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Abstract: We propose and fabricate a linear variable color filter (LVCF) that possesses an 
enhanced angular tolerance in conjunction with a wide linear filtering range (LFR) by taking 
advantage of an Ag-TiO2-Ag configuration. The TiO2 cavity is tapered in thickness along the 
device so that the resonance wavelength can be continuously tuned according to the position. 
In addition, the metal-dielectric-metal structure is overlaid with a pre-designed graded anti-
reflection coating in SiO2 to complete the etalon, thereby maximizing the transmission 
efficiency across the entire device. The tapered dielectric layers in the proposed filter were 
fabricated via glancing angle deposition without the help of any mask or moving parts. The 
center wavelength was scanned from 410 nm to 566 nm, resulting in an LFR of 156 nm, and 
the overall spectra exhibited an approximate peak transmission of 40% and spectral 
bandwidth of 68 nm. The angular tolerance was as large as 45°, incurring a fractional 
wavelength shift below 4.2%. The resonance wavelength was verified to be linearly 
dependent on the position, providing a linearity beyond 99%. The proposed LVCF will thus 
be actively utilized in a portable micro-spectrometer and spectral scanning device. 
© 2017 Optical Society of America 
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1. Introduction 
A linear variable filter (LVF) is perceived to be indispensable to embody micro-spectrometers 
[1–5], sensors [6–8], hyperspectral imaging systems [9–12], and spectral scanning systems 
[13–15] due to its high resolving power, CMOS-compatible fabrication process, compactness, 
and spectral tunability. So far, various types of LVFs have been developed including all-
dielectric Fabry-Perot etalons relying on Bragg reflectors [2–8], metal-dielectric structures 
composed of a single metallic film sandwiched between dielectric stacks [9,10], and guided-
mode resonance (GMR) based resonators [16–18]. In particular, sophisticated fabrication 
processes are required for the metal-dielectric stacks or GMR-based structures, which are not 
suitable for mass production [19]. All-dielectric etalons provide a high spectral resolution in 
conjunction with high transmission/reflection efficiencies, and such LVF devices are already 
commercially available from Delta and Edmund Optics [20,21]. However, reflecting mirrors 
comprised of a pair of Bragg reflectors can be created by stacking over 10 dielectric films [2–
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8], with each layer requiring precise control in terms of its thickness. Recently, in light of its 
conspicuous role in realizing a spectrometer and a hyperspectral imaging system in the visible 
band, a linear variable color filter (LVCF) has been demonstrated based on a similar Bragg 
reflector-based etalon [2,3]. However, its spectral response was highly sensitive to the angle 
of incidence, and the linear filtering range (LFR) was relatively narrow due to a limitation in 
the free spectral range (FSR). A metal-dielectric-metal (MDM) configuration has been 
utilized to build a color filter, with an improved performance in the angular tolerance and 
filtering range [22–28]. 

In this paper, we propose and develop a transmission-type LVCF that incorporates an Ag-
TiO2-Ag structure and exhibits an improved angular tolerance, an enlarged LFR, and facile 
fabrication. The etalon resorts to a linearly tapered dielectric cavity in TiO2 sandwiched 
between a pair of thin Ag films, and this structure is then overlaid with a similarly tapered 
SiO2 film. The resonance can be continuously tuned by adjusting the tapered cavity along the 
device, and the tapered overlay serves as an anti-reflection coating (ARC) to locally 
maximize the transmission. The tapered structures were successfully produced via 
straightforward, low-cost fabrication based on glancing angle deposition. The prepared LVCF 
was principally evaluated in terms of the positional variations in the resonance wavelength, 
and the angular tolerance was checked by analyzing the phase relationship associated with the 
tapered etalon. The transmission, resonance wavelength, and phase shift were calculated 
using Essential Macleod (Version 9.8.436), a simulation tool based on the transfer matrix 
method. 

2. Proposed LVCF capitalizing on a tapered etalon 
The proposed transmission-type LVCF draws upon a tapered MDM of Ag-TiO2-Ag etalon 
formed on a glass substrate, as depicted in Fig. 1. The dielectric cavity is composed of a 
tapered layer of TiO2 that exhibits a low loss and a relatively high index in the visible band, 
and the metallic mirrors are based on Ag, which is rarely prone to an extinction induced by 
inter-band transitions, as shown in Appendix A. The proposed etalon is presumed to give rise 
to a linearly tunable filtering characteristic according to the position thereof, and the color 
output is principally related to the resonance wavelength, which can be locally tailored via the 
thickness of the cavity. The etalon is especially integrated with a tapered SiO2 film, which 
functions as an ARC, thereby suppressing the reflection and preventing the Ag film from 
being oxidized. In response to the white light that impinges upon the LVCF, the transmission 
resonantly peaks when constructive interference transpires in the forward direction. The 
Fabry-Perot etalon with an MDM configuration is deemed to provide bandpass filtering 
characteristics, rendering a transmission of 2 2(1 ) / (1 2 cos )T r r r δ= − + − . The transmission 

peaks for ( ) 2prop a b mδ φ φ φ π= − + = , with m representing an integer and 24 /prop n dφ π λ=  

standing for the propagation phase shift [29]. As a consequence, the cavity thickness can be 
determined by 2(2 ) / 4a bd m nλ π φ φ π= + + . Here, r is the reflection coefficient of the metal 

film, δ is the total phase shift that accumulates during a single round-trip within the dielectric 
cavity, φa and φb are the reflection phases at the top and bottom Ag-TiO2 interfaces, 
respectively, λ is the resonance wavelength in vacuum, and n2 is the refractive index of the 
dielectric cavity. For the ARC to boost the transmission, the thickness is determined by 

1/ 4t nλ= , where n1 is the refractive index of the ARC [29,30]. Regarding both the cavity 

and the ARC, the thickness is supposed to be approximately linearly related to the resonance 
wavelength. To locally maximize the transmission for the LVCF, the ARC is designed to be 
adequately tapered in accordance with the position-dependent thickness of the cavity. The 
resonance wavelength is presumed to be continuously and linearly scanned in the visible 
band. In this respect, d is altered in a linear manner from 130 nm to 210 nm, and t is similarly 
varied from 71 nm to 98 nm. 
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Fig. 3. (a) Calculated transmission with respect to the position. (b) Thicknesses of the cavity 
and ARC in terms of the resonance wavelength. (c) Transmission (T) and reflection (R) for the 
central position (Pos. #4) hinging on the presence of the ARC. 

The influence of the incident angle on the transmission was then investigated for 
unpolarized light. Figure 4 shows the calculated transmission spectra in relation to the left-
hand side (Pos. #1), center (Pos. #4), and right-hand side (Pos. #7) when the angle is varied 
from 0 to 45°. The angular tolerance is evaluated by referring to the shift in the center 
wavelength ∆λ. The spectral shifts for Pos. #1, Pos. #4, and Pos. #7 were ∆λ = 15.6 nm, 16.1 
nm, and 20.6 nm for an angle of 45°, respectively, which translates into fractional spectral 
shifts of ∆λ/λ = 3.6%, 3.2%, and 3.7%. The LVCF was revealed to give rise to a transmission 
peak that is nearly preserved at λ = 433 nm, 493 nm, and 551 nm regardless of the incident 
angle. Overall, the transmission declines by less than 7% for all the positions of interest. 
Then, with the intention to expound an angular tolerance of the proposed filter, the total phase 
shift was explored for the light that travels in the cavity. Considering that it taps into a tapered 
cavity and ARC, the LVCF can be modelled to mimic a flat multi-layer structure at a certain 
position, as described in Fig. 5(a). The total phase shift that accumulates during a single 
round-trip within the cavity is given by 24 (cos ) / ( )p a bn dδ π θ λ φ φ= − +  under oblique 

incidence, where θp represents the angle of propagation [30]. It is remarked that θp is equal to 
about 18° for n2 = 2.26 and an incident angle of θi = 45° according to the Snell’s law. As 
mentioned above, the transmission is maximized when the total phase shift satisfies 2mδ π=
. As shown in Figs. 5(b) through 5(d), the reflection phases of φa and φb are invariant to the 
different angles. The total phase shift that results from the propagation phase for the round-
trip as well as the reflection phases at the top and bottom metal-dielectric interfaces nearly 
remains at 2π for the three positions mentioned above. Consequently, the resonance 
wavelength could remain stable in spite of the incident angle varying up to 45°. 

 

Fig. 4. Calculated transmission spectra in terms of the incident angle for three different 
positions. 
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Fig. 5. (a) Modeling the propagation of light for the proposed LVCF. (b–d) Phase shift in 
response to a single round-trip, which is accounted for by the propagation phase and reflection 
phases at the top and bottom Ag-TiO2 interfaces for the different positions of Pos. #1, #4, and 
#7. 

3. Fabrication of the proposed LVCF and its experimental results 
The proposed LVCF with an Ag-TiO2-Ag-SiO2 configuration was manufactured via e-beam 
evaporation (HVC-1200DA, Hanil Vacuum, S. Korea). To embody the tapered structure 
where the deposited film varies linearly in thickness, glancing angle deposition was 
introduced, as illustrated in Fig. 6(a). When the distance zi between the material source and 
the position of the deposition on the substrate is within the mean-free-path of vapor, the 
deposition rate Λ pertaining to the evaporated material is given by 2~ cos cos ( ) /m

i izβ αΛ ⋅ . 

Here αi and β describe the divergence angle of the source and the angular slope of the tapered 
holder, respectively, and m is an integer that determines the geometry of the lobe-shaped 
vapor cloud and the angular distribution of the evaporation flux from the source [31]. As 
observed in Fig. 6(b), for both the cavity and the ARC, the thickness calculated in accordance 
with L exhibits a gradient, indicating that the thickness profile of the deposited layers can be 
tailored by adjusting the slope of the tapered holder β. During fabrication, the minimum 
distance z0 was set to 50 cm. The deposition was performed at a temperature of 50 °C under a 
base pressure of 2 × 10−5 Torr, and the mean-free-path (250 cm) was assumed to be much 
larger than zi, so that the evaporated particles could mostly go straight toward the substrate 
without experiencing collisions. Providing that the distance zi is much larger than the size of 
the substrate L, the demonstrated rate of deposition is expected to vary almost linearly along 
the substrate. 

The detailed fabrication procedure is illustrated in Fig. 7(a). An Ag film with a thickness 
of 30 nm, which acts as one of the metallic mirrors, was first deposited on a glass substrate 
via e-beam evaporation. A tapered TiO2 cavity was subsequently created by exploiting a 
wedge-shaped holder with an angle of β1 = 60°, according to the concept described in Fig. 
6(a). With the tapered holder appended to the bottom of the substrate, the top thereof slants 
accordingly with the source target of TiO2. As a result, the deposited dielectric cavity was 
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linearly tapered in accordance with the continuously varying distance between the source and 
the surface of the substrate. After removing the holder, the second Ag film was similarly built 
on top of the cavity so as to make the other mirror. Finally, a tapered SiO2 coating was 
produced by taking advantage of a wedge-shaped holder with a taper of β2 = 30°, in a similar 
manner to that of the cavity. The LVCF was completed with an effective area of 150 mm × 25 
mm, for which the positional variation of the cavity thickness was estimated to be ~0.53 
nm/mm. The color image available from the prepared filter is displayed in Fig. 7(b), wherein 
the observation points are individually marked. In response to the white light that is 
illuminated from the back of the LVCF, the transmitted optical output pertaining to the 
positions of Pos. #0 through Pos. #8 was monitored to yield a continuously varying vivid 
color that spans dark violet, blue, green, and yellow. The corresponding center wavelength 
ranged from 410 nm to 566 nm, providing a positional rate of the spectral shift that is 
equivalent to 1.04 nm/mm. 

 

Fig. 6. (a) Schematic diagram of the proposed glancing angle deposition. (b) Calculated 
thicknesses of the cavity and ARC as a function of position along the substrate. 

 

Fig. 7. (a) Fabrication procedure for the proposed LVCF. (b) Color images for the fabricated 
device. 

For the fabricated LVCF, as specified in Fig. 2, the transfer characteristics with respect to 
the position were inspected using a spectrometer (USB4000, Ocean Optics) for normally 
incident unpolarized light. Considering the position-dependent characteristics of the LVCF, 
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the spot size of the light beam impinging upon the device was minimized down to as small as 
500 μm in diameter with the help of a pinhole. As shown in Fig. 8(a), the center wavelength 
ranged from 410 nm to 566 nm as the observation point moves from Pos. #0 to Pos. #8 along 
the sample, leading to an effective LFR of 156 nm. Accordingly, the spectral bandwidth and 
peak transmission were about 68 nm and 40% on average, respectively, which are about 33 
nm broader and 20% lower compared to the results of the calculation. The observed spectra 
might be susceptible to scattering incurred by the rough surface of the deposited Ag layer. An 
Ag film deposited on a dielectric substrate was reported to provide a discrete granular 
morphology with random metal-island growth [32–34], and the scattering induced loss may 
be efficiently alleviated by smoothing the surface of the Ag film by taking advantage of a 
wetting layer, such as that made from germanium (Ge) or a polymer [32–34]. For instance, an 
ultra-thin polymer in PTCBI or PEI can be coated beneath the Ag film so as to prevent the 
random migration and aggregation of the deposited Ag atoms [33,34]. Figure 8(b) plots the 
resonance wavelength as a function of the position. It was concretely indicated that a linear 
relationship between the resonance wavelength and the position was obtained both for the 
calculation and the measurement results, exhibiting a linearity beyond 99% according to the 
least squares method [35]. 

 

Fig. 8. (a) Measured transmission spectra and (b) resonance wavelength with the position 
along the LVCF. 

Figure 9 shows the measured transmission spectra as a function of the incident angle 
monitored for Pos. #1, Pos. #4, and Pos. #7, which resonantly peaked at λ = 433 nm, 495 nm, 
and 554 nm, respectively. For the incident angle of 45°, the corresponding spectral shifts were 
∆λ = 18.3 nm, 18.2 nm, and 21.2 nm, respectively, which approximately translate into 
fractional wavelength shifts of ∆λ/λ = 4.2%, 3.7%, and 3.8%. The resulting degradation in the 
peak transmission was about 14% on average over the angular range. As predicted from the 
results of the calculation given in Fig. 4, the proposed LVCF was practically corroborated to 
have a spectral response that is substantially tolerant to an incident angle ranging up to 45°, 
which is primarily beneficial for its applications in spectrometer and hyperspectral imaging. 

                                                                                               Vol. 25, No. 3 | 6 Feb 2017 | OPTICS EXPRESS 2160 



 

Fig. 9. Measured transmission spectra with the incident angle for different positions. 

4. Conclusion 
An LVCF was embodied by resorting to an etalon with an Ag-TiO2-Ag configuration that is 
integrated with a tapered ARC in SiO2. Glancing angle deposition was applied in a 
straightforward process to pertinently taper the dielectric cavity so that the resonance 
wavelength can be continuously scanned according to the position, and the ARC was tapered 
to adaptively elevate the transmission across the entire device. As intended, the LFR was 
observed to be 156 nm, ranging from 410 nm to 566 nm, and the angle-insensitive resonance 
was stable under oblique incidences running up to 45°. The resonance wavelength was 
experimentally verified to be linearly dependent on the position, leading to a linearity beyond 
99%. When compared to conventional all-dielectric LVCFs based on Bragg reflectors, the 
proposed LVCF could enable a relaxed angular tolerance, an enlarged LFR, and facile 
fabrication while providing a relatively low transmission and wide bandwidth. 

Appendix A: Material properties 
The refractive indices of Ag and Ti02 adopted for simulation are shown below, in Fig. 10.  

 

Fig. 10. Refractive indices of Ag and TiO2 adopted for simulation. 
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