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Abstract
We study a structure composed of three coupledwaveguides with gain and loss, a non-Hermitian
trimer.We demonstrate that themode spectrum can be entirely real if thewaveguides are placed in a
special order and at certain distances between each other. Such structures generally lack a spatial
symmetry, in contrast to parity-time symmetric trimers which are known to feature a real spectrum.
We also determine a threshold forwave amplification and analyse the scattering properties of such
non-conservative systems embedded into a chain of conservative waveguides.

Introduction

One of the postulates of quantummechanics reads that all physical observablesmust be described by real
variables and thus a systemHamiltonianmust beHermitian [1, 2]. Hermiticity of theHamiltonian ensures that
the systempossesses an entirely real eigenspectrum. Interestingly, analogous operators appear inmany different
contexts beyond conventional quantummechanics, including optics, where they can be non-Hermitian. Bender
et al [3] suggested that there exists a class of non-HermitianHamiltonians that can possess a real eigenspectrum,
if they are parity-time (PT) invariant. Due to an analogy between the Schrödinger equation in quantum
mechanics and the equation for slowly varyingmode amplitude in optics this phenomenon can be observed in
non-conservative optical systemswithmutually balanced gain and loss [4–6]. To achieve the balance between
gain and loss, the refractive index of the system should satisfy the relation ( ) ( )*n x n x , i.e. the active and
passive regions of an optical system should be placed symmetrically with respect to each other. In particular,
when speaking about PT-symmetric systems, researchers are interested in two features among others: a real
spectrumof a non-Hermitian system and a phase transition between a PT-symmetric phase (all eigenvalues are
real) and a broken phase (some of the eigenvalues become complex). Such phase transitions are associatedwith
exceptional points [7] in the parameter space, which also appear undermore general conditions in non-PT
symmetric systems [8–10].Moreover, it was shown that PT-symmetry is neither a sufficient nor necessary
condition to have a real spectrum [11]. Thus, the concept of pseudo-Hermiticity, a condition for a real spectrum
of a non-Hermitian system,was introduced.

Themain goal of our study is to reveal new possibilities of using general non-Hermitian systems in
comparisonwith PT-symmetric ones. In the present paper we investigate an array of coupled optical
weaveguides with gain and loss, and identify several necessary conditions for the spectrum to be real.We then
study in detail the case of three coupledwaveguides, comparing the features of a general pseudo-Hermitian (PH)
trimer to a PT-symmetric trimer. A PH trimer possesses spatially inhomogeneous gain and dissipation, and
generally speaking is not PT-symmetric. A PT-symmetric trimer belongs to the class of PH trimers, but
hereinafter when referring to PH timerwewill imply that it is not PT invariant.We determine conditions under
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which PHand PT trimers possess entirely real spectra, and reveal newopportunities of PH structures toflexibly
tailormodes’ properties, their scattering and amplification.

Chain of non-conservative coupledwaveguides

First, we consider the general case of an array of coupled non-conservative optical waveguides, as shown
schematically infigure 1. Eachwaveguide of the chain possesses linear gain or loss, a strength of which is
determined by the parameters ρj.Waveguides in the chain experience only a nearest-neighbour conservative
coupling described by the coefficientsCj.We also assume that all the individual waveguidemodes have the same
real propagation constants. Light propagation through such a system can be described by the coupledmode
equations [4, 5, 12],

( )a

z
a C a C ai

d

d
i 0. 1

j
j j j j j j1 1 1

Here aj is themode amplitude in the jthwaveguide, z is the normalised propagation distance. A linear spectrum
of the coupledwaveguide structure can be determined by seeking solutions of equation (1) in the following form

( ) ( )( )a A zexp i , 2j j
n

n

where ( )Aj
n aremode amplitudes corresponding to propagation constantβn, and n is the eigenmode number.

We now analyse the conditions for the spectrum to be real, i.e. for ( )Im 0n for all n.We recall that a trace
of any squarematrix is equal to the sumof its eigenvalues, and then after representing the eigenmode equation in
thematrix formwe obtain ij j n n. If allβn are real, it follows that

( )0. 3
j

j

This balance condition is a necessary one for the spectrum to be real.
We also identify general symmetry properties of the eigenmode spectrum even in absence of PT symmetry.

Let aj(z) be a solution of equation (1). Then it can be shown by simple substitution that ( )( )*a z 1j
j is also a

solution of equation (1). Thismeans that for each propagation constantβn, *n is also propagation constant.
Thus there are two possible cases: (i) *n n , which leads toβn=0 if we assume that the systemhas an
entirely real spectrum; or (ii) *n m for a pair ofmodeswith n m. Since the total number ofmodes is
equal to the number of waveguides, it follows that for an odd number of waveguides in the chain there should

Figure 1. Schematic of an array of coupledwaveguides with different gain or dissipation denoted by ρj and different colours.

Figure 2. Schematic of a non-Hermitian trimerwith gain/loss strength denoted by ρ−1, ρ0, and ρ1. ρj>0 or ρj<0 correspond to loss
or gain, respectively.
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always exist amodewith zero propagation constant, while all othermodes should have a counterpart with an
opposite propagation constant. These are the necessary conditions for an entirely real spectrum.

Wenote that if J 0j j , where J is the number of waveguides, it is possible to apply the gauge
transformation [12, 13] as follows

( { }) ( { }) ( ) ( )a z a z z; ; exp . 4j j j j

This relation expresses a solution for arbitrary gain/loss (on the left-hand side) through a solution for gain and
loss satisfying equation (3).We see that if equation (3) is not satisfied, then spectrum cannot be real, however a
more general and practically important situation of allmodes having the same spatially averaged gain/loss [13]
can be realisedwhen ( )Im n for all n.

General theory of dissipative trimers

Wenow focus on a particular case with threewaveguides in the chain—a non-conservative trimer schematically
shown infigure 2. For convenience, we explicitly write down the coupledmode equations according to the
general form in equation (1)

( )
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a

z
a C a

i i 0,
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0
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Sincewe consider an odd number of waveguides, theremust be an eigenmodewith zero propagation constant,
β=0, as a necessary condition for the entire spectrum to be real, as proven in the previous section. The
amplitude profile of thismode satisfies

( )

a C a

a C a C a
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This systemhas a non-trivial solutionwhen thematrix determinant is zero. This provides the following relation
for the structure parameters

( )C C
0. 70

1
2

1

0
2

1

This condition is necessary (but not sufficient) for thewhole spectrum to be real-valued.
Next, we find the eigenmode solutions of equation (5). Substituting anzats(2) into (5) and taking to account

equation (7), wefind

( )C C0, . 81 2,3 1
2

1
2

0
2

1 0

As expected, one eigenvalue is zero.
We nowuse condition in equation (3) to express the three loss/gain coefficients through two independent

parameters ρ and θ:

( ) ( ), , 1 . 91 0 1

Thenwe analyse equation (8) and determine that the spectrumof equation (5) is entirely real under the
following conditions:

( )( ) ( )C C1 , 100 1
2 2

∣ ∣ ( )C2 . 11crit 1

Wenotice that sincewe consider conservative coupling in the present paper,C−1 andC0 are real, thenwe have an
additional restriction on the gain/loss parameter:

∣ ∣ ( )C . 12struc 1

From equations (10) and (11) it can be shown that system(5) can have an entirely real spectrum if and only if

( )1. 13
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Thismeans that twowaveguides of the trimer, which are of the same type (both with gain or loss) should not be
separated by awaveguide of other type (loss or gain, respectively). This interesting result stems from the geometric
mode symmetry (β1= 0) and specific gain/loss distribution providing energy balance.

Without loss of generality, we consider the case 0 1which corresponds to the right andmiddle
waveguides of the same type and the left waveguide of the opposite type.Wewill not consider the case θ=1 as it
corresponds toC0=0, which reduces the system to an uncoupled dimer and a single waveguide. Note that the
particular case of θ=0 corresponds to the PT-symmetric trimer previously considered in [14–16].We also note
that under the above assumption crit struc.

Inwhat follows, we compare the basic properties of the PT-trimer (θ= 0)with the properties of the
PH trimer at θ=0.5. The lattermeans that the trimer consists of one lossywaveguide (ρ) and two active
waveguides with the same gain ( 2, 2).

Under the assumptions formulated above, the relations(8) take the form

( )0, 141

( ) ( )C2 . 152,3 1
2 2

It is interesting that the dependence of the propagation constantsβn on the gain/loss strength does not have
a qualitative difference for PT-trimers and PH trimers. Infigure 3, this dependence is plotted according to
equations (8)withC0 determined by equation (10). Herewe should keep inmind that the coupling parameterC0

does not depend on ρ for the PT-trimer, but it does depend on ρ for the PH timer.
The eigenmode amplitude profiles are
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forβ2,3.
A relative intensity distribution between thewaveguides of the trimer is calculated as

∣ ∣ (∣ ∣ ∣ ∣ ∣ ∣ )A A A Aj
2

1
2

0
2

1
2 , and it is shown infigure 4. The top row corresponds to the PT-trimer, while the

bottom row corresponds to the PH trimer. Figures 4(a) and (d) showhow the coupling parameterC0 changes
depending on the gain/loss strength ρ. Panels (b) and (e), and (c) and (f) show the intensity distribution between
thewaveguides for the propagation constantsβ1=0 andβ2,3, respectively. Here red, black, and dashed blue
curves represent the light intensity in the left,middle, and right waveguides, respectively. Interestingly, the
modeswith the zero propagation constant do not depend on the gain/loss strength up to the critical value ρcrit,
while forβ2,3 we observe redistribution of the intensity between thewaveguides. Note that for the PT-trimer the
energy is distributed equally betweenwaveguides with gain and loss, while for the PH-trimer this is not so.

Figure 3. Imaginary part of the propagation constantβn as a function of gain/loss parameter ρ. Red, green, and blue curves correspond
toβ1,β2, andβ3, respectively. (a)PT-symmetric trimer (θ = 0) forC−1=1, andC0=C−1; (b)PH trimer (θ = 0.5) forC−1=1, and
C0(ρ) determined by equation (10). Dashed linemarks the threshold value of gain/loss parameter ρcrit.
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Another observation is that at the critical point ρcrit the propagation constants and full complex amplitude
profiles of all threemodes coincide.

Thuswe reveal that the PH trimer can have an entirely real spectrum aswell as a phase transition point
denoted as ρcrit, which is usually typical for the PT-symmetric trimer.However, the crucial difference here is that
for the PT symmetric trimer the coupling parameterC0 does not depend on gain/loss parameter ρ, and it is
found asC0=C−1, while for the PH trimerC0 depends on not onlyC−1, but on ρ and θ aswell. In the next
sectionwe investigate the behaviour of a non-Hermitian trimer in a chain of conservative waveguides.

Wave scattering by a dissipative trimer

PT-symmetric elements, incorporated into conservative structures, can demonstrate beneficial effects such as
non-reciprocity, signal amplification, suppressed reflection, and invisibility [17–20]. In this sectionwe compare
a behaviour of the PT trimerwith the PH trimer in terms of light scattering.We consider a non-Hermitian
trimer embedded into a long array ofHermitian (conservative)waveguides, andwe studywave transmission,
reflection, and amplification. Schematic of wave scattering by the defect for thewave propagating from the left is
shown infigure 5.

It was previously shown in [21] that when a PT-symmetric system is embedded into a chain of conservative
waveguides, the PT symmetry breaking threshold can change. In particular this can lead to spontaneous

Figure 4. Intensity distribution between the threewaveguides depending on the gain/loss strength for the PT trimer (θ = 0)—top
row, and the PH trimer (θ = 0.5)—bottom row. Red, black, and dashed blue curvesmark the intensity in the left,middle, and right
waveguides, respectively. Panels (a) and (d) show the dependence of the coupling parameterC0; (b) and (e) correspond to the
propagation constantβ1; (c) and (f) correspond toβ2 andβ3.

Figure 5.A chain ofHermitianwaveguides with an embedded non-Hermitian trimer. Arrows indicate the incident, reflected and
transmitted waves in the case when the incident wave comes from the left.
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amplification ofmodes, evenwhen the isolated systemhas no growingmodes. Therefore, it is important to
determine firstly a range of trimermodel parameters, when the systemdoes not possess exponentially growing
modes (lasingmodes). In this regime the PH trimer can be used for active control of propagating signals, i.e. for
amplification,filtering, and switching.We note that the balance relation(3) is not a necessary condition for
absence of lasingmodes in the systemdue to additional radiation losses through the chain. Inwhat follows, we
consider a general case with 01 0 1 and introduce the additional gain/lossΔρ for the trimer
waveguides. This shifts the spectrumof the isolated trimer by the value iΔρ according to the gauge
transformation(4).When the trimer is embedded into a chain of conservative waveguides, the governing
equations take the form

( )

( )

[( ) ] ( )

a

z
C a C a j
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z
a C a C a
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z
a C a C a
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z
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0
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HereCA is the coupling coefficient between the conservative waveguides.
We seek a solution of equation (22) for wave scattering in the form

( )
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whereRleft andT are the reflection and transmission coefficients, respectively, k is thewavenumber of an incident
wave, andβ=2CAcosk is the propagation constant far away from the defect. Substituting equations (23) into
equation (22), we obtain the following expressions for the scattering coefficients:
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where ¯ C 1, C̄ C CA A 1, C̄ C C0 0 1, and ¯ C 1.
We notice that for the PT trimer (similar to the PT coupler considered in [18])we can obtain the scattering

coefficient for the incident wave approaching the defect from the right by changing the sign of gain/loss
strength, i.e. in equations (24). However, for a general case of a non-Hermitian trimer, this is no longer
true, due to a broken space symmetry.We determine the scattering coefficient for the incident wave coming
from the right as

[ ( ( ) ¯ ) ¯ ]{ [ ¯ ( ¯ )]
( ¯ ( ) ¯ )}

¯ ( ¯ ¯ ) ( )
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2

2
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2 i

Weemphasise that the transmission coefficients for the right and left propagation of an incident wave
coincide due to the reciprocity of transmission for any linear, stationary and non-magneticmedium [19].

We notice that the scattering coefficients have the same denominatorD. Let us nowfix parametersCA,C−1,
θ, and ρ and consider [ ( ) ]min , , 1min . In this case there is no gain in the system and
thus no lasingmodes can occur. Next, we gradually increaseΔρ until it reaches some critical valueΔρcrit, at
which denominatorD turns to zero for somewavenumber kcrit. Thismeans that thewavewith thewavenumber
kcrit is a lasingmode and the energy of the system can growwithout any incident light for crit.

Infigure 6(a), we plot ¯ Ccrit crit 1 as a function of ¯ and θ for C̄ 0.5A . Infigure 6(b)we show the
correspondingwavenumber kcrit. The black dashed line bounds the range of possible structural parameters

6

New J. Phys. 18 (2016) 065005 SV Suchkov et al



according to equation (12) and black solid line separates regionswhere ¯ 0crit and ¯ 0crit . A complex
behaviour of c̄rit in the region θ>0.8 and ¯ 0.9 results frombifurcations of roots of the equationD=0 at
particular parameters θ, ¯ and C̄A.

Remarkably, the value ofΔρcrit can be either negative or positive. IfΔρcrit<0, then for the range
0crit the overall gain/loss balance is shifted into loss; however, lasingmodes are present in the

system. From the other hand, ifΔρcrit>0, then for the range 0 crit the overall gain/loss balance is
shifted into gain, but no lasingmodes are observed.

We simulate numerically the dynamics of input noisy conditions in the chain of conservative waveguides
with the PH trimer (θ= 0.5). Although the total number of waveguides in the considered case is 601, we emulate
an infinite long chain by introducing perfectlymatched layers at the structure boundaries. The noise is
introduced only in the trimerwaveguides and it is chosen randomly.We simulate light dynamics for several
realisations of initial conditions and a representative example for C̄ 0.5A andΔρ=0 is shown infigure 7. For
¯ 0.85, which is below the black curve infigure 6(a) and corresponds toΔρcrit>0, we observe that after
initial relaxation the total system energy ∣ ∣I Aj j

2 is preserved (seefigure 7(c)) and the systemdoes not lase.
However, if ¯ 1, thenΔρcrit< 0 [see figure 6(a)) and the system lases (see figure 7(b))with growing total
energy as shown infigure 7(d).

When operating in the non-lasing regime, we can consider the PH trimer in terms of scattering.
Characteristic dependencies for the scattering coefficients are plotted infigures 8(a)–(f) for C̄ 0.5A , ¯ 0.85.
The top and bottom rows represent the cases of the incident wave coming from the left and right, respectively.
Panels(a) and(b) are for PT-symmetric trimer (θ= 0), panels(c) and(d)—for the PH trimer (θ= 0.5). For
comparison, panels(e) and(f) show the results for the PT-symmetric coupler (coupled gain and loss waveguides
(ρ,−ρ)with the coupling coefficientC−1, which are embedded into a chain of conservative waveguides with the
coupling coefficientCA), where scattering coefficients are calculated using formulas obtained in [18]. Red and
blue curves indicate reflection and transmission coefficients, respectively.We observe that the PH trimer in
some cases can bemore efficient than the PT-trimer and PT coupler for light amplification. Additionally the
resonance position depends not only on gain/loss strength, but also has a non-trivial dependence on the
structural parameter θ, and the sign of ρ.

Conclusion and outlook

Wehave studied the light propagation in complex photonic structures composed of coupledwaveguides with
arbitrary strength of gain or dissipation. For such structures we identified themode symmetries which are
necessary for thewhole spectrum to be real. Next we considered in detail a non-Hermitian trimer and derived
the restrictions on the systemparameters, which provide an entirely real spectrum. These conditions prescribe
how far from each other and inwhich order thesewaveguides should be placed to observe the PT-like behaviour
in optical systemswithout PT symmetry.We then identified the threshold conditions for the appearance of

Figure 6. (a)Theminimumvalue of gain/loss imbalance, ¯crit at which a lasingmode occurs in the chain of conservative waveguides
with the embedded trimer as a function of ¯ and θ. (b)Awavenumber of the corresponding lasingmode.Dashed black curve bounds
the range of possible structural parameters according to equation (12), and black solid line separates regions where ¯ 0crit and

¯ 0crit . Parameter C̄A=0.5.
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lasingmodes for the PH trimer embedded into a long chain of conservative waveguides.We showed that the
PH trimer can be used for light amplificationwith a higher efficiency than the PT-trimer. Due to the absence of a
strict condition on the gain/loss distribution between threewaveguides, in contrast to the PT-trimer, PH trimer
providesmoreflexible control of light propagation in the system. Thereby our study reveals new possibilities for

Figure 7.Noise dynamics in the chain of conservative waveguides with the embedded PH trimer for (a) ¯ 0.85 and (b) ¯ 1. (c)
and (d) evolution the total energy of the system, I, corresponding to (a) and (b), respectively. Insets show evolution of the energy
concentrated in thewaveguides of the PH trimer only. Parameters are θ=0.5, C̄ 0.5A , andΔρ=0.

Figure 8.An example of the scattering coefficients for the PT-trimer (left), the PH-trimer (middle) and the PT-coupler (right) for
C̄ 0.5A and ¯ 0.85. Top—scattering from the left, bottom—from the right. Blue and red curves stand for the transmission and
reflection coefficients, respectively.
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using non-Hermitian structures and the presented results suggest practical realisations of PHwaveguide arrays.
We anticipate that ourwork can also stimulate following studies to uncover the potential of PH structures for
tailoring nonlinear interactions for all-optical applications.
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