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Abstract

Artificial intelligence diagnosis is a research topic of knowledge representation and
reasoning. This work addresses the problem of on-line model-based diagnosis of
Discrete Event Systems (DES). A DES model represents state dynamics in a discrete
manner. This work concentrates on the models whose scales are finite, and thus uses
finite state machines as the DES representation. Given a flow of observable events
generated by a DES model, diagnosis aims at deciding whether a system is running
normally or is experiencing faulty behaviours.

The main challenge is to deal with the complexity of a diagnosis problem, which
has to monitor an observation flow on the fly, and generate a succession of the states
that the system is possibly in, called belief state. Previous work in the literature
has proposed exact diagnosis, which means that a diagnostic algorithm attempts to
compute a belief state at any time that is consistent with the observation flow from
the time when the system starts operating to the current time. The main drawback of
such a conservative strategy is the inability to follow the observation flow for a large
system because the size of each belief state has been proved to be exponential in the
number of system states. Furthermore, the temporal complexity to handle the exact
belief states remains a problem. Because diagnosis of DES is a hard problem, the
use of faster diagnostic algorithms that do not perform an exact diagnosis is often
inevitable. However, those algorithms may not be as precise as an exact model-based
diagnostic algorithm to diagnose a diagnosable system.

This Thesis has four contributions. First, Chapter 3 proposes the concept of simu-
lation to verify the precision of an imprecise diagnostic algorithm w.r.t. a diagnosable
DES model. A simulation is a finite state machine that represents how a diagnostic
algorithm works for a particular DES model. Second, Chapter 4 proposes diag-
nosis using time decomposition, and studies window-based diagnostic algorithms,
called Independent-Window Algorithms (IWAs). IWAs only diagnose on the very
last events of the observation flow, and forget about the past. The precision of this
approach is assessed by constructing a simulation. Third, Chapter 5 proposes a
compromise between the two extreme strategies of exact diagnosis and IWAs. This
work looks for the minimum piece of information to remember from the past so that
a window-based algorithm ensures the same precision as using the exact diagno-
sis. Chapter 5 proposes Time-Window Algorithms (TWAs), which are extensions to
IWAs. TWAs carry over some information about the current state of the system from
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one time window to the next. The precision is verified by constructing a simulation.
Fourth, Chapter 6 evaluates IWAs and TWAs through experiments, and compares
their performance with the exact diagnosis encoded by Binary Decision Diagrams
(BDD). Chapter 6 also examines the impact of the time window selections on the
performance of IWAs and TWAs.
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Chapter 1

Introduction

1.1 Thesis Statement

Under the research theme of future energy systems, an electricity network is often tol-
erant to failures but may collapse after encountering a certain number of failures
that take place within a short period of time. The smart grid is the upcoming gen-
eration of electricity networks. Challenges faced in the smart grid include prompt,
reliable, and informative alarm processing to detect the points of failure. Another
aspect is inferring the root cause for failures. Being able to accurately and promptly
determine the occurrence of faults in a network allows rapid intervention, leading to
faster restoration, and lower vulnerability to multiple faults.

This Thesis focuses on those systems that are modelled by a Discrete Event Sys-
tem (DES). A DES is a system model that represents state dynamics in a discrete
manner [Cassandras and Lafortune, 2008]. It provides a common modelling frame-
work for diagnosis problems such that a problem can be modelled as a DES while
retaining the properties with a discrete nature in a system. Such abstraction gives
the benefit of abstraction to focus on the logic of a system.

Diagnosis in Artificial Intelligence (AI) refers to the detection and identification of
faults in a system. Research of diagnosis in AI offers the capacity to address some of
the challenges mentioned above while research questions still remain in the context
of on-line diagnosis for DES. This Thesis focuses on on-line diagnosis of DES and the
quality of diagnosis is measured by diagnosability, as Section 1.2 explains the details.

1.2 Research Questions and Thesis Contributions

This Thesis addresses the problem of on-line diagnosis of a DES, which was initially
proposed by Sampath et al. [1995]. Given a flow of observable events generated by
the underlying system, the problem consists in determining whether the DES is op-
erating normally or not, based on a behavioral model of it. On-line diagnosis means

1
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diagnosing a system on the fly and in real time such that constraints on computa-
tional time and memory space are imposed.

Many previous works address this problem by the use of a diagnoser automaton
[Sampath et al., 1995; Rozé and Cordier, 2002a], automata unfoldings [Baroni et al.,
1999] that can also be distributed as in Pencolé and Cordier [2005]; Su and Wonham
[2005], or encoded with binary decision diagrams (BDD) as in Schumann et al. [2010],
and finally by the use of a satisfiability (SAT) solver as in Grastien et al. [2007].

The research challenge is to deal with the complexity of a diagnostic algorithm
that monitors on the fly the observable flow and generates a succession of belief states
that is consistent with the flow. The difficulty is the size of each belief state that is
exponential w.r.t. the number of system states in the worst case [Rintanen, 2007]. Any
of the precited work, except the SAT approach, proposes diagnostic algorithms that
attempt to compute at any time a belief state that is consistent with the observable
flow from the time when the system starts operating to the current time. The main
drawback of such a conservative strategy is the inability to follow the observable
flow for a large system due to the exponential size of the generated belief states and
therefore the temporal complexity to handle them. Although diagnosis using SAT
computes one trace in the system for an observation sequence, the complexity of a
SAT problem is exponential to the number of propositional variables, which is linear
to the number of state variables [Grastien et al., 2007].

This section defines the research questions, and provides an overview for the four
contributions of this Thesis, i.e. verifying the precision of a diagnostic algorithm w.r.t.
a DES model, Independent-Window Algorithms (IWAs), Time-Window Algorithms
(TWAs), as well as the implementations and the experiments of IWAs and TWAs.

1.2.1 Verifying the Precision of a Diagnostic Algorithm w.r.t. a DES Model

The first contribution is to study the precision of a diagnostic algorithm w.r.t. a DES
model in Chapter 3. It also proposes a novel approach to verify the precision of a
diagnostic algorithm w.r.t. a DES model.

Because diagnosis of DES is a hard problem, the use of faster diagnostic algo-
rithms is inevitable. Such algorithms include the IWAs proposed by Su and Grastien
[2013], which do not carry all of the historical information about the system execu-
tion, and chronicle-recognition diagnostic algorithms by Dousson [1996], which uses
pattern recognition techniques for diagnosis. However, these algorithms may be less
precise to diagnose a diagnosable system than using an exact model-based diagnos-
tic algorithm, e.g. Sampath et al. diagnosis [Sampath et al., 1995]. Faults are very
harmful to a system and expensive to recover from if not correctly diagnosed. Hence,
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it is essential to examine how to measure the quality of using a potentially imprecise
diagnostic algorithm w.r.t. a diagnosable DES model.

In the literature, diagnosability of DES is an important property to measure the
capability of a diagnostic system to identify faults and the quality of diagnosis. Di-
agnosability is well-known criterion of DES, which is initially proposed by Sampath
et al. [1995]. Diagnosability of DES holds if using the model, a fault can always be di-
agnosed after it occurs. Furthermore, diagnosability testing has been a well-studied
problem. Jiang et al. [2001] showed that proving non-diagnosability amounts to find-
ing a critical witness, which is a pair of infinite executions on the model that are
indistinguishable, i.e. they produce the same observations where one of them is
faulty while the other one is nominal [Jiang et al., 2001]. Thus, diagnosability is
proved by showing that there is no such witness. This approach is known as the twin
plant method. [Yoo and Lafortune, 2002] also proposed their approach to test the
diagnosability by constructing a verifier.

Chapter 3 proposes a novel approach to verify the precision of a diagnostic al-
gorithm w.r.t. a DES model by constructing a simulation. A diagnostic algorithm is
defined as precise if the algorithm will diagnose the fault after it occurs. As proposed
in Chapter 3, precision can be verified using the known methods, such as the twin
plant method by Jiang et al. [2001], on the condition that a simulation is built. A
simulation is a modified model that simulates how a diagnostic algorithm runs on
a given DES model. The precision holds iff there is no critical witness in the syn-
chronisation of the DES model and the simulation. Finally, this work illustrates how
to construct the simulation for chronicle-recognition diagnosis in Chapter 3, and for
IWAs in Chapter 4.

1.2.2 Independent-Window Algorithms (IWAs)

The second contribution is to propose a new class of on-line DES diagnostic algo-
rithms in Chapter 4, called Independent-Window Algorithms (IWAs). The on-line
DES diagnosis problem was initially studied by Sampath et al. [1995]. Given a flow
of observable events generated by a system, the problem consists in determining
whether the DES is operating normally or not, based on the behavioural model of
the system. This work uses the term belief state of the system to describe this com-
putation. A belief state represents the set of global states that the system is possibly
in after the given observations [Pencolé and Cordier, 2005; Rintanen, 2007]. Chap-
ter 2 reviews the existing work of on-line diagnosis in the literature. It concludes
that the main challenge is to deal with the complexity of a diagnostic algorithm that
monitors the observable flow on the fly, and generates a succession of belief states



4 Introduction

that are consistent with the flow. In fact, the difficulty lies in the size of each belief
state, which is proved to be exponential w.r.t. the number of system states [Rintanen,
2007]. The existing diagnostic algorithms attempt to compute at any time a belief
state that is consistent with the observable flow from the time when the system starts
operating to the current time. The main drawback of such a conservative strategy is
the inability to follow the observable flow for a large system due to the exponential
size of the generated belief states. Also, the temporal complexity to handle all of the
belief states remains a challenge.

Chapter 4 proposes a new diagnostic strategy, called window-based diagnosis.
This strategy differs from the conservative strategy by proposing diagnostic algo-
rithms that are only applied on the very last events of the observable flow, and forget
about the past. Chapter 4 presents four Independent-Window Algorithms (IWAs),
namely Alp, Al1, Al2, and Al3. IWAs slice an observation sequence into time win-
dows so that each time window is diagnosed independently. IWAs diagnose a speci-
fied number of observations for one time window, and move to another time window
without keeping any information. The four IWAs differ only in the time window se-
lections.

IWAs offer an array of benefits. First, IWAs improve the flexibility and feasibil-
ity of diagnosis by computing diagnosis independently on separate time windows.
Second, IWAs avoid the overhead of maintaining a precise tracking of the system
state, and thus reduce the computational complexity of diagnosis. Third, IWAs are
able to handle intermittent loss of communication, whereby the state of the system
becomes unknown. This is because at the beginning of one time window, IWAs reset
to every nominal state, or every faulty state, depending on the result at the end of
the previous time window. In other words, diagnosis using IWAs does not require a
complete observation sequence that is strictly compatible with the given DES model.

On the other hand, IWAs may cause imprecise diagnosis. Since IWAs diagnose
time windows independently, imprecision happens when both current and past ob-
servations are necessary to understand the system behaviour. Chapter 3 presents the
theory to verify the precision of a diagnostic algorithm w.r.t. a DES model by con-
structing a simulation. A simulation is a modified DES model that describes how a
diagnostic algorithm computes diagnosis on the given DES system model. Chapter 4
illustrates the construction of a simulation in order to verify the precision of an IWA
w.r.t. a DES model.
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1.2.3 Time-Window Algorithms (TWAs)

The third contribution is to propose Time-Window Algorithms (TWAs) in Chapter 5.
The strategy of TWAs is proposing a compromise between the two extreme strategies
of exact diagnosis and imprecise diagnosis, e.g. a compromise between Sampath
et al. diagnoser [Sampath et al., 1995] and IWAs [Su and Grastien, 2013]. Such a
compromise is achieved by looking for the minimum piece of information to remember
from the past, called abstracted belief state, so that a window-based algorithm will
certainly ensure the same precision as using an exact diagnostic algorithm.

Chapter 5 formally presents two TWAs, namely, Al5 and Al6. TWAs are exten-
sions to IWAs as presented in Chapter 4. TWAs carry over some information about
the current state of the system from one time window to the next. Chapter 5 also
describes how the precision of the two new TWAs is verified w.r.t. a DES model
by constructing a simulation. Finally, Chapter 5 proposes a formal procedure to
minimise the amount of information that a TWA needs to carry over to ensure no
precision loss.

1.2.4 Implementations and Experiments of IWAs and TWAs

The fourth contribution is the implementations and the evaluations of the window-
based diagnostic algorithms through experiments. Chapter 6 firstly describes the
implementations, which read a DES model with multiple components and an obser-
vation sequence to diagnose using window-based diagnostic algorithms, i.e. IWAs
and TWAs. The implementations also include the exact diagnostic algorithm Al0
encoded using BDD as proposed by Schumann [2007]. Chapter 6 then describes
the experimental models and scenarios before evaluating Alp, Al1, Al2, Al3, Al5, and
Al6. The performance is measured by the precision of diagnosis, computational time,
maximum memory use, average memory use, and diagnostic distance. Diagnostic
distance is defined as the number of observations between a fault occurrence and the
fault diagnosis of a diagnostic algorithm. Chapter 6 compares the above aspects of
IWAs and TWAs with the performance of the exact diagnostic algorithm Al0 encoded
by BDD. It also examines the impact of the time window size on the performance of
a window-based diagnostic algorithm.

1.3 Publications and Thesis Outline

This Thesis is organised as follows.

• Chapter 2 reviews the existing work of on-line diagnosis of DES in the litera-
ture, and examines the definition of the important property of DES diagnosabil-
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ity. This chapter also examines the existing approaches to test the diagnosability
of a DES model.

• Chapter 3 defines the precision of a diagnostic algorithm w.r.t. a DES model,
and proposes to verify the precision by constructing a simulation. This theoret-
ical contribution has been published at Su and Grastien [2014a].

• Chapter 4 proposes a class of windows-based diagnostic algorithms, called
Independent-Window Algorithms (IWAs). The contribution of this chapter has
been published at [Su and Grastien, 2013].

• Chapter 5 proposes a class of window-based diagnostic algorithms, called Time-
Window Algorithms (TWAs). The contribution of this chapter has been pub-
lished at [Su and Grastien, 2014b].

• Chapter 6 reports the implementations and the experiments of the IWAs of
Chapter 4 and the TWAs of Chapter 5.

• Chapter 7 concludes this work, and provides an outline for the future direc-
tions.



Chapter 2

Background and Related Work

This chapter examines the state of the art in the research of diagnosis and diagnos-
ability. Fault detection and isolation is widely used in automatic control of large and
complex systems. Given a system and a set of observations, the essence of a diagnos-
tic task is to find whether any fault has happened, and identify which one. Diagnosis
is categorised into two approaches: (1) rule-based, and (2) model-based [Russell and
Norvig, 2010].

Rule-based diagnosis is also known as an expert system, which requires an ex-
pertise and relies on direct mapping from the observations to diagnostic results, i.e.

From observations→ detection and identi f ication o f f aults

However, rule-based diagnosis generally cannot adapt to system changes, which
means that it frequently requires new expertise.

Model-based diagnosis overcomes the problem of rule-based diagnosis. A model
provides the descriptions of a system, and the explanation for a fault will be obtained
by the comparing the observations with the system model [de Kleer and Williams,
1987; Reiter, 1987]. This work focuses on model-based diagnosis. A system model
can be represented by Boolean logic, equations, or Discrete Event Systems (DES). This
work concentrates on DES, which is a system model that represents state dynamics
in a discrete manner [Cassandras and Lafortune, 2008]. DES provides a common
modelling framework for diagnosis problems. Using DES as a model for a diagnosis
problem retains the properties with a discrete nature. Such abstraction has the benefit
to focus on the logic of a system. Notice that DES is also useful for other modelling
framework such as hybrid system. A hybrid system is a system model that involves
both discrete and continuous dynamics. The study on hybrid system by [Bayoudh
et al., 2008] is related to DES.

Fig. 2.1 shows a very simple DES model, which is to model the entrances to a café
and a library [Jéron et al., 2006].

7
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Figure 2.1: A simple DES system model

• the four states are the reception (A), the office (I), the library (B), and the café (C);

• A is the initial state;

• t1, t2, t4 are the observable events;

• t3, t5, t6, t7 are the unobservable events.

Based on Fig. 2.1, the diagnoser should detect the fault if one goes to the café (C)
twice without going to the library (B) at least once.
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Figure 2.2: A diagnosis model for the café and library model described in Fig. 2.1

Fig. 2.2 shows the diagnosis model for the café and library model described in
Fig. 2.1. A4 and I2 are faulty states while the other states are nominal. Given an ob-
servation sequence, if the diagnoser starts from the initial state A and the observation
sequence ends in a faulty state, then the system is faulty.
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Section 2.1 reviews the existing work regarding on-line diagnosis of DES. Sec-
tion 2.2 reviews the existing work on DES diagnosability. Section 2.3 reviews the
existing work on sensor minimisation and dynamic observers, which is related to
diagnosability.

2.1 Existing Work of On-line Diagnosis of DES

Baroni et al. [1999] proposed diagnosis using the model of a network of communi-
cating automata. The diagnostic process is to generate a representation of the be-
haviours of a decomposed system using observable events. It then combines a series
of interpretations, and the diagnostic output is the faulty events incorporated within
the reconstructed behaviour.

This approach starts with the definitions for the model of a DES component. A
component model is a finite state machine denoted as Mc. Mc = (S , E in, I , E out,O, T )
where

• S is the set of states;

• E in is the set of input events;

• I is the set of input terminals;

• E out is the set of output events;

• O is the set of output terminals;

• T is the transition function such that T : S × E in × I × 2E
out×O 7→ 2S.

Baroni et al. [1999] also defined link model L as a 4-tuple. L = (I, O, B, S) where

• I is the input terminal;

• O is the output terminal;

• B is the capacity;

• S is the saturation mode.

Furthermore, a link is an instantiation of a link model, which is a directed com-
munication channel between two different components C and C′ such that the output
terminal of C and the input terminal of C′ coincide with the input and output termi-
nal of L. Based on components and links, an active system A is a set of components
which are connected with each other by means of links among terminals. Within the
link, E is the dangling event of L. The capacity B of L is the maximum number of
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dangling events in L. The cardinality of L is denoted by |L|. If |L| = B, then L is
saturated. ||L|| is a sequence of dangling events in which the i-th generated event is
denoted by L[i]. When a candidate event is consumed, it is dequeued from ||L||.

Baroni et al. [1999] proposed a diagnostic algorithm to find a set of faulty com-
ponents, and presented a reconstruct function to generate a graph-based representa-
tion. The aim is to reconstruct system behaviour based on the system observation.
The challenge is the possibly huge size of the search space. Their approach does
not generate any explicit search space, but incrementally makes up the overall be-
haviour of a system using a reconstruction plan starting from partial behaviours
relevant to sub-systems. Eventually, diagnostic information at different abstraction
levels is drawn from the reconstructed behaviour. In summary, using communicating
automata saves the reconstruction of a global diagnoser.

The following five sub-sections reviews the existing techniques of on-line diagno-
sis including:

• Sampath et al. diagnosis,

• symbolic diagnosis using Binary Decision Diagrams,

• diagnosis using Satisfiability,

• distributed diagnosis, and

• incremental diagnosis.

2.1.1 Sampath et al. Diagnosis

Sampath et al. diagnoser is an accurate and exact diagnoser taking into account all
information available from a DES model [Sampath et al., 1995]. Belief state is a set of
states that a system is possibly in at a given time. In a Sampath et al. diagnoser, all
potential belief states are pre-computed. It is a diagnoser that has off-line compilation
of a model such that each state in the diagnoser is a set of pairs 〈s, f m〉 where s is a
state of the system, and f m ⊆ {F1, . . . , Ff } is a fault mode.

The initial state of a Sampath et al. diagnoser is {〈s0, ∅〉}. For each state in
s = {〈s1, f m1〉, . . . , 〈sk, f mk〉}, and for each observable event o from the given DES
model, a Sampath et al. diagnoser creates a transition between s and s′ labelled by o
where s contains a pair 〈si, f mi〉, and s′ contains a pair 〈s′j, f m′j〉 such that

• there exists a path p labelled with unobservable events from the state si to the
state s′′; and,

• there exists a path from s′′ to s′j labelled by o; and,
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• the fault mode consists of the previous fault mode, and the faults in the path,
i.e. f m′j = f mi ⊕ p.

For instance, {〈s1, f m1〉, 〈s2, f m2〉} from a Sampath et al. diagnoser means two
possible situations. The first possibility is that the state after the last observation is
s1, and the fault that has occurred is f m1. The second possibility is that the state after
the last observation is s2, and the fault that has occurred is f m2.

A, N

I, N

I2, N A2, N A4, F

I3, F

t1, t4

t2

t4

t4 t2

t1 t2
t2

t4

t4

t1, t4

t2

t2

Figure 2.3: The Sampath et al. diagnoser for the café and library model described in
Fig. 2.1

Sampath et al. diagnosis is an accurate and exact DES diagnostic approach, which
pre-computes all belief states for a DES model. Fig. 2.3 shows the computed Sampath
et al. diagnoser for the café and library model described in Fig. 2.1 [Jéron et al., 2006].
In each state, N means that the system is nominal; F means that the system is faulty,
which represents the faulty behaviour of not going to the library between two visits
to the café. The Sampath et al. diagnoser is used for a diagnostic task when given a
sequence of observations. If a sequence ends in a state with a fault mode, then the
system is faulty. Otherwise, the system is nominal or ambiguous. Once a Sampath
et al. diagnoser is built and given a sequence of observations, a diagnostic task is
to follow the states in the diagnoser to determine whether the system is nominal or
faulty.

However, a Sampath et al. diagnoser has its disadvantages. First, it requires that
the observation sequence must originate from the initial states, which is often infeasi-
ble for a real-world application. Second, the number of belief states has been proved
to be exponential w.r.t the number of system states in the worst case [Rintanen, 2007].
It can be argued that the exponential blow-up of Sampath et al. diagnosis arises from
the fact that the diagnoser maintains all the information it can about the observations
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it received so far. For instance, the current belief state could be B′ instead of B be-
cause of an early observation, and a Sampath et al. diagnoser needs to remember
both B and B′.

2.1.2 Symbolic Diagnosis using Binary Decision Diagrams

Schumann et al. [2010] studied the symbolic approaches for diagnosis where the
representation is propositional logic, e.g. Binary Decision Diagrams (BDD). BDD
enables encoding and manipulation of states and transitions without enumeration.
Symbolic diagnosis aims to improve the efficiency of an exact diagnoser, which uses
BDD to represent a DES model and a diagnoser.

Symbolic diagnosis involves encoding for states, events, and transitions. The
symbolic representation for states is a set of Boolean variables denoted as V, i.e. a
propositional formula. Then, the disjunction of propositional representation of states
accurately describes a set of states, e.g. a Boolean variable for each state to represent
whether a system is in that state or not, the combination of which will formulate
which states that the system is in. Additionally, the “next" properties, denoted as
V ′, are defined for the states, which are used for encoding the ending state of a
transition. There is also a set of event variables to represent the events denoted as
VΣ. Finally, each transition is formulated as a conjunction of a beginning state from
V, an event from VΣ, and an ending state from V ′.

State State Encoding “Next” State Encoding
A ¬v1 ∧ ¬v2 ¬v3 ∧ ¬v4
B v1 ∧ ¬v2 v3 ∧ ¬v4
C ¬v1 ∧ v2 ¬v3 ∧ v4
I v1 ∧ v2 v3 ∧ v4

Event Event Encoding
t1 ¬v5 ∧ ¬v6

t2 v5 ∧ ¬v6

t3 ¬v5 ∧ v6

t4 v5 ∧ v6

Transition Transition Encoding

A
t1−→ I (¬v1 ∧ ¬v2) ∧ (¬v5 ∧ ¬v6) ∧ (v3 ∧ v4)

Table 2.1: Example of BDD encoding for the states, events, and part of the transitions
of the DES model in Fig. 2.2: four states require two BDD variables, i.e. V = {v1, v2};
the “next” property of the states also requires two BDD variables, i.e. V ′ = {v3, v4};
four events require two BDD variables, i.e. VΣ = {v5, v6}; this table shows encoding

for one transition; the rest transitions are encoded accordingly.
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Example of BDD Encoding Tab. 2.1 shows the BDD encoding for the DES diagnosis
model in Fig. 2.2. Four states require two BDD variables, i.e. V = {v1, v2}. The “next”
property of the states also requires two BDD variables, i.e. V ′ = {v3, v4}. Also, four
events require two BDD variables, i.e. VΣ = {v5, v6}. Notice that Tab. 2.1 shows the
encoding for one transition. The rest transitions are encoded accordingly.

�

BDD has been widely used as a data structure. One of the benefits of sym-
bolic representation is that a set of transitions does not require enumeration for each
transition. In fact, a set of transitions is written in one formula (φT ), which is the
disjunction of every transition with the same event label.

Operations on a set of states include union, intersection, complement, emptiness,
inclusion, and overlap. Furthermore, BDD operations provide existential quantifica-
tion and substitution. Firstly, an occurrence of a variable is free if it is not within the
scope of a quantifier. The BDD substitution operation (t[t′/x]) means replacing all
free occurrence of x in t by t′. Secondly, the BDD exists operation means a variable
can be replaced with 0 or 1, i.e.

∃x.t = t[0/x] ∨ t[1/x] (2.1)

Therefore, symbolic representation of transitions derives the targets of a set of tran-
sitions (T ), i.e.

(∃V.∃VΣ.φT )[V ′/V] (2.2)

The set of states reached from states S through a single transition labelled by any
event from Σ is written as:

(∃V.∃VΣ.φT ∧ (
∨
e∈Σ

e) ∧ φS)[V ′/V] (2.3)

An important BDD operation, called explore states, computes the set of states
reached from states S through any number of transitions labelled by events of Σ,
as outlined in Algorithm 1.

Finally, given an observation sequence o and the initial state I, symbolic diagnosis
tests against the fault set F. If the output is f alse, then there is a fault occurrence.
Otherwise, there is no fault. Algorithm 2 outlines the procedure where Σu represents
the set of unobservable events.

In summary, symbolic diagnosis offers advantages for encoding a DES model and
operations of diagnosis. Given a sequence of observations, symbolic diagnosis com-
putes the belief states on-the-fly, in contrast to pre-computation as in [Sampath et al.,
1995]. Symbolic diagnosis improves the efficiency of the exact diagnosis because BDD
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Algorithm 1: explore_states
Input: φS, Σ, V, V ′

Output: the set of states that can be reached from the φS through any number
of transitions labelled by events of Σ

1 φ := φS
2 φ′ := φ
3 repeat
4 φ := φ′

5 φ′ := φ ∨ (∃V.∃VΣ.φT ∧ (
∨

e∈Σ e) ∧ φ)[V ′/V]
6 until φ = φ′

7 return φ

Algorithm 2: test_fault_set
Input: φI , Σu, Σ, φT, o, V, V ′

Output: f alse if there is a fault occurrence; true otherwise
1 φ := φI
2 foreach observation fragment oi in the observation sequence o do
3 φ := explore_states(φ, Σu, V, V ′)
4 φ := (∃V.∃VΣ.φT ∧ oi ∧ φ)[V ′/V]

5 return φ ∧ φF 6≡ ⊥

enables encoding and manipulation of states and transitions without enumeration.
However, the symbolic approach alone has the limitation because it is still subject to
exponential blow-up due to the amount of states in a large system.

2.1.3 Diagnosis using Satisfiability

Grastien et al. [2007] studied modelling and solving diagnosis problems of DES using
satisfiability (SAT). Diagnosis of a DES is translated to a propositional SAT problem
in order to be solved by the state-of-the-art SAT algorithms. The results show that
SAT algorithms are able to efficiently explore the search space. The related work is
using SAT in the context of planning [Kautz and Selman, 1992; Rintanen, 2009].

In SAT, a literal is a state variable or its negation. The set of all literals is L =

A ∪ {¬a | a ∈ A}. The language L over A are all formulae that can be formed from
A, or using the connectives ∨ and ¬. The standard definitions for connectives are
adapted:

• φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)

• φ→ ψ ≡ ¬φ ∨ ψ

• φ↔ ψ ≡ (φ→ ψ) ∧ (ψ→ φ)
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In the approach of diagnosis using SAT, the states of a DES model are represented
by the assignment of a finite set of two-valued Boolean variables in the finite domains.
ΦSD is a formula for the system description SD = 〈A, Σu, Σo, δ, s0〉. A SAT model
consists of:

• a set of state variables A,

• a set of unobservable events Σu,

• a set of observable events Σo,

• δ ⊆ Σo ∪ Σu → 2L×2L
, which assigns each event a set of event instances 〈φ, c〉,

• an initial state s0.

A state s : A → {0, 1} is a total function from the state variables to the constants 0
and 1 where 0 means f alse, and 1 means true. Grastien et al. [2007] used an event
instance to describe an event e as a pair 〈φ, c〉 ∈ δ(e) meaning that e is associated with
changes, denoted as c, in states that satisfy the condition of φ. When e takes place in
s, one of the pairs 〈φ, c〉 ∈ δ(e) satisfying s |= φ is chosen, and the effect of the event
is that the literals in c become true. The propositional variables with superscript of
time step t are the following:

• at for all a ∈ A where t ∈ {0, 1, 2, . . . , n}

• et for all e ∈ Σu ∪ Σo where t ∈ {0, 1, 2, . . . , n− 1}

• ωt for all e ∈ Σu ∪ Σo where ω ∈ δ(e) ∧ t ∈ {0, 1, 2, . . . , n− 1}

The successor state s′ of a state s is denoted as succ(s, c). An event sequence e0, e1, e2,
. . . , en−1 leads to states s0, s1, s2, . . . , sn such that ∀i ∈ {0, 1, 2, . . . , n − 1} , ∃〈φ, c〉 ∈
δ(ei) | si |= φ∧ si+1 = succ(si, c). However, a state si and an event ei may not uniquely
determine the successor state si+1. When an event occurs, the event must be possible
in the current state, i.e.

for every ω = 〈φ, c〉 ∈ δ(e), ωt → φt.

The effects of the transitions are:

for every ω = 〈φ, c〉 ∈ δ(e), ωt →
∧
l∈c

lt+1.

For a diagnostic task, observations OBS is a set of pairs 〈e, t〉 where e ∈ Σo is an
observable event, and t ∈ N+ is a positive integer. Hence, observations are regarded
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as a collection of timed observable events. A sequence of states and events is called a
trajectory, which models the behaviour of a system. The diagnosis label of a trajectory
says a trajectory is faulty if it contains any faulty event. Otherwise, a trajectory is
nominal. A system status is ambiguous when nominal and faulty behaviours cannot be
distinguished from a sequence of observations. The assumption is that it is sufficient
to find any one nominal behaviour that is consistent with the observations, and the
diagnostic output is that the system status is nominal. Formally, a system is nominal
if there exists a sequence E = E0, E1, E2, . . . , En−1 of events on the system model
consistent with OBS such that E is nominal. Furthermore, Grastien et al. [2007]
proposed a theorem that the solutions to a SAT problem ΦSD ∧ ΦOBS represent the
set of traces on SD consistent with the observations OBS and ending with the last
observation of OBS.

In summary, diagnosis using SAT has advantages and disadvantages. Firstly, the
formulation of a SAT problem enables a SAT solver to run efficiently. Diagnosis using
SAT takes the advantage that once a trace has been computed, it can be reused for
different diagnostic queries. Therefore, SAT diagnosis is beneficial when utilising the
set of all computed traces. Secondly, Section 2.1.1 has reviewed that the construction
of a Sampath et al. diagnoser may be extremely expensive because the size of a
Sampath et al. diagnoser is exponential to the number of states in the system. The
SAT approach has the advantage that there is no such direct dependency between
run time and the number of states [Grastien et al., 2007].

On the other hand, diagnosis using SAT has a potential problem that the run
time in the worst case grows exponentially to the length of the observation sequence.
Another disadvantage is that the complexity of a SAT problem is exponential to the
number of propositional variables, which is linear to the number of state variables,
and linear to the number of time steps [Grastien et al., 2007].

In conclusion, diagnosis using SAT is still a difficult problem when the number of
observations increases. Also, it is an open question which SAT solver is the best for a
particular diagnosis problem. It has been recommended that incremental diagnosis
and temporal windows have advantages to deal with this problem such that the
diagnosis of a temporal window is ensured to be consistent with the next one. Notice
that Section 2.1.5 will review the existing work on incremental diagnosis. Then, this
work will propose time-window-based diagnostic algorithms in Chapter 4 and 5.

2.1.4 Distributed Diagnosis

Distributed diangosis focuses on a component-based system. It aims to compute
diagnosis using relevant components of a system, and then merge to a final diagnosis.
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This approach improves the capability of a centralised diagnoser, e.g. Sampath et al.
diagnosis, to diagnose a component-based large-scale system.

Pencolé and Cordier [2005] proposed on-line distributed diagnosis for a large
DES. The principle is divide and conquer where local diagnosis computes on each
component, and the global diagnosis is produced for the entire system. A large DES
is decomposed to multiple components. A component is an entity that has a finite set
of internal states. Components communicate with each other using communication
channels. The system is event-driven, and evolves with the occurrence of events on
the components.

Figure 2.4: Event types of distributed diagnosis

Fig. 2.4 illustrates various event types and their data flow [Pencolé and Cordier,
2005]. An exogenous event, from the set Σexo, is an event produced by the environment
of a system. An exogenous event will trigger a change of state in one component.
During a state change, the affected components may produce communication events,
from the set Σcom, towards its neighbourhood by emitting messages via its commu-
nication channels. Those affected components may also produce observable events,
from the set Σobs, towards the environment by emitting observable messages. The
reception of a message from a communication channel is an internal event, and may
change the internal state of a component. In that case, the components affected by
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this event may also emit observable events. Pencolé and Cordier [2005] defined that
a component ci receives the following two kinds of events:

• exogenous events Σi
obs, which are events from the environment such that Σi

obs ⊆
Σexo;

• communication events Σi
com_rcv, which are messages received from other com-

ponents of a system such that Σi
com_rcv ⊆ Σcom.

A component ci also emits the following two kinds of events:

• observable events Σi
obs, which are emitted messages that are observed by a

supervision system such that Σi
obs ⊆ Σobs;

• communication events Σi
com_emit, which are messages emitted to other compo-

nents of the system such that Σi
com_emit ⊆ Σcom.

Thus, a component model ci is a communicating finite state machine Γi = (Σi
com_rcv,

Σi
com_emit, Qi, Ei) where

• Qi is the set of component states,

• Ei ⊆ (Qi × Σi
com_rcv × 2(Σ

i
com_emit) ×Qi) is the set of transitions.

Furthermore, components are connected by bounded communication channels.
A message emitted from component c1 to component c2 corresponds to the reception
of this message by a communication channel between c1 and c2. Finally, a system
model Γ consists of the following:

• a set of component models {Γ1, . . . , Γn};

• a set of exogenous events Σexo;

• a set of observable events Σobs; and,

• a set of internal events Σint such that:

– {Σ1
obs, . . . , Σn

obs} is a partition of Σobs;

– {Σ1
exo, . . . , Σn

exo} is a partition of Σexo;

– {Σ1
intreceived, . . . , Σn

intreceived} and {Σ1
intemitted, . . . , Σn

intemitted} are partitions of
Σint;

– ∀e ∈ Σint, (∃Γi | e ∈ Σi
intreceived) ∧ (∃Γj | e ∈ Σj

intemitted) ∧ (i 6= j).
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Distributed diagnosis computes local diagnosis on each component, and then
builds a global diagnosis of the whole system from local diagnoses. A local di-
agnosis ∆Γi(XΓi

init,OΓi) of Γi according to the sequence OΓi is a finite state machine
(Σi, 2(Σ

i
out), Q∆i , E∆i) where

• Σi
in is a set of input events Σi

in = Σi
exo ∪ Σi

intreceived;

• Σi
out is a set of output events Σi

out = Σi
obs ∪ Σi

intemitted;

• Q∆i ⊆ Qi × (Σi
obs)
∗ is a set of states;

• E∆i ⊆ (Q∆i × Σi
in × 2Σi

out ×Q∆i) is a set of transitions.

As local diagnoses are represented by automata, a global diagnosis (∆Γ(XΓ
init,O))

is built from local diagnoses. Suppose that the sequence of observations O | Σi
obs

received by the supervision system from each component Γi corresponds exactly to
the sequence of local observations OΓi emitted by Γi, then O | Σi

obs = OΓi . The global
diagnosis is computed by applying the classical composition operation between the
communicating finite state machines so that they are synchronised on the internal
events exchanged between the local diagnoses, i.e.

∆Γ(XΓ
init,O) =

n⊙
i=1

∆Γi(XΓi
init,O | Σ

i
obs)

In summary, distributed diagnosis aims to analyse a flow of observations on-line
in a more efficient way since centralised diagnosis is not practical for a large-scale
component-based system. One of the benefits of distributed diagnosis is that this
approach does not require the computation of a global model. Also, it is feasible
for distributed diagnosis to be extended to incremental diagnosis, which provides
on-line diagnosis and assists supervision. However, distributed diagnosis does not
completely solve the problem of keeping track of all belief states, the size of which is
exponential to the number of states.

2.1.5 Incremental Diagnosis

Grastien and Anbulagan [2009] proposed incremental diagnosis with the aim to up-
date diagnosis when new observations arrive. Incremental diagnosis is an open re-
search problem of on-line diagnosis. The incremental approach updates diagnostic
results regularly. Grastien and Anbulagan [2009] proposed preferred diagnosis to deal
with the situation when it is not possible to retrieve precisely what behaviour gener-
ated these observations. For systems that are not diagnosable, the sequence of faults
that actually occurred on the system cannot always be precisely deduced from the
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sequence of observations. Hence, several diagnoses can be returned to explain the
observations. Grastien and Anbulagan [2009] defined the notion of preference such
that the expected output of a diagnoser is the preferred diagnosis. The diagnosis
preference is an ordering relation � on a set of diagnoses. ∆ � ∆′ denotes that diag-
nosis ∆ is preferred to the diagnosis ∆′. Accordingly, p � p′ denotes that a path p is
preferred to path p′, which means that the diagnosis of p is preferred to the diagnosis
of p′. A Non-Exhaustive Diagnosis Engine (NEDE) is defined as a diagnostic engine
such that a diagnoser only returns the preferred diagnosis, and this engine should re-
turn an explanation of diagnosis. Therefore, preferred diagnosis saves computation,
which avoids exponential numbers of all diagnoses.

Grastien and Anbulagan [2009] further argued that NEDE would be sufficient for
a diagnoser since it only needs to consider the preferred diagnoses. This is because it
is possible to turn an exhaustive diagnoser that returns explanations into an NEDE by
determining the preferred diagnosis and extracting one of its explanations. Efficient
computation is feasible if the search space is pruned as soon as the initial diagnosis
is computed. For instance, SAT-based diagnoser is an instance of NEDE.

Incremental diagnosis means given a DES A, a sequence of observation obsj =

[o1, o2, o3, . . . , oj] and a continuation obsj′ = [o1, o2, o3, . . . , oj′ ] of obsj such that j′ ≥
j, the incremental diagnosis is the computation of the diagnosis of obsj′ using the
diagnosis of obsj. Grastien and Anbulagan [2009] proposed Algorithm 3 to compute
a path and the associated diagnosis.

Algorithm 3: Algorithm of Incremental Diagnosis with a NEDE
Input: prediction window µ, NEDE Ω, observation flow OF
Output: pu

1 S0 := I
2 obs := []
3 p := ∅
4 pu := ∅
5 while OF generates new_obs do
6 obs := obs⊕ new_obs
7 p′ := Ω(obs, S0)
8 if p′ not found then
9 p′ := Ω(obs, Q)

10 pu := p⊕ p′

11 p := p⊕ remove_last (p′, µ)
12 obs := keep_last (obs, µ)
13 S0 := { last_state (p)}
14 return pu
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A prediction window µ indicates how many observations are required before a
diagnosis is established. The input of NEDE, denoted as Ω, consists of a set of initial
states and a sequence of observations. The output is a preferred explanation. An
observation flow OF provides an ordered sequence of observations. This flow does
not return all observations at once. Starting from Line 1, the established explanation
of observations is stored in p and its final state is stored in S0. The path pu represents
the current explanation of all observations, which can be returned any time if the
procedure is on-line. obs contains a list of observations that are not yet explained in
p and its size is bounded by µ. Whenever new observations, denoted as new_obs,
become available, new observations are added to the observations not explained and
a path p′ is computed from a state of S0. Both paths pu and p are updated, and the
last µ observations are kept. Finally, the set of states S0 is updated.

This algorithm allows a diagnoser to backtrack until the µ previous observations.
The backtracking is limited to this position to avoid complexity explosion. However,
this algorithm may return an incorrect diagnosis if the value µ is set poorly, and the
algorithm may return a diagnosis that is not the preferred one. One way to overcome
this problem is to limit the backtracking until a bounded number of observations, and
return a failure message. The alternative approach is to run the diagnostic algorithm
from any system state Q in Line 9, which is called diagnosis reset. Diagnosis reset
means that the state at the beginning of a prediction window abruptly jumps for no
sensible reason. If the supervision system is able to recover the system state, the
diagnosis will be incorrect around the diagnosis reset, but should be correct before
and after. Finally, the incremental algorithm should warn a human agent of any
incorrectness.

In summary, incremental diagnosis does not compute all diagnoses but only the
preferred one. The benefit of the incremental approach is to simplify the problem as
the number of possible diagnoses and their explanations is usually exponential to the
number of system states. Furthermore, a human agent is usually more interested in
the preferred diagnosis. Therefore, incremental diagnosis is advantageous when not
all observations are known in the first place. On the other hand, the NEDE algorithm
cannot ensure the completeness or consistency of diagnosis. Suggestions for future
work include bounded preferred diagnoses, reusing conclusions from previous com-
putations, and decomposition into sub-systems for diagnosis.

2.1.6 Diagnosis using Supervision Pattern

Jéron et al. [2006] proposed supervision pattern for DES diagnosis. A supervision
pattern is a model that is general enough to capture past occurrences of particular
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trajectories of a DES model.

N F

Σ \ { f }

f

Σ

Figure 2.5: Example 1 of supervision pattern for one fault f

For example, Fig. 2.5 shows a supervision pattern to diagnose the fault f . At the
language level, a trajectory s ∈ Σ∗ is faulty if s ∈ Σ∗. f .Σ∗. The supervision pattern
Ω f exactly recognises the language of Σ∗. f .Σ∗.

N, N

F1, N

N, F2

F1, F2

Σ \ { f1, f2}

f1

f2

Σ \ { f2}

Σ \ { f1}

f2

f1

Σ

Figure 2.6: Example 2 of supervision pattern for two faults f1 and f2

Fig. 2.6 shows a supervision pattern to diagnose two faults, i.e. f1 and f2.
Diagnosing the occurrence of these two faults in an trajectory means deciding the
membership of this trajectory in Σ∗. f1.Σ∗ ∩ Σ∗. f2.Σ∗ = LF1(Ω f1) ∩ LF2(Ω f2) where
Ω fi , i ∈ {1, 2} are isomorphic to the supervision pattern Ω f as described in the ex-
ample of Fig. 2.5. Finally, the supervision pattern is the product Ω f1 ×Ω f2 , which
accepts language in F1 × F2, i.e.

LF1×F2(Ω f1 ×Ω f2) = LF1(Ω f1) ∩ LF2(Ω f2).

In summary, supervision patterns allow to generalise the properties to be diagnosed,
and render them independently, which does not require the system description.
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2.1.7 State-based Diagnosis

Hashtrudi Zad et al. [2003] proposed state-based approach for on-line DES diagnosis
where system states are partitioned according to the system condition, and a diag-
noser uses measurements, e.g. sensor readings, to determine the nominal and/or
faulty partition that the state belonged to, i.e. the system condition, when the last
measurement was received. The time complexity of state-based diagnosis proposed
by Hashtrudi Zad et al. [2003] is polynomial after model reduction scheme, which re-
duces the cardinality of the system states. In contrast to event-based diagnosis, state-
based diagnosis does not assume or require simultaneous initialisation of the system
and the diagnoser; also, no knowledge about the system state or condition prior to
the diagnosis initiation is required [Hashtrudi Zad et al., 2003], which allows to di-
agnose faults that may have occurred before diagnosis starts. Finally, an event-based
diagnosis problem can be formally transformed to state-based diagnosis [Hashtrudi
Zad et al., 2003].

2.2 Existing Work on DES Diagnosability

After reviewing the existing work of on-line diagnosis, this section reviews the exist-
ing work on DES diagnosability. Diagnosability of an observable system holds when
using the model, a fault can be diagnosed after it occurs Sampath et al. [1995]. This
property is desirable when designing a diagnostic system because it should be able
to determine that a fault has occurred whenever it did. Furthermore, diagnosability
is helpful to analyse a system as there is often a delay between the occurrence of a
fault and the time when it is diagnosed. If such a delay is always finite, then diag-
nosability is guaranteed. This section reviews the definition of DES diagnosability,
and the existing methods to test the diagnosability of a DES model.

2.2.1 Definition of DES Diagnosability

Sampath et al. [1995] formally defined the diagnosability of a DES model. Firstly,
they defined that diagnosability of a language L holds if it is possible to detect fault
occurrences using observed events within a finite delay. A prefix-closed and live
language L is diagnosable w.r.t. the projection P, and w.r.t. the partition Π f on the
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faulty events Σ f if the following equation holds.

(∀i ∈ Π f )(∃ni ∈ N)[∀s ∈ Ψ(Σ fi)](∀t ∈ L/s)[||t|| ≥ ni ⇒ D] (2.4)

where D = ω ∈ P−1
L [P(st)]⇒ Σ fi ∈ ω; ||t|| represents the length of a trace; (2.5)

and L/s = {t ∈ Σ∗|st ∈ L} is the post-language of L. (2.6)

Erasing unobservable events from a trace, and the result is: (2.7)

P−1
L (y) = {s ∈ L|P(s) = y}; (2.8)

A trace whose final event belongs to Σ f i: Ψ(Σ fi) = {sσf ∈ L|σf ∈ Σ fi}. (2.9)

In their definition of diagnosability, s is any trace in a system that ends with a
faulty event from the set Σ fi . t is a sufficiently long continuation of s. Condition
D requires that every trace in a language that produces the same observable events
as the trace st should contain a faulty event from the set Σ fi [Sampath et al., 1995].
Therefore, fault occurrences can be detected within a finite delay, i.e. at most ni

transitions after s.

2.2.2 Verification of DES Diagnosability in Polynomial Time

The original diagnosability verification algorithm proposed by Sampath et al. [1995]
relies on the construction of a diagnoser. The computational complexity of such
a construction requires exponential time w.r.t. the number of system states [Jiang
et al., 2001; Yoo and Lafortune, 2002]. Jiang et al. [2001] proposed diagnosability
testing of DES that avoids the construction of a diagnoser for the system, and runs
in polynomial time. This approach is known as the twin plant method. It uses a
model and a copy of the model, called the bad twin and the good twin. A bad twin
is allowed to contain faulty behaviours while a good twin can only include nominal
behaviours that will produce the same observations as faulty behaviours. Then, the
twins are synchronised to generate a twin plant. A path is defined as ambiguous
if the path contains a fault, and the path is valid in both bad twin and good twin.
Finally, a model is diagnosable if there is no loop on any ambiguous path. Otherwise,
it is not diagnosable. This is because if there is an ambiguous path that is infinite,
then it will not be possible to distinguish between the nominal and faulty behaviours.
In other words, a system is diagnosable if there is no two infinite paths in the model
that consists of the same observations such that one contains a fault while the other
one does not.

Grastien [2009] implemented the twin plant method. A DES model is defined as
〈Q, E, T, I〉 where

• Q is a set of states;
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• E is a set of events;

• T ⊆ Q× E×Q is a set of transitions; and,

• I ⊆ Q is a set of initial states.

The set Q of states is partitioned in two subsets QN of nominal states, and QF of
faulty states. E is partitioned in two subsets Eobs of observable events, and Eu of
unobservable events.
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Figure 2.7: A DES model to build a twin plant

Fig. 2.7 shows a DES model that is used to build to a twin plant in this sec-
tion [Brandán-Briones et al., 2008; Grastien, 2009]. a, b, c are observable events while
d, e, f are unobservable events. States 5, 7, 8, 3, 6 are faulty while the other states are
nominal.

Grastien [2009] formally defined the twin plant of the given DES model as a finite
state machine 〈Q, E , T , I〉 such that

• Q = QN ×Q

• E = Eobs ∪ ((E\Eobs)× {1, 2})

• T = {〈q, e, q′〉|q = 〈q1, q2〉 ∧ q′ = 〈q′1, q′2〉 ∧
((e ∈ Eobs ∧ 〈q1, e, q′1〉 ∈ T ∧ 〈q2, e, q′2〉 ∈ T) ∨ (e ∈ (E× {i}) ∧ 〈qi, e, q′i〉 ∈ T ∧
(qj = q′j) ∧ (j 6= i)));

• I = I × I

Fig. 2.8 shows the twin plant for the DES model in Fig. 2.7. Shaded states are
ambiguous because they are combinations of nominal and faulty states. There is at

least one ambiguous path that contains a loop, e.g. 00′ a−→ 22′
f2−→ 25′ b−→ 47′

e2−→ 48′
d1−→
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Figure 2.8: Twin plant for the DES model in Fig. 2.7

98′ a−→ 98′ . . . . Consequently, this model is not diagnosable since nominal and faulty
behaviours cannot always be distinguished.

Yoo and Lafortune [2002] proposed the verifier method to test the diagnosability
of a DES model that runs in polynomial time. Their approach constructs a non-
deterministic automaton, called a verifier. Given an automaton M = 〈Q, Σ, T, I, L〉,
and fault type Fi, Yoo and Lafortune [2002] defined verifier as a non-deterministic
automaton, denoted as VFi . They also defined a set of labels for the faulty event of
type Fi such that Labeli = {N, Fi}. VFi is defined as Fi-confused if there is at least
one state in the verifier whose meaning is that the nominal and faulty behaviours
cannot be distinguished, and there is a cycle on that state. Yoo and Lafortune [2002]
proposed a theorem that a system is diagnosable if the verifier for the system is never
Fi-confused.

2.2.3 Symbolic Model Checking for Diagnosability Testing

Model checking is a formal verification technique [Clarke et al., 1999]. Model check-
ing is applied to the design of industrial digital systems. It verifies whether the
behaviours of a system satisfy a given property. A system is presented in Kripke
structure while properties are expressed in temporal logic. Model checking algo-
rithms are based on the exhaustive exploration of the Kripke structure. If a property
is violated, it will produce a counterexample. This technique is completely automatic.
Symbolic model checking is based on the manipulation of sets of states described by
Boolean formulae. Efficient engines, such as BDD and SAT solvers, can be used to
explore of the search space.
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Cimatti et al. [2003] studied diagnosability testing using symbolic model check-
ing. They proposed how to verify at design time whether the diagnosis system is able
to infer the required information at run time. Their work showed how to reduce di-
agnosability testing to a model checking problem. The finite state machine modelling
the dynamic system is replicated to construct pairs of scenarios. The diagnosability
conditions are formally expressed in temporal logic so that the diagnosability testing
is to solve a model checking problem.

Grastien [2009] also studied symbolic testing of diagnosability, and proposed two
algorithms implemented using symbolic tools, namely the forward algorithm and the
backward algorithm. Grastien [2009] explained how to combine distributed diagnosis
with symbolic diagnosis, and examined the minimal set of sensors to ensure the
diagnosability. Algorithm 4 is the forward algorithm to test the diagnosability of a
DES model. T represents the set of transitions on the twin plant. NextT (X) is the set
of states reached from X by one transition of T . Wk is the set of pairs 〈q, q′〉(q′ ∈ QN)

reachable in k or less transitions. Ri is the set of pairs 〈q, q′〉(q′ ∈ QF) reachable in
(i + 1) or less transitions from a pair of states of W∞. Sj is the set of pairs reachable
from (j + 1) or more transitions from a pair of states of W∞. In summary, a twin
plant, when implemented in the symbolic approach, is able to test the diagnosability
of large DESs because the symbolic method avoids enumeration.

2.2.4 Diagnosability Testing using SAT

Rintanen and Grastien [2007] encoded the diagnosability testing as a SAT problem,
and they used SAT solvers to test diagnosability. Rintanen and Grastien [2007] ap-
plied the twin plant method, and introduced definitions using SAT. States are pairs
(s, ŝ) of states of the original transition system. Events represent unobservable events
in one or both of the components of these state pairs, or observable events that are
shared by both components. If there is an event sequence from (s0, ŝ0) to some (s, ŝ),
which includes a faulty event in the first component but not in the second, and there
is a non-empty event sequence back to (s, ŝ) with no faults in the second component,
then a pair of infinite event sequences witnessing non-diagnosability exists.

Rintanen and Grastien [2007] then combined the twin plant method and the for-
mulation as a SAT problem in the classical propositional logic. The satisfiable val-
uations of state sequences are: [(s0, . . . , sn), (ŝ0, . . . , ŝn)] where s0 = ŝ0. Also, for
i ∈ {0, 1, 2, . . . , n− 1}, sn = si and ŝn = ŝi. The corresponding event sequences are
[(E0, . . . , En−1), (Ê0, . . . , Ên−1)] such that

π(E0, . . . , En−1) = π(Ê0, . . . , Ên−1).
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Algorithm 4: Forward algorithm to test diagnosability

1 k := 0
2 Wk := I × I
3 repeat
4 k := k + 1
5 Wk :=Wk−1 ∪ ((QN ×QN) ∩ NextT (Wk−1))

6 untilWk :=Wk−1;
7 i := 0
8 Ri := (QN ×QF) ∩ NextT (Wk)
9 repeat

10 i := i + 1
11 Ri := Ri−1 ∪ NextT (Ri−1)

12 until Ri = Ri−1;
13 j := 0
14 Sj := Ri

15 repeat
16 j := j + 1
17 Sj := NextT (Sj−1)

18 until Sj := Sj−1;
19 if Sj = ∅ then
20 return diagnosable
21 else
22 return not diagnosable

The formula for a given event sequence is satisfiable if and only if it is not possible
to detect the occurrence of a faulty event. Following diagnosis using SAT as in
Section 2.1.3, the diagnosability test is written as:

ΦT
m,n = T0∧T (0, 1)∧ · · · ∧ T (n− 1, n)∧

n−1∨
t=0

∨
e∈Σ f

∨
o∈δ(e)

et
o ∧

∧
a∈A

((an ↔ am)∧ (ân ↔ âm))

(2.10)

In summary, the twin plant method proposed by Jiang et al. [2001] has relied on
explicit enumeration of the states and are only feasible for a small number of states.
Although SAT has the advantage to solve diagnosability problems, it is still subject
to SAT-based techniques that the presence of short paths in transition graphs can
be easily detected, but the absence of paths is often much more difficult to detect
without length restrictions.
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2.3 Sensor Minimisation and Dynamic Observers for Timed
Systems

In the case of static observers, a set of observable events do not change during the
execution of a system. This in turn determines the set of unobservable events. Thus,
observing an event usually requires some detection mechanism, which brings the
design questions of which sensors to use, how many of them, and where to place
them. They are often difficult to answer, especially without knowing what these
sensors are to be used for.

However, using a fixed set of observable events, observing events is costly in
terms of time and energy. Firstly, it consumes time to read and process the infor-
mation provided by the sensors. Secondly, it requires power for the operation of the
sensors and computation of the data from the sensors. Consequently, it is essential
to ensure that the sensors in use are necessary, and provide useful information. It
is also important to discard any information given by a sensor that is not needed.
In the case of a fixed set of observable events, not all sensors always provide useful
information. Also, energy for sensor operation and data computation is sometimes
spent for nothing.

The sensor minimisation problem focuses on dynamic observers for fault diagno-
sis of timed systems [Brandán-Briones et al., 2008; Cassez, 2010]. In particular, Cassez
[2010] studied dynamic observers for a timed automaton. The sensor minimisation
problem does not consider the problems of sensor placement, or choosing between
different types of sensors. It is reasonable to follow the DES setting where the be-
haviours of a plant are known and a model is available as a finite state automaton
over Σ ∪ {ε, f } where Σ is a set of observable events of a DES, and ε is a single un-
observable event to represent invisible actions. f is a special unobservable event that
corresponds to a fault. Finally, the aim is to test diagnosability in polynomial time
for a given plant and a fixed set of observable events.

2.3.1 Definitions and Examples

This section reviews the definitions of Cassez [2010] for timed word, un-timed word,
clock valuation and timed automaton. Firstly, a timed word, denoted as w, is one or
more events with time descriptions. For example, 0.4 a 1.0 b 2.7 c is a timed word.
The numbers are the time elapsed between two events. Secondly, Unt(w) repre-
sents the un-timed version of w obtained by erasing all durations. For example,
Unt(0.4 a 1.0 b 2.7 c) = abc. Thirdly, clock valuation means adding a time constraint to
each state and transition in an automaton. Finally, a timed automaton (TA) is a finite
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automaton extended with real-valued clocks to specify timing constraints between
occurrences of events. A timed automaton TA is a tuple (L, l0, X, ΣT , E, Inv, F, R)
where

• L is a finite set of locations;

• l0 is the initial location;

• X is a finite set of clocks;

• ΣT is a finite set of actions;

• E ⊆ L× C(X)× ΣT × 2X × L is a finite set of transitions where C(X) is a set of
conjunctions of constraints of the form x on c with c ∈ Z and on∈ {≤,<,=,>
,≥}; for (l, g, a, r, l′) ∈ E,

– g is a guard;

– a is an action;

– r is a reset value;

• Inv ⊆ C(X)L associates an invariant with each location;

• F ⊆ L is the final set of locations;

• R ⊆ L is the repeated set of locations.

Figure 2.9: A timed automaton TA

Fig. 2.9 is an example of timed automaton. [x ≤ 3] is an invariant for the state l1.
The transition from l1 to l2 has a guard x ≤ 2 and an action a. Although reset is not
shown in this example, the clock can be re-initialised to a certain value.
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A state of A is a pair (l, v) ∈ L× RX
≥0. R≥0 is the set of positive rational numbers.

A run r of A from (l0, v0) is a finite or infinite sequence of alternating delay δ and
discrete move a, i.e.

r = (l0, v0)
δ0−→ (l0, v0 + δ0)

a0−→ (l1, v1) . . .
an−1−−→ (ln, vn)

δn−→ (ln, vn + δn) . . . (2.11)

such that for every i ≥ 0 : vi + δ |= Inv(li) for 0 ≤ δ ≤ δi (2.12)

there is some transition (li, gi, ai, ri, li+1) ∈ E (2.13)

such that vi + δi |= gi and vi+1 = (vi + δi)[ri] (2.14)

A finite timed word w is accepted by TA if the trace of a run of TA ends in a final
location. A timed automaton TA is deterministic if there is no ε labelled transition in
TA, and when the same action may occur, the guard must be different. ε means no
event is observed, but a new state is entered.

2.3.2 Sensor Minimisation

The sensor minimisation problem has three aspects. First, it requires to decide
whether there is a subset of observable events such that faults can be detected by
observing only events in Σo. It also needs to find an optimally minimum Σo.

Second, the sensor minimisation problem allows a diagnoser to raise a fault not
necessarily immediately after it occurs, but possibly some time later, as long as this
time is bounded by some k ∈ N. Time is modelled by counting the moves that a
plant makes including observable and unobservable ones.

Third, it needs to address the masking issue. There are cases where two events
are observable but not distinguishable. For example, a and b are observable; when a
diagnoser knows that a or b occurred, it does not know which of the two. This is not
the same as considering a and b to be unobservable, since in that case a diagnoser
would not be able to detect the occurrence. Distinguishability of events is captured
by the notion of a mask. A mask (M, n) over Σ is a total and surjective function:

M : Σ∗ → {1, 2, 3, . . . , n} ∪ {ε}.
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Then, morphism is defined as:

M∗ : TW∗(Σ)→ TW∗({1, 2, 3, . . . , n})

where TW∗(Σ) is the set of finite timed words over Σ.

For example,

if Σ = {a, b, c, d}, n = 2, M(a) = M(b) = 1, M(c) = 2, M(d) = ε,

then M∗(a.b.c.b.d) = 1.1.2.1 = M∗(a.a.c.a).

2.3.3 Dynamic Observers

A dynamic observer modifies the set of events that it wishes to observe during a
system execution.
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Figure 2.10: DES model B

Fig. 2.10 show the DES model B. Suppose the target is to detect faults in B. A
static diagnoser that observes Σ = {a, b} works. However, no proper subset of Σ
can be used to diagnose the faults in B. Thus, the minimum cardinality of the set of
observable events for diagnosing B is 2., i.e. a static observer will have to monitor
two events during the execution of this DES model. If a mask is used, the minimum
cardinality for a mask is 2 as well. Therefore, an observer will have to be receptive to
at least two inputs at each point in time to detect a fault in B.

In contrast, it is more efficient to use a dynamic observer, which only switches
on sensors when needed. In the DES model B, a diagnoser only switches on the a-
sensor at the beginning; once a occurs, the a-sensor is switched off, and the b-sensor
is switched on. Compared to the static diagnoser, a dynamic observer uses half as
much energy. In general, switching sensors on and off leads to energy saving.
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2.3.4 Complexity of Sensor Minimisation and Dynamic Observers

Cassez [2010] showed that the complexity of minimising the number of observable
events is NP-complete. Membership in NP can be derived by reducing these prob-
lems to the standard diagnosability problem, once a candidate minimal solution is
chosen non-deterministically. Additionally, Cassez [2010] defined dynamic observer
synthesis problem, and showed the reduction of computing a dynamic observer for
a given DES model to a game problem. Cassez et al. [2007] explained how to reduce
dynamic diagnosability to a Büchi Game Problem, which is a trace-based winning
strategy with partial observations. Therefore, game theory is an approach to solve
the problem of partial observations.

2.4 Summary

Section 2.1 reviews the existing work of on-line diagnosis of DES. Section 2.2 reviews
the definition of an important property of a DES model, i.e. diagnosability, and
examines the established approaches to test the diagnosability of a DES model. Sec-
tion 2.3 reviews the existing work on the sensor minimisation problem and dynamic
observers for fault diagnosis on a timed system. Sensor minimisation problem is
to minimise observers in operation using a fixed set of observable events. Dynamic
observers aim to switch sensors on or off, in order to dynamically change the set
of events to observe. The complexity of both problems are analysed and proved by
Cassez [2010].

Faults can be defined at the event level, or the state level. Traditionally faults are
defined as specific events. Jéron et al. [2006] defined faults using event patterns. Both
formalisms are equally expressive, and this work considers faults at the state level
for simplicity.

The on-line DES diagnosis problem was initially studied by Sampath et al. [1995].
Given a flow of observable events generated by a system, the problem consists in
determining whether the DES is operating normally or not, based on the behavioural
model of the system. This work uses the term belief state of the system to describe
this computation. A belief state represents the set of global states that the system is
possibly in after the given observations. The main challenge of on-line diagnosis is to
deal with the complexity of a diagnostic algorithm that has to monitor the observable
flow on the fly, and generate a succession of belief states that are consistent with the
flow. In fact, the difficulty is that the number of the belief states has been proved
to be exponential w.r.t. the number of system states [Rintanen, 2007]. The existing
diagnostic algorithms attempt to compute at any time a belief state that is consistent
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with the observable flow from the time when the system starts operating to the
current time. The main drawback of such a conservative strategy is the inability
to follow the observable flow for a large system due to the exponential size of the
generated belief states. Also, the temporal complexity to handle all of the belief
states remains a challenge.

Because diagnosis of DES is a hard problem, the use of faster diagnostic algo-
rithms is inevitable. Such algorithms include the IWAs [Su and Grastien, 2013],
which do not carry all of the historical information about the system execution,
and chronicle-recognition diagnostic algorithms [Dousson, 1996], which uses pattern
recognition techniques for diagnosis. However, these algorithms may be imprecise
to diagnose a diagnosable system than using an exact model-based diagnostic algo-
rithm, e.g. Sampath et al. diagnosis [Sampath et al., 1995]. Faults are very harmful
to a system and expensive to recover from if not correctly diagnosed. Hence, it is
essential to examine how to measure the quality of using a potentially imprecise
diagnostic algorithm w.r.t. a diagnosable DES model.

In the literature, diagnosability of DES is an important property to measure the
capability of a diagnostic system to identify faults. Diagnosability is well-known cri-
terion of DES, which was initially proposed by Sampath et al. [1995]. Diagnosability
of DES holds if using the model, a fault can always be diagnosed after it occurs.
Furthermore, diagnosability testing has been a well-studied problem. Jiang et al.
[2001] showed that proving non-diagnosability amounts to finding a critical witness,
which is a pair of infinite executions on the model that are indistinguishable, i.e. they
produce the same observations, one of which is faulty, and the other one is nomi-
nal [Jiang et al., 2001]. Thus, diagnosability is proved by showing that there is no
such witness. This approach is known as the twin plant method. [Yoo and Lafor-
tune, 2002] also proposed their approach to test the diagnosability by constructing a
verifier.

Chapter 3 of this work extends the diagnosability of a DES model, and studies
the precision of an imprecise diagnostic algorithms w.r.t. a DES model. A diagnostic
algorithm is defined as precise w.r.t. a DES model if it always diagnoses the fault after
it occurs. Chapter 3 proposes a novel approach to verify the precision of a diagnostic
algorithm w.r.t. a DES model by constructing a simulation. Precision can be verified
using known methods, such as the twin plant method by Jiang et al. [2001], on the
condition that a simulation is built, which is a modified model that simulates how
a diagnostic algorithm runs on a given DES model. The precision holds iff there
is no critical witness in the synchronisation of the DES model with the simulation.
This work also illustrates how to construct the simulation for chronicle-recognition
diagnosis in Chapter 3, and for IWAs in Chapter 4.
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As one is able to verify the precision of a diagnostic algorithm w.r.t. a DES
model by building a simulation, this work proposes a new class of diagnostic al-
gorithms called Independent-Window Algorithms (IWAs) in Chapter 4. IWAs are
window-based diagnostic algorithms, which slice a sequence of observations into
time windows, and diagnose them independently. This approach differs from the
conservative strategy by proposing diagnostic algorithms that are only applied on
the very last events of the observable flow, and forget about the past. IWAs slice
an observation sequence into time windows so that each time windows are diag-
nosed independently. IWAs diagnose a certain number of observations for one time
window, and move to another time window without keeping any information.

On the other hand, IWAs may cause imprecise diagnosis. Since IWAs diagnose
time windows independently, imprecision happens when both current and past ob-
servations are necessary to understand the system behaviour. Chapter 4 demon-
strates the construction of a simulation in order to verify the precision an IWA w.r.t.
a DES model.

This work further proposes Time-Window Algorithms (TWAs) in Chapter 5. TWAs
are inspired by IWAs. Chapter 5 formally presents two TWAs, namely, Al5 and Al6.
TWAs remember a certain knowledge between the time windows so that the pre-
cision of diagnosis is preserved. The strategy of TWAs is compromising between
the two extreme strategies of exact and imprecise diagnosis, e.g. a compromise be-
tween Sampath et al. [1995] and IWAs [Su and Grastien, 2013]. Such a compromise is
achieved by looking for the minimum piece of information to remember from the past,
called abstracted belief state, so that a window-based algorithm will certainly ensure
the same precision as using an exact diagnostic algorithm. Chapter 5 also demon-
strates how to verify the precision of each TWA w.r.t. a DES model by constructing a
simulation.

Window-based diagnosis, i.e. IWAs and TWAs, are inspired by the sensor min-
imisation problem studied by Cassez [2010]. The intuition of the sensor minimisation
problem is that the information from the sensors is not always useful. This work
studies window-based diagnosis such that a diagnoser does not have to maintain all
the information it has about a system. In particular, Al6 is inspired by the preference
of diagnosis as defined by Grastien and Anbulagan [2009], and involves refinement
of diagnostic results of the time windows.
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Chapter 3

Verifying the Precision of a
Diagnostic Algorithm for DES

Model-based diagnosis of DES aims at deciding whether a system is running nor-
mally or is experiencing faulty behaviours. A diagnoser uses a DES model to search
for system executions that are consistent with the observations. This work concen-
trates on finite state machines as the representation for a DES model. Section 2.1 of
Chapter 2 examines that many previous works address the problem of DES diagnosis
by the use of a diagnoser automaton [Sampath et al., 1995; Rozé and Cordier, 2002a],
automata unfoldings [Baroni et al., 1999] that can also be distributed as in Pencolé
and Cordier [2005]; Su and Wonham [2005], or encoded with Binary Decision Dia-
grams (BDD) as in Schumann et al. [2010], and finally by the use of a satisfiability
(SAT) solver as in Grastien et al. [2007].

This work uses the term belief state to describe a set of states that a system is
possibly in at a given time. The research challenge is to deal with the complexity of a
diagnostic algorithm that has to monitor the observable flow on the fly, and generate
a succession of belief states consistent with the flow. However, the difficulty is to
maintain the belief state for the system. In fact, the size of a belief state in a Sampath
et al. diagnoser has been proved to be exponential w.r.t. the number of system states
[Rintanen, 2007].

Any of the precited work, except diagnosis using SAT, proposes diagnostic al-
gorithms that attempt to compute at any time a belief state that is consistent with
the observable flow from the time when the system starts operating to the current
time. The main drawback of such a conservative strategy is the inability to follow the
observable flow for a large system due to the exponential size of the generated belief
states, and therefore the temporal complexity to handle them. Although diagnosis
using SAT computes one trace in the system for an observation sequence, the com-
plexity of a SAT problem is exponential to the number of propositional variables,
which is linear to the number of state variables [Grastien et al., 2007].

37
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Because diagnosis of DES is a hard problem, the use of faster diagnostic algo-
rithms is often inevitable. Such algorithms include the IWAs [Su and Grastien, 2013],
which do not carry all of the historical information about the system execution, and
the chronicle-recognition diagnostic algorithm [Dousson, 1996], which uses pattern
recognition techniques for diagnosis. Notice that, as opposed to the original work
on chronicles by Dousson [1996], this work defines the time constraints in terms of
the number of observations between two observed events, rather than the actual time
between the event occurrences.

However, those algorithms may be imprecise to diagnose a diagnosable system
than using an exact model-based diagnostic algorithm, e.g. Sampath et al. diagnosis
[Sampath et al., 1995]. Faults are very harmful to a system and expensive to recover
from if not correctly identified. Therefore, it is essential to measure the quality of
using a potentially imprecise diagnostic algorithm w.r.t. a diagnosable DES model.
This work focuses on a well-known criterion of diagnosability. Diagnosability is the
property of an observable system, which states that, using the diagnosis model, a
fault can be diagnosed after it occurs [Sampath et al., 1995]. Therefore, diagnosability
is a property to measure the quality of diagnosis and the capacity of a diagnostic
system to identify faults.

Verifying the diagnosability of DES has been a well-studied problem. Section 2.2
of Chapter 2 examines the two methods to verify the diagnosability of DES in poly-
nomial time. Jiang et al. [2001] showed that proving non-diagnosability amounts
to finding a critical witness, which is a pair of infinite executions on the diagnosis
model that are indistinguishable, i.e. they produce the same observations, one of
which is faulty, and the other one is nominal [Jiang et al., 2001]. Thus, diagnosability
is proved by showing that there is no such witness. This approach is known as the
twin plant method. Also, Yoo and Lafortune [2002] proposed the verifier method to
verify the diagnosability of DES in polynomial time.

This chapter is inspired by DES diagnosability, and defines the precision of a di-
agnostic algorithm w.r.t. a DES diagnosis model. A diagnostic algorithm is precise if
the algorithm will diagnose the fault after it occurs. Precision can be verified using
known methods, such as the twin plant method by Jiang et al. [2001], on the condi-
tion that a simulation is built, i.e. a modified model that simulates how a diagnostic
algorithm works on a given DES diagnosis model. This chapter proposes a method
for deciding whether an imprecise algorithm preserves the precision of diagnosing
a diagnosable DES model by constructing a simulation. A simulation is a finite
state machine that represents how a diagnostic algorithm works for a DES diagnosis
model. Precision is preserved iff no critical witness exists in the synchronisation of
the system and the simulation. Finally, this work illustrates the construction of the
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simulation for chronicle-recognition diagnosis in this chapter, and the simulation for
IWAs in Chapter 4.

This chapter is organised as follows. Section 3.1 provides the definitions of DES
model, exact diagnosis, and diagnosability of DES. Section 3.2 defines the generic
notion of a diagnostic algorithm and the question of proving that an algorithm is
precise. Section 3.3 reviews chronicle-recognition diagnosis, and illustrates its simu-
lation. Section 3.4 summarises the impact of the simulation method, and concludes
this chapter.

3.1 Diagnosis and Diagnosability of DES

This section provides the definitions for diagnosis and diagnosability of DES. It also
reviews how to verify the diagnosability of a DES diagnosis model.

3.1.1 Definition for Diagnosis of DES

This work is based on the model-based diagnosis framework of DES [Cassandras
and Lafortune, 2008]. In general, a state of a DES is a description for the system
behaviour at an instant in time. A state in a DES may be changed by an occurrence
of a discrete event depending on the DES specification. This work uses an automaton
as a representation for DES, which is defined as follows.

Definition 1 (Automaton) Let L = {N, F} be a set that represents the two modes of
nominal (N), or faulty (F). An automaton is a tuple M = 〈Q, Σ, T, I, L〉 where

• Q is a finite set of states;

• Σ is a finite set of events;

• T ⊆ Q× Σ×Q is a set of transitions;

• I ⊆ Q is the set of initial states;

• L : Q→ L is a function that assigns to each state a mode that is either N, or F.

The diagnosis model has a set of observable events Σo ⊆ Σ, and a set of unobservable
events Σ \ Σo.

L−1 : L→ 2Q denotes the reverse function of L.

Fig. 3.1 depicts a DES diagnosis model M1, which is a visualisation for the states,
the initial state, the transitions, the events, and the results of the mode label function
L: L(H) = L(F) = L(G) = F; L(B) = L(A) = L(C) = L(D) = N. In other words,
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Figure 3.1: A simple DES model M1 where a, b, c, x, y are observable events, and u, v
are unobservable events

states H, F, G are faulty, and the other states are nominal. State A is the unique initial
state. Finally, a, b, c, x, y are observable events, and u, v are unobservable events.

This work makes the following assumptions on the DES diagnosis models that
will be studied.

Assumption 1 (No Cycle of Unobservable Events) A DES studied in this work does
not contain any cycle of unobservable events.

Assumption 2 (Live System) A DES studied in this work is live, i.e. a DES never reaches
a point where no transition can take place.

Assumption 3 (Permanent Fault) Once a system is faulty, it remains faulty, i.e.

(
〈q, e, q′〉 ∈ T ∧ L(q) = F

)
⇒ L(q′) = F.

Because the diagnosis of a fault relies on the observations of a system, Assump-
tion 1 enforces that a system does not generate a sequence of unobservable events
that is infinitely long. Furthermore, Assumption 2 removes the limitation on the
length of an observation sequence since an observable event is always possible take
place in a system.

Faults can be defined at the event level, or the state level. Traditionally faults
are defined as specific events. Jéron et al. [2006] defined faults using event patterns.
For example, based on the café and library system model described in Fig. 2.1 of
Chapter 2, Fig. 3.2 shows the event-based diagnosis model, and Fig. 3.3 shows the
state-based diagnosis model. Both formalisms are equally expressive. For simplicity,
this work considers faults at the state level. The implication of using faulty states is
that a fault is permanent after its occurrence, as stated in Assumption 3.

Definition 2 (Trace) A trace is a sequence, denoted as q0
e1−→ q1 . . . qk−1

ek−→ qk, such that
∀i ∈ [1, k], 〈qi−1, ei, qi〉 ∈ T. σ = e1 . . . ek is a sequence of events. Any system behaviour is
represented by a trace such that q0 ∈ I.
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Figure 3.2: Event-based diagnosis model for the café and library model described in
Fig. 2.1 of Chapter 2
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Figure 3.3: State-based diagnosis model for the café and library model described in
Fig. 2.1 of Chapter 2

Definition 3 (Observation) The observation obs(σ) of σ ∈ Σ∗ is defined as the restriction
of σ to the set of observable events, i.e.

obs(e1, e2, e3, . . . , ek) =


ε if k = 0
e1, obs(e2, e3, e4, . . . , ek) if e1 ∈ Σo

obs(e2, e3, e4, . . . , ek) if e1 ∈ Σ \ Σo

This work also views a diagnosis model as a pair of languages L = LN ∪LF such
that e1, e2, e3, . . . , ek ∈ Ll (l ∈ {N, F}) iff there exists a trace q0

e1−→ . . .
ek−→ qk where
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q0 ∈ I and L(qk) = l.

Definition 4 (Language L) The prefix-closed language L = LN ∪ LF generated by the
system is the set of sequences σ = e1, . . . , ek where q0

e1−→ . . .
ek−→ qk, q0 ∈ I is a trace. If

L(qk) = N, then σ ∈ LN ⊆ L; otherwise, σ ∈ LF ⊆ L.

The diagnosis problem is defined based on the notion of consistent trace, which
will be useful to define Time-Window Algorithms in Chapter 5.

Definition 5 (Consistent Trace) The trace q σ−→ q′ is consistent with a sequence of obser-
vations θ if obs(σ) = θ.

Let Q0, Q1, Q2, . . . , Qp ⊆ Q be a collection of (p + 1) subsets of states, and let
θ1, θ2, θ3, . . . , θp be a collection of p sequences of observations. The consistent trace
predicate, denoted as ct, is defined as follows.

Definition 6 (Consistent Trace Predicate ct) The predicate ct([Q0, Q1, Q2, . . . , Qp],

[θ1, θ2, θ3, . . . , θp]) holds iff there exists a trace q0
σ1−→ q1

σ2−→ . . .
σp−→ qp such that q0 ∈ Q0,

and for any i ∈ {1, 2, 3, . . . , p}, it holds that qi ∈ Qi, σi ∈ Σ∗, and obs(σi) = θi.

q0 q1 qp

Q0 Q1 Qp

...
σ1 σ2 σp

Figure 3.4: Visual representation for the ct predicate

Fig. 3.4 is a visual representation for the ct predicate. For any i ∈ {1, 2, 3, . . . , p},
the system takes a trace qi−1

σi−→ qi, which emits observation θi = obs(σi). The goal
is to decide whether qi is faulty. Notice that in Fig. 3.4, Qi may contain one or more
states.

A diagnosis problem is defined on a diagnosis model and an observation se-
quence. In general, a diagnoser should indicate whether the system is in the nominal
mode, in the faulty mode, or it cannot decide, i.e. the system status is ambiguous. A
diagnostic result is ambiguous if there are at least two explanations such that one is
nominal, and the other is faulty. In this work, the diagnosis policy does not distin-
guish between the nominal mode and ambiguous mode, i.e. the diagnoser assumes
that the system is not faulty unless proved otherwise.

Assumption 4 (Optimistic Diagnosis) This work adopts an optimistic view for diagnos-
ing a system such that as long as one nominal explanation of the observations can be found,
the diagnoser assumes the system as nominal.
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Indeed, if the system is faulty, diagnosability ensures that a finite number of
future observations is required to assert that no nominal explanation exists any more,
i.e. the diagnoser will certainly assert that the system is faulty.

Exact diagnosis ∆ by language is defined as follows.

Definition 7 (Exact Diagnosis ∆ by language) Given a diagnosis model M and a sequence
of observations Θ, the exact diagnosis ∆(M, Θ) is defined as follows.

• ∆(M, Θ) = N if ∃σ ∈ LN . obs(σ) = Θ;

• ∆(M, Θ) = F otherwise.

∆(M, Θ) returns N if there exists a nominal trace whose observation is Θ. Otherwise,
∆(M, Θ) returns F.

Property 1 (Diagnosis by ct predicate) ∆(M, Θ) = N ⇔ ct([I, L−1(N)], [Θ])

Property 1 can be proved by Definition 6 and 7. This work proposes the defini-
tions for the ct predicate and the exact diagnosis ∆, as they will be useful to define
Time-Window Algorithms in Chapter 5.

Observation Diagnoser Diagnostic Result
x, y, x, y, b, c ∆ N (precise)
b, x, c, c, c, b ∆ F (precise)
c, c, c, c, c, c ∆ N (precise)

Table 3.1: Example of diagnostic results for M1 in Fig. 3.1

Tab. 3.1 shows the diagnostic results of M1 in Fig. 3.1 with three observation
sequences.

Example 1 of ∆ Diagnosis Given the first observation sequence x, y, x, y, b, c, there
exists only one trace from the initial state A that is consistent with the given obser-
vation sequence, i.e. A x−→ C

y−→ A x−→ C
y−→ A b−→ A c−→ B. Since L(B) evaluates to N,

this trace terminates in a state with a nominal label. Therefore, the diagnostic result
for the first observation sequence is nominal.

�

Example 2 of ∆ Diagnosis Given the second observation sequence, b, x, c, c, c, b,
there exists only one trace from the initial state A that is consistent with the given
observation sequence, i.e. A b−→ A x−→ C c−→ D c−→ D c−→ D v−→ G b−→ G. Since L(G)

evaluates to F, this trace terminates in a state with a faulty label. There is one faulty
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explanation and no nominal explanation for this observation sequence. Therefore,
the diagnostic result for the second observation sequence is faulty.

�

Example 3 of ∆ Diagnosis Given the third observation sequence, c, c, c, c, c, c, there
are two traces from the initial state A that are consistent with the given observation
sequence. One trace is: A c−→ B c−→ B c−→ B c−→ B c−→ B c−→ B. Since L(B) evaluates to
N, this trace terminates in a state with a nominal label.

Notice that the other trace is: A c−→ B c−→ B c−→ B c−→ B c−→ B v−→ F c−→ H. Since L(H)

evaluates to F, this trace terminates in a state with a faulty label. There is a nominal
explanation and a faulty explanation. Thus, the third observation sequence leads to
an ambiguous diagnosis. Since there exists at least one trace that terminates in a
state with a nominal label, the diagnostic result for the third observation sequence is
nominal.

�

3.1.2 Definition for Diagnosability of DES

Diagnosability is an important property of diagnosing a DES model. It is a condition
that system designers often want to enforce. Diagnosability holds if a fault will al-
ways be diagnosed [Sampath et al., 1995]. This property can be checked by searching
for faulty traces that cannot be diagnosed precisely. Any such counterexample proves
that the system is not diagnosable; failure to find such a counterexample proves that
the system is diagnosable, assuming the search was complete.

In the diagnosability problem, a diagnosis model (M) and a system model (M′) are
needed [Grastien and Torta, 2011]. A system model (M′) is a DES that captures how
a system operates. Given an observation sequence, a diagnoser uses a diagnosis
model (M), which is a DES, to diagnose the system status. Notice that the diagnosis
model may be the same as the system model. In order to verify the diagnosability
of a system model, a system model needs to generate a faulty trace. Then, the
diagnoser tries to find a nominal trace in the diagnosis model that generates the
same observation as the faulty trace. Finally, both models are synchronised so that a
trace on the resulting twin plant represents two traces from each model generating
the same observation.

Recall that Section 3.1.1 defines a diagnosis model as an automaton and also
defines diagnosis at the language level. The diagnosability of DES is defined as
follows.
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Definition 8 (Diagnosability of DES) A diagnosis model M is diagnosable w.r.t. a sys-
tem model M′ if the following holds:

∃n ∈ N. ∀s ∈ L′F. ∀t ∈ Σ∗.
(
st ∈ L′ ∧ |t| ≥ n⇒ ∆(M, obs(st)) = F

)
.

Based on the diagnosability definition of Sampath et al. [1995], this definition
concentrates on a diagnosis model. Given a faulty trace s, a diagnosis model M, and
further n events represented by t, the diagnosis of the observation obs(st) produced
by the trace of st should be faulty, i.e. the fault will always be detected within a finite
delay.

Assumption 5 (Diagnosable DES Diagnosis Model) A DES diagnosis model studied
in this work is diagnosable.

Assumption 5 will be useful for Section 3.2 to study the precision of a diag-
nostic algorithm. Since this work studies state-based diagnosis, a faulty event is a
special case of unobservable events. Also, this work considers diagnosable systems.
Therefore, each fault can be diagnosed separately. This work makes the single-fault
assumption for simplicity purpose only.

Assumption 6 (Single Fault) This work considers one fault in a system at any time.

Section 2.2.2 of Chapter 2 examines that using automata, diagnosability can be
checked in polynomial time w.r.t. the number of states [Jiang et al., 2001]. A twin
plant is built, which is the classical automaton synchronisation of two copies of the
model on the observable events. M is diagnosable w.r.t M′ iff the twin plant con-
tains no infinite cycle of states 〈q, q′〉 where L(q) evaluates to N and L(q′) evalu-
ates to F. A similar approach was proposed by Yoo and Lafortune [2002]. They
presented polynomial-time algorithms to decide diagnosability by constructing a
non-deterministic automaton called a verifier, which do not rely on any diagnosers.
Furthermore, Section 2.2.3 examines how a twin plant can be implemented by the
symbolic approach.

3.2 Precision of a Diagnostic Algorithm

This section presents a formal definition of diagnostic algorithms. Since a diagnostic
algorithm may be imprecise, this section studies the precision criterion for a diag-
nostic algorithm. This work also shows how this criterion can be tested using the
simulation method. The section ends with a comparison with the existing ad-hoc
methods used in the literature to verify the precision of three diagnostic algorithms.
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3.2.1 Definitions for Diagnostic Algorithms and Precision

This work defines diagnostic algorithms that may run faster than the exact diagnosis
∆. However, these algorithms may return results that are less precise. It is necessary
to be able to give guarantees about the output of an algorithm, e.g. precision.

Definition 9 (Diagnostic Algorithm) A diagnostic algorithm is a function A : M ×
Σo
∗ → {N, F} where M is a diagnosis model, and the following conditions of monotonicity

and correctness hold:

Monotonicity: A(M, o) = F ⇒ ∀e ∈ Σo. A(M, (oe)) = F;

Correctness: A(M, o) = F ⇒ ∆(M, o) = F.

The first condition ensures that the diagnosis is monotonic [Lamperti and Zanella,
2007], i.e. that if a fault has been diagnosed, this conclusion will not be withdrawn.
The second condition ensures that the diagnosis is correct, i.e. that the algorithm
returns faulty only when the system is faulty while the converse may not hold.

Based on Assumption 5, this work defines the precision of a diagnostic algorithm.

Definition 10 (Precision of a Diagnostic Algorithm) The diagnostic algorithm A is pre-
cise for a diagnosis model M w.r.t. a system model M′ if the following holds:

∃n ∈ N. ∀s ∈ L′F. ∀t ∈ Σ∗.
(
st ∈ L′ ∧ |t| ≥ n⇒ A(M, obs(st)) = F

)
.

This definition is similar to Definition 8 for diagnosability of DES. Since Defi-
nition 9 for a diagnostic algorithm does not give any constraint on the precision of
diagnosis, Definition 10 now defines that a diagnostic algorithm is precise if the algo-
rithm is able to return faulty (F) after a fault effectively occurs in the system, possibly
after a finite delay.

3.2.2 Simulation

Section 3.1.2 reviews that the diagnosability of a DES model can be verified using the
twin plant method by Jiang et al. [2001]. This work proposes to verify the precision
of a diagnostic algorithm w.r.t. a DES model by constructing a simulation. A diag-
nostic algorithm is precise if the algorithm will diagnose the fault after it occurs. The
precision of a diagnostic algorithm w.r.t. a DES model can be verified using known
methods, such as the twin plant method by Jiang et al. [2001], as long as a simulation
is built, i.e. a finite state machine that simulates how a diagnostic algorithm works
for a given DES model. Precision is preserved iff no critical witness exists in the
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synchronisation of the system and the simulation. Notice that if it is proved that a
simulation cannot be built for a particular diagnostic algorithm w.r.t. a DES model,
then this method is not applicable. In general, the simulation method provides a
theoretical framework, which helps researchers to verify the precision of their diagnos-
tic approaches. It also allows researchers to consider more aggressive approaches to
reduce the complexity of diagnosis, as they can now assess the precision of those
approaches.

Definition 11 (Simulation) Given a diagnosis model M and a diagnostic algorithm A, the
simulation of M and A is an automaton, denoted as si(M, A), such that

∀o ∈ Σo
∗, A(M, o) = ∆(si(M, A), o).

Using the simulation, Theorem 1 proves the precision of a diagnostic algorithm
w.r.t. a system model M′.

Theorem 1 (Precision of a Diagnostic Algorithm) A diagnostic algorithm A for a diag-
nosis model M is precise w.r.t. a system model M′ iff si(M, A) is diagnosable w.r.t. M′ where
si(M, A) is the simulation of M and A.

Proof of Theorem 1 The proof consists of two parts. Let si(M, A) be the simulation
of M and A. The first part is prove that a diagnostic algorithm A for a diagnosis
model M is precise w.r.t. a system model M′ if si(M, A) is diagnosable w.r.t. M′.
Suppose si(M, A) is diagnosable w.r.t. M′. Then, by Definition 8,

∃n ∈ N . ∀s ∈ L′F. ∀t ∈ Σ∗.
(
st ∈ L′ ∧ |t| ≥ n⇒ ∆(si(M, A), obs(st)) = F

)
.

By Definition 11, A(M, obs(st)) = ∆(si(M, A), obs(st)). Therefore,

∃n ∈ N . ∀s ∈ L′F. ∀t ∈ Σ∗.
(
st ∈ L′ ∧ |t| ≥ n⇒ A(M, obs(st)) = F

)
.

This means that A is precise w.r.t. M′ by Definition 10. The first part is proved.

The second part is to prove that si(M, A) is diagnosable w.r.t. M′ if a diagnostic
algorithm A for a diagnosis model M is precise w.r.t. a system model M′. Suppose a
diagnostic algorithm A for a diagnosis model M is precise w.r.t. a system model M′.
Then, by Definition 10,

∃n ∈ N . ∀s ∈ L′F. ∀t ∈ Σ∗.
(
st ∈ L′ ∧ |t| ≥ n⇒ A(M, obs(st)) = F

)
.
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By Definition 11, A(M, obs(st)) = ∆(si(M, A), obs(st)). Therefore,

∃n ∈ N . ∀s ∈ L′F. ∀t ∈ Σ∗. (st ∈ L ∧ |t| ≥ n⇒ ∆(si(M, A), obs(st)) = F) .

This means that si(M, A) is diagnosable w.r.t. M′ by Definition 8. The second part is
proved.

�

Theorem 1 provides a novel approach of verifying the precision of a diagnostic
algorithm w.r.t. a system model. Given the simulation of a diagnostic algorithm,
one can compute the twin plant of the synchronisation of the system model and
the simulation to search for ambiguous cycles. Such cycles are witnesses of system
behaviours that are not diagnosable. Otherwise, the diagnostic algorithm is precise
w.r.t. the system model.
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Figure 3.5: Visualisation for using a simulation to verify the precision of a diagnostic
algorithm w.r.t. a DES system model where ⊗ represents automaton synchronization

Given a DES system model, and a diagnostic algorithm, Fig. 3.5 is the visuali-
sation for using a simulation. Firstly, a simulation is constructed, which is a DES
model that describes how the diagnostic algorithm works for the DES system model.
Secondly, the DES system model and the simulation are synchronised, which is rep-
resented by ⊗. Thirdly, the twin plant method is applied to this synchronisation,
which verifies the precision of the diagnostic algorithm w.r.t. the DES system model.
If a nominal and a faulty behaviour can never be distinguished, then the diagnos-
tic algorithm is not precise w.r.t. the DES system model. Otherwise, the diagnostic
algorithm is precise w.r.t. the DES system model.
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3.2.3 Related work

This section examines three cases of verifying the precision of diagnosis, which are
distributed diagnosis, diagnosis using an abstract model of DES, as well as diagno-
sis using static and dynamic sensors. First, Kan John et al. [2010] argued that the
complexity of distributed diagnosis of DES depends on the component connections.
They removed unnecessary component connections to reduce the complexity, and
addressed the problem of reduced precision by off-line analysis of which component
connections can be safely removed. By Theorem 1, it is also feasible to verify the
precision of distributed diagnosis by constructing a simulation for the distributed
diagnostic process.

Second, Grastien and Torta [2011] proposed the theory of abstraction for DES.
They studied how to build an abstract model, which is a model such that irrelevant
details are removed. They also verified the diagnosability of an abstract model, which
ensures the precision of the diagnosis using an abstract model. By Theorem 1, if
diagnosis using an abstract model is simulated, then the precision of this diagnostic
approach can also be verified.

Third, Cassez and Tripakis [2008] studied the sensor minimisation problems for
both static and dynamic observers. For static observers, the goal is to minimise the
amount of observable events. For dynamic observers, sensors can be switched on
or off. As a result, the set of observable events changes over time. Furthermore,
they considered masked observations such that some events are observable but not
distinguishable. They also studied the diagnosability with static observers, dynamic
observers, and masked observations. By Theorem 1, if a simulation is individually
built for static observers, dynamic observers, and masked observations, then the
simulation method is an alternative approach to verify the diagnosability. To sum
up, it is feasible to verify the precision of the above three cases by constructing a
simulation for each approach as defined in section 3.2.2.

3.3 Chronicle-Recognition Diagnosis

Chronicles are collections of events connected by temporal constraints on their oc-
currence time. In chronicle-recognition diagnosis, chronicles represent symptoms of
failure [Dousson, 1996]. As opposed to the original work on chronicles by Dousson
[1996], this work defines the time constraints in terms of the number of observa-
tions between two observed events, rather than the actual time between the event
occurrences. This modified approach is named as chronicle-recognition diagnosis.
Chronicles can be specified manually, or generated automatically from a diagnosis
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model. A diagnoser is a system that recognises chronicles in the flow of observa-
tions. If a chronicle is recognised in the flow of observations, then the system is in
the faulty mode. Otherwise, the system is in the nominal mode. Notice that this
work does not study or assess chronicle-recognition diagnosis as a new diagnostic
approach. Indeed, this work illustrates how the precision of chronicle-recognition
diagnosis w.r.t. a DES model can be verified by constructing a simulation.

Diagnosability of chronicles is an important criterion. Pencolé and Subias [2009]
proposed a method of verification, which computes the language associated with
each chronicle, and checks whether these languages are exclusive. Diagnosability
verification was carried out as exclusiveness tests on the reachability graphs of Time
Petri Nets.

This section formally defines chronicle recognition, and demonstrates how to
verify the precision of a chronicle w.r.t. a system model by building a simulation that
represents how the chronicle-recognition diagnostic algorithm works on the system
model. This section illustrates the chronicle simulation for a single chronicle. The
extension to a set of chronicles can be achieved by computing the synchronisation of
these simulations.

3.3.1 Definition of Chronicle Recognition

This work defines the fundamental concepts of time interval, semantics of a time interval,
time inconsistency, three operations on time intervals, and chronicle. It also provides
the definition for a chronicle being recognised in a sequence of observable events.

Definition 12 (Time Interval) A time interval represents a set of numbers of observ-
able event occurrences. Z denotes Z ∪ {+∞,−∞}. A time interval is written as I =

[beginning, end], where beginning ∈ Z, and end ∈ Z. I+ is the set of strictly positive time
intervals, and I− is the set of strictly negative time intervals. I represents the set of time
intervals.

Definition 13 (Semantics of a Time Interval) Given a time interval I = [beginning, end],
the semantics of I, denoted as Sem(I), is defined as a list of integers ranging from beginning
to end, i.e. Sem(I) = {beginning, . . . , end}.

This work also considers a special case of time interval, called time inconsistency
(I∅), which is defined as follows.

Definition 14 (Time Inconsistency I∅) Given a time interval I = [beginning, end], if
beginning > end, then I becomes I∅ meaning that no occurrence time for the associated
event will satisfy the constraints on the time occurrence.
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Definition 15 (Operations on Time Intervals) Three operations on time intervals are de-
fined as follows.

• Time-interval intersection:
if I = [b, e] and I′ = [b′, e′], then I ∩ I′ = [max(b, b′), min(e, e′)];

• Time-elapsed operation: if I = [b, e], then I − t = [b− t, e− t];

• Time-disabled operation: I \ [b′, e′] means that [b′, e′] is taken out of the time interval
I.

The time-disabled operation may result in disjunctive time intervals. In this work,
however, it will be applied in situations where this does not happen.

Dechter et al. [1991] proposed the Temporal Constraint Satisfaction Problem (TCSP)
model, which includes a set of event time points, unary constraints, and binary con-
straints. A unary constraint restricts the domain of an event time point. A binary
constraint restricts the distance between the time points of two events. In particular,
the Simple Temporal Problem (STP) model is a TCSP such that each constraint has a
single time interval. An instance of STP can be represented by a directed edge-weighted
graph, or a time constraint graph [Dechter et al., 1991]. In a time constraint graph,
each node represents an event, and each edge represents the distance between the
time points of two events. In order to ensure the consistency of all constraints, Floyd-
Warshall’s all-pairs-shortest-paths-algorithm is applied to a time constraint graph.
The computational complexity is O(n3) where n is the number of nodes [Dechter
et al., 1991].

Notice that as opposed to the original work on chronicles [Dousson, 1996], this
work defines the time constraints in terms of the number of observations between
two observed events, rather than the actual time between the event occurrences. This
work formulates chronicle-recognition diagnosis using the STP model, and formally
defines chronicle as follows.

Definition 16 (Chronicle) A chronicle is a tuple 〈N, EL, B〉 where

• N is a finite set of nodes in a STP model;

• EL : N → Σ is an event label function;

• B : N × N → Z× Z is a binary constraint function for a pair of nodes.

A chronicle is recognised in a sequence of observations iff there exists a recog-
nition function fCR that indexes each node of the chronicle with an event of the
flow, and these events satisfy all constraints. Chronicle-recognition diagnosis checks
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whether the chronicle is recognised in the observations. If it is recognised, then the
chronicle-recognition diagnoser returns that the system is faulty; otherwise, it returns
that the system is nominal. Chronicle recognition is formally defined as follows.

Definition 17 (Chronicle Recognition) Given a chronicle Ch = 〈N, EL, B〉, and a se-
quence of observations o1, o2, o3, . . . , ok, the chronicle is recognised in the sequence of ob-
servations iff ∃ fCR : N → {1, 2, 3, . . . , k} such that ∀n ∈ N, ∀n′ ∈ N, (EL(n) =

o fCR(n)) ∧ ( fCR(n′)− fCR(n) ∈ B(〈n, n′〉)) ∧ (n 6= n′ ⇒ fCR(n) 6= fCR(n′)).
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Figure 3.6: A simple DES model M2 where a, b, c, d are observable events, and u, v
are unobservable events
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Figure 3.7: Chronicle 1 (Ch1) for M2 represented by a time constraint graph: if there
is a c event within one or two time steps after an a event, then M2 is faulty
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Figure 3.8: Chronicle 2 (Ch2) for M2 represented by a time constraint graph: if there
is a c event within one time step after a d event, then M2 is faulty

Fig. 3.6 shows a simple DES diagnosis model M2. State F is faulty while other
states are nominal. Observable events are a, b, c, d, and unobservable events are u, v.
Fig. 3.7 and Fig. 3.8 show chronicle 1 (Ch1) and chronicle 2 (Ch2), each represented
by a time constraint graph. Ch1 and Ch2 are two chronicles for M2. Ch1 specifies
that if there is a c occurrence within two events after an event of a, then the chronicle
is recognised and the system is faulty. Ch2 specifies that if there is a c occurrence
right after an event of d, then the chronicle is recognised and the system is faulty.
Section 3.3.2 will examine the precision of Ch1 and Ch2 w.r.t. M2.
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Example 1: Chronicle Recognition of Ch1 Given a DES diagnosis model M2 and
an observation sequence a, c, c, c, Ch1 is recognised because there is a c occurrence
within two events after an event of a. Thus, the diagnostic result is that the system is
faulty.

�

Example 2: Chronicle Recognition of Ch1 Given a DES diagnosis model M2 and an
observation sequence a, d, b, c, Ch1 is not recognised because there is no c occurrence
within two events after an event of a. Thus, the diagnostic result is that the system is
nominal.

�

Example 3: Chronicle Recognition of Ch2 Given a DES diagnosis model M2 and an
observation sequence a, c, c, c, Ch2 is not recognised because there is no d occurrence.
Thus, the diagnostic result is that the system is nominal. However, the system should
be faulty according to the exact diagnosis of ∆. This example shows that Ch2 is not
precise to diagnose M2. Section 3.3.2 will study the precision of a chronicle w.r.t. a
DES system model.

�

Example 4: Chronicle Recognition of Ch2 Given a DES diagnosis model M2 and an
observation sequence a, d, b, c, Ch2 is not recognised because there is no c occurrence
within exactly one event after an event of d. Thus, the diagnostic result is that the
system is nominal.

�

3.3.2 Chronicle Automaton and Chronicle Simulation

This section shows how to verify the precision of a chronicle w.r.t. a DES system
model. The approach is to compute a simulation for a chronicle, and the construction
requires two steps. The first step is to build a non-deterministic finite state machine,
called chronicle automaton. Then, the simulation will be the determinisation of such a
chronicle automaton. Each state of a chronicle automaton stores a list of observable
events of the chronicle that have been recognised so far, and when the next events
are expected to occur. This work defines Partially Recognised Chronicle (PRCh), and
Fully Recognised Chronicle (FRCh) as follows.

Definition 18 (Partially Recognised Chronicle (PRCh)) A Partially Recognised Chron-
icle (PRCh) is a tuple 〈Ch, U〉 where
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• Ch is a chronicle 〈N, EL, B〉;

• U : N → {IR, I∅} ∪ I+ is a unary constraint function for a node, which defines a
time interval that specifies when a node is expected to be recognised.

If U(n) ∈ I−, then the observation EL(n) has been made. Precisely when this
observation has been made is no longer relevant assuming the implication on occur-
rences of the other events have been stored in U. Consequently, U(n) is then replaced
by IR, i.e. (−∞, 0].

Definition 19 (Fully Recognised Chronicle (FRCh)) A Fully Recognised Chronicle (FRCh)
is a partially recognised chronicle 〈Ch, U〉 such that ∀n ∈ N, U(n) = IR.

Definition 20 (Chronicle Automaton (CA)) Given a PRCh G such that ∀n ∈ N, U(n) =
[1,+∞), the chronicle automaton (CA) of G is an automaton, which is a tuple 〈Q, Σ, T, I, L〉
where

• Q is a set of PRCh;

• Σ is a set of events;

• T ⊆ Q× Σ× Q is the set of transitions where each transition is built using Algo-
rithm 5;

• I = {G};

• ∀q ∈ Q, L(q) = F iff q is a FRCh; otherwise, L(q) = N.

In the initial state I, the unary constraint function labels every node with [1,+∞),
which represents an unknown time in the future since the chronicle recognition pro-
cess has not started yet. The function L labels the final states. The faulty states are
FRCh such that ∀n ∈ N, U(n) = IR.

The function presented in Algorithm 5 is to build a transition from PRCh to
PRCh′ given an observable event e. Starting with the initial state, a chronicle au-
tomaton is built by iteratively computing the successors of all the PRCh found. Al-
gorithm 5 first acknowledges that a new observation has been made by reducing all
intervals by one, which means that one time step has passed (Line 1). Next, if a node
is recognised at this moment, this algorithm enforces the current time step ([0, 0])
using a time interval intersection operation (Line 2–3). Otherwise, the node is not
recognised, and [0, 0] is disabled using the time-disabled operation (Line 5). Then,
the Floyd-Warshall’s algorithm (update_constraint) is applied to ensure the consis-
tency of all constraints [Dechter et al., 1991] (Line 6). If a node has been recognised,
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Algorithm 5: build_one_transition
Input: PRCh(〈Ch, U〉) and e
Output: PRCh′

1 U1 := U − 1
2 U2 : N → I such that ∀n ∈ N, if EL(n) = e then
3 U2(n) := U1(n) ∩ [0, 0]
4 else
5 U2(n) := U1(n) \ [0, 0]

6 U3 := update_constraint(U2)
7 U4 : N → I such that ∀n ∈ N, if U3(n) ∈ I− or U3(n) = [0, 0] then
8 U4(n) := IR

9 else
10 U4(n) := U3(n)

11 PRCh′ := 〈Ch, U4〉
12 return PRCh′

then this algorithm uses IR to record this recognition, though the details of when the
observations were made are ignored (Line 7–8). Otherwise, this algorithm keeps this
node (Line 10). If there is any I∅ for a unary constraint in a PRCh, then this PRCh
will be ignored from now on because I∅ means time inconsistency, and this PRCh is
no longer valid. Finally, this algorithm creates a new PRCh′ based on PRCh and the
updated unary constraint (Line 11).
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Figure 3.9: Chronicle automaton for Ch1 in Fig. 3.7: only n1 and n2 are the nodes
in the chronicle while the other events are not part of the chronicle recognition. In
particular, state M contains time inconsistency, i.e. I∅.

A chronicle automaton is non-deterministic, i.e. when an event of a chronicle
is observed, it is unknown whether it is part of a chronicle recognition or not. For
example, Fig. 3.9 shows the chronicle automaton built for Ch1. The set of events of
the chronicle automaton is {a, b, c, d, n1, n2} where n1 (a) and n2 (c) are the nodes in
the chronicle while a, b, c, d are the events that correspond to the observations that are
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not part of the chronicle recognition. Given an observation sequence ‘a, b, b, b, a, c’,
observing the first ‘a’ does not mean observing the event of the node n1. In fact,
the event of n1, i.e. a, is recognised at the fifth step, and the event of n2, i.e. c, is
recognised at the sixth.

Example 1: Chronicle Automaton for Ch1 Fig. 3.9 shows the chronicle automaton
built for Ch1. Recall that the observable events are a, b, c, d.

• State G is the initial state such that U(n1) = [1,+∞) and U(n2) = [1,+∞),
which means that the recognition has not started.

• In state H, U(n1) = IR and U(n2) = [1, 2], which means that the node n1 has
been recognised and the node n2 has a unary constraint such that if the event
c corresponding to n2 appears at the next one or two time steps, n2 will be
recognised.

• In state J, U(n1) = IR, and U(n2) = [1, 1], which means that n1 has been
recognised, and n2 is expected in the next time step.

• In state M, U(n1) = IR and U(n2) = I∅, which means that c should have been
observed, but c is not presented. This causes time inconsistency.

• State K is a FRCh because U(n1) = IR and U(n2) = IR. Therefore, K is the final
and accepting state.

�
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Figure 3.10: Chronicle automaton for Ch2 in Fig. 3.8: only n1 and n2 are the nodes
in the chronicle while the other events are not part of the chronicle recognition. In
particular, state M contains time inconsistency, i.e. I∅.

Example 2: Chronicle Automaton for Ch2 Fig. 3.10 shows the chronicle automaton
of Ch2. Recall that the observable events are a, b, c, d.
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• State G is the initial state such that U(n1) = [1,+∞) and U(n2) = [1,+∞),
which means that the recognition has not started.

• In state H, U(n1) = IR and U(n2) = [1, 1], which means that the node n1 has
been recognised, and the node n2 has a unary constraint such that if the event
c corresponding to n2 appears at the next time step, n2 will be recognised.

• In state M, U(n1) = IR and U(n2) = I∅, which means that n1 has been recog-
nised; c should have been observed, but c is not presented. This causes time
inconsistency.

• State K is a FRCh because U(n1) = IR and U(n2) = IR. Therefore, K is the final
and accepting state.

�

A chronicle automaton is not the simulation for a chronicle. Indeed, their seman-
tics are different. In a chronicle automaton, the fault is diagnosed if there exists a
path consistent with the observations that leads to a faulty state. In a simulation, all
such paths should lead to a faulty state. The simulation for a chronicle is computed
by determinisation [Epp, 2004] on a chronicle automaton.

Definition 21 (Construction of Deterministic Automaton by Subset Construction)
Given an non-deterministic automaton NFA = 〈QN , ΣN , TN , IN , LN〉, the deterministic au-
tomaton is constructed by subset construction, i.e. DFA = 〈QD, ΣD, TD, ID, LD〉 where

• QD = 2QN ;

• ΣD = ΣN ;

• TD ⊆ QD × ΣD ×QD and
TD = {〈{q1, q2, q3, . . . , qx}, ez, {qy | i ∈ {1, 2, 3, . . . x} ∧ 〈qi, ez, qy〉 ∈ TN}〉 | ez ∈
ΣD ∧ x = |Q|};

• ID = IN ;

• LD(QN) = F iff ∃q ∈ QN . LN(q) = F; otherwise, LD(QN) = N.

Theorem 2 (Simulation for Chronicle-Recognition Diagnosis) The determinisation of
the chronicle automaton of a chronicle is the simulation for chronicle-recognition diagnosis
where chronicle automaton defined in Definition 20 is the diagnosis model, and chronicle-
recognition diagnosis defined in Definition 17 is the diagnostic algorithm.
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Proof of Theorem 2 Let M = 〈QM, ΣM, TM, IM, LM〉 be the system model; let Ch be
a chronicle; let CA = 〈QCA, ΣCA, TCA, ICA, LCA〉 be the chronicle automaton; let OBS
be an observation sequence. The proof consists of two parts.

The first part is to prove that if Ch is recognised in OBS, then the determinisation
of CA for Ch says that Ch is fully recognised. Assuming that Ch is recognised in OBS,
one can use a recognition function fCR to index the observations. When following a
single path on M labelled by this sequence, a state is reached by construction that is
labelled faulty, i.e. there exists a single path in M, denoted as path1 : q0

e11−→ . . .
ex1−→ qx

such that q0 ∈ IM ∧ LM(qx) = F, which corresponds to the path in CA, denoted
as path2 : p0

e12−→ . . .
ex2−→ px such that p0 ∈ ICA ∧ LCA(px) = F ∧ obs(e11 . . . ex1) =

obs(e12 . . . ex2). Hence, there exists a path corresponding to path2 in the determinised
CA that leads to the faulty state, which means that Ch is fully recognised in OBS.

The second part is to prove that if the determinisation of CA for Ch says that Ch
is fully recognised in OBS, then there exists a recognition function fCR to describe
this chronicle recognition. Let paths denote all paths in the chronicle simulation, i.e.
paths = {q0 −→ . . . −→ qx|qo ∈ ICA ∧ LCA(qx) = F}. For each path (path1 = q0

e11−→
. . .

ex1−→ qx) ∈ paths, there is a corresponding path in M, denoted as path2 : p0
e12−→

. . .
ex2−→ px such that p0 ∈ IM ∧ LM(px) = F ∧ obs(e11 . . . ex1) = obs(e12 . . . ex2). In

other words, when following a path path2 on M labelled by this sequence, a state is
reached by construction that is labelled faulty. Therefore, one can use a recognition
function fCR to index the observations. Both parts are proved. By Definition 11,
the determinisation of the chronicle automaton of a chronicle is the simulation for
chronicle-recognition diagnosis.
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Figure 3.11: Chronicle simulation for Ch1 in Fig. 3.7
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Figure 3.12: The synchronisation for the system model M2 in Fig. 3.6 and the chron-
icle simulation for Ch1 in Fig. 3.11

Example 1: Chronicle Simulation for Ch1 Fig. 3.11 shows the chronicle simulation
computed for Ch1. K is a state to represent that once a chronicle is recognised in an
observation sequence, it remains recognised. Fig. 3.12 shows the synchronisation for
M2 in Fig. 3.6 with the chronicle simulation for Ch1 in Fig. 3.11.

Then, the twin plant method is applied to this synchronisation in order to verify
the precision of chronicle Ch1 w.r.t. M2. There is no loop on any ambiguous path
since there is no ambiguous path. Therefore, this chronicle-recognition diagnostic
algorithm is precise w.r.t. M2 by Theorem 1.

�
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Figure 3.13: Chronicle simulation for Ch2 in Fig. 3.8

Example 2: Chronicle Simulation for Ch2 Fig. 3.13 shows the chronicle simulation
computed for Ch2. K is a state to represent that once a chronicle is recognised in an
observation sequence, it remains recognised. Fig. 3.14 shows the synchronisation for
M2 in Fig. 3.6 with the chronicle simulation for Ch2 in Fig. 3.13.

Then, the twin plant method is applied to this synchronisation in order to verify
the precision of the chronicle Ch2 w.r.t. M2. There is a loop on the ambiguous path as
highlighted. Therefore, this chronicle-recognition diagnostic algorithm is not precise
w.r.t. M2 by Theorem 1.

�



60 Verifying the Precision of a Diagnostic Algorithm for DES

A, GB, G

C, GE, GHF, K

D, G

F, G

b

a
a

c
cb

d

a

c
c

b cc

Figure 3.14: The synchronisation for the system model M2 in Fig. 3.6 and the chron-
icle simulation for Ch2 in Fig. 3.13

Finally, this chapter examines the complexity of generating chronicle automa-
ton, and a simulation for chronicle-recognition diagnosis. Given a chronicle Ch =

〈N, EL, B〉, in the worst case, the number of states in a chronicle automaton is O(|e|r)
where |e| is the number of events; [beginning, end] represents the widest binary con-
straint in a given chronicle, i.e.

max({(end− beginning)|[beginning, end] = B(n1, n2) ∧ n1 ∈ N ∧ n2 ∈ N});

and r = end− beginning+ 2. Nevertheless, after a transition is computed, any invalid
PRCh will be removed immediately due to the time inconsistency denoted as I∅.
Therefore, this time consistency checking reduces the complexity from the worst case.
Also, it should be noted that for a given chronicle, the computation for a chronicle
automaton and a simulation is off-line and one-off.

3.4 Summary

This chapter studies the problem of computing the precision of a diagnostic algo-
rithm w.r.t. a DES system model. Firstly, this chapter defines diagnosis and diagnos-
ability of DES. Secondly, it provides the definitions for a diagnostic algorithm and its
precision. Thirdly, this chapter proposes the simulation method to decide whether
the precision is maintained if an imprecise diagnostic algorithm is used for DES diag-
nosis. This work defines a simulation for a diagnostic algorithm and a DES diagnosis
model, which is a modification of the diagnosis model that simulates the process of
a diagnostic algorithm generating a diagnostic result. Theorem 1 proves the correct-
ness of the simulation method, and then uses the modified twin plant method on
the synchronisation of a system and the simulation, in order to decide whether the
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precision is maintained despite the fact of using an imprecise diagnostic algorithm.
This chapter illustrates the simulation method on chronicle-recognition diagno-

sis. Chronicle-recognition diagnosis by Dousson [1996] uses pattern recognition tech-
niques. Given a DES diagnosis model and an observation sequence, if a chronicle is
recognised in the observation sequence, then the chronicle-recognition diagnoser re-
turns that the system is in the faulty mode. This algorithm however is potentially
less precise than the exact model-based diagnosis, such as ∆. This chapter presents
how to build a simulation for chronicle-recognition diagnosis. Theorem 2 proves the
correctness of this approach.

In conclusion, the simulation method is beneficial for researchers to verify the
precision of their diagnostic approaches. This theoretical framework will also al-
low researchers to consider more aggressive approaches to reduce the complexity of
diagnosis, as they can now assess the precision of those approaches.

Chapter 4 will illustrate the simulation method on a new class of diagnostic al-
gorithms, called Independent-Window Algorithms (IWAs). IWAs are potentially im-
precise compared to the exact diagnosis ∆. Hence, Chapter 4 will examine their
precision using the simulation method.
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Chapter 4

Diagnosis of DES using
Independent-Window Algorithms

Diagnosis of DES is performed by computing the paths on the complete model that
generate the observations received on the system. Many previous works address this
problem by the use of a diagnoser automaton [Sampath et al., 1995; Rozé and Cordier,
2002a], automata unfoldings [Baroni et al., 1999] that can also be distributed [Pencolé
and Cordier, 2005; Su and Wonham, 2005], or encoded with BDD [Schumann et al.,
2010], and finally by the use of a SAT solver [Grastien et al., 2007]. This work uses the
term belief state to represent the set of global states which the system could be in after
the given observations [Pencolé and Cordier, 2005; Rintanen, 2007]. On-line diagnosis
iteratively computes the set of states that can be reached from the current belief state
through the transitions that would produce exactly the next observation. If this is
done explicitly [Baroni et al., 1999], the number of these states makes this approach
inapplicable for many real-world problems. Comparatively, Schumann et al. [2010]
proposed the symbolic approach where the states are represented in propositional
logic, e.g. BDD. However, this representation is still subject to exponential blow-up.
An alternative approach to on-line diagnosis is the off-line pre-computation of the
potential belief states, as proposed by Sampath et al. [1995]. However, this is proven
to be exponential w.r.t. the number of system states [Rintanen, 2007].

Any of the precited work, except the SAT approach, proposes diagnostic algo-
rithms that attempt to compute at any time a belief state that is consistent with the
observable flow from the time when the system starts operating to the current time.
The main drawback of such a conservative strategy is the inability to follow the ob-
servable flow for a large system due to the exponential size of the generated belief
states and therefore the temporal complexity to handle them. Although diagnosis
using SAT computes one trace in the system for an observation sequence, the com-
plexity of a SAT problem is exponential to the number of propositional variables,
which is linear to the number of state variables [Grastien et al., 2007].

63
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For the conservative strategy of exact diagnosis, the exponential blow-up arises
from the fact that the diagnoser has to maintain all the information about the obser-
vations that it has received so far. For instance, the current belief state could be B′

instead of B because of an earlier observation. Exact diagnosis has to compute and
maintain every belief state. This chapter proposes a class of new diagnostic algo-
rithms, called Independent-Window Algorithms (IWAs), for diagnosis of DES. IWAs
slice the observations into time windows, and diagnose each of them independently.
IWAs also share the property that they only consider the most recent observations.
IWAs diagnose a certain number of observations for one time window, and move to
another time window without keeping any information. This chapter presents four
implementations of IWAs that differ only in the window selection, namely Alp, Al1,
Al2, and Al3.

IWAs offer an array of benefits. First, IWAs improve the flexibility and feasibil-
ity of diagnosis by computing diagnosis independently on separate time windows.
Second, IWAs avoid the overhead of maintaining a precise tracking of the system
states, and thus reduce the computational complexity of diagnosis. Third, IWAs are
able to handle intermittent loss of communication, whereby the state of the system
becomes unknown. This is because at the beginning of one time window, IWAs reset
to every nominal state, or every faulty state, depending on the result at the end of
the previous time window. In other words, diagnosis using IWAs does not require a
complete observation sequence that originates from the initial state of the given DES
model.

On the other hand, IWAs may potentially lead to imprecise diagnosis. Since IWAs
diagnose time windows independently, imprecision happens when both current and
past observations are necessary to understand the system behaviour. In order to
measure the quality of diagnosis, this work adapts the well-known criterion of diag-
nosability. Diagnosability is the property of an observable system, which states that
using the model, a fault can be diagnosed after it occurs [Sampath et al., 1995]. This
chapter applies the simulation method to verify the precision of an IWA w.r.t. a DES
model, as proposed in Chapter 3. A simulation is a modified model that simulates
how the diagnostic algorithm computes the diagnosis.

This chapter is organised as follows. Section 4.1 discusses the motivations for
IWAs, and then presents the definitions of IWAs. Section 4.2 illustrates four imple-
mentations of IWAs. Section 4.3 demonstrates how to verify the precision of an IWA
using the simulation method, and proves the correctness of this approach. Section 4.4
compares the precisions of the four IWA implementations. Section 4.5 discusses the
application of alarm log handling. Section 4.6 summarises IWAs and concludes this
chapter.
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4.1 Independent-Window Algorithms

This section explains the intuitions and motivations for the IWAs. It also defines
single-window diagnosis and window-based diagnosis.

4.1.1 Intuitions and Motivations

This section begins with explaining the intuition for IWAs. Given an observation
sequence, IWAs perform independent diagnostic analyses on separate time windows.
The simplest variant of IWAs is Al1, which is visualised as follows.

time window 1︷ ︸︸ ︷
o1 . . . . . . ok

time window 2︷ ︸︸ ︷
ok+1 . . . . . . o2k . . . . . .

time window n
k︷ ︸︸ ︷

on−k+1 . . . . . . on

Given a complete sequence of observations with n observable events, Al1 divides
all of the observations into n

k time windows where k represents the number of ob-
servable events in each time window. This work assumes that n is a multiple of k,
and Al1 divides n observations exactly into n

k time windows. IWAs differ from each
other depending on their definitions of the time windows. Section 4.2 will study four
implementations of IWAs, namely Alp, Al1, Al2, and Al3.

There are essentially three motivations for IWAs, namely, the improved flexibility,
the reduction of the diagnostic complexity, and the use of IWAs to tackle the mask-
ing issue. First, IWAs perform independent diagnostic analyses on separate time
windows. Because each diagnosis is performed separately, it is feasible to skip the
ones that are believed irrelevant. Consider for instance a problem occurring on a
web-service whose activity is logged. It is not feasible to diagnose from the initial
states, i.e. from the beginning of the log, especially when the log dates back a long
time ago. This is because using any existing exact diagnostic approach to diagnose
an entire log requires maintaining all of the belief states, which is proved to be expo-
nential w.r.t. the number of system states [Rintanen, 2007]. Alternatively, analysing
the data some time before the incident is detected may be sufficient, which enhances
the flexibility of diagnosis.

Second, the complexity of diagnosis is expected to be more manageable using
independent windows. Diagnosis of DES requires maintaining the belief state of the
system. Section 2.1 of Chapter 2 reviews the existing work on diagnosis. The belief
state of a system can be computed off-line [Sampath et al., 1995], on-line [Baroni
et al., 1999], in a distributed way [Pencolé and Cordier, 2005], or using symbolic
tools [Schumann et al., 2010]. However, diagnosis for a large-scale system quickly
becomes unmanageable. Let n be the number of states. The number of belief states
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that can be reached is O(2n) [Rintanen, 2007].

With windows of fixed size, the complexity changes completely. For instance,
given b observable events in the system model, and a size k of the window, the
number of belief states that can be reached in the worst case is Σi∈{0,1,2,...,k}bi = bk+1−1

b−1 .
The complexity is O(bk). Practically, this means that a diagnoser of a polynomial size
can be built on k transitions of the system model.

Finally, when the communication layer used to transmit the observation is also
subject to faults, certain observations are masked, which means that the complete
sequence of observations is not available. IWAs are less subject to this issue. At the
beginning of a time window, the diagnosis is reset to every nominal state, or every
faulty state, depending on the result at the end of the previous time window.

4.1.2 Single-Window Diagnosis

Single-window diagnosis computes the diagnosis on windows. A time window is a
small chunk of observations, which is formally defined as follows.

Definition 22 (Time Window) Given a sequence of observations of a finite length o =

o1, . . . , on, and two indexes i < j, the time window o[i, j] is defined as the subsequence of
observations oi, . . . , oj if j < n; otherwise, o[i, j] is defined as oi, . . . , on.

Given a time window o1, . . . , ok, a system trace σ ∈ L is compatible with the
window if the window appears in the observations of σ.

Definition 23 (Compatible System Trace with a Time Window) Given a time window
o1, . . . , ok where k ≥ 1, a system trace σ ∈ L is compatible with the window if there exist
two sequences of observations o′1, . . . , o′m and o′′1 , . . . , o′′p where m ≥ 1 and p ≥ 1 such that
obs(σ) = o′1, . . . , o′m, o1, . . . , ok, o′′1 , . . . , o′′p .

Definition 24 (Single-Window Algorithm) The single-window algorithm, denoted as
Wi,j, is defined as follows:

• Wi,j(M, o) = N if there exists a nominal trace σ ∈ LN compatible with o[i, j];

• Wi,j(M, o) = F otherwise.

In this work, a diagnosis problem is defined on a model and an observation. In
general, the diagnoser should indicate whether the system is in the nominal mode,
in the faulty mode, or it cannot decide, i.e. the system status is ambiguous. Assump-
tion 4 of Chapter 3 states that the diagnosis policy of this work does not distinguish
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between the nominal mode and ambiguous mode, i.e. the diagnoser assumes that
the system is not faulty unless proved otherwise.

Definition 24 says that as long as there is a nominal explanation for a time window
o[i, j], the diagnostic result for this time window is nominal. If there is no nominal
explanation for a time window o[i, j], then the diagnostic result for this time window
must be faulty.

A B DCF

b

u

v

c

a

v

c

b

Figure 4.1: A simple DES model M3 where a, b, c are observable events, and u, v are
unobservable events

Fig. 4.1 shows a simple DES model M3. State F is faulty while the other states are
nominal. Observable events are a, b, c, and unobservable events are u, v. This work
provides three examples. The first two examples have a nominal output while the
third example has a faulty output.

Example 1: Single-Window Algorithm Given the system model M3, an obser-
vation sequence o = a, b, a, b, b, c, c, c, and a time window o[1, 4] = a, b, a, b, the
Single-Window Algorithm W1,4(M3, o) evaluates to N since there exists a sequence
σ = a, b, a, b and a corresponding trace t : A a−→ C b−→ A a−→ C b−→ A such that σ ∈ LN .
Therefore, there exists a nominal trace σ that is compatible with o[1, 4].

�

Example 2: Single-Window Algorithm Given the system model M3, an observa-
tion sequence o = a, b, a, b, b, c, c, c, and a time window o[5, 6] = b, c, the Single-
Window Algorithm W5,6(M3, o) evaluates to N since there exists a sequence σ =

a, b, a, b, b, c and a corresponding trace t : A a−→ C b−→ A a−→ C b−→ A u−→ B b−→ A u−→ B v−→
D c−→ D such that σ ∈ LN . Therefore, there exists a nominal trace σ that is compatible
with o[5, 6].

�

Example 3: Single-Window Algorithm Given the system model M3, an observa-
tion sequence o = a, b, a, c, c, c, c, c, and a time window o[1, 5] = a, b, a, c, c, the Single-
Window Algorithm W1,5(M3, o) evaluates to F since there only exists one sequence
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σ = a, b, a, c, c and the corresponding trace t : A a−→ C b−→ A a−→ C v−→ F c−→ F c−→ F such
that σ ∈ LF. Therefore, there is no nominal trace σ that is compatible with o[1, 5].

�

Lemma 1 Wi,j(M, o) = F ⇒ ∆(M, o) = F.

Proof of Lemma 1 Suppose Wi,j(M, o) = F. Then, there is no nominal trace σ ∈ LN

that is compatible with o[i, j]. Therefore, there is no σ such that σ ∈ LN ∧ obs(σ) = o.
By Definition 7, ∆(M, o) = F.

�

Lemma 1 is similar to the correctness property of a diagnostic algorithm as in
Definition 9. It provides an important inference that as soon as a time window is
diagnosed as faulty, the system must be faulty. Lemma 1 will be used in Section 4.1.3
to prove the monotonicity and correctness of window-based diagnostic algorithms.

4.1.3 Windows-based Diagnosis

Windows-based diagnosis offers various ways to slice an observation sequence into
time windows. The final output will be the conjunction of the diagnostic results of
several time windows, i.e. the system is in the faulty mode if the diagnosis on at
least one time window returns faulty; it is in the nominal mode if all time windows
return nominal.

Definition 25 (Window-based Diagnostic Algorithm) Given a diagnostic algorithm A,
a system model M, observations o ∈ Σo

∗, and time windows T = {[i1, j1], [i2, j2], [i3, j3], . . . },
the diagnosis of A(M, o, T) is defined as follows.

A(M, o, T) =

{
N if ∀[i, j] ∈ T, Wi,j(M, o) = N
F otherwise.

Notice that more observations imply that the number of time windows increases,
which makes it more likely for a single-window diagnosis to diagnose the fault. This
work provides two examples. The first example has a nominal output while the
second example has a faulty output.

Example 1: Window-based Diagnostic Algorithm Given the system model M3, an
observation sequence o = a, b, a, b, b, c, c, c, and T = {[1, 4], [5, 6]}, the Window-based
Diagnostic Algorithm A(M3, o) evaluates to N since both W1,4(M3, o) and W5,6(M3, o)
evaluate to N.

�
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Example 2: Window-based Diagnostic Algorithm Given the system model M3, an
observation sequence o = a, b, a, c, c, c, c, c, and T = {[1, 5], [6, 7]}, the Window-based
Diagnostic Algorithm A(M3, o) evaluates to F since W1,5(M3, o) evaluates to F.

�

Recall that Definition 9 specifies the two properties of monotonicity and correct-
ness for a diagnostic algorithm. The following two theorems examine the monotonic-
ity and correctness of window-based diagnostic algorithms.

Theorem 3 (Monotonicity of Window-based Diagnostic Algorithm) A window-based
diagnostic algorithm preserves the monotonicity condition.

Proof of Theorem 3

Suppose A(M, o, T) = F. (4.1)

⇒The diagnosis on at least one time window returns faulty, i.e. (4.2)

∃[i, j] ∈ T, Wi,j(M, o) = F (4.3)

∀e ∈ Σo, o[i, j] is a subsequence of oe[i, j]. (4.4)

⇒∃[i, j] ∈ T, Wi,j(M, oe) = F (4.5)

⇒A(M, oe, T) = F. (4.6)

Therefore, a window-based diagnostic algorithm preserves the monotonicity prop-
erty, i.e. A(M, o, T) = F ⇒ ∀e ∈ Σo, A(M, (oe), T) = F. �

Theorem 4 (Correctness of Window-based Diagnostic Algorithm) A window-based di-
agnostic algorithm preserves the correctness condition.

Proof of Theorem 4 Lemma 1 states that Wi,j(M, o) = F ⇒ ∆(M, o) = F. If
A(M, o, T) = F, then ∃[i, j] ∈ Time-Windows, Wi,j(M, o) = F. By Lemma 1, ∆(M, o) =
F. Therefore, a window-based diagnostic algorithm preserves the correctness condi-
tion, i.e. A(M, o, T) = F ⇒ ∆(M, o) = F.

�

4.2 Four Implementations of IWAs

This section illustrates four implementations of IWAs, namely Alp, Al1, Al2, and Al3,
which differ only in the window selection T. This section also explains their expected
benefits. These algorithms follow Definition 24 for a single-window algorithm, and
Definition 25 for a window-based diagnostic algorithm.
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Figure 4.2: A simple DES model M4 where a, b, c, x, y are observable events, and u, v
are unobservable events

Observations Model Diagnoser Diagnostic Result
a, b, b, b, b, c, c, c M3 ∆ N
a, b, b, b, a, c, c, c M3 ∆ F
b, a, b, a, c, c, c, c M3 ∆ F
x, c, c, b, b, b, b, b M4 ∆ F
x, c, c, c, b, b, b, b M4 ∆ F

b, x, c, c, c, b M4 ∆ F

Table 4.1: Diagnostic results for M3 in Fig. 4.1 and M4 in Fig. 4.2

Fig. 4.2 shows a simple DES model M4 where a, b, c, x, y are observable events,
and u, v are unobservable events. Tab. 4.1 shows five examples of diagnostic results
for the system model M3 in Fig. 4.1 and M4 in Fig. 4.2. This section compares the
diagnostic results of the four IWAs with exact diagnosis ∆.

We define the generalised IWA. IWA begins at the i1-th observation, and the size
of each time window is k. There is a finite delay d between two time windows, which
is measured by the difference between the starting index of two consecutive time
windows. IWA aims at slicing observations and running diagnosis using samples of
time windows. IWA also enforces the time windows to be frequently reoccurring.
Although this approach may not diagnose a fault as early as using exact diagnosis,
IWA aims to diagnose a fault in one of the samples of time windows. IWA may skip
some time windows, which reduces the computational complexity of diagnosis. The
time windows of IWA are defined as follows.

TIWA(i1, k, d) = {[i1, i1 + k− 1], [i2, i2 + k− 1], [i3, i3 + k− 1], . . . } s.t. d = ix − ix−1,

where x ≥ 2∧ x ∈ Z ∧ d > 0

For example, when i1 = 1 and d > k, the first two time windows of IWA are visu-
alised as follows.

time window 1︷ ︸︸ ︷
o1 . . . . . . ok . . . . . .

time window 2︷ ︸︸ ︷
od+1 . . . . . . od+k . . . . . .
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4.2.1 Preliminary Independent-Window Algorithm Alp

Alp is a preliminary and conservative IWA. Alp proposes to use sliding time win-
dows for diagnosis. A sliding time window moves along an observation flow by one
observation at a time. Alp begins at the i-th observation, and the size of each time
window is k. Let the length of a time window be k. The finite delay d between two
time windows is 1. The time windows of Alp are defined as follows.

TAlp(i, k, 1) = {[i, i + k− 1], [i + 1, i + k], [i + 2, i + k + 1] . . . }

For example, when i = 1, the first two time windows are visualised as follows.

time window 1︷ ︸︸ ︷
o1︸ ︷︷ ︸

time window 2

o2 . . . . . . okok+1 . . . . . .

Input Time Window Diagnosis Output
x, c, c, b, b, b, b, b (x, c, c, b) F F (precise)

(c, c, b, b) Alp may stop
(c, b, b, b) Alp may stop
(b, b, b, b) Alp may stop
(b, b, b, b) Alp may stop

x, c, c, c, b, b, b, b (x, c, c, c) N N (imprecise)
(c, c, c, b) N
(c, c, b, b) N
(c, b, b, b) N
(b, b, b, b) N

Table 4.2: Examples of Alp running on M4 in Fig. 4.2 where i = 1 and k = 4

Example of Alp Tab. 4.2 shows a set of results of running Alp on M4 where i is 1
and k is 4. In this case,

TAlp(1, 4, 1) = {[1, 4], [2, 5], [3, 6], [4, 7], [5, 8]}.

The first output is precise while the second output is not precise. Given the first
observation sequence x, c, c, b, b, b, b, b, the time windows are (x, c, c, b), (c, c, b, b),
(c, b, b, b), (b, b, b, b), and (b, b, b, b). For the first time window (x, c, c, b), there is only
one trace that is compatible with this time window, i.e. A x−→ C c−→ D c−→ D v−→ G b−→ G.
In particular, L(G) evaluates to F. This trace is faulty, and therefore there is no
nominal explanation. Thus, the diagnostic result for the first time window is F, i.e.
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W1,4(M, o) evaluates to F. Therefore, the first observation sequence is diagnosed as
F.

Given the second observation sequence x, c, c, c, b, b, b, b, the time windows are:
(x, c, c, c), (c, c, c, b), (c, c, b, b), (c, b, b, b), and (b, b, b, b).

• For the first time window (x, c, c, c), there exists a nominal trace that is compat-
ible with this time window, i.e. A x−→ C c−→ D c−→ D c−→ D. In particular, L(D)

evaluates to N. Thus, the diagnostic result of the first time window is N, i.e.
W1,4 evaluates to N.

• For the second time window (c, c, c, b), there exists a nominal trace that is com-
patible with this time window, i.e. A c−→ B c−→ B c−→ B u−→ A b−→ A. In particular,
L(A) evaluates to N. Thus, the diagnostic result of the second time window is
N, i.e. W2,5 evaluates to N.

• For the third time window (c, c, b, b), there exists a nominal trace that is com-
patible with this time window, i.e. A c−→ B c−→ B u−→ A b−→ A b−→ A. In particular,
L(A) evaluates to N. Thus, the diagnostic result of the third time window is N,
i.e. W3,6 evaluates to N.

• For the fourth time window (c, b, b, b), there exists a nominal trace that is com-
patible with this time window, i.e. A c−→ B u−→ A b−→ A b−→ A b−→ A. In particular,
L(A) evaluates to N. Thus, the diagnostic result of the fourth time window is
N, i.e. W4,7 evaluates to N.

• For the fifth time window (b, b, b, b), there exists a nominal trace that is com-
patible with this time window, i.e. A c−→ B u−→ A b−→ A b−→ A b−→ A b−→ A. In
particular, L(A) evaluates to N. Thus, the diagnostic result of the fifth time
window is N, i.e. W5,8 evaluates to N.

Therefore, the second observation sequence is diagnosed as N, i.e. ∀[i, j] ∈ TAlp such
that Wi,j(M, o) evaluates to N. However, this observation should lead to F using exact
diagnosis ∆. Therefore, the diagnostic result of the second time window is imprecise.

�

Alp is a very conservative IWA. Its time windows moves along an observation
sequence by one observation at a time. This preliminary IWA attempts to diagnose a
fault as early as using exact diagnosis. However, Alp has two major disadvantages.

• Alp is inefficient to run in terms of time. Suppose the number of observations
is |obs|, and the time window size is k. Since Alp moves by one observation at
a time, the number of time windows to diagnose in the worst case is (|obs| −
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k + 1). This leads to a large amount of time windows to diagnose, and the
computational time will be long.

• Although Alp has very conservative selections of time windows, the precision
of using Alp varies between DES models. The above example of Alp demon-
strates that it is imprecise w.r.t. M4. In general, Alp cannot handle the situations
where some particular events must be included to one time window in order
to produce a precise diagnostic result. The precision of Alp w.r.t. a DES model
will be examined in Section 4.3.

In summary, Alp is a preliminary and very conservative IWA. Alp inspires the
other IWAs, namely Al1, Al2, and Al3, which will be explained in the following
sub-sections.

4.2.2 Independent-Window Algorithm Al1

This work proposes Al1, which is the simplest variant of IWAs. Al1 begins at the
i-th observation, and slices a sequence of observations every k observations. The
finite delay d between two time windows is k. It is useful for those systems that is
sufficient to diagnose a fault using a bounded time window. The time windows of
Al1 are defined as follows.

TAl1(i, k, k) = {[i, i + k− 1], [i + k, i + 2k− 1], [i + 2k, i + 3k− 1], . . . }

The first three time windows of Al1 are visualised as follows.

time window 1︷ ︸︸ ︷
oi . . . . . . oi+k−1

time window 2︷ ︸︸ ︷
oi+k . . . . . . oi+2k−1

time window 3︷ ︸︸ ︷
oi+2k . . . . . . oi+3k−1 . . . . . .

Observation Time Window Diagnosis Output
a, b, b, b, b, c, c, c (a, b, b, b) N N (precise)

(b, c, c, c) N
a, b, b, b, a, c, c, c (a, b, b, b) N F (precise)

(a, c, c, c) F
b, a, b, a, c, c, c, c (b, a, b, a) N N (imprecise)

(c, c, c, c) N

Table 4.3: Examples of Al1 running on M3 in Fig. 4.1 where i = 1 and k = 4

Example of Al1 Tab. 4.3 shows a set of results of running Al1 on M3 in Fig. 4.1 with
the starting observation index i = 1 and the time window size k = 4. In this case,
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TAl1(1, 4, 4) = {[1, 4], [5, 8]}. Given the first observation sequence o = a, b, b, b, b, c, c, c,
the time windows are: (a, b, b, b), and (b, c, c, c).

• For the first time window (a, b, b, b), there exists a nominal trace that is com-
patible with this time window, i.e. A a−→ C b−→ A u−→ B b−→ A u−→ B b−→ A. In
particular, L(A) evaluates to N. Therefore, the first time window leads to N,
i.e. W1,4(M, o) evaluates to N.

• For the second time window (b, c, c, c), there exists a nominal trace that is com-
patible with this time window, i.e. A u−→ B b−→ A u−→ B v−→ D c−→ D c−→ D c−→ D. In
particular, L(D) evaluates to N. Thus, the diagnostic result of the second time
window is N, i.e. W5,8(M, o) evaluates to N.

Therefore, the first observation sequence is diagnosed as N, i.e. ∀[i, j] ∈ TAl1 such
that Wi,j(M, o) evaluates to N.

Given the second observation sequence a, b, b, b, a, c, c, c, the time windows are:
(a, b, b, b), and (a, c, c, c).

• For the first time window (a, b, b, b), there exists a nominal trace that is com-
patible with this time window, i.e. A a−→ C b−→ A u−→ B b−→ A u−→ B b−→ A. In
particular, L(A) evaluates to N. Therefore, the first time window leads to N,
i.e. W1,4(M, o) evaluates to N.

• For the second time window (a, c, c, c), there is only one trace that is compatible
with this time window, i.e. A a−→ C v−→ F c−→ F c−→ F c−→ F. In particular,
L(F) evaluates to F. This trace is faulty, and therefore there is no nominal
explanation. Thus, the diagnostic result of the second time window is F, i.e.
W5,8(M, o) evaluates to F.

Therefore, the second observation sequence is diagnosed as F.
Given the third observation sequence b, a, b, a, c, c, c, c, the time windows are:

(b, a, b, a) and (c, c, c, c).

• For the first time window (b, a, b, a), there exists a nominal trace that is com-
patible with this time window, i.e. A u−→ B b−→ A a−→ C b−→ A a−→ C. In particular,
L(C) evaluates to N. Therefore, the first time window leads to N, i.e. W1,4(M, o)
evaluates to N.

• For the second time window (c, c, c, c), there exists a nominal trace that is com-
patible with this time window, i.e. A u−→ B v−→ D c−→ D c−→ D c−→ D c−→ D. In
particular, L(D) evaluates to N. Therefore, the diagnostic result of the second
time window is N, i.e. W5,8(M, o) evaluates to N.
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Therefore, the third observation sequence is diagnosed as N, i.e. ∀[i, j] ∈ TAl1(1, 4, 4)
such that Wi,j(M, o) evaluates to N. However, Tab. 4.1 shows this observation should
lead to F. This example demonstrates that Al1 has its drawbacks of imprecise di-
agnosis, i.e. it cannot handle the situations where some particular events must be
included to one time window in order to produce a precise diagnostic result. The
precision of Al1 w.r.t. a DES model will be examined in Section 4.3.1.

�

4.2.3 Independent-Window Algorithm Al2

Al2 aims to make improvement to Al1. Al2 is based on Al1, and begins at the i-th
observation. The size of each time window is k for simplicity. This work assumes
that k is a multiple of 2. The finite delay d between two time windows is k

2 . As
seen in Section 4.2.2, Al1 is unable to deal with the situation which requires some
consecutive observations to diagnose a fault. In addition to the time windows of Al1,
Al2 includes all slicing points of the time windows. Al2 makes sure the windows
overlap so that consecutive observations always appear in at least one time window.
The time windows of Al2 are defined as follows.

TAl2(i, k,
k
2
) = {[i, i + k− 1], [i + k, i + 2k− 1], [i + 2k, i + 3k− 1], . . . }∪

{[i + k
2

, i +
3k
2
− 1], [i +

3k
2

, i− 1 +
5k
2
], [i +

5k
2

, i− 1 +
7k
2
], . . . }

For example, when i = 1, the first three time windows of Al2 are visualised as
follows.

time window 1︷ ︸︸ ︷
o1 . . . o k

2 ︸ ︷︷ ︸
time window 2

o k
2+1 . . . ok

time window 3︷ ︸︸ ︷
ok+1 . . . o 3

2 ko 3
2 k+1 . . . o2k . . .

Example 1 of Al2 Tab. 4.4 shows a set of results of running Al2 on M3 with i = 1
and k = 4. The input observation sequences are the same as those in Tab. 4.3. In this
case, TAl2(1, 4, 2) = {[1, 4], [3, 6], [5, 8]}. All diagnostic results in this table are precise.
Al1 cannot precisely diagnose the third observation. In contrast, Al2 returns F, which
is a precise result. This is because it is necessary to include a, c in one time window
to diagnose the fault in this DES model. Al1 cannot guarantee that a and c always
appear in one time window while Al2 is able to provide such guarantee.

�
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Input Time Window Diagnosis Output
a, b, b, b, b, c, c, c (a, b, b, b) N N (precise)

(b, b, b, c) N
(b, c, c, c) N

a, b, b, b, a, c, c, c (a, b, b, b) N F (precise)
(b, b, a, c) F
(a, c, c, c) F

b, a, b, a, c, c, c, c (b, a, b, a) N F (precise)
(b, a, c, c) F
(c, c, c, c) N

Table 4.4: Examples of Al2 running on M3 in Fig. 4.1 where i = 1 and k = 4
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Figure 4.3: A simple DES model M4 where a, b, c, x, y are observable events, and u, v
are unobservable events

Input Time Window Diagnosis Output
b, x, c, c, c, b (b, x) N N (imprecise)

(x, c) N
(c, c) N
(c, c) N
(c, b) N

Table 4.5: Examples of Al2 running on M4 in Fig. 4.3 where i = 1 and k = 2

Example 2 of Al2 Fig. 4.3 shows a DES model M4 where a, b, c, x, y are observable
events, and u, v are unobservable events. Tab. 4.5 shows the result of running Al2 on
M4 with i = 1 and k = 2. In this case, TAl2(1, 2, 1) = {[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]}.
The diagnostic output is not precise. Given the observation sequence b, x, c, c, c, b, the
time windows are (b, x), (x, c), (c, c), (c, c), and (c, b).

• For the first time window (b, x), there exists a nominal trace that is compatible
with this time window, i.e. A b−→ A x−→ C. In particular, L(C) evaluates to N.
Thus, the first time window leads to N, i.e. W1,2(M, o) evaluates to N.

• For the second time window (x, c), there exists a nominal trace that is compat-
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ible with this time window, i.e. A x−→ C c−→ D. In particular, L(D) evaluates to
N. Thus, the second time window leads to N, i.e. W2,3(M, o) evaluates to N.

• For the third and the fourth time window (c, c), there exists a nominal trace
that is compatible with this time window, i.e. A c−→ B c−→ B. In particular, L(B)
evaluates to N. Thus, both of the third and the fourth time window lead to N,
i.e. both W3,4(M, o) and W4,5(M, o) evaluates to N.

• For the fifth time window (c, b), there exists a nominal trace that is compatible
with this time window, i.e. A c−→ B u−→ A b−→ A. In particular, L(A) evaluates to
N. Thus, the fifth time window leads to N.

Therefore, this observation sequence is diagnosed as N, which is a precise diagnostic
result, i.e. ∀[i, j] ∈ TAl2(1, 2, 1) such that Wi,j(M, o) evaluates to N. However, this
observation should lead to F using exact diagnosis ∆, as seen in Tab. 4.1. This exam-
ple demonstrates that Al2 as an IWA may lead to imprecise diagnostic results. The
precision of Al2 w.r.t. a DES model will be examined in Section 4.3.2.

�

4.2.4 Independent-Window Algorithm Al3

We investigate the variable value of the d parameter in IWA. This case of IWA is
named as Al3.

Input Time Window Diagnosis Output
a, b, b, b, b, c, c, c (a, b) N N (precise)

(b, b) N

Table 4.6: Examples of Al3 running on M3 in Fig. 4.1 where i1 = 1, k = 2, and d = 3

Example of Al3 Tab. 4.6 shows the result of running Al3 on M3 with i1 = 1, k =

2, d = 3. In this case, TAl3(1, 2, 3) = {[1, 2], [4, 5]}. The diagnostic output is precise.
Given the observation sequence a, b, b, b, b, c, c, c, the time windows are (a, b), (b, b).

• For the first time window (a, b), there exists a nominal trace that is compatible
with this time window, i.e. A a−→ C b−→ A. In particular, L(A) evaluates to N.
Thus, the first time window leads to N, i.e. W1,2(M, o) evaluates to N.

• For the second time window (b, b), there exists a nominal trace that is com-
patible with this time window, i.e. A u−→ B b−→ A u−→ B b−→ A. In particular,
L(A) evaluates to N. Thus, the second time window leads to N, i.e. W4,5(M, o)
evaluates to N.
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Therefore, this observation sequence is diagnosed as N, i.e. ∀[i, j] ∈ TAl3(1, 2, 3)
such that Wi,j(M, o) evaluates to N. The precision of Al3 w.r.t. a DES model will be
examined in Section 4.3.4.

�

4.3 Precision Verification for IWAs

Section 4.2 presents four implementations of IWAs. As seen in those examples, IWAs
may lead to imprecise diagnostic results. This section examines the precision of each
of the four IWAs w.r.t. a DES model by constructing a simulation as proposed in
Chapter 3. Recall that the simulation is a modified model that simulates how a
diagnostic algorithm works on a DES model.

Although a simulation has more states than the original system model, a simula-
tion is only used for precision verification, and not used for diagnosis. Furthermore,
the states and transitions of the simulation automata do not need to be explicitly
represented, but can be represented symbolically, e.g. using BDD [Schumann et al.,
2010].

4.3.1 Precision of Al1 w.r.t. a DES Model

Given k, the Al1-simulation for a DES model is formally defined as follows.

Definition 26 (Al1-Simulation) Given k, the Al1-simulation for model M = 〈Q, Σ, T, I, L〉
is the automaton M′1 = 〈Q′1, Σ′1, T′1, I′1, L′1〉 where

• Q′1 = Q× {0, 1, 2, . . . , k};

• Σ′1 = Σ ∪ {ε};

• T′1 = Tu ∪ To ∪ Tε is defined by:

– Tu = {〈〈q, i〉, u, 〈q′, i〉〉 | i ∈ {0, 1, 2, . . . , k} ∧ 〈q, u, q′〉 ∈ T ∧ u ∈ Σ \ Σo};

– To = {〈〈q, i〉, o, 〈q′, i + 1〉〉 | i ∈ {0, 1, 2, . . . , k− 1} ∧ 〈q, o, q′〉 ∈ T ∧ o ∈ Σo};

– Tε = {〈〈q, k〉, ε, 〈q′, 0〉〉 | L(q) = L(q′)};

• I′1 = I × {0};

• L′1(〈q, i〉) = L(q) for all q ∈ Q and i ∈ {0, 1, 2, . . . , k}.

The simulation for Al1 and a DES model M, denoted as si(M, Al1), is an automa-
ton that contains (k + 1) copies of the states of M. Each state 〈q, i〉 of si(M, Al1)
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records not only the system state q but also the number i of observations in the cur-
rent window. When the number of observations in one time window reaches k, the
state of the simulation is “reset”, i.e. an empty transition, denoted as ε, takes the
simulation from state 〈q, k〉 to state 〈q′, 0〉 such that q′ and q only have in common
that their diagnostic information is the same, i.e. L(q) = L(q′).
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Figure 4.4: Part of the simulation for the DES model M3 in Fig. 4.1 and Al1, where
k = 4. Dotted lines also need to link A4 to A0, B0, C0 and D0. Same applies to B4 and
C4.

Example 1: Simulation for M3 and Al1 Fig. 4.4 illustrates part of the simulation
for M3 in Fig. 4.1 and Al1 where k is 4. F0, F1, F2, F3 and F4 are faulty states while the
rest states are nominal. Definition 26 says for every observable transition, a link is
created from the beginning state to the target state on the next row, which represents
that the event of this transition is observed in this time window of length k; for every
unobservable transition, a link is created from the beginning state to the target state
on the same row, which represents that no event is observed; for each faulty state
at the end of the time window, a link ε is created from F4 to faulty states only at
the beginning of the time window, i.e. F0; for each nominal state at the end of the
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time window, a link ε is created to every nominal state at the beginning of the time
window, i.e. C0, A0, B0, D0.

To verify the precision of Al1 w.r.t. M3, the simulation for Al1 needs to be syn-
chronised with M3. A twin plant is then built for this synchronisation. Any am-
biguous path is checked on the twin plant. There exists an ambiguous path, and it
contains a loop, i.e. AA0

a−→ CC1
b−→ AA2

a−→ CC3
b−→ AA4

c−→ DF1
c−→ DF2

c−→ DF3
c−→

DF4
c−→ DF1 . . . . Therefore, Al1 is not precise w.r.t. M3 when k = 4 by Theorem 1 of

Chapter 3.

�

Theorem 5 proves the correctness of the simulation for M and Al1.

Theorem 5 (Simulation for a DES model M and Al1) The Al1-simulation of a diagno-
sis model M as defined in Definition 26 is the simulation for M and Al1.

Proof of Theorem 5 Given a model M and any observation sequence o ∈ Σo
∗, a path

on the Al1-simulation of M with |o| observations, denoted as p1, is the concatenation
of d|o|/ke paths of length k, denoted as p2, such that the diagnostic information at
the end of p1 is the same as the one at the beginning of p2. Therefore, all paths
in the simulation that are consistent with the observations will end in a faulty state
iff all paths of one window end in a faulty state, i.e. ∀o ∈ Σo

∗, Al1(M, o, TAl1) =

∆(k-simulation(M, Al1), o). This satisfies Definition 11 for the simulation of a diag-
nostic algorithm and a DES model.

�

This work discusses the complexity of a simulation for a DES model M and Al1.
The size of the simulation is k times that of M, where k is the time window size.
Thus, verifying the precision of Al1 w.r.t. M using the twin plant method remains
polynomial. Remember that a simulation is only used to verify the precision of a
diagnostic algorithm w.r.t. a DES model, and not for diagnosis.

4.3.2 Precision of Al2 w.r.t. a DES Model

With the help of Definition 26, the simulation for Al2 is defined as follows.

Definition 27 (Al2-Simulation) Given the time window size k, assuming k is a multiple
of 2, the Al2-simulation for model M = 〈Q, Σ, T, I, L〉 is the automaton M′ = M′1 ⊗ M′2
where M′1 is the Al1-simulation as defined in Definition 26 and M′2 = 〈Q′2, Σ′2, T′2, I′2, L′2〉
where

• Q′2 = Q× {0, 1, 2, . . . , k};
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• Σ′2 = Σ ∪ {ε};

• T′2 = Tu2 ∪ To2 ∪ Tε2 is defined by:

– Tu2 = {〈〈q, i〉, u, 〈q′, i〉〉 | i ∈ [ k
2 , k

2 + 1, k
2 + 2, . . . , k, 0, 1, 2, . . . , k

2 − 1]∧〈q, u, q′〉 ∈
T ∧ u ∈ Σ \ Σo};

– To2 = {〈〈q, i〉, o, 〈q′, i + 1〉〉 | i ∈ [ k
2 , k

2 + 1, k
2 + 2, . . . , k, 0, 1, 2, . . . , k

2 − 2] ∧
〈q, o, q′〉 ∈ T ∧ o ∈ Σo};

– Tε2 = {〈〈q, k
2 − 1〉, ε, 〈q′, k

2 〉〉 | L(q) = L(q′)};

• I′2 = I × { k
2};

• L′2(〈q, i〉) = L(q).
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Figure 4.5: Part of the simulation for the DES model M3 in Fig. 4.1 and Al2, where
k = 4. Dotted lines also need to link A1 to A2, B2, C2 and D2. Same applies to B1 and
C1.
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Example 2: Simulation for M3 and Al2 Fig. 4.4 shows the Al1-simulation, and
Fig. 4.5 shows M′2. To construct the simulation for Al2, Fig. 4.4 and Fig. 4.5 are
synchronised in order to compute the Al2-simulation. To verify the precision of
Al2 w.r.t. M3, the simulation for Al2 needs to be synchronised with M3 in Fig. 4.1.
The twin plant is then constructed for this synchronisation. Any ambiguous path is
checked on the twin plant. There is no loop on any ambiguous path since there is no
ambiguous path. Therefore, Al2 is precise w.r.t. M3 by Theorem 1 when k is 4.

�

Theorem 6 proves the correctness of the simulation for M and Al2.

Theorem 6 (Simulation for a DES model M and Al2) The Al2-simulation of a diagno-
sis model M as defined in Definition 27 is the simulation for M and Al2.

Proof of Theorem 6 Given a DES model M and any observation sequence o ∈ Σo
∗,

a path on the Al2-simulation of M with |o| observations denoted as p1 is the concate-
nation of d|o|/ke paths of length k, where p2 denotes the paths in the Al1-simulation
and p3 denotes the paths in M′2. Therefore, all paths in the simulation that are consis-
tent with the observations will end in a faulty state iff all paths of one time window
end in a faulty state, i.e. ∀o ∈ Σo

∗, Al2(M, o, TAl2) = ∆(Al2-simulation(M, Al2), o).
This satisfies Definition 11 for the simulation of a diagnostic algorithm and a DES
model.

�

This work discusses the complexity of a simulation for a DES model M and Al2.
Let k be the time window size. Verifying the precision of Al2 w.r.t. M using the twin
plant method remains polynomial. Remember that a simulation is only used to verify
the precision of a diagnostic algorithm w.r.t. a DES model, and not for diagnosis.

4.3.3 Precision of Alp w.r.t. a DES Model

With the help of Definition 26, the simulation for Alp is defined as follows. The
simulation for Alp is defined first because the Al3-simulation will use part of the
simulation for Alp.

Definition 28 (Alp-Simulation) Given the time window size k, the Alp-simulation for
model M = 〈Q, Σ, T, I, L〉 is the automaton M′ = M′1 ⊗ M′2 ⊗ M′3 ⊗ · · · ⊗ M′k ⊗ M′k+1

where M′1 is the Al1-simulation as defined in Definition 26 and for j ∈ [2, k + 1], M′j =

〈Q′j, Σ′j, T′j , I′j , L′j〉 where

• Q′j = Q× {0, 1, 2, . . . , k};
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• Σ′j = Σ ∪ {ε};

• T′j = Tuj ∪ Toj ∪ Tε j is defined by:

– Tuj = {〈〈q, i〉, u, 〈q′, i〉〉 | i ∈ [j, j+ 1, j+ 2, . . . , k, 0, 1, 2, . . . , j− 1]∧〈q, u, q′〉 ∈
T ∧ u ∈ Σ \ Σo};

– Toj = {〈〈q, i〉, o, 〈q′, i + 1〉〉 | i ∈ [j, j + 1, j + 2, . . . , k, 0, 1, 2, . . . , j − 2] ∧
〈q, o, q′〉 ∈ T ∧ o ∈ Σo};

– Tε j = {〈〈q, j− 1〉, ε, 〈q′, j〉〉 | L(q) = L(q′)};

• I′j = I × {j− 1};

• L′j(〈q, i〉) = L(q).

Example 3: Simulation for a DES model M3 and Alp This work examines the
simulation for Alp, which will be useful in the next example for Al3. The simulation
for Alp is very similar to the simulation for Al2 as in Fig. 4.5. The difference is that
five such models are needed. The first model has index 0 for each state in the first
row; the second model has index 1 for each state in the first row; the third model has
index 2 for each state in the first row; the fourth model has index 3 for each state in
the first row; the fifth model has index 4 for each state in the first row. All five models
are synchronised to form the simulation for Alp. Alp is precise w.r.t. M3 when k is 4.

�

Theorem 7 proves the correctness of the simulation for M and Alp.

Theorem 7 (Simulation for a DES model M and Alp) The Alp-simulation of a diagno-
sis model M as defined in Definition 28 is the simulation for M and Alp.

Proof of Theorem 7 Given a DES model M and any observation sequence o ∈ Σo
∗,

a path on the Alp-simulation of M with |o| observations, denoted as p1, is the
concatenation of d|o|/ke paths of length k, where p2 denotes the paths in the Al1-
simulation, and for j ∈ [2, k + 1], pj denotes the paths in M′j. Therefore, all paths
in the simulation that are consistent with the observations will end in a faulty state
iff all paths of one window end in a faulty state, i.e. ∀o ∈ Σo

∗, Alp(M, o, TAlp) =

∆(Alp-simulation(M, Alp), o). This satisfies Definition 11 for the simulation of a di-
agnostic algorithm and a DES model.

�

This work discusses the complexity of a simulation for a DES model M and Alp.
Let k be the time window size. Verifying the precision of Alp w.r.t. M using the twin
plant method remains polynomial. Remember that a simulation is only used to verify
the precision of a diagnostic algorithm w.r.t. a DES model, and not for diagnosis.
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4.3.4 Precision of Al3 w.r.t. a DES Model

With the help of Definition 26 and 27, the simulation for Al3 is defined as follows.

Definition 29 (Al3-Simulation) Given the time window size k, the Al3-simulation is de-
fined based on the following three cases.

Case 1: d = 1. In this situation, the Al3-simulation is the same as the Alp-simulation,
which is defined in Definition 28.

Case 2: 1 < d < k. The Al3-simulation for model M = 〈Q, Σ, T, I, L〉 is the automaton
M′ = M′1 ⊗ M′2 where M′1 is the Al1-simulation as defined in Definition 26 and M′2 =

〈Q′2, Σ′2, T′2, I′2, L′2〉 where

• Q′2 = Q× {d, d + 1, d + 2, . . . , k, 0, 1, 2, . . . , d− 1};

• Σ′2 = Σ ∪ {ε};

• T′2 = Tu2 ∪ To2 ∪ Tε2 is defined by:

– Tu2 = {〈〈q, i〉, u, 〈q′, i〉〉 | i ∈ {d, d+ 1, d+ 2, . . . , k, 0, 1, 2, . . . , d− 1}∧ 〈q, u, q′〉 ∈
T ∧ u ∈ Σ \ Σo};

– To2 = {〈〈q, i〉, o, 〈q′, i + 1〉〉 | i ∈ {d, d + 1, d + 2, . . . , k, 0, 1, 2, . . . , d − 2} ∧
〈q, o, q′〉 ∈ T ∧ o ∈ Σo};

– Tε2 = {〈〈q, d− 1〉, ε, 〈q′, d〉〉 | L(q) = L(q′)};

• I′2 = I × {d};

• L′2(〈q, i〉) = L(q).

Case 3: d ≥ k. The Al3-simulation is the same as the simulation for Al1 as defined in
Definition 26.

Example 4: Simulation for a DES model M3 and Al3 Al3 is categorised into three
cases depending on the value of d.

Case 1: d = 1. In this situation, Al3 is the same as Alp. Al3 is precise w.r.t. M3 for
k = 4 and d = 1.

Case 2: 1 < d < k. The simulation for Al3 is similar to the simulation for Al2 as in
Fig. 4.5. The difference is that the index for each state in the first row needs to reflect
d, i.e. the number of observations that are skipped. For example, if d is 3, then the
first row should have 3 index for each state. Al3 is precise w.r.t. M3 for k = 4 and
1 < d < k.

Case 3: d ≥ k. The simulation for Al3 is the same as the simulation for Al1 as in
Fig. 4.4. Al3 is not precise w.r.t. M3 for k = 4 and d ≥ k.
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�

Theorem 8 proves the correctness of the simulation for M and Al3.

Theorem 8 (Simulation for a DES model M and Al3) The Al3-simulation of a diagno-
sis model M as defined in Definition 29 is the simulation for M and Al3.

Proof of Theorem 8 Given a DES model M and any observation sequence o ∈ Σo
∗,

case 1 is proved using Theorem 7. Also, case 3 is proved using Theorem 5.
For case 2, a path on the Al3-simulation of M with |o| observations, denoted as

p1, is the concatenation of d|o|/ke paths of length k, where p2 denotes the paths
in the Al1-simulation, and p3 denotes the paths in M′2. Therefore, all paths in the
simulation that are consistent with the observations will end in a faulty state iff all
paths of one time window end in a faulty state, i.e. ∀o ∈ Σo

∗, Al3(M, o, TAl3) =

∆(Al3-simulation(M, Al3), o). This satisfies Definition 11 for the simulation of a di-
agnostic algorithm and a DES model.

�

This work discusses the complexity of a simulation for a DES model M and Al3.
Let k be the time window size. Verifying the precision of Al3 w.r.t. M using the twin
plant method remains polynomial. Remember that a simulation is only used to verify
the precision of a diagnostic algorithm w.r.t. a DES model, and not for diagnosis.

4.4 Comparison of Four Implementations of IWAs

This section compares the four implementations of IWAs. First, this work defines
coverage of one time window on another one.

Definition 30 (Coverage of Two Time Windows) Given two time windows [i, j] and [i′, j′],
if i′ ≤ i and j′ ≥ j, then [i′, j′] covers [i, j], denoted as [i, j] v [i′, j′].

Based on Definition 30, this work defines coverage of a set of time windows on
another set.

Definition 31 (Coverage of Two Sets of Time Windows) Given two set of time win-
dows T1 and T2, if there is always at least one time window in T2 that covers every time
window in T1, then T2 covers T1, denoted as T1 v T2, i.e.

if ∀[i, j] ∈ T1, ∃[i′, j′] ∈ T2 such that [i′, j′] covers [i, j], then T1 v T2.

This work studies the properties of coverage in the context of single-window
algorithms and window-based diagnostic algorithms, by proposing Lemma 2 and 3.
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Lemma 2 Given time windows [i, j] and [i′, j′], if [i, j] v [i′, j′], and Wi,j(M, o) evaluates to
F, then Wi′,j′(M, o) evaluates to F.

Proof of Lemma 2 Given two time windows [i, j] and [i′, j′], suppose [i, j] v [i′, j′],
and Wi,j(M, o) evaluates to F. Then, Wi′,j′(M, o) can be represented by a window-
based diagnostic algorithm, i.e. Wi′,j′(M, o) ≡ A(M, o, T) where

T =


{[i′, i− 1], [i, j], [j + 1, j′]} if i < i′ and j′ > j
{[i, j], [j + 1, j′]} if i = i′ and j′ > j
{[i′, i− 1], [i, j]} if i < i′ and j′ = j.

∃[i, j] ∈ T, Wi,j(M, o) = F (4.7)

⇒A(M, o, T) = F (4.8)

⇒Wi′,j′(M, o) = F. (4.9)

�

Lemma 3 Given two sets of time windows T1 and T2, if T1 v T2 and A(M, o, T1) evaluates
to F, then A(M, o, T2) evaluates to F.

Proof of Lemma 3 Given two sets of time windows T1 and T2, suppose T1 v T2,
and A(M, o, T1) evaluates to F. Then,

∃[i, j] ∈ T1, Wi,j(M, o) = F and T1 v T2 (4.10)

⇒∃[i′, j′] ∈ T2, Wi′,j′(M, o) = F (4.11)

⇒A(M, o, T2) = F. (4.12)

�

Based on Lemma 2 and 3, Theorem 9 proposes the precision relation between two
time windows.

Theorem 9 (Precision Relation) Given a DES model M, two window-based diagnostic
algorithms A with T and A′ with T′, if T v T′, and (A with T) is precise w.r.t. M, then
(A′ with T′) is precise w.r.t. M. The precision relation is denoted as (A with T) ⇒ (A′

with T′).

Proof of Theorem 9 Given a DES model M, two window-based diagnostic algo-
rithms A with T and A′ with T′, since T v T′ and A(M, o, T) evaluates to F, Lemma 3
says that A′(M, o, T′) evaluates to F.
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Definition 10 of Chapter 3 says that a diagnostic algorithm A is precise for a
diagnosis model M w.r.t. a system model M′ if the following holds:

∃n ∈ N, ∀s ∈ L′F, ∀t ∈ Σ∗,
(
st ∈ L′ ∧ |t| ≥ n⇒ A(M, obs(st)) = F

)
.

Since T v T′ ∧ A(M, o, T) = F ⇒ A′(M, o, T′) = F holds, (A′ with T′) is precise
w.r.t. the DES model, i.e. (A with T)⇒ (A′ with T′).

�

Based on Lemma 2, Lemma 3, and Theorem 9, given a DES model M, Property 2
examines the precision relations among Alp, Al1, and Al2 w.r.t. M.

Property 2 (Precision Comparisons)

(Al1 with TAl1(i, k, k) is precise)⇒ (Al2 with TAl2(i, k,
k
2
) is precise) (4.13)

(Al2 with TAl2(i, k,
k
2
) is precise)⇒ (Alp with TAlp(i, k, 1) is precise) (4.14)

(Al1 with TAl1(i, k, k) is precise)⇒ (Alp with TAlp(i, k, 1) is precise) (4.15)

(Al1 with TAl1(i, k, k) is precise)⇒ (Al1 with TAl1(i, x× k, x× k) is precise) (4.16)

where x ≥ 2∧ x ∈ N (4.17)

(Al2 with TAl2(i, k,
k
2
) is precise)⇒ (Al2 with TAl2(i, x× k,

x× k
2

) is precise) (4.18)

where x ≥ 2∧ x ∈ N (4.19)

(Alp with TAlp(i, k, 1) is precise)⇒ (Alp with TAlp(i, k + x, 1) is precise) (4.20)

where x ≥ 1∧ x ∈ N (4.21)

(Alp with TAlp(i, k, 1) is precise)⇒ (Al2 with TAl2(i, x× k,
x× k

2
) is precise) (4.22)

where x ≥ 2∧ x ∈ N (4.23)

The converse of each above line does not always hold.

Proof of Property 2 On each line, given a DES model M, Al with TAl(i, k) on the
left hand side, and Al′ with TAl′(i, k) on the right hand side, by the definition of Al
and that of Al′, TAl(i, k) v TAl′(i, k). By Theorem 9, Al with TAl(i, k) ⇒ Al′ with
Al′(i, k) w.r.t. M.

�

In addition, Property 3 examines the incomparable precision relations.
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Property 3 (Incomparable Precision Relations)

(Alp with TAlp(i, k, 1) is not precise) ; (Alp with TAlp(i, k + x, 1) is precise) (4.24)

where x ≥ 1∧ x ∈ N (4.25)

(Al1 with TAl1(i, k, k) is not precise) ; (Al1 with TAl1(i, k + x, k + x) is precise) (4.26)

where x ≥ 1∧ x ∈ N (4.27)

(Al2 with TAl2(i, k,
k
2
) is not precise) ; (Al2 with TAl2(i, k + x,

k + x
2

) is precise) (4.28)

where x ≥ 1∧ x ∈ N (4.29)

Also,

(Alp with TAlp(i, k + x, 1) is not precise) ; (Alp with TAlp(i, k, 1) is precise) (4.30)

where x ≥ 1∧ x ∈ N (4.31)

(Al1 with TAl1(i, k + x, k + x) is not precise) ; (Al1 with TAl1(i, k, k) is precise) (4.32)

where x ≥ 1∧ x ∈ N (4.33)

(Al2 with TAl2(i, k + x,
k + x

2
) is not precise) ; (Al2 with TAl2(i, k,

k
2
) is precise) (4.34)

where x ≥ 1∧ x ∈ N (4.35)

Property 3 states that for IWAs Alp, Al1, and Al2, increasing the number of ob-
servations in one time window does not guarantee to enhance the precision. Also,
reducing the number of observations in one time window does not guarantee to
maintain the precision.

Property 3 can be proved by counterexamples.

Input Time Window Size Time Window Diagnosis Output
x, c, c, c, b, b, b, b 3 (x, c, c) N N (imprecise)

(c, c, c) N
(c, c, b) N
(c, b, b) N
(b, b, b) N
(b, b, b) N

x, c, c, c, b, b, b, b 4 (x, c, c, c) N N (imprecise)
(c, c, c, b) N
(c, c, b, b) N
(c, b, b, b) N
(b, b, b, b) N

Table 4.7: Examples of Alp running on M4 in Fig. 4.2 where i = 1 and k = 3, 4
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For 4.18, Tab. 4.7 shows the diagnostic results of Alp running on M4 in Fig. 4.2
where i = 1 and k = 3, 4. This counterexample shows that the following double
negation does not hold.

(Alp with TAlp(i, 4, 1) is not precise)⇒ (Alp with TAlp(i, 3, 1) is precise)

Therefore, (Alp with TAlp(i, 3, 1) is not precise) ; (Alp with TAlp(i, 4, 1) is precise) is
valid.

For 4.24, the following double negation does not hold.

(Alp with TAlp(i, 3, 1) is not precise)⇒ (Alp with TAlp(i, 4, 1) is precise)

Therefore, (Alp with TAlp(i, 4, 1) is not precise) ; (Alp with TAlp(i, 3, 1) is precise) is
valid.

Input Time Window Size Time Window Diagnosis Output
x, c, c, c, b, b, b, b 3 (x, c, c) N N (imprecise)

(c, b, b) N
x, c, c, c, b, b, b, b 4 (x, c, c, c) N N (imprecise)

(b, b, b, b) N

Table 4.8: Examples of Al1 running on M4 in Fig. 4.2 where i = 1 and k = 3, 4

For 4.20, Tab. 4.8 shows the diagnostic results of Al1 running on M4 in Fig. 4.2
where i = 1 and k = 3, 4. This counterexample shows that the following double
negation does not hold.

(Al1 with TAl1(i, 4, 4) is not precise)⇒ (Al1 with TAl1(i, 3, 3) is precise)

Therefore, (Al1 with TAl1(i, 3, 3) is not precise) ; (Al1 with TAl1(i, 4, 4) is precise) is
valid.

For 4.26, the following double negation does not hold.

(Al1 with TAl1(i, 3, 3) is not precise)⇒ (Al1 with TAl1(i, 4, 4) is precise)

Therefore, (Al1 with TAl1(i, 4, 4) is not precise) ; (Al1 with TAl1(i, 3, 3) is precise) is
valid.

For 4.22, Tab. 4.9 shows the diagnostic results of Al2 running on M4 in Fig. 4.2
where i = 1 and k = 2, 4. This counterexample shows that the following double
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Input Time Window Size Time Window Diagnosis Output
b, x, c, c, c, b, b, b 2 (b, x) N N (imprecise)

(x, c) N
(c, c) N
(c, c) N
(c, b) N
(c, c) N
(c, c) N

4 (b, x, c, c) N N (imprecise)
(c, c, c, b) N
(c, b, b, b) N

Table 4.9: Examples of Al2 running on M4 in Fig. 4.2 where i = 1 and k = 2, 4

negation does not hold.

(Al2 with TAl2(i, 4, 2) is not precise)⇒ (Al2 with TAl2(i, 2, 1) is precise)

Therefore, (Al2 with TAl2(i, 2, 1) is not precise) ; (Al2 with TAl2(i, 4, 2) is precise) is
valid.

For 4.28, the following double negation does not hold.

(Al2 with TAl2(i, 2, 1) is not precise)⇒ (Al2 with TAl2(i, 4, 2) is precise)

Therefore, (Al2 with TAl2(i, 4, 2) is not precise) ; (Al2 with TAl2(i, 2, 1) is precise) is
valid.

Finally, this section examines the maximum number of observations in one time
window of Alp, Al1, and Al2 that guarantees the precision. Given a diagnosable DES
model M, and the number of states is |Q|, Yoo and Lafortune [2002] proved that the
maximum number of transitions required to diagnose a fault is |Q|2. Therefore, if
the number of observations in one time window of Alp, Al1, and Al2 is at least |Q|2,
then the precision w.r.t. M holds.

4.5 Application of Alarm Log Handling

One major application is intelligent alarm log handling. Alarm log handling is a
problem that operators of a large-scale system are facing every day [Bauer et al.,
2011], e.g. electricity distribution and telecommunication control. Examples of
alarms are faults, warnings, and irregular performance. The amount of alarms in
a faulty scenario tends to be overwhelming for human operators to diagnose and
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handle in a real-time and critical environment. It is a complicated task to diagnose a
large and complex system that is running for a long period of time. Sampath et al.
[1995] is the original work and it is accurate. However, exact diagnosis requires the
entire sequence of observations starting from the beginning of system operations,
which is not practical for a real-world application.

This work has proposed window-based diagnosis. IWAs presented in this chapter
have three advantages compared to using exact diagnosis, i.e. improved flexibility,
reduced complexity, and the capability of dealing with the masking issue. First, IWAs
improve the diagnostic flexibility because it only runs on individual time windows.
An IWA allows to skip irrelevant time windows. Also, each time windows can be
diagnosed separately. This flexibility allows a diagnoser to jump to one particular
time window and perform diagnosis. Therefore, an IWA can diagnose a system
status based on the observations from a recent period of time. In comparison, exact
diagnosis requires a log of system observations starting from the initial state to derive
the belief state at the end of the observations. A log of the system observations
may be gathered over a long period of time. As a result, the size of a log with all
observations since the beginning of the system operation is likely to be large, which
has a significant impact on the computational complexity of exact diagnosis.

Second, it is unnecessary to analyse from the beginning of the system operation
to diagnose a system. Using an IWA, it will be sufficient to analyse the recent history
of observations to diagnose the status of a system. Furthermore, using time windows
is beneficial to organise a sequence of observations by manageable pieces, which fa-
cilitates the identification, diagnosis, and tracking of each time window. Therefore,
time windows allow an intelligent alarm log handling system to reduce the diagnos-
tic complexity, capture the essential information within a time window to perform
diagnosis, and reuse previously computed results.

Third, IWAs are advantageous to deal with the masking issue. Rozé and Cordier
[2002b] has defined the masking issue . When a component sends an alarm signal, it
must be transmitted by multiple components before reaching the supervision centre.
If one of the components in the transmission path is not in the transmitting mode,
then the supervision centre will not receive this alarm. Consequently, a fault in some
sensor is likely to result in incomplete gathering of all events from the sensors. Nev-
ertheless, IWAs are less subject to the masking issue of a sequence of observations
gathered by sensors. This is because the system states are reset between the neigh-
bouring time windows, and IWAs are capable to diagnose one or more independent
time windows.
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4.6 Summary

This chapter reviews the existing approaches for DES diagnosis. The size of a be-
lief state makes the existing approaches not practical for a real-world application
because it has been proved that the size of a belief state grows exponentially w.r.t.
the number of system states [Rintanen, 2007]. This chapter proposes a new class of
diagnostic algorithms, called IWAs, to diagnose a DES model. It also examines their
precision w.r.t. a DES model. IWAs aim to slice a sequence of observations into time
windows, and diagnose them independently. This new approach does not require
maintaining a precise tracking of the system states, reduces computational complex-
ity of diagnosis, and has the advantage to handle intermittent loss of observations
which may occur in the transmission of observations. This chapter provides the defi-
nitions for IWAs. Definition 9 of Chapter 3 defines the monotonicity and correctness
properties for a diagnostic algorithm. This chapter proves that IWAs preserve both
properties. It then demonstrates four implementations of IWAs, i.e. Alp, Al1, Al2,
and Al3. Furthermore, this chapter studies the precision relations among the four
implementations of IWAs.

On the other hand, IWAs may lead to imprecise diagnostic results. Based on
the simulation method proposed in Chapter 3 to verify the precision of a diagnostic
algorithm w.r.t. a DES model, this chapter demonstrates how to construct a simu-
lation, which is a modified model to simulate how an IWA works on a DES model.
The output simulation is then synchronised with the system model. Finally, the twin
plant method is used to verify the precision of an IWA w.r.t. the model.

In conclusion, this chapter proposes a diagnostic strategy, which differs from the
conservative strategy for exact diagnosis that diagnostic algorithms that are only
applied on the very last events of the observable flow and forget about the past.
Although this approach may cause precision loss when both current and past ob-
servations are necessary to understand the system behaviour, the precision can be
measured by applying the simulation method described in Chapter 3.

Chapter 5 will propose a compromise between exact diagnosis and IWAs. It will
propose two new window-based diagnostic algorithms, called Time-Window Algo-
rithms (TWAs). TWAs extend IWAs such that TWAs carry over some information
about the current state of the system from one time window to the next. TWAs look
for the minimum piece of information to remember from the past so that a window-
based algorithm will certainly ensure the same precision as using an exact diagnostic
algorithm.



Chapter 5

Diagnosis of DES using
Time-Window Algorithms

Given a flow of observable events generated by the underlying system, the on-line
DES diagnosis problem consists in determining whether the DES is operating nor-
mally or not based on its behavioural model. Section 2.1 of Chapter 2 reviews the
existing work of on-line diagnosis. Furthermore, Section 3.1.1 of Chapter 3 defines
the exact diagnosis. The existing approaches in the literature use the conservative
strategy of exact diagnosis, with the exception of diagnosis by SAT. The main draw-
back of exact diagnosis is the inability to follow the observable flow for a large system
due to the exponential size of the generated belief states, and therefore the temporal
complexity to handle them. Although diagnosis using SAT computes one trace in the
system for an observation sequence, the complexity of a SAT problem is exponen-
tial to the number of propositional variables, which is linear to the number of state
variables [Grastien et al., 2007].

Chapter 4 proposes the window-based approach, which is different to the conserva-
tive strategy, e.g. diagnostic algorithms that are only applied on the very last events
of the observable flow and forget about the past. Obviously, this approach may cause
precision loss when both current and past observations are necessary to understand
the system behaviour. This precision loss can be measured using the simulation
method described in Chapter 3.

This chapter proposes a compromise between the two extreme strategies. This
work looks for the minimum piece of information to remember from the past, called
abstracted belief state, so that a window-based algorithm will certainly ensure the same
precision as any conservative algorithms. The first contribution of this chapter is
to formally present two new window-based algorithms, called Time-Window Algo-
rithms (TWAs). TWAs are extensions to IWAs presented in Chapter 4. TWAs carry
over some information about the current state of the system from one time window
to the next. The second contribution of this chapter is to describe how the precision
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of these new TWAs is verified w.r.t. a DES model using the simulation method as
presented in Chapter 3. Finally, this chapter proposes a formal procedure to min-
imise the amount of information that a window-based algorithm needs to carry over
to ensure no precision loss.

This chapter is organised as follows. Section 5.1 recalls the necessary background
about the diagnosis problem, and reviews the existing window-based algorithms
IWAs. Section 5.2 proposes new diagnostic algorithms, called Time-Window Algo-
rithm (TWAs), and presents the first case of TWA, called Al5. Section 5.3 presents the
second case of TWA, called Al6. Section 5.4 demonstrates how to verify the precision
of the two TWAs. Section 5.5 discusses the symbolic implementation and the pro-
cedure that minimises the amount of information required for a TWA to be precise.
Section 5.6 concludes this chapter, and provides an outline for the future work.

5.1 Background of Independent-Window Algorithms (IWAs)

TWAs are extensions to IWAs presented in Chapter 4. This section reviews the exist-
ing IWAs. A diagnosis problem is defined on a model and an observation sequence.
In general, a diagnoser should indicate whether the system is in the nominal mode,
in the faulty mode, or it cannot decide, i.e. the system status is ambiguous. Assump-
tion 4 of Chapter 3 states that the diagnostic policy of this work does not distinguish
between the nominal mode and the ambiguous mode, i.e. a diagnoser assumes that
the system is not faulty unless proved otherwise.

Chapter 4 proposes IWAs, which are diagnostic algorithms that slice the flow
of observations Θ = o1, o2, o3, . . . , on into small and independent time windows
θt to be diagnosed independently. A time window θ is a sub-sequence Θ[i, j] =

oi, oi+1, oi+2, . . . , oj of the actual observations Θ. The diagnosis of a time window θ

consists in determining whether there exists a nominal trace that generates this sub-
sequence of observations. IWAs diagnose each time window separately, and return
that the system is faulty as soon as the fault is diagnosed in one time window.

Chapter 4 also presents four implementations of IWAs, namely Alp, Al1, Al2,
and Al3. Each IWA diagnoses k observations for one time window, and moves to
another time window without keeping any information. These four implementations
of IWAs differ only in the time window selection. Alp diagnoses on sliding time
windows, i.e. the first time window is Θ[1, k], the second is Θ[2, k + 1], etc. A
sliding time window moves by one observed event at a time. Al1 slices a sequence
of observations into consecutive time windows of identical length. Al2 ensures that
the time windows overlap so that short observations of oi, oi+1, oi+2, . . . , oi+k−1 always
appear in at least one time window. Al3 constructs “sample” time windows such that
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not every observation appears in a time window.
There are advantages and disadvantages of IWAs. On the one hand, IWAs aim

at improving the flexibility of diagnosis because time windows are diagnosed sep-
arately. Also, the complexity of diagnosis is reduced because the size of the time
windows is bounded. On the other hand, the precision of IWAs may be reduced as
the links between the time windows are lost. For instance, this happens when a fault
can be diagnosed only by observing two specific events; however, these two events
cannot be guaranteed to appear in the same time window.

5.2 Time-Window Algorithm (TWA) Al5

This chapter proposes two Time-Window Algorithms, namely Al5 and Al6. TWAs
are extensions to the IWAs proposed in Chapter 4. The principle of these TWAs is
to remember from one time window to the next some of the knowledge about the
current belief state. Al5 remembers the key information from the previous consecu-
tive time window whereas Al6 remembers the history from the previous overlapping
time window.

This section introduces Al5 by an example, and then provides a formal definition.
It also presents the examples of using Al5. This section ends with a discussion on the
pros and cons of using Al5.

5.2.1 Motivation for Al5

ABF C D G

c

x

b

u
v

ca

y

a

c

bc

v

u

NXNY

Figure 5.1: A simple DES model M4 where a, b, c, x, y are observable events, and u, v
are unobservable events

The information propagated by TWAs throughout the time windows relies on the
notion of abstract state of a system. TWAs are useful for a real-world application once
the abstract states are defined in a DES model. To illustrate abstract states, Fig. 5.1
shows a simple DES model M4. NX and NY are such abstract states. The abstract
state of the system is NY if the current state is within {A, B}. The abstract state is NX

if the current state is within {C, D}. Note that these abstract states have been chosen
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so that there are discriminable. Right after the observation of x (resp. y), the system
is definitely in NX (resp. NY)). Moreover, in this example, if the system is in NX,
‘b’ is a symptom of a fault but not ‘a’. If the system is in NY, ‘a’ is a symptom of a
fault but not ‘b’. Faults can thus be precisely diagnosed simply by keeping track of
the current abstract state and checking for each ‘a’ and each ‘b’ whether they are not
symptomatic from this current abstract state.

On the one hand, none of the four IWAs is precise for this example. This is
because IWAs only look at bounded groups of consecutive observations while the
distance between the last abstract state change and the first observation showing
the failure may be arbitrarily large. For example, given an observation sequence
x, c, c, c, c, c, c, c, c, c, c, b, and the time window size k is 4, the observations between
the last abstract state change (‘x’) and the first observation showing the failure (‘b’)
are all ‘c’ events. As a result, ‘x’ and ‘b’ are not guaranteed to be in the same time
window.

On the other hand, it is unnecessary to remember precisely the current state of
the system. The only relevant piece of information about the current state of the
system is the abstract state of the system. This is precisely what the two proposed
TWAs do. Firstly, a rough partition of the state space is assumed. How this partition
is chosen is the topic of Section 5.5. The information that is passed from one time
window to the next is the subset of abstract states that the current system state is
belong to.

5.2.2 Definition of Al5

Recall that Section 3.1.1 of Chapter 3 denotes Q0, Q1, Q2, . . . , Qp ⊆ Q as a collection
of (p + 1) subsets of states. Al5 relies on a partition Π = {Q1, Q2, Q3, . . . , Qz, QF}
of the state-space Q where z ∈ Z, z ≥ 1, and QF denotes the faulty states. Let
L = {N1, N2, N3, . . . , Nz, F} be a set of labels such that any Ni represents the nominal
states Qi, and F represents the faulty states QF. Abstract state is formally defined as
follows.

Definition 32 (Abstract State) An abstract state is an element Qi of the state-space par-
tition Π, and is represented by its corresponding label of L.

Similar to IWA Al1, Al5 slices a sequence of observations every k observations.
The difference is that Al5 also remembers some information from the previous time
window. This is done by computing an abstract belief state, which is formally defined
as follows.
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Definition 33 (Abstract Belief State (ABS)) An abstract belief state (ABS) is any non-
empty subset of L.

Notice that Al1 is a special case of Al5. First, Al1 only has one label of nom-
inal state while Al5 has several labels of nominal states, i.e. L1 = {N, F}; L5 =

{N1, N2, N3, . . . , Nz, F}. Second, Al1 diagnoses k observations as one time window,
and moves to the next consecutive time window without keeping any information.
For Al5, diagnosis on one time window considers the abstract knowledge of the sys-
tem states from the previous time window. The only exception is that the diagnosis
for first time window begins with the initial state.

Recall that Definition 6 defines the ct predicate, and Definition 1 defines L−1 in
Chapter 3. This work formally defines Al5 as follows.

Definition 34 (Al5) Given a model M, the initial states I, a state abstraction L, a time
window size k, a sequence of observations Θ = θ1, θ2, θ3, . . . , θt, the number of time windows
t = |Θ|

k , and TAl5 = {[1, k], [k + 1, 2k], [2k + 1, 3k], . . . , [|Θ| − k + 1, |Θ|]},

Al5(M, Θ, TAl5) =



N if ∃`1, `2, . . . , `t ∈ L \ {F} such that
ct([I, L−1(`1)], [θ1])∧

ct([L−1(`1), L−1(`2)], [θ2]) ∧ · · · ∧
ct([L−1(`t−1), L−1(`t)], [θt])

F otherwise.

Definition 34 says that the observation sequence Θ is sliced into t time windows
such that each time window contains a sub-sequence of observations θi. These traces
must have the same label at the beginning and the end of the time windows. Each
trace provides an explanation for one time window. Al5 returns nominal if for each
time window, there exists a trace that is consistent with the sub-sequence of observa-
tions, and ends in a nominal state. Otherwise, it returns faulty.

Fig. 5.2 is a visual representation for the beginning part of Al5. I represents the
abstract state at the beginning of the first time window, to which the initial states
belong, and L−1(`1) represents the abstract state at the end of the first time window.
θ1 = obs(σ1) is the observations of the trace σ1 in the first time window, and θ2 =

obs(σ2) is the observations of the trace σ2 in the second time window. [I, L−1(`1)]

and [θ1] represents the diagnosis on the first time window. [L−1(`1), L−1(`2)] and [θ2]

represents the diagnosis on the second time window. In general, q1 6= q′1; however,
L(q1) = L(q′1).

This work studies the correctness and monotonicity properties of Al5 as a diag-
nostic algorithm. Recall that Chapter 3 defines the two properties for a diagnostic
algorithm in Definition 9.
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Figure 5.2: Visual representation for the beginning part of Al5: the first row refers
to the first time window; the second row and the third row refer to the following
consecutive time window. L−1(`3) will link to the fourth time window.

Property 4 Al5 is correct.

Proof of Property 4 Given a model M, a sequence of observations Θ, and the def-
initions for a consistent trace and the ct predicate, Al5 is correct ⇔ (∆(M, Θ) = N ⇒
Al5(M, Θ, TAl5) = N).

∆(M, Θ) = N ⇒ ct([I, L−1(N)], [Θ]) by Definition 7 (5.1)

⇒∃ a trace t : q0
σ

t1
1−→ q1

σ
t1
2−→ . . .

σtm
p−→ qp such that q0 ∈ I (5.2)

⇒∃ a trace t1 : q0
σ

t1
1−→ . . .

σ
t1
p−→ qk1 ∧ θ1 = obs(σt1

1 . . . σt1
p )∧ (5.3)

∃ a trace t2 : qk′1

σ
t2
1−→ . . .

σ
t2
p−→ qk2 ∧ θ2 = obs(σt2

1 . . . σt2
p )∧ (5.4)

· · · ∧ (5.5)

∃ a trace tm : qk′t−1

σtm
1−→ . . .

σtm
p−→ qkm ∧ θt = obs(σtm

1 . . . σtm
p )∧ (5.6)

L(qk1) = L(qk′1
) = `1 ∧ `1 ∈ L \ {F} ∧ . . . (5.7)

⇒ct([I, L−1(`1)], [θ1]) ∧ ct([L−1(`1), L−1(`2)], [θ2]) ∧ . . . (5.8)

∧ ct([L−1(`m−2), L−1(`m−1)], [θt]) (5.9)

⇒Al5(M, Θ, TAl5) = N. (5.10)
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�

Property 5 Al5 is monotonic.

Proof of Property 5 Al5 is monotonic
⇔ (Al5(M, Θ, TAl5) = F ⇒ Al5(M, Θ θ′, T′Al5) = F), where
θ′ = e1e2e3 . . . ek, ei ∈ Σo, i ∈ [1, k], i ∈ Z, T′Al5 = TAl5 ∪ {[|Θ|+ 1, |Θ|+ k]}
⇔ (∀e ∈ Σo, Al5(M, Θ θ′, T′Al5) = N ⇒ Al5(M, Θ, TAl5) = N).

∀e ∈ Σo, Al5(M, θ1θ2θ3 . . . θt θ′, T′Al5) = N (5.11)

⇒∃`1, `2, `3, . . . , `t, `t+1 ∈ L \ {F} such that (5.12)

ct([I, L−1(`1)], [θ1])∧
ct([L−1(`1), L−1(`2)], [θ2]) ∧ · · · ∧

ct([L−1(`t−1), L−1(`t)], [θt])∧
ct([L−1(`t), L−1(`t+1)], [θ′]) by Definition 34

(5.13)

⇒∃`1, `2, `3, . . . , `t, `t+1 ∈ L \ {F} such that (5.14)

ct([I, L−1(`1)], [θ1])∧
ct([L−1(`1), L−1(`2)], [θ2]) ∧ · · · ∧

ct([L−1(`t−1), L−1(`t)], [θt])

(5.15)

⇒Al5(M, θ1θ2θ3 . . . θt, TAl5) = N (5.16)

⇒Al5(M, Θ, TAl5) = N (5.17)

�

5.2.3 Example of Al5

Algorithm Slice ABS Diagnosis
∆ Θ NA F (precise)

Al1 bx {N} N (imprecise)
cc {N}
cb {N}

Al5 bx {NX} F (precise)
cc {NX}
cb ∅

Table 5.1: Diagnostic results of ∆, Al1 and Al5 for M1, and observations Θ = bxcccb:
ABS refers to the abstract belief state at the end of each time window.
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Tab. 5.1 shows the diagnostic results of observations Θ = bxcccb when k is 2 for
M4 in Fig. 5.1. The abstract state labels of Al5 are L = {NX, NY, F}. For any time
window θi, Al1 concludes N since there always exists a nominal trace σi starting
from a nominal state of the system such that obs(σi) = θi. In contrast, Al5 is able to
diagnose this sequence precisely.

• For the first time window bx, there exists a trace that begins with the initial
state, and is compatible with this time window, i.e. A b−→ A x−→ C. In particular,
L(C) evaluates to N. The ABS at the end of this time window is NX. Thus,
the first time window leads to NX, and the next time window should continue
from any state with the abstract state of NX.

• For the second time window cc, there exists a trace that begins with a state in
NX, i.e. the state C, and is compatible with this time window, i.e. C c−→ D c−→ D.
In particular, L(D) evaluates to N. The ABS at the end this time window is NX.
Thus, the second time window leads to NX, and the next time window should
continue from any state with the abstract state of NX.

• For the third time window cb, there exists a trace that begins with a state in NX,
i.e. the state D, and is compatible with this time window, i.e. D c−→ D v−→ G b−→
G. In particular, L(G) evaluates to F. The ABS at the end of this time window
is ∅ as there is no nominal explanation, by Definition 34. Thus, the third time
window leads to F.

Therefore, the diagnostic output of Al5 is F.

5.2.4 Discussions of Al5

Al5 is more precise than Al1, but this comes at a price. Al5 does not take the advan-
tage of parallel computation, and must analyse time windows in order. In contrast,
Al1 is able to diagnose multiple time windows independently and simultaneously.

Furthermore, Al5 is more vulnerable to the masking issue than Al1. Observations
are masked when the communication layer used to transmit the observations is mo-
mentarily faulty. Even if the complete sequence of observations is not available, Al1
resets the diagnosis at the beginning of every time window, and therefore Al1 is im-
mune to the masking issue. In comparison, when certain observations are masked
and a fault actually occurs, Al5 relies on the assumption that the abstract state can
be estimated with sufficient precision, but the masking wipes out this estimation.
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5.3 Time-Window Algorithm (TWA) Al6

This section introduces Al6 by an example, and then provides a formal definition. It
also presents examples of using Al6. This section ends with a discussion on the pros
and cons of using Al6.

5.3.1 Motivation for Al6

A

BC

F D G

E H

a, c
u

p p

b

v

b, c

u
pp

a

v

b a

NL NR

Figure 5.3: DES model M5 with a set of abstract states {NL, NR} where Al5 is not
precise. a, b, c, p are observable, and u, v are unobservable.

This section presents a more sophisticated example that motivates Al6. Fig. 5.3
shows a DES model M5. a, b, c, p are observable, and u, v are unobservable. Suppose
that the selected partition splits the nominal states into two abstract states, i.e. NL =

{A, B, C} and NR = {D, E, H}. In this setting, a consecutive sequence of b’s (resp.
a’s) means the system is faulty if the system is known to be in NL (resp. NR).

Diagnoser Slice ABS Diagnosis
∆ Θ NA F (precise)

Al5 ap {NL, NR} N (imprecise)
aa {NL}

Table 5.2: Diagnostic results of ∆ and Al5 for M5 in Fig. 5.3, and observations Θ =
apaa: ABS refers to the abstract belief state at the end of each time window.

Tab. 5.2 shows the diagnostic results of Al5 when k is 2. If a sequence of obser-
vations Θ = apaa is sliced to ap and aa, the abstract belief state immediately after
ap should be NR. However, Al5 is unable to precisely determine the abstract belief
state after ap, which makes it unable to diagnose the fault. This is because this model
requires two observable events to recognise the transition to a different abstract state,
i.e. pa means transition to NR and pb means transition to NL. Regardless how large
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value of k, if one time window ends after p, i.e. the next time window will start after
p, then the abstract belief state cannot be precisely determined. Therefore, Al5 is not
precise w.r.t. M5.

5.3.2 Definition of Al6

Compared to Al5, Al6 slices a sequence of observations every k observations, and
includes additional overlapping time windows. Assume k is a multiple of 2 for
simplicity, and let h be k

2 . Al6 refines the carry-over information of any time window
i (denoted as @i), and passes it to the next overlapping time window i + 1 (denoted
as @i + 1) so that inconsistent abstract states will be eliminated.

Definition 35 (Al6) Given a model M, the initial states I, a state abstraction L, a time
windows size k with h = k

2 , a sequence of observations Θ, the number of time windows t =
|Θ|
h − 1, and TAl6 = w_6(1), w_6(2), w_6(3), . . . , w_6(t), Al6(M, Θ, TAl6) returns N if

∃`0@i, `1@i, `2@i ∈ L \ {F} ∀i ∈ {1, 2, 3, . . . , t} such that
`1@1 = `0@2∧ · · · ∧ `1@(t− 1) = `0@t
∧ ct([I, L−1(`1@1), L−1(`2@1)], [w_6(1)])
∧ ct([L−1(`0@2), L−1(`1@2), L−1(`2@2)], [w_6(2)])
∧ . . .
∧ ct([L−1(`0@t), L−1(`1@t), L−1(`2@t)], [w_6(t))])

where w_6(i) = (Θ[H + 1, H + h], Θ[H + (h + 1), H + 2h]), and H = (i− 1)× h;
Al6(M, Θ, TAl6) returns F otherwise.

The function w_6 returns the i-th time window, which consists of two equal-
length sub-sequences of observations θ1 and θ2. Al6 returns nominal if for each time
window, there exists a trace that is consistent with the sub-sequence of observations,
and ends in a nominal state. Otherwise, it returns faulty.

Fig. 5.4 is a visual representation for the beginning part of Al6. I represents the
abstract state at the beginning of the first time window, to which the initial states
belong. The diagnosis of the window j searches a trace that starts from a state of
L−1(`0@j), goes through a state of L−1(`1@j) while generating the first half of the
observations, and ends in a state of L−1(`2@j) while generating the second half. The
rationale behind Al6 is that the estimation of `2@j is not very precise because it is
supported only by previous observations, whilst that of `1@j is supported by both
previous and latter observations. Therefore, the information that is carried over to
the next window is `1@j = `0@(j + 1).
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q0@1 q1@1 q2@1

q0@2 q1@2 q2@2

q0@3 q1@3 q2@3

I L−1(`1@1) L−1(`2@1)

L−1(`0@2)

L−1(`1@2) L−1(`2@2)

L−1(`0@3) L−1(`2@3)

θ1@1 θ2@1

θ1@2 θ2@2

θ1@3 θ2@3

L−1(`1@2)

Figure 5.4: Visual representation for the beginning part of Al6: the first row refers
to the first time window; the second row and the third row refer to the following
overlapping time window. L−1(`1@3) will link to the fourth time window.

This work studies the correctness and monotonicity properties of Al6 as a diag-
nostic algorithm. Recall that Chapter 3 defines the two properties for a diagnostic
algorithm in Definition 9.

Property 6 Al6 is correct.

Proof of Property 6 Given a model M, a sequence of observations Θ, and the def-
initions for a consistent trace and the ct predicate, Al6 is correct ⇔ (∆(M, Θ) = N ⇒
Al6(M, Θ, TAl6) = N).
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Let N = L \ {F}. (5.18)

Given ∆(M, Θ) = N (5.19)

⇒ct([I, L−1(N)], [Θ]) by Definition 7 (5.20)

⇒∃ a trace t : q0
σ

t1
1−→ q1

σ
t1
2−→ . . .

σ
tt
p−→ qp such that q0 ∈ I (5.21)

⇒ ∃ a trace t1 : q0
σ

t1
1−→ . . .

σ
t1
g−→ qh1 ∧ θ1 = obs(σt1

1 . . . σt1
g ) (5.22)

∧ ∃ a trace t2 : qh1

σ
t2
1−→ . . .

σ
t2
g−→ qk1 ∧ θ2 = obs(σt2

1 . . . σt2
g ) (5.23)

∧ ∃ a trace t3 : qh′1

σ
t3
1−→ . . .

σ
t3
g−→ qk′1

∧ θ3 = obs(σt3
1 . . . σt3

g ) (5.24)

∧ ∃ a trace t4 : qk′1

σ
t4
1−→ . . .

σ
t4
g−→ qh2 ∧ θ4 = obs(σt4

1 . . . σt4
g ) (5.25)

∧ . . . (5.26)

∧ ∃ a trace tt−1 : qh′t−1

σ
tt−1
1−−→ . . .

σ
tt−1
g−−→ qk′t−1

∧ θt−1 = obs(σtt−1
1 . . . σ

tt−1
g ) (5.27)

∧ ∃ a trace tt : qk′t−1

σt
1−→ . . .

σt
g−→ qkt ∧ θt = obs(σtt

1 . . . σtt
g ) (5.28)

∧ L(q0) = `0@1∧ `0@1 ∈N (5.29)

∧ L(qk1) = `1@2∧ `1@2 ∈N (5.30)

∧ L(qh1) = L(qh′1
) = `1@1∧ `1@1 ∈N (5.31)

∧ . . . (5.32)

⇒ ct([I, L−1(`1@1), L−1(`2@1)], [w_6(1)]) (5.33)

∧ ct([L−1(`0@2), L−1(`1@2), L−1(`2@2)], [w_6(2)]) (5.34)

∧ . . . (5.35)

∧ ct([L−1(`0@t), L−1(`1@t), L−1(`2@t)], [w_6(t)]) (5.36)

∧ w_6(1) = θ1θ2 (5.37)

∧ w_6(2) = θ2θ3 (5.38)

∧ . . . (5.39)

∧ w_6(t) = θt−1θt (5.40)

⇒Al6(M, Θ, TAl6) = N. (5.41)

�

Property 7 Al6 is monotonic.
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Proof of Property 7 Al6 is monotonic
⇔ (Al6(M, Θ, TAl6) = F ⇒ Al6(M, Θ θ′, T′Al6) = F), where
θ′ = e1e2e3 . . . e k

2
, ei ∈ Σo, i ∈ [1, k

2 ], i ∈ Z, T′Al6 = TAl6 ∪ {w6(t + 1)}
⇔ (Al6(M, Θ θ′, T′Al6) = N ⇒ Al6(M, Θ, TAl6) = N).

Al6(M, θ1θ2θ3 . . . θt θ′, T′Al6) = N (5.42)

⇒∃`0@i, `1@i, `2@i ∈N, ∀i ∈ {1, 2, 3, . . . , t, t + 1} such that (5.43)

ct([I, L−1(`1@1), L−1(`2@1)], [w_6(1)])
∧ ct([L−1(`0@2), L−1(`1@2), L−1(`2@2)], [w_6(2)])

∧ . . .
∧ ct([L−1(`0@t), L−1(`1@t), L−1(`2@t)], [w_6(t)])

∧ ct([L−1(`0@(t + 1)), L−1(`1@(t + 1)), L−1(`2@(t + 1))], [w_6(t + 1)])

(5.44)

∧ `1@1 = `0@2∧ · · · ∧ `1@t = `0@(t + 1) by Definition 35 (5.45)

⇒`0@i, `1@i, `2@i ∈N, ∀i ∈ {1, 2, 3, . . . , t, t + 1} such that (5.46)

ct([I, L−1(`1@1), L−1(`2@1)], [w_6(1)])
∧ ct([L−1(`0@2), L−1(`1@2), L−1(`2@2)], [w_6(2)])

∧ . . .
∧ ct([L−1(`0@t), L−1(`1@t), L−1(`2@t)], [w_6(t))])

(5.47)

∧ `1@1 = `0@2∧ · · · ∧ `1@(t− 1) = `0@t (5.48)

⇒Al6(M, θ1θ2θ3 . . . θt, TAl6) = N (5.49)

⇒Al6(M, Θ, TAl6) = N (5.50)

�

5.3.3 Example of Al6

Diagnoser Slice ABS-End ABS-Middle CT Output
∆ Θ NA NA NA F

Al6 ap {NL, NR} {NL} Yes F
pa {NR} {NR} Yes
aa NA ∅ No

Algorithm may stop here.

Table 5.3: Diagnostic results of ∆ and Al6 for M5 in Fig. 5.3 and the same observation
as Tab. 5.2, i.e. Θ = apaa: ABS means the abstract belief state in the middle of a time

window; CT means whether a consistent trace holds.
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Tab. 5.3 shows the diagnostic results when k is 2. Al6 returns the precise diagnosis
using the given abstract states as stated in Section 5.3.1. Al6 is more precise than Al5,
without requiring a more detailed break-down of abstract states. This is because Al6
refines the diagnosis on the slices. For instance, at the end of the first slice (a, p), the
system may be in the state B or E. After the second slice (p, a), Al6 eliminates the
state B because the observation a is impossible from this state. The diagnostic result
is more precise because it has been refined to be in the state E only.

• For the first time window ap, there are two traces that begin with the initial
state, and are compatible with this time window, i.e. A a−→ A

p−→ B, and A a−→
A

p−→ E. The ABS at the end of this time window is {NL, NR} since B is in NL

and E is in NR. However, the ABS in the middle of this time window is {NL}
since A is in NL . Thus, a consistent trace holds, and the next time window
should continue from a state with the abstract state of NL.

• For the second time window pa, there exists a trace that begins with a state in
NL, and is compatible with this time window, i.e. A

p−→ E a−→ H. The ABS at the
end of this time window is {NR} since H is in NR. Also, the ABS in the middle
of this time window is {NR} since E is in NR. Thus, a consistent trace holds,
and the next time window should continue from a state with the abstract state
of NR.

• For the third time window aa, there exists a trace that begins with a state in
NR, and is compatible with this time window, i.e. E a−→ H v−→ D u−→ G a−→ G. The
ABS at the end of this time window is ∅, and there is no consistent trace, since
G is faulty.

Therefore, the diagnostic result is F.

5.4 Precision Verification for TWAs

Even though the diagnosability of a system holds, the two TWAs presented in Sec-
tion 5.2 and 5.3 is not guaranteed to detect the faults. For example, their precision
w.r.t. a model depends on the selections of abstract states. It is therefore important
to be able to assess whether the imprecision introduced by the algorithms makes
some faulty behaviours undetectable. Chapter 3 defines that a diagnostic algorithm
A is precise w.r.t. a system model M if it always detects and identifies faults. It also
shows that the precision verification is implemented using a simulation, which is a
finite state machine that models how a diagnostic algorithm works on a DES model.
Formally, the simulation is a model si(M, A) such that diagnosing the observations
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with model M and algorithm A yields the same results as using ∆ diagnosis and
model si(M, A), i.e.

∀Θ, ∆(si(M, A), Θ) = A(M, Θ).

This section demonstrates the constructions of the simulations for Al5 and Al6. Then,
verifying whether a diagnostic algorithm A is precise consists in analysing si(M, A)

using the twin plant method as discussed in Section 2.2.2 of Chapter 2.

5.4.1 Precision of Al5 w.r.t. a DES Model

The simulation for a DES model M and Al5 is defined as follows.

Definition 36 (Al5-Simulation) The Al5-simulation for a model M = 〈Q, Σ, T, I, L〉 is
the automaton M5 = 〈Q5, Σ5, T5, I5, L5〉 where

• Q5 = Q× {0, 1, 2, . . . , k};

• Σ5 = Σ ∪ {ε};

• T5 = Tu ∪ To ∪ Tε is defined by:

– Tu = {〈〈q, i〉, u, 〈q′, i〉〉 | i ∈ {0, 1, 2, . . . , k} ∧ 〈q, u, q′〉 ∈ T ∧ u ∈ Σ \ Σo},

– To = {〈〈q, i〉, o, 〈q′, i + 1〉〉 | i ∈ {0, 1, 2, . . . , k− 1} ∧ 〈q, o, q′〉 ∈ T ∧ o ∈ Σo},
and

– Tε = {〈〈q, k〉, ε, 〈q′, 0〉〉 | L5(q) = L5(q′)}.

• I5 = I × {0}; and,

• L5 : Q5 → L, L5(〈q, i〉) = L(q).

Example of Simulation for M4 and Al5 Fig. 5.5 shows the simulation for the DES
model M4 in Fig. 5.1 and Al5 with the window size k being 2. Each state of the
simulation is associated with a counter, which simulates the number of observations
made in the current time window. For instance, the state A1 represents the situation
where the current system state is A, and 1 observation was made so far in the current
time window. When the counter reaches 2, the end of the time window is simulated
by an unobservable ε-transition that obliterates the current state and only remembers
the abstract state, i.e. reset. For instance, there is an ε-transition from A2 to B0 because
A and B share the same label NY. On the other hand, there is no transition from A2

to C0 since A and C have different labels.
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Figure 5.5: Simulation for M4 in Fig. 5.1 and Al5: NY and NX are only used to
highlight the abstract states. The faulty states are omitted because Assumption 4 of
Chapter 3 states that the diagnostic policy of this work does not distinguish between
the nominal mode and ambiguous mode, i.e. a diagnoser only looks for nominal
explanations. Therefore, the faulty states are not included in the simulation.

To verify the precision of Al5 w.r.t. M4, the simulation for Al5 needs to be synchro-
nised with M4. The twin plant is then built for this synchronisation. Any ambiguous
path is checked on the twin plant. There is no ambiguous path. Therefore, Al5 is
precise w.r.t. M4 when k is 2 by Theorem 1 of Chapter 3.

�

This work examines the difference between Al5-simulation and Al1-simulation.
Section 4.3.1 of Chapter 4 defines Al1-simulation. If a time window ends in a nominal
state, Al1-simulation resets to every nominal state. If a time window ends in a faulty
state, Al1-simulation resets to every faulty state. In comparison, Al5-simulation only
resets to those states that belong to the same abstract state.

Theorem 10 proves the correctness of the simulation for a DES model M and Al5.

Theorem 10 (Simulation for a DES Model M and Al5) The Al5-simulation as defined
in Definition 36 returns a simulation for a system model M and Al5 using the window size
k.

Proof of Theorem 10 The first part is to prove ∆(M5, Θ) = N ⇒ Al5(M, Θ, TAl5) =

N as seen in the proof of Property 4.
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The second part is to prove Al5(M, Θ, TAl5) = N ⇒ ∆(M5, Θ) = N.

Suppose Al5(M5, Θ, TAl5) = N, t =
|Θ|
k

, Θ = θ1θ2 . . . θt (5.51)

⇒∃`1, `2, `3, . . . , `t ∈N such that (5.52)

ct([I, L−1(`1)], [θ1])∧
ct([L−1(`1), L−1(`2)], [θ2]) ∧ · · · ∧

ct([L−1(`t−1), L−1(`t)], [θt])

(5.53)

holds by Definition 34 (5.54)

⇒ ∃ a trace t1 : q0
σ

t1
1−→ . . .

σ
t1
k−→ qn1 is consistent with θ1 = obs(σt1

1 . . . σt1
k ) (5.55)

∧ ∃ a trace t2 : q′n1

σ
t2
1−→ . . .

σ
t2
k−→ qn2 is consistent with θ2 = obs(σt2

1 . . . σt2
k ) (5.56)

∧ . . . (5.57)

⇒∃ a trace t : 〈q0, 0〉
σ

t1
1−→ . . .

σ
t1
k−→ 〈qn1 , k〉 ε−→ 〈q′n1

, 0〉
σ

t2
1−→ . . . (5.58)

⇒ct([I, L−1(N)], [Θ]) holds (5.59)

⇒∆(M, Θ) = N. (5.60)

�

This work discusses the complexity of the Al5-simulation. The size of the Al5-
simulation is k times that of the DES model, where k is the time window size. Thus,
verifying the precision of Al5 w.r.t. a DES model using the twin plant method remains
polynomial. Remember that a simulation is only used to verify the precision of a
diagnostic algorithm w.r.t. a DES model, and not for diagnosis.

5.4.2 Precision of Al6 w.r.t. a DES Model

Before presenting the formal definition, this section explains how to build the Al6-
simulation. This work uses two copies of Q5 defined in Section 5.4.1. The two copies
are called Q1 and Q2. Q1 represents one time window, and Q2 represents the next
overlapping time window. This work assumes that k is a multiple of 2 for simplicity.
Let the step index of Q1 be i, the step index of Q2 be j, and the middle of a time
window be h = k

2 . This work specifies that the two time windows overlap as i = j+ h
(mod k).

The initial state is that Q1 beginning at the step 0, and Q2 beginning at the mid-
dle of a time window h. Thus, Q6 is the synchronization of two single-window
algorithms such that two time windows overlap. The abstract belief state is refined
from the end of one time window up to the middle of this time window. Then, Tε
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carries over the information between two overlapping time windows. The simulation
for a DES model M and Al6 is defined as follows.

Definition 37 (Al6-Simulation) The Al6-simulation for M = 〈Q, Σ, T, I, L〉 is the au-
tomaton M6 = 〈Q6, Σ6, T6, I6, L6〉 where

• Q6 = Q1 × Q2 where Q1 = Q× {0, k}, Q2 = Q× {0, k}, 〈q1, i〉 is an instance of
Q1, and 〈q2, j〉 is an instance of Q2, such that i = j + h (mod k);

• Σ6 = Σ ∪ {ε};

• T6 ⊆ Q6 × Σ6 ×Q6 where T6 = Tu1 ∪ Tu2 ∪ To ∪ Tε1 ∪ Tε2 is defined by:

– Tu1 = {〈〈〈q1, i〉, 〈q2, j〉〉, u, 〈〈q′1, i′〉, 〈q′2, j′〉〉〉 | i ∈ {0, 1, 2, . . . , k} ∧
j ∈ {0, 1, 2, . . . , k} ∧ 〈q1, u, q′1〉 ∈ T ∧ u ∈ Σ \ Σo ∧ (q2 = q′2) ∧ (i = i′) ∧
(j = j′)},

– Tu2 = {〈〈〈q1, i〉, 〈q2, j〉〉, u, 〈〈q′1, i′〉, 〈q′2, j′〉〉〉 | i ∈ {0, 1, 2, . . . , k} ∧
j ∈ {0, 1, 2, . . . , k} ∧ 〈q2, u, q′2〉 ∈ T ∧ u ∈ Σ \ Σo ∧ (q1 = q′1) ∧ (i = i′) ∧
(j = j′)},

– To = {〈〈〈q1, i〉, 〈q2, j〉〉, o, 〈〈q′1, i′〉, 〈q′2, j′〉〉〉 | i ∈ {0, 1, 2, . . . , k− 1} ∧
j ∈ {0, 1, 2, . . . , k− 1} ∧ 〈q1, o, q′1〉 ∈ T ∧ 〈q2, o, q′2〉 ∈ T ∧ o ∈ Σo ∧
(i′ = i + 1) ∧ (j′ = j + 1)},

– Tε1 = {〈〈q1, h〉, ε, 〈q′2, 0〉〉 | L(q1) = L(q′2)},

– Tε2 = {〈〈q2, h〉, ε, 〈q′1, 0〉〉 | L(q2) = L(q′1)};

• I6 = (I × {0})× (I × {h}); and,

• L6 : Q6 → L, L6(〈q1, i〉, 〈q2, j〉) = F if L(q1) = F or L(q2) = F; otherwise,
L6(〈q1, i〉, 〈q2, j〉) = N.

Theorem 11 proves the correctness of the simulation for a DES model M and Al6.

Theorem 11 (Simulation for a DES model M and Al6) The Al6-simulation defined in
Definition 37 returns a simulation for a system model M and Al6 using the window size k.

Proof of Theorem 11 For simplicity, assume k is a multiple of 2, and the num-
ber of time windows t = |Θ|

h − 1. The first part is to prove ∆(M6, Θ) = N ⇒
Al6(M, Θ, TAl6) = N.

Suppose ∆(M6, Θ) = N (5.61)

⇒Al6(M, Θ, TAl6) = N by Property 6, i.e. the correctness of Al6. (5.62)
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The second part is to prove Al6(M, Θ, TAl6) = N ⇒ ∆(M6, Θ) = N.

Suppose Al6(M6, Θ, TAl6) = N, t =
|Θ|
k

, Θ = θ1θ2θ3 . . . θt (5.63)

⇒`0@i, `1@i, `2@i ∈N ∀i ∈ {1, 2, 3, . . . , t} such that (5.64)

ct([I, L−1(`1@1), L−1(`2@1)], [w_6(1)])
∧ ct([L−1(`0@2), L−1(`1@2), L−1(`2@2)], [w_6(2)])

∧ . . .
∧ ct([L−1(`0@t), L−1(`1@t), L−1(`2@t)], [w_6(t))])

(5.65)

∧ `1@1 = `0@2∧ · · · ∧ `1@(t− 1) = `0@t (5.66)

holds by Definition 35 (5.67)

⇒ ∃ a trace t1 : q0
σ

t1
1−→ . . .

σ
t1
k−→ qn1 is consistent with θ1 = obs(σt1

1 . . . σt1
k ) (5.68)

∧ ∃ a trace t2 : q′n1

σ
t2
1−→ . . .

σ
t2
k−→ qn2 is consistent with θ2 = obs(σt2

1 . . . σt2
k ) (5.69)

∧ . . . (5.70)

⇒∃ a trace t : 〈q0, 0〉
σ

t1
1−→ . . .

σ
t1
k−→ 〈qn1 , k〉 ε−→ 〈q′n1

, 0〉
σ

t2
1−→ . . . (5.71)

⇒ct([I, L−1(N)], [Θ]) holds (5.72)

⇒∆(M, Θ) = N. (5.73)

�

This work discusses the complexity of the Al6-simulation. The size of the Al6-
simulation is (2k− 1) times that of the DES model, where k is the time window size.
Thus, verifying the precision of Al6 w.r.t. a DES model using the twin plant method
remains polynomial. Remember that a simulation is only used to verify the precision
of a diagnostic algorithm w.r.t. a DES model, and not for diagnosis.

5.5 Implementation and Optimisation of Time-Window Al-
gorithms

This section examines the symbolic implementation of the proposed TWAs. It also
shows how to minimise the knowledge that needs to be carried over between the
time windows of a TWA.

5.5.1 Symbolic Implementation of a Time-Window Algorithm

In this work, a system is modelled symbolically. A state is defined as an assignment
of Boolean state variables V. This section defines memory set as follows.
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Definition 38 (Memory Set) Given the Boolean state variables V such that Q = 2V , a
memory set is a particular subset VL of V that is used for encoding the information that is
carried over the time windows.

State Memory Set Representation
A ¬ f ∧ ¬p ∧ ¬q
B ¬ f ∧ ¬p ∧ q
C ¬ f ∧ p ∧ ¬q
D ¬ f ∧ p ∧ q
F f ∧ ¬p ∧ ¬q
G f ∧ p ∧ ¬q

Table 5.4: A memory set for M4 in Fig. 5.1

For instance, Tab. 5.4 shows the memory set representation for the states of M4 in
Fig. 5.1. The 6 states are represented by three variables V = { f , p, q}. The memory
set is VL = { f , p} such that f evaluates to true when the state is faulty, i.e. the system
is in state F or G; p evaluates to true if the system is in state G or in a state within
NX. The last variable q ∈ V \VL in this example evaluates to true if the last event is
c. For instance, the abstract state NY ∈ L is encoded as Φ(L−1(NY)) = ¬ f ∧ ¬p.

This work concentrates on the symbolic approach for the TWAs using BDD [Schu-
mann et al., 2010]. Other implementation options are the Sampath et al. diagnoser
[Sampath et al., 1995], or SAT [Grastien et al., 2007]. Diagnosis is performed by track-
ing the belief state, i.e. the set of states that the system may be in at a given time.
BDD allows to manipulate the sets of states efficiently. The implementation of Al5 is
mostly similar to the standard global model approach proposed by Schumann et al.
[2010], except that the belief state is updated between two time windows. The belief
state β′ at the beginning of the time window i is an abstract state that shares the
same label as one state of the belief state β at the end of the time window (i − 1),
i.e. β′ = L−1(L(β)) where L is extended to sets of states. For instance, in Fig. 5.1, if
β = {A}, then L(β) = {NX}, and β′ = {A, B}.

The remaining question is how to implement the operations L and L−1 using
BDD. The symbolic representation allows for a succinct implementation of L. Given
a formula Φ(C) that models a set C ⊆ L of labels, the formula that models the set
of states L−1(C) is the same, i.e. Φ(L−1(C)) = Φ(C). Then, the L function can be
implemented by a logical existential operator, i.e.

Φ(L(Q′)) = ∃(V \VL). Φ(Q′).
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For example, in Fig. 5.1, V = { f , p, q}. For {A, B}, VL = { f , p}. Then, Φ(L({A, B})) =
∃q. Φ({A, B}) = ¬ f ∧ ¬p.

5.5.2 Optimisation of a Time-Window Algorithm

This section examines how to reduce the set of labels. The aim is to find a mini-
mal memory set VL. This problem is very interesting because it allows to identify
the minimal amount of information that is needed to summarise the past observa-
tions while maintaining the precision. This work proposes the following refinement
property of L.

Definition 39 (Refinement of L) Given two set of labels L and L′, L′ is a refinement of
L if |L′| > |L| and the following condition hold.

∀q, q′ ∈ Q , L′(q) = L′(q′)⇒ L(q) = L(q′).

In other words, for any two system states, if they have the same label in the
greater set of labels L′, then they still have the same label in the smaller set of labels
L; L′ provides more detailed categorisation of the states. This work also proposes
the abstract function as follows.

Definition 40 (Abstract Function) Given a detailed label L′ of a state q, the function ab-
stract: L′ → L returns a more abstract label L of q.

abstract(L′(q)) = L(q).

Based on Definition 39 and 40, Theorem 12 examines the precision of a TWA
using two different sets of state labels.

Theorem 12 (Precision Relation using Refinement) Given two set of labels L, L′, and
a TWA, i.e. Al5 or Al6, if L′ is a refinement of L, and the TWA using L is precise, then the
TWA using L′ is also precise.

Proof of Theorem 12 Let TWA = Al5. Suppose TWA using L is precise.
The aim is to prove

TWAL(M, Θ, T) = F ⇒ TWAL′(M, Θ, T) = F.

Equivalently, the aim is to prove

TWAL′(M, Θ, T) = N ⇒ TWAL(M, Θ, T) = N.
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Suppose TWAL′(M, Θ, T) = N and (5.74)

Θ = θ1θ2θ3 . . . θt (5.75)

⇒∃`′1, `′2, `′3, . . . , `′t ∈N such that (5.76)

ct([I, L′−1(`′1)], [θ1])∧
ct([L′−1(`′1), L′−1(`′2)], [θ2]) ∧ · · · ∧

ct([L′−1(`′t−1), L′−1(`′t)], [θt])

(5.77)

holds by Definition 34 (5.78)

⇒∃`1, `2, `3, . . . , `t ∈N such that (5.79)

`1 = abstract(`′1)∧
`2 = abstract(`′2)∧

`3 = abstract(`′3) ∧ · · · ∧
`t = abstract(`′t)∧

ct([I, L−1(`1)], [θ1])∧
ct([L−1(`1), L−1(`2)], [θ2]) ∧ · · · ∧

ct([L−1(`t−1), L−1(`t)], [θt])

(5.80)

holds (5.81)

⇒TWAL(M, Θ, T) = N (5.82)

The case of Al6 can be proved accordingly.
�

Based on Theorem 12, Corollary 1 studies the impact of adding more variables to
the memory set.

Corollary 1 If a TWA is precise w.r.t. a given model with a memory set VL, then for all
other variable v ∈ V \VL, it is also precise for set VL ∪ {v}.

Proof of Corollary 1 The smaller VL, the bigger the superset of nominal consistent
traces determined by a TWA. If a TWA concludes F for a given VL, then the superset
of nominal traces is empty. For any VL ∪ {v}, this superset is also empty. Therefore,
the precision is preserved.

�

Based on Corollary 1, Procedure 1 computes a minimal memory set. Firstly, it
chooses the variable to add to VL (Line 1–5). Starting with a set with one variable to
identify the faulty states, variables are added until the algorithm becomes precise. A
simulation for a TWA and a DES model M may generate a “witness”, i.e. a faulty
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Procedure 1(Add and Optimise Variables)
Input: TWA, M
Output: A minimal memory set VL

1 VL := { f }
2 while TWA is not precise for M do
3 w := witness
4 Identify v in w
5 Add v to VL

6 foreach v ∈ VL do
7 Remove v from VL

8 if TWA is not precise for M then
9 Reinsert v to VL

10 return VL

trace of the system together with the nominal trace on the simulation that exonerates
the faulty trace (Line 2). Because the system is diagnosable, the simulation trace
necessarily contains one or more ε-transitions that change the value of one or more
state variables. Then, Procedure 1 chooses one of these variables, which will exclude
this witness for later precision verification.
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Figure 5.6: Simulation for M4 in Fig. 5.1 and Al5: the state partitioning leads to
imprecision.

For instance, Fig. 5.6 shows the Al5-simulation for M4 with an imprecise state
partitioning, i.e. states A, B, C are in NY, and state D is in NX. Tab. 5.5 shows the
diagnostic result of ‘xacbbb′ using Al5 where the time window size is 2.

• For the first time window xa, there exists a nominal trace that begins with the
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Algorithm Slice ABS Diagnosis
∆ xacbbb NA F (precise)

Al5 xa {NY} N (imprecise)
cb {NY}
bb {NY}

Table 5.5: Diagnostic results of Al5 for M4, and observations Θ = xacbbb: ABS refers
to the abstract belief state at the end of each time window.

initial state, and is compatible with this time window, i.e. A x−→ C a−→ C. In
particular, L(C) evaluates to NY. The ABS at the end of this time window is
NY. Thus, the first time window leads to NY, and the next time window should
continue from any state with the abstract state of NY.

• For the second time window cb, there exists a nominal trace that begins with a
state in NY, and is compatible with this time window, i.e. A c−→ B u−→ A b−→ A.
In particular, L(A) evaluates to NY. The ABS at the end of this time window
is NY. Thus, the second time window leads to NY, and the next time window
should continue from any state with the abstract state of NY.

• For the third time window bb, there exists a nominal trace that begins with a
state in NY, and is compatible with this time window, i.e. A b−→ A b−→ A. In
particular, L(A) evaluates to NY. The ABS at the end of this time window is
NY.

Thus, the diagnostic output of Al5 is N. However, the diagnostic result of using the
exact diagnosis ∆ is F. Consequently, ‘xacbbb′ is a witness. This witness is caused by
an ε-transition from C2 to A0, i.e. the trace of the first time window ends in C while
the trace of the second time window starts with A. Furthermore, states A and C have
different values of p. Thus, p needs to be added to the memory set.

In the second part of Procedure 1 , all variables are examined to remove the ones
that are unnecessary to maintain the precision (Line 6–10). Notice that the procedure
remains polynomial since each loop is applied at most a linear number of times. This
procedure bears similarity to Brandán-Briones et al. [2008], which finds a minimal
subset of observable events while ensuring diagnosability.

5.6 Summary

This chapter first reviews the IWAs, which are proposed in Chapter 4. IWAs is a
class of window-based diagnostic algorithms. The most distinct characteristic is that
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each IWA slices an observation sequence into multiple time windows in different
ways, and remembers no information between time windows during the diagnostic
process. The aim of IWAs is to improve the flexibility of diagnosis because time
windows are diagnosed separately and in parallel. Also, the complexity of diagnosis
is reduced because the size of the time windows is bounded. On the other hand,
the precision of IWAs may be reduced as the links between the time windows are
lost. For instance, this happens when a fault can be diagnosed only by observing two
specific events; however, these two events are not guaranteed to appear in the same
time window.

Inspired by IWAs, this chapter proposes TWAs, and presents two instances, namely
Al5 and Al6. TWAs differ from IWAs that TWAs remember some of the knowledge
about the current diagnosed states. Al5 remembers the key information from the
previous consecutive time window while Al6 remembers the history from the pre-
vious overlapping time window. Although the TWAs are not computing the exact
diagnosis, Chapter 3 proposes the theory of simulation to verify the precision of a
non-exact diagnostic algorithm w.r.t. a DES model. This chapter demonstrates how
to verify the precision of each TWA w.r.t. a DES model by building a simulation.
Finally, this work discusses the symbolic implementation using BDD, and proposes
an procedure that minimises the amount of information that a TWA needs to carry
over.

In relation to intelligent alarm log handling, TWAs presented in this chapter re-
duce the diagnostic complexity compared to using exact diagnosis. Deriving the
belief state using exact diagnosis is proven to be exponential w.r.t. the number of
system states [Rintanen, 2007], which makes it impractical in a real-time and critical
environment such as electricity distribution and telecommunication control. In con-
trast, a TWA reduces the computational complexity because using abstract states is
very helpful to reduce the size of a belief state, and thus reduce memory use.

In conclusion, the contribution of this chapter is developing from the naive window-
based diagnosis to more advanced diagnostic algorithms, which slice a sequence of
observations and diagnose the time windows. This approach has the advantage that
it does not require maintaining a precise estimate of the system state. The outline
for the further work includes analysing the probability of the system states when
resetting a time window. It is also non-trivial to study how to apply window-based
diagnosis to non-diagnosable systems since the IWAs and TWAs focus on diagnos-
able systems so far. In general, the goal is to develop more advanced window-based
diagnostic algorithms that reduces the computational complexity while maintaining
the capability to verify the precision of diagnosis.
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Chapter 6

Experimentation

This work proposes window-based diagnostic algorithms. Chapter 4 has presented
four IWAs, and Chapter 5 has presented two TWAs. This chapter evaluates the
performance of the IWAs and the TWAs, which is measured by the precision of
diagnosis, computational time, maximum memory use, average memory use, and
diagnostic distance. Diagnostic distance is defined as the number of observations
between a fault occurrence and the fault diagnosis of a diagnostic algorithm. This
work compares the above aspects with the exact diagnostic algorithm Al0 encoded
using BDD as proposed by Schumann [2007]. This chapter also examines the impact
of the time window size on the performance of a window-based diagnostic algorithm.

This chapter is organised as follows. Section 6.1 describes the implementations
that read a DES model with multiple components and an observation sequence to
diagnose using the window-based diagnostic algorithms, i.e. IWAs and TWAs. The
implementations also include the exact diagnostic algorithm Al0 encoded by BDD.
The theory of the exact diagnosis using BDD was proposed by Schumann [2007].
However, there is no corresponding implementation available. This work implements
the exact diagnostic algorithm Al0 encoded by BDD, which supports diagnosis on a
DES model with multiple components. Section 6.2 describes the experimental models
and scenarios for diagnosis. Section 6.3 reports the experimental settings for IWAs,
the data gathered from the experiments, and the evaluations. Section 6.4 reports
the experimental settings for TWA Al5, the data gathered from the experiments, and
the evaluations. Section 6.4 reports the experimental settings for TWA Al6, the data
gather from the experiments, and the evaluations. Section 6.6 concludes this chapter,
and provides an outline for the future work. Appendix A shows the figures for the
“robot” model as specified in Section 6.2.

119



120 Experimentation

6.1 Implementations for Experiments

This section describes the original diagnostic software program of this work, which
is written in C++ 2011 standard. The theory of exact diagnosis using BDD was
proposed by Schumann [2007]. However, there is no corresponding implementation
available. This work implements the exact diagnostic algorithm Al0 encoded by BDD,
which supports diagnosis on a DES model with multiple components. Component-
based modelling has the advantage to represent a large-scale system. For instance, m
components with n states in each component can represent a system with nm states.
Notice that events with the same name are synchronised among all components,
which applies to all observable, unobservable, and faulty events.

6.1.1 Input and Output of Diagnostic Software

The input of this diagnostic software program consists of two parts:

• the descriptions of each component of a DES model, and

• a sequence of events that are observed from the system.

The first part of the input is a set of text files where each file describes one com-
ponent. The format of a file is based on the des_comp format used in the Dia-Des
Tool developed by Yannick Pencolé from LAAS-CNRS 1. This work includes the ad-
ditional specifications of the nominal and faulty states of each component because
this work considers faults at the state level, rather than the event level, as stated in
Chapter 3. A des_comp file provides the specifications of a component, which is the
described as follows.

• the name of a component,

• states,

• faulty events,

• unobservable events,

• observable events,

• faulty states,

• nominal states, and

1homepages.laas.fr/ypencole/diades/html/index.html
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• transitions including the beginning state, the event name, and the ending state
of each transition.

For TWA Al5 and Al6 only, the input further includes a set of text files where each
file describes the abstract states of a component.

The second part of the input is a text file with a sequence of events that are
observed from the system. In terms of diagnosis, if every trace that can explain the
system behaviour ends in a faulty state, then there is no nominal explanation, and
the system is faulty. The diagnostic output is “F” as soon as one component is faulty,
and thus the system is diagnosed as faulty. The output is “N” if every component of
the system is nominal. As stated in Assumption 6 of Chapter 3, this work considers
one fault in a system at a time.

6.1.2 Diagnostic Software

This software program consists of 14 classes, which are visualised in the UML dia-
gram in Fig. 6.1.

Figure 6.1: UML diagram for the diagnostic software

The 14 classes are described as follows.

• The Component Parser class reads a set of text files. Each file describes one
component of a DES model, and is in the modified des_comp format as specified
in Section 6.1.1.
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• The Component class records all of the information about one component in-
cluding states, faulty events, unobservable events, observable events, faulty
states, nominal states, and transitions.

• The Automaton class records all of the information about the global DES model,
which consists of the underlying components.

• The Automaton Factory class encodes all states, events, and transitions into
BDD formulae. Also, this class generates an instance of an Automaton. This
work uses BDD to encode the states, events, and transitions of each component
in a DES model. This software program uses the BUDDY Library 2, which
supports all of the required operations and management on BDD variables in
C++. The BDD encodings have been reviewed in Section 2.1.2 of Chapter 2.

• The Transition class is a tool used by the Automaton Factory class when
encoding transitions.

• The Window Diagnostic Algorithm class is a high-level class, which will be
extended by the exact diagnostic algorithm Al0, four IWAs, and two TWAs.
This class diagnoses one time window, which is a slice of the observation se-
quence.

• The Al 0 class extends the Window Diagnostic Algorithm class. It implements
the exact diagnostic algorithm Al0, which supports diagnosing a DES model
with multiple components. The theory of diagnosis using BDD was proposed
by Schumann [2007].

• The Al p class implements IWA Alp, as defined in Section 4.2.1.

• The Al 1 class implements IWA Al1, as defined in Section 4.2.2.

• The Al 2 class implements IWA Al2, as defined in Section 4.2.3.

• The Al 3 class implements IWA Al3, as defined in Section 4.2.4.

• The Abstract Belief State Parser class is only applicable to TWA Al5 and
Al6. This class reads the BDD variables that indicate the abstract states of each
component.

• The Al 5 class implements TWA Al5, as defined in Section 5.2.

• The Al 6 class implements TWA Al6, as defined in Section 5.3.

2buddy.sourceforge.net/manual/main.html



§6.2 Experimental Models and Scenarios for Diagnosis 123

• The Main class runs this program. This class also reads the entire observation
sequence.

The processes of the software program are described as follows. Firstly, the Main

class calls the Component Parser to read the descriptions for all components, and
stores the information for each instance of Component. Secondly, Automaton Factory

generates an instance of Automaton, which consists of the underlying components.
Finally, the Main class reads a sequence of observations, and calls one of the diagnos-
tic algorithms, i.e. Al0, Al1, Al2, Al3, Al5, or Al6 class.

6.2 Experimental Models and Scenarios for Diagnosis

There is no established benchmark for DES diagnosis in the literature. This work
proposes a benchmark for DES diagnosis. This section explains the “robot” DES
model that is used in the experiments. It then explains how to generate a scenario
for diagnosis.

6.2.1 The “Robot” Model

This work establishes a DES model for a “robot”. This “robot” model consists of four
categories of components, namely,

• Order Monitor,

• Fault Monitor,

• Customer, and

• Glass.

There is only one instance of Order Monitor and one instance of Fault Monitor. In
a “robot” model, |c| denotes the pre-defined number of customers, and |g| denotes
the pre-defined number of glasses. This “robot” model also considers the situations
where not every customer is ordering and not every glass is being used. Events with
the same label are synchronised, which applies to all observable, unobservable, and
faulty events.

The details of the four components are described as follows with visualisations.
The visualisations illustrate the case of two customers and two glasses, i.e. |c| = 2
and |g| = 2. Notice that all of the figures mentioned in this section will appear in
Appendix A.
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• The Order Monitor component manages the sequencing of the orders from
the customers. Fig. A.1 is a visualisation for the Order Monitor for maximum
two customers and maximum two glasses. Observable events are order_1 and
order_2 while the rest events are unobservable. The constraint is that once
a customer order is received (order_1 or order_2), a glass should be selected
(use_1 or use_2). However, exactly which glass has been selected is not known,
nor observable. Then, the selected glass is given to the customer (g_to_c or
damaged_g_to_c). It is not known, nor observable whether the selected glass
is normal or damaged. The number of transitions with an order event is |c|,
and the number of transitions with a use event is |g|.

• The Fault Monitor component tracks whether there is a damaged glass. Fig. A.2
is a visualisation for the Fault Monitor for maximum two glasses. The “robot”
model specifies that either no glass is damaged, or there is one damaged glass.
This specification is consistent with Assumption 6 of Chapter 3, which states
that there is at most one fault in the system at any time. The number of transi-
tions with a damage_g event is |g|.

• The Customer component models how a customer places an order, and receives
a glass. Whether a customer leaves a tip or not depends on the condition of
the glass that is used. The customer leaves a tip if the glass is normal. Oth-
erwise, the glass is damaged, and the customer departs without leaving a tip.
Fig. A.3 and Fig. A.4 are the visualisations for two instances of the Customer

component. Notice that when a customer is in the waiting state, the Customer

component is not affected by any g_to_c event, or damaged_g_to_c event.
This is because the loops with g_to_c and damaged_g_to_c events are used to
model the sequencing of multiple orders and glasses, i.e. a glass is given to one
customer while the other customers are not affected.

• The Glass component models the fact that a glass is selected after receiving an
order from a customer. Then, the glass is filled with drink and is given to the
customer. However, the glass may or may not be damaged. After the customer
leaves, the glass is washed. Fig. A.5 and Fig. A.6 are the visualisations for two
instances of the Glass component.

The “robot” model describes the processes that a “robot” receives orders from
one or two customers. It then selects a glass for every customer order, and gives the
glass to the customer that is filled with drink. Exactly which glass is selected is not
known, nor observable. At any time, at most one glass may be damaged, which is
in accordance to Assumption 6 of Chapter 3, i.e. this work considers one fault in a
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system at a time. The “robot” receives tips from a customer if the glass is normal,
and does not receive tips if the glass is damaged. Finally, the “robot” washes all of
the used glasses. Exactly which glass is washed is observable.

Diagnosis of the “robot” system aims to identify exactly which glass is dam-
aged. In general, diagnosis of the “robot” system requires multiple rounds of order-
tip-wash. For example, if the scenario is order_1, order_2, no_tip, tip, wash_3,
wash_4, then there are two orders, which are received from customer 1 and 2. Also,
glass 3 and 4 are used and washed. Based on this scenario, a diagnoser infers that
either glass 3 or 4 is damaged. However, a diagnoser requires more observations
in order to determine exactly which glass is damaged. For example, if this scenario
continues with order_1, no_tip, wash_3, then a diagnoser infers that glass 3 has
been used and washed. In particular, a diagnoser determines that glass 3 is dam-
aged based on no_tip, wash_3. In general, a diagnoser observes no_tip, and then
analyses which glasses have been used and washed so that it narrows down the set
of faulty glasses to a single faulty glass.

6.2.2 Generating Scenarios for Diagnosis

The work also implements a scenario script to generate the diagnostic scenarios. Each
diagnostic scenario consists of a specific number of rounds. Each round consists of
three groups of observations, namely,

• order,

• tip or no_tip, and

• wash.

When generating a scenario, the scenario script specifies the index of the round
where a glass is damaged, denoted as r. Thus, the first (r − 1) rounds are free of
damaged glasses. Then, the scenario script records which glass is damaged, i.e.
starting from the r-th round, it is possible that a damaged glass is selected and given
to a customer. The three groups of observations are generated as follows.

• The first group is a random number of customer orders. The number of cus-
tomer orders must be within the limit of the maximum number of customers.
For example, if the maximum number of customers is 2, then it is allowed to
generate at most two order_i observations, i.e. order_1 and order_2.

• The second group is tip or no_tip observations depending on the condition of
a selected glass. The total number of tip and no_tip observations is the same
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as the number of orders in the first group. Since the “robot” model specifies the
number of glasses as |g|, the scenario script randomly selects one glass from
|g| glasses for an order, denoted as glass_i. Notice that the scenario script
only simulates how the “robot” model operates. From the observations of the
“robot” model, it is not known exactly which glass is used, nor exactly which
glass is damaged, i.e. glass_i is not observable. If a normal glass is selected,
then the scenario script generates observable tip_i w.r.t. its order_i from
the first group. Otherwise, a damaged glass is used, and the scenario script
generates observable no_tip_i w.r.t. its order_i.

• The third group is wash_i observations w.r.t. the glass_i from the second
group.

Using the scenario script, this work simulates a diagnostic scenario where a
fault occurs in the “robot” model. This work also records the observation index
for the fault occurrence in a scenario. Section 6.3 will use the scenario script and
the recorded data for experiments and evaluations. Although the “robot” model is
not diagnosable by Definition 8 of Chapter 3, this work conducts experiments on
Al1, Al2, Al3, Al5, and Al6 using the scenario script to generate a diagnostic scenario
with a fault. If the exact diagnostic algorithm Al0 diagnoses a scenario as faulty, then
this scenario is diagnosable and it is retained for experiments.

6.3 Experimental Settings, Results, and Evaluations for IWAs
Al1, Al2, and Al3

This work conducts experiments on IWAs Al1, Al2, and Al3. It then evaluates the
performance of each IWA, and compares the experimental results with those of the
exact diagnostic algorithm Al0.

6.3.1 Experimental Settings

This work conducts experiments on the “robot” model with 14 glasses, 9 customers,
a fault monitor, and an order monitor. Section 6.2 has specified that there are 6
states in the Glass component, 4 states in the Customer component, 3 states in the
Order Monitor component, and 2 states in the Fault Monitor component. Using
Al0, the number of states in a belief state is up to 1.23256× 1017, i.e. 614 × 49 × 3× 2.

Using the scenario script described in Section 6.2, this work generates 500 scenar-
ios. Each diagnostic algorithm is evaluated in terms of the following five aspects.
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• The first aspect is the precision of diagnosis. Al0 is an implementation of the
exact diagnosis encoded by BDD. Al0 diagnoses all of the 500 scenarios as
faulty. The diagnostic results of a window-based diagnostic algorithm will be
compared with those of Al0.

• The run time of diagnosing a scenario is measured in seconds. Run time does
not include the time for the following operations:

– initialising the C++ program,

– reading the specifications of all components and a diagnostic scenario, and

– BDD encodings for states, events, transitions, and synchronisations.

• The peak memory use is measured by the maximum number of BDD nodes
among belief states.

• The average memory use is measured by the average number of BDD nodes
among belief states.

• The final aspect is the number of observations between a fault occurrence and
the fault diagnosis of a diagnostic algorithm, denoted as diagnostic distance. This
aspect provides an insight on the minimum number of required observations
to diagnose a fault. Section 6.2.2 explains that the scenario script generates a set
of scenarios where the index of a fault occurrence is recorded for each scenario.

The experiments were conducted on a Macintosh OS 10.9.5 computer with a 2 GHz
quad-core CPU and 8 GB memory. Four sets of experiments were run on 500 scenar-
ios. Recall that Chapter 4 denotes a time window size as k, the index of the starting
observation in a scenario as i, and the number of skipped time windows of Al3 as
d. Let the total number of observations in a scenario be n. The settings of each
experiment are described as follows.

• Experiment 1: the exact diagnostic algorithm Al0;

• Experiment 2: Al1 where k = 150, 200, 250, and i = 0;

• Experiment 3: Al2 where k = 150, 200, 250, and i = 0;

• Experiment 4: Al3 where k = 150, 200, 250, 300, 350, i = b n
k c×k

2 , and d = k.

Notice that the setting for experiment 4 states that the starting index is the middle
of a diagnostic scenario. The aim is to test the diagnostic capability of Al3 when
skipping a specified number of observations and diagnosing the rest observations.

This work evaluates Al1, Al2, and Al3 by comparing their results with those of
Al0.
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• Section 6.3.2 will compare the results of experiment 1 with those of experiment
2;

• Section 6.3.3 will compare the results of experiment 1 with those of experiment
3;

• Section 6.3.4 will compare the results of experiment 1 with those of experiment
4.

This work also examines the impact of different time window sizes on Al1, Al2, and
Al3.

6.3.2 Comparison between Experiment 1 and 2

This work compares the experimental results of Al1 (k = 150, 200, 250) with those of
Al0, and evaluates their performance in five aspects as specified in Section 6.3.1.

• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
The average diagnostic distance of using Al0 is 72, which provides a valuable
indication for the time window size selection. This set of experiments runs on
Al1 with k = 150, 200, 250. However, Al1 (k = 150, 200) are unable to precisely
diagnose some of the 500 scenarios. The percentage of precise diagnosis of Al1
(k = 150) is 92.80%, and the percentage of precise diagnosis of Al1 (k = 200) is
98.00%. Al1 (k = 250) precisely diagnoses the fault in each of the 500 scenarios.

• Run time:

Fig. 6.2 compares the run time of the first 50 scenarios between Al0 and Al1
(k = 250) measured in seconds. This plot shows the time differences for the
first 50 scenarios. Notice that this set of experiments was run on 500 scenarios.
The average time increase of using Al1 (k = 250) is 60.63%.

• Peak memory use:

Fig. 6.3 compares the maximum number of BDD nodes in a belief state of the
first 50 scenarios. Al1 (k = 250) consistently has larger peak memory use than
Al0 does. After “resetting” to every nominal state, diagnosing observed events
in a new time window increases the size of the global belief state and the
number of BDD nodes to represent the global belief state. The average increase
of using Al1 (k = 250) is 150.49%.
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Figure 6.2: Run time comparison between Al0 and Al1 (k = 250): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds
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Figure 6.3: Peak number of BDD nodes in a belief state: comparison between Al0 and
Al1 (k = 250). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

• Average memory use:

Fig. 6.4 compares the average number of BDD nodes in a belief state. Al1
(k = 250) has larger average memory use than Al0 does. The average increase
of using Al1 (k = 250) is 42.40%.
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Figure 6.4: Average number of BDD nodes in a belief state: comparison between
Al0 and Al1 (k = 250). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

• Diagnostic distance:

The average number of observations in one scenario is 1490. The average di-
agnostic distance of using Al1 (k = 250) is 199. In comparison, the average
diagnostic distance of using Al0 is 72.

In summary, although the computational time is increased compared to using
Al0, this set of experiments is helpful to find a small time window size k that is able
to precisely diagnose a fault. For a “robot” model with 14 glasses and 9 customers,
Al1 (k = 250) precisely diagnoses all 500 scenarios. However, Al1 (k = 150, 200) are
unable to precisely diagnose some of the 500 scenarios. The percentage of precise
diagnosis of Al1 (k = 150) is 92.80%, and the percentage of precise diagnosis of Al1
(k = 200) is 98.00%. Therefore, this set of experiments provides a useful indication on
how small the value of k can be while being able to precisely diagnose most scenarios
of the “robot” model with 14 glasses and 9 customers.

6.3.3 Comparison between Experiment 1 and 3

This work compares the experimental results of Al2 (k = 150, 200, 250) with those of
Al0, and evaluates their performance in five aspects as specified in Section 6.3.1.

• Precision:
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The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
The average diagnostic distance of using Al0 is 72, which provides a valuable
indication for the time window size selection. This set of experiments runs on
Al2 with k = 150, 200, 250. However, Al2 (k = 150, 200) are unable to precisely
diagnose some of the 500 scenarios. The percentage of precise diagnosis of Al2
(k = 150) is 96.20%, and the percentage of precise diagnosis of Al2 (k = 200) is
99.00%. Al2 (k = 250) precisely diagnoses the fault in each of the 500 scenarios.

• Run time:
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Figure 6.5: Run time comparison between Al0 and Al2 (k = 250): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds

Fig. 6.5 compares the run time of the first 50 scenarios between Al0 and Al2
(k = 250) measured in seconds. This plot shows the time differences for the
first 50 scenarios. Notice that this set of experiments was run on 500 scenarios.
The average time increase of using Al2 (k = 250) is 60.20%.

• Peak memory use:

Fig. 6.6 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al2 (k = 250) predominantly has larger peak memory use
than Al0 does. After “resetting” to every nominal state, diagnosing observed
events in a new time window increases the size of the global belief state and the
number of BDD nodes to represent the global belief state. The average increase
of using Al2 (k = 250) is 150.49%.
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Figure 6.6: Peak number of BDD nodes in a belief state: comparison between Al0 and
Al2 (k = 250). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

• Average memory use:
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Figure 6.7: Average number of BDD nodes in a belief state: comparison between
Al0 and Al2 (k = 250). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

Fig. 6.7 compares the average number of BDD nodes in a belief state. Al2
(k = 250) has larger memory use than Al0 does. The average increase of using
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Al2 (k = 250) is 42.40%.

• Diagnostic distance:

The average number of observations in one scenario is 1490. The average di-
agnostic distance of using Al2 (k = 250) is 196. In comparison, the average
diagnostic distance of using Al0 is 72.

In summary, although the computational time is increased compared to using Al0,
the result of this set of experiments indicates that Al2 (k = 250) precisely diagnoses
all 500 scenarios of a “robot” model with 14 glasses and 9 customers. In particular,
the result of Al2 (k = 250) is consistent with Theorem 9 of Chapter 4 since the time
windows of Al2 (k = 250) cover those of Al1 (k = 250). This set of experiments
also runs on Al2 (k = 150, 200). However, Al2 (k = 150, 200) are unable to precisely
diagnose some of the 500 scenarios. Therefore, this set of experiments provides a
useful indication on how small the value of k can be while being able to precisely
diagnose most scenarios of the “robot” model with 14 glasses and 9 customers.

6.3.4 Comparison between Experiment 1 and 4

The settings for Al3 are k = 150, 200, 250, 300, 350, i = b n
k c×k

2 , and d = k where n is the
total number of observations in a scenario, and k is the size of a time window. In other
words, Al3 skips the first half of a scenario, and starts diagnosis. The average number
of observations in one scenario is 1493. This work compares the experimental results
of Al3 (k = 150, 200, 250, 300, 350) with those of Al0, and evaluates their performance
in five aspects as specified in Section 6.3.1.

• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
This set of experiments runs on Al3 with k = 150, 200, 250, 300, 350. However,
Al3 (k = 150, 200, 250, 300) are unable to precisely diagnose some of the 500 sce-
narios. Al3 (k = 350) precisely diagnoses the fault in each of the 500 scenarios.

• Run time:

Fig. 6.8 compares the run time of the first 50 scenarios between Al0 and Al3
(k = 150) measured in seconds. This plot shows the time reduction for the first
50 scenarios. Notice that this set of experiments was run on 500 scenarios. The
average time difference of using Al3 (k = 150) is −46.06%.

Fig. 6.9 compares the run time of the first 50 scenarios between Al0 and Al3
(k = 200) measured in seconds. This plot shows the time reduction for the first
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Figure 6.8: Run time comparison between Al0 and Al3 (k = 150): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds
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Figure 6.9: Run time comparison between Al0 and Al3 (k = 200): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds

50 scenarios. Notice that this set of experiments was run on 500 scenarios. The
average time difference of using Al3 (k = 200) is −58.11%.

Fig. 6.10 compares the run time of the first 50 scenarios between Al0 and Al3
(k = 350) measured in seconds. This plot shows the time reduction for the first
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Figure 6.10: Run time comparison between Al0 and Al3 (k = 350): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds

50 scenarios. Notice that this set of experiments was run on 500 scenarios. The
average time difference of using Al3 (k = 350) is −74.20%.

• Peak memory use:
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Figure 6.11: Peak number of BDD nodes in a belief state: comparison between Al0
and Al3 (k = 150). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.
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Fig. 6.11 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al3 (k = 150) predominantly has larger peak memory use
than Al0 does. After “resetting” to every nominal state in the global model,
diagnosing the observed events in a new time window increases the size of the
global belief state and the number of BDD nodes to represent the global belief
state. The average increase of using Al3 (k = 150) is 110.80%.
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Figure 6.12: Peak number of BDD nodes in a belief state: comparison between Al0
and Al3 (k = 200). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

Fig. 6.12 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al3 (k = 200) predominantly has larger peak memory use
than Al0 does. The average increase of using Al3 (k = 200) is 103.29%.

Fig. 6.13 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al3 (k = 350) predominantly has larger peak memory use
than Al0 does. The average increase of using Al3 (k = 350) is 94.04%.

• Average memory use:

Fig. 6.14 compares the average number of BDD nodes in a belief state. The
average memory use of Al3 (k = 150) is consistently lower than that of Al0.
After a “reset”, diagnosing observations in a new time window helps to reduce
the size of the belief state from the peak. The average difference of using Al3
(k = 150) is −56.63%.

Fig. 6.15 compares the average number of BDD nodes in a belief state. The



§6.3 Experimental Settings, Results, and Evaluations for IWAs Al1, Al2, and Al3 137

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

8000	
  

0	
   10	
   20	
   30	
   40	
   50	
   60	
  

Peak Number of BDD Nodes Al 0 Peak Number of BDD Nodes Al 3, k = 350 

Figure 6.13: Peak number of BDD nodes in a belief state: comparison between Al0
and Al3 (k = 350). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.
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Figure 6.14: Average number of BDD nodes in a belief state: comparison between
Al0 and Al3 (k = 150). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

average memory use of Al3 (k = 200) is consistently lower than that of Al0. The
average difference of using Al3 (k = 200) is −60.17%.

Fig. 6.16 compares the average number of BDD nodes in a belief state. The
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Figure 6.15: Average number of BDD nodes in a belief state: comparison between
Al0 and Al3 (k = 200). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.
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Figure 6.16: Average number of BDD nodes in a belief state: comparison between
Al0 and Al3 (k = 350). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

average memory use of Al3 (k = 350) is consistently lower than that of Al0. The
average difference of using Al3 (k = 350) is −63.65%.

• Diagnostic distance:
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The average number of observations in one scenario is 1493. The average di-
agnostic distance using Al3 (k = 150) is 428; the average diagnostic distance
using Al3 (k = 200) is 340; the average diagnostic distance using Al3 (k = 350)
is 431. In comparison, the average diagnostic distance using Al0 is 72. It should
be noted that the settings for Al3 specify that the first half of each scenario is
skipped. Although Al3 (k = 350) has a larger diagnostic distance than Al0 does,
Al3 (k = 350) is still able to precisely diagnose the fault.

In summary, this set of experiments indicates that Al3 (k = 350) precisely diag-
noses all of the 500 scenarios of a “robot” model with 14 glasses and 9 customers.
Also, the run time and the average memory use are consistently reduced compared
to using Al0. This set of experiments also runs on Al3 (k = 150, 200, 250, 300). How-
ever, Al3 (k = 150, 200, 250, 300) are unable to precisely diagnose some of the 500
scenarios.

6.3.5 Summary for Experiments on IWAs Al1, Al2, and Al3

The above experiments on IWAs Al1, Al2, and Al3 examine the impact of a time
window size on precision, run time, peak memory use, average memory use, and
diagnostic distance. The results show that Al3 has promising performance in com-
parison to the exact diagnostic algorithm Al0. In particular, Al3 (k = 350) precisely
diagnoses all of the 500 scenarios of a “robot” model with 14 glasses and 9 customers.
Also, the run time and the average memory use are consistently reduced compared
to using Al0. The results of Al3 (k = 350) indicate that a greater value of k, i.e.
fewer time windows, lead to shorter computational time, as well as lower peak and
average memory use than using a smaller value of k. In conclusion, to diagnose a
component-based DES model, Al3 has good diagnostic performance. As an IWA, Al3
can skip a specified number of observations and start diagnosis.

6.4 Experimental Model, Settings, Results, and Evaluations
for Al5

This section explains the DES model that is used in the set of experiments for TWA
Al5. The scenarios are generated using the same scenario script as described in Sec-
tion 6.2.2. This work conducts experiments on Al5. It then evaluates the performance
of Al5, and compares the experimental results with those of the exact diagnostic
algorithm Al0.
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6.4.1 Experimental Model and Settings for Al5

This work conducts experiments on “robot” model 2, which is based on the “robot”
model of Section 6.3.1. Only the Customer component is modified, which includes
three waiting states while the other components are the same as in Section 6.3.1.

begin_1

waiting_A1waiting_B1 waiting_C1

r_ok_1 r_damaged_1

g_to_c, damaged_g_to_c

order_1

order_1 order_1

g_to_c

g_to_c g_to_c
damaged_g_to_c

tip_1 no_tip_1

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

wait_B1 wait_C1

damaged_g_to_c

damaged_g_to_c

Figure 6.17: Modified Customer 1: the state “r_ok_1” means that Customer 1 has
received a normal glass, and the state “r_damaged_1” means that Customer 1 has
received a damaged glass; the event “g_to_c” means giving a normal glass to a cus-
tomer, and the event “damaged_g_to_c” means giving a damaged glass to a cus-
tomer; “order_1”, “tip_1”, and “no_tip_1” are the observable events while the other
events are unobservable; the loops with “g_to_c” and “damaged_g_to_c” are used to
model the sequencing of multiple orders and glasses.

Fig. 6.17 and Fig. 6.18 illustrate two instances of the modified Customer compo-
nent. The abstract states in the Customer component are described as follows.

• {begin_i};
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begin_2

waiting_A2waiting_B2 waiting_C2

r_ok_2 r_damaged_2

g_to_c, damaged_g_to_c

order_2

order_2 order_2

g_to_c

g_to_c g_to_c
damaged_g_to_c

tip_2 no_tip_2

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

wait_B2 wait_C2

damaged_g_to_c

damaged_g_to_c

Figure 6.18: Modified Customer 2: the state “r_ok_2” means that Customer 2 has
received a normal glass, and the state “r_damaged_2” means that Customer 2 has
received a damaged glass; the event “g_to_c” means giving a normal glass to a cus-
tomer, and the event “damaged_g_to_c” means giving a damaged glass to a cus-
tomer; “order_2”, “tip_2”, and “no_tip_2” are the observable events while the other
events are unobservable; the loops with “g_to_c” and “damaged_g_to_c” are used to
model the sequencing of multiple orders and glasses.

• {waiting_Ai, waiting_Bi, waiting_Ci};

• {r_ok_i};

• {r_damaged_i} where ‘i’ is the index for each Customer component.

The abstract states in the other components are formed by the individual states.
This work conducts three sets of experiments on “robot” model 2 with 14 glasses, 9
customers, a fault monitor, and an order monitor. Using the scenario script described
in Section 6.2, this work generates a set of 500 scenarios, and runs the experiments.
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Recall that Chapter 5 denotes a time window size as k. The settings of each set of
experiments are described as follows.

• Experiment 1: the exact diagnostic algorithm Al0;

• Experiment 2: Al5 where k = 25;

• Experiment 3: Al5 where k = 50.

Section 6.4.2 will compare the results of experiment 1 with those of experiment 2.
Section 6.4.3 will compare the results of experiment 1 with those of experiment 3.

6.4.2 Comparison between Al0 and Al5 (k = 25)

This work compares the experimental results of Al5 (k = 25) with those of Al0, and
evaluates the performance of Al5 (k = 25) in five aspects as specified in Section 6.3.1.

• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
Al5 (k = 25) also diagnoses the fault in each of the 500 scenarios.

• Run time:
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Figure 6.19: Run time comparison between Al0 and Al5 (k = 25): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds

Fig. 6.19 compares the run time of the first 50 scenarios between Al0 and Al5
(k = 25) measured in seconds. This plot shows the time increase for the first
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50 scenarios. Notice that this set of experiments was run on 500 scenarios. The
average time increase of using Al5 (k = 25) is 16.00%.

• Peak memory use:

0	
  

500	
  

1000	
  

1500	
  

2000	
  

2500	
  

0	
   10	
   20	
   30	
   40	
   50	
   60	
  

Peak Number of BDD Nodes, Al 0 Peak Number of BDD Nodes, Al 5, k = 25 

Figure 6.20: Peak number of BDD nodes in a belief state: comparison between Al0
and Al5 (k = 25). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

Fig. 6.20 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al5 (k = 25) consistently has lower peak memory use than
Al0 does. This is because Al5 (k = 25) uses abstract belief states in the global
model, which reduces the size of the belief state compared to using Al0. The
average difference of using Al5 (k = 25) is −3.05%.

• Average memory use:

Fig. 6.21 compares the average number of BDD nodes in a belief state. The
average memory use of Al5 (k = 25) is consistently lower than that of Al0. This
result is consistent with that of the peak memory use. The average difference
of using Al5 (k = 25) is −9.19%.

• Diagnostic distance:

The diagnostic distance of using Al5 (k = 25) is consistently the same as that
of using Al0. The average diagnostic distance is 74. Notice that the average
number of observations in one scenario is 1498.
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Figure 6.21: Average number of BDD nodes in a belief state: comparison between
Al0 and Al5 (k = 25). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

In summary, this set of experiments indicates that Al5 (k = 25) precisely diag-
noses “robot” model 2 with 14 glasses and 9 customers. Although the computational
time is increased compared to using Al0, both peak and average memory use are
reduced. Also, the selected abstract states lead to a precise TWA Al5 (k = 25), i.e.
Al5 (k = 25) is precise to diagnose “robot” model 2. Therefore, the results of this
set of experiments show that the benefits of TWA Al5 are consistent with the theory
presented in Chapter 5.

6.4.3 Comparison between Al0 and Al5 (k = 50)

This work compares the experimental results of Al5 (k = 50) with those of Al0, and
evaluates the performance of Al5 (k = 50) in five aspects as specified in Section 6.3.1.

• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
Al5 (k = 50) also diagnoses the fault in each of the 500 scenarios.

• Run time:

Fig. 6.22 compares the run time of the first 50 scenarios between Al0 and Al5
(k = 50) measured in seconds. This plot shows the time increase for the first
50 scenarios. Notice that this set of experiments was run on 500 scenarios. The
average time increase of using Al5 (k = 50) is 14.15%.
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Figure 6.22: Run time comparison between Al0 and Al5 (k = 50): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds

• Peak memory use:
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Figure 6.23: Peak number of BDD nodes in a belief state: comparison between Al0
and Al5 (k = 50). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

Fig. 6.23 compares the maximum number of BDD nodes in a belief state for the
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first 50 scenarios. Al5 (k = 50) consistently has lower peak memory use than
Al0 does. This is because Al5 (k = 50) uses abstract belief states in the global
model, which reduces the size of the belief state compared to using Al0. The
average difference of using Al5 (k = 50) is −3.05%.

• Average memory use:
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Figure 6.24: Average number of BDD nodes in a belief state: comparison between
Al0 and Al5 (k = 50). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

Fig. 6.24 compares the average number of BDD nodes in a belief state. The
average memory use of Al5 (k = 50) is consistently lower than that of Al0. This
result is consistent with the peak memory use. The average difference of using
Al5 (k = 50) is −9.63%.

• Diagnostic distance:

The diagnostic distance of using Al5 (k = 50) is consistently the same as that
of using Al0. The average diagnostic distance is 74. Notice that the average
number of observations in one scenario is 1498.

In summary, this set of experiments indicates that Al5 (k = 50) precisely diag-
noses “robot” model 2 with 14 glasses and 9 customers. Although the computational
time is increased compared to using Al0, both peak and average memory use are
reduced. Also, the selected abstract states lead to a precise TWA Al5 (k = 50), i.e.
Al5 (k = 50) is precise to diagnose “robot” model 2. Therefore, the results of this
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set of experiments show that the benefits of TWA Al5 are consistent with the theory
presented in Chapter 5.

6.5 Experimental Model, Settings, Results, and Evaluations
for Al6

This section explains the DES model that is used in the set of experiments for Al6.
This work conducts experiments on TWA Al6. It then evaluates the performance
of Al6, and compares the experimental results with those of the exact diagnostic
algorithm Al0.

6.5.1 Experimental Model and Settings for Al6

This section conducts experiments on “robot” model 3, which is based on the “robot”
model as specified in Section 6.4.1. Only the Customer component is modified, which
includes an additional state, called no_order.

Fig. 6.25 and Fig. 6.26 illustrate two instances of the modified Customer compo-
nent. The abstract states in the Customer component are described as follows.

• {begin_i, no_order_i};

• {waiting_Ai, waiting_Bi, waiting_Ci};

• {r_ok_i};

• {r_damaged_i} where ‘i’ is the index for each Customer component.

The other components are the same as in Section 6.3.1, and the abstract states in the
other components are formed by the individual states. This work conducts experi-
ments on “robot” model 3 with 14 glasses, 9 customers, a fault monitor, and an order
monitor. This work generates a set of 500 scenarios based on “robot” model 3, and
runs the experiments. Recall that Chapter 5 denotes a time window size as k. The
settings of each experiment are described as follows.

• Experiment 1: the exact diagnostic algorithm Al0;

• Experiment 2: Al5 where k = 30;

• Experiment 3: Al5 where k = 60;

• Experiment 4: Al6 where k = 30;

• Experiment 5: Al6 where k = 60.
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Figure 6.25: Modified Customer 1: the state “r_ok_1” means that Customer 1 has
received a normal glass, and the state “r_damaged_1” means that Customer 1 has
received a damaged glass; the event “g_to_c” means giving a normal glass to a cus-
tomer, and the event “damaged_g_to_c” means giving a damaged glass to a cus-
tomer; “order_1”, “tip_1”, and “no_tip_1” are the observable events while the other
events are unobservable; the loops with “g_to_c” and “damaged_g_to_c” are used to
model the sequencing of multiple orders and glasses.

Section 6.5.2 will compare the results of experiment 1 with those of experiment 2.
Section 6.5.3 will compare the results of experiment 1 with those of experiment 3.
Section 6.5.4 will compare the results of experiment 1 with those of experiment 4.
Section 6.5.5 will compare the results of experiment 1 with those of experiment 5.

6.5.2 Comparison between Al0 and Al5 (k = 30)

This work compares the experimental results of Al5 (k = 30) with those of Al0, and
evaluates the performance of Al5 (k = 30) in four aspects, i.e. precision, run time,
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Figure 6.26: Modified Customer 2: the state “r_ok_2” means that Customer 2 has
received a normal glass, and the state “r_damaged_2” means that Customer 2 has
received a damaged glass; the event “g_to_c” means giving a normal glass to a cus-
tomer, and the event “damaged_g_to_c” means giving a damaged glass to a cus-
tomer; “order_2”, “tip_2”, and “no_tip_2” are the observable events while the other
events are unobservable; the loops with “g_to_c” and “damaged_g_to_c” are used to
model the sequencing of multiple orders and glasses.

peak memory use, and average memory use.

• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
However, Al5 (k = 30) cannot precisely diagnose every fault in the 500 scenar-
ios. As a result, it is not possible to evaluate Al5 (k = 30) in terms of diagnostic
distance.

• Run time:
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Figure 6.27: Rum time comparison between Al0 and Al5 (k = 30): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds

Fig. 6.27 compares the run time of the first 50 scenarios between Al0 and Al5
(k = 30) measured in seconds. This plot shows the time increase for the first
50 scenarios. This is because Al5 (k = 30) may analyse all observations in a
scenario, but is unable to diagnose the fault. Notice that this set of experiments
was run on 500 scenarios. The average time increase of using Al5 (k = 30) is
336.52%.

• Peak memory use:

Fig. 6.28 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al5 (k = 30) predominantly has higher peak memory use
than Al0 does. This is because Al5 (k = 30) may analyse all observations in a
scenario, but is unable to diagnose the fault. Notice that this set of experiments
was run on 500 scenarios. The average increase of using Al5 (k = 30) is 85.05%.

• Average memory use:

Fig. 6.29 compares the average number of BDD nodes in a belief state. Al5
(k = 30) predominantly has higher peak memory use than Al0 does. This is
because Al5 (k = 30) may analyse all observations in a scenario, but is unable to
diagnose the fault. Notice that this set of experiments was run on 500 scenarios.
The average increase of using Al5 (k = 30) is 55.00%.
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Figure 6.28: Peak number of BDD nodes in a belief state: comparison between Al0
and Al5 (k = 30). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

In summary, this set of experiments indicates that Al5 (k = 30) is unable to pre-
cisely diagnose “robot” model 3 with 14 glass and 9 customers. Thus, it is necessary
for Section 6.5.4 and Section 6.5.5 to evaluate the performance of Al6 (k = 30, 60)
w.r.t. “robot” model 3.

6.5.3 Comparison between Al0 and Al5 (k = 60)

This work compares the experimental results of Al5 (k = 60) with those of Al0, and
evaluates the performance of Al5 (k = 60) in four aspects, i.e. precision, run time,
peak memory use, and average memory use.

• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
However, Al5 (k = 60) cannot precisely diagnose every fault in the 500 scenar-
ios. As a result, it is not possible to evaluate Al5 (k = 60) in terms of diagnostic
distance.

• Run time:

Fig. 6.30 compares the run time of the first 50 scenarios between Al0 and Al5
(k = 60) measured in seconds. This plot shows the time increase for the first
50 scenarios. This is because Al5 (k = 60) may analyse all observations in a
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Figure 6.29: Average number of BDD nodes in a belief state: comparison between
Al0 and Al5 (k = 30). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.
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Figure 6.30: Rum time comparison between Al0 and Al5 (k = 60): the x-axis shows
the scenario IDs, and the y-axis shows the number of BDD nodes

scenario, but is unable to diagnose the fault. Notice that this set of experiments
was run on 500 scenarios. The average time increase of using Al5 (k = 60) is
336.52%.
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• Peak memory use:
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Figure 6.31: Peak number of BDD nodes in a belief state: comparison between Al0
and Al5 (k = 60). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

Fig. 6.31 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al5 (k = 60) predominantly has higher peak memory use
than Al0 does. This is because Al5 (k = 60) may analyse all observations in a
scenario, but is unable to diagnose the fault. Notice that this set of experiments
was run on 500 scenarios. The average increase of using Al5 (k = 60) is 85.05%.

• Average memory use:

Fig. 6.32 compares the average number of BDD nodes in a belief state. Al5
(k = 60) predominantly has higher peak memory use than Al0 does. This is
because Al5 (k = 60) may analyse all observations in a scenario, but is unable to
diagnose the fault. Notice that this set of experiments was run on 500 scenarios.
The average increase of using Al5 (k = 60) is 50.74%.

In summary, this set of experiments indicates that Al5 (k = 60) is unable to pre-
cisely diagnose “robot” model 3 with 14 glass and 9 customers. Thus, it is necessary
for Section 6.5.4 and Section 6.5.5 to evaluate the performance of Al6 (k = 30, 60)
w.r.t. “robot” model 3.
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Figure 6.32: Average number of BDD nodes in a belief state: comparison between
Al0 and Al5 (k = 60). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

6.5.4 Comparison between Al0 and Al6 (k = 30)

This work compares the experimental results of Al6 (k = 30) with those of Al0, and
evaluates the performance of Al6 (k = 30) in five aspects as specified in Section 6.3.1.

• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
Al6 (k = 30) also precisely diagnoses the fault in each of the 500 scenarios.

• Run time:

Fig. 6.33 compares the run time of the first 50 scenarios between Al0 and Al6
(k = 30) measured in seconds. This plot shows the time increase for the first
50 scenarios. Notice that this set of experiments was run on 500 scenarios. The
average time increase of using Al6 (k = 30) is 339.39%.

• Peak memory use:

Fig. 6.34 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al6 (k = 30) consistently has lower peak memory use than
Al0 does. This is because Al6 (k = 30) uses abstract belief states in the global
model, which reduces the size of the belief state compared to using Al0. Notice
that this set of experiments was run on 500 scenarios. The average difference
of using Al6 (k = 30) is −18.49%.
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Figure 6.33: Rum time comparison between Al0 and Al6 (k = 30): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds
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Figure 6.34: Peak number of BDD nodes in a belief state: comparison between Al0
and Al6 (k = 30). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

• Average memory use:

Fig. 6.35 compares the average number of BDD nodes in a belief state. The
average memory use of Al6 (k = 30) is consistently lower than that of Al0. This
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Figure 6.35: Average number of BDD nodes in a belief state: comparison between
Al0 and Al6 (k = 30). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

result is consistent with the peak memory use. The average difference of using
Al6 (k = 30) is −13.14%.

• Diagnostic distance:

The diagnostic distance of using Al6 (k = 30) is 0, which is consistently the
same as that of using Al0.

In summary, this set of experiments indicates that Al6 (k = 30) precisely diag-
noses “robot” model 3. Although the computational time is increased compared to
using Al0, both the peak and average memory use are reduced. Also, the selected
abstract states lead to a precise TWA Al6 (k = 30), i.e. Al6 (k = 30) is precise to diag-
nose “robot” model 3. Notice that Section 6.5.2 shows that Al5 (k = 30) is not always
precise to diagnose “robot” model 3 using the same abstract states. In contrast, Al6 is
precise to diagnose “robot” model 3 without requiring more detailed abstract states.
Therefore, this set of experiments shows that the benefits of TWA Al6 are consistent
with the theory presented in Chapter 5.

6.5.5 Comparison between Al0 and Al6 (k = 60)

This work compares the experimental results of Al6 (k = 60) with those of Al0, and
evaluates the performance of Al6 (k = 60) in five aspects as specified in Section 6.3.1.
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• Precision:

The exact diagnostic algorithm Al0 diagnoses all of the 500 scenarios as faulty.
Al6 (k = 60) also precisely diagnoses the fault in each of the 500 scenarios.

• Run time:
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Figure 6.36: Rum time comparison between Al0 and Al6 (k = 60): the x-axis shows
the scenario IDs, and the y-axis shows the run time in seconds

Fig. 6.36 compares the run time of the first 50 scenarios between Al0 and Al6
(k = 60) measured in seconds. This plot shows the time increase for the first
50 scenarios. Notice that this set of experiments was run on 500 scenarios. The
average time increase of using Al6 (k = 60) is 288.56%.

• Peak memory use:

Fig. 6.37 compares the maximum number of BDD nodes in a belief state for the
first 50 scenarios. Al6 (k = 60) consistently has lower peak memory use than
Al0 does. This is because Al6 (k = 60) uses abstract belief states in the global
model, which reduces the size of the belief state compared to using Al0. Notice
that this set of experiments was run on 500 scenarios. The average difference
of using Al6 (k = 60) is −18.49%.

• Average memory use:

Fig. 6.38 compares the average number of BDD nodes in a belief state. The
average memory use of Al6 (k = 60) is consistently lower than that of Al0. This
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Figure 6.37: Peak number of BDD nodes in a belief state: comparison between Al0
and Al6 (k = 60). The x-axis shows the scenario IDs, and the y-axis shows the number
of BDD nodes.

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

160	
  

0	
   10	
   20	
   30	
   40	
   50	
   60	
  

Average Number of BDD Nodes Al 0 Average Number of BDD Nodes Al 6, k = 60 

Figure 6.38: Average number of BDD nodes in a belief state: comparison between
Al0 and Al6 (k = 60). The x-axis shows the scenario IDs, and the y-axis shows the
number of BDD nodes.

result is consistent with the peak memory use. The average difference of using
Al6 (k = 60) is −13.14%.
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• Diagnostic distance:

The diagnostic distance of using Al6 (k = 60) is 0, which is consistently the
same as that of using Al0.

In summary, this set of experiments indicates that Al6 (k = 60) precisely diag-
noses “robot” model 3. Although the computational time is increased compared to
using Al0, both the peak and average memory use are reduced. Also, the selected
abstract states lead to a precise TWA Al6 (k = 60), i.e. Al6 (k = 60) is precise to diag-
nose “robot” model 3. Notice that Section 6.5.3 shows that Al5 (k = 60) is not always
precise to diagnose “robot” model 3 using the same abstract states. In contrast, Al6 is
precise to diagnose “robot” model 3 without requiring more detailed abstract states.
Therefore, this set of experiments shows that the benefits of TWA Al6 are consistent
with the theory presented in Chapter 5.

6.6 Summary

This chapter evaluates the performance of window-based diagnostic algorithms through
experiments. This chapter presents the implementations, the experimental models,
and how to generate the scenarios for diagnosis. The performance of three IWAs and
two TWAs is measured by the precision of diagnosis, computational time, maximum
memory use, average memory use, and diagnostic distance. Diagnostic distance is
defined as the number of observations between a fault occurrence and the fault di-
agnosis of a diagnostic algorithm.

This chapter also reports the experimental settings, the data gather from the ex-
periments, and the evaluations on Al1, Al2, Al3, Al5, and Al6. It then compares the
results with those of the exact diagnostic algorithm Al0.

• For a “robot” model with 14 glasses and 9 customers, Al1 (k = 250, i = 0)
precisely diagnoses the fault in each of the 500 scenarios. However, Al1 (k =

150, 200, i = 0) are unable to precisely diagnose some of the 500 scenarios.
This set of experiments provides a useful indication on how small the value of
the time window size (k) can be while being able to precisely diagnose most
scenarios of the “robot” model.

• For a “robot” model with 14 glasses and 9 customers, Al2 (k = 250, i = 0)
precisely diagnoses the fault in each of the 500 scenarios. However, Al2 (k =

150, 200, i = 0) are unable to precisely diagnose some of the 500 scenarios.
Notice that the time windows of Al2 (k = 250, i = 0) cover those of Al1 (k = 250,
i = 0). This set of experiments provides a useful indication on how small the
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value of the time window size (k) can be while being able to precisely diagnose
most scenarios of the “robot” model.

• For a “robot” model with 14 glasses and 9 customers, Al3 (k = 350, i = b n
k c×k

2 , d =

350) is able to precisely diagnose the fault in each of the 500 scenarios. This set
of experiments demonstrates that the benefits of Al3 are consistent with the the-
ory presented in Chapter 4, i.e. Al3 skips a specified number of observations in
a scenario, runs faster than the exact diagnostic algorithm Al0, and has lower
average memory use. On the other hand, the maximum memory use is higher
than that of Al0 due to the resetting of system states and diagnosing observed
events in a new time window.

• For “robot” model 2 with 14 glasses and 9 customers, Al5 (k = 25, 50) pre-
cisely diagnose the fault in each of the 500 scenarios. This set of experiments
demonstrates that the benefits of Al5 are consistent with the theory presented
in Chapter 5, i.e. the maximum and average memory use is reduced compared
to using Al0. The trade-off is that the computational time is longer than that of
Al0 due to the operations on abstract belief states performed between the time
windows.

• For “robot” model 3 with 14 glasses and 9 customers, Al5 (k = 30, 60) are
unable to precisely diagnose the fault in some of the 500 scenarios while Al6
(k = 30, 60) precisely diagnose the fault in each of the 500 scenarios. This set of
experiments demonstrates that Al6 is more precise than Al5 without requiring
more detailed abstract states. It also demonstrates that the benefits of Al6 are
consistent with the theory presented in Chapter 5, i.e. both maximum and
average memory use are reduced compared to using Al0. The trade-off is that
the computational time is longer than that of Al0 due to the operations on
abstract belief states performed between the time windows.

In conclusion, the experimental results of IWAs show that Al3 has promising
performance in comparison to the exact diagnostic algorithm Al0. In particular, Al3
(k = 350, i = b n

k c×k
2 , d = 350) precisely diagnoses all of the 500 scenarios. Also, the

run time and the average memory use are consistently reduced compared to using
Al0. The results of Al3 (k = 350) indicate that a greater value of k, i.e. fewer time
windows, leads to shorter computational time, as well as lower peak and average
memory use than using a smaller value of k. To diagnose a component-based DES
model, IWA Al3 has good diagnostic performance since Al3 can skip a specified
number of observations and start diagnosis as an IWA.
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The experimental results of TWAs demonstrate that both Al5 and Al6 reduce the
maximum and average memory use compared to using Al0. In comparison to Al5,
Al6 improves the precision without requiring more detailed abstract states. How-
ever, the trade-off of using TWAs is that the computational time is longer than that
of using Al0 due to the operations on abstract belief states performed between the
time windows. Given a DES model, the simulations for Al5 and Al6 presented in
Section 5.4 of Chapter 5 can be used to verify the precision of a TWA w.r.t. the given
DES model.
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Chapter 7

Conclusion

7.1 Summary

This Thesis addresses the problem of on-line diagnosis of a DES, which was initially
proposed by Sampath et al. [1995]. Given a flow of observable events generated by
the underlying system, the problem consists in determining whether the DES is op-
erating normally or not, based on a behavioral model of it. On-line diagnosis means
diagnosing a system on the fly and in real time such that constraints on the com-
putational time and memory space are imposed. This work identifies that the main
challenge of on-line diagnosis is to deal with the complexity of a diagnostic algo-
rithm in order to monitor the observable flow on the fly, and generate a succession of
belief states that are consistent with the flow. In fact, the difficulty is that the number
of the belief states has been proved to be exponential w.r.t. the number of system
states [Rintanen, 2007]. The existing diagnostic algorithms attempt to compute at
any time a belief state that is consistent with the observable flow from the time when
the system starts operating to the current time. The main drawback of such a conser-
vative strategy is the inability to follow the observable flow for a large system due to
the exponential size of the generated belief states. Also, the temporal complexity to
handle all of the belief states remains a challenge.

Because diagnosis of DES is a hard problem, the use of faster diagnostic algo-
rithms is inevitable. Such algorithms include the IWAs [Su and Grastien, 2013],
which do not carry all of the historical information about the system execution,
and chronicle-recognition diagnostic algorithms [Dousson, 1996], which uses pattern
recognition techniques for diagnosis. However, these algorithms may be imprecise
to diagnose a diagnosable system than using an exact model-based diagnostic algo-
rithm, e.g. Sampath et al. diagnosis [Sampath et al., 1995]. Faults are very harmful
to a system and expensive to recover from if not correctly diagnosed. Hence, it is
essential to examine how to measure the quality of using a potentially imprecise
diagnostic algorithm w.r.t. a diagnosable DES model.
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In the literature, diagnosability of DES is an important property to measure the
capability of a diagnostic system to identify faults and the quality of diagnosis. Di-
agnosability is well-known criterion of DES, which is initially proposed by Sampath
et al. [1995]. Diagnosability of DES holds if using the model, a fault can always be
diagnosed after it occurs. Chapter 3 extends the diagnosability of a DES model, and
studies the precision of an imprecise diagnostic algorithm w.r.t. a DES model. A
diagnostic algorithm is defined as precise w.r.t. a DES model if it always diagnoses
the fault after it occurs. Precision can be verified using known methods such as the
twin plant method by Jiang et al. [2001], on the condition that a simulation is built,
which is a modified model that simulates how a diagnostic algorithm runs on a given
DES model. The precision holds iff there is no critical witness in the synchronisation
of the DES model and the simulation. This work also illustrates how to construct the
simulation for chronicle-recognition diagnosis in Chapter 3.

As one is able to verify the precision of a diagnostic algorithm w.r.t. a DES model
by building a simulation, Chapter 4 proposes a new class of diagnostic algorithms
called Independent-Window Algorithms (IWAs). IWAs are window-based diagnos-
tic algorithms, which slice a sequence of observations into time windows, and diag-
nose them independently. This approach is different to the conservative strategy. It
proposes diagnostic algorithms that are only applied on the very last events of the
observable flow, and forget about the past. IWAs slice an observation sequence into
time windows so that each time window is diagnosed independently. IWAs diag-
nose a certain number of observations for one time window, and move to another
time window without keeping any information. On the other hand, IWAs may cause
imprecise diagnosis. Since IWAs diagnose time windows independently, imprecision
happens when both current and past observations are necessary to understand the
system behaviour. Chapter 4 demonstrates the construction of a simulation in order
to verify the precision an IWA w.r.t. a DES model.

Chapter 5 further proposes Time-Window Algorithms (TWAs). TWAs are in-
spired by IWAs. Chapter 5 formally presents two TWAs, namely, Al5 and Al6. The
difference is that TWAs remember a certain knowledge between the time windows
so that the precision of diagnosis is preserved. The strategy of TWAs is a compro-
mise between the two extreme strategies of exact and imprecise diagnosis, e.g. a
compromise between Sampath et al. diagnosis [Sampath et al., 1995] and IWAs [Su
and Grastien, 2013]. Such a compromise is achieved by looking for the minimum
piece of information to remember from the past, called abstracted belief state, so that a
window-based algorithm will certainly ensure the same precision as using an exact
diagnostic algorithm. Chapter 5 also demonstrates how to verify the precision of
each TWA w.r.t. a DES model by constructing a simulation.
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Chapter 6 evaluates the performance of window-based diagnostic algorithms
through experiments. It evaluates Al1, Al2, Al3, Al5, and Al6 by comparing their
results with those of the exact diagnostic algorithm Al0. The performance is mea-
sured by the precision of diagnosis, computational time, peak memory use, average
memory use, and diagnostic distance. Diagnostic distance is defined as the number
of observations between a fault occurrence and the fault diagnosis of a diagnostic
algorithm. The experimental results of Al3 (k = 350, i = b n

k c×k
2 , d = 350) indicate that

a greater value of k, i.e. fewer time windows, leads to shorter computational time,
as well as lower peak and average memory use than using a smaller value of k. To
diagnose a component-based DES model, IWA Al3 has good diagnostic performance
since Al3 can skip a specified number of observations and start diagnosis as an IWA.
The experimental results of TWAs demonstrate that both Al5 and Al6 reduce the
maximum and average memory use compared to using Al0. In comparison to Al5,
Al6 improves the precision without requiring more detailed abstract states. However,
the trade-off of using a TWA is that the computational time is longer than that of us-
ing Al0 due to the operations on abstract belief states performed between the time
windows. Finally, the precision of a TWA w.r.t. a DES model varies on the settings
of abstract states. Given a DES model, the simulations for Al5 and Al6 presented in
Section 5.4 of Chapter 5 can be used to verify the precision of a TWA w.r.t. the given
DES model.

7.2 Future Work

The future work consists of three aspects. First, Chapter 3 proposes to verify the
precision of a diagnostic algorithm w.r.t. a DES model by constructing a simula-
tion. This is a general method that is useful to verify the precision of a diagnostic
approach. This novel approach also allows researchers to consider more aggressive
approaches to reduce the complexity of diagnosis, as they can now assess the preci-
sion of their diagnostic approaches. Therefore, it is worthwhile to extend this theory
to the case where the system is not diagnosable. The research question will focus on
the impact of using an imprecise diagnostic algorithm on a non-diagnosable system.
One approach is to categorise a scenario of a non-diagnosable system into nominal,
faulty, or ambiguous. Given a scenario, the performance of using an imprecise diag-
nostic algorithm on the scenario needs to be compared with the result of using an
exact diagnostic algorithm. Such a comparison should also consider the category of
a scenario, i.e. whether it is nominal, faulty, or ambiguous.

Second, this work proposes window-based diagnostic algorithms in Chapter 4
and Chapter 5. The extension is backbone diagnosis, which aims to identify what is
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known for sure during a diagnostic process. Notice that both TWAs and backbone
diagnosis remember the information from the past time windows of diagnosis. The
main difference between TWAs and backbone diagnosis is that TWAs keep track of
the abstract belief state of a system while backbone diagnosis maintains the known
information, e.g. a certain variable holds or not. Furthermore, backbone diagnosis
will be useful to investigate the root cause of ambiguity if a diagnoser is unable to
decide whether the system is in the nominal mode or the faulty mode. For example,
the system status is precisely known up to which observation in a scenario, and
then the ambiguity appears. In summary, backbone diagnosis is inspired by TWAs.
Backbone diagnosis is useful to investigate the root cause of ambiguity so that the
sensors of the system model may be modified in order to resolve the ambiguity of
diagnosis.

Third, AI planning and restoration is a subject that is closely related to this work
on diagnosis and diagnosability. It is an important research question to combine the
planning technique developed by Ciré and Botea [2008] where the goal is defined as
a specification in Linear Temporal Logic (LTL), with the symbolic diagnosability test-
ing developed by Grastien [2009] where diagnosability testing is specified in terms
of LTL formula. Therefore, the future work will focus on a model that captures both
aspects so that diagnosis leads to accurate alarm processing while planning leads to
robust configuration and restoration. Self-healability was initially studied by Cordier
et al. [2007]. Self-healing is a problem in which a system should be able to diagnose
and repair itself [Cordier et al., 2007; Grastien, 2015]. Grastien [2015] further pro-
posed to combine consistency checks and conformant planning problems. Grastien
[2015] firstly defined diagnosis as a problem to find the optimal repair plan, and
then presented a method to combine diagnosis and repair using DES modelling. A
planner searches a plan based on a sample of the system belief state. After that, a di-
agnoser verifies the applicability of a plan. If the plan is not valid, the diagnoser will
return a state of the belief state that needs to be added to the sample. This process
is repeated until a valid repair plan is found. Notice that the self-healing process
does not involve the computation of the exact belief state [Grastien, 2015]. In the
context of Smart Grid, it is an open research topic to develop an approach that joins
AI planning and diagnosis to improve the efficiency of event and failure handling,
minimise the impact of power loss, as well as recover and restore to a robust state
withholding the diagnosability property.



Appendix A

Figures for the “Robot” Model

The appendix shows the figures for the components in the “robot” model of Chap-
ter 6 with one instance of Order Monitor, one instance of Fault Monitor, two in-
stances of Customer, and two instances of Glass.

begin

preparing used

order_2
order_1

use_1

use_2

g_to_c

damaged_g_to_c

Figure A.1: An Order Monitor for two customers and two glasses: “g_to_c” means
giving a normal glass to a customer, and “damaged_g_to_c” means giving a dam-
aged glass to a customer; “order_1” and “order_2” are the observable events while
the other events are unobservable.

begin faulty

damage_g_1

damage_g_2

Figure A.2: A Fault Monitor for two glasses: “damage_g_1” means glass 1 becomes
damaged, and “damage_g_2” means glass 2 becomes damaged. Both events are
unobservable.
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begin_1

waiting_1

r_ok_1 r_damaged_1

g_to_c, damaged_g_to_c

order_1

g_to_c
damaged_g_to_c

tip_1
no_tip_1

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

Figure A.3: Customer 1: the state “r_ok_1” means that customer 1 has received a nor-
mal glass, and the state “r_damaged_1” means that customer 1 has received a dam-
aged glass; the event “g_to_c” means giving a normal glass to a customer, and the
event “damaged_g_to_c” means giving a damaged glass to a customer; “order_1”,
“tip_1”, and “no_tip_1” are the observable events while the other events are un-
observable; the loops with “g_to_c” and “damaged_g_to_c” are used to model the
sequencing of multiple orders and glasses, i.e. one glass is given to one customer.
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begin_2

waiting_2

r_ok_2 r_damaged_2

g_to_c, damaged_g_to_c

order_2

g_to_c
damaged_g_to_c

tip_2
no_tip_2

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

Figure A.4: Customer 2: the state “r_ok_2” means that customer 2 has received a nor-
mal glass, and the state “r_damaged_2” means that customer 2 has received a dam-
aged glass; the event “g_to_c” means giving a normal glass to a customer, and the
event “damaged_g_to_c” means giving a damaged glass to a customer; “order_2”,
“tip_2”, and “no_tip_2” are the observable events while the other events are un-
observable; the loops with “g_to_c” and “damaged_g_to_c” are used to model the
sequencing of multiple orders and glasses, i.e. one glass is given to one customer.
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begin_1

selected_1

used_ok_1

damaged_1

selected_f_1

used_damaged_1

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

use_1

g_to_c

wash_1

damage_g_1

use_1

damaged_g_to_c

wash_1

Figure A.5: Glass 1: the state “selected_f_1” means that the damaged glass 1 is
selected for a customer order; the event “g_to_c” means that glass 1 is given to a
customer; the event “damaged_g_to_c” means that a damaged glass is given to a
customer; the event “damage_g_1” means that glass 1 is damaged; “wash_1” is the
only observable event while the other events are unobservable; the four loops are
used to model the sequencing of multiple orders and glasses.
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begin_2

selected_2

used_ok_2

damaged_2

selected_f_2

used_damaged_2

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

g_to_c, damaged_g_to_c

use_2

g_to_c

wash_2

damage_g_2

use_2

damaged_g_to_c

wash_2

Figure A.6: Glass 2: the state “selected_f_2” means that the damaged glass 2 is
selected for a customer order; the event “g_to_c” means that glass 2 is given to a
customer; the event “damaged_g_to_c” means that a damaged glass is given to a
customer; the event “damage_g_2” means that glass 2 is damaged; “wash_2” is the
only observable event while the other events are unobservable; the four loops are
used to model the sequencing of multiple orders and glasses.
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