦ (4.33)

UUFB ∼−ζ

⎡
⎢⎣ 2+2λ R

(
2+2λ +3λ 2 +2λ 3 +2λ 5 + . . .

)
R(2+2λ +3λ 2 +2λ 3 +2λ 5 + . . .) R2

(
2+2λ +9λ 2 +8λ 3

)
⎤
⎥⎦ (4.34)

VUFB ∼ ζ

⎡
⎢⎣ λ Rλ

Rλ R2
(
λ +2λ 3

)
⎤
⎥⎦ (4.35)

and minimization of the resulting energy yields

ζUFB(R)∼ 1+
2

R5
+ . . . (4.36)

tUFB(R)∼ 1−O[R2 exp(−R)] (4.37)

pUFB(R)∼ 2

R4
+ . . . (4.38)

EUFB(R)∼−1− 1

R
− 4

R8
+ . . . (4.39)

Thus, the total energy (including nuclear repulsion)

E tot
UFB(R)∼−1− 4

R8
+ . . . (4.40)

is correct at R → ∞ limit but approaches its limit, −1, as O(R−8), rather than the correct

O(R−6) behavior that arises due to dispersion. [109] This is because the adopted single-ζ

basis lacks any polarization functions and the r12 term is only able to capture the induced-

quadrupole induced-quadrupole interaction.
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4.4 Potential Energy Curves

The data in Table 4.1 have been used to generate RHF, UHF, CI, RFB and UFB PECs that

are shown in Fig. 4.3. The UFB curve shows the lowest-energy UFB solution at each bond

length, and the corresponding energies are shown in bold in Table 4.1.
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Fig. 4.3 Single-ζ RHF, UHF, RFB , UFB and CI potential energy curves for H2.

The r12 correlation factor in the RFB wavefunction lowers the energy at long bond lengths

where the RHF wavefunction performs poorly because of the ionic contamination, however,

the growth of r12 is far too slow to remove it completely, resulting in slow decay of the energy

(Eq. 4.31) and a “hump” in the RFB PEC around R = 5. The relaxation of the determinant

in the UFB wavefunction is able to cure this hump by breaking the spin-symmetry of the

orbitals. For longer bond lengths, the UFB curve becomes very similar to, but distinct from,

the UHF curve. One of the most striking features in Fig. 4.3 is the kink in the UFB curve that

occurs around R ≈ 3.12 where the lowest-energy solution switches from the symmetric to a
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SB solution. In order to understand the origin of this behavior we consider a simple model

system in the following subsection.

4.4.1 UFB/STO-1G Energy Curve: A Simple Model

In this model we approximate each STO with a single uncontracted Gaussian function with

exponent α = 0.27095. This simplifies the necessary integrals and allows us to perform a

exhaustive search for all stationary points of the UFB energy. This model will obviously

change the quantitative picture, however, as will be shown, it retains the same qualitative

characteristics as our STO model.

Fig. 4.4 shows the UFB/STO-1G PECs for a range of bond lengths that includes three

points of interest labeled R1, R2 and R3. Fig. 4.5 shows the UFB energy as a function of the

symmetry breaking parameter, t, for a selection of bond lengths. These plots can be used to

elucidate the PECs in Fig. 4.4.
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Fig. 4.4 Variation of the RFB and symmetry broken STO-1G electronic energies with R
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Fig. 4.5 Variation of the UFB/STO-1G energy function with mixing parameter t

At bond lengths shorter than R1, only the RFB solution exists and this is shown by the

single minimum in Fig. 4.5a. At R1 two equivalent SB solutions appear which correspond

to the inflection points shown in Fig. 4.5b. These new solutions are unstable and, as the

bond lengthens, each of these bifurcates into one stable and one unstable SB solution,

corresponding to the local minima and maxima in Fig. 4.5c, respectively. Figs. 4.4 and 4.5c

show that between R1 and R2 these SB solutions are all higher in energy than the symmetric

RFB solution. At R2 the stable UFB solutions touch the abscissa (Fig. 4.5d) and become

degenerate with the RFB solution. This results in a discontinuous change in the value of t

for the UFB energy. Between R2 and R3, the difference between the RFB and UFB energies

increases, however, in this interval the RFB solution is still RFB→UFB stable, as indicated

by the shallow minimum at t = 0 in Fig. 4.5e. At R3 the unstable UFB solutions collapse

onto the RFB solution which, at this point, also becomes RFB→UFB unstable. Beyond R3

only the SB solution is stable and remains the lowest energy solution.
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The above analysis is consistent with Fig. 4.3 and the observations made in Subsection

4.3.5. We have verified that in the STO limit the specific values of R1, R2 and R3 are between

3.04 < R1 < 3.05, 3.11 < R2 < 3.12 and 3.27 < R3 < 3.28.

4.4.2 Spectroscopic Parameters

After adding the nuclear repulsion energy 1/R, one can find the equilibrium bond length Re,

well depth De and harmonic vibrational frequency ωe at the RHF, UHF, CI, RFB and UFB

levels. These are given in Table 4.2.

Table 4.2 Equilibrium bond length Re, harmonic vibrational frequency ωe and well depth De
at various levels of theory

RHF UHF CI RFB UFB Exacta

Re / a.u. 1.385 1.385 1.430 1.375 1.375 1.401

ωe/cm−1 4578 4578 4185 4566 4566 4401

De / a.u. 0.41632 0.12823 0.14794 0.15612 0.15612 0.17448

a Refs. [110, 111]

Our RFB bond length (1.375 bohr) is much longer than that reported by FB (1.34 bohr)

and our well depth (156 mEh) is slightly larger than theirs (151 mEh). Both these values

are closer to the exact values reported in the literature and we believe, therefore, that the

calculations of FB contained significant errors which have been propagated in the literature

ever since.

We have also investigated the effects of higher powers of r12 in the wavefunction. Adding

the r2
12 term to the FB wavefunction introduces an additional degree of freedom and improves

the bond length to Re = 1.380 bohr. Improvements to the energy are of the order of a

millihartree around the equilibrium bond length and tenths of a millihartree at longer bond

lengths. Substituting the linear r12 term by the quadratic power, on the other hand, affects

the equilibrium bond length by less than 10−3 bohr.
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4.4.3 Correlation Energies

The correlation energy, Ec, of a method is defined as the difference in energy with respect

to UHF. Fig. 4.6 shows the correlation energies as a function of the H2 bond length for CI

and UFB, and compares these to the near-exact curve of Rassolov, Ratner and Pople.[93]

The CI and UFB curves were generated using a single Slater basis where all parameters in
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Fig. 4.6 The CI, UFB and near-exact correlation energies for H2.

the wavefunction, including exponents, were optimized for each bond length. Rassolov et al.

obtained the near-exact curve using the modified cc-pV6Z basis. [93]

At R = 0, the UFB correlation energy (Ec
UFB = −0.04346) can be compared to that of

the helium atom (Ec =−0.0420). [112] The total energy is variational, despite Ec
UFB going

below the exact value, as the HF references use different basis sets. As R increases, the

magnitude of Ec
UFB decreases to −0.02728 at R ≈ 1.68, indicating the electrons in the He

atom benefit more from correlation than in the molecule for shorter bond lengths. Beyond

R ≈ 1.68, Ec
UFB increases in magnitude slightly before decaying to zero for longer bond

lengths, matching the qualitative behavior of the exact Ec curve.



4.4 Potential Energy Curves 89

The kink that occurs at R2 ≈ 3.12 in Fig. 4.3 is also apparent in Fig. 4.6. Beyond R2,

the correlation energy is predominantly static in nature and the single determinant UFB

wavefunction is unable to effectively capture it. Thus, Ec
UFB decays rapidly towards 0 while

ΨUFB approaches ΨUHF. This is reflected in the behavior of pUFB shown in Fig. 4.2 and

Table 4.1.

The similarity of UFB to UHF in the symmetry-broken region can be understood by

again considering a single-zeta Gaussian basis in the vicinity of the symmetry breaking point.

Let θ = tπ/4. Using Eqs. 3.7a and 3.7b , one can write

ΨUHF

ΨRHF
=

ψα (r1)ψβ (r2)

ψ1 (r1)ψ1 (r2)

=
[ψ1 (r1)cos(θ)+ψ2 (r1)sin(θ)] [ψ1 (r2)cos(θ)−ψ2 (r2)sin(θ)]

ψ1 (r1)ψ1 (r2)

= cos2(θ)
[

1+

(
ψ2 (r1)

ψ1 (r1)
− ψ2 (r2)

ψ1 (r2)

)
tan(θ)− ψ2 (r1)ψ2 (r2)

ψ1 (r1)ψ1 (r2)
tan2(θ)

]
(4.41a)

Within the simple framework of STO-1G basis, one can write

ψ2(r)
ψ1(r)

= c

⎡
⎣e−α(r−R

2 )
2

− e−α(r+R
2 )

2

e−α(r−R
2 )

2

+ e−α(r+R
2 )

2

⎤
⎦

= c tanh(αR · r)

(4.41b)

Therefore, for R values which are very close to the symmetry-breaking point, θ is very small

and one would be able to obtain

ΨUHF = ΨRHF{1+ c θ [tanh(αR · r1)− tanh(αR · r2)]+O(θ 2)}

≈ ΨRHF

[
1+ c θ α R · (r1 − r2)+O(θ 2)

] (4.41c)
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where c is a constant and α is the Gaussian exponent. Thus, to first-order, the transition from

RHF to UHF introduces an r12-like term into the wavefunction, leaving the FB correlation

term almost redundant.

The Fig. 4.6 shows that the UFB wavefunction can qualitatively reproduce the complex

structure of the near-exact correlation energy curve. It also shows that UFB is able to capture

more of the correlation energy than CI for bond lengths shorter than R= 1.82, where dynamic

correlation dominates, but the reverse is true for longer bond lengths where static correlation

becomes more important.

4.5 Asymptotic Analysis

Frequently, in many problems arising in physics, the exact analytical solutions are not

available for many differential and integral equations. Generally, asymptotic analysis is

a branch of analysis which considers both developments in techniques and approximate

analytic solutions for problems in which a variable or parameter becomes either very large or

small or is in the vicinity of a point where the solution is not analytic. [113] The foundation

of modern asymptotic analysis has been laid by Poincaré who gave the precise and formal

description of the asymptotic series. [114] Seeking the asymptotic expansion of f (x), for

which, we assume a power series form for simplicity of the discussion without loss of

generality, one can have [3]

xnRn(x) = xn [ f (x)− sn(x)] (4.42)

where in Eq. 4.42, Rn(x) is the corresponding remainder

Rn(x)≈ x−n−1 (4.43)
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and sn(x) is the corresponding partial sum,

sn(x) = a0 +
a1

x
+

a2

x2
+ . . .+

an

xn (4.44)

respectively. If the conditions

lim
x→∞

xnRn(x) = 0 for fixed n (4.45)

lim
n→∞

xnRn(x) = ∞ for fixed x (4.46)

are satisfied, one can write

f (x)∼
∞

∑
n=0

anx−n (4.47)

Where the sign ∼ which is read "is asymptotic to" has been used instead of = which means

"is equal to". The equal sign is valid only in the limit of x → ∞ with restricting the asymptotic

series to the limited number of terms. [3]

As mentioned at the end of Sec. 4.1, for large values of R, the most difficult integrals

become exponentially small and the behaviors of the RHF, UHF, CI, RFB and UFB energies

can be investigated through using the asymptotic analysis techniques. The asymptotic analysis

of the optimized exponent ζ , the mixing parameter t, the linear correlation coefficient p,

determinant amplitudes θ and the energy of the wavefunctions considered in Eqs. 3.1– 3.5

reveals that, for large R, the decay behaviors can either be exponential or algebraic.

The asymptotic analyses of the RHF, UHF and CI wavefunctions for large R involves the

general form for the asymptotic expansion of the total energy

E tot(ζ , t,R)∼
∞

∑
m=−∞

∞

∑
n=0

[
cmn(ζ , t)+ c′mn(ζ , t) ln(R)

]
Rm exp(−nR) (4.48)

where c′mn is zero for RHF and UHF large-R asymptotic expansions whereas it is nonzero

for CI asymptotic expansion due to the multiplication of natural logarithms of R with power
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functions of R which can compete with similar power functions of R in the asymptotic

expansion. Note that in order to obtain the asymptotic expression of the total energy at large

bond lengths (Eq. 4.48), Ei(z) has been expanded as

Ei(z)∼ ez (1/z+1/z2 + . . .) (4.49)

The details of each of the approaches required for obtaining the asymptotic expansions of

the RHF, UHF and CI wavefunctions are subjects of the following subsections. In the final

subsection, we extend our UFB model to the generalized FB (GFB) wavefunction where the

rn
12 is the correlation factor and n is a positive integer to see whether it is possible to capture

all the London dispersion forces within our minimal basis calculations.

4.5.1 Restricted Hartree-Fock

The energy expression for the RHF wavefunction (t = 0) was given in Eq. 4.8. At large R,

this energy expression can be expanded as a Taylor series around ζ = 27/32 up to second

order as

E tot
RHF(ζ ,R)∼

∞

∑
m=−∞

∞

∑
n=0

cmn(ζ )Rm exp(−nR) (4.50)

Restricting m and n such that −1 ≤ m ≤ 4 and 0 ≤ n ≤ 1, Eq. 4.50 becomes

E tot
RHF ∼ (

c−10R−1 + c00R0
)

e−0
27
32

R +
(
c−11R−1 + c01R0 + c11R1 + c21R2 + c31R3 + c41R4

)
e−1

27
32

R

(4.51)

where the nonzero coefficients can be given as

c−10 =−1
2 c00 =−(27

32

)2
+
(
ζ − 27

32

)2

c−11 =
13
8 c01 =−297

256 −3
(
ζ − 27

32

) (4.52)
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c11 =−1701
8192 +

171
256

(
ζ − 27

32

)
+ 91

48

(
ζ − 27

32

)2
c21 =− 32805

524288 − 1701
4096

(
ζ − 27

32

)− 909
512

(
ζ − 27

32

)2

c31 =
32805
524288

(
ζ − 27

32

)
+ 8505

16384

(
ζ − 27

32

)2
c41 =− 32805

1048576

(
ζ − 27

32

)2

(4.53)

At the R → ∞ limit, E tot
RHF ∼ c00 ∼−(27

32

)2
. By solving

(
∂E tot

RHF/∂ζ
)
= 0 (4.54)

for ζ , one finds that

ζRHF ∼ 27

32
+

[
−32805 R3

1048576
+ . . .

]
e−

27
32 R + . . . (4.55)

4.5.2 Unrestricted Hartree-Fock

Here, we seek to find the leading terms in the asymptotic expansions of ζUHF and tUHF (Eqs.

4.15 and 4.16, respectively). The UHF energy expression can be written as

EUHF = 2h11 cos( tπ
4 )

2 +2h22 sin( tπ
4 )

2 + J11 cos( tπ
4 )

4

+J22 sin( tπ
4 )

4 +(2J12 −4K12) cos( tπ
4 )

2 sin( tπ
4 )

2

(4.56)

in which, Ji j and Ki j are the Coulomb and exchange integrals. Expanding Eq. 4.56 as a

Taylor series around (ζ , t) = (1,1) up to second order, one can cast Eq. 4.56 into the form of

E tot
UHF(ζ , t,R)∼

∞

∑
m=−∞

∞

∑
n=0

cmn(ζ , t)Rm exp(−nR) (4.57)
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In order to obtain the ζUHF, tUHF expansions, it is sufficient to restrict m and n such that

−1 ≤ m ≤ 6 and 0 ≤ n ≤ 2, respectively to get

E tot
UHF ∼ (

c−10R−1 + c00R0
)

e−0R +
(
c−11R−1 + c01R0 + c11R1 + c21R2 + c31R3 + c41R4

)
e−1R

+
(

c−12R−1 + c02R0 + c12R1 + c22R2 + c32R3 + c42R4 + c52R5 + c62R6
)

e−2R

(4.58)

where the nonzero coefficients are

c−10 =−π2

8 (t −1)2 c00 =−1+(ζ −1)2 + 5π2

64 (t −1)2ζ

c−11 =−13π
16 (t −1) c01 =

11π
16 (t −1)+ 3π

2 (ζ −1)(t −1)

c11 =
7π
48 (t −1)− 19π

48 (ζ −1)(t −1) c21 =
5π
48 (t −1)+ π

2 (ζ −1)(t −1)

c31 =−5π
48 (ζ −1)(t −1)− 55π

96 (ζ −1)2(t −1) c41 =
5π
96 (ζ −1)2(t −1)

c−12 =−1
8 c02 =

17
16 +

21
16(ζ −1)

c12 =
7

12 − 23
24(ζ −1) c22 = c02 − 11

24

c32 =
11
72 +

5
72(ζ −1)+

(
8γ−19

240

)
π2(t −1)2

c42 =
5

144 +
13
144(ζ −1)+ 5π2

288 (t −1)2

−
(

96γ−353
1440

)
π2(ζ −1)(t −1)2

c52 =− 5
72(ζ −1)− 5π2

144 (ζ −1)(t −1)2

−35
72(ζ −1)2 +

(
48γ−239

720

)
π2(t −1)2(ζ −1)2

c62 =
5
72(ζ −1)2 + 5π2

144 (ζ −1)2(t −1)2

(4.59)

where, γ is the Euler-Mascheroni constant. [3, 81] Note that at R→∞ limit, E tot
UHF ∼ c00 ∼−1.

Solving (
∂E tot

UHF/∂ t
)
= 0 (4.60)

for t and expanding the result around ζ = 1, one finds that

tUHF ∼ 1+

[
−2R2

3π
+ . . .

]
e−R + . . . (4.61)
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The differentiation of the energy expression with respect to ζ

(
∂E tot

UHF/∂ζ
)
= 0 (4.62)

provides us with

ζUHF ∼ 1+

[
−R3

6
+ . . .

]
e−2R + . . . (4.63)

4.5.3 Configuration Interaction

The energy expression for the CI wavefucntion was given in Eq. 3.23. At large bond lengths,

the CI energy expression can be expanded as a Taylor series around (ζ ,θ) = (1,1) up to

second order and be cast into the form of Eq. 4.48. Restricting m and n such that −1 ≤ m ≤ 6

and 0 ≤ n ≤ 2, one can get

E tot
CI ∼

(
c−10R−1 + c00R0

)
e−0R +

(
c−11R−1 + c01R0 + c11R1 + c21R2 + c31R3 + c41R4

)
e−1R

+
[
c−12R−1 + c02R0 + c12R1 + c22R2 + c32R3 + c42R4 + c52R5 + c62R6

+
(

c′−12R−1 + c′02R0 + c′12R1 + c′22R2 + c′32R3 + c′42R4 + c′52R5
)

ln(R)
]

e−2R

(4.64)

where the nonzero coefficients can be given as

c−10 =−π2

16 (θ −1)2 c00 =−1+(ζ −1)2 + 5π2

128 (θ −1)2ζ

c−11 =−13π
16 (θ −1) c01 =

11π
16 (θ −1)+ 3π

2 (ζ −1)(θ −1)

c11 =
7π
48 (θ −1)− 19π

48 (ζ −1)(θ −1)

−91π
96 (ζ −1)2(θ −1)

c21 =
5π
48 (θ −1)+ π

2 (ζ −1)(θ −1)

+131π
96 (ζ −1)2(θ −1)

c31 =−5π
48 (ζ −1)(θ −1)− 55π

96 (ζ −1)2(θ −1) c41 =
5π
96 (ζ −1)2(θ −1)

c−12 =
(193+384γ)

320 − 21
160(ζ −1)− 55

128(ζ −1)2 c02 =
(99+192γ)

80 + 389
160(ζ −1)+ 21

160(ζ −1)2
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c12 =
(80γ−57)

40 − (133+32γ)
40 (ζ −1)

− (719+64γ)
160 (ζ −1)2 + π2

48 (ζ −1)2(θ −1)2

+π2

24 (ζ −1)(θ −1)2 + π2

48 (θ −1)2

c22 =
(32γ−45)

40 − 4(γ−6)
5 (ζ −1)2−

(192γ−113)
120 (ζ −1)+ 7π2

384 (ζ −1)2(θ −1)2

+23π2

384 (ζ −1)(θ −1)2 + 13π2

384 (θ −1)2

c32 =
(8γ−19)

60 + 11
5 (ζ −1)2−

(64γ−107)
60 (ζ −1)− 3π2

64 (ζ −1)2(θ −1)2

+5π2

576 (ζ −1)(θ −1)2 + 11π2

576 (θ −1)2

c42 =
5
72 +

2(11+12γ)
45 (ζ −1)2 − (96γ−433)

360 (ζ −1)

−π2

24 (ζ −1)2(θ −1)2 − 19π2

1152 (ζ −1)(θ −1)2

+ 5π2

1152(θ −1)2

c52 =
(48γ−319)

180 (ζ −1)2 − 5
36(ζ −1)

− π2

192(ζ −1)2(θ −1)2 − 5π2

576 (ζ −1)(θ −1)2
c62 =

5
36(ζ −1)2 + 5π2

576 (ζ −1)2(θ −1)2

c′−12 =
6
5 c′02 = 2c′−12

c′12 = 2− 4
5(ζ −1)− 2

5(ζ −1)2 c′22 =
4
5 − 8

5(ζ −1)− 4
5(ζ −1)2

c′32 =
2
15 − 16

15(ζ −1) c′42 =− 4
15(ζ −1)+ 8

15(ζ −1)2

c′52 =
4
15(ζ −1)2

(4.65)

At the R → ∞ limit, E tot
CI ∼ c00 ∼−1. Solving

(
∂E tot

CI /∂θ
)
= 0 (4.66)

for θ , one finds that

θCI ∼ 1+

[
−4R2

3π
+ . . .

]
e−R + . . . (4.67)

The differentiation of the ERCI expression with respect to ζ

(
∂E tot

CI /∂ζ
)
= 0 (4.68)

results in

ζCI ∼ 1+

[
[6(γ + ln(R))−23]R4

45
+ . . .

]
e−2R + . . . (4.69)
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4.5.4 Generalized Frost-Braunstein

In order to investigate the possibility of capturing the correct dispersion behavior of R−6 in

the energy at large R within our minimal basis model, we have proposed the GFB ansatz with

rn
12 as the correlation factor. The GFB wavefunction can be defined as

ΨGFB = ψα(r1, t)ψβ (r2, t)
[
1+ p

(r12

R

)n] ∀n ∈ N (4.70)

where N is the set of all positive integers (natural numbers) and the spin-unrestricted MOs

ψα and ψβ were defined in Eqs. 3.7a and 3.7b, respectively. Note that we have scaled the

correlation factor by R−n to make it dimensionless and to simplify the matrix elements. In

the present analysis, because we have targeted the algebraic decay of EGFB, ζGFB and pGFB,

the overlap SAB between two STO basis functions φ S
A and φ S

B in Eqs. 3.6a and 3.6b, which

decays exponentially, can be neglected. Hence, letting x = 1/R and λ = x/ζ , the asymptotic

dependencies of EGFB, ζGFB and pGFB can be obtained through minimizing the GFB energy

expression

EGFB =
〈ΨGFB|H |ΨGFB〉
〈ΨGFB|ΨGFB〉 (4.71)

where, the t dependency has been separated out in the overlap matrix

SGFB = S′ − 1
2 cos2

(πt
2

)
S′′ (4.72)

and likewise, for TGFB, UGFB and VGFB. The necessary matrices are given by

S′ ∼
⎡
⎣ 1 1+(n)2 λ 2 + 5

8 (n−2)4 λ 4 + . . .

1+(n)2 λ 2 + 5
8 (n−2)4 λ 4 + . . . 1+(2n)2 λ 2 + . . .

⎤
⎦ (4.73)

T′ ∼ ζ 2

⎡
⎣ 1 1+ 1

2 (n)2 λ 2 + 1
8 (n−2)4 λ 4 + . . .

1+ 1
2 (n)2 λ 2 + 1

8 (n−2)4 λ 4 + . . . 1+ 1
3 (3n)2 λ 2 + . . .

⎤
⎦ (4.74)
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U′ ∼ −2ζ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1+λ + 3

4 (n)2 λ 2 +n2 λ 3 + 3
8 (n−2)4 λ 4

+n(n−2)[ 5
8 (n−1)2 −1]λ 5 + . . .

1+λ + 3
4 (n)2 λ 2 +n2 λ 3 + 3

8 (n−2)4 λ 4

+n(n−2)[ 5
8 (n−1)2 −1]λ 5 + . . .

1+λ + 3
4 (2n)2 λ 2 + . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.75)

V′ ∼ x

⎡
⎣ 1 1+(n−1)2 λ 2 + 5

8 (n−3)4 λ 4 + . . .

1+(n−1)2 λ 2 + 5
8 (n−3)4 λ 4 + . . . 1+ . . .

⎤
⎦ (4.76)

and

S′′ ∼

⎡
⎢⎣ 0 S12 − (n+4) (n+6) Γ(n+3)

3×2n+4 λ n

S12 − (n+4) (n+6) Γ(n+3)
3×2n+4 λ n S22 − (2n+4) (2n+6) Γ(2n+3)

3×22n+4 λ 2n

⎤
⎥⎦ (4.77)

T′′ ∼

⎡
⎢⎣ 0 T12 +

ζ 2 (n−6) Γ(n+5)
3×2n+4 (n+3)

λ n

T12 +
ζ 2 (n−6) Γ(n+5)

3×2n+4 (n+3)
λ n T22 − ζ 2 (5n+3) Γ(2n+5)

3×22n+3 (2n+1) (2n+3)
λ 2n

⎤
⎥⎦ (4.78)

U′′ ∼

⎡
⎢⎣ 0 U12 +

ζ (n+4) [6+(n+6)λ ] Γ(n+3)
3×2n+3 λ n

U12 +
ζ (n+4) [6+(n+6)λ ] Γ(n+3)

3×2n+3 λ n U22 +
ζ (2n+4) [6+(2n+6)λ ] Γ(2n+3)

3×22n+3 λ 2n

⎤
⎥⎦ (4.79)

V′′ ∼

⎡
⎢⎣ V11 − 5

8
ζ V12 − ζ (n+3) (n+5) Γ(n+2)

3×2n+3 λ n

V12 − ζ (n+3) (n+5) Γ(n+2)
3×2n+3 λ n V22 − ζ (2n+3) (2n+5) Γ(2n+2)

3×22n+3 λ 2n

⎤
⎥⎦ (4.80)

where Γ(a) and (a)k are the Gamma function and Pochhammer symbol, respectively. At

large R, one can assume that the optimal values of ζ , p and t will be close to 1, 0 and 1,

respectively. Thus, it is possible to consider the Taylor expansion of EGFB around the point

(ζ , p, t) = (1,0,1)

EGFB = E0 +g†z+
1

2
z†Az+ . . . (4.81)
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where the step z, the gradient g and the Hessian A are

z =

⎡
⎢⎢⎢⎢⎣

Δζ

Δp

Δt

⎤
⎥⎥⎥⎥⎦ g =

⎡
⎢⎢⎢⎢⎣

∂E
∂ζ

∂E
∂ p

∂E
∂ t

⎤
⎥⎥⎥⎥⎦ A =

⎡
⎢⎢⎢⎢⎣

∂ 2E
∂ζ 2

∂ 2E
∂ζ ∂ p

∂ 2E
∂ζ ∂ t

∂ 2E
∂ p∂ζ

∂ 2E
∂ p2

∂ 2E
∂ p∂ t

∂ 2E
∂ t ∂ζ

∂ 2E
∂ t ∂ p

∂ 2E
∂ t2

⎤
⎥⎥⎥⎥⎦ (4.82)

respectively and the partial derivatives are evaluated at (ζ , p, t) = (1,0,1). The step that

minimizes the energy truncated at second order satisfies

Az =−g (4.83)

and gives the energy EGFB = E0 +ΔE where

ΔE =−1

2
g†Ag (4.84)

Using elementary calculus, one finds that the asymptotic forms of the gradient and the

Hessian are

g ∼

⎡
⎢⎢⎢⎢⎣

0

4n(n−2)x5

0

⎤
⎥⎥⎥⎥⎦ A ∼

⎡
⎢⎢⎢⎢⎣

2 −n(n+1)x2 0

−n(n+1)x2 2n2x2 0

0 0 π2

32 (5−8x)

⎤
⎥⎥⎥⎥⎦ (4.85)

Solving Eq. 4.83 and evaluating Eq. 4.84, one discovers that

Δζ ∼−(n−2)(n+1)x5 (4.86)

Δp ∼−2(n−2)

n
x3 (4.87)

Δt = 0 (4.88)

ΔE ∼−4(n−2)2x8 (4.89)
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Considering the scale factor R−n in Eq. 4.70 and letting n = 1, Eqs. 4.36–4.40 can be

reproduced.

The result of this analysis shows that no analytic correlation function of r12 can capture

the dispersion in our minimal basis model.

4.6 Concluding Remarks

We have revisited the CMO model for H2, first considered by Frost and Braunstein in 1951,

extended it to the unrestricted case and analyzed its large-R behavior for any positive integer

power of r12.

For RFB we considered much longer bond lengths than FB and have shown the presence

of a pole in the correlation coefficient pRFB at R ≈ 5.5. The coefficient changes sign at this

point and approaches an asymptote of −5/8 as R → ∞, contrary to FB who stated pRFB “is

extremely large at internuclear distances greater than 5.0 a.u. .” [74] We also obtained values

for the equilibrium bond length and well depth that differ from, and we believe are more

accurate than those of FB.

UFB provides a significant improvement over RFB past the symmetry breaking point

where it is able to completely remove the hump in the RFB energy curve. The UFB model

also displays several surprising features including the presence of multiple solutions, a

non-smooth PEC, SB solutions that are higher in energy than the restricted solution, and

RFB→UFB stability in the presence of lower-energy UFB solutions.

We have considered higher powers of r12 and found the energetic effects of their inclusion

are small. The existence of multiple solutions for other powers of r12 was also observed.

The asymptotic analysis of the RHF, UHF, CI, RFB and UFB wavefunctions shows that

none of the PECs has the correct O(R−6) decay. The UFB energy demonstrates dispersion-

like O(R−8) decay which is an improvement over the CI and UHF with exponential decays.

Also, the large-R analysis of the GFB wavefunction in which, rn
12 is the correlation factor
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and n is a positive integer, reveals that no analytic function of r12 can capture the dispersion

within the minimal basis.

Whether or not these phenomena prevail in other explicitly correlated methods is an

important question for the R12 and F12 community to address.





CHAPTER5

Conclusion

In the present thesis, to attack the correlation problem, we have mainly focused on the

explicitly correlated wavefunction based methods. Our work begins with the analysis of

Nakatsuji’s highly-accurate free-complement (FC) method which is based on the theory

of the structure of the exact wavefunction. In this analysis, we have demonstrated that

the structure of the FC wavefunction –at least– at lower orders, is far from being optimal.

In comparison with the conventional FC method, we have shown that fewer number of

complement functions can be used to achieve lower energies for the ground state of He atom.

This is important because the number of complement functions in the FC method rapidly

increases with increasing the order.
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In the experiments on the first triplet excited state of the He atom, we have discovered

the presence of permanents, in addition to the determinants, in the FC expansion of the

wavefunction. These permanents are important for the energy convergence. For example, in

the calculation of the excited state of the He atom, adding one permanent to the conventional

4-terms FC expansion can improve the energy by ≈ 2 mEh at first order. Although keeping

the permanents in the FC expansion seems to be energetically favorable, their computational

cost becomes a major drawback at higher orders. This can be a possible reason explaining

why permanents have either been overlooked or discarded by Nakatsuji.

Armed with our knowledge from strengths and weaknesses of the FC method, we have

considered three possible compact ansätze with various correlation functions which can

be applied to many electron systems. Our main focus on the wavefunction with the linear

correlation factor for a better understanding of the mechanism of work of modern R12 and

F12 approaches has led us to the investigation of the correlated molecular orbital (CMO)

theory of the Frost and Braunstein (FB). We have revisited their work within both restricted

(R) and unrestricted formalisms (U) using single-ζ basis where we have derived all necessary

matrix elements in closed form except that of the nuclear-attraction with linear r12. We have

managed to reduce this matrix element to an accurate one-dimensional quadrature.

The analytic expressions and accurate quadrature enabled us to reproduce the FB results

for a wider range of bond lengths in H2. Hence, we observed the presence of a pole in

the correlation coefficient pRFB at R ≈ 5.5. The coefficient changes sign at this point and

approaches an asymptote of −5/8 as R → ∞, contrary to FB who stated pRFB “is extremely

large at internuclear distances greater than 5.0 a.u. .” [74] We also obtained values for the

equilibrium bond length and well depth that differ from, and we believe are more accurate

than those of FB.

Introducing the unrestricted FB (UFB) ansatz for the first time, we compared its perfor-

mance with those of RFB, restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF)
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and configuration interaction (CI) wavefunctions. Our UFB wavefunction provides significant

improvements over the RFB where after the symmetry breaking point, it completely removes

the hump in the RFB potential energy curve (PEC). UFB also shows surprising characteristics

such as the presence of multiple solutions, non-smooth PEC, symmetry-broken solutions that

are higher in energy than the restricted solution and RFB→UFB stability in the presence of

lower UFB solutions. These phenomena, particularly, the presence of the multiple solutions

can have remarkable impacts on the explicitly correlated methods especially on R12 and

F12 calculations within the unrestricted formalism: a converged result at some bond lengths

which has been identified as a minimum point on the potential energy surface may not be the

lowest possible solution, i.e. the global minimum.

Our detailed large-R asymptotic analysis of the RHF, UHF, CI, RFB and UFB wavefunc-

tions indicates that only RHF is unable to get the dissociation limit of the energy correct. Of

the other four methods, EUHF and EUFB both approach the correct limit from below, whereas

ERFB and ECI approach it from above. At large R, ECI is never more than 2×10−43Eh above

the limit. We have verified that use of the unrestricted orbitals in the CI wavefunction can

remove this small hump as well. We showed that none of these five PECs has the correct

O(R−6) decay. The UFB energy demonstrates dispersion-like O(R−8) decay which is an

improvement over the CI and UHF with exponential decays. Considering the generalized FB

(GFB) wavefunction where rn
12 is the correlation factor and n is a positive integer, we have

shown that no analytic function of r12 can capture the dispersion within the minimal basis.

This raises the question about the possibility of capturing the correct dispersion decay by

adding p functions to our basis set.

We have also found that the energetic effects of inclusion of the higher powers of r12 are

small. The existence of multiple solutions for other powers of r12 was also observed.





CHAPTER6

Responses to Examiners’ Questions

The present chapter tries to address and highlight some important questions raised by

examiners. We use Q for question and A for answer throughout this part.

1. Q: Eq. 4.4 assumes that there is an even weight in the fit at all values of distance. Is

there any merit for small n of applying a distance-related weighting function so that

the fit is more accurate for particular regions (e.g. near the core)?

A: It could well be a possibility. However, the present case provides a simple fit which

has extensively been used in textbooks and literature. Since in our study, the required

values of n are 8 and 9, this bottom-to-top fitting procedure is not a bottleneck and

inserting further complexity into the this process is not a necessity.
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2. Q: Exponents and coefficients are given to 50 significant figures. Was any special

treatment required in Mathematica for this given that a typical double precision code

would only yield about a third of this number of digits in a precise manner?

A: No. Mathematica in its local minimization code, "FindMinimum", adopts an

"automatic" approach by default. This approach chooses the direct search methods that

do not require derivatives of functions wherever the default derivative-based methods

face difficulties. The procedure proposed in the text helps FindMinimum code to find

the correct local minimum by providing good initial guesses.

3. Q: Why one should be worried about the linear correlation factor, "r12" and how does

this term affect the total energy values for complex systems?

A: Because of the linear dependence of the exact wavefunction on the interelectronic

separation r12 in the region of electron coalescence, the inclusion of r12 is a natural

way to account for the same characteristic in the trial wavefunction. This strategy leads

to a rapid convergence of the energy toward the basis set limit for which the traditional

algebraic methods fail seriously.

4. Q: Using the FB ansatz, can one get a reliable and accurate total energy of a particular

system even in its splitted form. For e.g.,

ETot = EKinetic +ENuc-electron +EExchange +ENuc-Nuc +ECoulomb +ECorrelation + . . .

(6.1)

If so, how?

A: The addition of the second determinant which is explicitly multiplied by the linear

correlation factor leads to an extra degree of variational flexibility in the trial wave-

function. This consequently lowers the energy of the FB wavefunction in comparison

with that of the HF method which can account for the first four terms in the splitted
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energy equation provided by the examiner. Thus, one expects to see the major effect

on the Coulomb-correlation part.

5. Q: Why focus so much on "minimal basis" and rather try some higher basis sets also?

A: The minimal basis models enable one to deal with analytic and closed forms for the

most if not all parts of the analysis. In addition to the simplicity in the calculations, the

main (qualitative) features of the analysis will remain the same for larger basis sets.

This fact has been shown in chapter 3 and implied at the end of the second paragraph

of the page 104.

6. Q: Will this UFB ansatz be feasible and bring correct descriptions of the nature of the

wavefunction present in complex systems like radicals? If so, how?

A: Yes, it is possible. In the subsections 3.8.6 and 3.8.7 of Ref. [17] two illustrative

cases were provided that we can build our UFB approach on them: CH3 radical

and H2 molecule. As we have shown in Chapters 3 and 4 for H2 molecule, by

adding an unrestricted determinant multiplied by the r12 factor to the first single

unrestricted wavefunction, one can obtain the 2 × 2 matrix eigenvalue equation to

achieve variational solutions. The same story can happen for methyl radical; however,

the calculation of many-electron integrals will be an important issue.

7. Q: Has this UFB ansatz some conformational effects as well?

A: Yes as is shown in subsection 4.4.2. Table 4.2 shows that the obtained spectro-

scopic parameters (including the equilibrium bond length) are different for FB ansätze

compared with those of other traditional methods.

8. Q: What if one goes beyond 2 electron system and looks for finding the reliable and

accurate PECs for Li2, CH4, etc? How difficult it is to solve beyond 2 e− systems and

whether high precision in the energy value for a particular system really matters in a

bigger perspective?
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A: As mentioned in Section 1.2, page 12, dealing with many-electron integrals is one

of the main drawbacks of explicitly correlated methods (including FB). Because in

principle, analytic integration is not always possible for arbitrary functions, this issue

has restricted the use of explicitly correlated methods for highly accurate calculations

on large systems.

Although numerical proofs can mirror the accuracy of the method, usually in practical

uses there is a balance between the cost and accuracy. In addition, accurate results

close to their non-relativistic limit can be compared with the experimental data to elicit

relativistic and quantum electrodynamic contributions. These can be further used to

calculate important physical and spectroscopic constants.
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APPENDIXA

The One- and Two-Electron Integrals Over

Slater-Type Orbitals for H2

Following the famous results of Hitler-London work on H2, Sugiura [82] managed to present

closed form analytic expressions for all necessary integrals arising from the MO calculation of

the PEC of H2 molecule. We present the results of his work here for the sake of completeness

allowing the interested reader to calculate and reproduce the RHF, UHF and CI electronic

energies and PECs for H2 molecule presented in Chapter 4.

Let X = ζ R where ζ is the exponent of the STO basis functions. The two-center overlap

integrals over Slater orbitals can be evaluated directly in confocal elliptical coordinates
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[4, 78, 82, 52] or using the Fourier convolution theorem [3] and can be expressed as

SAB = (1+X +X2/3)exp(−X) (A.1)

The one- and two-center kinetic and nuclear-attraction one-electron integrals are

TAA = 〈A|− ∇2

2
|A〉= X2

2
(A.2)

TAB = 〈A|− ∇2

2
|B〉= X2

2

(
1+X − X2

3

)
exp(−X) (A.3)

UAA = 〈A|− r−1
A − r−1

B |A〉=−(1+X)[1− exp(−2X)] (A.4)

UAB = 〈A|− r−1
A − r−1

B |B〉=−2X(1+X)exp(−X) (A.5)

and the two-electron Coulomb repulsion integrals are expressed as

〈AA|AA〉= 5X
8

(A.6)

〈AB|AB〉= 1−
(

1+
11

8
X +

3

4
X2 +

1

6
X3

)
exp(−2X) (A.7)

〈AA|AB〉=
(

5

16
+

1

8
X +X2

)
exp(−X)−

(
5

16
+

1

8
X
)

exp(−3X) (A.8)

〈AA|BB〉=
(

5

8
X − 23

20
X2 − 3

5
X3 − 1

15
X4

)
exp(−2X)+

6

5

[
(ln(R)+ γ)SAB(X)2 (A.9)

− 2Ei(−2X)SAB(X)SAB(−X)+Ei(−4X)SAB(−X)2
]

(A.10)

where γ is the Euler-Mascheroni constant and Ei is the exponential integral. [4, 78, 82, 52]

In order to be able to write all these integral expressions in terms of X only, we have to make

some changes in our core Hamiltonian h, Coulomb J and exchange K integrals as

h11 =
1

R2

[
TAA +TAB

1+SAB

]
+

1

R

[
UAA +UAB

1+SAB

]
(A.11)
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h22 =
1

R2

[
TAA −TAB

1−SAB

]
+

1

R

[
UAA −UAB

1−SAB

]
(A.12)

J11 =
1

R

[
2〈AA|AA〉+2〈AB|AB〉+8〈AA|AB〉+4〈AA|BB〉

4(1+SAB)2

]
(A.13)

J22 =
1

R

[
2〈AA|AA〉+2〈AB|AB〉−8〈AA|AB〉+4〈AA|BB〉

4(1−SAB)2

]
(A.14)

J12 =
1

R

[
2〈AA|AA〉+2〈AB|AB〉+0〈AA|AB〉−4〈AA|BB〉

4(1+SAB)(1−SAB)

]
(A.15)

K12 =
1

R

[
2〈AA|AA〉−2〈AB|AB〉+0〈AA|AB〉+0〈AA|BB〉

4(1+SAB)(1−SAB)

]
(A.16)





APPENDIXB

The Abscissas and Weights of the Gaussian

Quadrature for the U1 Nuclear-Attraction

Integrals

As we have mentioned in Subsubsection. 3.3.1.3, an n-point quadrature rule within the

framework of Gaussian quadrature will be exact for all polynomials up to degree 2n− 1.

[4] In other words, the Gaussian quadrature approximates the definite integral as a linear

combination of values of its integrand calculated at optimal abscissas. [81]

∫ b

a
f (x)dx ≈ ∑

i
wi f (xi) (B.1)
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Integrals

We have used Numerical Differential Equation Analysis package in Mathematica 10.4

program [53] to design a 50-point quadrature and calculate the (xi,wi) pairs on the interval

[0,1] (the last line of Eq. 3.79 and Eq. 3.80). Table B.1 shows the calculated optimal

abscissas and weights for this 50-point Gaussian quadrature using which, we have managed

to calculate U1 FB nuclear-attraction integrals accurately.



xi wi

0.0005667978 0.0014543113
0.0029840153 0.0033798996
0.0073229580 0.0052952742
0.0135678074 0.0071904114
0.0216945224 0.0090577804
0.0316716905 0.0108901216
0.0434607217 0.0126803368
0.0570160102 0.0144214968
0.0722851153 0.0161068641
0.0892089646 0.0177299178
0.1077220835 0.0192843783
0.1277528489 0.0207642315
0.1492237656 0.0221637522
0.1720517672 0.0234775257
0.1961485364 0.0247004692
0.2214208477 0.0258278515
0.2477709275 0.0268553109
0.2750968325 0.0277788724
0.3032928441 0.0285949628
0.3322498773 0.0293004249
0.3618559031 0.0298925294
0.3919963816 0.0303689854
0.4225547050 0.0307279498
0.4534126492 0.0309680337
0.4844508308 0.0310883083
0.5155491692 0.0310883083
0.5465873508 0.0309680337
0.5774452950 0.0307279498
0.6080036184 0.0303689854
0.6381440969 0.0298925294
0.6677501227 0.0293004249
0.6967071559 0.0285949628
0.7249031675 0.0277788724
0.7522290725 0.0268553109
0.7785791523 0.0258278515
0.8038514636 0.0247004692
0.8279482328 0.0234775257
0.8507762344 0.0221637522
0.8722471511 0.0207642315
0.8922779165 0.0192843783
0.9107910354 0.0177299178
0.9277148847 0.0161068641
0.9429839898 0.0144214968
0.9565392783 0.0126803368
0.9683283095 0.0108901216
0.9783054776 0.0090577804
0.9864321926 0.0071904114
0.9926770420 0.0052952742
0.9970159847 0.0033798996
0.9994332022 0.0014543113

Table B.1 The optimal abscissas xi and weights wi for 50-point Gaussian quadrature on the

interval [0,1].

,





APPENDIXC

Asymptotic Expressions for Coulomb Integrals

Over Slater Functions: Derivation

To be able to analyze the behavior of RHF, UHF, CI, RFB and UFB energies for large R,

we need to derive the large-R expressions for two classes of integrals: 〈AA|Ô|AA〉 and

〈AB|Ô|AB〉 shown in Eqs. 4.2a– 4.2i. Here, instead of using the symbol φ S
A to show the

Slater basis functions focused on center A, defined in Eq. 3.8a, we only use the letter A for

brevity.
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At large R, the one-center overlap integrals over the STOs can be calculated as

〈AA |rn
12|AA〉

=
∫ ∞

0

∫ ∞

0

(
ζ 3

π
e−2ζ r1

)[
(r1 + r2)

n+2 −|r1 − r2|n+2

2(n+2)r1r2

](
ζ 3

π
e−2ζ r2

)(
4πr2

1

)(
4πr2

2

)
dr1dr2

=
(n+4)(n+6)(n+2)!

48(2ζ )n

(C.1)

in which, we have used cosine rule to represent rn
12 in the square brackets where both electrons

are focused on the same center. The one-center nuclear-attraction integrals become

〈AA
∣∣rn

12 r−1
1A

∣∣AA〉

=
∫ ∞

0

∫ ∞

0

(
ζ 3

π
e−2ζ r1

r1

)[
(r1 + r2)

n+2 −|r1 − r2|n+2

2(n+2)r1r2

](
ζ 3

π
e−2ζ r2

)(
4πr2

1

)(
4πr2

2

)
dr1dr2

=
(n+4)(n+2)!

16(2ζ )n−1

(C.2)

and

〈AA
∣∣rn

12 r−1
1B

∣∣AA〉

∼
∫ ∞

0

∫ ∞

0

(
ζ 3

π
e−2ζ r1

R

)[
(r1 + r2)

n+2 −|r1 − r2|n+2

2(n+2)r1r2

](
ζ 3

π
e−2ζ r2

)(
4πr2

1

)(
4πr2

2

)
dr1dr2

∼ (n+4)(n+6)(n+2)!

48(2ζ )nR

(C.3)

Considering the integral,

〈AA|r
2
2 − r2

1

r1
rn

12|AA〉

=
∫ ∞

0

∫ ∞

0

(
ζ 3

π
e−2ζ r1

)[
(r1 + r2)

n+2 −|r1 − r2|n+2

2(n+2)r1r2

][
r2

2 − r2
1

r1

](
ζ 3

π
e−2ζ r2

)(
4πr2

1

)(
4πr2

2

)
dr1dr2

=
(n+6)(n+4)!

48(2ζ )n+1

(C.4)
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and using Eqs. C.1 and C.2, the large-R kinetic matrix elements can be expressed as

〈AArm
12|−∇2/2|rn

12AA〉

= m n〈AA
∣∣rm+n−2

12

∣∣AA〉+ m+n
2

ζ
[
〈AA|

(
r2

2 − r2
1

r1
rm+n−2

12 − rm+n
12

r1

)
|AA〉

]
+ζ 2 〈AA

∣∣rm+n
12

∣∣AA〉

= m n
[
(m+n+2)(m+n+4)(m+n)!

48(2ζ )m+n−2

]
+

m+n
2

ζ
[
(m+n+4)(m+n+2)!

48(2ζ )m+n−1
− (m+n+4)(m+n+2)!

16(2ζ )m+n−1

]

+ζ 2 (m+n+4)(m+n+6)(m+n+2)!

48(2ζ )m+n

=
(m+n+4)!

192(2ζ )m+n−2

−(m−n)2 +5(m+n)+6

(m+n+1)(m+n+3)

= ζ 2 (q+4)!

192(2ζ )q
6+5q− (m−n)2

(q+1)(q+3)
(C.5)

where q=m+n. The derivation of asymptotic expressions for two-center integrals 〈AB|Ô|AB〉
begins with considering the long range rn

12 potentials

〈A |rn
12|A〉=

∫ ∞

0

(
ζ 3

π
e−2ζ r

)[
(x+ r)n+2 −|x− r|n+2

2(n+2)rx

](
4πr2

)
dr

= xn
3F0

(
−n

2 ,−n+1
2 ,2, 1

ζ 2x2

) (C.6)

and

〈A|rn
12r−1|A〉=

∫ ∞

0

(
ζ 3

π
e−2ζ r

r

)[
(x+ r)n+2 −|x− r|n+2

2(n+2)rx

](
4πr2

)
dr

= ζ xn
3F0

(
−n

2 ,−n+1
2 ,1, 1

ζ 2x2

) (C.7)

where x is a point at which we calculate the potential and 3F0 is the generalized hypergeo-

metric function. Armed with these tools, one can derive the two-center integrals at large R
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first of which, is the overlap integral

〈AB |rn
12|AB〉

=
∫ ∞

0

∫ π

0

(
ζ 3

π
e−2ζ r

)[
xn

3F0

(
−n

2 ,−n+1
2 ,2, 1

ζ 2x2

)](
2πr2

)
sin(θ)dθdr

(C.8)

where x =
√

r2 +R2 −2rRcos(θ). Considering this form of x, we change the variable θ to t

at large R to get

〈AB |rn
12|AB〉

∼
∫ ∞

0

(
ζ 3

π
e−2ζ r

)[
1

R r

∫ R+r
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∫ ∞

−∞
tn+1

3F0

(
−n

2 ,−n+1
2 ,2, 1

ζ 2t2

)∫ ∞
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2 ,−n+1

2 ,4,λ 2
)

(C.9)

where λ = (ζ R)−1. Again, let x =
√

r2 +R2 −2rRcos(θ). At large R, the two-center

nuclear-attraction integral 〈AB
∣∣rn

12 r−1
1A

∣∣AB〉 becomes

〈AB
∣∣rn

12 r−1
1A

∣∣AB〉

=
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R

∫ ∞

−∞
tn+1

3F0

(
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∼ ζ Rn
3F0

(−n
2 ,−n+1

2 ,3,λ 2
)

(C.10)

Derivation of a general asymptotic form for the large-R two-center nuclear-attraction integral

〈AB
∣∣rn

12 r−1
1B

∣∣AB〉 was difficult (Chapter 3). However, providing a simple form for the

required large-R FB integrals, i.e., n = 1,2 is rather a simpler task. Therefore,

〈AB
∣∣rn

12 r−1
1B

∣∣AB〉

=
∫ ∞
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)(
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(C.11)

For n = 1 and n = 2, the last line of Eq. C.11 gives us

〈AB
∣∣r1

12 r−1
1B

∣∣AB〉 ∼ 1+
e−2/λ (λ +2)Ei(2/λ )− e2/λ (λ −2)Ei(−2/λ )

2
(C.12)

〈AB
∣∣r2

12 r−1
1B

∣∣AB〉 ∼ R(1+4λ 2) (C.13)

The last piece of this puzzle is to find the asymptotic form for the two-center kinetic inte-

grals at large R. Let r12 =
√

(x1 − x2)2 +(y1 − y2)2 +(z1 − z2 +R)2 in cartesian coordinate
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representation. Hence,

〈ABrm
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2
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2
,4,λ 2

)]

(C.14)

in which, q = m+n. This completes the derivation of the asymptotic Coulomb integrals (Eqs.

4.2a– 4.2i) presented in Sec. 4.1.



APPENDIXD

The Optimized Exponents and Coefficients of the

Normalized STO–nG (n = 8 and 9) Basis Sets

The optimized coefficients cμ and exponents αμ for the normalized STO–8G and STO-9G

basis sets with 50 digits of accuracy were provided. The FB energies coming from using

these basis sets can be inserted into the extrapolation formula (Eq. 4.1) to generate the

energies of the STO limit shown in Table. 4.1.



STO–8Ga

α c
0.05294063219612877407590404531825833686974580920368 0.06159114103594007165419067222992023596723162162760
0.11411093914576128958207231113803884962429811496615 0.28926573961700110005391982624318303075830038536218
0.25095283946544758317118260754823038593293207926644 0.37771677784243995500522560358261889346386276699603
0.58614745871630809649653825872333198123400030810827 0.25225784851252167271869896786599144069513401026312
1.49607112612184879324242206609521511123608208627998 0.11338308049676186194793734609840049085266956540708
4.34394734098301884687044391060137396262141976497179 0.03869067095533864773877664218392844051939735119872
15.5129625353833245014877346317084720281863525070565 0.01016635917759106500858108742752961123752407590058
84.5781563304406770590678409055393935088756726398960 0.00182370874833257093744490240295919175527615983461

STO–9Gb

α c
0.04871801506557735797062111219364367552718703599658 0.04314490380873961139814080432234256840108336100652
0.10062742545217766294878249007977075831411028659920 0.23686448857304026920325212523468951691840360490622
0.20983718788815403667888907200606906698190701153062 0.36005346406702117141158709981610607608651011021242
0.45777954606316785905647268580932835118834143339861 0.27809252741551742796685912125319101118117887345303
1.06675720198887886138350929618098405746975848416130 0.14441580948375998769046390245073120484715020926114
2.72064070449320203961959658705296139790408761328535 0.05785760093216795317734752895802535186366017109473
7.89709680352458606141785051980472966498912298335807 0.01880603607172245550921171344382047920337239458818
28.1979359285303948144123573063484874981579191173210 0.00485157901398688303634389638778571280642574335418
153.728624496781949239120447559239741240730553099218 0.00086527795259664212785177622289366393002048494083

a I = 5.41× 10−8.
b I = 1.27× 10−8.

Table D.1 The optimized coefficients cμ and exponents αμ for the normalized STO–8G and

STO-9G basis sets with 50 digits of accuracy.

,


