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Abstract

We study a structure composed of three coupled waveguides with gain and loss, a non-Hermitian
trimer. We demonstrate that the mode spectrum can be entirely real if the waveguides are placed in a
special order and at certain distances between each other. Such structures generally lack a spatial
symmetry, in contrast to parity-time symmetric trimers which are known to feature a real spectrum.
We also determine a threshold for wave amplification and analyse the scattering properties of such
non-conservative systems embedded into a chain of conservative waveguides.

Introduction

One of the postulates of quantum mechanics reads that all physical observables must be described by real
variables and thus a system Hamiltonian must be Hermitian [1, 2]. Hermiticity of the Hamiltonian ensures that
the system possesses an entirely real eigenspectrum. Interestingly, analogous operators appear in many different
contexts beyond conventional quantum mechanics, including optics, where they can be non-Hermitian. Bender
et al [3] suggested that there exists a class of non-Hermitian Hamiltonians that can possess a real eigenspectrum,
if they are parity-time (PT) invariant. Due to an analogy between the Schrédinger equation in quantum
mechanics and the equation for slowly varying mode amplitude in optics this phenomenon can be observed in
non-conservative optical systems with mutually balanced gain and loss [4—6]. To achieve the balance between
gain and loss, the refractive index of the system should satisfy the relation n (x) = n*(—x), i.e. the active and
passive regions of an optical system should be placed symmetrically with respect to each other. In particular,
when speaking about PT-symmetric systems, researchers are interested in two features among others: a real
spectrum of a non-Hermitian system and a phase transition between a PT-symmetric phase (all eigenvalues are
real) and a broken phase (some of the eigenvalues become complex). Such phase transitions are associated with
exceptional points [7] in the parameter space, which also appear under more general conditions in non-PT
symmetric systems [8—10]. Moreover, it was shown that PT-symmetry is neither a sufficient nor necessary
condition to have a real spectrum [11]. Thus, the concept of pseudo-Hermiticity, a condition for a real spectrum
of anon-Hermitian system, was introduced.

The main goal of our study is to reveal new possibilities of using general non-Hermitian systems in
comparison with PT-symmetric ones. In the present paper we investigate an array of coupled optical
weaveguides with gain and loss, and identify several necessary conditions for the spectrum to be real. We then
study in detail the case of three coupled waveguides, comparing the features of a general pseudo-Hermitian (PH)
trimer to a PT-symmetric trimer. A PH trimer possesses spatially inhomogeneous gain and dissipation, and
generally speaking is not PT-symmetric. A PT-symmetric trimer belongs to the class of PH trimers, but
hereinafter when referring to PH timer we will imply that it is not PT invariant. We determine conditions under

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic of an array of coupled waveguides with different gain or dissipation denoted by p;and different colours.

Figure 2. Schematic of a non-Hermitian trimer with gain/loss strength denoted by p_,, p, and p;. p; > 0 or p; < 0 correspond to loss
or gain, respectively.

which PH and PT trimers possess entirely real spectra, and reveal new opportunities of PH structures to flexibly
tailor modes’ properties, their scattering and amplification.

Chain of non-conservative coupled waveguides

First, we consider the general case of an array of coupled non-conservative optical waveguides, as shown
schematically in figure 1. Each waveguide of the chain possesses linear gain or loss, a strength of which is
determined by the parameters p;. Waveguides in the chain experience only a nearest-neighbour conservative
coupling described by the coefficients C;. We also assume that all the individual waveguide modes have the same
real propagation constants. Light propagation through such a system can be described by the coupled mode
equations [4, 5, 12],

da;
IE] + 1p;a; + Cjaj+1 + Cj_laj_l =0. (1)

Here a;is the mode amplitude in the jth waveguide, zis the normalised propagation distance. A linear spectrum
of the coupled waveguide structure can be determined by seeking solutions of equation (1) in the following form

aj = AV exp(iB,2), ()

where A](") are mode amplitudes corresponding to propagation constant (3,,, and # is the eigenmode number.

We now analyse the conditions for the spectrum to be real, i.e. for Im(3,) = 0 for all n. We recall that a trace
of any square matrix is equal to the sum of its eigenvalues, and then after representing the eigenmode equation in
the matrix form we obtain ) il P =2y 0,. Ifall G, are real, it follows that

ij = 0. 3)
i

This balance condition is a necessary one for the spectrum to be real.

We also identify general symmetry properties of the eigenmode spectrum even in absence of PT symmetry.
Let aj(z) be a solution of equation (1). Then it can be shown by simple substitution that a;k (z)(—1)isalsoa
solution of equation (1). This means that for each propagation constant 3,, — 3} is also propagation constant.
Thus there are two possible cases: (i) 3, = — 3%, whichleadsto 3, = 0 if we assume that the system has an
entirely real spectrum; or (i) 3, = — 3} for a pair of modes with n = m. Since the total number of modes is
equal to the number of waveguides, it follows that for an odd number of waveguides in the chain there should
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always exist a mode with zero propagation constant, while all other modes should have a counterpart with an
opposite propagation constant. These are the necessary conditions for an entirely real spectrum.

Wenote thatif Ap = =37, p; /] = 0, where ] is the number of waveguides, it is possible to apply the gauge
transformation [12, 13] as follows

aj(z; {p;}) = aj(z {p; + Ap})exp(Apz). (4)

This relation expresses a solution for arbitrary gain/loss (on the left-hand side) through a solution for gain and
loss satisfying equation (3). We see that if equation (3) is not satisfied, then spectrum cannot be real, however a
more general and practically important situation of all modes having the same spatially averaged gain/loss [13]
can be realised when Im(3,,) = Ap forall n.

General theory of dissipative trimers

We now focus on a particular case with three waveguides in the chain—a non-conservative trimer schematically
shown in figure 2. For convenience, we explicitly write down the coupled mode equations according to the
general form in equation (1)

8(171

1 + ip_la,l + C,IQQ = 0,
Z

.0 )

2% + ipyao + C_ja_; + Coay = 0,
0z

.0 )

1ﬂ + 10101 + Coao =0. (5)
0z

Since we consider an odd number of waveguides, there must be an eigenmode with zero propagation constant,
8 = 0,asanecessary condition for the entire spectrum to be real, as proven in the previous section. The
amplitude profile of this mode satisfies

ip_ja_; + C_ja9 = 0,
ipgag + C_1a_; + Coay = 0,
iplﬂl + C()a() =0. (6)

This system has a non-trivial solution when the matrix determinant is zero. This provides the following relation
for the structure parameters
cl G
0o + L, 20 . (7)
P P
This condition is necessary (but not sufficient) for the whole spectrum to be real-valued.
Next, we find the eigenmode solutions of equation (5). Substituting anzats (2) into (5) and taking to account
equation (7), we find

Bi=0, Br3 = i\/—ﬂf + C2 + Ci + pypy- (8)

As expected, one eigenvalue is zero.
We now use condition in equation (3) to express the three loss/gain coefficients through two independent
parameters p and 6:
poy=p pp=—0p, p=—010-00p. ©)

Then we analyse equation (8) and determine that the spectrum of equation (5) is entirely real under the
following conditions:

Co = (1 — 0)(C?, — 0p?), (10)
ol < poie = V2 = 0C_. (an

We notice that since we consider conservative coupling in the present paper, C_; and C are real, then we have an
additional restriction on the gain/loss parameter:

|p| < pstruc = C*l/\/g‘ (12)
From equations (10) and (11) it can be shown that system (5) can have an entirely real spectrum if and only if
0 <1. (13)
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Figure 3. Imaginary part of the propagation constant (3, as a function of gain/loss parameter p. Red, green, and blue curves correspond
to 5y, 35, and (35, respectively. (a) PT-symmetric trimer (§ = 0) for C_; = 1,and Cy = C_;;(b) PH trimer (f = 0.5)for C_; = 1,and
Co(p) determined by equation (10). Dashed line marks the threshold value of gain/loss parameter pey;.

This means that two waveguides of the trimer, which are of the same type (both with gain or loss) should not be
separated by a waveguide of other type (loss or gain, respectively). This interesting result stems from the geometric
mode symmetry (5, = 0) and specific gain/loss distribution providing energy balance.

Without loss of generality, we consider the case 0 < 6 < 1which corresponds to the right and middle
waveguides of the same type and the left waveguide of the opposite type. We will not consider the case § = 1asit
corresponds to Cy = 0, which reduces the system to an uncoupled dimer and a single waveguide. Note that the
particular case of @ = 0 corresponds to the PT-symmetric trimer previously considered in [14—-16]. We also note
that under the above assumption g, < Py

In what follows, we compare the basic properties of the PT-trimer (6 = 0) with the properties of the
PH trimer at @ = 0.5. The latter means that the trimer consists of one lossy waveguide (p) and two active
waveguides with the same gain (—p/2, —p/2).

Under the assumptions formulated above, the relations (8) take the form

B =0, (14)

Bos = (2 — 0)C?, — p. (15)

Itis interesting that the dependence of the propagation constants 3, on the gain/loss strength does not have
aqualitative difference for PT-trimers and PH trimers. In figure 3, this dependence is plotted according to
equations (8) with C, determined by equation (10). Here we should keep in mind that the coupling parameter C,
does not depend on p for the PT-trimer, but it does depend on p for the PH timer.

The eigenmode amplitude profiles are

AN =cC.,, (16)
Ag = ~ip, 17
C?) — Op?
AW = N P (18)
N
for 3, = 0,and
A%Y = C_,, (19)
APY = —ip£ 2 - 0)C2 - p?, (20)
C* — P2 Fip 2 — )C?, — p?
Al(z,s): T —g=-! p°F ipy( )CZ4 P’ 1)
A CE] — 9p2
forﬁz)}

A relative intensity distribution between the waveguides of the trimer is calculated as
|Ajl?/(JA_1* + |Ao* + |Ai]*), anditis shown in figure 4. The top row corresponds to the PT-trimer, while the
bottom row corresponds to the PH trimer. Figures 4(a) and (d) show how the coupling parameter C, changes
depending on the gain/loss strength p. Panels (b) and (e), and (¢) and (f) show the intensity distribution between
the waveguides for the propagation constants 3; = 0and 3, 3, respectively. Here red, black, and dashed blue
curves represent the light intensity in the left, middle, and right waveguides, respectively. Interestingly, the
modes with the zero propagation constant do not depend on the gain/loss strength up to the critical value p .,
while for 3, ; we observe redistribution of the intensity between the waveguides. Note that for the PT-trimer the
energy is distributed equally between waveguides with gain and loss, while for the PH-trimer this is not so.
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Figure 4. Intensity distribution between the three waveguides depending on the gain/loss strength for the PT trimer (§ = 0)—top
row, and the PH trimer (# = 0.5)—Dbottom row. Red, black, and dashed blue curves mark the intensity in the left, middle, and right
waveguides, respectively. Panels (a) and (d) show the dependence of the coupling parameter Cy; (b) and (e) correspond to the
propagation constant 3; (c) and (f) correspond to 3, and 3.

I
— ——
<A ) T A,_——-,‘CA C_l CO CA £ <S ? A 2 4
L — — (1P s et e
Te—  j=2 j=a  j=0  ja1  j=2

Figure 5. A chain of Hermitian waveguides with an embedded non-Hermitian trimer. Arrows indicate the incident, reflected and
transmitted waves in the case when the incident wave comes from the left.

Another observation is that at the critical point p.; the propagation constants and full complex amplitude
profiles of all three modes coincide.

Thus we reveal that the PH trimer can have an entirely real spectrum as well as a phase transition point
denoted as p;, which is usually typical for the PT-symmetric trimer. However, the crucial difference here is that
for the PT symmetric trimer the coupling parameter C, does not depend on gain/loss parameter p, and it is
found as Cy, = C_, while for the PH trimer C, depends on not only C_, but on p and 0 as well. In the next
section we investigate the behaviour of a non-Hermitian trimer in a chain of conservative waveguides.

Wave scattering by a dissipative trimer

PT-symmetric elements, incorporated into conservative structures, can demonstrate beneficial effects such as
non-reciprocity, signal amplification, suppressed reflection, and invisibility [ 17-20]. In this section we compare
abehaviour of the PT trimer with the PH trimer in terms of light scattering. We consider a non-Hermitian
trimer embedded into along array of Hermitian (conservative) waveguides, and we study wave transmission,
reflection, and amplification. Schematic of wave scattering by the defect for the wave propagating from the left is
shown in figure 5.

It was previously shown in [21] that when a PT-symmetric system is embedded into a chain of conservative
waveguides, the PT symmetry breaking threshold can change. In particular this can lead to spontaneous
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amplification of modes, even when the isolated system has no growing modes. Therefore, it is important to
determine firstly a range of trimer model parameters, when the system does not possess exponentially growing
modes (lasing modes). In this regime the PH trimer can be used for active control of propagating signals, i.e. for
amplification, filtering, and switching. We note that the balance relation (3) is not a necessary condition for
absence of lasing modes in the system due to additional radiation losses through the chain. In what follows, we
consider a general case with p | + p, + p; = 0 and introduce the additional gain/loss Ap for the trimer
waveguides. This shifts the spectrum of the isolated trimer by the value iA p according to the gauge
transformation (4). When the trimer is embedded into a chain of conservative waveguides, the governing
equations take the form

.Oa; i
i— + Giajy 1 + Cuaj 1 =0, forj= —1,0, 1,
0z
.0a_ .
1 ; ! + i(p — Ap)a,l + C_1a¢9 + Cha_, =0,
z
.8&0 .
18— —i(0p + Ap)ag + C_1a_1 + Coa; = 0,
z
.0 .
18—"1 —i[(1 — 0)p + Aplay + Caas + Coag = 0. 22)
z

Here C, is the coupling coefficient between the conservative waveguides.
We seek a solution of equation (22) for wave scattering in the form

aj = elki+02) 4 Rleﬁei(*ijrﬂZ)’ i< —1,

aj=Tel® 5, j>1, (23)

where Ry.; and T are the reflection and transmission coefficients, respectively, k is the wavenumber of an incident
wave, and 3 = 2C, cos kis the propagation constant far away from the defect. Substituting equations (23) into
equation (22), we obtain the following expressions for the scattering coefficients:

: R
R = — e’z‘k(l + Bl),

T 2iC, Cy sin(k) ’
D
R = Cye*(—1 + e2%)[Cy2 + (2iC, cos(k)
+ Ap — 0p)(iGe * + p + (0 — D),
D = e*Cy*(C, — i(Ap + p)e'h)
— ie?* [iCye™* + Ap + (0 — 1)p]
X [1 + (2iCy cos(k) + Ap — 0p)(iCye™* + Ap + p)], (24)

where p = p/C_1,Cy = C/C_1,Cy = Cy/C_,and Ap = Ap/C_,.

We notice that for the PT trimer (similar to the PT coupler considered in [ 18]) we can obtain the scattering
coefficient for the incident wave approaching the defect from the right by changing the sign of gain/loss
strength, i.e. p — —pinequations (24). However, for a general case of a non-Hermitian trimer, this is no longer
true, due to abroken space symmetry. We determine the scattering coefficient for the incident wave coming
from the right as

R
erght - D >
Ry =T[i(Ap + (0 — Dp) — Cae* {1 + e ¥[iCy + e*(Ap + p)]
x (2iC, cos(k) + Ap — 0p)}
+iCy%(Che % + Ap + p). (25)

We emphasise that the transmission coefficients for the right and left propagation of an incident wave
coincide due to the reciprocity of transmission for any linear, stationary and non-magnetic medium [19].

We notice that the scattering coefficients have the same denominator D. Let us now fix parameters C,, C_1,
0,and pand consider Ap = Ap_. = min[p, —pb#, —(1 — ) p]. Inthis case there is no gain in the system and
thus no lasing modes can occur. Next, we gradually increase Ap until it reaches some critical value A p;, at
which denominator D turns to zero for some wavenumber k. This means that the wave with the wavenumber
kit is alasing mode and the energy of the system can grow without any incident lightfor Ap > Ap ..

In figure 6(a), we plot Ap.;, = Ap.;,/C-1asafunction of pand 6 for Cy = 0.5. In figure 6(b) we show the
corresponding wavenumber k. The black dashed line bounds the range of possible structural parameters
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Figure 6. (a) The minimum value of gain/loss imbalance, Ap,;, at which alasing mode occurs in the chain of conservative waveguides
with the embedded trimer as a function of p and 6. (b) A wavenumber of the corresponding lasing mode. Dashed black curve bounds
the range of possible structural parameters according to equation (12), and black solid line separates regions where Aj_;; > 0and
Ap.; < 0.Parameter Cy = 0.5.

according to equation (12) and black solid line separates regions where Ap,;, > 0and Ap.; < 0. A complex
behaviour of A, in theregion § > 0.8 and p ~ 0.9 results from bifurcations of roots of the equation D = 0O at
particular parameters 6, p and Cj.

Remarkably, the value of A p,;, can be either negative or positive. If Ap 5, < 0, then for the range
Ap.i < Ap < 0theoverall gain/loss balance is shifted into loss; however, lasing modes are present in the
system. From the other hand, if Ap.;; > 0, then for therange 0 < Ap < Ap, ., the overall gain/loss balance is
shifted into gain, but no lasing modes are observed.

We simulate numerically the dynamics of input noisy conditions in the chain of conservative waveguides
with the PH trimer (€ = 0.5). Although the total number of waveguides in the considered case is 601, we emulate
an infinite long chain by introducing perfectly matched layers at the structure boundaries. The noise is
introduced only in the trimer waveguides and it is chosen randomly. We simulate light dynamics for several
realisations of initial conditions and a representative example for C; = 0.5and Ap = 0is shown in figure 7. For
p = 0.85, which is below the black curve in figure 6(a) and corresponds to Ap.;c > 0, we observe that after
initial relaxation the total system energy I = 3 |A; |?is preserved (see figure 7(c)) and the system does not lase.
However, if p = 1, then Ap; < 0 [see figure 6(a)) and the system lases (see figure 7(b)) with growing total
energy as shown in figure 7(d).

When operating in the non-lasing regime, we can consider the PH trimer in terms of scattering.
Characteristic dependencies for the scattering coefficients are plotted in figures 8(a)—(f) for C4; = 0.5, p = 0.85.
The top and bottom rows represent the cases of the incident wave coming from the left and right, respectively.
Panels (a) and (b) are for PT-symmetric trimer (f = 0), panels (c) and (d)—for the PH trimer (# = 0.5). For
comparison, panels (e) and (f) show the results for the PT-symmetric coupler (coupled gain and loss waveguides
(p> —p) with the coupling coefficient C_,, which are embedded into a chain of conservative waveguides with the
coupling coefficient C,), where scattering coefficients are calculated using formulas obtained in [18]. Red and
blue curves indicate reflection and transmission coefficients, respectively. We observe that the PH trimer in
some cases can be more efficient than the PT-trimer and PT coupler for light amplification. Additionally the
resonance position depends not only on gain/loss strength, but also has a non-trivial dependence on the
structural parameter 6, and the sign of p.

Conclusion and outlook

We have studied the light propagation in complex photonic structures composed of coupled waveguides with
arbitrary strength of gain or dissipation. For such structures we identified the mode symmetries which are
necessary for the whole spectrum to be real. Next we considered in detail a non-Hermitian trimer and derived
the restrictions on the system parameters, which provide an entirely real spectrum. These conditions prescribe
how far from each other and in which order these waveguides should be placed to observe the PT-like behaviour
in optical systems without PT symmetry. We then identified the threshold conditions for the appearance of
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Figure 7. Noise dynamics in the chain of conservative waveguides with the embedded PH trimer for (a) p = 0.85and (b) p = 1.(c)
and (d) evolution the total energy of the system, , corresponding to (a) and (b), respectively. Insets show evolution of the energy
concentrated in the waveguides of the PH trimer only. Parametersare § = 0.5, C4 = 0.5,and Ap = 0.
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Figure 8. An example of the scattering coefficients for the PT-trimer (left), the PH-trimer (middle) and the PT-coupler (right) for
Cs = 0.5and p = 0.85. Top—scattering from the left, bottom—from the right. Blue and red curves stand for the transmission and
reflection coefficients, respectively.

lasing modes for the PH trimer embedded into a long chain of conservative waveguides. We showed that the

PH trimer can be used for light amplification with a higher efficiency than the PT-trimer. Due to the absence of a
strict condition on the gain/loss distribution between three waveguides, in contrast to the PT-trimer, PH trimer
provides more flexible control of light propagation in the system. Thereby our study reveals new possibilities for
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using non-Hermitian structures and the presented results suggest practical realisations of PH waveguide arrays.
We anticipate that our work can also stimulate following studies to uncover the potential of PH structures for
tailoring nonlinear interactions for all-optical applications.
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