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Abstract

Thought experiments are commonly used in the theory of behavior in the pres-
ence of risk and uncertainty to test the plausibility of proposed axiomatic pos-
tulates. The prototypical examples of the former are the Allais experiments
and of the latter are the Ellsberg experiments. Although the lotteries from the
former have objectively specified probabilities, the participants in both kinds of
experiments may be susceptible to small deviations in their subjective beliefs.
These may result from a variety of factors that are difficult to check in an exper-
imental setting: including deviations in the understanding and trust regarding
the experiment, its instructions and its method. Intuitively, an experiment is
robust if it is tolerant to small deviations in subjective beliefs in models that
are in an appropriate way close to the analyst’s model. The contribution of this
paper lies in the formalization of these ideas.

1. Introduction

The development of decision theory has been driven, in large measure, by
thought experiments questioning the core postulates of the expected utility
model, axiomatized for choice under risk by von Neumann and Morgenstern
(1944) and for uncertainty by Savage (1954). Experimentalists have gone to
great efforts to improve the design of experiments and elicitation of preferences
from the participants aimed to test such theories (see Becker et al. (1964), Holt
(1986) and Johnson et al. (2015) amongst others). In this paper we add to these
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efforts by providing a notion of robustness of an experiment that ensures the
conclusions of the analyst would not be overturned by introducing a vanishingly
small amount of doubt about what was in the minds of the participants. We
give a simple way to check for robustness of an experiment and some methods
to ensure an experiment is robust.1

The main idea is that a robust challenge to a decision-theoretic model arising
from an experiment remains a challenge in any model that is close to the ana-
lyst’s model. With this in mind, we demonstrate that many classic experiments
such as the prototypical Allais and Ellsberg experiments and their derivatives
(Machina, 2009), although well-conceived, do not pose convincing challenges to
the particular decision theory the experiment was designed to test. We show,
however, how they can be modified to overcome this problem.

The principal ideas, concepts and results can be readily introduced and
illustrated in the context of Ellsberg’s single-urn thought experiment. In that
thought experiment, the reader is asked to “imagine an urn known to contain
30 red balls and 60 black and yellow balls, the latter in unknown proportion.”
(Ellsberg, 1961, p. 653). A ball is to be drawn from the urn. On the basis of
the color of the ball drawn, first consider a choice between a bet that pays $100
if the ball drawn is red and nothing otherwise, denoted bR, and a bet that pays
$100 if the ball drawn is black and nothing otherwise, denoted bB. Next consider
a choice between a bet that pays $100 if the ball drawn is red or yellow and
nothing if it is black, denoted bRY , and a bet that pays $100 if the ball drawn
is black or yellow and nothing if it is red, denoted bBY . Ellsberg argues that
anyone exhibiting the preference pattern bR ≻ bB and bBY ≻ bRY is “simply
not acting ‘as though’ they assigned numerical or even qualitative probabilities
to the events in question.” (Ellsberg, 1961, p. 656) In particular, this means
such a preference pattern is inconsistent with subjective expected utility theory.

Ellsberg’s reasoning rests on the assumption that the subject in such an
experiment takes the state space to be the sample space {sR, sB , sY }, where sc
is the sample-state in which a ball of color c is drawn from the urn independent
of which bet has been chosen by the subject in either problem. By identifying
each of these three states with the corresponding vector of bet-consequences we
obtain the following 4× 3 consequence matrix:

C =

sR sB sY


bR 100 0 0
bB 0 100 0
bRY 100 0 100
bBY 0 100 100

.

The set of admissible preferences are ones that represent a subjective expected
utility maximizing decision-maker characterized by a pair (u, p) where

1In fact, we find that some of the methods used by experimentalists have the effect of
making the experiments robust in our sense (Halevy (2007) and Binmore et al. (2012)).
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1. u is any (Bernoulli) utility function for which u(0) < u(100).

2. p is any probability distribution over the sample space satisfying pR = 1
3 ,

pB = q and pY = 2
3 − q, for some number q, 1

90 ⩽ q ⩽ 59
90 .

2

We refer to the set H of all such pairs as the admissible parameters and the pair
(C,H) as an experiment in belief form. Any preference ordering ≿ generated by
an admissible parameter (u, p) is called an admissible preference.

Notice that in this experiment, every admissible preference ordering ≿ sat-
isfies bR ≿ bB if and only if bRY ≿ bBY . This implies, in particular, that the
preference ordering bBY ≻ bRY ≻ bR ≻ bB is not an admissible preference in
the experiment.

As it happens, in this experiment, the sets of admissible and inadmissible
preferences do not change if we allow for perturbations of any admissible beliefs
in the direction of any belief over the sample space {sR, sB , sY }.3 In this sense,
we view this experiment as being internally robust.

Imagine now, however, that the experimenter suspects that some partici-
pants may have an alternative perception of the situation which corresponds to
the experiment in belief form (C ′,H′) given by the consequence matrix

C ′ =

sR sB sY s∗


bR 100 0 0 0
bB 0 100 0 0
bRY 100 0 100 0
bBY 0 100 100 100

,

with H′ being the set of all (u, p′) for which there is (u, p) ∈ H satisfying
p′s = ps for all s ∈ {sR, sB, sY }, thus making p′s∗ = 0. That is, (C ′,H′) is very
similar to (C,H) but with an additional state s∗ that has zero probability in all
the admissible parameters of the experiment. One possible interpretation for
this state s∗ is the participant conceives of, but places zero probability on, the
possibility that the experimenter can “manipulate” the draw of a ball whose
color is not red by substituting a yellow ball for a black one or a black ball
for a yellow one, whenever such a substitution results in the bet paying out $0
instead of $100. Hence, the only bet that pays out $100 in s∗ is bBY .

The version (C ′,H′) admits exactly the same admissible and inadmissible
preferences as (C,H). However, if we now allow for (vanishingly) small pertur-
bations of any admissible belief in the direction of any belief over the sample
space, we find that the set of admissible preferences expands to what we refer to

2The restriction pR = 1
3
accords with the information that 30 out of the 90 balls are red.

The restriction to positive probability for the other two states accords with the information
that the urn contains both black and yellow balls, albeit in unknown proportion. Alternatively,
as Ellsberg writes, “imagine a sample of two drawn from the 60 black and yellow balls has
resulted in one black and one yellow.” (Ellsberg, 1961, pp. 653-4)

3This includes inadmissible beliefs such as those for which pR ̸= 1
3
.

3



in the sequel as ε-admissible in (C ′,H′). In particular, the inadmissible prefer-
ence ordering bBY ≻ bRY ≻ bR ≻ bB is ε-admissible. This particular preference
pattern is generated by a subjective expected utility maximizer characterized
by a utility function satisfying u(0) < u(100) and a belief(

1

3
,
1− ε

3
,
1− ε

3
,
2ε

3

)
,

where ε can be any number in (0, 1), no matter how small. That is, by allowing
for small perturbations of any admissible belief (such as (13 ,

1
3 ,

1
3 , 0)) in the direc-

tion of any other probability distribution over the sample-space {sR, sB , sY , s∗}
(such as ( 13 , 0, 0,

2
3 )), we see this preference ordering is ε-admissible.4

Although (C,H) may clearly be what Ellsberg had in mind, we contend that
one cannot rule out, either from a priori reasoning or from any ex post experi-
mental observation, that a participant did not have some alternative version in
mind, for example, the version (C ′,H′) described above. Notice that both of
these versions have the same set of bets and, for each bet, the same set of conse-
quences and, as we have already noted, the same sets of admissible preferences.
However, the sample-spaces of the two versions differ, which we have seen leads
to differences in the set of ε-admissible preferences. If we desire a notion of
robustness that does not depend on which of these two versions a participant
has in mind, then we need a stronger notion than internal robustness.

Even more troubling, the sample space of (C ′,H′) was chosen somewhat
arbitrarily. We introduced and motivated it by one story, but there are other
possible stories one might tell, each with its own distinct probability model.
There are many more models with widely varying sample spaces that are also
consistent with the underlying uncertainty described in this Ellsberg scenario.
Any of these potentially can serve as the version in the mind of a participant.

Building on this insight we define in Section 3 an equivalence class of ex-
periments in belief form which includes all these potential versions. Our formal
notion of robustness will be one that is invariant across such an equivalence class
of experiments. The associated equivalence relation is based on the set of bets,
the associated set of conceivable consequences for each bet and the set of admis-
sible preferences over the bets, thus making no explicit reference to the sample
space. Loosely speaking, each equivalence class of experiments in belief form
can be interpreted as embodying a notion of revealed preference equivalence.

Given the equivalence class associated with an experiment in belief form
(C,H), we shall say a preference ordering over bets is weakly-admissible if it is
ε-admissible in some version from this class. This leads naturally to our notion
of robustness both for observed violations of the theory within an experiment
and for the entire experiment itself.

4This is reminiscent of Kadane (1992) in which he proposes that the participants’ ‘healthy
skepticism’ of the experimenter and a suspicion that he might manipulate the design to their
disadvantage could ‘explain’ both Allais and Ellsberg type phenomena without having to
resort to a model of behavior that does not conform to expected utility.
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• A preference ordering is robustly inadmissible if it is not weakly-admissible.

• An experiment is robust if every inadmissible preference ordering is ro-
bustly inadmissible.

Although this notion of robustness requires a property to hold on an en-
tire equivalence class of experiments, we show it can be characterized solely in
terms of the admissible preferences over the bets for any given version of the
experiment. So in the case of the Ellsberg experiment, for example, we can
characterize robustness purely in terms of (C,H).

In particular, the main result of the paper is a characterization of robust in-
admissibility and a corollary characterizing robust experiments. They are stated
in terms of coarsenings and refinements of preference orderings and a notion of
range dominance. A preference ordering over bets is finer than another prefer-
ence ordering if any strict preference between a pair of bets in the latter implies
the corresponding strict preference holds in the former. The latter preference
ordering is also viewed as being coarser than the former. A preference order-
ing is range dominant with respect to a parameter if it ranks bet b over bet b′

whenever the worst outcome from b is better than the best outcome from b′.

Characterization of Robust Inadmissibility (Theorem 1)
A preference ordering is robustly inadmissible if and only if there is no
admissible parameter with respect to which it is range dominant that gen-
erates a coarser preference ordering.

Characterization of Robust Experiments (Corollary 1.1)
An experiment in belief form is robust if and only if every preference or-
dering that is range dominant with respect to some admissible parameter
that generates a coarser preference ordering is also admissible.

Applying these results to the Ellsberg experiment, we see that the inad-
missible preference ordering bBY ≻ bRY ≻ bR ≻ bB is not robustly inadmissible
since it is range-dominant with respect to the admissible parameter (u, p), where
u(0) < u(100) and p(sB) =

1
3 (= p(sR)), which generates the coarser preference

relation bBY ∼′ bRY ≻′ bR ∼′ bB . Correspondingly, we see that the Ellsberg
experiment is not robust.

The simple explanation of the characterizations is that non-robust anomalous-
inadmissible preferences are highly susceptible to (misspecification) error in
cases where true preferences are at indifferences. Even vanishingly small pertur-
bations can produce reported preferences that are inconsistent with the theory
being tested.

Thus, the take-home message of Theorem 1 is that if a participant in an ex-
periment reports a preference ordering that is inadmissible for that experiment,
then the analyst should check whether there is any admissible preference order-
ing that is coarser. If that turns out to be the case, then the analyst cannot
rule out the possibility that the participant is someone who conforms to the
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decision theory being tested, but who has an equivalent version of the experi-
ment ‘in mind’ for which the observed ‘anomalous’ choices can be attributed to
a (vanishingly) small perturbation of some admissible preference.

On the other hand, if every coarser preference ordering is also inadmissible,
then this reported failure of admissibility is robust in the sense that it cannot be
rationalized by a (vanishingly) small perturbation to any admissible preference
within any of the equivalent versions. Thus, even if the experiment itself is not
robust, this particular piece of data may be viewed as a robust rejection of the
participant’s behavior conforming to the theory being tested.

The rest of the paper is organized as follows. The formal framework is set
up in Section 2. Robust experiments are introduced in Section 3 and a number
of examples of non-robust experiments are studied in Section 4. We show in
Section 5 how the analysis can be applied to experiments such as the Allais
common consequence effect, that are presented in terms of (objective) lotteries
and demonstrate how this classic experiment also fails our robustness criteria.
Section 6 outlines different methods for robustifying an experiment. The most
straightforward method involves eliciting certainty equivalents for each of the
bets.5

This method can be illustrated in our Ellsberg example. Let eb denote the
certainty equivalent of bet b, and suppose the decision maker reveals the modal
preference pattern bR ≻ bB and bBY ≻ bRY . Including the four certainty equiv-
alents, we have bR ∼ eR ≻ eB ∼ bB and bBY ∼ eBY ≻ eRY ∼ bRY . Notice this
means by range-dominance that eR > eB and eBY > eRY . Furthermore, any
coarsening that satisfies range-dominance must retain the two strict preferences
eR ≻ eB and eBY ≻ eRY .

6 Hence there is no admissible coarsening that would
allow for either bR ∼ bB or bBY ∼ bRY . Thus by Theorem 1 the preference
pattern is robustly inadmissible.

2. Decision Theories and Experiments

An experiment is designed to test whether decision-makers in a certain pop-
ulation behave in a way that is consistent with a given decision theory.

2.1. Generalized Mean Utility Decision Theories

We are interested in theories of how a decision-maker evaluates alternatives
under risk or uncertainty. The uncertainty is represented by a finite state space
and the objects of choice are acts which are mappings from the state space
to a consequence space, or equivalently, state-contingent consequence vectors.
More formally, we associate with any non-empty set of consequences C and any

5We thank an anonymous referee for suggesting this method.
6We acknowledge that one should be careful about interpreting any difference in elicited

certainty equivalents as reflecting a strict preference no matter how small it may be. At some
level, such differences might more sensibly be explained by a mistake, misperception or lack
of motivation on the part of the decision-maker.
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finite non-empty state space S the set of acts CS , i.e., the set of vectors of state
contingent consequences.

For any real-valued function f : C → R, we denote by f ◦ a the state-
contingent real-valued vector obtained from the act a by converting each con-
sequence as into the real number f(as). We denote the inner product of any
two real-valued vectors x and y of the same dimension by ⟨x, y⟩. For a vector
x ∈ R|S′| and S a subset of S′, we use xS to denote the vector (xs)s∈S . We also

use ∆|S|−1 ⊂ R|S|
+ to denote the standard (|S| − 1)-dimensional simplex.

A decision-maker’s choice is assumed to be guided by a binary relation,
the decision-maker’s preferences, defined over a set of acts. A decision theory
corresponds to a family of representations of preferences over a set of acts.
Our focus in this paper is on preferences which admit what we refer to as a
“generalized mean utility” representation.

Let Ω be the universal set of states and let S be the collection of all finite
non-empty subsets of Ω. Let Γ denote the universal set of consequences and let
K be the collection of all non-empty subsets of Γ.

Definition 1. Fix a set of consequences C ∈ K, a state space S ∈ S, and a
binary relation ≿ over the set of acts CS . A generalized mean utility represen-
tation of ≿ comprises a utility index u : C → R and a decision weight function
w : R|S| → ∆|S|−1 such that for any two acts a and a′,

a ≿ a′ if and only if ⟨u ◦ a,w(u ◦ a)⟩ ⩾ ⟨u ◦ a′, w(u ◦ a′)⟩ .

Since we focus on generalized mean utility representations, the binary rela-
tion ≿ guiding the decision-maker must be complete and transitive, that is, it
must be a preference ordering. As the next two examples demonstrate, this for-
mulation is rich enough to accommodate subjective expected utility maximizers
as well as the generalization, Choquet expected utility maximizers of Schmeidler
(1989), that allows for non-neutral attitudes toward perceived ambiguity.

Example 1 (Subjective Expected Utility). Preferences in this family are char-
acterized by a utility index u and a probability measure P defined over the
set of subsets of S. Let p denote the probability vector in ∆|S|−1 for which
ps = P ({s}) for each s ∈ S. The corresponding generalized mean representa-
tion is given by the pair (u ,wp), where the decision weight function wp is the
constant function wp(x) = p for all x. Notice that, for any act a, the inner
product:

⟨u ◦ a,wp(u ◦ a)⟩ = ⟨u ◦ a, p⟩ =
∑
s∈S

psu(as) ,

which is indeed the expectation of the state-contingent utility vector u ◦ a with
respect to the probability measure P .

In the sequel where there is no risk of confusion, we shall often use (u , p)
for the generalized mean parameter characterizing a subjective expected utility
maximizer and refer to it as an SEU-parameter.
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Example 2 (Choquet Expected Utility). Preferences in this family are char-
acterized by a utility index u and a capacity ν (or ‘non-additive probability’)
defined over the set of subsets of S, that is normalized (ν(∅) = 0 and ν(S) = 1)
and set-monotonic (E ⊂ F ⊆ S ⇒ ν(E) ⩽ ν(F )).7 A corresponding generalized
mean utility representation is given by the pair (u ,wν), where wν is the decision
weight function given by: for each x ∈ R|S| and each state s ∈ S:

wν
s (x) =

ν ({t : xt ⩾ xs})− ν ({t : xt > xs})
|{t : xt = xs}|

Notice that for any act a, the inner product:

⟨u ◦ a,wν(u ◦ a)⟩ =
∑
z∈R

[ν({s : u(as) ⩾ z})− ν({s : u(as) > z})]× z .

which is indeed the Choquet integral of the state-contingent utility vector u ◦ a
with respect to the capacity ν.

In the sequel where there is no risk of confusion, we shall often use (u , ν)
for the generalized mean utility parameter characterizing a Choquet expected
utility maximizer.

The above two examples can both be subsumed in the very general family
of MBA preferences (for Monotonic, Bernoullian, Archimedean) introduced
and axiomatized by Cerreia-Vioglio et al. (2011). In fact in our setting any
MBA preference relation admits a generalized mean utility representation.

Example 3 (MBA Preferences). Preferences in this family are characterized by
a utility index u, and a functional I : R|S| → R, that is monotonic, continuous
and normalized in the sense that I(γ , γ , . . . γ) = γ, for any γ ∈ R. The
preferences over acts that the pair (u , I) represents, is the one generated by the
functional I (u ◦ a).

If the preference relation ≿ admits an MBA representation (u , I), then we
can construct a generalized mean utility representation using the same utility
index u and defining w(·) as follows. For each x ∈ R|S| and each state s ∈ S,
set

ws (x) =


α(x)

|argmint∈S xt| if s ∈ argmint∈S xt

1−α(x)

|argmaxt∈S xt| if s ∈ argmaxt∈S xt and maxt∈S xt > mint∈S xt

0 otherwise

where

α (x) = max

{
α ∈ [0, 1] : αmin

t∈S
xt + (1− α)max

t∈S
xt = I (x)

}
.

7The capacity ν is a probability if, in addition to being normalized and set-monotonic, it
is additive, that is, ν(E) + ν(F ) = ν(E ∪ F ) + ν(E ∩ F ).
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Notice that for any constant vector x = (γ , γ , . . . γ) ∈ R|S|, ws(x) = 1
|S| , for

all s ∈ S. Furthermore, by construction we have that for any act a ∈ CS

⟨u ◦ a,w(u ◦ a)⟩ = α(x)min
t∈S

xt + (1− α(x))max
t∈S

xt = I(u ◦ a) .

The flexibility of the family of generalized mean utility representations means
that such representations are generally non-unique. For example, since MBA
preferences include preferences that may be represented by SEU or CEU func-
tional forms, we note that in addition to the generalized mean utility repre-
sentations that we constructed in examples 1 and 2, respectively, we can also
construct generalized mean utility representations in terms of a weighted sum
of the utilities of the extreme outcomes, with intermediate outcomes ‘only’ con-
tributing indirectly via their effect on those decision weights.

The non-uniqueness of generalized mean utility representations is not an
issue for us. Any evidence that cannot be reconciled with a particular decision
theory, such as, say, SEU, means that no generalized mean utility representation
consistent with SEU can generate preferences that rationalize this evidence.

We now outline our notion of a theory that is to be tested in an experiment.
A theory tells us for each consequence and state space pair the set of generalized
mean utility representations that generate preferences over the corresponding
set of acts that conform to the precepts of the particular decision theory. We
assume that a theory is ‘(linearly) open’ in the sense that if the decision-weight
function of any generalized mean utility representation is slightly ‘perturbed’
in the direction of a constant decision weight function, we remain within the
theory. That is, any decision-weight function may be ‘flattened’ slightly without
leaving the theory. Furthermore, the theory is coherent in the sense that if we
consider a larger state-space, then there is a natural embedding of the set of
generalized mean utility representations involving the original state-space to the
larger state-space.

More formally, we define a theory as follows.

Definition 2. A theory T assigns to each consequence and state space pair
(C, S) ∈ K × S a subset of generalized mean utility representations T (C , S) in
which for every (u,w) ∈ T (C,S) :

1. (linearly open) the set Wu = {w′ : (u,w′) ∈ T (C, S)} is open in the sense
that for any w′ ∈ Wu and any p ∈ ∆|S|−1, there is an εp ∈ (0, 1) such that
(1− ε)w′ + εwp ∈ Wu for all ε ∈ (0, εp) ;

2. (coherent) and for any set S′ ∈ S that is a superset of S, there exists
a (u,w′) ∈ T (C, S′) such that w′

s(x) = ws(x
S) for all s ∈ S, whenever

x ∈ R|S′| and {xs : s ∈ S} = {xs : s ∈ S′}.

As an example the MBA theory T mba, can be defined as follows. For each
(C, S) ∈ K × S, set

T mba(C, S) :=
{
(u,w) :

there exists some MBA representation (u, I)
s.t. ⟨u ◦ a,w (u ◦ a)⟩ = I (a) , for all a ∈ CS

}

9



It is straightforward to verify that T mba is linearly open and coherent. In an
analogous manner we can define the SEU theory T seu and the CEU theory
T ceu. Finally, the generalized mean utility theory T gmu which consists of all
generalized mean utility representations is also a theory. While each of the the-
ories given here include SEU theory, that is, they include the constant decision
weight functions, our definition of a theory does not require it.

2.2. Experiment in Belief Form

An experiment is designed to test a decision theory, or, more typically, some
suitably specified restriction of that theory. It begins with a finite set of bets
B = {b1, b2, . . . , b|B|} (sometimes referred to as actions, choices or prospects)
and a finite set of sample states S = {s1, s2, . . . , s|S|} and a set of consequences
C. We use b to denote a generic bet in B and s to denote a generic sample state
in S.

Definition 3. A consequence matrix is a function from B × S to C associating
with each ordered pair (b, s) ∈ B × S a consequence cbs ∈ C.

It can be represented in matrix form as:

C =

s1 s2 · · · s|S|


b1 cb1s1 cb1s2 · · · cb1s|S|

b2 cb2s1 cb2s2 · · · cb2s|S|
...

...
...

. . .
...

b|B| cb|B|s1 cb|B|s2 · · · cb|B|s|S|

Given a bet b and sample-state s, let

Cb =
[
cbs1 cbs2 · · · cbs|S|

]
and Cs =


cb1s
cb2s
...

cb|B|s


denote the bet b row of C and the sample-state s column of C, respectively. For
each bet b let Cb be the set {cbs : s ∈ S}, which is the set of consequences of
the bet b. Likewise, let C be the set {cbs : b ∈ B, s ∈ S}, of consequences of the
experiment.

We characterize an experiment by a consequence matrix C together with a
set of parameters which define the set of admissible preferences over bets.

Definition 4. An experiment in belief form testing a null hypothesis H within
the theory T is a pair (C,H) where C is a |B| × |S| consequence matrix and
H ⊆ T (C,S) is the set of admissible parameters of the experiment encoding the
null hypothesis being tested.
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An experiment in belief form (C,H) is always testing a null hypothesis of
the form: every decision maker in the population has preferences that can be
represented by a parameter in H. The test is always within some theory T .
We can take the theory to be as large as T gmu, but the experimenter typically
constructs the null hypothesis within some informed restricted theory like T seu

or T ceu. When the null hypothesis H = T (C,S), the experiment is regarded
as a test of the theory T . Since the null hypothesis is always encoded in the
experiment in belief form (C,H), we will sometimes simply say the experiment
in belief form (C,H) within theory T , and even drop the theory when it is clear
from the context.

A parameter (u,w) ∈ T (C,S) is said to generate the binary relation ≿ on
B whenever b ≿ b′ if and only if ⟨u ◦ cb, w(u ◦ cb)⟩ ⩾ ⟨u ◦ cb′ , w(u ◦ cb′)⟩. This
leads to the notion of admissible preferences within a given experiment.

Definition 5. A binary relation ≿ on B is admissible in (C,H) if there is a
parameter (u,w) ∈ H that generates ≿. We refer to any binary relation ≿ on B
for which there is no parameter in H that generates it as inadmissible in (C,H).

As an example of these concepts, the version (C,H) of the Ellsberg exper-
iment from Section 1 is indeed an experiment that tests subjective expected
utility theory, as does the alternative version (C ′,H′).

The analyst designs an experiment with the aim of testing a decision theory,
such as subjective expected utility, possibly in combination with some other
global restriction, such as constant absolute risk aversion. Our formulation
allows the analyst to choose a consequence matrix C and an accompanying set
of parameters H that is tailored to express her challenge to the theory. The
subjects participate in the designed experiment and their preferences over the
set of bets are elicited. If the observed preferences of a subject turn out to be
inadmissible then the analyst concludes that the decision-maker in question has
preferences that do not conform to the theory (as restricted by H), posing a
challenge to the theory.

3. Robust Experiments

3.1. Internally Robust Experiments

For the experimental results to constitute a robust challenge to the theory
being tested, the set of inadmissible preference orderings in the experiment
should be unaffected by (vanishingly) small perturbations in the admissible
parameters in the experiment (C,H). To capture robustness, we first introduce
a weaker notion of admissibility that expands the set of admissible preference
orderings and makes it more difficult to reject a theory.

Definition 6. A binary relation ≿ is ε-admissible in (C,H) within theory T if
there is an admissible parameter (u,w) ∈ H and a parameter (u,w′) ∈ T (C, S)
such that for all ε ∈ (0, 1), the parameter (u, (1− ε)w + εw′) is in T (C,S) and
generates ≿.
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Our notion of ε-admissibility is based on the idea that a subject may have
a slightly different experiment in mind, albeit with the same state space, which
can be captured by a slight perturbation in the decision weight outside the
admissible set, but remaining within the theory T . Our first notion of robustness
is one for which this relaxation of admissibility does not expand the set of
admissible preference orderings.

Definition 7. An experiment in belief form (C,H) is internally robust within
the theory T if every ε-admissible preference ordering is admissible.

In an internally robust experiment an inadmissible preference ordering chal-
lenges a theory more convincingly than in an experiment that is not internally
robust, where inadmissible preferences may in fact be ε-admissible. Internal
robustness ensures that for vanishingly small differences between the actual ex-
periment, and the one in the subject’s mind, the set of admissible preferences
are the same. The restriction of the theory T ensures the preferences of the
subject conform to the theory in question.

Returning to the illustrative Ellsberg example given in Section 1, we can now
verify that the version (C,H) is internally robust within T seu while the alterna-
tive version (C ′,H′) is not. So, if the analyst is convinced that the participants
perceive the experimental design according to (C,H) and its associated state
space S, then the analyst will view the observation of any inadmissible prefer-
ence pattern in the experiment (C,H) as constituting a violation of the theory.
With the second experiment (C ′,H′), the violation of subjective expected utility
posed by the preference pattern bBY ≻ bRY and bR ≻ bB is not as robust. The
apparent violation may arise from a vanishingly small perturbation of an ad-
missible decision weight function (in this case, the subjective probability belief
of a subjective expected utility maximizer).

3.2. Equivalent Versions and Fully Robust Experiments

In this section we first define an equivalence class of experiments which
includes both versions of the Ellsberg experiment from the illustrative example
in Section 1. We then extend ε-admissibility to define what we mean for an
experiment to be fully robust.

Definition 8. Fix a theory T . Two experiments (C,H) and (C ′,H′) in which
H ⊆ T (C , S) and H′ ⊆ T (C ′ , S′) are (equivalent) versions of a test within
theory T , if they have the same bets, the same consequences for each bet, and
the same admissible preferences.

Two versions (C,H) and (C ′,H′) of a test within theory T are essentially
testing the same null hypothesis. The sets of admissible parameters H and H′

differ according to the state space, but each encodes the same relevant informa-
tion about the test since each admits the same set of preferences.

For the experimental results to constitute a fully robust challenge to the the-
ory being tested, the set of inadmissible preference orderings in the experiment
should be unaffected by (vanishingly) small perturbations in the decision-weight

12



function parameter of any version of the experiment (C,H). So to capture (full)
robustness, we extend our notion of ε-admissibility to the equivalence class of
versions of (C,H).

Definition 9. A preference ordering ≿ is weakly-admissible in (C,H) within
theory T if it is ε-admissible in some version (C ′,H′).

Definition 10. A binary relation ≿ is robustly-inadmissible in (C,H) within
theory T if it is not weakly admissible in (C,H).

Definition 11. An experiment in belief form (C,H) within theory T is robust
if every weakly admissible preference ordering is admissible.

Underpinning our robustness notion is the idea that the analyst who designs
the experiment (C,H) does not know which version of the experiment is in the
mind of the participant. So, for a particular observed violation of subjective
expected utility to be deemed robust, we require that no matter which version of
the experiment the participant has in mind, the violation cannot be attributed
to a (vanishingly) small perturbation of an admissible probability belief within
that version. Correspondingly, the experiment itself is deemed robust, if a
perturbation of a subjective belief in any version of the experiment does not
affect its set of admissible preferences.

We state the following proposition which characterizes robust experiments
both in terms of weak admissibility and internal robustness.

Proposition 1. The following statements are equivalent for an experiment in
belief form (C,H) within theory T :

1. It is robust.

2. Every weakly-admissible preference ordering is admissible.

3. Every version of the experiment is internally robust.

Although robustness requires a property to hold on an entire equivalence
class of experiments, we characterize it entirely in terms of the admissible pref-
erence orderings over the bets for any given version of the experiment. In par-
ticular, robustness can be characterized solely in terms of the analyst’s version
of the experiment (C,H). For this, we introduce two notions about preference
orderings. The first notion compares different preference orderings in terms of
refinements or coarsenings of preference orderings. The second notion is one of
dominance for a given preference ordering.

Definition 12. Let ≿ and ≿′ be preference orderings on B. We say that
≿′ is finer than ≿ on B if for all b, b̂ ∈ B we have b ≻ b̂ implies b ≻′ b̂.
Correspondingly, we say that ≿′ on B is coarser than ≿ on B, whenever ≿ is
finer than ≿′.

Definition 13. Fix an experiment in belief form (C,H) with bets B and state
space S. A preference ordering ≿ on B is range dominant with respect to
(u,w) ∈ T (C ,S) if for all b, b̂ ∈ B:
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1. min
s∈S

u(cbs) ⩾ max
s∈S

u(cb̂s) implies b ≿ b̂,

2. min
s∈S

u(cbs) > max
s∈S

u(cb̂s) implies b ≻ b̂.

Now we can express the main results of the paper.

Theorem 1. A preference ordering is robustly inadmissible if and only if there
is no admissible parameter with respect to which it is range dominant that
generates a coarser preference ordering.

We give two comments about the theorem: one about the only-if part, and
one about the if-part. The only-if part of Theorem 1 states that for an inad-
missible ordering to be robustly inadmissible, it cannot be range-dominant with
respect to some admissible parameter and finer than the preference ordering
generated by that admissible parameter.

The if-part of Theorem 1 implies that any inadmissible preference order-
ing that is range dominant with respect to some admissible parameter and is
finer than the preference ordering generated by that parameter is also weakly
admissible. This comes from our strong notion of robustness which considers
all versions and all perturbations of the decision weight function with the same
utility index u. If, on the other hand, the analyst had some additional informa-
tion about the possible versions or perturbations, then some of the refinements
of admissible preferences could be excluded. We have explored one such case
with the notion of internal robustness of a specific experiment.

Using Theorem 1, we can immediately characterize robust experiments.

Corollary 1.1. An experiment in belief form is robust if and only if every
preference ordering that is range dominant with respect to some admissible
parameter that generates a coarser preference ordering is also admissible.

4. Examples of Non-robust Experiments

We present four examples. The first is a non-robust test of constant abso-
lute risk aversion (CARA). The second is a single-urn Ellsberg-style experiment
based on an example that appears in Eichberger et al. (2007, p. 892). Although
the experiment itself is not robust, we show that there is a robustly inadmissible
preference pattern that accords with our intuition of how an ambiguity averse
decision-maker might choose. The third and fourth are two-urn Ellsberg-style
experiments which correspond to the “Reflection Example” and to the “50:51
Example”, respectively, from Machina (2009).

Example 4 (A Non-robust Test of CARA). The subjects are presumed to
be expected utility maximizers that are either CARA or DARA (decreasing
absolute risk aversion). For this experiment we seek to challenge the hypothesis
that the subjects are all CARA. We offer the subjects four bets involving the
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toss of a fair coin. So the state space is S = {H,T} and the payoffs of the bets
are given by the following consequence matrix:

C =

H T


b1 5 5
b2 2 10
b3 55 55
b4 52 60

.

Here the set of parameters H can be expressed by pairs (α, p∗), where α > 0 is
the coefficient of absolute risk aversion for the Bernoulli utility function of the
form u(x) = −e−αx and p∗(H) = 1

2 .
Notice that the preference ordering b4 ≻ b3 ≻ b1 ≻ b2 is inadmissible for the

CARA model. However, for the admissible pair (α∗, p∗) in which

−e−5α∗
= −1

2
e−2α∗

− 1

2
e−10α∗

we have b4 ∼∗ b3 ≻∗ b1 ∼∗ b2, thus making b4 ≻ b3 ≻ b1 ≻ b2 weakly admissible
and hence not robustly inadmissible. ■

Example 5 (A Robustly Inadmissible Preference). Consider an urn that con-
tains 200 balls numbered 1 to 200. The balls numbered 1 to 66 are red, the balls
numbered 67 to 200− 2n are black and the remainder (that is, those numbered
from [201 − 2n] to 200) are yellow. The only information a participant has
about n is that it is an integer and that 1 ⩽ n ⩽ 66. Let O (respectively, E)
be the event that the ball drawn from the urn has an odd (respectively, even)
number on it. Let R (respectively, B, Y ) be the event that color of the ball
drawn is red (respectively, black, yellow). Let OR be the event that the ball
drawn from the urn has an odd number and its color is red, and so on. Notice
that the number of balls that are black with an odd number on them or yellow
with an even number on them is 67 no matter what value n takes. Similarly,
the number of balls that are black with an even number on them or yellow with
an odd number on them is also 67 no matter what value n takes. We take the
sample space to be S = {OR,OB,OY,ER,EB,EY } and the set of bets to be
B = {b1, b2, b3, b4, b5, b6}. The payoffs are given in the following consequence
matrix

CRI =

OR OB OY ER EB EY


b1 $100 $0 $0 $100 $0 $0
b2 $0 $100 $0 $0 $0 $100
b3 $100 $0 $0 $0 $0 $0
b4 $0 $100 $0 $0 $0 $0
b5 $0 $0 $0 $100 $0 $0
b6 $0 $0 $0 $0 $0 $100

.

The bet b1 is a standard ‘unambiguous’ bet that the color of the ball drawn
is red. The bet b2 can be viewed as a way of implementing the suggestion by
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Raiffa (1961) to avoid the ambiguity associated with a bet on black or a bet
on yellow by randomly choosing which of these two colors to bet on. Here we
are using the property of whether the number on the ball drawn is odd or is
even ‘to randomize’ between the choices of black or yellow. A choice between
bets b3 and b4 corresponds to a choice between betting on red versus betting on
black conditional on the number of the ball drawn is odd. Similarly, a choice
between bets b5 and b6 is a choice between betting on red versus betting on
yellow, conditional on the number of the ball drawn is even.

The set of admissible parameters HRI can be characterized by pairs (u, p)
where u is any Bernoulli utility function with u(0) < u(100) and p is a proba-
bility vector in ∆|S|−1, satisfying

pOR = pER =
33

200
pOB = pEB = q pOY = pEY =

67

200
− q ,

where 1
200 ⩽ q ⩽ 66

200 .
We note that in the experiment (CRI,HRI), the preference pattern b2 ≻ b1,

b3 ≻ b4 and b5 ≻ b6 is robustly inadmissible. To see this, notice that for any
preference generated by an admissible parameter (u, p) we must have b2 ≻ b1,
and b3 ≿ b4 ⇒ b6 ≻ b5. This follows since for any (u, p) ∈ HRI,

pOB + pEY > pOR + pER

max{pOB , pEY } > pOR = pER .

This implies that every coarsening of b2 ≻ b1 or b3 ≻ b4 or b5 ≻ b6 is inadmis-
sible. By Theorem 1 the inadmissible preference pattern is seen to be robustly
inadmissible. But this pattern accords with what we expect from someone who
exhibits ambiguity aversion, since b1, b2, b3, b5 are all unambiguous (and b2
first-order stochastically dominates b1) while b4 and b6 are bets for which there
is ambiguity about the probability of winning. ■

We now turn to the “Reflection Example” from Machina (2009). It was
designed as an Ellsberg-style experiment to generate choice paradoxes that could
not be explained by any member of the generalization of expected utility known
as Choquet Expected Utility (CEU). Although the experiment is designed to
elicit preference patterns that are inadmissible for this larger class of preferences,
such inadmissible patterns are not robustly inadmissible even for the smaller
class of subjective expected utility maximizers.

Example 6 (The Reflection Example from Machina (2009)). The subject is
presented with two urns each containing 100 balls that are either Red or Black.
Urn 1 is known to contain 50 balls of each color. The proportion of red balls in
urn 2 is unknown. There are four bets b1, b2, b3, and b4.

We take the sample space to be S = {RR,RB,BR,BB}, where γ1γ2 is the
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state in which a ball of color γi is drawn from urn i. The consequence matrix is

Cr =

RR RB BR BB


b1 $4000 $8000 $4000 $0
b2 $4000 $4000 $8000 $0
b3 $0 $8000 $4000 $4000
b4 $0 $4000 $8000 $4000

.

Exploiting the symmetry between bets b1 and b4, and similarly, between
bets b2 and b3, Machina argues that we might expect a decision-maker to ex-
hibit the preferences b1 ∼ b4 and b2 ∼ b3. When comparing b1 to b2 he observes
that although the events in which they yield the best (respectively, the worst)
outcome are ‘similarly’ ambiguous, the event in which the middle outcome oc-
curs is unambiguous for b2 but not for b1. Hence, one might argue that an
ambiguity-averse decision-maker would strictly prefer b2 to b1.

The class of preferences Machina has in mind is Choquet expected utility.
Recall from Example 2, preferences in this class are characterized by a Bernoulli
utility function u and a subjective belief which is a capacity ν (or ‘non-additive
probability’) defined over the set of subsets of S. Fixing a capacity ν, its con-
jugate, denoted ν, is the capacity given by ν(E) = 1− ν(Ec).

Given a pair (u, ν) the Choquet expected utility of bet b ∈ B is given by:∑
z∈R

[ν({s : u(csb) ⩾ z})− ν({s : u(csb) > z})]× z .

Correspondingly, we say that a pair (u, ν) generates the preference ordering ≿
over the set of bets B whenever b ≿ b′ if and only if the Choquet expected
utility of b is greater than or equal to the Choquet expected utility of b′.

We take Hr to be the set of pairs (u, ν), where u is any Bernoulli utility
function with u(0) < u(4000) < u(8000) and ν is a capacity that along with its
conjugate ν satisfy the following ‘natural’ symmetry conditions:

ν(RR) = ν(RB) = ν(BR) = ν(BB) > 0

ν(RR) = ν(RB) = ν(BR) = ν(BB) > 0 .

We say a preference ordering ≿ is (CEU-)admissible in the experiment
(Cr,Hr) if it can be represented by some (u, ν) ∈ Hr. However, notice that for
any (u, ν) ∈ Hr, the Choquet expected utility of bet b1 is:

(ν(RB)− ν(∅))u(8000) + (ν({RR,RB,BR})− ν(RB))u(4000)

+ (ν(S)− ν({RR,RB,BR}))u(0)
= ν(RB)u(8000) + (1− ν(RB)− (1− ν({RR,RB,BR}))u(4000)
+ (1− ν({RR,RB,BR}))u(0)

= ν(RB)u(8000) + (1− ν(RB)− ν(BB))u(4000) + ν(BB)u(0) .
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Similarly, the (Choquet) expected utilities of the other three bets, b2, b3, b4
are given by, respectively,

ν(BR)u(8000) + (1− ν(BR)− ν(BB))u(4000) + ν(BB)u(0) ,

ν(RB)u(8000) + (1− ν(RB)− ν(RR))u(4000) + ν(RR)u(0) ,

ν(BR)u(8000) + (1− ν(BR)− ν(RR))u(4000) + ν(RR))u(0) .

Given the above equality constraints on any admissible capacity, it follows
that the Choquet expected utilities of all four bets must be equal. Hence the
only preference ordering that is admissible is the trivial one in which b ∼t b′,
for all b, b′ in B. Thus the preference ordering in which b2 is strictly preferred
to b1 as suggested by Machina, is inadmissible.

However, the trivial preference relation is also admissible for the uniform
probability distribution on S. Hence it follows from Theorem 1 that any in-
admissible preference relation, including the one suggested by Machina, is not
robustly inadmissible even restricting preferences to the smaller class of subjec-
tive expected utility maximizers. ■

For our final example in this section we analyze the “50:51 Example”, the
other main thought experiment presented in Machina (2009). We show the pref-
erence pattern Machina argues as being intuitively plausible for an ambiguity
averse individual is not only inadmissible for CEU maximizers but it is also
robustly inadmissible for SEU maximizers. However, since a coarsening of these
preferences is admissible for some CEU maximizer, it follows from Theorem 1
that this preference pattern is not robustly (CEU-)inadmissible.

Example 7. The 50:51 Example from Machina (2009) The subject is presented
with a single urn containing 101 balls. Fifty balls are marked with either 1 or
2, the other fifty-one balls are marked with either 3 or 4. Each ball is equally
likely to be drawn. There are four bets b1, b2, b3, b4.

We take the sample space to be S = {1, 2, 3, 4}, where s is the event in which
a ball marked with an s is drawn from the urn. The consequence matrix is

Cm =

1 2 3 4


b1 $8000 $8000 $4000 $4000
b2 $8000 $4000 $8000 $4000
b3 $12000 $8000 $4000 $0
b4 $12000 $4000 $8000 $0

.

An individual who prefers bets with known odds might well express the
preference pattern b1 ≻ b2 and b4 ≻ b3.

As was the case in Example 6, the class of preferences Machina has in mind
is Choquet expected utility. We take Hm to be the set of pairs (u, ν), where u
is any Bernoulli utility function with u(0) < u(4000) < u(8000) < u(12000) and
ν is a capacity that along with its conjugate ν satisfy the following ‘natural’
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symmetry conditions along with inequalities reflecting the known aspects of the
urn’s composition:

0 < ν(1) = ν(2) ⩽ ν(3) = ν(4) , ν({1, 2}) = 50

101
, ν({3, 4}) = 51

101
,

0 < ν(1) = ν(2) ⩽ ν(3) = ν(4) .

We say a preference ordering ≿ is (CEU-)admissible in the experiment
(Cm,Hm) if it can be represented by some (u, ν) ∈ Hm. However, by calculations
similar to the ones detailed in Example 6, it follows that for any (u, ν) ∈ Hm,
the Choquet expected utility of bet b1 is greater than or equal to the that of bet
b2 if and only if ν({1, 2}) ⩾ ν({1, 3}). But this is true if and only if the Choquet
expected utility of bet b3 is greater than or equal to that of bet b4. Hence the
preference pattern b1 ≻ b2 and b4 ≻ b3 is (CEU-)inadmissible. Moreover, it is
robustly (SEU-)inadmissible since the only probability vector that satisfies the
inequality constraints above is p =

(
25
101 ,

25
101 ,

51
202 ,

51
202

)
. Thus the only preference

orderings that are (SEU-)admissible must have b2 ≻seu b1 and b4 ≻seu b3.
However, notice that for any (u, ν) ∈ Hm with ν({1, 2}) = ν({1, 3}), the

induced preference ordering ≿′ has b1 ∼′ b2 and b3 ∼′ b4. Hence by Theorem 1
it follows that for the larger family of Choquet expected utility preferences, the
preference pattern b1 ≻ b2 and b4 ≻ b3 is not robustly inadmissible. ■

5. Lottery Based Experiments

In some experiments, like the Allais common consequence and common ratio
experiments, the design is presented effectively in terms of lotteries with objec-
tive probabilities. The experimenter then elicits preferences over these lotteries
and checks for instance whether they can be represented by some class of ad-
missible preferences defined on lotteries. These can be treated as a subclass
of experiments in belief form since we shall see in Proposition 2, they always
admit at least one rendition in our formulation, with a state space and a single
admissible probability that induces those lotteries.

Suppose that we are given a finite set of simple lotteries L =
{
ℓ1, ℓ2, . . . , ℓ|B|

}
.

We denote by ℓb the (finite) support of lottery ℓb. We write K = {1, 2, . . . , |K|}
as an index set for the set of consequences given by the set ∪b∈Bℓb. The lottery
matrix L induced by the lotteries is the |B| × |K| matrix

L =

c1 c2 · · · c|K|


ℓ1 ℓ1c1 ℓ1c2 · · · ℓ1c|K|

ℓ2 ℓ2c1 ℓ2c2 · · · ℓ2c|K|
...

...
...

. . .
...

ℓ|B| ℓ|B|c1 ℓ|B|c2 · · · ℓ|B|c|K|

,

where ℓbc is the probability assigned by lottery ℓb to consequence c, with ℓbc > 0
if and only if c ∈ ℓb. Notice that a lottery matrix has no column of all zeros.
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Definition 14. A lottery based experiment is a triple (L ,U ,V), where:

1. L is a lottery matrix induced from the set of lotteries L;

2. U is a set of (Bernoulli) utility indices over K; and,

3. V is a set of functions from the space of simple lotteries over utilities
to the real line, each member of which is continuous, respects first-order
stochastic dominance, and normalized in the sense that for each degenerate
lottery δα that yields α with probability one we have V (δα) = α.

For any u ∈ U and any b ∈ B, let ℓub denote the lottery over utilities induced by
u from the lottery ℓb. That is, ℓ

u
b (x) =

∑
k∈K : u(cbk)=x ℓbck .

A pair (u, V ) ∈ U × V is said to generate the binary relation ≿ on the set
of lotteries L whenever ℓb ≿ ℓb′ if and only if V (ℓub ) ⩾ V (ℓub′). As was the case
with experiments in belief form, this leads naturally to the notion of admissible
preferences for a lottery-based experiment.

Definition 15. A binary relation ≿ on L is admissible in (L ,U ,V), if there
is a pair (u, V ) ∈ U × V that generates ≿. We refer to any binary relation ≿
on L for which there is no pair in U × V that generates it as inadmissible in
(L ,U ,V).

Recall, in the approach we have taken so far, a decision maker models the
uncertainty she faces by a state space and hence takes the objects of choice to
be acts, that is, mappings from that state space to a consequence space. So in
order to assess the ‘robustness’ of a lottery based experiment we need first to
find a corresponding experiment in belief form that can be viewed as inducing
the lottery based experiment.

Definition 16. The lottery based experiment (L ,U ,V) is induced by the ex-
periment in belief form (C,H) within theory T , if

1. ℓb = Cb for each b = 1 , . . . , |B| ;

2. for every (u, V ) ∈ U × V there exists (u ,w) ∈ H such that

⟨u ◦ Cb , w(u ◦ Cb)⟩ = V (ℓub ) for all b = 1 , . . . , |B| ;

3. for every (u,w) ∈ H there exists (u, V ) ∈ U × V such that

⟨u ◦ Cb , w(u ◦ Cb)⟩ = V (ℓub ) for all b = 1 , . . . , |B| .

The next proposition states that for any lottery based experiment we can
‘reverse engineer’ an experiment in belief form that induces it.

Proposition 2. Every lottery based experiment (L ,U ,V) can be induced by
some experiment in belief form (C,H) within some theory T . Moreover, any
other experiment in belief form (C ′,H′) within the same theory T that induces
(L ,U ,V) is a version of (C,H).
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In light of Proposition 2, we shall assess the robustness of a lottery-based ex-
periment in terms of the robustness of (the equivalence class of) an experiment
in belief form that induces it. We illustrate Proposition 2 for the Allais com-
mon consequence experiment. Moreover, we demonstrate that a lottery based
experiment can be induced by multiple experiments in belief form with distinct
sample spaces.

Allais Common Consequence Experiment

In the common consequence experiment (Allais, 1953, p. 527) the reader
is asked to consider the following four lotteries {ℓ1, ℓ2, ℓ3, ℓ4} over monetary
consequences specified (in millions) as:

ℓ1 (c) =

{
1 if c = $1
0 if c ̸= $1

ℓ2 (c) =


10
100 if c = $5
89
100 if c = $1
1

100 if c = $0

0 if c /∈ {$0, $1, $5}

ℓ3 (c) =


11
100 if c = $1
89
100 if c = $0

0 if c /∈ {$0, $1}
ℓ4 (c) =


10
100 if c = $5
90
100 if c = $0

0 if c /∈ {$0, $5}

Notice that ℓ1 ∪ ℓ2 ∪ ℓ3 ∪ ℓ4 = {0, 1, 5}, thus the lottery based experiment
representing this situation is the triple (L,U , {E}), where L is the 4× 3 lottery
matrix

L =


0 1 0
1

100
89
100

1
10

89
100

11
100 0

9
10 0 1

10

 ,

U is the set of all utility functions satisfying u(0) < u(1) < u(5) , and E is the
standard expectation operator, that is, it returns the expected value of a lottery.

To construct one experiment in belief form that generates (L,U , {E}), take
a sample space comprising just three elements S = {s1, s2, s3} with a corre-
sponding consequence matrix

C =


1 1 1
5 0 1
1 1 0
5 0 0

 .

Set the unique admissible belief to be

p =

p1p2
p3

 =


1
10
1

100
89
100

 .
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The set of admissible parameters H is the set of pairs (u, p), where u is a utility
function satisfying u(0) < u(1) < u(5).8

Although the experiment in belief form above induces a lottery based ex-
periment that corresponds to the Allais common consequence experiment, we
stress that it is not the only experiment in belief form that does this. Further-
more, the sample spaces of alternative experiments in belief form will generally
involve different correlation structures for the lotteries. The version above is
one in which the correlation is greatest, allowing us to specify a sample space
of minimal cardinality of three.

Another possible version has the four lotteries distributed independently as
formulated by Loomes and Sugden (1982). In this case, the sample space S′

needs at least twelve elements. An example of a consequence matrix with twelve
states is:

C ′ =


1 1 1 1 1 1 1 1 1 1 1 1
5 5 5 5 1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0
5 5 0 0 5 5 0 0 5 5 0 0

 .

The single admissible belief p′ is the 12-dimensional column vector, in which

p′s = ℓ1(c1s)ℓ2(c2s)ℓ3(c3s)ℓ4(c4s) ,

for all the twelve states s ∈ S′.
As we shall now see the Allais lottery based experiment is not robust. The

preference ordering ≿ satisfying

ℓ1 ≻ ℓ2 ≻ ℓ4 ≻ ℓ3

is inadmissible in both (C,H) and (C ′,H′). Thus it is inadmissible in the
associated lottery based experiment (L,U , {E}).

Consider, however, the belief p∗ on S′, in which p∗(s∗) = 1, where s∗ is the
state in S′ that has associated with it the vector of bet consequences

C ′
s∗ =


1
0
0
5

 .

By straightforward calculation it follows that for a utility function u′ in which
u′(1) = 10

11u
′(5) + 1

11u
′(0) and a belief p̂ = 1

2p
′ + 1

2p
∗ on S′, we have⟨

u′ ◦ C ′
ℓ1 , (1− ε) p+ εp̂

⟩
>
⟨
u′ ◦ C ′

ℓ2 , (1− ε) p+ εp̂
⟩

>
⟨
u′ ◦ C ′

ℓ4 , (1− ε) p+ εp̂
⟩
>
⟨
u′ ◦ C ′

ℓ3 , (1− ε) p+ εp̂
⟩
,

8This formulation is closest to the way the example is presented in Allais (1953). It
represents any experiment in which the design is essentially equivalent to the following. The
subject is asked to consider the draw of a ball from an urn containing 100 balls numbered
from 1 to 100, with (i) state s1 corresponding to the event of the draw of a ball with any
number from 1 to 10, (ii) state s2 corresponding to the draw of the ball numbered 11, and
(iii) state s3 corresponding to the event of the draw of a ball with any number from 12 to 100.
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for any ε ∈ (0, 1). Hence, ≿ is ε-admissible in (C ′,H′) which means it is not ro-
bustly inadmissible in (C,H) and hence not robustly inadmissible in (L,U , {E})
either.

Furthermore, the coarser preference ordering ≿′ satisfying

ℓ1 ∼′ ℓ2 ≻′ ℓ4 ∼′ ℓ3

is admissible in (C,H) as it is generated by the admissible pair (u′, p). So
applying Corollary 1.1 we conclude that (C,H) is not robust and thus neither
is the Allais common consequence lottery based experiment (L,U , {E}).

Not only does this establish that the Allais lottery based experiment is not
robust but since there is no ‘natural’ experiment in belief form that induces it,
one might argue it is even ‘less robust’ than the Ellsberg experiment for which
his version was shown to be internally robust.

6. Robustifying an Experiment

The idea of robustification begins with a given non-robust thought exper-
iment (C,H) testing a theory T and a specific preference ordering ≿ that is
inadmissible. The experimenter has a well-reasoned intuition that participants
could display these preferences. The first task of robustification is to modify the
experiment so that the hypothesized preference ordering is robustly inadmissi-
ble. A more ambitious objective is to do so in a way such that the modified
experiment is robust.

We begin by showing how both tasks may be accomplished for a class of
experiments, including the classic Ellsberg and Allais, involving two pairs of
bets. This is achieved by a slight modification of one of the consequences of one
of the bets.

Next, we consider participant based approaches in which experiments are
modified for each participant to guarantee that, if a participant’s elicited an-
swers imply preferences that are inadmissible, then those preferences are ro-
bustly inadmissible in that personalized experiment. Such approaches have
been employed by (amongst others) Halevy (2007) and Binmore et al. (2012).

6.1. Robustification of the Four Bet Experiment

Important characteristics of preferences may be expressed in terms of con-
sistency requirements. Examples include the sure-thing principle in subjective
expected utility, the independence axiom in expected utility, and CARA in risk
theory. Experiments designed to test these consistency requirements directly
will often give rise to inadmissible preferences that are not robustly so. This
may be explained as follows.

Suppose that in some restriction of a general MBA model there are four bets
for which the following consistency property holds,

b1 ≿ b2 ⇐⇒ b3 ≿ b4 , for all (u,w) ∈ H .
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One approach to testing this consistency property is to design an experiment
(C,H) that includes choice pairs of this kind, for which the experimenter has an
intuition that participants could display the inadmissible preference pattern b1 ≻
b2 and b4 ≻ b3 as in the Ellsberg one-urn example from Section 1, Example 4
from Section 4 and the Allais common consequence experiment from Section 5.

To the extent that the experimenter’s intuitions about participants’ re-
sponses are correct, experiments of this kind are likely to elicit preference order-
ings that violate the consistency requirement being tested and therefore inad-
missible. However, since all such orderings admit a parameter (u,w) ∈ H that
induces indifference between b1 and b2 (and hence, by the consistency property,
between b3 and b4, as well), this pattern is not robustly inadmissible.

Since any u is an order-preserving transformation of the consequences, we
can exploit the monotonicity of the induced preferences to robustify experiments
of this kind. Consider a perturbed consequence matrix Ĉ ̸= C, in which Cb1 ≫
Ĉb̂1

and Ĉb̂i
= Cbi for i = 2, 3, 4.9 Notice that for any (u,w) ∈ H,

⟨u ◦ Cb1 , w (u ◦ Cb1)⟩ >
⟨
u ◦ Ĉb̂1

, w
(
u ◦ Ĉb̂1

)⟩
.

Hence monotonicity and the consistency property together imply

b̂1 ≿ b̂2 =⇒ b1 ≻ b2 ⇐⇒ b3 ≻ b4 ⇐⇒ b̂3 ≻ b̂4 , for all (u,w) ∈ H .

Thus for the inadmissible preference ordering b̂1 ≻ b̂2 and b̂4 ≻ b̂3, no coarsening
is admissible. So by Theorem 1 the ordering is robustly inadmissible. One can
also readily check using Corollary 1.1 that the modified experiment is robust.

Returning to Example 4, consider the perturbed consequence matrix

Ĉ =

H T


b̂1 4 4

b̂2 2 10

b̂3 55 55

b̂4 52 60

,

obtained by reducing the consequence of bet b1 in each state from 5 to 4. The
choice pattern b̂1 ≻ b̂2 and b̂4 ≻ b̂3 is now robustly inadmissible for CARA
preferences.

In this robustification as well as the ones that follow, we should be mindful
that the perturbations in rewards should be significant enough to motivate the
participants. If they are too small, then a violation might reflect a mistake or a
misperception or a lack of motivation on the part of the decision-maker.10

Notice that there is a price to pay. In the original experiment, the pattern
b2 ≻ b1 and b3 ≻ b4 was also inadmissible. In the new experiment the preference

9For any two vectors x, y ∈ Rn we write x ≫ y for the component-wise strict inequality,
that is, x ≫ y ⇐⇒ xi > yi for all i.

10This concern is raised and discussed in more detail by Smith (1982) and Harrison (1994).
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ordering b̂3 ≻ b̂4 ≻ b̂2 ≻ b̂1 is admissible. That is, the new experiment is a ‘one-
sided’ instead of a ‘two-sided’ test. The acceptability of this trade-off depends
on the strength of the intuition that the preference pattern b1 ≻ b2 and b4 ≻ b3
is more plausible than the reverse. In the case of Example 4, CARA is likely
to be rejected in favor of DARA but not in favor of IARA (increasing absolute
risk aversion).

6.2. Participant Based Robustness

Every subject in an experiment in belief form (C,H) designed to test some
theory T can be taken to have a single weighting function w. If w is an admissible
belief, that is, (u,w) ∈ A for some utility function u, then that subject can be
viewed as participating in a ‘personalized’ lottery based experiment. So for an
experiment (C,H) and each admissible belief w, let Hw = {(u′, w′) ∈ H : w′ =
w}. The pair (C,Hw) is an experiment in belief form that induces a lottery
based experiment.

The next result states that an experiment in belief form for generalized
mean-utility maximizers is robust if and only if each admissible personalized
lottery based experiment is robust.

Proposition 3. An experiment (C,H) testing theory T is robust if and only if
the ‘personalized’ experiment (C,Hw) testing T is robust for every admissible
decision weight function w.

So far we have considered an experiment (C,H) for which the experimenter
selects a sample of participants from the population that is being studied. The
robustness of this experiment guarantees that any inadmissible elicited prefer-
ence ordering from any participant is robustly inadmissible. Consider an indi-
vidual participant i. If the experimenter elicits a preference ordering ≿i over
the bets, and it is inadmissible but weakly admissible in the experiment (C,H),
then the experimenter may not have enough information about the preferences
of the particular participant to rule out the possibility that ≿i is arising from a
small perturbation in the expected utility maximizer’s beliefs.

To see this, we consider by way of example, the case where a participant i is
a subjective expected utility maximizer satisfying the restriction of subjective
expected theory being tested. This participant i has a belief pi over S and a
utility function ui, which represent her preferences but which are not known.
From the perspective of the experimenter, i participates in the trivial experiment
(C,Hi) where Hi = {(ui, pi)}. Because she has just one belief, effectively this
participant faces the lottery-based experiment (L(C,Hi) , {ui} , {E}).

The elicited preferences are inadmissible in this lottery based experiment
as they are inadmissible in (C,H). Importantly, although ≿i may be weakly
admissible in (C,H), if the experimenter can establish that (L(C,Hi) , {ui} , {E})
is robust, then the experimenter is able to conclude that preferences ≿i are not
due to a small perturbation in the subjective beliefs of the particular participant
i.

The experimenter, however, does not know the parameter (ui, pi) of the
(C,Hi) and cannot determine these simply by the information given by the
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preferences ≿i. So the experimenter will want to gather additional informa-
tion from the participant enabling the experimenter to make the personalized
experiment robust.

We consider two different methods. The first method elicits certainty equiv-
alents of each bet for the participant. The second, adjusts bets on the basis
of the participant’s initial choices and then elicits a second-round of choices.
This process may be repeated to get more precise estimates of the participant’s
parameter.

6.2.1. Eliciting Certainty Equivalents

This was the procedure used in Section 1 to robustify the Ellsberg Single
Urn example. Fix an experiment in belief form (C ,A). The general procedure
can be described as follows.

For each participant i:

(i) Elicit certainty equivalents for each bet using an appropriate incentivized
procedure (such as the BDM mechanism (Becker et al., 1964)).

(ii) Elicit preferences over the original bets.

In the event that the elicited preferences over the bets and their certainty
equivalents are inadmissible, either (a) the strict inequality between any pair of
certainty equivalents corresponds to a strict preference between the correspond-
ing pair of bets; or (b) not.

Case (b) constitutes a violation of transitivity. Furthermore, by range dom-
inance there is no admissible parameter which will make these certainty equiv-
alents indifferent. Thus by Theorem 1 this violation is robust.11

For case (a) it also follows from range dominance that any admissible coars-
ening must respect the strict inequalities between any pair of certainty equiva-
lents. Thus again there is no admissible coarsening which means that by Theo-
rem 1 the inadmissible preference relation is robustly inadmissible.

Since the inadmissible preference relation was arbitrary this means by Corol-
lary 1.1 the experiment that has been “personalized” by adding these certainty
equivalents is now robust.

6.2.2. Multi-round Preference Elicitation with Choice-based Adjustments to the
Bets

In an Ellsberg experiment where there are only two consequences, one need
only estimate the participant i’s beliefs pi setting the range of ui as {0,1}, then
checking for the robustness of (C,Hi).

11This situation essentially corresponds to the inadmissible preferences that are seen in
the well-known preference reversal (Holt, 1986) experiments in which certainty equivalents
are elicited for two bets, a so-called P -bet and a $-bet, but the preference expressed between
these two bets contradicts the one implied by the relative size of the two certainty equivalents.
That is, the preference reversal experiments are robust in our sense.

26



For the special case of an Ellsberg experiment Binmore et al. (2012) employed
the following procedure for each participant i:

1. Estimate the implied beliefs pi of each participant by iteratively adding
and subtracting balls in the experiment, eliciting the participant i’s pref-
erences, and stopping the iteration when i switches her strict preferences
over two bets. Coupled with the contrapositive assumption of expected
utility maximization, this switching (taken as representing indifferences)
gives an estimate p̂i of pi.

2. Use the information given by p̂i to robustify the personalized lottery-based
experiment by means of a perturbation of the induced lotteries.

3. Elicit preferences in the robustified experiment.

7. Concluding Comments

Experiments like those proposed by Allais and Ellsberg have been influential
in the development of alternatives to, and generalizations of, (subjective) ex-
pected utility theory. However, it has often been suggested that the apparently
anomalous results of these experiments may result from sensitivity to small er-
rors in decisions or deviations between the perceptions of the subject and those
assumed by the experimenter.

The central task of this paper has been to formulate a rigorous definition of
robustness for experiments and for observed choices that are inadmissible for
a class of preferences under consideration. Most commonly, this is the class
of expected utility preferences, but the method is equally applicable to tests
of such hypotheses as constant absolute risk aversion as well as testing various
generalizations of subjective expected utility.

The core result is that if inadmissible preferences can be made admissible
by coarsening (that is, by one or more conversions of strict preference to indif-
ference), then the inadmissibility is not robust.

Appendix

Let B = {b1, b2, . . . , b|B|} be a finite set of bets, each associated with a finite
consequence set Kb ⊆ C. Let T be set the of all functions t : B →

∪
b∈B

Kb

satisfying t(b) ∈ Kb for all b ∈ B.

Definition 17. A canonical consequence matrix based on the set of bets B and
profile of consequences (Kb)b∈B is a |B| × |S| consequence matrix C satisfying:

1. for each t ∈ T , there is an s ∈ S such that t(b) = cbs for all b ∈ B;

2. Cb = Kb for each b ∈ B.
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Condition (1) of Definition 17 guarantees that every function in t ∈ T is
represented by some state s ∈ S. Condition (2) ensures that the consequence
matrix respects the consequence set Kb for each bet b ∈ B.

Lemma 1. Let C be a canonical consequence matrix based on the set of bets
B and profile of consequences (Kb)b∈B . For each b ∈ B, let ℓb be any lottery
over Kb. The probability distribution p on S defined by ps =

∏
b∈B

ℓb(cbs) for all

s ∈ S induces the lottery ℓb over Kb for each b ∈ B.

Proof. Notice that for each b ∈ B and each c ∈ Cb = Kb, the probability
assigned to the lottery induced by pL is equal to:∑

s : cbs=c

ps

= ℓb(c)

( ∑
s : cbs=c

ℓ1(c1s)ℓ2(c2s) . . . ℓb−1(c(b−1)s) ℓb+1(c(b+1)s) . . . ℓB(cBs)

)

= ℓb(c)
∏
b′ ̸=b

(∑
k∈K

ℓb′(k)

)
= ℓb(c) ,

as required. ■

Lemma 2. Let (C,H) be an experiment in belief form where C is a canonical
consequence matrix. If ≿ is range dominant with respect to a parameter (u,w) ∈
T (C , S), then ≿ is generated by an SEU-parameter (u, p) with the same u.

Proof. Suppose ≿ is range dominant with respect to (u,w). We use Lemma 1 to
construct a probability distribution p on S such that the SEU-parameter (u, p)
represents ≿.

For each bet b ∈ B we define the best outcome ub = max
s∈S

u(cbs) and the

worst outcome ub = min
s∈S

u(cbs).

We partition B into equivalence classes B1, ..., Bk of bets from worst to best,
that is, if i < j, then for each b ∈ Bi and b′ ∈ Bj we have b′ ≻ b. For each
equivalence class Bi, we define the worst of the best outcomes over bets in that
class by vi = min

b∈Bi

ub, and the best of the worst outcomes vi = max
b∈Bi

ub.

Since ≿ is range dominant with respect to (u,w), we obtain the following
two results:

1. vi < vj whenever i < j;

2. vi ⩽ vi for all i = 1, ..., k.

Results (1) and (2) follow from parts (1) and (2) respectively of Definition 13.
We inductively define a value vi to each equivalence class as follows:

v1 = v1;
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and for i > 1,

vi = vi−1 +
vi−1 + vi

2
.

Observe that vi is strictly increasing in i and that for each class i, and each
bet b ∈ Bi,

ub ⩽ vi ⩽ vi ⩽ vi ⩽ ub.

Hence, for each bet b ∈ Bi, there is a lottery on the best and worst outcome for
that bet that yields value vi in expectation.

By Lemma 1, we can find a probability distribution p on S that induces
these same lotteries. Hence, ≿ is generated by the SEU-parameter (u, p). ■

Proof of Proposition 1. The proposition simply translates definitions and the
proof is an immediate consequence of these. ■

Proof of Theorem 1. Let (C,H) be an experiment in belief form testing a theory
T where B and S denote the set of bets and the sample state space.

(If-part): We prove the contra-positive of the if-part. Suppose that ≿ is
weakly admissible in (C,H). Then, ≿ is ε-admissible in some version (C ′,H′)
of (C,H). We let S′ denote the sample state space of (C ′,H′). Since ≿ is
ε-admissible in (C ′,H′), there is an admissible parameter (u,w) ∈ H′ and a
parameter (u′, w′) ∈ T (C ′, S′) such that for all ε ∈ (0, 1), the parameter (u, (1−
ε)w + εw′) is in T (C ′, S′) and generates ≿.

Since T is a generalized mean decision theory, ≿ must be range dominant
with respect to the parameter (u, (1− ε)w+ εw′). Since (C ′,H′) and (C,H) are
versions, ≿ will also be range dominant with respect to the admissible parameter
(u,w) ∈ H′.

Let ≿′ be the preference ordering generated by the admissible parameter
(u,w) in H′. We show that ≿ is finer than ≿′. It suffices to show that b ≻′ b′ im-
plies b ≻ b′. Since b ≻′ b′, we know that ⟨u ◦ cb, w(u ◦ cb)⟩ > ⟨u ◦ cb′ , w(u ◦ cb′)⟩.
So for all ε sufficiently close to zero,

⟨((1− ε)u ◦ cb + εu′ ◦ cb), ((1− ε)w(u ◦ cb) + εw(u′ ◦ cb))⟩ >
⟨((1− ε)u ◦ cb′ + εu′ ◦ cb′), ((1− ε)w(u ◦ cb′) + εw(u′ ◦ cb′))⟩ .

Thus, b ≻ b′.
(Only-if-part): We prove the contra-positive of the only-if-part. Suppose

that ≿ is range dominant with respect to some admissible parameter (u,w) ∈ H
and it is finer than the preference ordering ≿′ generated by (u,w). We will show
that ≿ is ε-admissible in a canonical version (C ′,H′) of (C,H).

To this end, let C ′ be any |B| × |S′| canonical consequence matrix based on
B and (Cb)b∈B that satisfies S ⊆ S′. Since the theory is coherent, for every
parameter (u,w) ∈ H ⊆ T (C, S), there is a parameter (u,w′) ∈ T (C ′, S′)
that represents the same preferences as (u,w). Let H′ be a selection of such
parameters in T (C ′, S′), one for each (u,w) ∈ H. By construction (C ′,H′) is a
version of (C,H).
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Since, by assumption, ≿ is range dominant with respect to the admissible
parameter (u,w) ∈ H it is also range dominant with respect to any admissible
parameter (u,w′) ∈ H′, one of which must exist by our construction of H′. It
follows, by Lemma 2 that ≿ is generated by an SEU-parameter (u, p) where
p ∈ ∆|S′|−1.

Let (u,w′) be the parameter inH′ that corresponds to the parameter (u,w) ∈
H that generates ≿′. Since the theory is linearly open and ≿ is finer than ≿′,
we can find a δ ∈ (0, 1) such that ≿ is generated by the parameter (u,w′′) ∈
T (C ′, S′) where w′′ = (1− δ)w′+ δwp. It follows that for any for any ε ∈ (0, 1),
the parameter (u, (1− ε)w′ + εw′′) is in the theory T (C ′, S′) and also generates
≿. ■

Proof of Corollary 1.1. This proof follows from Theorem 1 and the definition of
robust experiment. ■

Proof of Proposition 2. First we need to construct an experiment in belief form
(C,H) testing a theory T that induces the lottery based experiment (L ,U ,V).

First construct a canonical consequence matrix as in Lemma 1 which ensures
that (1) of Definition 16 holds. Fix a pair (u, V ) in U × V . For each lottery ℓb,
recall that ℓub is the associated induced lottery over utilities. Similarly, for each
bet b, u ◦ Cb is the induced state contingent utility vector associated with that
bet.

For any u ◦ Cb that is a constant vector set ws(u ◦ Cb) =
1
|S| , for all s ∈ S.

For any non-constant state contingent utility vector and any state s ∈ S set:

ws (u ◦ Cb) =

{ α

|argmint∈S u(cbt)| if s ∈ argmint∈S u(cbt)

1−α

|argmaxt∈S u(cbt)| if s ∈ argmaxt∈S u(cbt)
,

where α ∈ (0, 1) is the unique solution to:

V (ℓub ) = αmin
t∈S

u(cbt) + (1− α)max
t∈S

u(cbt) .

The fact that α is well defined follows from the three properties V is assumed
to exhibit: respecting first order stochastic dominance, continuity and normal-
ization. Observe that for for any b we have ⟨u ◦ Cb , w(u ◦ Cb)⟩ = V (ℓub ).

Let H be the set of (u,w) defined as above and consider the grand theory
T gm. By construction, the lottery based experiment (L ,U ,V) is induced by
the experiment in belief form (C,H) testing the null hypothesis H in the theory
T gm.

Moreover, let (C ′,H′) be an experiment in belief form within theory T that
induces (L ,U ,V). Clearly the bets are the same, and by (1) of Definition 16, the
set of consequences for each bet is the same, and by (2) and (3) of Definition 16
the sets of admissible preferences are the same. ■

Proof of Proposition 3. This follows from the definitions of robust experiment
and personalized experiment. ■
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