
PHYSICAL REVIEW B 93, 165125 (2016)

Nonlocal homogenization for nonlinear metamaterials

Maxim A. Gorlach,1,* Tatiana A. Voytova,1 Mikhail Lapine,2 Yuri S. Kivshar,3,1 and Pavel A. Belov1

1ITMO University, Saint Petersburg 197101, Russia
2School of Mathematical and Physical Sciences, University of Technology Sydney, NSW 2007, Australia

3Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 2601, Australia
(Received 1 March 2016; revised manuscript received 31 March 2016; published 19 April 2016)

We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials
taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate
that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance
where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous
generation of two harmonic signals with the same frequency and polarization but different wave vectors. We
also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial
dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful
theoretical tools for analyzing resonant nonlinear metamaterials.
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I. INTRODUCTION

The field of nonlinear metamaterials attracts significant
research interest due to the numerous fascinating applica-
tions [1–4]. The use of large nonlinearities available in resonant
nonlinear metamaterials [1] opens a possibility to all-optical
signal processing [5] and provides reach opportunities to
implement tunable and reconfigurable photonic devices [6,7].

A fundamental task existing in the field is characterization
of electromagnetic properties of nonlinear metamaterials, i.e.,
homogenization. For many nonlinear scenarios nonlinearity
of metamaterials is described in a perturbative way in terms
of nonlinear susceptibilities [8]. This allows one to exploit
the framework of nonlinear optics and directly compare
nonlinearities of artificially structured media with those
occurring in natural crystals. To date, a number of approaches
to homogenize nonlinear composites and metamaterials were
reported [9–13]. However, most of these approaches do not
take spatial dispersion into account. Spatial dispersion (or
nonlocality) implies the dependence of polarization of a phys-
ically small volume on the fields existing in the neighboring
regions of space. A number of theoretical and experimental
studies demonstrate that nonlocality is pronounced in a wide
class of linear metamaterials [14–17]. In linear structures
nonlocality is often described in terms of effective permit-
tivity tensor depending on both frequency and wave vector.
Comprehensive theoretical models describing nonlocality in
linear artificial composites were developed [18–20] and, in
particular, a generalization of the Clausius-Mossotti formula
for the case of discrete three-dimensional (3D) metamaterial
was proposed [19]. However, to the best of our knowledge,
the consistent theoretical description of spatial dispersion
effects in nonlinear metamaterials remains an open problem
so far.

In this paper we derive nonlocal nonlinear susceptibilities of
a 3D nonlinear metamaterial composed of uniaxial scatterers
(Fig. 1). We employ the discrete dipole model [21–23] describ-
ing the field of the scatterer in dipole approximation, whereas

*Maxim.Gorlach.blr@gmail.com

the properties of the individual meta-atom are characterized
by linear and nonlinear polarizability tensors. The rest of the
paper is organized as follows. In Sec. II we derive general
expressions for nonlocal nonlinear susceptibilities of discrete
metamaterial. Section III demonstrates that in the limiting
case when spatial dispersion effects in the structure can be
neglected our results reduce to the known expressions for
local field corrections. In Sec. IV we illustrate the main
features of the developed approach providing a numerical
example for the structure composed of short wires loaded
with varactor diodes. In particular, we highlight the essential
role of spatial dispersion effects at frequencies in the vicinity
of effective permittivity resonance. Finally, in Sec. V we
discuss the obtained results. Calculation of linear and nonlinear
polarizabilities of a short varactor-loaded wire is provided in
the Appendix.

FIG. 1. Schematic representation of a three-dimensional meta-
material composed of nonlinear uniaxial inclusions.
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II. NONLOCAL HOMOGENIZATION OF NONLINEAR
DIPOLE LATTICE

We consider an array of nonlinear uniaxial meta-atoms
arranged in a cubic 3D lattice with the period a (Fig. 1). Note
that chaotic arrangement of the similar nonlinear dipoles was
studied in Ref. [24] in search of all-optical phase conjugation of
a microwave signal. However, at that time mutual interactions
of meta-atoms were not consistently taken into account. In
the present derivation we use the CGS system of units and
assume e−iωt time dependence of monochromatic fields. We
consider excitation of nonlinear structure by an incident wave
with frequency ω, denoting wave vector of the fundamental
wave propagating in the metamaterial by �k. Due to the
nonlinear nature of inclusions, the incident wave generates
polarization not only at the fundamental frequency ω, but
also at frequencies 2 ω, 3 ω, etc. This nonlinear polarization
becomes a source of harmonics at frequencies 2 ω, 3 ω,
etc. In the present analysis we consider only second and
third harmonics omitting nonlinear contributions of higher
order. This is a typical assumption for many nonlinear
metamaterials [1]. Furthermore, for the sake of simplicity
we assume that the scatterers can be polarized only along
the z axis. Then the only essential components of linear
and nonlinear susceptibility tensors would be χ (1)

zz , χ (2)
zzz, and

χ (3)
zzzz. Accordingly, the subscript z is omitted further in the

designations of vector and tensor components. Under these
assumptions the dipole moment d of the individual meta-atom
is given by the equations

d(ω) = α1(ω) Etot(ω) + 2 α2(ω; 2 ω,−ω) Etot(2 ω)E∗
tot(ω)

+ 3 α3(ω; ω,ω,−ω) |Etot(ω)|2 Etot(ω), (1)

d(2 ω) = α1(2 ω) Etot(2 ω) + α2(2 ω; ω,ω) E2
tot(ω), (2)

d(3 ω) = α1(3 ω) Etot(3 ω)

+ 2 α2(3 ω; 2 ω,ω) Etot(2 ω) Etot(ω)

+α3(3 ω; ω,ω,ω) E3
tot(ω), (3)

where α1, α2, and α3 stand for linear, second-, and third-order
nonlinear polarizabilities. The total field Etot(ω) is the sum of
the external field acting on the scatterer E(ω) and field asso-
ciated with radiation friction [25] Es(ω) = 2iω3 d(ω)/(3 c3).
In this case polarizabilities introduced in Eqs. (1)–(3) are
so-called bare polarizabilities, i.e., they do not contain the
radiation loss contribution [26]. Note that bare polarizability
of a lossless scatterer is purely real. An alternative description
of radiation losses incorporates an imaginary part into scatterer
polarizability [23,26]. The latter approach, however, turns
out to be less convenient for nonlinear structures. Linear
polarizability α1(ω) along with nonlinear polarizabilities α2

and α3 can be calculated for a particular scatterer. For example,
the calculation of nonlinear polarizabilities of varactor-loaded
short wire is provided in the Appendix, whereas the analysis
of nonlinear properties of varactor-loaded split-ring resonators
is carried out in Refs. [27–29]. It should be emphasized that
the field E(ω) ≡ Etot(ω) − Es(ω) appearing in Eqs. (1)–(3)
is local field, i.e., the electric field in the point where the
scatterer is located. On the other hand, in the definition of

effective material parameters, the average field appears. The
average fields are defined as [18,20]

〈 �E(�)〉 = 1

V0

∫
V0

�E(�; �r) e−i �K·�r dV, (4)

〈 �P (�)〉 = 1

V0

∫
V0

�P (�; �r) e−i �K·�r dV, (5)

where V0 = a3 is a unit cell volume, � is arbitrary frequency,
and vector function �K = �K(�) is specified later in this section.
The average structure polarization is

〈P (�)〉 = d(�)/V0, (6)

and the average electric field can be related to the average
polarization by [20]

〈E(�)〉 = �k(�, �K) d(�), (7)

with

�k(�; �K) = −4π

a3

�2 − K2
z c2

�2 − K2 c2
. (8)

Local field acting on the scatterer in the coordinate origin can
be evaluated via dyadic Green’s function [30] Ĝ(�; �r) and
dipole moments dmnl of meta-atoms as

E(�) =
∑

(m,n,l)�=(0,0,0)

Gzz(�; −�rmnl) dmnl(�), (9)

where the indices m,n,l enumerate the lattice sites and the
dipole moments of the scatterers in the unbounded structure
are distributed as

dmnl(�) = d(�) ei �K(�)·�rmnl . (10)

The distribution of polarization at the fundamental frequency is
determined by the incident wave, and in this case �K(ω) = �k,
where �k is a wave vector of the structure eigenmode. Since
second-order nonlinear polarization is a quadratic function of
the fundamental wave, �K(2 ω) = 2 �k and similarly �K(3 ω) =
3 �k. Thus, the expression for local field can be represented as

E(�) = Gk(�; �K(�)) d(�), (11)

with the lattice sum defined as

Gk(�; �K) ≡
∑

(m,n,l)�=(0,0,0)

Gzz(�; �r) e−i �K·�rmnl . (12)

Therefore, the total field appearing in Eqs. (1)–(3) is

Etot(�) = G′
k(�, �K(�)) d(�), (13)

with G′
k(�, �K) = Gk(�, �K) + 2i �3/(3 c3). Effective algo-

rithms for the lattice sum rapid evaluation were developed
earlier [23]. Importantly, it can be proved that for real � and
�K Im G′

k(�, �K) = 0 [23]. Making use of Eqs. (13) and (1)
it is easy to see that the dispersion equation for the linear
structure with the meta-atom’s polarizability α1(ω) has the
form [23,31,32]

α−1
1 (ω) − G′

k(ω; �k) = 0. (14)

Using Eqs. (7) and (11) we obtain

Etot(�) = �(�; �K) 〈E(�)〉, (15)
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where �(�; �K) = G′
k(�; �K)/�k(�; �K) is introduced for con-

venience. Making use of Eqs. (13) and (7), the relation between
local and averaged fields can be also represented in the
alternative form

Etot(�) = 〈E(�)〉 + Ck(�; �K) d(�), (16)

where Ck(�; �K) = G′
k(�; �K) − �k(�; �K) is the lattice

interaction constant. Finally, inserting the expressions
Eqs. (6), (15), and (16) into Eqs. (1), (2), and (3), we obtain
the relation between the averaged structure polarization and
the averaged field:

〈P (ω)〉 = χ (1)(ω,�k) 〈E(ω)〉 + 2 χ (2)(ω; 2 ω,−ω,�k) 〈E(2 ω)〉 〈E(ω)〉∗ + 3 χ (3)(ω; ω,ω,−ω,�k) |〈E(ω)〉|2 〈E(ω)〉, (17)

〈P (2 ω)〉 = χ (1)(2 ω,2 �k) 〈E(2 ω)〉 + χ (2)(2 ω; ω,ω,2 �k) 〈E(ω)〉2, (18)

〈P (3 ω)〉 = χ (1)(3 ω,3 �k) 〈E(3 ω)〉 + 2 χ (2)(3 ω; 2 ω,ω,3 �k) 〈E(2 ω)〉 〈E(ω)〉 + χ (3)(3 ω; ω,ω,ω,3 �k) 〈E(ω)〉3. (19)

Nonlocal nonlinear susceptibilities in Eqs. (17)–(19) can be written in a compact form as follows:

χ (1)(�, �K) = 1

a3

[
α−1

1 (�) − Ck(�, �K)
)]−1

, (20)

χ (2)(ω3; ω2,ω1, �K(ω3)) = α2(ω3; ω2,ω1)

a3 α1(ω3)
�(ω2, �K(ω2)) �(ω1, �K(ω1))

[
α−1

1 (ω3) − Ck(ω3, �K(ω3))
]−1

, (21)

χ (3)(ω4; ω3,ω2,ω1, �K(ω4)) = α3(ω4; ω3,ω2,ω1)

a3 α1(ω4)
�(ω3, �K(ω3)) �(ω2, �K(ω2)) �(ω1, �K(ω1))

[
α−1

1 (ω4) − Ck(ω4, �K(ω4))
]−1

. (22)

In Eq. (20), � = ω, 2 ω, or 3 ω and �K(�) = �k, 2 �k, or 3 �k,
respectively. In Eq. (21), ω3 = ω2 + ω1, the pair (ω2,ω1)
acquires the values (ω,ω), (2 ω,ω), and (2 ω,−ω). In Eq. (22),
ω4 = ω3 + ω2 + ω1, the triplet (ω3,ω2,ω1) acquires the values
(ω,ω,ω) and (ω,ω,−ω). Note that Eqs. (20)–(22) are valid
for negative frequencies in which case �(−�, �K(−�)) ≡
�∗(�, �K(�)).

Expressions (20)–(22) depend implicitly on �k, which is the
solution of the dispersion equation for linear structure Eq. (14).
Therefore, one may calculate nonlinear susceptibilities for
a given direction of wave propagation and fundamental
frequency ω. Equations (20)–(22) suggest that nonlinear sus-
ceptibilities depend on the direction of wave propagation. Such
effect discussed in detail in Sec. IV is one of manifestations of
spatial dispersion.

As additional evidence of the validity of our approach, we
notice that the obtained expression Eq. (20) for the linear
susceptibility of the structure coincides with the result derived
in Ref. [19]. Furthermore, in the case of lossless scatterers
and for the propagating mode with real ω and �k effective
nonlinear susceptibilities turn out to be purely real because the
quantities G′

k(�, �K) and Ck(�, �K) are both real. This result
satisfies energy conservation law.

The presented expressions for linear and nonlinear suscep-
tibilities are derived under the assumption of the meta-atom
dipolar response. In general, discrete dipole approximation is
valid for arrays with sufficiently small ratio 	/a where 	 is
meta-atom characteristic size and a is the lattice period. The
theory of linear metamaterials suggests that for 	/a < 0.5
a discrete dipole model can still provide a reasonable accu-
racy [33].

III. COMPARISON WITH THE LOCAL EFFECTIVE
MEDIUM MODEL

In this section we demonstrate that in the limiting case
when K a 	 1 and �a/c 	 1, i.e., when spatial dispersion

effects in the structure are negligible, our results can be
reduced to local nonlinear susceptibilities well known from
nonlinear optics. In this limit the interaction constant for a
cubic lattice [19,23]

Ck(�, �K) = 4 π/(3 a3) (23)

for any real and sufficiently small � and �K . As a result,
effective permittivity of the structure is given by the Clausius-
Mossotti formula [34]

εloc(ω) ≡ 1 + 4 π χ
(1)
loc (ω) = 1 + 8 π α1(ω)/(3 a3)

1 − 4 π α1(ω)/(3 a3)
. (24)

Equations (23) and (24) yield also that

α−1
1 (�)

[
α−1

1 (�) − Ck(�, �K(�))
]−1 = 1

1 − 4 π α1(�)/(3 a3)

= εloc(�) + 2

3
. (25)

Furthermore, from Eq. (8) it is straightforward that

�(�, �K(�)) = �(ω,�k), (26)

and as a consequence of Eqs. (23), (26), and (14)

G′
k(�, �K(�)) ≡ �k(�, �K(�)) + Ck(�, �K(�))

= �k(ω,�k) + Ck(ω,�k) = G′
k(ω,�k) = α−1

1 (ω).

(27)

Expression for the factor �(�, �K(�)) can be transformed
using Eqs. (27) and (26) as follows:

�(�, �K(�)) ≡ G′
k(�, �K(�))

�(�, �K(�))
= α−1

1 (ω)

α−1
1 (ω) − 4π/(3 a3)

. (28)

Thus, taking into account Eq. (24), we derive the simplified
expression for the factor �:

�(�, �K(�)) = εloc(ω) + 2

3
(29)
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for any � = ω, 2 ω, and 3 ω. Applying the simplified expressions Eqs. (25) and (29) to the general formulas Eqs. (21) and (22),
we finally obtain

χ
(2)
loc (ω3; ω2,ω1) = α2(ω3; ω2,ω1)

a3

εloc(ω3) + 2

3

εloc(ω2) + 2

3

εloc(ω1) + 2

3
, (30)

χ
(3)
loc (ω4; ω3,ω2,ω1) = α3(ω4; ω3,ω2,ω1)

a3

εloc(ω4) + 2

3

εloc(ω3) + 2

3

εloc(ω2) + 2

3

εloc(ω1) + 2

3
. (31)

In Eq. (30) ω3 = ω1 + ω2, in Eq. (31) ω4 = ω3 + ω2 + ω1.
Both equations are also applicable for negative frequency
values in accordance with ε(−�) ≡ ε∗(�). Essentially, factors
α2/a

3 and α3/a
3 describe second- and third-order nonlinear

susceptibilities in the case when interaction of the scatterers
is negligible. Factors (εloc + 2)/3 thus represent a local field
correction to the nonlinear susceptibilities. The presented form
of local field corrections is well known in nonlinear optics [8].
Therefore, in the limit of negligible spatial dispersion our
results are consistent with the previous studies based on the
local effective medium approach.

IV. NUMERICAL EXAMPLE

Now we proceed to the demonstration of the main features
of the developed theoretical model for a particular example. To
this end we consider a 3D structure with the period a = 1 cm
composed of short wires (much shorter than the wavelength)
loaded by varactors Skyworks SMV 1231-079 [35] possessing
nonlinear capacitance as well as associated linear parameters.
Varactor is inserted in the gap of the size 	l = 1.3 mm in
the middle of the wire with the radius r = 1 mm and half-
length l = 3 mm. The total inductance of varactor inclusion
is Lt = 42.5 nH and the capacitance determining the input
impedance of the wire (without varactor capacitance) is
Ct = 0.2 pF. Other varactor parameters are set to those
specified by the manufacturer [35]. For clarity, dispersion
diagram is shown for zero dissipation. However, nonlinear
susceptibilities are calculated with realistic losses according
to specifications [35].

The dispersion diagram of the described metamaterial in the
linear regime of operation calculated with Eq. (14) is presented
in Fig. 2. Analysis of the calculated diagram reveals that there
are two frequency intervals where spatial dispersion effects
are most pronounced. These frequency intervals correspond to
the so-called mixed dispersion regime [32] which combines
the properties of elliptic and hyperbolic dispersion regimes. In
particular, isofrequency contours of metamaterial operating in
such regime include both quasielliptic and quasihyperbolic
branches, and the phenomenon of trirefringence can be
observed [32]. Noteworthy, mixed dispersion regime arises
at frequencies in the vicinity of zeros [23,36] (low-ε mixed
regime) and poles [37] (high-ε mixed regime) of the structure
local permittivity Eq. (24). Further analysis of the mixed
dispersion regime properties can be found in Ref. [32].

We expect the most significant deviations of nonlinear
susceptibilities from the local effective medium model to
occur in mixed dispersion regime. Note that in the low-ε
mixed regime the main manifestation of spatial dispersion is
the emergence of longitudinal waves propagating closely to
�Z direction [32]. Excitation of such longitudinal modes is

FIG. 2. (a) Calculated dispersion diagram for the structure com-
posed of short varactor-loaded wires. (b) Enlarged branches �X
and �M of the dispersion diagram in the vicinity of high-ε mixed
regime. Dashed curves correspond to light lines, shaded regions show
frequency range corresponding to the mixed dispersion regime.

not simple in experiment. Therefore, we concentrate on the
analysis of transverse modes which are strongly affected by
nonlocality in high-ε mixed regime. In this example, high-
and low-ε mixed regimes correspond to the spectral ranges
0.565 < f < 0.670 GHz and 0.992 < f < 1.024 GHz, re-
spectively, and frequency of linear permittivity resonance is
fr = 0.616 GHz.

Perturbative analysis of the nonlinear oscillator model [8]
suggests that nonlinear susceptibilities χ (2) and χ (3) are subject
to resonant enhancement not only at the frequency fr but
also at frequencies fr/2 (χ (2), χ (3)) and fr/3 (χ (3) only) as
explained in more details in the Appendix. Therefore, we also
studied metamaterial nonlinear properties in spectral intervals
around fr/2 and fr/3. Linear and nonlinear susceptibilities
calculated for �M direction of propagation by Eqs. (20)–(22)
are compared with the predictions of the local effective
medium model Eqs. (24), (30), and (31) in Figs. 3 and 4.
The results show that significant deviations from the local
effective medium model indeed occur in high-ε mixed regime,
whereas at lower frequency resonances fr/2 and fr/3 reso-
nant enhancement of nonlinear susceptibilities is accurately
captured by the local model. Furthermore, it can be noticed
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FIG. 3. Comparison of the developed theoretical approach (solid
line) with the local effective medium model (dashed line). (a) Real
part of metamaterial linear susceptibility in the vicinity of resonance
fr . (b) and (c) Real part of metamaterial second-order nonlinear
susceptibility χ (2)(2ω; ω,ω) in the vicinity of the resonances (b) fr

and (c) fr/2.

that spatial dispersion dumps the resonance that leads to
the decrease of the maximal achievable values of nonlinear
susceptibility. Therefore, we conclude that spatial dispersion
should be necessarily taken into account while describing
nonlinearities of metamaterials in the vicinity of permittivity
resonance.

Another interesting manifestation of spatial dispersion is
the dependence of nonlinear susceptibilities on the direction
of propagation of the fundamental wave with respect to the
sample crystallographic axes. In Fig. 5 we plot the dependence
of linear and nonlinear susceptibilities on the angle between
the wave vector �k and �X direction in the first Brillouin
zone of the crystal. Even though a dependence of nonlinear
susceptibilities on the propagation direction is also known
for photonic crystals [38], it should be stressed that the
metamaterial operates in a deeply subwavelength regime with
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(a)

ωa/c
χ

3-
)3(

S
G

C ,
01×)

(

(b)

ωa/c

( )с

0.115 0.120 0.125 0.130 0.135 0.140
-20

-10

0

10

χ
3-

)3(
S

G
C ,

01×)
(

χ
3-

)3(
S

G
C ,

01×)
(

0.06 0.07 0.08 0.09 0.10
-0.2

-0.1

0.0

0.1

0.2

0.036 0.040 0.044 0.048
-0.04

-0.02

0.00

0.02

R
e

R
e

R
e

3ω
;ω

,ω
,ω

3ω
;ω

,ω
,ω

3ω
;ω

,ω
,ω

FIG. 4. Comparison of the developed theoretical approach (solid
line) with the local effective medium model (dashed line). Real part
of metamaterial third-order nonlinear susceptibility χ (3)(3 ω; ω,ω,ω)
in the vicinity of the resonances (a) fr , (b) fr/2, and (c) fr/3.

the ratio λ/a ≈ 48 at frequency fr . Nevertheless, variation
of susceptibility with the direction of wave vector �k reaches
4% for χ (1) and χ (3) and 1% for χ (2) at the resonance
frequency fr = 0.616 GHz. In general, at frequencies around
fr maximal variation of susceptibilities χ (1), χ (2), and χ (3)

with the direction of wave vector is 4%–5%.
Finally, as Fig. 2(b) clearly shows, in high-ε mixed

regime there are two solutions of the dispersion equation
corresponding to the given frequency and �M or �X directions
of propagation. As a result, nonlinear susceptibilities Eqs. (21)
and (22) are multivalued functions of frequency in this spectral
range. Consequently, one may expect that one TM-polarized
incident beam can produce two second-harmonic (third-
harmonic) beams with the same polarization and frequency.
Importantly, the described effect arises purely due to spatial
dispersion effects and cannot be explained in the framework
of the local effective medium model.
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FIG. 5. Dependence of the real part of linear and nonlinear
susceptibilities on the angle θ between the wave vector of the
fundamental harmonic and �X direction. Here f = fr = 0.616 GHz,
λ/a = 48.

We expect that nonlocality can play an extremely important
role in a wide class of metamaterials with artificial magnetic
nonlinearities including nonlinear implementations of coupled
rod pairs and dual bar metamaterials. It is already known that
in such systems nonlocality is crucial in the linear case [17].

V. CONCLUSIONS

We have developed a consistent theoretical approach for
calculating effective nonlinear susceptibilities of nonlinear
discrete metamaterials taking into account both frequency
and spatial dispersion. We have modeled nonlinear meta-
material as a lattice of nonlinear uniaxial electric dipoles
and obtained closed-form expressions for effective nonlinear
parameters. It has been demonstrated that spatial dispersion
affects strongly nonlinear properties of metamaterials in
the vicinity of effective permittivity resonance dumping the
frequency variation of nonlinear susceptibilities in comparison
to the models of local effective media. We have predicted

that, due to the spatial dispersion effects, one incident
light beam may produce two harmonic beams with the
same polarization. Additionally, we have demonstrated the
dependence of nonlinear susceptibilities on the direction in
which the fundamental harmonic propagates with respect to
the crystallographic axes. Our results suggest that nonlocality
is important in metamaterials even if they operate in a deeply
subwavelength regime. Furthermore, we have verified that
our results yield an accurate form of the so-called local
field corrections to the nonlinear susceptibilities when spatial
dispersion effects become negligible. Our conclusions are
also valid for three-dimensional arrays of uniaxial magnetic
scatterers such as varactor-loaded split-ring resonantors. We
believe that our study provides important insights into the
characterization of nonlinear metamaterials exhibiting large
resonant nonlinearities.
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APPENDIX: LINEAR AND NONLINEAR
POLARIZABILITIES OF A SHORT

VARACTOR-LOADED WIRE

In this Appendix we derive expressions characterizing
linear and nonlinear properties of a short (2 l 	 λ) varactor-
loaded wire (Fig. 6). Varactor is described by the nonlinear ca-
pacitance as well as associated linear parameters. Nonlinearity
in such meta-atom arises due to the voltage-dependent varactor
capacitance that is well approximated by the formula [35]

C(U ) = CJ0

(1 + U/UJ )M
, (A1)

where U is deemed positive in the case of reverse varactor
bias. In the case of varactor SMV 1231-079, the parameters in
Eq. (A1) are as follows [35]: M = 4.999, CJ0 = 1.88 pF, and
UJ = 10.13 V.

Making use of the definition C = dq/dU one can relate
reverse voltage on the varactor UV to its charge q:

UV (q) = UJ

[(
1 + 1 − M

CJ0 UJ

q

)1/(1−M)

− 1

]
. (A2)

FIG. 6. A schematic representation of short varactor-loaded wire
used as a building block of metamaterial.
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Under the assumption |q| 	 CJ0 UJ the right-hand side of
Eq. (A2) can be expanded in a series with respect to q:

UV (q) = 1

CJ0

[
q + M q2

2 CJ0 UJ

+ M (2M − 1)

6 C2
J0 U 2

J

q3

]
. (A3)

Taking into account parasitic linear capacitance Cp loaded
parallel to varactor, Eq. (A3) can be further rearranged to
yield

UV (Q) = 1

C0

[
Q + M CJ0 Q2

2 C2
0 UJ

+CJ0 Q3

C4
0 U 2

J

(
C0

M(2M − 1)

6
− Cp

M2

2

)]
, (A4)

where Q is the total charge stored by both varactor and parasitic
capacitance Cp, and C0 = CJ0 + Cp. Denoting the inductance
and resistance of the entire varactor inclusion by Lt and Rt ,
respectively, we obtain the nonlinear oscillator equation for
the total charge stored in the system:

Q̈ + 2 β0 Q̇ + ω2
0 Q + β2 Q2 + β3 Q3 = E(t), (A5)

where E(t) = ε(t)/Lt , ε(t) is electromotive force, β0 =
Rt/(2 Lt ), ω0 = 1/

√
Lt C0,

β2 = ω2
0 M CJ0

2 C2
0 UJ

, (A6)

and

β3 = ω2
0 CJ0

C4
0 U 2

J

[
C0

M(2M − 1)

6
− Cp

M2

2

]
. (A7)

To calculate linear and nonlinear polarizabilities, we
consider the system composed of nonlinear varactor with
associated linear parameters and wires. The input impedance
of the entire wire is denoted by Zinp(ω) = −1/(iω Ct ), where
Ct is the wire capacitance without varactor capacitance. Then
we obtain

Q̈ + 2 β0 Q̇ + ω2
0 Q + β2 Q2 + β3 Q3

= Re

{
ξ e−iω t

Lt

[l E(ω) − I0(ω) Zinp(ω)]

+ξ 2 e−2i ωt

Lt

[l E(2ω) − I0(2ω) Zinp(2 ω)]

+ξ 3 e−3i ωt

Lt

[l E(3ω) − I0(3ω) Zinp(3 ω)]

}

−ξ 2 Ul(0)

Lt

, (A8)

where I0(�) = Q̇�, Ul(0) = limω→0 I0(ω) Zinp(ω) is a static
voltage arising on varactor inclusion, and ξ is an auxiliary
dimensionless parameter that is usually introduced for the
perturbative solution of nonlinear oscillator equation and
which will be set to 1 at the end of the calculation [8]. We
consider the incident field E(ω) as sufficiently small. In this
case the steady-state solution for Eq. (A8) may be searched in

the form of a power series in ξ ,

Q(t) = ξ Q(1)(t) + ξ 2 Q(2)(t) + ξ 3 Q(3)(t). (A9)

Plugging ansatz Eq. (A9) into Eq. (A8) yields the set of
equations:

Q̈(1) + 2 β0 Q̇(1) + ω2
0 Q(1)

= Re

{
e−iω t

Lt

[l E(ω) − I ′
0(ω) Zinp(ω)]

}
, (A10)

Q̈(2) + 2 β0 Q̇(2) + ω2
0 Q(2) + β2 [Q(1)]2

= Re

{
e−2iω t

Lt

[l E(2 ω) − I0(2 ω) Zinp(2 ω)]

}
− Ul(0)

Lt

,

(A11)

Q̈(3) + 2 β0 Q̇(3) + ω2
0 Q(3) + 2 β2 Q(1) Q(2) + β3 [Q(1)]3

= Re

{
e−3iω t

Lt

[l E(3 ω) − I0(3 ω) Zinp(3 ω)]

−e−iω t

Lt

I ′′
0 (ω) Zinp(ω)

}
, (A12)

where I ′
0(ω) = −iω Q(1)(ω) and I ′′

0 (ω) = −iω Q(3)(ω),
I ′

0(ω) + I ′′
0 (ω) = I0(ω). Each of Eqs. (A10)–(A12) is a linear

differential equation with single unknown function [Q(1)(t),
Q(2)(t) and Q(3)(t), respectively]. The solutions of these
equations are as follows:

Q(1)(t) = Re(x1 e−iω t ), (A13)

Q(2)(t) = x0 + Re(x2 e−2iω t ), (A14)

Q(3)(t) = Re(x ′
1 e−iω t + x3 e−3iω t ), (A15)

with the amplitudes x defined as

x1 = l E(ω)

F (ω)
, (A16)

x0 = −β2 l2 Lt |E(ω)|2
2 F (0) |F (ω)|2 , (A17)

x2 = l E(2 ω)

F (2 ω)
− β2 l2 Lt E

2(ω)

2 F 2(ω) F (2 ω)
, (A18)

x ′
1 = − β2 l2 Lt

|F (ω)|2 F (2 ω)
E∗(ω) E(2 ω) + l3 |E(ω)|2 E(ω)

|F (ω)|2 F 2(ω)

×
[

− 3 β3 Lt

4
+ β2

2 L2
t

F (0)
+ β2

2 L2
t

2 F (2 ω)

]
, (A19)

x3 = l E(3 ω)

F (3 ω)
− β2 l2 Lt E(ω) E(2 ω)

F (ω) F (2 ω) F (3 ω)

+
[

β2
2 l3 L2

t

2 F 3(ω) F (2 ω) F (3 ω)
− β3 l3 Lt

4 F 3(ω) F (3 ω)

]
E3(ω).

(A20)
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where we use the designation

F (�) = Lt D(�) − i�Zinp(�) = Lt D(�) + 1

Ct

, (A21)

D(�) = ω2
0 − 2i β0 � − �2. (A22)

Having solved the nonlinear oscillator equation and assuming
the current distribution as in a short symmetric antenna [39],
we are able to calculate the meta-atom dipole moment as
d(ω) = l (x1 + x ′

1), d(2 ω) = l x2, and d(3 ω) = l x3. It is now
straightforward to prove the validity of Eqs. (1)–(3) used
in Sec. II for the meta-atom characterization. Linear and
nonlinear meta-atom polarizabilities are given by the formulas

α1(ω) = l2

F (ω)
, (A23)

α2(ω; 2 ω,−ω) = −1

2

β2 l3 Lt

|F (ω)|2 F (2 ω)
, (A24)

α2(2 ω; ω,ω) = − β2 l3 Lt

2 F 2(ω) F (2 ω)
, (A25)

α2(3 ω; 2 ω,ω) = − β2 l3 Lt

2 F (3 ω) F (2 ω) F (ω)
, (A26)

α3(3 ω; ω,ω,ω) = l4

F (3 ω) F 3(ω)

[
− β3 Lt

4
+ β2

2 L2
t

2 F (2 ω)

]
,

(A27)

α3(ω; ω,ω,−ω) = l4

|F (ω)|2 F 2(ω)

×
[

− β3 Lt

4
+ β2

2 L2
t

3 F (0)
+ β2

2 L2
t

6 F (2 ω)

]
.

(A28)

The derived expressions suggest that nonlinear polarizabil-
ities exhibit resonant enhancement at frequencies satisfying
one of the following conditions: F (ω) = 0 or F (2 ω) = 0 or
F (3 ω) = 0 that was used in Sec. IV.
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