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Abstract 
 

An experimental study has been undertaken to explore the strength, mechanical 

behaviour and microstructural evolution of bare interfaces in quartz sandstone during 

slip. These experiments were designed to simulate fault processes with increasing depth 

in the continental crust. Two main aspects have been explored: (1) the effect of 

temperature and confining pressure on the behaviour and stability of favourably-

oriented faults, and (2) the influence of reactivation angle on the mechanical behaviour 

and associated microstructural evolution of a fault zone. Experiments were conducted 

on Fontainebleau sandstone using a triaxial deformation apparatus, at normal stresses 

comparable to that in the continental seismogenic regime and over small slip 

displacements. 

The first suite of experiments was conducted at temperatures of 400-927°C and 

confining pressures of 50-200MPa. Experiments reveal complex transitions in fault 

behaviour between stick-slip and stable sliding regimes. Mechanical results are coupled 

with microstructural analysis using multiple techniques (including high resolution FE-

SEM, and FIB-TEM) that provide insights into fault surface processes down to the 

nano-scale. Significant findings include the identification of a partially amorphous layer 

formed during aseismic creep and the generation of pure-silica frictional melt 

(pseudotachylyte) during high temperature seismic slip events. The pseudotachylyte is 

recognisable by the formation drawn-out glass filaments and fractured glass patches on 

the fault surfaces, forming a discontinuous layer up to 2µm thick and covering 10-60% 

of the fault surface. At normal stresses > 200MPa, frictional melt develops within the 

first 50µm of rapid slip, correlating with changes in slip acceleration and velocity. High 

temperature hydrothermal treatment of melt-covered fault surfaces indicates that the 

pseudotachylyte has a short lifespan (<1 hour) in the presence of high temperature, 

reactive fluids.  

The second suite of experiments explores reactivation of fault surfaces inclined between 

25º and 70º to the maximum shortening direction, representing faults that vary from 
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optimally-oriented to severely-misoriented for failure. These faults have been 

reactivated in both dry and fluid-saturated conditions, using two different loading 

mechanisms. ‘Stress-driven failure’ involves increasing the axial load at constant rate 

until failure, whereas ‘fluid-driven failure’ is achieved by maintaining a constant axial 

load and increasing pore fluid pressure until slip occurs. While the initial reactivation of 

faults obeys frictional theory, continued reactivation is strongly influenced by the 

microstructural evolution of the fault surface, most notably through the development of 

frictional melt. Rapid-slip events form a locally-continuous layer of frictional melt in 

both the dry and water-saturated samples. The presence of pseudotachylyte increases 

fault cohesive strength through a process termed ‘melt-welding’. Melt-welded regions 

serve as a nucleation point for the development of off-fault damage and on the most 

unfavourably-oriented faults, cause lock-up and the failure of a new, more favourably-

oriented fault. 

This work provides new insights into the behaviour and microstructural development of 

fault surfaces during the early stages of seismic instability. These results have 

implications for the interpretation of slip processes in natural fault zones, and also more 

generally for understanding slip mechanics, weakening distances and coseismic fault 

strength within the continental seismogenic regime.  



vii 
 

 

 

Acknowledgements 
 

This thesis marks not only a milestone of academic learning but also, on more personal 

level, a change in career from working in the business sector to the beginnings of a 

journey into the earth sciences. Such a significant change cannot be achieved by one 

person alone and I am deeply grateful to all those that have contributed to this 

transformation. 

My supervisor, Stephen Cox, is owed a special thank you, for not only for his role as 

supervisor, mentor and friend, but also for his courage in taking on a student with none 

of the requisite knowledge that most students possess when they enter their graduate 

studies. I consider it a privilege to have been guided by Stephen, and thank him for his 

patience, instruction, rigorous approach and for the inspiration that our many 

discussions have generated. I look forward to continuing to work with you into future, 

both on my PhD and beyond. 

The first 15 months of this project was hampered by equipment issues as the 

deformation apparatus was resurrected from its experimental hiatus and a new digital 

data acquisition system was installed. Hayden Miller and the electronics and mechanical 

workshops are thanked for their wonderful technical support – often at very short 

notice. The rest of the rock physics group, including Mervyn Paterson, Ian Jackson, 

Emmanuel David, Christopher Cline, Yang Lee, Richard Skelton and Harri Kokkonen, 

are thanked for their assistance in the lab and also for the comradery and lively 

discussions over the past two years. 

The knowledge and expertise of John Fitz Gerald has contributed significantly to the 

microstructural studies in this project and I greatly appreciate the time that John spent 

teaching me how to operate the TEM. I am grateful to Harri Kokkonen for his patience, 

humour and instruction on the finer points of sample preparation and for the preparation 

of a number of samples, especially during the final stages of the project. Further, I 

would like to thank members of the microscopy community at ANU, including Frank 



viii 
 

Brink, Hua Chen, David Llewellyn and Felipe Kreme (Centre for Advance 

Microscopy), Lily Li and Mark Lockrey (Australian National Fabrication Facility) for 

the thorough training, assistance and interesting discussions about various aspects of 

electron microscopy and sample preparation. 

I wish to thank Tim Senden, Michael Turner and Holger Averdunk from the department 

of Applied Mathematics at ANU for their assistance with the micro-computed X-ray 

tomography and subsequent data processing. Rhys Hawkins is thanked for his 

assistance with writing the Python scripts used for the thermal modelling. 

A special thank you is also owed to Michelle Salmon for her encouragement, friendship 

and loan of, and assistance with the use of seismic equipment that is being used to better 

constrain slip duration. Bram Slagmolen, Perry Forsyth and Daniel Shaddock from the 

Department of Quantum Science are thanked for their wonderful help with the 

development of the laser interferometry system. 

My thanks and gratitude also goes to the student body at RSES for the many 

discussions, laughs, and sharing the frustrations of failures when they occurred. A 

special thank you goes to Rhys, Shayne, Chris, Eleanor, Rachel, Marie, Johanna and 

Tanja.  

Finally, to my parents, brother and family, who have encouraged and supported me in 

all aspects of life including the path that has led to this thesis and beyond - thank you. 

 



ix 
 

 

 

Contents  
 

Chapter 1: Introduction ................................................................................................. 1 

1.1 Frictional melting and the scarcity of pseudotachylytes on natural faults .......... 3 

1.2 Fault orientation and weakening mechanisms .................................................... 4 

1.3 Research aims and thesis structure ..................................................................... 5 

 

Chapter 2: Frictional melting on experimental quartz fault interfaces at elevated 

temperatures…………………….……………………………………………………...9 

1. Introduction ............................................................................................................... 9 

2. Experimental method and analysis techniques ....................................................... 12 

2.1 Experimental procedure and conditions............................................................ 12 

2.2 Microstructural analysis techniques .................................................................. 15 

3. Results ..................................................................................................................... 17 

3.1 Mechanical behaviour ....................................................................................... 17 

3.2 Optical and SEM microstructural analysis ....................................................... 21 

3.2.1 Fault surfaces that have experienced stick-slip events .............................. 21 

3.2.2 Stable sliding of fault surfaces ................................................................... 28 

3.2.3 The effect of hydrothermal treatment after slip ......................................... 30 

3.3 TEM analysis .................................................................................................... 33 

3.3.1 High velocity stick-slip events ................................................................... 33 

3.3.2 Low velocity stick-slip events ................................................................... 43 

3.3.2 Microstructures formed during stable sliding ............................................ 45 

3.3.2 Hydrothermally-treated fault surfaces ....................................................... 49 

3.4 XRD analysis .................................................................................................... 49 



x 
 

4. Discussion ............................................................................................................... 51 

4.1 Amorphisation on fault surfaces ....................................................................... 51 

4.1.1 Mechanisms for amorphisation .................................................................. 51 

4.1.2 Influence of amorphisation on mechanical behaviour ............................... 52 

4.1.4 Thermal modelling of fault surfaces .......................................................... 55 

4.2 Coupling mechanical behaviour and microstructural evolution ....................... 62 

4.3  A model for the formation of quartz melt ......................................................... 69 

5.    Conclusions .............................................................................................................. 75 

 

Chapter 3: Experimental insights into the mechanics and microstructures 

associated with the reactivation of misoriented faults……………………………..79 

1. Introduction ............................................................................................................. 79 

2. Experimental and analytical methods ..................................................................... 82 

2.1 Experimental methodology ............................................................................... 82 

2.2 Microstructural analysis techniques .................................................................. 86 

3. Results ..................................................................................................................... 89 

3.1 Mechanical behaviour ....................................................................................... 89 

3.1.1 Mechanical properties of intact Fontainebleau sandstone ......................... 89 

3.1.2 Stress-driven fault reactivation and failure ................................................ 91 

3.1.3 Fluid-driven fault reactivation and failure ................................................. 94 

3.2 2D Microstructural analysis using BSE-SEM imaging .................................... 95 

3.2.1 Intact rock failure ....................................................................................... 96 

3.2.2 Slip on existing fault surfaces .................................................................. 103 

3.2.3 Hydrothermally-treated, reactivated fault ................................................ 120 

3.3 2D Microstructural analysis using high resolution SEM-CL ......................... 122 

3.3.1 Stress-driven failure of unfavourably-oriented faults .............................. 124 

3.3.2 Stress-driven failure of favourably-oriented faults (aseismic slip) .......... 126 



xi 
 

3.3.3 Fluid-driven failure of unfavourably-oriented faults ............................... 128 

3.3.4 Hydrothermal treatment of a melt-bearing slip surface ........................... 130 

3.4 3D Microstructural analysis using microcomputed X-ray tomography ......... 131 

4. Discussion ............................................................................................................. 136 

4.1 Misoriented fault reactivation: A comparison with theoretical principles ...... 136 

4.2 Interpretation of microstructural processes ..................................................... 140 

4.2.1 Amorphisation and the formation of frictional melt in nominally dry slip 

zones …………………………………………………………………… 141 

4.2.2 Formation of damage and frictional melting in a water-saturated 

environment ............................................................................................. 150 

4.2.3 Development of new faults ...................................................................... 156 

4.3.4 Cathodoluminescence: insights and interpretation .................................. 159 

5. Conclusions ......................................................................................................... 163 

 

Chapter 4: Frictional melt formation during crustal faulting: implications and 

future directions …………………………………………………………………… 167 

1. Dynamic changes on fault interfaces: implications for crustal faulting processes 167 

1.1 Implications of amorphisation and frictional melting on the strength and 

mechanical behaviour of faults ....................................................................... 170 

1.2 Implications of identified fault slip behaviours in hydrous environments ..... 173 

1.3 Implication for the conditions and environments in which pseudotachylytes 

form ………………………………………………………………………… 175 

2. Future research directions ..................................................................................... 176 

2.1 Improved understanding of slip duration and evolution of slip velocities...... 176 

2.2  Quantifying real contact area .......................................................................... 178 

2.3 Constraining structural and chemical variation in the melt ............................ 178 

2.4 Understanding mechanical amorphisation during aseismic slip ..................... 179 

2.5 Dynamic evolution of fault strength ............................................................... 179 



xii 
 

2.6 Expansion of investigations to other rock types ............................................. 180 

2.7 Improved understanding of fluid-driven fault reactivation ............................. 180 

2.8 Natural faults ................................................................................................... 181 

3.  Outlook.................................................................................................................. 181 

 

References ………………………………………………………………………..…. 183 

 

Appendix 1: Apparatus calibration and correction ……………………………... 197 

Appendix 2: Corrections for jacket strength contribution and change in contact 

area of the sliding interface ………………………………………………………... 205 

Appendix 3: Starting material …………………………………………………….. 221 

Appendix 4: Summary of experiments …………………………………………… 227 

Appendix 5: Supplementary Information ……………………………………...… 235 

 



1 
 

 

Chapter 1 

Introduction 
 

Earthquakes are the result of shear mode failure of rock in a brittle regime. Most 

seismogenic ruptures in a continental setting occur in the upper 5-20km of the crust 

[Sibson, 1983], representing the zone of brittle failure and unstable frictional sliding that 

is, to a first order, governed by the empirical Coulomb failure criterion faulting. 

However, once slip nucleates, the behaviour of the fault is controlled by both dynamic 

weakening and strengthening mechanisms that either enhance or impede fault slip 

propagation. Despite having a crucial role in understanding fault rupture properties, 

including coseismic stress drop, energy radiation and heat production, dynamic fault 

strength remains a source of significant uncertainty in earthquake mechanics [Di Toro et 

al., 2006a].  

The propagation of seismic slip is generally ascribed to the activation of dynamic fault 

weakening mechanisms at high slip velocities, which result in a significant deviation in 

frictional values from typical laboratory-derived static friction estimates of between 

0.6 <  𝜇𝑠 < 0.85 [Byerlee, 1978]. Rate- and state-dependent friction laws have been 

used to describe the evolution of dynamic friction values observed in small 

displacement experiments [Dieterich, 1978; Ruina, 1983; Scholz, 1998]. While useful 

for understanding a number of seismic observations, including aftershock occurrence 

and nucleation [Marone, 1998; Scholz, 2002], this model has a number of limitations in 

its application to large-scale slip processes owing to the experimental restrictions of 

small displacements and low slip velocities [Paterson and Wong, 2005 and ref. therein]. 

Importantly, rate- and state- dependent friction laws are empirical and do not 

incorporate the fundamental microstructural and material evolution of the slip surfaces 

[Di Toro et al., 2006b]. Dynamic variations in pressure and temperature on the fault 

surface during high velocity slip cause changes in fault surface properties and 

microstructure, leading to transient, but potentially dramatic, reductions in fault 

strength. 
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The concept of dynamic fault weakening is supported by a number of observations from 

large earthquake ruptures, including: (1) unusually large stress drops associated with 

some earthquakes [Malagnini et al., 2010], (2) the lack of a pronounced heat flow 

anomaly associated with some major active fault zones (e.g., San Andreas fault [Brune 

et al., 1969; Lachenbruch and Sass, 1980]), (3) unusually large co-seismic slip 

displacements for some large earthquakes [Rodgers and Little, 2006; Fujiwara et al., 

2011], and (4) the high seismic radiation efficiency of some earthquakes [Venkataraman 

and Kanamori, 2004]. Possible mechanisms for dynamic weakening have been explored 

both experimentally and numerically over the past fifteen years, especially with the 

advent of the high velocity friction apparatus and a proliferation of experimental studies 

[e.g., Hirose and Shimamoto, 2005b; Di Toro et al., 2006b; Han et al., 2011; Proctor et 

al., 2014]. Mechanisms such as thermal pressurisation [Sibson, 1973; Wibberley and 

Shimamoto, 2005; Rempel and Rice, 2006], silica gel lubrication [Goldsby and Tullis, 

2002; Di Toro et al., 2004; Hayashi and Tsutsumi, 2010; Nakamura et al., 2012], 

dynamic activation / powder lubrication by gouge particles [Han et al., 2010; Reches 

and Lockner, 2010; Han et al., 2011; Siman-Tov et al., 2013], flash heating [Rice, 2006; 

Goldsby and Tullis, 2011], elasto-hydrodynamic lubrication [Brodsky and Kanamori, 

2001], thermal decomposition [Han et al., 2007] and lubrication by frictional melting 

[Hirose and Shimamoto, 2005b; Di Toro et al., 2006a] have been proposed to produce 

in significant dynamic weakening (dynamic frictional values approaching 0.1). 

However, of these mechanisms, the production of pseudotachylyte or quenched 

frictional melt is the only mechanism that is definitively identified within natural fault 

zones and is regarded as the only unequivocal evidence in the rock record of the 

occurrence of seismic slip [Sibson, 1975; Kirkpatrick et al., 2009]. 

Despite having highlighted the structural, chemical and tribological effects that high 

velocity slip can have on rock interfaces, there are limitations in the extrapolation of the 

results of high velocity friction experiments to crustal earthquake processes. Due to 

apparatus and sample constraints, these experiments are typically performed dry, at low 

uniaxial normal stresses (< 120MPa) [Proctor et al., 2014] and ambient temperatures, 

which are potentially unrealistic for crustal faulting conditions. To compensate for the 

low normal stresses, most experiments involve large displacements (> 0.5m) [e.g., 

Goldsby and Tullis, 2002; Di Toro et al., 2004; Hirose et al., 2012] using an imposed 

high (typically approaching seismic) slip velocity. Consequently many of the 
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microstructures associated with the initial stages of fault weakening are rapidly 

overprinted and the identified effects of transient strengthening and weakening cannot 

be explored in terms of their direct effect on the promotion and termination of slip. In 

the case of dynamic weakening by melt lubrication, high velocity friction experiments 

have shown complex behaviour including a marked strengthening at the onset of 

melting. However, it remains uncertain how this behaviour changes at high confining 

pressures and realistic normal stresses [Fialko and Khazan, 2005]; further experimental 

investigation is needed to explore whether the strengthening associated with the onset of 

melting is sufficient to impede, or even terminate, some seismic ruptures.  

1.1 Frictional melting and the scarcity of pseudotachylytes on natural 

faults 
Earthquakes are associated with a rapid release of energy that is either dispersed in the 

form of radiated seismic energy [McGarr, 1999] or adsorbed along the rupture zone 

through mechanical work in the form of fracturing [Pittarello et al., 2008] and heat 

generation [Sibson, 1975]. A fundamental prerequisite for the generation of frictional 

melt is a high rate of mechanical work resulting in a rate of heat generation that exceeds 

the rate of heat dissipation [Di Toro et al., 2011]. However, examination of exhumed 

natural fault zones suggests that the formation of pseudotachylyte is rare [Sibson and 

Toy, 2006; Kirkpatrick et al., 2009]. This raises the possibility that frictional melting 

does not occur within all seismogenically active faults zones, or that pseudotachylyte 

forms at scales below standard microstructural observation (i.e. < 2μm), or that many 

pseudotachylytes are not preserved over geological timescales. 

The feasibility of frictional melting occurring during moderate seismic slip events 

(~1m) is confirmed by theoretical modelling, provided that slip is localised within a 

zone less than approximately 10cm wide [Cardwell et al., 1978]. Therefore the scarcity 

of pseudotachylyte in natural fault zones implies that, at least in part, other factors must 

suppress localised heating on the fault interface [Bjornerud, 2010]. These factors may 

include the activation of weakening mechanisms, the activation of mechanisms that 

adsorb an increased proportion of the mechanical work (e.g., dynamic pulverisation 

[Reches and Dewers, 2005]), or the existence of a more dispersed slip zone resulting in 

the distribution of mechanical work over a larger volume [Spray, 1995; Kanamori and 

Rivera, 2006]. High velocity experiments have shown both fault weakening and 
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significant energy expenditure through the formation of amorphous gels and the 

generation of nano-size gouge particles [Fondriest et al., 2013]. However, whether 

these wear products act as a precursor or inhibitor of frictional melting, and their 

influence on the macroscopic behaviour and stability of faults at realistic effective 

normal stresses remains largely unknown.  

Although gels have been experimentally produced on the slip surfaces of faults during 

slip approaching seismic slip velocities [Hayashi and Tsutsumi, 2010], amorphous 

material has also been produced at comparatively low slip velocities (V<3µm.s-1) [Yund 

et al., 1990; Pec et al., 2012]. Accordingly, gel formation could potentially occur at any 

stage during the seismic cycle. Quartz and silica appear particularly susceptible to 

amorphisation processes [Heaney, 1994]. Intriguingly, despite quartz being a common 

mineral within fault zones in the continental crust, there are very few recorded examples 

of pure silica pseudotachylytes [Bestmann et al., 2011]. Whether this is a result of the 

high melting temperature of quartz [Navrotsky, 1994], weakening due to the presence of 

fluids, or due to the propensity of quartz to form amorphous gels that weaken the fault 

prior to the onset of melting, needs to be explored experimentally at realistic crustal 

stress conditions. Most high-velocity experiments undertaken on quartz-rich rocks (e.g., 

quartzite, novaculite and chert) have tended to form gels rather than frictionally melting, 

although novaculite has been shown to produce a high viscosity melt after 

approximately 0.4-0.6m of slip at 12.5MPa applied normal stress [Di Toro et al., 

2006a]. 

The prevalence of fluids within most crustal fault zones is often cited as a reason for the 

scarcity of natural pseudotachylytes [Sibson and Toy, 2006]. It is thought that fault 

weakening processes such as thermal pressurization of fault fluids [Sibson, 1973] and 

elasto-hydrodynamic lubrication [Brodsky and Kanamori, 2001] potentially inhibit melt 

generation in water-saturated environments, leading to the view that frictional melt 

generation is largely limited to single slip events within low-porosity, dry crystalline 

host rocks [Sibson and Toy, 2006]. Technical limitations of high velocity rotary shear 

apparatus mean that it remains experimentally untested whether pseudotachylyte can be 

formed in water-saturated conditions or on a macroscopically porous slip interface.  
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1.2 Fault orientation and weakening mechanisms 
The previous experimental work that has been discussed so far involves either uniaxial 

compression, direct shear arrangements or are ‘Andersonian’- type faults that are 

approximately optimally-oriented for reactivation. However, there is compelling 

geological evidence for the existence and reactivation of unfavourably-oriented faults 

that are inherited from previous deformation [Sibson, 1985, 1990b]. To reactivate these 

faults, by definition, they must be either frictionally weak or influenced by high pore 

fluid pressures [Sibson, 1990b; Cox, 2010]. Few experimental works have considered 

the reactivation of unfavourably-oriented faults [Jaeger, 1959; Handin, 1969; Mitchell 

et al., 2011], and even less work has been undertaken to investigate the influence of the 

high normal stresses on the microstructural evolution of the fault interface.  

1.3 Research aims and thesis structure 
From the preceding introductory discussion it is clear that a need exists for new 

experiments to span the experimental conditions between conventional low strain-rate 

rock shear failure experiments and high-velocity friction experiments undertaken on 

rotary-shear-type apparatus. This thesis combines (1) experimental work using the 

technical infrastructure of the Rock Physics Group at the Research School of Earth 

Sciences with (2) the novel application and use of high resolution imaging techniques 

to: 

1. Explore the behaviour and stability of pre-existing sliding interfaces in a pure-

quartz sandstone over a range temperature and pressure conditions. 

2. Establish if there are identifiable differences in the slip velocities and 

acceleration of sliding instabilities during stick-slip behaviour at various 

pressure and temperature conditions and loading velocities. 

3. Provide insights into precursory microstructures and phenomena associated with 

the early stages of seismic instability. 

4. Explore the reactivation potential of faults that are unfavourably-oriented 

relative to the shortening direction to gain insights into mechanical behaviour 

and microstructural evolution associated with the reactivation of an inherited 

fault zone. 
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5. Examine the role of low-temperature fluids on the reactivation of unfavourably-

oriented faults, including their effects on the development of slip-related 

microstructures. 

6. Investigate the longevity of slip-related microstructures during the interseismic 

period in the presence of hydrothermal fluids. 

This thesis uses small displacement (<1mm) deformation experiments on bare quartz 

sandstone sliding interfaces to provide new insights into the behaviour and 

microstructural development of the fault surface during the early stages of seismic 

instability. The experiments are undertaken at confining pressures that are comparable 

to those of seismogenic depths in the continental crust (up to 250MPa) and are 

performed using an internally-heated, triaxial gas-medium deformation apparatus. An 

essentially pure quartz sandstone is used as the sample material with specimens 

configured with pre-ground bare interfaces to simulate the growth and development of 

faults where slip is highly localised. Two types of experiments are undertaken: the first 

suite presented in Chapter 2, involves high temperature (400-927ºC) reactivation of 

approximately optimally-oriented fault surfaces; the second set of experiments (Chapter 

3) are undertaken at room temperature on faults oriented at between 25-70º to the 

shortening direction, representing faults orientations that range from optimally-oriented 

to severely-misoriented for reactivation.  

The role of low-temperature fluids in modifying slip mechanics and microstructural 

evolution is also explored in Chapter 3. In this chapter, faults are reactivated in both dry 

and fluid-saturated conditions. Failure is instigated in two ways: the first involves the 

increase of axial load at constant rate until failure (stress-driven failure) and is 

undertaken at either nominally dry or water-saturated conditions; the second method 

involves reactivation of the fault by maintaining a constant axial load and increasing 

pore fluid pressure until slip occurs (fluid-driven failure).  

A major component of this thesis is the investigation of microstructures formed at the 

slip interface. One of the biggest challenges is to attempt to connect the macro-scale 

fault behaviour and empirically-derived friction laws with the micro-, nano- and even 

molecular-scale mechanisms occurring at the fault interface. The results presented in 

Chapters 2 and 3, use a number of imaging techniques including high resolution 

scanning electron microscopy (SEM) and cathodoluminescence (CL-SEM), focused ion 
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beam milling assisted transmission electron microscopy (FIB-TEM) and 

microcomputed X-ray tomography, to provide insights into slip processes and 

deformation mechanisms at a range of scales and in both two- and three-dimensions. 

Finally, Chapter 4 draws together the mechanical and microstructrual data presented in 

earlier chapters to identify implications of the results to our understanding of earthquake 

source mechanics, fault behaviour and stability, and recognition of slip-related 

structures on natural faults. This chapter also includes a discussion of future reseach 

directions, both in terms of the current study and also more broadly. 
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Chapter 2 

Frictional Melting on Experimental Quartz 

Fault Interfaces at Elevated Temperatures 
 

1. Introduction 
Pseudotachylyte, typically a dark coloured, vitreous rock associated with high strain rate 

deformation structures such as impact craters and faults zones, has long captured the 

interest of geologists [MacCulloch, 1819; Holland, 1900; Shand, 1916], with its 

existence in faults potentially providing an important indicator of the behaviour and 

strength of faults in non fluid-active environments at upper to mid-crustal conditions 

[Sibson, 1977; Sibson and Toy, 2006]. The origin and mechanism for pseudotachylyte 

generation has been the source of debate for a number of decades with some authors 

favouring a strict definition that pseudotachylyte arises from the frictional heating and 

melting of the fault surface [Sibson, 1975; Maddock, 1983; Spray, 1995, 2010; 

Kirkpatrick and Rowe, 2013], while others have adopted a broader definition that 

includes any amorphous matrix within the fault zone that displays similar physical 

characteristics to melt-origin pseudotachylyte (such as injection veins and flow textures) 

[Wenk, 1978; Lin, 1997; Ozawa and Takizawa, 2007; Janssen et al., 2010; Pec et al., 

2012]. While the formation of different types of amorphous material within fault zones 

has been associated with fault weakening [e.g. Goldsby and Tullis, 2002; Pec et al., 

2012; Proctor et al., 2014], the variation in the mechanisms and conditions of formation 

suggests that there could be significant differences in the interpretation of 

pseudotachylytes within the geological record. If a fault has generated a melt phase, this 

places important constraints on the conditions of rupture, the rate of mechanical work 

and the potential seismic energy dissipation, with melt-origin pseudotachylyte often 

being cited as an indicator of ancient seismic faulting [e.g. Sibson, 1975; Di Toro et al., 

2005]. In contrast if amorphisation is generated through mechanical, chemical or solid-
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state processes, the conditions of fault rupture can be very different and potentially 

occur at sub-seismic slip rates [Pec et al., 2012].  

Our understanding of the processes involved in the development of fault weakening 

behaviour and pseudotachylite generation has progressed rapidly over the past 15 years 

with extensive experimentation, primarily on high velocity rotary shear apparatus [e.g. 

Shimamoto and Tsutsumi, 1994; Di Toro et al., 2006a; Proctor et al., 2014]. Many 

advances have been made in understanding high-velocity friction and dynamic fault 

weakening, with such behaviours being attributed to mechanisms such as flash heating 

of asperities [Rempel, 2006; Goldsby and Tullis, 2011], thermal pressurisation [Sibson, 

1973; Rice, 2006], intense comminution [Han et al., 2011], frictional melting [Spray, 

1995; Di Toro et al., 2006a; Nielsen et al., 2008], and the formation of amorphous 

silica-gels [Goldsby and Tullis, 2002; Di Toro et al., 2004; Hayashi and Tsutsumi, 

2010; Nakamura et al., 2012]. While the high velocity rotary shear apparatus allows 

exploration of velocities approaching seismic slip rate rates, the low normal stresses (< 

97MPa [Proctor et al., 2014]) and unrealistically high displacements (> 0.5m, but 

commonly between 20-100m [e.g. Goldsby and Tullis, 2002; Di Toro et al., 2004; 

Hirose and Shimamoto, 2005b]) potentially place limitations on the extrapolation of the 

observed phenomena to crustal faulting conditions. Comparison of observations from 

high velocity shear experiments with those performed on a triaxial apparatus under high 

confining pressure can provide a point of correlation between the preliminary 

behaviours and microstructures marking the onset of dynamic weakening and fault 

rupture.  

Quartz is one of the most prevalent minerals found in fault zones in the continental 

lithosphere, and as such is often used as a sample material in the experimental study of 

crustal deformation [Paterson and Wong, 2005 and references contained therein]. 

However, despite its abundance in fault zones and the frequent occurrence of 

pseudotachylytes in silica-rich rocks (such as granitoids) [e.g. Otsuki and Monzawa, 

2003; Di Toro et al., 2008], natural pure quartz pseudotachylytes are rare [Lin, 1994; 

Bestmann et al., 2011]. Even in the laboratory setting, the experimental generation of 

quartz melt has proved difficult at all but the highest velocities [Di Toro et al., 2004; Di 

Toro et al., 2006b], with most experiments showing quartz as survivor clasts within a 

melt matrix [Spray, 2010; Pec et al., 2012] or, in its pure form, forming amorphous gels 

[Di Toro et al., 2004; Hayashi and Tsutsumi, 2010]. The ability of quartz to form a 
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hydrated amorphous gel during high velocity sliding alludes to some of the specific 

material properties of this mineral, including the ability to modify its crystal structure 

under different pressure-temperature conditions resulting in numerous polymorphs 

[Heaney, 1994] and, almost conversely, the ability to lose its long range crystal order to 

become amorphous at high pressure (when the rate of damage of the crystal lattice 

exceeds the rate of growth of the new stable crystalline phase) [Winters et al., 1992; 

Badro et al., 1998], during shear [Yund et al., 1990; Di Toro et al., 2004; Nakamura et 

al., 2012] and at high temperature. In the current context of pseudotachylite generation, 

where stress and temperature states are extreme and dynamic, the ability of quartz to 

transition between phases and crystalline-amorphous states brings into question whether 

quartz pseudotachylytes are rare [Sibson and Toy, 2006], or whether the amorphous 

silica and glass are poorly preserved [Kirkpatrick et al., 2009], reverting to a more 

stable crystalline form or being overprinted by such processes as hydrothermal 

alteration and recrystallization. The difficulty of experimentally producing a quartz melt 

may also simply be a consequence of experimental set-up with the majority of 

pseudotachylite research being undertaken at low normal stresses and ambient 

temperatures.  

In this study, experiments undertaken in a triaxial apparatus are used to explore the 

physical and mechanical changes that slip induces on a fault interface in a simplified 

chemical environment consisting of an essentially pure quartz, single phase starting 

material. The exploration of small displacement slip events under realistic normal 

stresses provides insights into the transition of fault behaviour from both aseismic creep 

to seismic slip and from frictionally locked to rapid sliding following the development 

of fault instability. By capturing the microstructures formed early during slip, 

precursory phenomena can be isolated from the spectrum of behaviours associated with 

large displacements at high slip rates, such as the development a full coverage melt film 

or amorphous gel. Small displacement slip experiments also provide an opportunity to 

explore the long-standing controversy about the origin of amorphous material in slip 

interfaces. The use of optical and electron microscopy techniques to characterise the 

microstructure provides insights into mechanisms controlling fault behaviour at the 

macro-, micro-, and nanoscale. These analyses, supported by basic thermal modelling, 

allow exploration of the potential generation of frictional heat and whether flash heating 
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or localised melting can be correlated with the observed physical and mechanical 

phenomena. 

2. Experimental method and analysis techniques 

2.1 Experimental procedure and conditions 
The experiments performed in this study are undertaken on pre-ground Fontainebleau 

sandstone fault interfaces that are in direct contact (i.e. there is no layer of simulated 

gouge material between the fault surfaces). Fontainebleau Sandstone is an 

approximately equigranular, almost pure quartz sandstone with grain size between 

approximately 200-250µm and a porosity between 6-8%. This sandstone has been 

consolidated by the formation of syntaxial overgrowths in a silica-supersaturated 

solution [Thiry et al., 1998; Haddad et al., 2006], resulting in a subhedral to euhedral 

grain shape. The quartz grains contain numerous fluid inclusions that are observed to 

occur both within the detrital grains or decorating healed intragranular fractures and 

overgrowth boundaries. The distribution of the fluid inclusions is heterogeneous making 

up between 0.01 – 0.1 vol. % of the crystalline material within sample, with an average 

inclusion size of ~1.1μm3. The fluid inclusions contain multiple phases, with H2O(Liquid + 

Vapour), CO2 (Liquid) and small daughter crystals in a number of the locations but 

dominantly within the detrital grains indicating formation during petrogenesis. Given 

the coastal depositional environment and subsequent shallow burial of the 

Fontainebleau sandstone [Thiry et al., 1998], it is assumed that most post-sedimentation 

fluid inclusions also contain at least some free water. The presence of water is supported 

by a small spike in the Raman spectra at 3420 (cm-1), however the size of the inclusions 

are too small to allow a more robust spectral analysis. 

Samples are prepared by finely grinding sandstone cores (ϕ=9.98mm) at an angle of 30º 

to the cylinder axis. The two fault blocks are ground to an overall length of 21mm then 

oven dried at 70°C for at least 48 hours prior to use. Specimens are loaded into a 

0.25mm thick annealed copper sleeve and capped with split alumina spacers, which 

allow pore fluid access while isolating the sample from the rest of the assembly. The 

sleeve and pistons are then loaded into a thin-walled (~0.4mm), low-carbon mild steel 

jacket that allows the separation of the sample (and where applicable, the pore fluid) 

from the argon confining medium. To accurately determine the sample strength during 
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deformation, a correction for the strength contribution of the metal jacket assembly has 

been applied (refer to Appendix 2). 

Experiments were undertaken in a Paterson internally heated, gas-medium, rock 

deformation apparatus that permits the independent control and measurement of 

temperature, confining pressure (Pc), pore fluid pressure (Pf), axial displacement rate 

and axial load [Paterson, 1970]. This device is considered a ‘soft’ apparatus, as it 

accumulates significant elastic strain during loading that can be imparted to a specimen 

during failure, resulting in significantly higher displacements and stress drops than 

could be achieved using a more rigid apparatus. The experiments were conducted over a 

range of temperatures from 500-927ºC, Pc between 50-200MPa and a nominal axial 

displacement rate between 0.36-0.72μms-1. Data was recorded using a digital data 

acquisition system (National Instruments LabView 11.0) with a sampling frequency of 

100Hz and recording frequency of 1Hz.  

Increased constraints on slip duration and insights into seismic slip velocity and 

acceleration were explored through the installation of a seismometer and accelerometer 

at the top of the apparatus (Fig. 1). The seismometer used was a Lennartz LE-3D Lite 

three component 1Hz (short period) sensor from which data was sampled at 1000 

samples per second using a LPR200 custom built recorder. The triaxial acceleration 

components were measured and recorded using a JoyWarrior24F14 accelerometer with 

USB interface and a data acquisition frequency of 100 samples per second. However, if 

it is assumed that a stick-slip event in the rock deformation apparatus simulates 

earthquake rupture then an upper bound on rupture velocity can be estimated by the 

shear wave velocity of the medium [Johnson and Scholz, 1976; Scholz, 2002]. The 

shear wave velocity of Fontainebleau sandstone is well established and the rupture 

velocity is estimated to be in the order of 3500m.s-1 [Gomez et al., 2010]. This equates 

to a rupture time of 6μs, assuming a fault length of 1.7cm. The estimated rupture time is 

several orders of magnitude less than the sampling rate of the seismic instrumentation 

and therefore it is suggested the seismic data recorded during the experiments is not 

sufficient to provide absolute information about rupture propagation. However, the 

seismic data has been found to provide valuable qualitative data about the relative 

velocities and accelerations of the slip events for a subset of experiments in the current 

suite (refer to Appendix 4). 
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Figure 1: Schematic illustration of deformation apparatus and sample configuration 
See text for details.  
  



 
Frictional Melting on Quartz Interfaces 

 

15 
 

The longevity of the pseudotachylite in its vitreous form was explored by completing a 

number of experiments involving isostatic pressing of the slipped sample over a range 

of experimental conditions in both dry and hydrothermal conditions. To investigate the 

potential crystallisation of the melt in nominally dry conditions, the axial load was 

removed and the temperature set at 700º following a large stick-slip event for between 

1- 6 hours. This temperature was chosen as it is comfortably within the stability field of 

β-quartz at the given confining pressures.  

To explore the stability of the pseudotachylite in a hydrous environment, two 

experiments were performed where pore fluids were added following the melt-

producing slip event. During these experiments, the axial load was removed following 

the slip event and the temperature and confining pressure were reduced to T = 25°C and 

Pc≈ 40MPa. Deionized water pore fluid was then introduced via the upper hollow 

ceramic (MgO stabilized PSZ) pistons before the temperature and confining pressure 

were concurrently increased. Approximately 20 minutes prior to the desired conditions 

being attained, the pore fluid pressure was gradually increased until the hydrothermal 

isostatic pressing (HTIP) conditions of 500-900ºC, Pc=250MPa and Pf=150MPa were 

attained. The pore fluid was introduced in this way to ensure that a sufficient effective 

confining pressure was maintained to preserve the integrity of the assembly seals and to 

keep the reaction time between the pore fluids and pseudotachylyte constrained as much 

as possible to the HTIP period of 1 hour. 

2.2 Microstructural analysis techniques 
The morphology and structure of the slipped surfaces where investigated using a range 

of techniques including reflected light microscopy, scanning electron microscopy 

(SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). To 

prepare the slip surfaces for optical and SEM analysis, the jacket and sleeve surrounding 

the experimental sample were dissolved in concentrated nitric acid. The two halves of 

the fault were retrieved and carefully rinsed in water, dried and mounted in a custom 

sample holder for examination by secondary electron SEM. To achieve the highest 

resolution during imaging whilst minimising charging, the fault surfaces were sputter 

coated with platinum. 

During SEM imaging of the fault surfaces it became apparent that during the dissolution 

of the copper sleeve, copper nitrate precipitated onto the fault surfaces. The precipitate 
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was commonly observed to have a spherulitic texture suggesting rapid growth from a 

liquid, with many of the fine gouge particles serving as crystallisation nucleation points. 

Consequently, the sample preparation technique was modified to avoid sample – acid 

contact. For experiments undertaken at temperatures below approximately 700°C the 

iron jacket and copper sleeve were not bonded and the jacket and sleeve were 

individually peeled off with great care taken to prevent disturbance of the fault surfaces. 

For experiments undertaken at higher temperatures, the iron jacket was dissolved in 

nitric acid and then the inner copper sleeve was manually peeled from the sample.  

Fault surface textures were analysed using the in-lens secondary electron (SE) detector 

of the high resolution Zeiss UltraPlus field emission SEM (FE-SEM). Working 

conditions of 3.0-5.0kV accelerating voltage, a 10μm objective aperture and a working 

distance between 3-5mm allowed an imaging resolution of less than 10nm.  

Cross-sections from selected areas of the fault surface were prepared for analysis by 

transmission election microscope (TEM) using a Helios NanoLab 600 Dualbeam 

focused ion beam scanning electron microscope (FIB-SEM) at the Australian National 

Fabrication Facility, Canberra. Cross-section foils approximately 12-15µm long, 5µm 

deep and <100nm thick were milled using a Ga-ion beam before being removed from 

the sample and mounted on a carbon film TEM grid. TEM analysis was undertaken 

using a Philips CM300 TEM operating at 300kV accelerating voltage. The TEM foils 

prepared on the FIB were found to be very sensitive to electron beam damage so to 

minimise sample heating and damage the majority of TEM work was undertaken at low 

magnification (up to x15000) and low-intensity illumination (i.e. using a 50μm 

condenser aperture, 20μm objective aperture and condenser 1 aperture set to spot size 

5). Energy dispersive spectroscopy (EDS) was undertaken using a Jeol 2100F field 

emission TEM, operating at 200kV accelerating voltage. SEM & TEM analysis was 

undertaken at the Centre for Advanced Microscopy, the Australian National University. 

X-ray powder diffraction (XRD) analysis was used as a semi-quantitative tool to 

examine in situ the phases present on slipped fault surfaces. X-ray diffraction was 

carried out with a SIEMENS D501 Bragg-Brentano diffractometer equipped with a 

graphite monochromator and scintillation detector, using Cu Kα radiation. Multiple pass 

scans were undertaken with a scan range between 2°-70° 2θ, at a step width of 0.02°, 

and with a scan speed of 0.33° per minute. The composition was then interpreted using 
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the SIEMENS software package Diffracplus Eva 10 (2003) which uses the PDF-II 

database provided by the International Centre for Diffraction Data. 

The use of Raman spectroscopy was also attempted to gain an understanding of the 

composition and structure of the fault wear products, but the laser beam intensity that 

was required to produce a signal was higher than the sample could support without 

damage.  

3. Results 

3.1 Mechanical behaviour 
Thirty optimally oriented, high temperature (T=400-950°C), nominally dry bare 

interface fault experiments were completed over a range of confining pressures (Pc=50-

200MPa) and axial displacement rates (a summary of which is provided in Appendix 4). 

The results reveal a surprisingly complex range of mechanical behaviours with a 

number of behavioural transitions (Fig. 2A) being observed with changes in temperature 

and confining pressure. Experiments were undertaken at regular intervals of temperature 

and confining pressure to better understand and bracket the observed transitions in 

behaviour. 

Although the samples appear to maintain an essentially brittle, high-friction sliding 

behaviour, the samples deformed at temperatures from 400-600° are characterised by a 

poorly-defined but high yield point (nearly twice that of similar experiments undertaken 

at room temperature – refer to Chapter 3). The post-yield sliding behaviour consists of 

approximately 0.2mm of slip hardening followed by peak stress and a transition into 

slip weakening, but essentially stable sliding behaviour (Fig. 2A). In contrast, 

experiments undertaken between 650-927°C generally exhibit the same high yield point, 

but after varying displacements experience significant stick-slip events. The stick-slip 

phenomena is manifest by unsteady relative motion of the sliding surfaces and are 

evidenced by sudden drops in axial load. The audible click that accompanies the stick-

slip event alludes to a rupture velocity approaching the speed of sound and a slip rate 

approaching seismic velocities. Estimations of the coefficient of dynamic friction 

(assuming the dynamic friction coefficient is given by the ratio of shear stress to normal 

stress at a given point) is in the order of 0.8 immediately prior to stick-slip events and  
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Figure 2: Representative mechanical behaviour of faults over a range of experimental conditions. 
Graphs show differential stress plotted as a function of axial displacement. (A) Effect of increasing 
temperature at equivalent confining pressures and nominal axial displacement rates. Fault behaviour is 
observed to transition from stable sliding, through low amplitude stick-slip to high amplitude, high 
displacement stick-slip at high temperatures. (B) Increasing magnitude of the stress drop and 
displacement associated with increasing confining pressures at constant temperatures. Note that melt is 
only produced during the slip event at the highest confining pressure (see section 3.2). (C) Variations in 
sliding behaviour at the same experimental conditions - possibly indicating a transition from a stick-slip 
back into a stable sliding regime at higher confining pressures.  
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averages ~0.7 during the lower temperature stable sliding experiments. These results are 

comparable to other frictional sliding experiments undertaken a slow slip rates 

(<0.1mm.s-1) [Byerlee, 1978]. 

A comparison of experiments undertaken at comparable confining pressures reveals a 

systematic increase in shear strength (calculated from peak stress prior to the first stick-

slip event, if relevant) with increasing temperature, from approximately 128MPa at 

400°C to 161MPa at 927°C (Fig. 3A). Undertaking a least squares linear regression of 

the experimental data supports this observation with a positive correlation being 

observed between peak shear strength and temperature (𝑑𝑑
𝑑𝑑

= 0.061 ± 0.025MPa/°C 

including all data, and 𝑑𝑑
𝑑𝑑

= 0.065 ± 0.011MPa/°C with outliers removed; uncertainty 

is reported at one standard deviation). However, this result is somewhat biased given the 

limited number of experiments performed at lower temperatures. The faults that exhibit 

stick-slip behaviour generally have a higher peak strength, although there are a couple 

of notable exceptions: first, BIS027 (Pc=100MPa T=800°C) was characterised by an 

anomalously low peak strength and experienced significant slip weakening prior to 

failure; and second, BIS026 (Pc=100MPa T=900°C) experienced an initial small stress 

drop (~12% of peak differential stress) prior to a second, much larger stick-slip event.  

The seismometer and accelerometer were installed and used to record data on eight of 

the stick-slip experiments. Although, the sampling rate of the instrumentation 

potentially significantly under samples the fault rupture (see Section 2.1), systematic 

and consistent differences were observed between the different events. While no 

credence has been placed on the absolute values of the recorded data, the results of the 

experiments does show the existence of two distinct populations of data: the first has a 

higher apparent velocity and acceleration, while the second has a comparatively lower 

apparent velocity and acceleration (Fig. 3B). For ease of communication, these 

populations will be referred to as high-velocity slip and low-velocity slip events, 

respectively. The apparent velocity of the slip events displays a strong positive 

correlation with both net slip displacement (Fig. 3C) and the associated stress drop, with 

high-velocity slip events slipping further and resulting in larger stress drops than the 

low velocity experiments. Additional information showing preliminary results of a 

novel interferometry system designed and built for better constraining slip time is 

included in Appendix 1. 
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Figure 3: Relationship between experimental conditions and mechanical behaviour. 
(A) Comparison of experiments at Pc=100MPa showing the relationship between increasing temperature 
and peak shear strength. (B) Relative peak vertical acceleration during the first stick-slip event is plotted 
against slip velocity showing the distinct difference between high apparent acceleration and velocity and 
low apparent acceleration and velocity. (C) Peak vertical acceleration is plotted as a function of slip 
displacement showing the strong correlation between high peak acceleration and large slip displacements. 
(D) Identification of regions of different sliding behaviours as a function of confining pressure and 
temperature. Note the occurrence of stable sliding at high confining pressures and temperatures. 
 
 
Many experiments were halted after the first large stress drop to allow analysis of the 

microstructures developed during rapid slip. However, a number of experiments were 

also allowed to proceed until a total axial displacement of ~1mm was achieved. For 

these experiments it was observed that once the stick-slip behaviour developed, it 

continued, forming alternations between essentially elastic loading and rapid stress 

drops. For experiments in the low pressure - high temperature region associated with 

low velocity stick-slip, continued deformation is characterised by a general decrease in 

peak strength (prior to slip events) and a reduction in the amplitude of the stress drop 

(e.g., 650°, Fig. 2A), with stress drops in the order of 16% of peak differential stress. In 

comparison the experiments undertaken at higher temperatures (e.g., 900°, Fig. 2A) 

experience very large stress drops (in the order of 22% of peak differential stress), with 
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peak strength prior to subsequent stress drops increasing with continued displacement. 

Similar observations were made for experiments undertaken at comparatively high 

confining pressures (Fig. 2B), although the larger stress drops and higher displacement 

in this case may be partially associated with the increased stored elastic strain in the 

apparatus. 

A number of experiments (notably BIS037 and BIS049) showed differences in sliding 

behaviour at the same experimental conditions (Fig 2C). It was found that in the 

temperature range from 650-800°C with increasing confining pressure, both stick-slip 

and stable sliding behaviours were activated, suggesting the possibility that a transition 

to stable-sliding behaviour may occur at higher confining pressures (Fig. 3D). 

3.2 Optical and SEM microstructural analysis 

3.2.1 Fault surfaces that have experienced stick-slip events 

The most distinguishing microstructural feature of faults experiencing large 

displacement, high-velocity slip events, is the formation of reflective, striated areas 

distributed heterogeneously across the fault surfaces when viewed with a reflected light 

microscope. Examination of these textures using SE-SEM and TEM (see Section 3.3) 

reveals that between 10-60% of the fault surface is coated with an amorphous film. 

These coatings have two very distinct morphologies (Fig. 4): the first, and most easily 

recognisable, is a veneer of quenched melt or glass on the grain surfaces (with coated 

areas ranging in size from less than 1µm2 to in excess of 200µm2) and characteristically 

displaying numerous flow structures oriented approximately parallel to the direction of 

slip (Figs. 4D, 5 & 7). In the following description, where melt-flow textures are present 

the amorphous material is referred to as ‘melt’. The second type of amorphous layer 

occurs as fractured ‘patches’ (Figs. 4B, 6), recognisable by the lack of gouge particles 

and a distinctive, fractured surface that forms parallel to the slip interface (see Section 

3.2.2). This layer is shown to have an amorphous structure, with a loss of long range 

order when analysed using TEM (see Section 3.3). However, while describing the 

results, where there are no visible melt flow textures present, the layer is referred to as 

‘amorphous’ material, to reflect its potential origin through either thermal or mechanical 

amorphisation processes. The term ‘glass’ is used interchangeably in the description of 

both of these morphologies to describe material having an amorphous structure. 



 
Frictional Melting on Quartz Interfaces 

 

22 
 

Compositional analysis (energy dispersive analysis of X-rays) of the melt layer by both 

SEM and TEM-EDS indicates that it is comprised essentially of pure silica with 

impurities being below limits of detection. The microstructure of the dispersed film is 

consistent with a highly viscous siliceous melt. There is limited evidence of lateral 

extrusion with melt patches forming lobate flow fronts and no evidence of flow into 

adjacent pores. Many regions are characterised by the formation of long ribbon-like 

glass filaments (see esp. Fig. 5), thought to be formed when melt adhered to the sliding 

surfaces is drawn apart during sliding, forming a toffee-like shear sense indicator. In 

some cases, the glass filaments have snapped while still soft, forming nanometre scale 

curls and folded pieces of glass (Fig. 5B & F). Other flow textures form striations 

ranging in length from a few microns to in excess of 150μm (Fig. 4A, 7A).  

Occasional fracturing and removal of part of the melt surface during sample recovery, 

reveals that the thickness of the melt layer is between ~1-2µm (Fig. 5D). The surface of 

the melt is locally vesicular and SEM imaging indicates that gouge particles are rarely 

present in the melt. In particular, the striated upper surface of the melt is generally 

smooth and free of incorporated clasts. Where clasts (ranging in size from 20nm-1µm) 

are present, they are rounded; many have mantled tails of melt forming linear flow 

textures parallel to the slip direction (see arrows, Fig. 5E). Locally the melt layer has the 

appearance of a holey film with glass filaments being drawn off gouge particles (Fig. 

5C). 

The formation of a striated, dispersed film of melt is a microstructural feature limited to 

the high-velocity, large stick-slip events. In contrast the formation of the debris-free, 

fractured patches is a microstructure common to all faults that have experienced a stick-

slip event (Fig. 6). However, such glass patches are not found on fault interfaces where 

the mechanical behaviour is typified by stable sliding. In the higher temperature and 

pressure experiments, it is thought that the fractured glass patches formed where melt 

has quenched between grain contacts, essentially bonding the interfaces. These areas 

subsequently have fractured parallel to the fault surface, forming smooth, debris-free 

patches. Fracturing could have occurred as a result of either thermal spalling or tensile 

failure of interfaces during experimental unloading and depressurisation. A number of 

the fractured patches also show a distinct change in topography between the welded 

contact and the flow-texture-dominated area. This change potentially represents 

 



 
Frictional Melting on Quartz Interfaces 

 

23 
 

 

Figure 4: Overview of fault surface showing characteristic microstructures. 
(A) Montage of SEM images showing an overview of the fault surface. The outline and displacement of 
an asperity has been shown from the formation of melt to its final location at the end of slip. Dashed 
outline and small arrows indicates the relative motion of the upper (removed) fault surface. Large solid 
arrow shows the relative direction of fault motion of the imaged fault surface. Typical images of the 
morphology of each of the main surface structures are shown in the insets on the right. (B) Fractured melt 
patches that are assumed to form at asperity contacts when sliding ceases. (C) Fractured and damaged slip 
surface – fractures are commonly seen to form perpendicular to the slip direction. Note that gouge is not 
particularly abundant. (D) Striated flow textures and formation of ribbon-like filaments formed during the 
slip of a melted asperity contact during rupture.   
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Figure 5: Melt structures on fault surfaces. 
Secondary electron SEM images of melt structures on slip surface in BIS010, slipped at 900ºC, 
Pc=100MPa. Arrows indicate slip direction of the imaged fault block. (A) Overview of an area on the 
fault surface showing regions of melt (darker grey, lineated surfaces), the lighter-coloured, melt absent 
fractured fault surface and scattered gouge particles. (B) Detail of the ribbon-like glass filaments on the 
fault surface. Note the fractured substrate beneath the melt and the lack of significant wear products 
(gouge). (C) Drawn-out ribbon textures produced where melt has been sheared across a substrate of 
gouge. (D) Broken away section of melt provides a cross-sectional view of the melt layer. The dashed line 
indicates the melt-quartz boundary. (E) Drawn out ribbon of melt spanning the gap between surfaces that 
have separated during slip. Significant quantities of gouge particles have accumulated onto of the melt 
surface on the right of the image, whereas melt on the left shows the inclusion of clasts within the melt 
(indicated by white arrows). (F) Example of the delicate structures that are preserved on the fault surface. 
This image depicts a glass filament that has broken during slip and folded back on itself. 
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Figure 6: Fractured patches of amorphous material without flow structures. 
SE-SEM images of microstructures on fault interfaces - arrows indicate direction of slip of the imaged 
surface. (A-C) Sample BIS043, overview and details of fault surface showing fractured, debris-free 
patches, recognisable by the smooth darker regions (A). The continuation of these patches into areas with 
melt (B) suggests that in the melt-producing experiments these patches are melt which has fractured after 
quenching. Some patches show what appears to be the outline where an asperity on the removed fault 
surface contacted melt (C) (see arrows). This suggests that these dark areas are melt that has welded to 
grain contacts at the cessation of slip. (D) BIS043, fractured melt patch showing elongate vesicles 
demonstrates melt flow within this melt patch (E) BIS041, fractured, debris-free patches on the surface of 
a fault that experienced a low velocity slip event. These patches are similar in morphology to those 
produced during high-velocity slip events where distributed melt is also present. TEM analysis of a patch 
from this sample has confirmed that the patches are amorphous. (F) BIS030, similar microstructures to 
(E) and also produced in a low-velocity slip event. Note the extensive brittle fracturing of areas of the 
patches, with closely spaced fractures forming perpendicular to the slip (see arrows).  
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the outline of the shape of the asperity or grain on the opposite surface (see arrows, Fig. 

6B). Additionally, vesiculated regions within the fractured glass patches typically have 

vesicles elongate in the direction of slip, thus indicating viscous shear occurred within 

the melt (Fig. 6D). Glass patches formed during the small stress drop, low velocity slip 

events (Fig. 6E-F) have a similar habit to those of the high velocity slip events, although 

the ribbon-textured melt domains (i.e. glass filaments, flow textures etc.) are absent and 

there is no indication of viscous shear within the patches (e.g. elongate vesicles).  

The preservation of delicate melt structures on the rupturing fault surface suggests that 

melt forms at asperity contacts and is then transported by the shearing surfaces to 

regions adjacent to pores. The formation and preservation of these melt flow structures 

provides unique insights into the timing relationships of slip and melt formation. Many 

of the striated melt-covered surfaces preserve continuous linear flow structures in 

excess of 150µm long, providing unequivocal evidence of continuous slip on a melted 

fault surface for the majority (~70%) of the displacement recorded during the rapid slip 

event (Fig. 7A).  

The formation of evenly spaced fractures and indentation marks within the glass layer in 

close proximity to clasts (Figs. 7B-E) suggest the formation of chatter marks [cf. 

Doblas, 1998] and similarly provide insights into the timing of melt formation. These 

chatter marks display textures indicating varying degrees of melt viscosity at the time of 

formation, ranging from molten (Figs. 7B-C) to dominantly brittle (Fig. 7E). The 

interaction of clasts with less viscous melt (Figs. 7B-C) is commonly characterised by 

the formation of a ‘bow-wave’ of melt around the front of the clast, accretion of melt 

onto the clast and the development of a melt-imprinted trail. In comparison, the chatter 

marks produced on a more viscous surface (Fig. 7E) have left a trail of evenly spaced, 

semi-brittle fractures inclined in the direction of the clast movement and have an 

inferred depth and aperture of approximately 200nm. Some chatter marks exhibit both 

brittle and viscous deformation features (Fig. 7D) and may arise from variations in melt 

temperature and potential strain-rate dependence of melt deformation.  

The presence of fractured remnants of glass filaments, melt textures within areas of 

accumulated gouge and the fragmentation of areas of quenched melt (e.g. Fig 8), 

suggests a complicated history of melting and quenching during a single slip event.  
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Figure 7: Microstructural insights into the timing relationships between production of melt and 
slip. 
Arrows indicate direction of slip of the imaged surface. (A) BIS043 overview of fault surface showing 
continuous lineations in excess of 150µm long on the melt surface. (B-D) BIS033, indentation marks in 
the melt created by a gouge particles being rolled across a melt-covered surface. Note the imprinted trail 
in melt layer and the accretion of melt onto the clast in B & C. Note that figure C is a detail of B. Fig. D is 
a good example of the ‘bow-wave’ effect caused by clast ploughing into the soft surface. (E) BIS032, 
chatter marks characterised by rows of evenly-spaced, parallel fractures on a semi-quenched melt/glass 
surface.  
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Drawn out delicate ribbon-like filaments (diameters < 20nm) indicative of melt 

stretching, form within the extensively damaged and fractured zones associated with the 

production of gouge (see arrows, Figs. 8A-C). This raises the possibility that melting 

occurs locally late in the slip event, overprinting a previously damaged substrate. 

Significant heating between impinging gouge particles is thought to form these 

occasional areas of melt.  

The quartz substrate in areas immediately adjacent to the melted regions is generally 

extensively damaged with closely spaced arrays of extension fractures forming 

orthogonal to the sliding direction and inclined at an acute angle to the slip surface, 

opposite to direction of motion of the fault block. That is, the fractures dip towards the 

direction of motion of the opposite fault block, making them a reliable shear sense 

indicator. These fractures could be the result of both thermal and mechanical processes 

arising from intense localised temperature gradients, coupled with the substantial 

dynamic stresses associated with fault slip (Figs. 4-7). The fractures are between 1-3μm 

in length and spaced between 200nm-1μm apart, forming an extensively damaged 

surface. Despite this fracturing many of these regions lack surficial wear products (e.g. 

Fig. 4C). 

Where gouge is present on the fault surface, the particles appear to have developed 

initially as small slivers aligned parallel to the micro-cracks and perpendicular to the 

direction of slip, resulting in large areas of similarly oriented particles (Fig 8D-E). 

During subsequent slip many fragments are crushed and rotated, forming areas of 

irregularly oriented gouge particles ranging in size from <100nm-2µm (Fig. 8F). The 

volume of gouge on the fault surface positively correlates with increasing aseismic 

displacement prior to the fault rupture and rapid stress drop. The fault surfaces of 

experiments that have produced low-velocity slip events also show an increase in the 

abundance of fragments compared with the gouge produced in experiments where 

distributed melt is also formed.  

3.2.2 Stable sliding of fault surfaces 

In experiments where the mechanical behaviour is characterised by stable sliding, the 

microstructures of the fault interfaces are dominated by brittle deformation processes,  
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Figure 8: Microstructure of gouge and mechanisms for gouge production on fault surfaces. 
SE-SEM images of microstructures on fault interfaces. Black arrows indicate direction of slip of the 
imaged surface. (A-C) BIS043, examples of melt textures in amongst the gouge particles – drawn out 
glass ribbons, delicate ribbon-like filaments (diameters < 20nm) as indicated by the white arrows. The 
surface of substrate in (C) has the morphology of melt (lobate edges, possible elongated vesicles, glass 
filaments) showing the melting of a previously slipped surface within the same slip event. Note the 
formation of fractures perpendicular to the slip direction and angular shape of the gouge particles. Images 
D, E, F are from melt absent interfaces. (D) BIS046, highly comminuted and compacted region. (E) 
BIS020, example of gouge production on the fault surface with the intense fracturing of the quartz 
substrate perpendicular to slip direction, forming somewhat aligned slivers of gouge. (F) BIS040, typical 
example of the size and shape of randomly oriented gouge particles on the fault surfaces. Particles range 
in size from <100nm-2µm. 
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with the copious generation of fragments. However, microscopic analysis identifies a 

range of phenomena that could be either precursory to the microstructures identified in 

the stick-slip experiments or associated with the development of amorphous material on 

the fault interface (Fig. 9). Cylindroidal structures present on the slip surface are 

elongate perpendicular to the direction of slip, and have a morphology indicative of 

formation as either agglomerated rolls of particles (Fig. 9A-B) or as a rolled film-like 

structure (see arrows, Fig. 9E). Flaky patches of densely packed, fine-grained material 

with an overall diameter between 10-25µm are also present on the fault surfaces (Figs. 

9C-D and G-H). These structures differ from both the crystalline quartz substrate and 

the glass patches (formed during stick-slip events) described in Section 3.2.1. At the 

larger scale these smooth texture zones are characterised by lobate edges and surfaces 

decorated by slickenlines. Examination at higher magnification densely packed particles 

bound together in a possibly melt-like matrix (Fig. 9H). Many of these regions exhibit 

chatter marks similar to those observed on the partially quenched melt surfaces. 

Although not unique to stable sliding experiments, a number of samples have ‘negative 

crystals’ (see arrow, Fig. 9F). These are interpreted to represent fluid inclusions in the 

starting quartz crystal that, during hot pressing and deformation, have re-equilibrated to 

the most stable surface energy state for the inclusion [Van den Kerkhol and Hein, 2001]. 

During SEM imaging the negative crystals are often localised or form on a linear trace, 

appearing to be generally sub-micron in size and having varyingly developed faceted 

surfaces. The best developed negative crystal shapes are present in the high temperature 

or long duration experiments, supporting the interpretation that the fluid inclusions have 

re-equilibrated during the experiment. These fluid inclusions potentially provide a fluid 

source for the formation of vesicles present in the melt layers of stick-slip experiments.  

3.2.3 The effect of hydrothermal treatment after slip 

Two experiments (BIS024 & BIS028) were subjected to hydrothermal isostatic pressing 

(HTIP) for a period of 1hr, at 900º and 500ºC respectively, after melt-producing slip 

events. Examination of the slip surfaces using reflected light microscopy reveals the 

partial to complete destruction of the melt-covered surface on both samples. Occasional 

fractured reflective regions, similar to the melt patches in the non-hydrothermally  
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Figure 9: Microstructures from faults that did not experience stick-slip or did not produce visible 
melt. 
For caption please see next page. 
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treated samples, suggest either residual areas of melt or zones of minimal topography 

formed by quartz precipitation. SE-SEM analysis of the fault surfaces (Fig. 10) also 

reveals a dramatic change in microstructure compared with the melt-related textures of 

an untreated sample. There is no distinguishable evidence of melt remaining on slip 

surface at the conclusion of either experiment, however on the high temperature HTIP 

sample some surfaces have developed stepped edges producing polyhedral faceted 

surfaces (Fig. 10A). The variability of the orientation of the stepped edges between 

grains suggests that these structures are crystallographically controlled.  

Features on the fault surface of BIS028 (500°C HTIP) are more easily correlated with 

the microstructures in the dry slip experiments. Areas that could be melt-generation 

surfaces appear to be free of melt; remnants of fractures and slickensteps that are 

characteristic of the crystalline substrate form approximately linear features 

perpendicular to the slip direction (see arrows, Fig. 10C). However, these surfaces are 

also characterised by textures that are very different from the untreated samples. Lobate 

domains are interspersed with fine (< 1μm) rounded particles that commonly display 

euhedral faces (Figs. 10C-D). Lineations are parallel to the slip direction and are often 

recognised by changes in topography of the lobate domains. On the submicron scale 

many of small (<200nm) particles are observed to be embedded and almost enveloped 

in the smooth, but occasionally faceted surface (Fig. 10E). The rounding of edges and 

formation of euhedral surfaces on small grains, together with etching along fractured 

surfaces and the development of the stepped polyhedral faceted surfaces on the high 

temperature (900°C) sample, indicate the activation of dissolution-precipitation 

processes during the hydrothermal treatment. Further evidence of the activation of 

Figure 9 continued.  
SE-SEM images of microstructures on fault interfaces - arrows indicate direction of slip of the imaged 
surface. (A-D) Images from BIS048: (A-B) Overview and detail of cylindrical structures resulting from the 
agglomeration of particles during sliding. These roll-like structures occur on the slip surfaces and are 
perpendicular to the direction of slip. (C-D) Overview and detail of a lineated, possibly partially amorphous 
patch on the fault interface. These patches differ from the crystalline quartz, having lobate edges and 
surfaces lineated by slickenlines. Note also chatter marks similar to those observed on the partially 
quenched melt surfaces. The fractures associated with the formation of chatter marks are somewhat 
rounded, implying that they have formed in a soft, deformable material. (E) BIS020, roll-structures (see 
arrows) on the fault surface, with long axes perpendicular to slip direction. (F) BIS045, inclusions in the 
crystalline fault surface that have a ‘negative crystal’ shape (see arrow), representing the most stable surface 
energy state for the fluid inclusion. (G) BIS037, overview of lineated patches on the fault surface. (H) 
Detail of (G) showing numerous fine particles bound together in a melt-like matrix. 
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dissolution-precipitation process occurs on the nano-scale where grain interface 

structures are visible where gouge particles have been dislodged during sample 

preparation. The interface structures include ridge and plateau features [cf. Cox and 

Paterson, 1991] that have the semblance of silica precipitation locally surrounding flat 

bottomed interfacial pores (Fig. 10F, see arrows). More common, however, are the 

smooth faced dissolution pits or depressions caused by the impingement of grains 

during HTIP.  

The finest fraction of the gouge particles are absent from the HTIP sample. This reflects 

the rapid dissolution of the fine particles due to their high solubility (Ostwald Ripening) 

[Steefel and Van Cappellen, 1990]. The changes in grainsize are very temperature 

dependent, with the largest changes being observed in the 900° HTIP sample, where the 

gouge particles <1000nm have been removed in contrast to the 500°C experiment in 

which particles <100nm are absent. Many of the remaining gouge particles have lost the 

angular appearance that is characteristic of gouge in the dry sliding experiments (Fig. 

8F), instead becoming rounded and/or developing euhedral surfaces (Fig. 8E-F). The 

formation of small quantities of platy minerals is also noted. These possibly reflect a 

reaction between the pore fluid and copper jacket forming copper (II) oxide (CuO). 

3.3 TEM analysis 
Eight samples for TEM analysis were prepared using ion beam milling in a FIB-SEM. 

This method of producing TEM foils proved to be extremely useful for analysing cross 

sections of the fault zones and facilitating comparison of microstructures across a range 

of scales. The FIB milling process provides a 10-15μm long and 4-5μm wide cross 

section of a targeted feature on the fault surface, thus providing subsurface information 

about microstructures identified in the SEM (refer to Appendix 5). In the following 

section microstructural observations from the FIB sections are described. 

3.3.1 High velocity stick-slip events  

Five FIB foils were milled across fault surfaces that had produced high velocity stick-

slip events. Low magnification bright-field TEM imaging reveals that an amorphous 

layer, ranging in thickness from approximately 0.3 to 1.7μm is present over the full 

length of all these sections adjacent to the slip surface (Figs. 11-15). The amorphous  
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Figure 10: The effect of hydrothermal isostatic pressing on melt covered surfaces. 
SE-SEM images of microstructures on fault surfaces. All images have a vertical slip direction. (A-B) 
BIS024: HTIP at 900°C for 1 hour. (A) Etched crystal on the fault surface. (B) Note the absence of the 
gouge fraction <1μm in diameter. Remaining larger grains are also more rounded when compared with 
the dry gouge particles (Fig 7). (C-F) BIS028: HTIP at 500°C for 1 hour. (C) Area assumed to be an 
originally melt-bearing surface prior to HTIP. Fractures formed perpendicular to the slip direction are 
exposed and etched. (D) Detail of HTIP surface showing domains of lobate textures. (E) Finest fraction of 
the gouge material is absent (grains <100nm). The grains have become much more rounded in 
comparison with samples that have not been HTIP and many of the grain surfaces are developing 
euhedral faces. Note that many of the smallest residual grains are almost enveloped by overgrowth of the 
underlying quartz (wall-rock) substrate. Fine grained material on the right hand side of the image is 
thought to be silica precipitated during quenching. (F) Rounded grains, euhedral faceted surfaces and 
ridge and plateau structures [cf. Cox and Paterson, 1991] on exposed surface of a grain-to-grain contact 
(see arrows and detail in inset) suggest activation of dissolution and precipitation processes.  
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material is recognised in bright-field mode by the absence of Bragg diffraction contours 

and its uniform, unchanging contrast. The amorphous structure was confirmed by 

selected area electron diffraction (SAED), which shows a broad diffuse ring around the 

central transmitted beam, reflecting the lack of long-range crystalline order within the 

sample (Fig. 11A and 13C). For samples BIS010 and BIS035 this amorphous layer 

corresponds to the striated quenched-melt film that is visible on the surface of samples 

during SEM analysis. The sections from sample BIS043 (Figs. 13 - 14), were milled in 

locations characterised by fractured, debris-free melt patches on the fault surface. FIB 

Section 4 (Fig. 14) was milled across the boundary between the fractured melt patch and 

a region exhibiting melt flow textures. The presence of the amorphous layer on this 

sample adds weight to the supposition outlined in the Section 3.2.1 that this area 

represents melt between two asperities, and that has fractured after quenching. 

A number of the characteristic melt textures identified during SEM analysis have been 

captured in the FIB sections. Linear flow textures are preserved in the sample cut 

perpendicular to the slip direction, forming small v-shaped structures on the melt 

surface (identified by the white arrows in Fig. 11F). Small bubbles or vesicles are also 

preserved in the glass layer in FIB sections 2 & 4 (see white arrows in Fig 12B and Fig. 

14A). During slip these bubbles elongate forming elliptical strain markers that are 

preserved as the melt quenches. The increase in axial ratio of the ellipses away from the 

crystal-melt interface indicates increasing strain towards the centre of the fault zone. 

The method of formation of the vesicles is uncertain, but could include processes such 

as vapour incorporated into melt due to decrepitation of fluid inclusions, or 

incorporation of air into the melt during slip (e.g. from air pockets trapped during the 

extrusion or propagation of the melt front through a porous, gouge dominated region).  

In all samples, the portion of the melt layer closest to the fault core is homogenous in 

appearance and free of relict clasts of crystalline quartz; this is consistent with 

observations made during SEM analysis. Towards the melt-substrate boundary there are 

relatively small numbers of randomly oriented grains. These range in size from 10nm-

1μm and either abut the crystalline substrate or are incorporated into the melt. The clasts 

are recognised in bright-field imaging by their changing intensity when viewed during 
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Figure 11: FIB Section 1, BIS010 – High velocity slip experiment cut perpendicular to the slip 
direction. 
(A) Low magnification bright-field image of the FIB section. The location of the higher magnification 
images is indicated by the red rectangles and the circles indicate the locations where the diffraction 
patterns were collected. The black layer is a coating of platinum deposited prior to milling the section to 
protect the sample from ion beam damage. The melt film is the 0.5-2µm thick homogeneous layer of 
uniform contrast between the platinum and the crystalline substrate (recognisable by the Bragg contours). 
(B) The broad diffuse ring in diffraction pattern confirms the amorphous structure of the melt layer. (C) A 
number of small crystalline particles are present in close to the melt-substrate boundary – as shown by the 
diffraction spots. Note the clusters of diffraction spots forming an inner ring close to the transmitted beam 
showing the presence of multiple grains. (D) Diffraction pattern confirms the crystalline nature of the 
quartz substrate. (E) Triangular pores (indicated by the white arrows) are present on the junctions 
between melt, gouge particles, and the substrate. Note the very sharp melt-crystal boundary (indicated by 
the black arrow) that is <10nm wide. (F) Small gouge particles are very visible within the melt layer. Also 
note the flow structures that are preserved by the platinum at the surface of the melt (see arrows). Images 
(E) and (F) also exhibit beam damage which is evidenced by the spots on the crystalline areas   
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sample tilting with the objective aperture in place, signifying diffraction by crystalline 

material. The SAED pattern is characterised by diffraction spots in a broader band of 

diffuse electron intensity that is consistent with multiple crystalline grains in an 

amorphous matrix (Fig. 11C).  

FIB Section 3, milled from BIS043, contains a larger number of clasts than the other 

sections, with many having angular shapes. A number of the larger clasts are laced by a 

network of melt-filled fractures (see arrows, Fig. 13C). The angularity of the crystalline 

fragments indicates that the clasts are gouge particles that have been incorporated into 

the melt. The angularity may indicate that grains have not significantly melted. In 

contrast, in Section 6 from BIS035 (Fig. 15C), a region within the amorphous layer 

contains very fine quartz crystals (diameter between ~5-50nm) that are rounded in 

appearance, possibly signifying incorporation by the melt prior to quenching. This 

sample was hot pressed under isostatic conditions for 6 hours at 700°C following slip. 

The lack of euhedral shapes implies that these crystals did not nucleate from the silica 

glass during hot pressing. The absence of devitrification textures such as spherulites 

shows that in dry experimental conditions, the melt is relatively stable over the time 

frame of the hot pressing. 

The sharpness of the glass - quartz substrate boundary is notable (e.g., Fig.11 and Fig. 

15), with many (see black arrow, Figure 11E) being less than 10nm wide. Such 

boundaries are consistent with observations made of melt-crystal interfaces during 

thermal induced melting [Dell'Angelo and Tullis, 1988].  

Unlike many natural pseudotachylytes which, at a macroscopic level, have remarkably 

planar melt generation surfaces, all the samples show significant topography along the 

melt-crystal interface, with height variation ranging up to ~1μm, on sections cut parallel 

to fault slip. The interface morphology of FIB samples where an amorphous layer 

overlies the crystalline quartz substrate is controlled largely by the formation of arrays 

of extension fractures in the substrate; these are oriented at between ~30° and 90° to the 

slip surface in a direction opposite to the sense of motion of the imaged fault block (e.g., 

see arrows, Fig. 15B, F). The leading edge of the hanging wall of many of these 

fractures is fragmented and forms pockets of intensely fractured material with a similar 

orientation (Fig. 15B). The consistency of crystalline orientation among grains is  

  



 
Frictional Melting on Quartz Interfaces 

 

38 
 

 

 
Figure 12: FIB Section 2, BIS010 – High velocity stick-slip event cut parallel to slip direction. 
(A) Low magnification bright-field image of the FIB section. Arrows indicate the fault slip-sense and 
location of the higher magnification images are indicated by the red rectangles. The melt film is clearly 
visible as the homogeneous region of uniform contrast between the residue platinum layer and crystalline 
substrate (recognisable by the Bragg contours and variable contrast). Note the pores in the substrate that 
are identifiable by the bright/white areas. Numerous, possibly melt filled fractures extend from the fault 
surface down into the substrate, with their orientation consistent with shear sense (see arrows). (B) 
Numerous vesicles are present in the melt layer and have been elongated during fault slip (identified by 
arrows). Note the gouge particles along the melt/crystal boundary. (C) A number of gouge particles can 
be seen dispersed in the melt layer. Note the collection of gouge particles at the melt/substrate boundary 
in the upper portion of the image (recognisable by the variable contrast and higher porosity). An example 
of a sharp crystal/melt boundary can also be seen in the lower portion of the image. 
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determined in bright-field imaging by the similarity of electron intensity between 

different grains within an region when the objective aperture is in place. This and other 

similar fragmented material may be a source of gouge particles that become entrained 

within the melt.  

The crystalline quartz substrate in all FIB sections is recognisable in bright-field TEM 

images by Bragg contours corresponding to highly variable image intensity. The 

differences in contrast between grains relates to variations in crystal orientation and/or 

to sample thickness. Holes, fluid inclusions and pores appear as light grey to white, 

corresponding to lower scattering of electrons resulting from the reduced thickness of 

crystalline quartz. The SAED patterns confirm the crystallinity of the quartz substrate 

(e.g., Fig. 11D). The microstructure of the quartz substrate is complex, with extensive 

fracturing and other deformation-related microstructures such as dislocations, subgrains, 

and healed micro-fractures (Figs. 11-15). These complexities reflect microstructures 

from both the current experimental deformation, and also from the previous deformation 

history of the clasts forming the Fontainebleau sandstone (refer to Appendix 3). 

However, for the purposes of this study the main focus is on the microstructures 

associated with amorphisation and the amorphous-crystalline interface, so only brief 

observations are made regarding the crystalline substrate.  

A number of the FIB sections have numerous fractures that penetrate up to 2.5μm from 

the melt-quartz interface into the substrate, and contain amorphous material. For 

example, the melt-filled fracture (see black arrows, Fig. 14G) penetrates the substrate at 

approximately 90° to the slip surface and has a number of subsidiary melt-filled 

fractures branching off at a high angle to the main vein. However, in other locations 

determining if microcracks within the substrate contain melt can be very difficult in 

bright-field imaging due to factors such as fracture orientation and sample thickness. In 

some situations, dark-field mode TEM observations can be used to highlight the 

amorphous material by enhancing sensitivity to crystalline orientation. In Figure 15F, 

melt-filled microfractures have formed in the quartz near the glass-substrate boundary 

and are highlighted by their uniform higher intensity relative to the quartz substrate. 

These glass-filled veins are up to ~850nm in length, ~10-20nm wide and have a uniform 

orientation, dipping away from the direction of motion of the imaged fault block. The 

development of these veins at a high angle to σ3 is consistent with the formation 
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Figure 13: FIB Section 3, BIS043 – High velocity stick-slip experiment cut parallel to the slip 
direction on a fractured area with no visible melts textures. 
During milling it was apparent that there was fracture or plane of weakness ~1.7μm beneath the surface of 
the sample. When the section was removed it separated along this fracture and became misaligned during 
placement on the carbon TEM grid. The approximately 100nm wide dark layer at the boundary of the two 
sections (see black arrow in image B) is thought to be the result of re-deposition of material during 
milling. (A) Low magnification bright-field image of the FIB section showing the location of the other 
higher magnification images. (B) The substrate in this sample is composed of a porous agglomeration of 
numerous particles - most likely accumulated gouge. Diffraction pattern collected at area D indicates the 
random orientation of grains within the substrate (identifiable by the formation of diffraction rings). The 
diffraction pattern collected at area E shows the presence of amorphous material within the substrate – 
indicated by the broad diffuse ring. This area also contains a number of small crystals as indicated by the 
diffraction spots. (C) Amorphous layer as shown by diffraction pattern F. Unlike the other samples, this 
amorphous layer contains a number of large (<1µm) clasts, some of which contain one or more melt filled 
factures (indicated by arrows). 
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as extension veins during fault slip.  

Variable densities of dislocations are present within the crystalline substrate of the 

samples, as expected given the presence of undulose extinction in the starting material 

(see Appendix 3). Localised dislocation arrays are accompanied by a high density of 

fluid inclusions (see arrows, Fig 15E). These dislocations are interpreted to have 

developed along healed micro-cracks [cf. Fitz Gerald et al., 1991] in the quartz prior to 

erosion and incorporation of clasts in the Fontainebleau sandstone, rather than during 

experimental deformation. However, the crystalline substrate of FIB Section 4 (Fig. 14) 

is characterised by the formation of parallel linear defects in the ~2μm adjacent to the 

melt interface. TEM analysis indicates that these structures are dislocation lines and 

their approximately straight orientation suggests that they are restricted to their glide 

planes, forming parallel to (0001).  

Dark-field imaging of the crystalline substrate in areas where the dislocations have 

formed shows the presence of amorphous material within fractures (Fig. 14E,G). Brittle 

deformation of this region of the substrate also appears to be controlled by 

crystallographic orientation, with consistently oriented fractures assumed to be forming 

parallel to a plane (not identified) of weakness within the crystal. The morphology of 

the melt-substrate interface and the formation of gouge fragments within the melt layer 

are governed by the geometry of the defects, with melt invasion of these sites forming 

stacked blocks of similarly oriented crystals making up the gouge (Fig. 14D). The 

change in orientation of the upper 1-2 clasts (shown by a change in diffraction intensity 

relative the rest of the sequence) implies the beginning of rotation and entrainment of 

the clasts within the shearing melt layer.  

The substrate of FIB Section 3 (Fig. 13) is not composed of large fractured grains, like 

the other samples, but rather, is an agglomeration of irregularly oriented grains 

(diameter from <100nm ~1.5μm) interspersed with melt and voids/pores. The irregular 

orientation of the grains is confirmed by the ring shaped SAED pattern (Fig.13D). In a 

number of locations within the substrate the nanocrystalline particles (grain diameter 

<100nm) are located within an amorphous matrix. In bright-field the nanocrystalline 

material is recognised by the small diffracting particles (see white arrow, Fig. 13B) 

embedded within a uniform grey glass matrix. SAED patterns confirm the dominance of  
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Figure 14: FIB Section 4, BIS043 – high velocity experiment cut parallel to slip direction on an 
boundary between striated melt textures and a fractured, debris free patch. 
For caption please see next page.  
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amorphous material within area B (Fig. 13) and also weak crystalline spots. Porosity is 

variable within the substrate of this sample with higher porosity regions being located 

either adjacent to clasts or away from the glass-substrate boundary. 

3.3.2 Low velocity stick-slip events  

A FIB sample was milled into a fractured, debris-free patch on the surface of BIS041 

(Pc = 50MPa, T = 900°, Fig. 16), which is a sample that experienced a small 

displacement (106μm) slip event. SEM analysis of the slip interface had shown no 

visible signs of melt flow textures, other than the fractured, glass-like debris-free 

patches (Fig. 6E). However, TEM of a cross section of the fault zone uncovers many of 

the first-order features that are present in the high slip velocity samples, including an 

approximately 600nm wide amorphous layer between the fault surface and the 

crystalline substrate. Compositional analysis of the amorphous material using TEM-

EDS reveals that the material is essentially pure silica, with other detected elements 

being attributable to contamination associated with FIB sample preparation (such as 

gallium and platinum; for analysis locations see red dashed circles, Fig. 16). 

Comparatively more clasts occur within the amorphous layer of this FIB section than 

occur in the high slip velocity samples described in Section 3.3.1, with clasts ranging in 

size between <10nm to 200nm. A number of the clasts exhibit textures indicative of  

 

Figure 14 continued. 
(A) Low magnification bright-field image of the FIB section. Location of the higher magnification images 
is indicated by the red rectangles and the arrows indicate the fault slip-sense. The melt film is clearly 
visible as the homogeneous region of uniform contrast between the protective platinum layer and 
crystalline substrate. This FIB section was milled on the boundary between a region showing striated melt 
textures and a fractured debris-free patch. The boundary between the two zones is recognisable only by the 
change in topography of the upper surface of the melt. Note the development of a linear texture within the 
crystalline substrate, especially on the upper left side of the sample and the formation of a large, 
approximately vertical melt filled fracture – recognisable by the change of contrast between the crystalline 
regions at the far left of image A. (B-C) Image of the dislocations formed parallel with (0001) of the quartz. 
Rotation of the image perpendicular to the basal plane shows the rotation of the linear structures (see 
relative differences in the angle of the white line), conclusively showing that these features are linear and 
not planar structures. (D-E) Bright-field and dark-field image of the same region highlighting the formation 
of possible amorphous material along fractures (black arrows) and possible fractures associated with 
dislocations (white arrows) within the sample substrate. Note the melt-invasion of the single crystal quartz 
causing the substrate boundary to have the appearance of stacked blocks (highlighted by dashed lines). The 
dark particles within this region indicate clasts that have rotated into a different orientation. (E) In the dark-
field images the amorphous material is visually accentuated as the intermediate grey contrast between the 
dark, non-diffracting crystals and bright diffracting crystals. (F-G) Bright-field and dark-field images of a 
region adjacent to (D-E) but further away from the melt-substrate boundary. Again images show the 
possible presence of amorphous material along fractures at a depth of >1µm from the melt-substrate 
boundary. 



 
Frictional Melting on Quartz Interfaces 

 

44 
 

 

Figure 15: FIB Section 5, BIS035 from high velocity slip experiment cut parallel to slip direction 
and perpendicular to slip surface; hot-pressed for 6 hours following slip. 
(A) Low magnification bright-field image of the FIB section with location of other images shown. 
Arrows indicate slip sense. The melt film is clearly visible as the homogeneous amorphous layer between 
the platinum and crystalline quartz substrate (recognisable by the Bragg contours and variable contrast). 
(B) The area of high contrast outlines a region of numerous fine particles – note the very similar 
crystallographic orientation of different regions of gouge particles (ascertained from the similarity of 
diffraction contrast). (C) Very fine crystalline grains (d=10-100nm) within the amorphous layer. Grains 
have rounded shapes suggesting melting of the outer faces of the gouge particles. (D) Sharp boundary 
between melt and the crystalline substrate (width of < 10nm). For this image the sample has been tilted so 
that the crystalline material diffracts less strongly than the amorphous material, thus making the contrast 
of the melt appear darker than quartz substrate. (E) Healed micro cracks within the quartz substrate. The 
locations of the micro cracks are identifiable by the dislocation arrays linking bands of fluid inclusions 
(see arrows). (F) Dark-field image highlighting melt filled fractures along a grain at the melt – substrate 
boundary. 
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partial melting, including embayed margins and the development of incipient melt veins 

within the entrained clast. In topographically lower regions of the amorphous-crystalline 

interface, a number of pockets of gouge remain, while in contrast, other regions of the 

interface are characterised by a sharp, debris-free boundary. In many locations within 

the amorphous layer, the crystalline gouge particles are irregularly distributed, whereas 

in other areas the clasts occur in clusters and form trails of particles approximately 

parallel with the melt-substrate boundary (see dashed lines, Fig. 16F). The absence of 

microstructures such as elongate vesicles or melt-flow textures indicating viscous flow 

suggests the possibility that these debris trails may not be a shear-related feature, but 

instead may represent features such as grain-size variation in the fault zone prior to 

melting.  

Within the melt layer are a number of fractures oriented parallel to the melt formation 

surface (e.g., Fig. 16A, F). These fractures possibly form as a result of local tensile 

stresses within the glass layer during quenching, unloading or decompression. Intense 

fracturing is also observed in a clast at the slip interface, resulting in the formation of 

closely-spaced (<50nm) parallel fractures (see arrows, Fig. 16F) orientated at a high 

angle (~90º) to the slip surface, again suggesting possible crystallographic control. 

These fractures contain amorphous material as shown by the lack of contrast change 

during specimen tilting in bright-field mode; the presence of amorphous material could 

arise from either melt injection or from preferential melting along the fracture 

boundaries. Regardless, such fractures must have formed during slip activity. 

3.3.2 Microstructures formed during stable sliding 

A TEM foil was milled perpendicular to the slip surface and parallel to the slip direction 

of BIS037 (Pc = 150MPa, T = 800°, Fig. 17) in an area where densely-packed particles 

are bonded with a melt-like matrix, forming the lineated gouge patch identified during 

SEM imaging (Figs. 9G-H). TEM analysis reveals that the slip surface is remarkably 

planar and formed by a layer of compacted, finely-crushed quartz ranging in thickness 

from ~200nm-1μm. The variation in thickness of the layer results from the significant 

topography along the boundary with the intact quartz substrate. The resolvable size of 

gouge particles within this layer ranges between 10nm - 200nm, with particle size  
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Figure 16: FIB Section 6, BIS041 - Low velocity stick-slip experiment cut perpendicular to the slip 
surface and parallel to slip direction. 
All TEM micrographs are bright-field images with the exception of the SAED patterns. (A) Low 
magnification image of the FIB section. Location of the higher magnification images is indicated by the 
red rectangles. Arrows indicate the sense of fault motion. FIB section was milled into fractured patch on 
the slip surface of BIS041. An amorphous film is clearly visible as the largely homogeneous region of 
uniform intensity between the platinum layer and crystalline substrate and is very similar in appearance to 
the melt layers observed following high velocity slip events. (B) Micrograph showing the numerous small 
randomly oriented crystalline particles within the amorphous layer. Note the essentially gouge free nature 
of the amorphous-substrate boundary. (C) Inset shows the diffraction pattern taken at the indicated 
location and shows a broad diffuse amorphous ring with numerous randomly oriented crystals. (D) 
Amorphous-crystalline boundary showing numerous gouge particles. Pores within the gouge particles are 
recognisable by their higher intensity. Note embayed margins on many of the clasts. (E) Amorphous-
substrate boundary showing melt penetration of a gouge-rich zone. Note the formation of a low angle 
fracture from the surface of the melt (lower left hand corner). (F) Crystalline clasts within the amorphous 
layer appear to form diffuse elongate trails approximately parallel with melt-substrate boundary, as 
indicated by dashed lines. Clast at interface shows the development of a dense array of amorphous-filled 
microfractures as indicated by arrows. (G) SAED pattern of gouge particles and amorphous matrix at the 
location indicated. The ring-like configuration of the diffraction spots indicates numerous irregularly 
oriented particles. 
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increasing away from the principal slip zone. A few much larger, fractured, but 

unrotated grains occur close to the undamaged substrate and have a diameter of 

approximately 0.5μm.  

During high resolution SEM imaging, the morphology of the lineated patches pointed to 

the formation of a non-crystalline matrix, recognisable by its film-like properties. 

However, TEM analysis of the fine-grained quartz within the gouge zone proved 

difficult due to the relative thickness of the sample (~100nm) compared with the size of 

gouge particles and potential for overlap of fragments and pores. For this reason 

identification of potentially amorphous material was extremely difficult using bright-

field imaging and consequently dark-field imaging was employed [cf. Yund et al., 

1990]. In dark field mode, potential amorphous material is found to have an 

intermediate contrast between the bright crystalline gouge fragments, whose reflections 

fall within the objective aperture, and the low intensity of the crystalline material whose 

reflections fall outside the aperture. Comparative bright-field and dark field images are 

shown in Figure 17(B-E).  

A comparison of the dark-field images suggests that amorphous material occurs within 

the gouge layer over a depth of 50-500nm, partially bonding the quartz particles. It is 

uncertain whether this ‘amorphous’ material represents particles with grain sizes less 

than the resolvable 10nm that is simply too small to image, or whether it is a true 

amorphous material resulting from the loss of long range crystalline order. However, 

this ‘amorphous’ material appears to be mainly in the 100nm immediately adjacent to 

the principal slip zone, with an increase in the crystalline fraction beyond this depth. 

The possibility that the uppermost layer of the gouge zone had been damaged during 

sample preparation was considered, but it is argued that the ‘amorphous’ material 

extends beyond the possible 30nm of damage that could occur prior to, and during the 

deposition of the platinum coat. Further, crystalline clasts are observed to occur across 

the full depth of the gouge layer (see red arrows, Fig. 17E), in places forming lenses of 

crystalline material between the zones rich in ‘amorphous’ material (see red arrow, Fig. 

17C). These features suggest that the ‘amorphous’ material is not an artefact of the 

sample preparation process.  
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Figure 17: FIB Section 7, BIS037– Aseismic creep experiment cut perpendicular to the slip surface 
and parallel to slip direction. 
(A) Low magnification image of the FIB section with arrows indicating the sense of fault motion. 
Location of the higher magnification images is indicated by the red rectangles. This FIB section was 
milled within a lineated region of densely compacted particles at the slip surface of BIS041. This region 
can be seen as the finely crushed material adjacent to the slip zone beneath the platinum coat. Note the 
several highly porous zones recognisable by the low contrast in bright-field imaging. These areas are 
assumed to be fractures or poorly compacted regions within the layer (see also white arrows in image D). 
It is unknown whether they formed during slip or are an artefact of unloading. (B-C) Comparative bright-
field (B) and dark-field (C) images showing the agglomerated gouge zone adjacent to the slip surface. 
Bright and dark regions within the fine grained layer represent variably diffracting quartz clasts. Dark-
field image reveals the possible presence of ‘amorphous’ material that is identifiable by the mid-range 
contrast. Note the occurrence of lenses of essentially crystalline material (see red arrow) within the 
predominantly ‘amorphous’ zone. (D-E) Comparative bright-field (D) and dark-field (E) images of 
showing the fault interface at another point on the sample. ‘Amorphous’ material can again be seen within 
the gouge zone with the highest concentration occurring close to the fault surface. In the dark-field image 
crystalline clasts whose reflections fall within the objective aperture are shown by having very low 
contrast and occur throughout the full depth of the zone. Red arrows indicate crystalline clasts adjacent to 
the slip surface.  
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3.3.2 Hydrothermally-treated fault surfaces 

A TEM foil was milled on the surface of BIS028, an experiment involving 

hydrothermal treatment for 1hr at 500ºC following melt-inducing slip. The area that was 

chosen was one of the regions interpreted as a melt generation surface on the basis of 

SEM analysis, which indicated the presence of linear fractures perpendicular to the slip 

direction, as well as lobate domains interspersed with fine particles (e.g., Fig. 10C-D). 

Unfortunately this foil represents far from ideal sample preparation with the platinum 

coat and small particles separating from the substrate. 

TEM imaging indicates the sample surface has a microstructure very different from the 

slip surfaces that had not been hydrothermally treated. Fractures and other fault surface 

damage appear to have largely healed during the 1 hour of hydrothermal treatment. The 

partially healed fractures are decorated by trails of elongate fluid inclusions which range 

in size from <5nm-70nm (Fig. 18). The activation of dissolution-precipitation processes 

is reflected by the development of euhedral grain shapes in gouge particles (Fig. 18E) 

and a rounding of the surface topography (Fig. 18D-E).  

An amorphous film, with a maximum thickness of ~30-40nm, is observed to coat many 

of the fault surfaces adjacent to the slip zone; this includes both surface particles and the 

cohesive slip surface. It is uncertain whether these zones of material represent remnant 

melt, with the exposed surfaces forming dissolution zones; sites of silica precipitation 

upon quenching or hydrous crystalline epitaxial overgrowths that have been ion beam 

damaged prior to the deposition of the platinum. Previous research suggests that 

experimentally generated crystalline overgrowths can be sensitive to electron beam 

damage [e.g., Rutter and White, 1979] and the fact that the layer is not evenly deposited 

on all exposed surfaces suggests that the layer is not the product of quenching. 

3.4 XRD analysis 
The potential for silica polymorphs to have formed on the fault surfaces during slip was 

tested in situ using multiple-pass scans on a X-ray powder diffractometer. The slip 

surfaces of samples BIS036, BIS037 and BIS039 were mounted using a custom built 

holder. No evidence was found for any experiment related phases other than quartz and 

copper; the presence of the latter arises from injection of the copper sleeve onto the 

outer edges of the fault surfaces during the high temperature deformation (see Appendix 

5).  
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Figure 18: FIB Section 8, BIS028 – Hydrothermally treated sample cut perpendicular to slip 
surface and parallel to slip direction. 
All TEM micrographs are bright-field images. (A) Low magnification image of the FIB section with 
arrows indicating the sense of fault slip. Location of the higher magnification images is indicated by the 
red rectangles. This FIB section was milled in a region that was thought to have been a melt generation 
surface. (B) Healed fractures can be seen by decorated by trails of inclusions (see white arrows). Some 
porosity still exists, as shown by the bright, high intensity regions. A 30-40nm layer of amorphous 
material coats the surfaces adjacent to the platinum coat. (C) Higher magnification image of a region of 
microcracking shown in (B). Trails of inclusions are clearly visible. (D) Region showing hydrothermal 
healing of a slip-damaged surface. A network of fluid inclusions indicates the location of healed 
microfractures and the uneven topography of the fault interface is rounded through dissolution-
precipitation processes. (E) The development of euhedral grain surfaces is visible in the outlines of a 
number of the small clasts on the fault surface. The dark material on the underside of the clasts in the void 
between the platinum layer and the sample is thought to be a product of the re-deposition of material 
during the milling process.   
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4. Discussion  

4.1 Amorphisation on fault surfaces 
In the preceding section, it has been shown that the development of amorphous material 

is a significant feature in the microstructural development of the experimentally slipped 

faults in quartz sandstone under nominally dry conditions. The process of quartz 

amorphisation within fault zones and its potential impact on the behaviour and stability 

of faults remains poorly understood, especially at high ambient temperatures and high 

normal stresses. In the following section the mechanisms that cause amorphisation are 

briefly described and discussed in terms of how they may relate to conditions and 

processes active in the fault zone. An overview is then provided of experimental work 

that has been undertaken over the past several decades with respect to the role that 

amorphisation plays in influencing mechanical behaviour during slip in fault zones. 

Finally a series of simple thermal calculations are presented to gain insights into the 

conditions required for frictionally induced thermal melting; feasibility of the results are 

assessed in terms of the observed microstructures, mechanical behaviour and fault 

strength. 

4.1.1 Mechanisms for amorphisation 

Amorphous material or glass can be defined as a solid phase that has lost long-range 

crystalline order (lattice periodicity) and assumed a liquid-like structure where a short-

range order, similar to that found in the original crystalline lattice, can still be present. 

Although thermal induced melting, followed by quenching, is the most common way 

for a crystal to lose long-range structure, numerous other mechanisms exist that result in 

the same structural changes. These include: mechanical amorphisation that results in 

defect accumulation and structural disorder (includes processes such as comminution 

and frictional shear amorphisation) [Tkacova et al., 1993; Nakamura et al., 2012], high 

isostatic pressure [Hemley et al., 1988; Kingma et al., 1993] and particle irradiation. 

These methods all represent a large departure from thermodynamic equilibrium 

conditions [Delogu, 2004]. 

The large differences in stress states between processes such as comminution and 

amorphisation during isostatic compression, suggests that amorphisation occurs in 

quartz over a wide range of stress states [Kingma et al., 1993; Dmitriev et al., 2003]. 
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Many of these stress states lie within what is traditionally considered to be the 

thermodynamic stability field of crystalline quartz, thus potentially making mechanical 

amorphisation during faulting feasible. It has been shown experimentally that increasing 

differential stress lowers the transition pressure between crystalline and amorphous 

phases of silica [Cordier et al., 1993], possibly through the formation of dynamic 

instability [Watson and Parker, 1995].  

It has been observed [Winters et al., 1992], that the structure and properties of 

amorphous SiO2 subtly change depending on the method of synthesis, with pressure 

amorphisation resulting in an increased number of densified atomic defects (5 and 6 

fold coordination defects). Conceivably variations in the structure and short-range order 

of the amorphous material may provide diagnostic methods of identifying the mode of 

amorphisation. However, given the very small quantity of amorphous material present 

on the experimentally slipped faults produced in this study, this is likely to prove 

difficult (and beyond the scope of the current research). 

4.1.2 Influence of amorphisation on mechanical behaviour  

While numerous experiments performed on frictional welding apparatus [Spray, 1987, 

1995, 2010] and rotary shear apparatus [e.g., Shimamoto and Tsutsumi, 1994; Di Toro 

et al., 2006a; Proctor et al., 2014] have produced unequivocal evidence of frictional 

heating and melting on many rock types, melt has been less prevalent during the 

experimental deformation of in pure-quartz rocks such as quartzites [Goldsby and 

Tullis, 2002], cherts [Hayashi and Tsutsumi, 2010] and novaculites [Di Toro et al., 

2004]. In quartz-rich rocks such as granites, quartz is generally observed to be the one 

of the last minerals to melt, commonly forming residual clasts in a silica-depleted melt 

matrix, thus suggesting non-equilibrium melting [e.g. Lin and Shimamoto, 1998]. This 

could be a result of the very high melting temperature of quartz relative to the other 

minerals, the sluggish kinetics of quartz melting or a consequence of the low normal 

stresses used during the rotary shear experiments.  

The effect of frictionally-induced melt on the behaviour of fault interfaces has been a 

source of debate for many decades, with suggestions that the melt layer could act as 

either a lubricant [Di Toro et al., 2006a], dramatically reducing dynamic friction 

coefficients, or alternatively, acts to restrain or even terminate seismic slip, depending 
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on viscosity and thickness of the melt layer [Koizumi et al., 2004]. High velocity rotary 

shear experiments on gabbro and other ultra-mafic rocks [Tsutsumi and Shimamoto, 

1997; Hirose and Shimamoto, 2005b; Proctor et al., 2014] point towards at least two 

phases of fault weakening that are separated by significant strengthening just prior to 

the development of a continuous melt layer on the slip interface. The first stage of fault 

weakening is attributed to flash heating [Hirose and Shimamoto, 2005b], where 

asperities under high normal stress are frictionally heated and lead to the formation of 

incipient melt patches on the asperity interfaces. Possible mechanisms for fault 

weakening during flash heating include: lubrication of the asperity tips [Hirose and 

Shimamoto, 2005b], or generation of melt pressure through localised volume expansion, 

resulting in a reduction of normal stress across the interface [Brown and Fialko, 2012]. 

The second period of fault weakening is associated with continuous melt formation and 

is regarded as the stage at which many natural pseudotachylytes are formed [Hirose and 

Shimamoto, 2005b]. The strengthening regime just prior to the onset of continuous 

melting is inferred be the result of the growth and coalescence of the initial melt patches 

into a thin continuous layer. Potential edge effects of the thin, semicontinuous melt film, 

produce high effective viscosities within the melt layer and result in a strengthening of 

the interface with increasing melt surface area [Hirose and Shimamoto, 2005b]. 

Alternatively, low fault surface temperatures at the onset of melting result in high melt 

viscosities that leads to fault strengthening [Di Toro et al., 2006b]. High velocity 

experiments conducted on tonalite and novaculite produce similar results with peak 

strength being reached prior to the onset of continuous melting. However, in these 

experiments the frictional weakening associated with the onset of continuous melting is 

not as pronounced as is observed for the ultra-mafic samples [Di Toro et al., 2006a].  

During high velocity rotary shear experiments undertaken at low normal stresses, the 

displacement incurred between the onset of flash heating and continuous melting can 

amount to more than 20 metres. Such large displacements result in overprinting and 

destruction of the early microstructures and the potential development, during 

experiments, of phenomena atypical of natural fault zones within the continental 

seismogenic zone. In comparison, while experiments performed on a triaxial apparatus 

are limited in terms of overall slip displacement, they do provide an opportunity to 

explore the behaviour and microstructures of small seismic events without imposing a 

velocity and slip distance. Unfortunately, there are few recorded observations of melt 
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being formed on triaxially deformed samples. Friedman et al., [1974] reported glass on 

polished surfaces of an impure quartz sandstone during sliding experiments undertaken 

at Pc=14-500MPa and T< 410ºC, although analysis was limited to the identification of 

melt textures using low resolution optical microscopy. Similar phenomena was 

observed by Rutter and Mainprice [1978] on the same Tennessee sandstone starting 

material as used by Friedman et al., [1974]. Koizumi et al., [2004] observed melt 

textures in granite experiments following large stress drop stick-slip events, with a slip 

displacement in the order of 300μm. The novel use of sensors and a high speed data 

acquisition system during the experiments allowed the determination of an exact time of 

the onset of melting relative to the start of a stick-slip event and the observation of a 

remarkable recovery in frictional strength of the fault just prior to the cessation of slip. 

Importantly, the onset of melting occurs during the stick-slip event, with significant 

relative weakening and displacement having occurred prior to this point. This suggests 

that the formation of melt is a product of the rapid sliding during the slip event rather 

than the instigating cause of the instability. 

The origin of fault instabilities remains one of the most significant unanswered 

questions in the study of earthquake fault mechanics. Significant fault weakening has 

been observed to arise with the formation of amorphous material on fault interfaces 

[Yund et al., 1990; Di Toro et al., 2004], although whether this is a causal process or 

consequence of rapid slip remains open for debate. Rotary shear experiments on quartz-

rich rocks [Yund et al., 1990; Di Toro et al., 2004] generated a porous, possibly gel-like 

amorphous material in the damage/gouge layer of the fault surface; slip was 

accompanied by significant fault weakening. TEM analysis by Yund et al., [1990] 

showed the gouge was comprised of approximately 40-50% amorphous material, but it 

was unclear whether the lack of crystalline diffraction was the result of the genuine 

amorphisation arising from the loss of long range crystalline order, or was a 

consequence increased structural damage associated with a very small particle size (i.e., 

many particles < 10 nm in diameter). However, it has been argued [Di Toro et al., 

2004], that the presence of amorphous material alone is not sufficient to produce the 

extraordinary weakening that is observed in some of their experiments (dynamic friction 

coefficient <0.3). It was speculated that the observed significant fault weakening is the 

result of thixotropic behaviour of a tribolayer of silica gel [Di Toro et al., 2004] that 
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forms as a result of the interaction between the highly chemically reactive amorphous 

material [Yund et al., 1990] and moisture from the atmosphere. 

The apparent absence of amorphous material on many bare interface frictional sliding 

experiments undertaken on triaxial apparatus [e.g., Stesky, 1974], at high confining 

pressures and moderate-high temperatures has given rise to the argument that the 

formation of amorphous material requires larger displacements (>3-4mm) than can be 

obtained using a triaxial apparatus [Goldsby and Tullis, 2002]. However, other 

experiments suggest that this is not the case, with quenched melt textures (glass) being 

produced during stick-slip events on granite interfaces undertaken at room temperature 

using a triaxial apparatus and Pc=150MPa [Koizumi et al., 2004]. Amorphous, clast 

laden material has also been reported in the low displacement triaxial deformation of 

simulated granite gouge at conditions below those considered necessary to produce 

frictional melt [Pec et al., 2012]. Frictional pin-on-disk experiments on quartz single 

crystals at room temperature [Navrotsky, 1994] have been shown to generate amorphous 

material at low to intermediate slip rates (3.2mm/s – 75mm/s). Raman spectroscopy of 

the frictional wear tracks from these experiments reveal peaks consistent with the 

formation of partially densified silica glass, moganite and coesite, indicative of 

pressure- and strain-induced amorphisation, and similar to observations reported for 

high pressure experiments using diamond anvil cells [Hemley et al., 1988; Kingma et 

al., 1993].  

While the experiments discussed above clearly demonstrate the propensity of frictional 

interfaces to produce amorphous material, the mechanisms of formation and, to a large 

extent, their influence on sliding behaviour, remain poorly constrained. However, from 

the observation reported in previous studies, it can be concluded that amorphisation 

occurs at areas of real contact on the fault surfaces, either through pressure- and/or 

mechanically-induced amorphisation or through frictionally-induced thermal melting.  

4.1.4 Thermal modelling of fault surfaces 

The transformation of frictional energy to heat is thought to be one of the primary 

mechanisms responsible for the increase in temperature of fault surfaces during slip. 

While the exact location of this energy transformation is not known [Kennedy, 2001], 

frictional heat is concentrated within the areas of real contact between the sliding 

interfaces (for discussion about areas of real contact see Appendix 5). To undertake a 
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quantitative analysis and explore the potential thermal evolution of the asperity contacts 

on fault interfaces in quartz sandstone, two different thermal models have been 

employed. The first assumes uniform heating across a fault of variable width, in an 

infinite material. The goal is to provide a first order estimate of the change in 

temperature of the fault surface. The second model places bounds on asperity size, and 

after Jaeger [1942], assumes a uniform circular heat source on a moving body to 

calculate the change in temperature at asperity contacts. Calculations are undertaken 

using the experimental data to determine maximum attainable ‘flash’ temperatures, 

although these calculations are only valid up to the onset of melting, after which the rate 

and mechanisms of heating are assumed to be no longer frictionally controlled. These 

calculations have a number of limitations, including the oversimplification of asperity 

geometry and the significant reliance on fixed parameters that, in reality, are likely to 

evolve spatially, temporally and with changing stress states during the frictional sliding. 

It is also assumed that all energy produced during frictional sliding is converted 

instantaneously into heat with no energy being expended through the production (by 

fracturing and wear) of new surfaces and gouge, or through other modifications of the 

microstructure (such as dislocation processes).  

4.1.4.1  Calculating the frictional heating on the fault surfaces 

The highest temperatures on the fault surface occur at the asperity contacts during the 

process of flash heating. The cumulative effect of flash heating over the duration of slip 

is to raise the average temperature of the fault surface. Accordingly, the maximum 

temperature (𝑇𝑚𝑚𝑥) at any given point on the fault surface can be estimated by three 

contributing factors: 

 𝑇𝑚𝑚𝑥 = 𝑇𝑚𝑚𝑎 + ∆𝑇𝑓𝑠 + ∆𝑇𝑚𝑠𝑎 (1) 

where 𝑇𝑚𝑚𝑎 is the ambient starting temperature, ∆𝑇𝑓𝑠 is the temperature change on the 

sliding surface as a result of cumulative heating from the dissipation of heat from 

asperity contacts, and ∆𝑇𝑚𝑠𝑎 is the change in temperature of the asperity contacts 

[Kennedy, 2001]. Assuming that the rate of heat production per unit area (q) is given by: 

 𝑞 = 𝜎𝑛 ∙ 𝜇𝑘 ∙ 𝑣 (2) 
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where, 𝜎𝑛 is the normal stress acting on the fault, 𝜇𝑘is the coefficient of kinetic friction 

and 𝑣 is the sliding velocity [Jaeger, 1942; Sibson, 1975], the one dimensional heat 

transport at constant velocity can be expressed as: 

 
𝜕𝑇
𝜕𝜕

=
𝑄(𝑥, 𝜕)
𝜌𝑐𝑎

+ 𝜅
𝜕2𝑇
𝜕𝑥2

 (3) 

where T is temperature, t is time, Q is the rate of heat generation per unit volume 

(𝑄 = 𝑞/𝑤, with 𝑤 being the width of the fault zone), 𝑥 is the distance perpendicular to 

the fault plane, measured from the centre of the fault zone, 𝜌 is the density of quartz 

(2650 kg m-3), 𝑐𝑎 is the specific heat (1186 J kg-1 K-1 for quartz) and 𝜅 is the thermal 

diffusivity of quartz (2.23x10-6 m2 s-1). Assuming that prior to fault slip 𝑄 = 0 the 

solution to (4) is given by Morse and Feshbach (1953) as:  
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Further assuming that the frictional heating is uniform across the width of the fault and 

is independent of time during slip, heat generation per unit volume can be expressed as 

[Cardwell et al., 1978]: 
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where H() is the Heaviside step function, and 𝜏 is the macroscopic shear stress acting on 

the fault. Cardwell et al., (1978) showed that the temperature at any point at distance 𝑥, 

from the fault at time t could be calculated by substituting equation (5) into (4) giving: 
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for 0 < 𝜕 < 𝜕𝑠𝑠𝑠𝑎 

𝑇𝑓𝑠(𝑥, 𝜕) = 𝑇𝑚𝑚𝑎 +
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for 𝜕 > 𝜕𝑠𝑠𝑠𝑎 

This equation has been calculated numerically, using published thermal and physical 

properties of quartz (see Appendix 5) and exploring parameters such as fault width, 

duration of slip, and displacement. Calculations suggest that for a fault width less than 

5μm, the width has essentially no impact on the calculated maximum fault temperatures 

(Fig. 19A). Therefore, the maximum temperature of the fault surface, assuming 𝑤 = 0, 

can be estimated by [Cardwell et al., 1978]:  

 ∆𝑇𝑓𝑠 = 𝑇𝑚𝑚𝑎 +
𝜏𝑑

𝜌𝑐𝑎�𝜅𝜕𝑠𝑠𝑠𝑎
 (8) 

Using the experimental data (see Appendix 5) the increase in fault temperature is 

calculated to be between 2.5º - 55ºC, assuming that the contact stresses on the fault 

surface are equivalent to the bulk experimental observations (Fig. 19B). These 

calculations use shear stress values between 71-207MPa and slip velocities of between 

2-20mm/s. 

4.1.4.2  Calculating the frictional heating on asperity contacts 

For the calculation of the frictional heating occurring on asperity contacts, it can be 

reasoned that at slow slip rates, competition exists between the generation of heat at 

contacts and the diffusion of that heat away over the lifetime of the asperity, resulting in 

a small temperature rise and negligible effect on contact strength. However, at higher 

slip rates, there is insufficient time for heat generated at contacts to diffuse resulting in 

increased contact temperature [Kennedy, 2001] (Fig. 19C and see Appendix 5). This 

effect is described by the dimensionless Péclet number (L), which is defined as: 

 𝐿 ≡ 𝑣𝑣/2𝜅 (9) 

where, 𝑣 is the slip velocity and 𝑣 is the radius of the asperity contact. 

The change in asperity temperatures is calculated based on the assumption that the heat 

is generated at the area of true contact. For the experimental data, this is the estimated 

true contact area for the fault, which is assumed to form a single circular asperity 

contact. It is also assumed that the asperity can only support a load up to the critical 

compressive failure strength of quartz. Assuming a broad range of potential Péclet 
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numbers and using the mathematical models of Archard [1958/1959] and Greenwood 

[1991], the maximum estimated steady-state temperature change at asperity contacts is 

approximated as: 

 Δ𝑇𝑚𝑠𝑎 ≈
2𝜎𝑛𝜇𝑘𝑣𝑣

𝑘�𝜋(1.273 + 𝐿)
 (10) 

where 𝑘 is the thermal conductivity of quartz (estimated to be 7W/mK) and L is defined 

in equation 9. It is assumed that the heat generated is divided equally between the two 

asperities on either side of the slip interface. The effects of uncertainty, resulting from 

parameters including asperity contact radius, real contact area, asperity strength and slip 

velocity, on estimated maximum asperity temperature is explored in Figure 19D-F (see 

also Appendix 5).  

The maximum asperity temperatures, allowing for both ambient temperature and 

experimentally-induced heating, have been explored as a function asperity contact 

radius, using the mechanical data derived from the current experiments and assuming a 

10% real contact area [Logan and Teufel, 1986] (Fig. 19D). The maximum asperity 

temperature is expected to occur where the asperity diameter is equal to the total 

displacement of the rapid slip event (i.e., heat generation on the asperity occurs for the 

entire slip duration). These points are indicated by the stars in Figure 19D. Calculated 

maximum asperity temperatures using the experimental data are insufficient to cause 

frictional melting. However, microstructural observations indicate that in some 

locations melting is initiated within the first 50μm of slip, suggesting that the calculated 

temperatures fall short of the minimum melting temperatures by more than 500°C. 

If the change in asperity temperature is considered as a function of asperity strength and 

real contact area, assuming that the relationship between real contact area and applied 

normal stress is linear [e.g., Logan and Teufel, 1986; Stesky and Hannan, 1987], it can 

be seen in Figure 19E that for very high asperity strengths (>4GPa) and low < 5% real 

contact areas, enough heat can be produced to achieve frictional melting. Although 

these results seemingly provide a reasonable fit with the observation of melt textures on 
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Figure 19: Thermal calculations for the production of heat on the fault surfaces 
(A) Sensitivity of the model 1 (used to calculate frictional heating of the fault surfaces) to changes in fault 
width. When fault widths <5μm, there is essentially no impact on calculated fault temperatures. Faults in 
the current suite of experiments have a fault width of approximately 1-2μm. (B) Estimated increase in 
fault surface temperature using data acquired from experiments. Estimated slip velocities is derived from 
seismic data. The change in estimated temperature with increasing distance from the interface suggests a 
low Péclet number. (C) Schematic illustration of the effect of a slow moving heat source (low Péclet 
number) [after Stachowiak and Batchelor, 1993]. (D) Maximum asperity temperatures shown as a 
function of asperity radius using experimental data (see Appendix 5) and assuming a real fault contact 
area of 10% [Logan and Teufel, 1986]. Estimated normal stress acting on asperities (real contact area) 
ranges from 0.9-2.9GPa. (E) Maximum asperity temperature as a function of real contact area. Real 
contact area is assumed to be controlled by a linear relationship between the macroscopic normal stress 
acting on the fault and the shear strength of quartz. (F) Maximum asperity temperature as a function of 
sliding velocity, assuming a 10% contact area and 50μm asperity diameter.  
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the slip surface, there are a number of inconsistencies. For example, if the full slip 

displacement is required to generate sufficient heating to melt an asperity contact, a 

maximum melt area of between 4-8% could be expected. This compares with areas of 

between 10-60% on the actual fault surfaces. Microstructural observations also suggest 

that melting occurs between gouge particles <1μm in diameter, indicating that heat 

calculations significantly under-represent the true extent of the frictional heating. 

Finally, maximum asperity temperature is considered as a function of sliding velocity, 

using the mechanical data derived from the experiments and assuming both a 10% 

contact area and 50μm asperity diameter (Fig. 19F). Results indicate that sliding 

velocities greater than 0.1ms-1 are required to induce melting on the experimental slip 

surfaces. The seismometer data acquired during experiments suggests velocities of 

0.002-0.02ms-1, which would be insufficient to generate frictional melting on the fault 

surfaces. However, potential undersampling of the slip event by the seismic instruments 

may result in an overestimation of the slip duration (Section 2.1) and consequently 

lower calculated temperatures. Further, it has been previously recognised that natural 

fault ruptures propagate in a ‘pulse-like’ way [Heaton, 1990]. If the laboratory induced 

slips behave in a similar way on a microscopic scale, it could result in significant 

additional complexity with variations in velocity with both time and space. The 

uncertainty surrounding slip velocity highlights the need for better constraint on slip 

velocity during rapid slip events. Progress that has been made towards the development 

of an interferometry system that will improve sample time resolution by up to four 

orders of magnitude (improving the sampling rate from between 100-1000 samples per 

second to potentially in excess of a million samples per second) is discussed in Chapter 

4.  

The significant understatement of estimated maximum asperity temperatures using 

experimentally-derived mechanical data is a significant result within itself. It suggests 

that the micromechanical processes occurring at the fault surface are more complex than 

the bulk measurements indicate, with significant variations in real contact area, asperity 

strength, normal stress and velocity. However, temperatures sufficient to induce 

frictional melting over the experimental slip displacements can be achieved if it is 

assumed that normal stress is highly concentrated at asperity contacts and that slip 

occurs at sub-seismic to seismic slip velocities (0.1-1ms-1). Another important result 

from the thermal calculations is the correlation between estimated maximum asperity 
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temperatures and microstructural observations of melt textures. Experiments that form 

ribbon-like textures and slip-dispersed melt consistently produce higher expected 

temperatures than experiments that result in the formation of undispersed fractured glass 

patches. 

4.2 Coupling mechanical behaviour and microstructural evolution 
After theoretically exploring the parameters necessary to cause flash heating and 

frictional melting of asperity contacts, this section will focus on coupling the 

mechanical behaviour recorded during the experiments with some of the key 

microstructures observed on the slip interfaces. Experiments have shown the 

development of complex sliding behaviours over a range of temperatures and confining 

pressures with multiple transitions between stable sliding and stick-slip behaviour. Up 

to approximately 600ºC fault behaviour is characterised by stable sliding, that is similar 

to previous experimental observations made under moderate to high normal stresses 

[e.g. Friedman et al., 1974; Stesky, 1974; Paterson and Wong, 2005]. However, above 

600ºC the fault interfaces develop instabilities resulting in sudden stress drop and the 

formation of melt on the slip surfaces (Fig. 20). The following discussion is structured 

to broadly follow these phases of microstructural development. Discussion commences 

with the processes of brittle fracturing, mechanical amorphisation and gouge formation 

associated with early slip and stable sliding, before moving on to the nucleation of 

seismic rupture, flash heating and the development melt related microstructures. 

The onset of aseismic creep at the commencement of deformation is characterised by 

fracture development and the formation of gouge on the interface surfaces. This is to 

some extent driven by stress concentrations arising from the Hertzian loading of 

asperity contacts within a macroscopically porous material. However, crack 

development is also influenced by the crystallographic orientation of the grains relative 

to the prevailing stress orientations. Although quartz does not have a well-defined 

cleavage plane, the numerous examples of dense arrays of approximately parallel 

fractures, and the formation of dislocations aligned parallel to the basal plane, suggests 

that crystallographic planes of weakness play a significant role in the development of 

fractures and wear products. 

A notable feature with respect to the brittle evolution of the sliding surface is the 

extensive fracturing of the substrate in experiments that have experienced seismic 
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rupture. In some of these experiments, rupture has occurred prior to the onset of any 

significant aseismic slip along the fault surface; it is therefore suggested that a 

combination of both dynamic mechanical and thermal stresses may influence fracture 

development and the formation of the characteristic fractures oriented perpendicular to 

the sliding direction (Fig. 20). Similar microstructures are observed on slip surfaces in 

other triaxial experiments where melt is generated [Koizumi et al., 2004]. The difference 

in morphology compared with material produced during stable sliding suggests some 

influence by the highly localised and extreme contact temperatures that develop during 

seismic slip. These microstructures bear a striking similarity to thermo-induced cracking 

and wear observed during sliding of ceramic surfaces [Lee et al., 1993; Hsu and Shen, 

1996] and ‘chatter marks’ observed in some natural fault zones.  

One of the most interesting microstructural observations was the discovery of 

‘amorphous’ material within the gouge layer adjacent to the slip surface of an 

experiment (BIS037) that was deformed at nominal aseismic slip rates (0.72 μm/s) over 

a sample axial displacement of <0.5mm. The mechanical behaviour of BIS037 was 

characterised by a high yield stress, followed by approximately 0.15mm of significant 

strain hardening at which point peak stress was reached and a phase of relatively rapid 

slip weakening commenced. Microstructural analysis revealed potentially amorphous 

material interspersed between crystalline clasts, forming a film-like matrix that is 

similar in appearance to the gels produced during some high velocity sliding 

experiments [Goldsby and Tullis, 2002; Di Toro et al., 2004]. The relative abundance of 

the ‘amorphous’ material within the gouge layer increases towards the principal slip 

zone, suggesting a positive correlation with increasing shear strain and slip localisation. 

The mechanism of amorphisation is thought to result from intense comminution of the 

gouge particles resulting in a loss of crystalline structure, in a similar manner to the 

gouges observed by Yund et al., [1990]. However, gouges from the current experiments 

were formed over a slip distance that is on the order 0.2% of the displacement achieved 

in the experiments of Yund et al., [1990], although at a significantly higher normal 

stress (260MPa as opposed to 50MPa). The mechanical behaviour of the slow-slip 

experiments shows remarkable similarities to the behaviour observed by Pec et al., 

[2012] during their gouge experiments using granitoid cataclasites. Interestingly 
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Figure 20: Characteristic microstructures of the slip interface. 
Schematic interpretation of microstructures formed during seismic slip on the fault interfaces. 
Relationship of the microstructures to fault kinematics is also shown to provide detail on the use of some 
microstructures as shear sense indicators. Brittle deformation includes the formation of extension 
fractures typically forming perpendicular to the sliding direction and dipping away from the direction of 
motion of the fault (at a high angle to σ3). One mechanism for the production of gouge is through the 
interaction of these fractures which result in the development of slivers of quartz that are subsequently 
crushed. Melt structures include the formation of striated areas of melt that are lineated by flow textures, 
glass filaments and drawn out ribbon-like textures and elongated vesicles. These textures occur when the 
melt is slipped adjacent to a pore (see inset). Melt that was formed at the end of slip, essentially welding 
the asperities together, is recognised by the formation of fractured glass patches. 
 

however, the chemical composition of the amorphous material formed during the 

experiments of Pec et al., [2012] is less silicic than the bulk rock composition, with 

quartz exhibiting the least deformation of any phase. 

The small displacement over which amorphisation has occurred under realistic normal 

stress and high ambient temperatures in the current experiments and those of Pec et al., 

[2012], has significant implications for fault behaviour and stability under crustal 

conditions. Many of the other frictional experiments that have formed amorphous 
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material [e.g. Yund et al., 1990; Di Toro et al., 2004; Nakamura et al., 2012] have done 

so at room temperature and low normal stress. Consequently the frictional properties 

and behaviours of amorphous material on a fault surface at high temperature and 

pressures remain largely unexplored. Whether amorphisation could provide a 

mechanism for the dynamic weakening associated with fault rupture in an anhydrous 

environment is, at this point, unknown. 

Evidence of amorphisation occurring away from the slip interface is observed in 

BIS043, where an amorphous-crystalline mixture occurs within an accumulation of 

gouge located beneath a melt film. It is not certain whether it represents a mechanically 

induced amorphisation as described above, or is the result of partial melting of the 

gouge prior to deposition in its current location. Due to the uncertainty surrounding the 

origin of this amorphous material, it is difficult to comment on its potential influence on 

fault behaviour. However, in the same experiment amorphous material is observed 

along fractures and dislocations over 1μm from the melt-substrate boundary. This raises 

the possibility that this amorphous material is a result of heterogeneous melting or the 

product of solid-state or shock amorphisation.  

The formation of dislocations within the crystalline quartz substrate provides an 

indication of the very large stress concentrations [e.g. Blacic and Christie, 1984] 

existing at the slip interface, arising from both Hertzian loading and transiently 

associated with fault rupture. However, there is no evidence for the development of 

planar deformation lamellae often associated with the onset of solid-state amorphisation 

at pressures above 5GPa [Cordier et al., 1993; Kingma et al., 1993]. The formation of 

amorphous material along fractures and possibly at the site of dislocations suggests that 

the melt front is able to propagate distances greater than 1μm into the crystalline 

substrate. This hypothesis is supported by the recognised heterogeneity of the melting 

process [Wagstaff, 1969; Wolf et al., 1990], with melting observed to nucleate at 

external surfaces such as grain boundaries or on internal defects, such as fractures and 

dislocations. 

Despite evidence of the formation of amorphous material on the experimental slip 

surfaces, the origin of the dynamic weakening that culminates in the development of 

temperature-dependent stick-slip remains unclear. Slip instability on nominally dry fault 

interfaces has often been attributed to high velocity weakening mechanisms such as the 
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formation of melts [Di Toro et al., 2006a], gels [Di Toro et al., 2004; Nakamura et al., 

2012] and nano-particles [Han et al., 2011], but it would seem that these highly rate-

dependent mechanisms are a consequence of the high slip velocities rather than the 

underlying cause of the initial instability. The evolution of the melt microstructures 

observed in the current suite of experiments, coupled with the thermal calculations 

(Section 4.1.4) support the argument that an increase in temperature and the ensuing 

weakening are the result of high velocities and increasing slip distance.  

Fault rupture and accompanying coseismic slip, result in rapid and significant 

temperature increases at asperity contacts, causing frictional-induced melting. The 

velocity of the slip has a significant effect on the morphology of the resulting melt, with 

high velocity slip producing glass that is recognisable by the formation of stretched 

glass filaments, ‘ribbon-like’ textures and flow structures (Fig. 21). In contrast, low-

velocity slip forms localised, fractured glass patches devoid of melt-flow textures, and 

in doing so, provides a mechanism by which the various rapid slip events can be 

differentiated. By classifying experiments according to the microstructural morphology 

of the glass, it can be seen that stick-slip events that produce dispersed melt are 

characterised by both a higher peak vertical acceleration and slip displacement than the 

events producing localised fractured glass patches (Fig. 21C). Further, the formation of 

distributed melt on the slip surfaces results in much larger stress drops in comparison 

with the localised melt (Fig. 21B) and shows a strong positive correlation with both an 

increased peak shear stress and peak normal stress compared with the slip events that 

produce glass patches (Fig. 21D). This simple microstructural classification also 

provides insights into the bracketing of behaviour for the given experimental conditions, 

with the high temperature, high pressure region of Figure 21E being associated with the 

formation of dispersed melt textures, whereas the low-velocity slip events of the high 

temperature, low pressure sector generating localised glass patches.  

Although as much as 60% of the slip interface is covered by melt textures, none of the 

experiments produced a continuous glass film that completely wets the entire fault 

surface. This implies a partial contact regime where melt generation is restricted to areas 

in real contact and correlates with the concept of ‘flash heating’ and melting at asperity 

tips [Rice, 2006]. Many previous high velocity experiments 

  



 
Frictional Melting on Quartz Interfaces 

 

67 
 

 

Figure 21: Relationship between experimental conditions, mechanical behaviour and the formation 
of melt.  
For all graphs blue squares indicate experiments where the behaviour was characterised by stable sliding, 
black circles represent stick-slip with the formation of localised glass patches, and red diamonds indicate 
experiments where rapid slip events formed dispersed glass with melt textures. (A) Comparison of 
experiments at Pc=100MPa showing the relationship between increasing temperature and peak shear 
strength. (B) The stress drop that occurs during a stick-slip event is plotted as a function of peak shear 
strength, showing that larger slip displacements are associated with higher peak strength and these events 
correlate with the formation of dispersed glass on the slip surface. In contrast low 
acceleration/displacement experiments produce localised glass patches. (C) Relative peak vertical 
acceleration during the first stick-slip event is plotted as a function of displacement showing that events 
resulting in the production of dispersed melt have both a higher peak acceleration and larger displacement 
during slip than slip that produced localised melt. (D) Correlation between the formation of melt and both 
peak normal stress and peak shear stress. (E) Identification of regions of different sliding behaviours as a 
function of confining pressure and temperature.  
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[e.g. Tsutsumi and Shimamoto, 1997; Koizumi et al., 2004; Hirose and Shimamoto, 

2005b; Proctor et al., 2014] have shown that the onset of flash melting is accompanied 

by significant weakening, but is followed by rapid strength recovery during melt 

coalescence. A second stage of weakening is associated with the development of a 

continuous melt layer. The strengthening observed prior to continuous melting could 

contribute to strengthening that ultimately terminates slip on current experiments.  

Two of the characteristic microstructures associated with both natural and experimental 

pseudotachylites is the formation of a clast laden melt [Hirose and Shimamoto, 2005b; 

Lin, 2008b] and the development of injection veins, usually at a high angle to the melt 

generation surface [Sibson, 1975]. In the current suite of experiments, the abundance of 

relict clasts within melt layer varies inversely with slip velocity. As the majority of 

clasts occur at the melt-substrate interface, their occurrence may be attributable to either 

brittle processes or as the result of thermal fragmentation and passive assimilation 

during melt generation and slip. The variation in clast shape, from angular to highly 

rounded, may result from variations in clast size, the method and stage of formation, or 

the heterogeneity of the melting process. The development of textures such as embayed 

margins and melt-filled intragranular fractures indicate that some clasts were partially 

melted. 

The formation of injection veins is often cited as evidence of the high pressure and 

mobility of the frictionally generated melt [e.g., Sibson, 1975]. In faults with a low melt 

viscosity, injection veins are understood to form by the extrusion of the melt away from 

the slip-surface into dynamically formed extension fractures. However, microstructures 

developed on fault surfaces associated with distributed melt (such as lobate melt 

textures, drawn out ribbon-like filaments and the absence of melt intrusion into pores), 

suggests that the melt formed during these experiments is extremely viscous. It is 

therefore thought unlikely that most of the observed melt-filled fractures are injection 

veins. Instead it is proposed that the majority of these structures form by the 

heterogeneous propagation of melt along crystal defects such as fractures and 

dislocations. The larger aperture grain boundary fractures (e.g., see white arrow, Fig. 

14A), are thought to be more akin to true injection veins, forming by the high pressure 

injection of melt. In these fractures air pockets are trapped at the junction between the 

main fracture and subsidiary fractures, indicating incomplete wetting of the fracture 

surfaces during melt injection. 
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The frictional melt textures observed on the fault surfaces show evidence of a complex 

history, even within a single slip event. The debris-free patches and areas of fracturing 

are observed to overprint regions of striated melt, which in turn overlies an extensively 

fractured substrate. The overprinting relationships indicate multiple cycles of flash 

heating, melt formation, quenching and brittle deformation. Similar melt-freeze cycles 

have been inferred from the simultaneous development of both gouge and melt on the 

slip surfaces of high displacement frictional melting experiments [Spray, 1987, 1992]. 

However, the common occurrence of well-preserved melt patches with limited evidence 

of brittle fracturing, suggests that in areas the glass remained ductile until after the 

cessation of slip. Such observations are consistent with results from other experimental 

and natural faults [Spray, 1992; Swanson, 1992].  

The formation of glass patches on the fault surface suggests that melt may weld the fault 

interfaces at the end of slip increasing the cohesive strength of the fault. Fault 

strengthening is reflected in the stress-displacement curves that show an increase in 

shear stress required to nucleate subsequent ruptures. Re-fracturing that occurs during 

the secondary slip events can either take place within the glass layer, at the interface 

between melt and quartz substrate, or within the quartz substrate depending on the 

relative strengths of the pseudotachylyte and the wall rock.  

4.3  A model for the formation of quartz melt 
This section aims to bring together mechanical data, microstructural behaviour and 

thermal modelling to provide insights into the processes occurring on the slip interface, 

culminating in the formation of dispersed melt patches. While an approximate 

continuum of behaviours is proposed (Figs. 22-23), each behaviour type can occur 

separately, and is dependent on experimental conditions. 

The onset of aseismic creep at the yield point is characterised by fracture development 

and the formation of gouge on the slip surface. With continued sliding, fracturing, 

intense comminution and mechanical amorphisation result in the formation of 

compacted areas of granular material, some of which form asperity contacts (Fig. 22A-

C). Due to the very slow slip rates during this stage of the deformation, the rate of heat 

production is limited by heat diffusion and a steady state temperature is reached that is 

only marginally elevated from the ambient experimental temperatures (Fig. 23E). 



 
Frictional Melting on Quartz Interfaces 

 

70 
 

With the formation of fault instability and the initiation of rapid sliding, the temperature 

of the fault surface increases, resulting in frictional melting of asperity contacts on fault 

surface (Fig. 22D-G and 23A-D). The process of melt generation is a complex 

interaction between heat generation, melt formation and the transition from brittle-

frictional to a viscous-shear-dominated behaviour. In the following section, the 

mechanical and microstructural insights that have been afforded by the current suite of 

small-displacement experiments will be compiled to provide a possible model of how 

melt forms, propagates and potentially lubricates the fault surface. 

 It is thought that the densely compacted patches of fine-grained wear products formed 

during early aseismic slip could behave in a solid-like manner, allowing efficient 

frictional heating to occur during the subsequent high velocity slip. In quartz, where the 

viscosity of the melt is extremely high (~108 Pa s) [Mysen and Richel, 2005], and the 

kinetics of the crystal-melt transition are slow, appreciable superheating of the particles 

[Ainslie et al., 1961] is likely to occur. The ‘melt-front’ then propagates 

heterogeneously outwards from the principal slip zone along grain boundaries and 

crystal defects such as fractures and dislocations [Wagstaff, 1969; Wolf et al., 1990]. 

The lag-time between heating and melting, coupled with low thermal conductivity of 

quartz, facilitates superheating of the asperity contacts on time scales of the seismic 

ruptures. Such a process would allow the asperity temperatures to rise well above the 

estimated temperature of fusion for quartz.  

Any free water within the fault zone, whether from interfacial fluids or trapped in fluid 

inclusions, could serve to depress melting temperatures and lower melt viscosity by 

effectively depolymerising the silicate chains [Spray, 1992]. However, given the trace 

quantities of water present in the samples, it is thought unlikely to be a controlling 

factor in either melt formation or the associated fault weakening. Nonetheless, water 

contaminants may serve as a localised flux within the fault zone. 

When the melt-front migrates through the asperity contact, the rheology changes from 

being friction-dominated to viscous flow, at which point the generation of heat is 

buffered by the inverse correlation between heating, viscosity and surface shear strength 

[Fialko and Khazan, 2005]. This constrains the extent of possible melt generation 

within one flash heating episode. However, if the rate of heat production prior to this 

brittle-viscous transition is high enough to produce an ‘over-shoot’ of the temperature 
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of fusion (Fig. 23A), resulting in superheating the crystalline asperities and melt, the 

viscosity of the melt would be reduced, causing it to lubricate the asperity contacts and 

resulting in significant dynamic weakening [Koizumi et al., 2004; Hirose and 

Shimamoto, 2005b; Proctor et al., 2014]. This is interpreted to result in the generation 

of the observed high-velocity slip events (Fig. 22E). In the case of the ‘low’ velocity 

stick-slip events, it is suggested that sliding ceases before temperatures become high 

enough to achieve a significant reduction in viscosity, even though the temperature of 

fusion may have been exceeded (Fig. 22D and 23C).  

If low viscosity melt is the mechanism for fault weakening associated with high velocity 

slip, then heating to the point where the viscosity of the melt is reduced suggests higher 

temperatures and a greater ‘over-shoot’ of the temperature of fusion (Fig. 23). Higher 

temperatures would enhance the kinetics of melting and lead to complete fusion of most 

clasts, thereby producing the low density of clasts observed in the melt layer of the 

high-velocity slip events. In contrast, melts produced during low velocity slip events are 

characterised by a significantly higher abundance of clasts. This indicates a lesser 

degree of thermal overshoot relative to the melting temperature, and therefore a 

significantly higher viscosity, resulting in the failure to facilitate fault weakening. 

However, melt layers typically have a thickness in the range 0.3μm to 1.7μm, regardless 

of whether they formed under a high- or low velocity slip regime. Accordingly, the 

thickness of the melt layer is probably dictated by the maximum temperature overshoot 

prior to the transition into the viscous-shear regime [Cardwell et al., 1978; Fialko and 

Khazan, 2005]. Continued deformation and potential coalescence of the melt patches 

into a continuous melt layer may result in the widening of the melt layer as has been 

observed in high displacement rotary shear experiments [Tsutsumi and Shimamoto, 

1997; Hirose and Shimamoto, 2005b]. However, slip distance in the current 

experiments is insufficient to achieve melt coalescence. 

The ability of a mineral to superheat is largely determined by the relationship between 

the rate of heat generation and the rate of fusion. Cristobalite, quartz and albite are the 

only silicate minerals conclusively shown to significantly superheat under laboratory 

conditions [Ainslie et al., 1961; Dietz et al., 1970]. The ability of these minerals to 

superheat has been attributed to their anomalously high viscosity and their strongly 

bonded framework [Mysen and Richel, 2005]. For many of the common low-viscosity 

pseudotachylyte-forming minerals, the rate of fusion is much higher than for quartz, 
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with the concurrent heat adsorption being so rapid as to prevent the interior of the 

crystal from becoming appreciably superheated [Ainslie et al., 1961]. Further, the 

formation of highly fluid melts rapidly produces a low viscosity film or boundary layer 

around the clasts, inhibiting further frictional heat generation, but concurrently 

achieving a state of effective lubrication [Fialko and Khazan, 2005]. This would result 

in the formation of clast-laden pseudotachylytes observed both in nature [e.g. Lin, 1994; 

Wenk et al., 2000; O'Hara, 2001; Pittarello et al., 2008] and experiment [e.g. Lin and 

Shimamoto, 1998; Hirose and Shimamoto, 2005b]. However, field observations of 

cooling structures and clast abundance within natural pseudotachylites, combined with 

numerical modelling of fault vein temperatures [Di Toro and Pennacchioni, 2004; 

Magloughlin, 2005], suggests the possibility that melt superheating could occur in other 

mineral assemblages than the quartz system explored in this study. 

The termination of slip could be influenced by the changing dynamic properties of the 

melt layer, which is assumed to behave largely as a Newtonian fluid [Hirose and 

Shimamoto, 2005b]. A number of previous studies suggest a non-Arrhenian model for 

the temperature dependence of viscosity of highly siliceous melt [Dingwell, 2007; 

Lavallee et al., 2007] resulting in a faster than exponential increase in viscosity with 

cooling, with the potential to rapidly terminate slip [Koizumi et al., 2004; Hirose and 

Shimamoto, 2005b]. Further, the shear resistance of the molten layer is inversely 

proportional to the layer thickness, with any reduction in the width of the melt layer 

resulting in a significant increase in the shear stress required to maintain slip [Hirose 

and Shimamoto, 2005b]. Upon cooling, viscosity will increase most rapidly at the fault 

zone boundaries, potentially localising strain within the fault core and effectively 

reducing melt layer thickness.  

Re-examining the decades old question, ‘is comminution a necessary precursor to 

pseudotachylyte generation?’ [e.g. Wenk, 1978; Spray, 1995] the mechanical and 

microstructural evidence from the current experiments would suggest that the answer is 

both yes and no. There is clear evidence of brittle fracturing, gouge formation and 

mechanical amorphisation on the fault surface prior to, and during the early stages of 

rapid slip. However, numerous experiments show melt textures forming on interfaces 

that apparently have experienced limited damage prior to sudden stress drop (indicated  
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Figure 22: Continuum of behaviours associated with the formation of frictional melt 
Grey indicates the original quartz sandstone, black indicates pore space, pale grey in the fault core 
indicates possible amorphous material and white indicates melt.  See text for discussion. 
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Figure 23: Melt development as a function time and displacement. 
(A-B) Shows estimated temperature and displacement evolution during a high velocity slip event. 
Frictional heating occurs during the early part of slip. As the fault temperature exceeds the temperature of 
effective lubrication, velocity increases and a large displacement ensues. Further heating is limited by the 
negative relationship between temperature and velocity, and the shear strength of the viscous layer 
increases with cooling and thinning, resulting in the cessation of slip. (C-D) Predicted temperature and 
displacement profile during rupture for a low velocity slip event. Frictional heating results in an overshoot 
of the melting temperature but the state of effective lubrication is not attained, resulting in a shorter slip 
displacement. (E-F) Temperature and displacement evolution during aseismic creep. The temperature 
increases slightly with sliding but rapidly attains a bulk thermal steady state where temperature generation 
is equally matched by thermal diffusion. Displacement accumulates linearly during slip. Possible 
mechanical amorphisation on slip surfaces. 
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by a rapid transition from elastic loading to rapid stress drop on the stress-displacement 

curves). However, the observation of both clean and clast-laden melt-substrate 

boundaries, suggest that both gouge and larger grain-to-grain contacts may provide 

sources of heat generation and melt production.  

The model of melt formation in quartz presented here suggests a continuum of 

behaviours based on the mechanical and microstructural phenomena observed during 

the current suite of experiments. While broadly consistent with previous models [e.g. 

Spray, 1992, 1995; Fialko and Khazan, 2005], the current observations suggest a 

number of behavioural nuances that have not previously been observed. The current 

experiments reveal that at high temperatures and confining pressures potentially 

mechanically amorphized material forms over small displacements ( < 200μm) and low 

slip rates (< 1μm/s), consistent with the observations of Pec et al., [2012]. The 

formation of this ‘amorphous’ material during aseismic creep could provide a 

precursory mechanism for fault instability and the dynamic weakening associated with 

seismic rupture. While the behaviour and stability of the mechanically ‘amorphized’ 

material remains poorly constrained it may be possible that this material could have 

tribological weakening effects in much the same way as dynamically activated gouge 

[Han et al., 2010; Reches and Lockner, 2010] or silica gels [Goldsby and Tullis, 2002]. 

It is anticipated that once fault rupture nucleates, superheating of crystalline structures 

at asperity contacts could play a significant role in the formation of melt in a quartz 

system due to the slow melting kinetics of quartz and high melt viscosity. This places 

constraints on the slip velocities and stress concentration needed to generate quartz melt 

and perhaps provides a tangible reason why experimental generation of pure quartz 

pseudotachylites has been so difficult to recognise. These observations have significant 

geological implications, in terms of rupture setting, and possible occurrence that will be 

discussed in the final chapter of the thesis. 

5. Conclusions 
A series of triaxial deformation experiments has been conducted on Fontainebleau 

sandstone over a range temperatures between 400-927°C and confining pressures 

between 50-200MPa. The aim of these experiments has been to explore the behaviour 

and stability of faults in nominally dry conditions at increasing depth in the continental 
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crust. The mechanical results are coupled with microstructural analysis using multiple 

techniques (including optical microscopy, high resolution FESEM, and FIB-TEM) that 

provide insights into mechanisms controlling fault behaviour at the macro-, micro- and 

nano-scale. Key and novel findings of these experiments have been the identification of 

(1) possible mechanically amorphized silica and (2) the early stages of frictional 

melting, on pure quartz interfaces during small slip events (<200µm). The identification 

of these phases has allowed, for the first time, an exploration of the possible role of 

different mechanisms of amorphisation in modifying the mechanical behaviour and 

stability during the early stages of slip on quartz faults interfaces. 

Complex transitions in the sliding behaviour occur with changing temperature and 

pressure conditions. This behaviour has been bracketed into three regimes: low 

temperature (<600ºC) stable sliding; high temperature (>650º), low pressure, stick-slip 

behaviour that results in relatively low velocity sliding; and high temperature, high 

pressure stick-slip that results in relatively high velocity sliding. Accompanying the 

different mechanical behaviours is the formation of three distinguishable styles of 

amorphous material. Stable sliding is associated with the formation of a partially 

amorphous layer of nano-gouge. Low velocity slip results in the formation of localised 

melt patches, and high velocity sliding produces dispersed melt textures. It has been 

proposed that these different sliding regimes represent a continuum of possible 

behaviours that can occur on the fault interface, providing insights into conditions 

leading to gouge formation and amorphisation, fault instability and the generation of 

melt. The high viscosity nature of the silica melt has meant that over the experimental 

conditions explored in this chapter, different stages of melt generation, ranging from 

flash heating through to localised melting, have been captured and preserved, providing 

valuable insights into early processes associated with melt formation.  

The mechanically amorphized silica that forms at aseismic slip velocities and high 

ambient temperatures is distinguished by the striated nature of amorphized patches on 

slip surfaces. The amorphous material is interspersed between crystalline quartz clasts, 

forming a film like matrix that is similar to ‘gels’ produced previously during high 

velocity sliding experiments. This amorphous material is interpreted as forming by 

intense comminution of the gouge particles resulting in a loss of crystalline structure in 

a similar manner to previously observed grinding or mechanically induced 

amorphisation. The frictional properties and behaviour of the mechanically amorphized 
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material at high temperature and confining pressures remains largely unexplored, but it 

is speculated that this material could be a contributing factor in the development of 

sliding instability. 

The development of a sliding instability results in fast slip that culminates in the rapid 

frictional heating of asperity contacts. Flash heating and frictional melting can occur 

within 50µm of the onset of slip, resulting in the formation of continuous flow 

structures that are > 150µm in length, and provide a microstructural record of the slip 

event. Critical textures that demonstrate localised melting include the formation of 

drawn-out glass filaments, elongate vesicles and striated melt textures that are preserved 

when the melt is translated during slip from a quartz-quartz interface to a quartz-pore 

interface. At grain-to-grain interfaces diagnostic textures of melt formation are 

fractured, debris-free welded patches on the slip interface. The amorphous structure has 

been confirmed using FIB-TEM and shows that the melt textures identified on the fault 

surface using high resolution FE-SEM are ‘pure’ silica glass layers up to 2μm thick.  

Simple two-dimensional thermal modelling indicates that sufficient frictional heating 

can occur during rupture to cause frictional melting over these displacements, provided 

that normal stress is highly concentrated at asperity contacts and that slip occurs at 

approximately seismic velocities. Using these assumptions, the calculated maximum 

asperity temperatures are consistent with the mechanical and microstructural 

observations. Experiments generating high velocity slip are characterised by higher 

maximum asperity temperatures than experiments with low velocity slip. 

The rise time for heat generation and melt production is estimated to be ~10ms (but 

could be up to an order of magnitude faster), which is significantly shorter than 

previously recognised in experiments and is attributed to the high normal stresses 

(>200MPa) and elevated ambient temperatures in the present experiments. The 

generation of dispersed melt is shown to modify the sliding behaviour, leading to 

relatively high velocity stick-slip events, characterised by larger displacements, greater 

stress drops and higher peak accelerations than low velocity stick-slip events that 

generate more localised melt patches. It is therefore suggested that, at least initially, the 

formation of high velocity, high temperature melt results in the lubrication of the 

asperity contacts, thus facilitating slip.  
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Finally, it is suggested that a time lag exists between heat generation and the 

propagation of the ‘melt-front’ into the substrate and away from initial asperity contacts, 

resulting in significant superheating of both the crystalline clasts and the melt. During 

the high velocity slip events, sufficient ‘overshoot’ of the temperature of fusion lowers 

melt viscosity, causing melt lubrication at asperity contacts. In comparison, low velocity 

slip events never achieve the temperatures necessary to lower the viscosity of the melt, 

resulting in the formation of more localised melt patches. 
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Chapter 3 

Experimental insights into the mechanics 

and microstructures associated with the 

reactivation of misoriented faults 
 

1. Introduction  
In the actively deforming continental lithosphere, earthquake rupture nucleation 

dominantly occurs in the upper half of the crust, representing the zone of brittle failure 

and unstable frictional sliding that is, to a first order, governed by the empirical 

Coulomb failure criterion. Theoretical, experimental and field evidence indicates that 

most rocks fail at orientations between 25-30º to the maximum principal stress 

[Anderson, 1905; Jaeger et al., 2007], assuming typical frictional properties of intact 

rock [Byerlee, 1978]. However, analysis of the resolved shear and normal stress acting 

upon a given fault plane suggests that under most crustal conditions and assuming a 

cohesionless fault, it is preferential to reactivate an existing fault rather than to form a 

new failure. Accordingly, it is inferred that many fault ruptures occur along pre-existing 

faults [Scholz, 2002]. Repeated reactivation is confirmed by field and microstructural 

evidence that records rupture history, revealing that some faults may be reactivated 

hundreds to thousands times [Cowie and Scholz, 1992; Cowie and Roberts, 2001]. 

There is also compelling geological evidence that many faults, in various tectonic 

regimes, remain active despite having become unfavourably oriented for reactivation 

relative to the prevailing regional stress field [e.g. Sibson, 1989; Sibson, 1990b; McClay 

and Buchanan, 1992; Fournier, 1996; Sibson, 2007; Collettini et al., 2009b]. This 

suggests that even under non-ideal conditions for reactivation, fault zones can remains 

as comparatively weak structures within the host rock. In simple mechanical terms, 

reactivation is achieved when there are large disparities between the cohesive strength 

and frictional properties of the fault zone when compared with surrounding rock mass. 
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Time dependent strength evolution and recovery also has important implications for 

fault reactivation and earthquake recurrence interval, with both natural and experimental 

studies [Karner et al., 1997; Tenthorey et al., 2003; Tenthorey and Cox, 2006] 

indicating that during the interseismic period faults recover a portion of their frictional 

and cohesive strength. In terms of fault mechanics, as cohesive fault strength increases, 

the stress and fluid states necessary to reactivate a fault become increasingly similar to 

that required to generate intact rock failure [Streit and Cox, 2001; Cox, 2010]. Where 

faults are unfavourably oriented for reactivation, even relatively small increases in 

cohesive strength (<50% of intact rock strength), significantly reduces the range of 

conditions under which a fault can reactivate leading, in many situations, to the failure 

of a new fault.  

Sibson [1985, 1990b] introduced terminology to describe faults depending on their 

frictional properties and orientation relative to the prevailing stress field. The terms 

‘optimally- oriented’, ‘misoriented’ and ‘severely-misoriented’ were coined to define 

faults in terms of the ratio of the effective principal stresses required to induce sliding. 

This definition requires knowledge of stress conditions and/or frictional properties of 

the fault, so for more general discussion where such parameters may not be known, 

faults are described in terms of being ‘favourably’ or ‘unfavourably’ oriented. 

Favourably oriented faults are close (say, +/- 10°) of an ideal failure angle assuming 

normal frictional properties, while unfavourably-oriented faults represent more 

significant deviations in orientation relative to the maximum principal stress. Examples 

include low-angle normal faults [Wernicke, 1995], steep reverse faults [Sibson et al., 

1988] or segments of the strike-slip San Andreas Fault [Mount and Suppe, 1987]. 

Critical failure conditions of unfavourably-oriented faults are notionally achieved 

through the evolution of stress states and pore fluid pressures during fault loading 

[Sibson, 1985, 1990b; Sleep and Blanpied, 1992; Axen, 1999; Streit and Cox, 2001; 

Scholz, 2002; Cox, 2010] including possible rotation of far-field stress orientations 

locally within the fault zone [Rice, 1992; Faulkner et al., 2006; Healy, 2008]. The 

existence of high fluid pressures is thought to be integrally coupled with the reactivation 

of unfavourably-oriented faults [Sibson et al., 1988; Sibson, 1992, 1994; Cox, 1995; 

Nguyen et al., 1998], with the porosity, permeability and fluid flux in fault zones 

influencing the development of regions of fluid overpressure. While fault rupture in 

tight, low porosity crystalline rocks enhances permeability [Sibson, 1981; Smith et al., 
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1990; Evans et al., 1997], faults in porous rocks such as in sedimentary basins, may 

serve to create low permeability barriers [Antonellini and Aydin, 1994; Caine et al., 

1996], impeding or re-directing fluid flow and potentially creating a fluid seal, trapping 

pressurized fluids.  

The reactivation of unfavourably-oriented faults has also been ascribed to chemically or 

physically induced changes in frictional properties leading to an inherent fault 

weakness. This has been attributed to mechanisms such as the development of 

frictionally-weak mineral phase [Wintsch, 1995; Imber et al., 1997; Collettini et al., 

2009b], dissolution-mediated frictional sliding [Cox, 1998], or fault zone weakening 

related to the development of anisotropic fabrics within the fault core [Collettini et al., 

2009a]. Even in low temperature, essentially pure quartz systems, water-rock 

interactions are thought to extend beyond the hydraulic reduction in effective normal 

stress to other physical and chemical effects resulting from changes in specific surface 

energy and friction coefficient of the fault interface [e.g., Rutter and Mainprice, 1978; 

Hadizadeh and Law, 1991; Zang et al., 1996; Baud et al., 2000; Frye and Marone, 

2002; Reviron et al., 2009], thus reducing fault strength and potentially facilitating 

reactivation of apparently unfavourably-oriented faults.  

Despite the ample geological, geodetic, and seismic evidence [Sibson, 1990b; Bernard 

et al., 1997; Axen, 1999; Sibson, 2007] of frictional slip occurring on faults oriented at a 

high angle to the regional maximum compressive stress, the majority of experimental 

rock deformation studies undertaken to date have focused on understanding the 

mechanical, behavioural and microstructural evolution of faults slipped under stress 

conditions favourable to their reactivation [e.g. Scholz et al., 1972; Menendez et al., 

1996; Paterson and Wong, 2005]. A small number of experimental studies have 

investigated the mechanical properties of faults reactivated under unfavourable stress 

conditions [e.g., Jaeger, 1959; Handin, 1969; Mitchell et al., 2011], although the 

microstructural development of these faults remains poorly explored. 

This chapter presents the results of an investigation that has encompassed both a 

sequence of novel triaxial deformation experiments, as well as revisitation of a number 

of classic rock friction experiments to more comprehensively explore the mechanics and 

microstructures associated with the reactivation of unfavourably-oriented faults. 

Experiments have been performed at room temperature on a series of pre-ground, bare-
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interface fault surfaces, that are oriented at various angles ranging from optimally-

oriented through to severely misoriented, to gain insights into fault behaviour and 

microstructural processes under increasingly unfavourable stress conditions. The use of 

both nominally dry and water-saturated conditions has allowed a comparison to be 

made of fault behaviour and microstructural evolution resulting from slip that is 

activated by either changes in stress states or pore-fluid pressures.  

In the preceding chapter the concept of mechanical and thermal alteration to the 

crystalline structure of the slip interface was discussed as a possible mechanism for 

modifying fault strength and stability. While a quasi-static weakening mechanism is 

required to initiate slip on unfavourably-oriented faults, the high normal stress 

associated with misoriented fault reactivation provides an ideal environment in which to 

further explore possible amorphisation processes at room temperature. Additionally, the 

physical and/or chemical modification to the fault interface during dynamic slip 

processes has been investigated in terms of its ability to either enhance or suppress 

further fault reactivation. A combination of multiple microstructural techniques 

including high resolution FE-SEM, cathodoluminescence and microcomputed X-ray 

tomography are used to provide insights into mechanisms controlling fault behaviour 

over a range of scales and in both two- and three-dimensions. 

2. Experimental and analytical methods 

2.1 Experimental methodology 
Experiments were undertaken at room temperature in a Paterson gas-medium 

deformation apparatus that allows independent control and measurement of confining 

and pore fluid pressure, axial displacement rate and axial load (Fig. 1A). Deformation 

was undertaken at confining pressures between 50-100MPa, pore fluid pressures up to 

85MPa and at the nominal axial shortening rate of 3.63 μms-1. The Paterson rig is a 

‘soft’ apparatus; significant elastic strain accumulated during loading is imparted into a 

specimen during failure, resulting in higher displacements and stress drops than would 

be produced using a more rigid apparatus.  
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Figure 1: Apparatus and sample configuration. 
(A) Schematic illustration of the pressure vessel showing the major components and sample location. (B) 
Sample configuration for intact rock failure experiments. A split alumina spacer is used to facilitate 
access of the pore fluids to the sample during fluid-driven failure experiments. (C) Sample configuration 
for the fault reactivation experiments. The fault orientation changes with 5º increments over a range of 
25º - 70º to the maximum principal stress. 
 

Experiments were conducted on Fontainebleau sandstone; a well-sorted, equigranular, 

essentially pure quartz sandstone with an average grainsize of approximately 200-

250µm and a porosity between 6-8%. In experiments with elevated pore fluid pressures, 

deionised water was used as the pore fluid. Fluid access to the sample is provided 

through the conduit formed by the hollow centre of the loading pistons. The high 

connectivity of the pore structure within the Fontainebleau sandstone allows even 

distribution of the fluids through the sample and along the fault interface. Pore fluid 

pressure was limited to a maximum of 85% of the confining pressure to preserve the 

integrity of the assembly seals during the experiments.  
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Two different experimental configurations were used during the deformation 

experiments performed in this study. To understand the strength and mechanical 

properties of the Fontainebleau sandstone, the first group of experiments involved the 

brittle failure of an intact sandstone cylinder (Figs. 1B, 2B). These experiments were 

undertaken either (1) dry, over a range of confining pressures between 15-70MPa, with 

the samples either being loaded until failure at a constant axial displacement rate (stress-

driven failure, Fig. 2A), or (2) under water-saturated conditions, where the axial load 

was held constant while the pore fluid pressure was increased using a volume monitor 

until failure occurred (fluid-driven failure, Fig. 2A). The second group of experiments 

aimed to investigate the reactivation of an existing fault and involved either the stress- 

or fluid-driven reactivation of an existing pre-ground fault surface (Figs. 1C, 2D). As 

for intact rock failure experiments, stress-driven fault reactivation was achieved by 

increasing differential stress at a nominally constant axial displacement rate until slip 

occurred on the existing fault or a new fault was formed (see path A, Fig. 2C). These 

experiments were undertaken either without pore water, or with pore water held at a 

constant pressure, with the latter being referred to as ‘wet stress-driven’ fault 

reactivation (see path A’, Fig. 2C). Fluid-driven fault reactivation was achieved by 

maintaining a constant axial load while increasing the pore-fluid pressure until failure 

occurred (see path B, Fig. 2C). By controlling pore fluid pressures using a volume 

monitor, insights were obtained about the inelastic volume changes within the sample. 

These volume changes reflect the microstructural evolution of the sample during 

deformation, resulting in either dilatancy or compaction, and is manifest by the 

changing volume monitor travel distance required to achieve a given pore fluid 

pressure.  

The sample arrangement for both stress- and fluid-driven fault reactivation experiments 

consisted of two cylindrical specimens (diameter of 10mm), ground at a specific angle 

relative to the axial shortening direction, forming a fault plane. This fault surface was 

inclined at an angle (θr), of between 25º and 70º to the bulk maximum principal stress 

(σ1), thereby simulating faults that vary from optimally oriented to severely misoriented 

for failure, assuming a static coefficient of friction of 0.75 [Byerlee, 1978] (Fig. 1C, 

2D). The leading edge of the fault surface was blunted by the grinding of a slight 

chamfer on the outer edge of the sample to prevent jacket puncture during slip events. 

All samples were ground to a length of 21mm and oven dried prior to use.  
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Figure 2: Loading pathways leading to the different modes of failure. 
(A) Schematic failure mode diagram showing pore fluid factor as a function of differential stress for a 
given confining pressure. A generic failure envelope for extension, hybrid extensional-shear, and shear 
mode failure are shown for intact rock in in a compressional regime. The loading paths used in the intact 
rock failure experiments are shown and illustrate the combination of differential stress and pore fluid 
pressure that can be used to drive failure. (B) Diagram illustrating the initiation angle (θi) for intact rock 
failures. (C) Generic failure mode diagram showing the effect of the reactivation angle (θr) on the 
differential stress and pore fluid conditions required to re-shear on a cohesion-less fault of a given 
frictional value. The loading paths for fault reactivation in the current study are shown. The definition of 
angle θr is shown in (D) and corresponds to the angle between the ground fault surface and the maximum 
principal stress. 
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The specimens and loading pistons were contained within an impervious, thin-walled, 

annealed inner copper sleeve and outer jacket to ensure the separation of pore fluid and 

confining medium. To accurately determine the sample strength a correction for the 

strength contribution of the jacket and sleeve has been applied using data derived from 

jacket calibration experiments (see Appendix 2). During slip on the fault interfaces, 

displacement results in a reduction in the contact area of the fault interface. A reduced 

contact area results in an increase in stress on the remaining interface; this effect is most 

significant on faults inclined at a high angle relative to the sample axis. A correction has 

been applied to the data by calculating the change in fault surface area as a function of 

shear displacement, assuming that displacement on the fault occurs only during the 

periods of non-elastic strain (see Appendix 2).  

To examine the stability of deformation-induced microstructures under conditions 

simulating interseismic healing in a fluid-active environment, an investigation was 

undertaken on a fault oriented at θr = 60º where a single slip event had occurred as a 

result of stress-driven fault reactivation. This experiment used an outer iron jacket to 

allow the high temperature experiments to be undertaken without the need to re-jacket 

the assembly. The significant additional strength of the iron jacket at room temperature 

in comparison to a copper jacket, was not considered an issue as the experiment was 

performed purely to observe the microstructural evolution and healing of the fault zone 

during hydrothermal treatment. Following slip on the unfavourably oriented fault, the 

differential stress was reduced to zero and deionised water was introduced to the sample 

via the hollow upper pistons. Confining pressure, pore fluid pressure and temperature 

were then elevated until Pc = 250MPa, Pf = 150MPa and T = 900ºC; these conditions 

were maintained for 6 hours. Although not reflective of ambient temperatures in the 

seismogenic upper crust, the use of high temperatures during this experiment increased 

reaction kinetics, thereby allowing processes normally occurring over timescales of 

earthquake recurrence (decade to centuries) to be activated on laboratory timescales. 

2.2 Microstructural analysis techniques 
Following removal of the sample from the pressure vessel, the outer copper jacket was 

peeled off leaving the sample contained within the inner copper sleeve. As the samples 

were extensively fractured and contained non-cohesive material, impregnation under 

vacuum in a heat-curing epoxy (Petropoxy 154) was necessary to ensure the specimen 

structure was preserved during sample preparation. Once cured the sample was cut 
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along the long axis of the cylinder perpendicular to the fault slip plane. Half of the 

sample was mounted in an epoxy block and polished using a progressively finer 

sequence of silicon carbide powder and diamond paste. To achieve the finial polish 

suitable for high resolution back-scattered electron imaging, the epoxy block was 

polished for up to 4 days using a slurry of water and 0.05μm alumina on a vibrating 

polishing machine and finally polished using 0.05μm colloidal silica on a soft polishing 

cloth.  

The polished blocks were carbon coated and analysed using an Angle selective 

Backscattered electron (AsB) detector on a high resolution Zeiss UltraPlus Field 

Emission Scanning Electron Microscope (FE-SEM). The AsB detector, located at the 

objective lens, detects larger angle backscattered elections, thereby providing 

information about both crystallographic orientation and composition (from the mean 

atomic number - Z contrast). A working distance of 8.5mm, 10.0kV accelerating 

voltage and the use of a 60μm aperture allowed high-contrast and high-resolution 

imaging of the damage zones and fracture networks. Analysis of the entire longitudinal 

section was achieved through automated stage control and image stitching, which 

allowed the creation of high-resolution mosaics of the sample surface. SEM imaging 

was undertaken at the Centre for Advance Microscopy located at the Australian 

National University. 

Cathodoluminescence (CL) investigations were undertaken at room temperature using a 

FEI Verios high resolution FE-SEM fitted with a Gatan MonoCL4 Elite 

cathodoluminescence system with a working distance of ~6.3mm, 0.8nA beam current 

and 5.0kV accelerating voltage. The same sample preparation techniques were used for 

the CL investigations as were used for BSE-SEM imaging. The CL is excited using a 

stationary electron beam at normal incidence to the sample and is measured using a 

parabolic mirror collector inserted into the electron path between the sample and the 

objective lens. Imaging was undertaken using the panchromatic mode, which produces 

an 8 bit panchromatic grey scale CL image. ‘Colour’ images are obtained using 

bandpass filter monochromators, which produce a grey-scale representation of the light 

emitted at a particular wavelength (red 595-800nm, green 520-570nm, blue 380-

500nm). Spectral analysis was undertaken in monochromatic mode over a wavelength 

range from 300-800nm and was corrected for total instrument response. Spectral data, 

which are collected as a function of wavelength, have been converted to energy E (eV), 



Reactivation of Misoriented Faults 
 

88 
 

where it has a dominantly Gaussian shape. Spectra have been fitted using a multi-

parameter Gaussian function that provides an estimate of peak position. Using a 

minimum number of peaks, the position, width and integrated area under the curves 

were iteratively refined until residuals were minimised. All CL work was undertaken at 

the Australian National Fabrication Facility, located at the Australian National 

University in Canberra. 

Insights into the development microstructures in three-dimensions have been obtained 

using microcomputed X-ray tomography [Sakellariou et al., 2004] acquired using the 

micro-CT apparatus developed and built at the Department of Applied Mathematics, 

Australian National University. Samples have been imaged using X-rays over a 360º 

rotation at 0.125º intervals, with differences in X-ray attenuation providing information 

on different phases (quartz, epoxy and air filled voids, epoxy impregnated gouge) 

within the sample. A limiting resolution of between 1.5-7µm is achieved depending on 

sample size, and operating voltage. 

Radiographic data collected from a micro-focus X-ray source and corrected for optical 

and camera distortion have been acquired for 3 separate specimens; for MIS031 the 

entire sample (ϕ = 10mm, l ≈ 18mm) was scanned, while the other two samples 

(MIS012, MIS018) had a cylinder cored (ϕ = 3.5mm and a l ≈ 5mm) with the long axis 

parallel to the fault and perpendicular to the slip direction. The collected data was 

reconstructed using a modified Feldcamp algorithm [Sakellariou et al., 2004] to 

generate a 20483 voxel tomogram, where resolution is dictated by the voxel edge length. 

The full sample tomogram has a resolution of 5µm, whereas the two smaller samples 

have a resolution of 1.5µm. Voxel density information is provided by the X-ray signal 

intensity, with partially filled voxels indicating a lower density than the surrounding 

material. Accordingly, density contrast information in this essentially two-phase system 

has allowed the identification of fracture networks and the spatial distribution of fault 

wear-products (such as gouge and melt). Using Drishti 2.5 software, a program written 

for the visualisation of volumetric data, this information has been used generate 3D 

models of the fault zone that can be rotated, scrutinized and explored from any angle.   
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3. Results 

3.1 Mechanical behaviour 

3.1.1 Mechanical properties of intact Fontainebleau sandstone 

To develop an understanding of the frictional properties and strength of the 

Fontainebleau sandstone, a series of experiments was undertaken over a range of 

confining pressures using intact cylindrical samples that were loaded until failure 

(Appendix 4). A typical loading curve for these experiments, showing differential stress 

as a function of time, is shown in Figure 3A. Loading is characterised by an initial 

period of essentially pure elastic loading, followed by a slight decrease in slope 

approaching the peak stress and the onset of macroscopic failure (for stress-strain curves 

see Appendix 5). The region that deviates from pure elastic loading is assumed to mark 

the onset of irreversible deformation, most likely in the form intra- and inter-granular 

micro-cracking. At peak stress, a violent macroscopic brittle shear failure occurred that 

was clearly audible from outside the high-pressure isolation area. 

Significant displacement and stress drop occurred at shear failure with axial shortening 

of up to 0.97mm and a co-seismic stress drop of up to 588MPa, occurring during a 

single slip event. When the specimens were retrieved from the apparatus the failure 

zone and resulting sample offset was clearly visible through the outer copper jacket. The 

significant displacement and stress drop that occurred at failure is attributed to the 

release of accumulated stored elastic strain from the apparatus into the sample [Paterson 

and Wong, 2005].  

The angle of fault initiation (θi), which is defined as the acute angle formed between the 

fault surface and orientation of the maximum principal stress (Fig. 2B), is found to vary 

with confining pressure. At confining pressures ≥ 50MPa the failure zone is typically 

oriented between θi = 23-25º whereas at lower confining pressures (Pc = 15-30MPa), θi 

= 16-17º, indicating a possible transition towards axial splitting. Following shear failure, 

a number of experiments were halted immediately and retrieved for microstructural 

analysis, while for others, deformation was continued until steady-state sliding was 

achieved.  
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Figure 3: Representative loading curves for intact rock failure experiments. 
(A) Illustrates the temporal evolution of differential stress during the stress-driven failure of an intact rock 
sample. The large, almost instantaneous stress drop represents the onset of strain localisation and 
macroscopic failure of the specimen. (B) Shows differential stress and pore fluid pressure as a function of 
time for fluid-driven failure of intact rock. The differential stress is initially increased to approximately 
80% of the yield value of the Fontainebleau sandstone and held approximately constant while the pore 
fluid pressure is increased until macroscopic shear failure of the sample occurs.  
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Where failure was induced through an increase in pore fluid pressure, samples were 

loaded to a differential stress of approximately 80% of the failure strength of the 

Fontainebleau sandstone and held constant while the pore fluid pressure was gradually 

increased. A comparison of the resulting loading curves with those of samples deformed 

by stress-driven failure, reveals a very similar mechanical behaviour. The resulting 

macroscopic failure coincides with significant co-seismic stress drop (between 54-60% 

of peak differential stress) and rapid displacement along the newly-formed fault (Fig. 

3B). A sudden drop in pore fluid pressure at the time of rupture indicates that failure is 

associated with co-seismic dilatancy within the sample.  

3.1.2 Stress-driven fault reactivation and failure 

Twenty-nine bare interface fault experiments were undertaken in nominally dry 

conditions (Appendix 4) with existing fault angles ranging from θr = 25°-70°. The 

experiments were conducted at two confining pressures, Pc = 50MPa / 100MPa, thus 

allowing the effect of varying confining pressure on the behaviour and microstructural 

development of the fault zone to be explored. The experimental data displays good 

reproducibility and the faults show largely comparable mechanical behaviour between 

the two confining pressures (for comparison loading curves see Appendix 5). As the 

existing fault orientation increases from θr = 25° to θr = 55°, mechanical behaviour is 

characterised by increasing fault strength at the yield point. Following yield, the fault 

experiences slip hardening (Fig. 4A), and the rate of slip hardening also positively 

correlates with the increasing angle of misorientation.  

As the slip distance increases, the sliding behaviour transitions into a stick-slip regime, 

where fault behaviour alternates between elastic loading and rapid sliding accompanied 

by co-seismic stress relief. The load that the fault supports before initiating rapid slip 

also rises with the increasing θr, resulting in an increase in stored elastic strain within 

the apparatus and the development of large stress drops and slip displacements during 

stick-slip events.  

Samples where θr = 60° show little evidence of slip on the pre-existing fault prior to the 

onset of stick-slip behaviour. These samples do not display an apparent yield point, 

although there is a slight inflexion on the stress-strain curve prior to the first slip event, 

possibly indicating the onset of microfracturing, minor frictional slip or pore collapse. 

After the occurrence of the first major stick-slip event on θr = 55°-60° faults, the 
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samples experience nearly pure elastic re-loading until a second stress peak, which is 

followed by the macroscopic shear failure of a new, approximately optimally-oriented 

fault. During the second loading period, some samples, especially those where θr = 60º, 

show a distinct yield point and roll-over of the loading curing, immediately prior to the 

onset of failure of the new fault. Experiments MIS017 & MIS018 (with θr = 60º) were 

undertaken to observe the microstructural development of the new favourably oriented 

fault. MIS017 was halted immediately after the first slip event and MIS018 was stopped 

just after the second yield point, prior to the onset of the failure of the new fault. 

The mechanical behaviour of samples MIS028 and MIS029, in which θr = 65º and 70º 

respectively, are characterised by loading curves very similar to that observed during 

intact rock failure, with elastic loading followed by the macroscopic failure along a new 

fault. A rapid stress drop and axial shortening of between 600-800µm accompany 

failure. However, in contrast to the loading curve of the intact rock failure experiments, 

these samples have a markedly better defined yield point which occurs approximately 

10 seconds prior to rupture and possibly indicating the onset of fracture development. 

The retrieved samples show that where a new fault has formed and θr, ≤ 60º, the new 

fault has a ‘strike’ similar to that of the existing fault, but dips at a more favourable 

angle relative to the sample shortening direction. In the samples where θr ≥ 65º, the fault 

trace of the new fracture is not consistent with the location and orientation of the pre-

ground surface, supporting the idea of complete frictional-lock up of the original fault. 

Two stress-driven slip experiments were undertaken on the Fontainebleau sandstone at 

controlled pore fluid pressures (see Appendix 5 for loading curves). These experiments 

involved activating slip on the pre-existing fault by increasing differential stress at a 

nominally constant axial shortening rate, while maintaining a constant pore fluid 

pressure. The first experiment (MIS022) was undertaken at an effective confining 

pressure of 50MPa (Pc = 80MPa, Pf = 30MPa) on a sample with a fault oriented at θr = 

60°. The results show behaviour very similar to that of the nominally dry experiment 

undertaken at equivalent conditions (MIS012). A second experiment (MIS023) was 

undertaken where θr = 55°, and at an effective confining pressure of 25MPa (Pc = 

80MPa, Pf = 55MPa). During this experiment, the wet stress-driven reactivation 

experiment resulted in a much lower yield strength (211MPa as opposed to 391MPa), 

consistent with the effective confining pressure being approximately half that  
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Figure 4: Representative loading curves for the misoriented fault experiments. 
(A) Composite plot of the loading curves for a suite of misoriented fault experiments undertaken at 
100MPa confining pressure. The different experiments show the effect of changing the angle of the fault 
relative to the maximum shortening direction from 25º to 60º. (B) Shows the temporal evolution of 
differential stress, pore fluid pressure and fault displacement for a fluid-driven fault reactivation 
experiment. Each stress drop represents an incremental slip event on the θr=50º fault. Note how small the 
stress drops and displacements are in comparison with the stress-driven failures on a similarly oriented 
fault, reflecting the lower σn.  
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of the dry experiment. The behaviour of the fault after the yield point in both 

experiments is characterised by slip hardening followed by the ultimate failure along a 

new optimally-oriented fault. 

3.1.3 Fluid-driven fault reactivation and failure 

The fluid-driven reactivation of unfavourably-oriented faults was investigated during a 

number of experiments in which θr = 40°, 50°, 55º and 60°. As for the procedure used 

during the fluid-driven failure of intact rock, the sample was loaded to approximately 

80% of its dry yield strength under comparable effective confining pressures, then load 

was held constant while the pore fluid pressure was gradually increased until slip 

occurred (Path B, Fig. 2D). Following slip, the pore fluid pressure was reduced to the 

starting levels of 30MPa (Fig. 4B).  

Results show that fluid-driven reactivation could be induced on all of the unfavourably-

oriented faults. However, for samples where θr = 60°, the first slip occurred on the 

existing unfavourably oriented fault, but during the second loading, shear failure 

occurred along a new, favourably-oriented fault resulting in a more significant 

coseismic stress drop and audible click. For samples in which θr = 40º - 55º, the fluid-

driven fault reactivations resulted in relatively small displacements (maximum slip 

distance of ~60µm for θr = 40º and ~120µm for θr = 50º) and accompanying stress drop 

of approximately 30 and 60MPa respectively. The small incremental displacements 

resulted in up to 28 failures being instigated on the fault to achieve approximately 

1.3mm of fault displacement (Fig. 4B). The θr =55º fault experienced a number of small 

displacement (~35-100μm) initial slip events that were accompanied by stress drops in 

the order of 20-40MPa. After approximately 325μm of episodic fault slip, larger slip 

events developed (110-270μm) that were associated with increasing co-seismic stress 

drops (up to 157MPa). During the final slip event, a new more favourably oriented fault 

developed and accompanied by an audible click. The timing relationships suggested 

here are supported by fault offsets and overprinting microstructures described in Section 

3.3.3.  

Following the first slip event in samples oriented at a high angle to the shortening 

direction (θr > 55º), continued axial loading and the pore fluid pressure cycling 
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Figure 5: Change in pore volume as a function of time. 
Data points represent the volumetric change in the pore volume of the sample relative an initial baseline. 
During experiment MIS041 (θr >55º), the pore fluid pressure is increased, slip activated and then the pore 
fluid pressure is returned to the baseline of 30MPa. The pore volume initially decreases slightly, possibly 
representing crack closure, before increasing gradually. After approximately 2000 seconds, the pore 
volume is observed to increase exponentially prior to the failure of the new more favourably oriented 
fault.  
 
 
associated with fluid-driven fault reactivation is accompanied by progressively 

increasing sample dilatancy (Fig. 5). Dilatancy is accompanied by a relaxation of the 

axial load and is thought to correlate with an increase in fracturing and strain 

accommodation within the sample. Where a new, favourably oriented failure occurs (θr 

>55º), a co-seismic fluid pressure drop is observed upon the failure of the new fault. 

While similar behaviour is observed during the fluid-driven failure of intact rock, the 

size of the fluid pressure drop is approximately an order of magnitude less than is 

observed during the intact rock failure experiments. This is consistent with the 

possibility that much of the sample fracturing occurs prior to macroscopic failure of the 

new optimally oriented fault on samples containing a pre-existing fault, as opposed to 

approximately co-seismically during intact rock failure. 

3.2 2D Microstructural analysis using BSE-SEM imaging 
Two-dimensional microstructural analysis was undertaken on polished blocks of the 

experimental samples using high contrast BSE-SEM imaging. In the following section 

the observed microstructures are described for each experiment type (intact rock failure 
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or fault reactivation) and failure method (stress- or fluid-driven). Within each section, 

microstructural observations are made starting at the larger scale with description of 

fault geometry and the microstructural features of the damage zone. This is followed by 

a description of the microstructures and morphology of the fault core, including areas of 

slip localization and, where present, the formation of frictional melt. 

3.2.1 Intact rock failure 

Fault geometry and the damage zone 

The microstructure of the fault zone produced during the failure of the intact rock 

samples is characterised by widespread damage, both within the fault core and adjacent 

wall rock, culminating in the formation of a slightly undulatory cataclastic slip zone 

(Figs. 6 & 7). Not all failures produced a single fault core; some samples develop 

multiple slip surfaces and conjugate faults, possibly reflecting the bulk experimental 

stress state in which σ2 = σ3. Even where single fault zones have developed, there is 

evidence of growth, interaction and coalescence of multiple, closely spaced slip 

surfaces, with isolated lenses of damaged wall-rock between the fault surfaces. 

However, there are few observable differences between the microstructures formed 

during the fluid- and stress-driven failure modes in the intact rock samples. 

Accordingly, the general microstructures are discussed collectively in this section.  

The fault damage zones show the development of subsidiary fault strands (Figs. 6A & 

B, see red arrows, Fig. 7B) and the formation of intra- and inter-granular fractures, with 

many of the latter oriented sub-parallel to the maximum principal stress. The undulating 

nature of the main slip zone appears to influence the formation of the damage zone by 

the formation of compressive and dilatant regions along the fault plane during continued 

slip (Fig. 6B and see white arrow, Fig. 7A for an example of a dilatant bend). Many 

secondary fault strands are observed to be in various stages of development, nucleating 

in response to the increase in stress concentrations associated with the compressive 

zones on the main fault structure (Figs. 6A & B, see red arrows Fig. 7B). The 

progressive accommodation of strain along the developing fault strand involved the 

formation of sub-parallel arrays of intergranular dilatant cracks that form at a high angle 

to the developing slip surface. These fractures have a similar geometry 
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Figure 6: Microstructures produced during stress-driven failure of intact rock. 
(A) Overview of the sample following deformation. The axial loading direction is indicated by the black 
arrows and the small inset shows a schematic loading curve for the experiment. A 200-300μm wide 
failure zone is evident and an interpretative diagram is provided in (B). It can be seen that the slightly 
undulatory nature of the failure zone leads to the formation of releasing and constraining zones during the 
subsequent slip. Secondary fault traces are developed around some of the compressive zones. Melt is also 
observed to form within the restraining zones at locations C and D, indicated by the yellow stars. (C)-(D) 
Images showing the morphology of the melt produced within the fault core as indicated in (B). (E) Higher 
magnification image of the inset shown in C, depicting melt forming vein-like structure. Towards the 
centre of the melt the even texture suggests a low porosity melt with few relict clasts. However, towards 
the edges of the melt zone there is a transition to an essentially melt indurated gouge. (F) High 
magnification image of inset shown in (D). The melt in this image can be divided into three zones (i) 
shows a clast-free melt, (ii) has rounded clasts within a melt matrix and (iii) shows melt indurated gouge 
textures, similar to those in (E).  
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Figure 7: Microstructures produced during fluid-driven failure of intact rock. 
(A) Overview of IRF015 following shear failure. The black arrows indicate orientation of sample axial 
compression. A schematic illustration of the temporal evolution of axial load and pore fluid pressure is 
provided in the inset. Note the formation of a dilatant zone or jog (indicated by the white arrow) formed 
by the separation of an uneven fault surface. (B) Detail of part of the fault zone (location indicated on A). 
Fault zone appears to be formed by the linkage of a number of fault segments resulting in the 
development of isolated lenses of wall rock within the fault core. Note also the development of secondary 
fault traces indicated by the red arrows. The white arrow points to a dilatant facture with the similar 
geometry to a wing fracture at a fault tip. (C) Intensely fractured/pulverised rock that shows only minimal 
shear displacement. (D-E) Image and interpretative drawing of a region of the fault core. Note the 
abundance of very fine-grained (submicron) gouge material within the core and the formation of 
numerous Riedel shears.  
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to wing cracks and could have formed as a result of the development of localised tensile 

stresses resulting from successive and heterogeneous slip episodes along the newly 

forming slip zone.  

The geometry and microstructures of the fault core 

The inner fault core is approximately 200-300μm wide and is characterized by 

cataclastic deformation microstructures resulting in extensively fractured grains and the 

formation of fault gouge. This highly angular and often poorly sorted gouge is 

comprised of particles ranging in size from submicron material to residual fractured 

grains up to approximately 100μm in diameter. A fining of gouge material is often 

observed towards the principal slip zones. In many places the fault core shows evidence 

of slip localisation with the development of slip zones obliquely oriented to the fault 

boundary. These shear bands are referred to as Riedel shears [Logan et al., 1992; 

Passchier and Trouw, 2005] and form a hierarchy of overprinting shears with increasing 

slip localisation within the fault core. Early shears, often the R1 shears that form at a 

low angle to the fault zone boundary, are overprinted by boundary-parallel Y shears, 

which are interpreted to be slip surface where the majority of slip occurred. Zones of 

less damaged material are also present, commonly forming lenticular to irregular 

domains within the fault core. Sigmoidal lenses of poorly compacted gouge are also 

present and include larger clasts and are more porous than the surrounding fault core 

(Fig. 7D-E). The lenticular shaped clasts are often oriented parallel to the R1 shears, 

whereas the sigmoidal lenses provide a shear sense indicator analogous to S-C fabric 

within ductile shear zones. Slip is often localised around these lenses forming shear 

bands such as P-shears. 

A notable feature within the core of faults formed by fluid-driven failure is the 

abundance of sub-micron gouge. Regions of fine-grained gouge are not always 

accompanied by evidence of slip localisation through the formation of Riedel shears or 

significant grainsize variation / fining across the fault core. In places the fine-grained 

gouge has been injected into fractures on either side of the fault core. 



Reactivation of Misoriented Faults 
 

100 
 

 
 
Figure 8: Comparison of melt microstructures produced during fluid- and stress-driven failure of 
intact rock. 
(A-D) IRF016 fluid-driven failure of intact rock sample. (A) Area of significant volume of melt within a 
sample generated by fluid-driven failure. (B) The light fractured regions in the lower centre of the image 
represent clast free melt, while the porous material in the upper centre of the image illustrates the texture 
of melt indurated gouge. (C) Clast laden melt layer showing a planar edge on one side and grading into 
melt-indurated gouge on the other. (D) High magnification image showing rounded clasts within a melt 
matrix. (E)-(H) IRF018 nominally dry stress-driven failure of intact rock. (E) Highly stressed contact 
between two asperities on a fault surface formed during stress-driven failure. Hertzian fractures can be 
seen radiating from the impinging contact and a layer of melt has formed at the interface. (F) Higher 
magnification image of the melt layer formed at the contact between asperities shown in (E). Note the 
formation of ‘ladder’ cracks in melt layer that are possibly associated with anisotropy in the 
compressibility of the adjacent quartz. (G) Arrows highlight fractures formed in the core of the melt layer, 
parallel to the sliding surface. (H) Banding within the melt supports the possibility of multiple episodes of 
melt formation during the single slip event. Arrows point to a possible second melt generation surface.  
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Development of frictional melt 

Frictional melt forms within the fault core of both stress- and fluid-driven failures in 

intact rock (Fig. 8). While the melt has rapidly quenched to form a silica glass, in this 

chapter the term ‘melt’ is used to describe any quenched melt textures or material that 

has been frictionally heated and melted. This is done to highlight the processes involved 

in its formation.  

Frictional melt is most commonly located within the compressive regions of the fault 

core where slip on an undulating fault plane can lead to significant stress concentration 

(i.e. restraining bends). Recognition of quenched melt requires high-resolution BSE 

imaging and the combined use of slow scan and line integration noise reduction 

techniques to resolve the melt textures. However, the glass is most easily identified 

when clasts are suspended within the solid melt-matrix. At low magnifications 

quenched melt is recognised by the formation of elongate zones of bright material 

within the fault core, typically having either a very linear edge, parallel to the fault zone 

boundary, or smeared within a gouge layer adjacent to an asperity contact. The core of 

the melted zones has a lower porosity than the surrounding fault gouge and 

consequently at low magnification appears brighter in BSE-SEM imaging than the 

epoxy impregnated gouge. At higher magnifications, the glass is recognised in both SE- 

and BSE-SEM imaging by having slightly lower electron intensity than the surrounding 

quartz. In the case of SE imaging, this is interpreted to be the result of the glass forming 

a topographic low within the sample due to preferential removal of the slightly softer 

glass during polishing. The slightly lower intensity of quenched melt during BSE 

imaging possibly arises from either a lower orientation contrast from a non-uniform 

reflection of low-loss BSEs in the non-crystalline structure, or a reduced Z contrast 

(representing mean atomic number) due to the lower density of the glass compared with 

its crystalline equivalent. The observation that the amorphous material has lower 

intensity during BSE imaging is consistent with observations of glass filled veins and 

amorphous deformation lamellae formed during meteoritic impacts [Bruijn, 2014]. 

Many of the features observed in BSE-SEM imaging are identical to microstructures 

observed on the high temperature fault interfaces (see Chapter 2); these include the 

presence of fractures forming parallel to the fault surface in the centre of a welded vein 

(see arrows Fig. 8G), the formation of elongate vesicles and even the formation of rare, 

ribbon-like filaments of glass. 
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From observations of the slip zone produced by intact rock failure experiments, two 

styles of melt zones are recognised in cross section: the first is characterised by a sharp 

planar boundary on one side, that grades progressively into a melt-indurated gouge 

(Figs. 8A-D). These zones typically are associated with extensive pulverisation of 

adjacent crystalline material forming platy, shard-like textures (e.g. Fig. 8B). The 

second melt morphology is characterised by the formation of a short melt ‘vein’ 

between two impinging asperities (Figs. 8E-G). The radiating Hertzian-style fractures at 

these sites are interpreted to be the indicative of high stress concentrations (Fig. 8E). 

The volume of melt produced during slip varies greatly between the intact rock failure 

experiments. The dense clast-free melt zone is generally between 1-2μm wide and up to 

approximately 200μm in length while in contrast, the indurated gouge may extend over 

a similar length (100-200μm) but affects a much wider zone (up to 60μm). Although 

both stress- and fluid-driven failure results in the formation of frictional melt, areas of 

melt produced during fluid-driven failure have a higher clast density than similar areas 

produced during stress-driven failure, possibly indicating a lower melt temperature. 

However, melt is not abundant within the samples forming 2-3 localised areas of melt 

within any given sample. Consequently any conclusions drawn from the observations 

must be tempered by the potential bias associated with limited examples. 

Planar textural banding is present within the melt layer of some samples. The banding is 

characterised by alternating layers of clast-free melt, clast-rich layers within a melt 

matrix and porous bands (Fig. 8H). These structures are interpreted to represent areas 

where multiple episodes of melt generation have occurred during a single slip event, 

corresponding with a single co-seismic stress drop. The ability to follow the clast-free 

bands within the melt layer until they terminate within a discrete slip localisation zone 

in the adjacent gouge supports the hypothesis that these textures formed as a result of 

multiple melt-generation events within a single episode of rapid slip, rather than as flow 

banding within the melt layer.  

Melt formed adjacent to the fault core boundary in Figures 7E-F appears to have been 

generated early in the slip event with the late stage Y-type or boundary shears forming 

on the opposite side of the fault zone. This suggests that melt generation was short-lived 

and once heat production stopped, the strengthening of quenching melt resulted in the 

transfer slip to elsewhere in the fault core where subsequent shear bands have formed. 

However, in other examples (Fig. 8A) the lack of significant deformation and cataclasis 
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of the melt layer when compared with the surrounding fault core indicates possible 

melting late in the slip event through slip localisation within a well-developed gouge 

layer.  

3.2.2 Slip on existing fault surfaces 

3.2.2.1  Dry stress-driven fault reactivation and failure 

Fault geometry and evolution of the damage zone of existing faults 

With an increasing reactivation angle and continued displacement beyond yield and 

initial slip, there are significant variations in the microstructural development of 

reactivated faults. Faults oriented at between 25-30° to the cylinder axis are 

characterised by the limited development of a fault damage zone, with the majority of 

damage occurring immediately adjacent to the slip surface and within the fault core. 

However, even at largely favourable reactivation orientations (θr = 25-35°), the 

generation of damage is observed to positively correlate with increasing slip distance 

and confining pressure. Mature, large displacement faults show evidence of well-

developed Riedel shears and sigmoidal-shaped lenses of fine-grained gouge occurring 

within a 100-200μm wide fault core. This is accompanied by an increasingly developed 

low displacement damage zone in the ~200µm on either side of the fault core.  

With an increasing reactivation angle, the extent of slip-related damage is observed to 

increase both within the fault core and surrounding damage zone. Splay-like fractures 

develop in the dilatant ends of the faults oriented at θr =35-50° (Fig. 9A). With 

continued deformation, these evolve into a series of more favourably oriented slip 

surfaces. Fault damage and gouge production reaches a peak on faults with a 

reactivation angle, θr = 45-55° and coincides with a high level of microfracturing 

immediately adjacent to the slip surfaces with a width typically < 200µm. Much of the 

damage surrounding the fault zone is preferentially located on the dilatant sides of the 

fault ends, forming wedge-shaped, asymmetrical damage zones (e.g. Fig. 9A, 10B). The 

compressive domains near the fault tips remain virtually damage free except for dilatant 

intergranular horizontal fractures; these nucleate from the sample edge and are thought 

to form as a result of rotation of the fault tip as the dilatant ends of the fault become 

increasingly damaged and incohesive with continued slip (Fig. 9A).  
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Figure 9: Sample scale microstructures produced during dry stress-driven fault reactivation. 
BSE-SEM images showing an overview of microstructures formed during fault reactivation and failure 
over a range of reactivation angles (θr). Insets show a schematic loading curve for each experiment. All 
experiments undertaken at Pc = 50MPa (A) MIS010, θr = 50º, fault reactivates initially by slip hardening 
then transitions into stick-slip behaviour. Fault shows development of splay-like fault traces at the fault 
ends. (B) MIS011, θr = 55º, fault slip hardens then evolves into a stick-slip regime. On the second major 
slip event (indicated in the inset) the sample fails along a new, more favourably oriented fault. The 
footwall fracture resembles a splay-like fault, similar to those seen in A, but the hanging wall is bisected 
by a new fault trace. (C) MIS012, θr = 60º, fault elastically loads and slips once on the misoriented fault, 
before reloading and failing on a new fault. Similar microstructures to (B), but note the formation of a 
secondary fault trace and accompanying wing cracks in the hanging wall. (D) MIS028, θr = 65º, fault is 
frictionally locked and sample failures through a complicated network of newly formed faults after a 
period of nearly pure elastic loading.  
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Experiments where θr = 55°-60° show clear evidence of slip having occurred on the 

existing unfavourably oriented fault, before becoming frictionally locked and 

subsequent failure occurring on a new favourably oriented fault (Fig. 9B-C). The 

generation of the new, optimally-oriented slip zone is associated with the second slip 

event in the loading curve (see insets Fig. 9B-C). Initiation of slip on this zone typically 

is associated with a larger stress drop than the prior slip event on the misoriented fault 

surface. At the specimen scale, the offset of the copper jacket indicates fault movement 

on both the existing and newly formed faults. Similarly, the microstructures of the fault 

core of the unfavourably oriented fault reveal damage indicating slip. The geometry of 

the new fault is very much controlled by the position of the existing fault, forming in the 

same orientation but more steeply inclined than the misoriented fault. In the samples 

deformed at confining pressures, Pc ≤ 50MPa, the new fault mainly transects the 

hanging wall of the existing fault but with increasing confining pressure the newly 

formed fault becomes increasingly symmetrical within the sample, cutting both the 

hanging and footwall of the unfavourably oriented fault.  

In experiments where the existing fault is oriented with θr > 65º, this surface remains 

frictionally locked, with no mechanical evidence of slip. Rather the sample has failed by 

formation of a complex network of more favourably-oriented faults (Fig. 9D). The 

formation of multiple faults, including well-developed conjugates, in orientations 

different to that of the pre-ground misoriented fault suggests that the geometry of the 

newly ruptured fault is less influenced by stress changes arising from movement on the 

existing fault.  

The evolution and structure of new favorably oriented faults 

The appearance and morphology of faults formed during the rupture of new optimally 

oriented faults is similar to that observed during intact rock failure experiments (Section 

3.2.1), although the fault is less steeply inclined relative to the direction of shortening. 

The new fault is undulatory in places, formed by the linkage of en echelon fault 

segments (Fig. 10), and the development of secondary fault traces (Figs. 9C). The 

development of wing-crack type fractures at the tip of some of the secondary fault traces 

demonstrates heterogeneous accommodation of strain within the sample (Fig. 9C). A 

number of the samples that have failed along a new favourably oriented fault also have 

formed conjugate fault traces, with many of these fractures forming between the newly   
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formed fault and the original ground slip surface. Little offset is observed on the 

conjugate structures. However, the truncation and separation of the conjugate faults by 

the main rupture surface suggests the contemporaneous formation of these faults.  

The process of development of the new optimally oriented faults was explored over a 

series of experiments that were halted and retrieved at different stages within the rupture 

sequence. MIS017 was halted immediately after the first slip event on the misoriented 

fault (Fig. 11A-C) and MIS018 was halted at the second peak in stress, just prior to the 

rapid slip event that would have resulted in the macroscopic failure along the new fault. 

(Fig. 11D-F) At the sample scale, the first experiment (MIS017) is characterised by the 

formation of very little damage with microfracturing and associated damage being 

limited to approximately a single grain width (250µm) on either side of the slip surface 

(Fig. 11C). A small amount of damage is evident at the fault tips forming a wedge 

shaped damage zone at the fault ends (Fig. 11B).  

Reloading of the sample following slip on the existing fault is associated with a 

significant increase in fracture density and an overall increase in width of the damage 

zone. However, the distribution of microfractures is not pervasive throughout the 

sample, but rather, occurs extensively around the original fault surface and in a zone of 

inferred high stress that approximately coincides with the area where the new fault 

forms, leaving large areas of the sample essentially damage free. The formation of 

extension fractures appears to be a precursor to the development of the new fault with 

the fractures linking and coalescing to form the new fault zone (Fig. 11F). Significant 

strain is accommodated without stress drop by the new fault prior to its full formation 

and macroscopic failure. The original θr = 60° fault is offset by approximately 200μm at 

the point where the new optimally-oriented fault intersects the original unfavourably 

oriented fault (Fig. 11E). The heterogeneous accommodation of strain within the sample 

is observed to form dilatant grain-boundary fractures oblique to maximum principal 

stress at the newly-forming fault tip (see dashed lines, Fig. 11F), and is thought to 

largely result from the imposed constraints of the assembly configuration which prevent 

slip occurring into the samples’ ends. Such movement is thought to place controls on 

the geometry of the newly forming fault and promote its continued development by 

altering stress states at the fault tip.  
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Figure 11: Formation of a new optimally oriented fault following frictional lock-up on a θr = 60º 
fault. 
(A-C) Images from experiment MIS017 that was halted immediately following the first slip event (see 
loading curve in inset). (A) Overview of sample. (B-C) The damage zone is not well developed with the 
formation of minor intergranular fractures and grain crushing at the fault tips and dominantly 
intragranular fracturing along the rest of the fault. (D-F) MIS018 – experiment was halted at the onset of 
macroscopic shear failure along a newly-formed fault. The new fault is in the process of forming and, 
when compared with MIS017, significant damage is present. Although the fault zone is not fully 
developed, shear strain has been accommodated along the developing fault through the formation of en 
echelon fracture arrays at the fault tip – see the offset of the existing fault (E) and the formation of 
dilatant fractures, parallel to the dashed lines in (F).   
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If extension fractures are assumed to form approximately perpendicular to the minimum 

principal stress (σ3), variations in the orientation of these fractures within the damage 

zone may provide insights into deviations in local stress orientations from the assumed 

bulk principal stresses. The fracture orientations of three sub-regions within the damage 

zone of MIS011 (θr = 55º) (Fig. 10A) are displayed in the rose diagrams (Fig. 10A). The 

orientation of the microfractures have been measured relative to the sample shortening 

direction, with a maximum of three cracks being considered for any given grain. The 

results show that while vertical crack formation is a significant component of the results 

for all three regions (being approximately parallel with the shortening direction), the 

area in the footwall immediately adjacent to the pre-ground unfavourably oriented fault, 

is dominated by fractures which are sub-parallel to the misoriented fault (Figs. 10A, E, 

(iii)). The region between the two faults has a significant number of fractures aligned 

with the orientation of the newly-formed, favourably-oriented fault (Figs. 10A(i)-(ii)). 

Many of the microfractures outside these orientations are interpreted to result from 

Hertzian or impingement microcracking where the stress orientations are significantly 

perturbed at the grain scale [e.g., Gallagher et al., 1974]. Many of the intragranular 

cracks also have associated wing-cracks at the fault tips suggesting a component of 

shear along many of the microfractures. 

Evolution of the fault core in pre-ground fault surfaces 

The fault core, or zone of high strain resulting from the localisation of fault slip, forms a 

microstructurally distinctive layer that ranges in width between <2-300 µm, with fault-

core width on the pre-ground faults being strongly related to total displacement (Fig. 

12-13). Mature fault cores (those that have experienced multiple rapid slip events, or 

stable sliding >1mm) are dominated by the formation of wear products such as fractured 

grains and fault gouge, with evidence of some grainsize sorting, and rudimentary 

development of slip localisation structures such as Riedel shears. A number of the 

favourably oriented, high displacement faults that have slipped by macroscopic stable 

sliding, show evidence of the formation of sigmoidal shaped lenses of fine gouge and 

multiple generations of Riedel shears, many of which truncate and overprint earlier 

shears. As the reactivation angle increases the process of gouge formation transitions 

from high displacement damage, produced by wear and the attrition of asperities, to 

being largely in situ damage, resulting from intense grain crushing and fracturing. Much  
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Figure 12: Comparison of microstructures with varying fault angle (θr). 
The direction of axial shortening is parallel with long axis of all micrographs. Three images of different 
magnifications are shown for each fault orientation, with the orientation indicated at the beginning of the 
row. (A) Formation of secondary fault traces (indicated by the white arrow) at the misoriented fault ends. 
Note that the misoriented fault immediately adjacent to the new fault (on the right hand side) has been 
welded together with frictional melt. (B-C) Zones of continuous melt that weld the existing fault surfaces 
together. Note the offset in the boundary of the fault zone. (D) θr = 45°, melt can be seen in many places 
separated from the fault walls forming a low-porosity band within the fault core. (E) Banding of the melt 
layers between layers of clasts and high porosity (see black arrows) indicating the possibility of multiple 
melt generation events. (F) Quenched melt layer adjacent to a pore space. Note the elongated vesicles 
within the melt layer. (G-I) Images of microstructures and melt formed within a sample where the fault is 
oriented at θr = 40°. On Pc = 50MPa melt formation has become more sporadic, with melt mainly forming 
at asperity contacts (H). However, there is evidence of banding within individual melt zones (I), possibly 
suggesting multiple melting events. 
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Figure 13: Evolution of the fault surface with increasing slip displacement. 
Images show a comparison between fault surfaces produced during different experiments that were halted 
after varying amounts of slip. Schematic loading curves illustrate the how much slip occurred prior to 
halting the experiment. (A-B) MIS035: experiment was halted after the yield point but prior to the first 
stick-slip event. The slip surface does not show any evidence of melt generation, however very fine (sub-
micron sized) gouge material has been produced and is supported within an ultra-fine grained matrix. The 
matrix particles cannot be resolved in the BSE-SEM imaging. However, the morphology of these zones is 
very similar to the structure of melt zones produced after stick-slip. (C) MIS037: experiment halted after a 
single stick-slip event. Melt welding is observed along parts of the fault core (see higher magnification 
inset). Note the absence of damage beyond approximatley 50µm on either side of the fault core. (D) 
MIS007: experiment halted after 6 stick-slip events (total shear displacement = 2.63mm). The fault core 
is notably wider, and the damage zone is more extensive than the fault core formed during a single slip 
event (shown in C). The melt layer is now largely isolated from the wall rock and sits within 
ultracataclasite in the fault core. 
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of the damage present on the unfavourably-oriented faults (θr ≥ 55º) is low displacement 

damage. However, most samples also have a layer of unconsolidated fine clasts (ranging 

in size from <100nm-10µm) within the principal slip zone that have been translated and 

rotated from their original position forming an irregularly oriented gouge. 

Frictional melt on pre-ground fault surfaces 

In samples with pre-existing faults that have reactivated at fast slip rates, a significant 

microstructural feature of fault cores is the formation of frictional melt (Fig. 12). As is 

the case for the frictional melt observed in the intact rock failure experiments, the melt 

is distinguishable in BSE-SEM imaging mode by having a slightly lower intensity than 

the surrounding quartz. Where the melt forms an uninterrupted layer between the two 

fault surfaces, the quartz wall rock immediately adjacent to the melt (in a zone <500nm 

wide) often has a higher intensity, forming subtly brighter bands on either side of the 

melt. Microstructures within the melt layer are readily correlatable with textures 

observed in the confirmed glass layers formed at high temperatures using SEM and 

TEM techniques (see Chapter 2). These textures include the formation of strained 

vesicles (see arrows, Fig. 12F), and the melt invasion of adjacent fractures forming an 

uneven melt substrate-boundary with the appearance of submicron melt injection veins 

(Fig. 12C). Samples from experiments halted prior to the activation of a rapid slip event 

show evidence of the formation of thin bands of sub-micron (~100-500nm) sized gouge 

within an unresolvable matrix. This material forms a discontinuous layer along the slip 

surface (Fig. 13A-B), and is similar in appearance to that observed following aseismic 

sliding in the high temperature experiments (Chapter 2).  

Experiments halted immediately after the first rapid slip event have microstructures 

characterised by a weakly developed damage zone with rare intragranular fractures, a 

narrow fault core (between 1-5μm wide), and the formation of frictional melt (Fig. 

13C). Interestingly, even after this single slip event, samples exhibit semi-continuous 

bands of melt that extend between the two fault interfaces. Upon quenching, the melt 

welds the opposite surface of the fault together (see inset, Fig. 13C). Intragranular and 

grain boundary fractures have formed alongside the melt-welded sections of the fault. 

This indicates that either the fractures formed while the frictional melt was still in a low 

viscosity state, or that the quenched melt had a considerable cohesive strength and 

resulted in the preferential failure of the damaged adjacent wall rock. Fracturing of the   
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Figure 14: Melt-welding and its influence on the microstructural evolution of the fault surfaces. 
Many of the zones where splays and secondary fault traces are observed to develop appear to initiate from 
sites on the reactivated fault that are melt-welded, suggesting that the frictional melt influences the 
microstructural evolution of the fault surface. (A)-(B) are images taken of the fault zone in MIS006, 
showing a melt welded location that has subsequently been the site of the formation of a conjugate fault 
linking the existing fault and the new more favourably oriented fault. The pre-ground unfavourably 
oriented fault is indicated the yellow arrow. (B) Higher magnification image of the zone indicated by the 
red rectangle in (A). (C)-(D) Show the microstructures after a single slip event on MIS037. Fractures can 
be seen developing around the melt-welded section, beginning to form the splay-like damage zones at the 
fault tips. (D) Higher magnification view of the area indicated by the red box in (C). Note in both high 
magnification images that damage often occurs in the crystal adjacent to the melt zone, rather than within 
the quenched melt. 
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melt layer and entrainment of fractured glass particles within the principal slip zone 

indicates brittle deformation of the solidified melt and signifies quenching on timescales 

less than the duration of the slip event. Continued deformation results in the evolution 

of the fault core with sustained fracturing, melting and gouge formation. In areas were 

melt-welding is prevalent during early slip, damage is observed to form along the melt-

wall rock boundary, widening the core and detaching the melt so that it occurs isolated 

within the gouge layer (Fig. 13D). The formation of melt has a remarkable impact on 

the subsequent development of microstructures within the fault zone, with the formation 

of secondary faults and splays nucleating from, or be spatially associated with a site of 

melt welding (Fig. 14). 

An increase in confining pressure and/or reactivation angle results in the more prevalent 

formation of frictional melt, with fault surfaces transitioning from a localised melting at 

θr ≤ 40º (Fig. 12G-I), to the development of semi-continuous melting between θr = 45º-

50° (Fig. 12A-F). Localised melt development occurs at asperity contacts, with 

discontinuous melt forming either between or adjacent to the asperity (Fig. 12H). 

Despite localised melting occurring in experiments where the fault is essentially 

favourably oriented (assuming normal range of frictional values), multiple slip events 

can result in the formation of numerous layers of melt at a single location; this is 

recognisable by the development of a banded texture where essentially clast-free layers 

of melt are laminated between gouge zones and also areas of increased porosity (Fig. 

12I). Importantly, these banded textures are also identifiable within the melt of samples 

that have experienced only a single rapid slip event, suggesting that on the millisecond 

timescales of a single slip event, there can be multiple episodes of melting and 

quenching at an individual location on the fault surface.  

Microstructures of fault cores and formation of melt in new favourably-oriented faults 

The structure and appearance of the fault core in the new, favourably-oriented faults that 

form during deformation of samples where θr ≥ 55º, is similar to that observed in the 

intact rock failure experiments. The cores of individual fault traces are up to several 

hundred microns wide including both the intensely fractured transition with the damage 

zone and the principal slip zone. However, in contrast to the intact rock failure 

experiments, where formation of melt is fairly rare and largely constrained to 

compressional zones within the fault core, the new faults formed during the misoriented  
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Figure 15: Comparison of sample scale microstructures of experiments reactivated and failed by 
different loading methods. 
The use of image stitching software has enabled the creation of sample scale montages depicting the two-
dimensional microstructures formed parallel to the slip direction. Each of the above images comprises of 
between 80-100 BSE-SEM micrographs and provides a comparison between faults with a reactivation 
angle, θr = 55º and 60º, following different modes of failure. (A & D) Faults reactivated and failed under 
dry stress-driven loading conditions. (B & E) Microstructures produced during water-saturated stress-
driven failure and (C & F) provide an example of the faults formed during fluid-driven failure. Note the 
reactivation of the unfavourably oriented fault, recognisable by the offset of the sample edges. The new 
optimally oriented fault can be identified by the wide damage zone and formation of the steeply inclined 
fault.  
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fault reactivation experiments show the formation of extensive bands of frictional melt, 

up to 1.2mm long and 20µm wide. These melt zones are generally characterised by one 

approximately planar surface, which is interpreted as the melt generation plane, and a 

melt zone that grades into a more porous region of melt-indurated gouge. In many cases 

the relict wall rock adjacent to the melt layer is extensively fractured, often to point of 

pulverisation, where grain shattering is so intense that particles are often submicron in 

size, but show very little evidence of shear, thus preserving their original grain 

structure. However, apart from a few fractures, the quenched melt layer is largely intact 

and forms a distinctive band of cohesive material within the fault core. 

Fault gouge is readily distinguishable from the low displacement damage zone in the 

fractured and pulverised wall rock. The gouge particles tend to be angular to sub-

rounded, and largely equant suggesting comminution and rounding during grain 

movement. In contrast, fractured grains are generally angular, and form shards and 

blocks that have not rotated significantly from their original position. Both gouge and 

fractured material have particle sizes ranging from sub-micron to in the order of tens of 

microns in diameter. 

3.2.2.2  Saturated stress-driven fault reactivation and failure 

Two stress-driven deformation experiments have been undertaken at controlled pore 

water pressures and with θr = 55º-60° (MIS023 and MIS022, respectively). To a first 

order, the microstructures formed during these experiments (Figs. 15B-E) are very 

similar those developed during dry stress-driven fault reactivation and failure 

experiments (Figs. 15A-D) with the initial activation of the misoriented fault surface 

followed by the formation of a new non-planar fault surface. The new faults are 

characterised by the development of one dominant high-displacement fault surface and 

numerous secondary fault traces that accommodate much less slip. However, on closer 

examination there are subtle differences between the experiments undertaken dry and 

those deformed in the presence of fluids. There is less damage along the existing fault, 

especially around the fault tips, and the new, more favourably-oriented faults are more 

steeply inclined, truncating and offsetting the original unfavourably oriented fault closer 

to the centre of the sample. The development of secondary fractures from the leading 

fault tip of the unfavourably oriented θr =60º are more similar to microstructures 

observed in the hanging-wall of fluid-driven failure experiments (see Section 3.2.2.3)  
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Figure 16: Comparison of microstructures between stress- and fluid-driven fault reactivation (θr = 
50º). 
Orientation of maximum principal stress is indicated by the black arrows. (A-C) MIS010: stress-driven 
fault reactivation. (A) Overview montage of sample showing the more extensive damage caused during 
stress-driven failure and the formation of splay-like structures at the fault ends. (B-C) Higher 
magnification images of the fault core showing the asymmetry of damage adjacent to the fault core. A 
line of largely continuous melt can be seen within the fault core – see arrow in image B. (D-F) MIS026: 
fluid-driven fault reactivation. (D) Overview montage of sample showing essentially no damage on the 
fault surface. This is confirmed in the higher magnification images (E-F). 
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Figure 17: Comparison of melt produced during stress- and fluid-driven fault reactivation and 
failure. 
Samples shown have an existing fault (θr = 60º) that has reactivated forming significant melt before 
reloading and failing on a new optimally oriented fault – see loading curves shown in insets. Black arrows 
indicate direction of axial shortening. (A) Overview image montage of sample MIS012 showing the 
development of a new fault, conjugate/linkage structures and secondary fault strands by stress-driven 
failure. (B-C) Different magnification images showing the formation of frictional melt in the core of the 
newly-formed fault zone. (D-E) Pseudotachylyte forming a continuous melt layer between the 
misoriented fault surfaces. Note the injection/melt filled veins at the melt-wall rock boundary. (F) 
MIS027, fluid-driven fault reactivation and development of a new, more favourably oriented fault zone. 
Overview of sample – note the formation of a through going fault, which is not significantly influenced 
by the damage geometry of the existing fault. Small secondary faults can also be seen developing from 
the fault tip of the 60º misoriented fault at P. The location of the original unfavourably oriented fault is 
highlighted with a white dashed line. (G-H) Low and high magnification images of quenched melt in the 
newly formed fault. (I-J) Pseudotachylyte welding of the misoriented fault surfaces.   
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suggesting that there are subtle changes to local scale stress fields within the sample 

arising from the presence of pore fluids. It must be noted however, that these 

observations are based on a limited number of samples and the formation of 

microstructures could be affected by heterogeneities within individual samples. 

The first order similarities between microstructures developed during dry and saturated 

stress-driven failure extend to the deformation structures formed in the fault core. Under 

saturated conditions melt textures are present on both the original misoriented fault and 

on the new, more favourably oriented fault, despite MIS023 having a significantly 

lower effective confining pressure than the comparison nominally dry experiment. The 

abundance of the melt on slip surfaces appears not to be significantly influenced by the 

presence of pore fluids, although, under lower effective confining pressures (MIS023) 

the melt volume is somewhat reduced. In the fluid-saturated samples, melt also welds 

the fault surfaces and many secondary fractures nucleate from melt-welded sites, 

indicating that the formation of glass localises much of the subsequent fault damage.  

As with the dry stress-driven slip zones, the fault core of the new favourably-oriented 

fault in fluid-saturated experiments, is dominated by the formation of gouge that 

contains numerous sub-micron particles. The undulatory nature of the new fault 

generates dilatant releasing bends and compressive restraining zones during slip. The 

latter regions localise the distribution of much of the frictional melt. The melt formed in 

the core of the new fault has a higher clast density than observed in the dry stress driven 

failure experiments. 

3.2.2.3  Fluid-driven fault reactivation and failure 

The architecture of faults reactivated under conditions where the axial load is held 

constant and the pore fluid pressure increased, is noticeably different from that 

produced during stress-driven failure under both dry and fluid saturated conditions. 

Where the fault zone is oriented at θr = 40º - 50º and the sample is reactivated by fluid-

driven processes, there is a remarkable lack of damage along the slip interface, despite 

having slipped between 14 and 28 times (Fig. 16D-F). A few rare intragranular 

microcracks are observed in the grains adjacent to the slip surface, but it is not certain 

whether these formed during experimental deformation or were the result of the initial 

grinding of the fault interfaces.  
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With increasing reactivation angles, the microstructures produced during deformation 

do develop first-order similarities with stress-driven failure experiments, however 

noticeable differences remain. As in the stress-driven experiments, pre-existing faults 

where θr > 55º reactivate once before locking and the generation of a more favourably 

oriented fault (Figs. 15C & F, 17F–J). However, during fluid-driven failure, the new 

fault is less affected by the geometry of the existing fault, forming a single through-

going fault that is largely symmetrical within the sample. Numerous distributed 

extension fractures also have formed throughout the sample, although the concentration 

of damage is still observed to be asymmetrically concentrated around the pre-existing 

unfavourably oriented fault. Damage within the core of the pre-existing fault is also 

significantly less than is the case for stress-driven failure events and appears to be 

largely a result of repeated re-shearing and damage following the generation of 

frictional melt.  

3.2.3 Hydrothermally-treated, reactivated fault 

One experiment (MIS038) has been undertaken to examine effects of hydrothermal 

conditions (6hrs at 900ºC, Pc = 250MPa, Pf = 150MPa) on the stability of frictional 

melt, as well as fracture and fault zone healing. Following the reactivation of an 

unfavourably oriented fault (θr = 60º) at room temperature, under conditions that had 

previously been demonstrated to reliably produce frictional melt, hydrothermal 

conditions were achieved by introducing pore fluids and increasing both confining 

pressure and temperature. Microstructural analysis of the slip interface following 

hydrothermal treatment indicates that the fault has undergone substantial healing (Figs. 

18A-D). Gouge particles have become compacted with the destruction of porosity; all 

evidence of sub-micron-sized gouge particles is gone, and many of the extension 

fractures associated with deformation have healed. Other fractures, possibly those with 

wider apertures, are partly healed and can be identified by trails of fluid inclusions or by 

the presence of relict open fracture segments (see white arrow, Fig. 18B). The 

population of completely unhealed fractures (Fig. 18B) are thought to arise from either 

volume changes associated with the alpha-beta phase transition of quartz and/or 

depressurisation at the end of the experiment, or as a result damage caused during 

subsequent sample preparation. 
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In places the fault is completely healed with the pre-ground slip interface being 

essentially indistinguishable from the undamaged rock when imaged in BSE-SEM 

mode. There is no evidence of the characteristic variation in back-scattered electron 

intensity associated with the presence of melt in untreated experiments. Fault geometry 

indicates that these entirely healed zones are within the fault core and are thought to 

exist where melt welding has previously occurred. In regions where the fault damage 

consisted mainly of gouge formation, porosity is significantly reduced with compaction 

of the high porosity gouge. Most gouge particles no longer have the angular and shard-

like shapes associated with formation by cataclastic processes, but instead are rounded 

to polygonal and have faceted, euhedral grain surfaces adjacent to remnant pores.  

 

 

Figure 18: Microstructures produced during hydrothermal treatment of a reactivated fault. 
MIS038, θr = 60º: sample was loaded until the there was one reactivation on the existing fault. The 
sample was then hydrothermally treated for 6 hours at 900ºC. After hydrothermal treatment, BSE-SEM 
images taken of the cross-section of the fault indicate extensive healing at the fault interface. (A) Low 
magnification image showing the extent of healing in the damage zone during hydrothermal treatment. In 
places the pre-ground fault is almost completely healed (i.e. no porosity). (B) Example of partially healed 
microstructure. White arrow indicates a microfracture that is segmented by the uneven precipitation of 
quartz along its length. Note the heterogeneous porosity distribution associated with partial 
cementation/compaction of gouge and the rounding of particles. (C) Image of an area of the original fault 
trace that is almost completely healed. (D) High magnification image of gouge zone that is partially 
healed. White arrows point to fractures along possible grain boundaries. The reduction in porosity and 
significant rounding of grains is evident. 
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Where grain boundaries are evident within the partially compacted gouge (see white 

arrows, Fig. 14D) a number appear to show evidence of grain interpenetration, although 

it is unclear whether the grain interpenetration is the result of grain-to-grain dissolution, 

or caused by the overgrowth of hydrothermally quartz. However, BSE-SEM imaging is 

an unreliable technique for monitoring the evolution of grain shapes and grain 

boundaries under hydrothermal pressing as any precipitated overgrowths of quartz are 

indistinguishable from the original grains. Consequently, it is uncertain whether 

dissolution-precipitation creep is active over the timescales of the hydrothermal 

treatment. There is evidence of complete dissolution and removal of sub-micron gouge 

clasts within the fault core and silica precipitation in fractures and as overgrowths on 

clast surfaces, but, there is insufficient evidence to determine whether dissolution occurs 

preferentially at stressed grain contacts. Further, BSE-SEM imaging cannot resolve 

whether the melt dissolves or simply devitrifies and crystallizes in situ. High-resolution 

cathodoluminescence imaging and spectroscopy were explored as a possible technique 

to distinguish between the original quartz grains, melt and the hydrothermally 

precipitated quartz to provide insights into melt generation, dissolution, precipitation 

and overprinting. The results of this investigation are discussed in the following section. 

3.3 2D Microstructural analysis using high resolution SEM-CL 
Microstructural studies using high resolution SEM-CL have been undertaken on the 

fault cores of a number of samples to investigate how the high stress concentrations and 

transiently high temperatures associated with slip, have influenced the 

cathodoluminescence of material in the fault core. Representative samples of (1) melt-

welded, unfavourably-oriented faults, (2) high-displacement favourably-oriented faults, 

(3) melt-welded faults produced at saturated conditions, and (4) the hydrothermally-

treated fault, were investigated using both panchromatic imaging and monochromatic 

spectral analysis. The use of a low accelerating voltage (5kV) reduces the electron 

interaction volume and allows high resolution (sub-micron) CL imaging to be achieved. 

Corresponding BSE images were collected concurrently using a mirror detector (MD) 

located inside the objective aperture of the SEM. This detector is not located in a 

position to allow the collection of low angle backscattered electrons, so provides little 

information on crystallographic orientation and consequently the melt zones are more 

difficult to recognise than in the images described in Section 3.2. All samples were  
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Figure 19: Cathodoluminescence analysis of a melt-welded interface created by the stress-driven 
reactivation of a θr=60º fault under nominally dry conditions. 
Images and spectra acquired from MIS017, reactivated at Pc = 50MPa. (A) False colour CL image of a 
melt-welded section of the fault. Quartz appears as either orange-brown or purple and the central melt 
layer appears as blue to blue-green. (B)-(C) BSE-SEM and panchromatic CL images (respectively) of the 
location shown in (A). Red arrows in (B) identify the location of the melt welded fault. Note the higher 
emissions along the edge of the fault in the CL image. (D) False colour image of another section of melt 
welded fault. Note the clasts within the melt layer that have the same CL emissions as the adjacent wall 
rock. (E)-(F) BSE-SEM and panchromatic CL images of the area shown in (D). Red arrows in (E) 
identify the location of the fault. The locations of spectral analysis are shown on the panchromatic image. 
Representative spectra for quartz and melt are shown in figures (G)-(I) and all spectra collected are shown 
in Appendix 5. The formation of melt results in an increase in the broad peak centred at ~3.0eV and a 
decrease in the 2.0eV peak. The intensity of the emissions produced by the melt varies considerably, 
although most spectra acquired suggests emissions of <10,000 counts.  
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found to be sensitive to modification from the electron beam, with an observable 

decrease in the intensity over all wavelengths occurring during prolonged analysis. To 

minimise time-dependent change to CL responses, the analysis times were kept short (5 

seconds) and the beam was blanked while analysis was not in progress.  

The undeformed quartz in all samples has emissions in the red or red-blue wavelengths, 

forming broad spectral peaks between 1.9-2.0eV (λ = 620-640nm) with red-blue 

samples forming a secondary dominant peak at ~3eV (λ = 410nm) (Figs. 19-22). 

Narrow emission lines or peaks are rare. Using the panchromatic colour filters the 

original quartz is revealed in red-brown to purple hues. It has been suggested that the 

discrepancies in CL colours of the detrital grains arise from differences in provenance 

and metamorphic history of the sediments [Ramseyer et al., 1988; Gotze and Zimmerle, 

2000]. Authigenic overgrowths are clearly visible in CL-imaging, being recognisable by 

their commonly-different intensity and wavelength luminescence compared with the 

detrital grains. These overgrowths form the euhedral grain surfaces that are visible 

around pores when using in other forms of SEM imaging. Within individual grains, a 

history of brittle deformation is evident from the presence of numerous, commonly 

cross-cutting, healed microfractures with different luminescent properties. 

3.3.1 Stress-driven failure of unfavourably-oriented faults 

MIS017 (Pc = 50MPa) was examined as an example of an unfavourably oriented fault 

(θr = 60º) which has undergone a sudden slip event. Cathodoluminescence imaging 

reveals important characteristics that are not readily visible using other imaging 

techniques. The most apparent feature is the change in luminescence associated with the 

formation of the melt layer. The melt is clearly distinguishable from the adjacent grains, 

both in terms of emission intensity and wavelength and can be used to identify 

numerous sub-micron scale features such as melt-filled fractures in the adjacent crystal. 

Spectrally the melt layer shows a shift in the broad maximum luminescence, present in 

the primary detrital quartz, towards lower energy (higher wavelengths) and the 

development of a distinctive peak shape that is consistent between locations and 

samples. Similarly to the quartz spectra, the peaks associated with the melt are broad 

suggesting an intrinsic structural source (see Section 4.2). The dominant peak of spectra 

collected within the melt layer is located within the blue spectrum at ~3.0eV  
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Figure 20: Cathodoluminescence of a mature, favourably oriented fault that has slipped 
aseismically. 
Images and spectra acquired from BIS001 (F)-(G) and BIS004 (all other images), both reactivated at Pc = 
100MPa. False colour panchromatic CL and comparative BSE-SEM images are shown. The locations of 
spectral acquisition points are indicated on CL images. Representative spectra are shown in images (H)-
(J) – for all other spectra for numbered locations see Appendix 5. See text for further discussion of the 
images.  
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(λ = 410nm), with secondary peaks forming at between 2.4-2.6eV (λ = 477-517nm) and 

~2.0eV (λ = 620nm). The intensity of the luminescence of the melt layer varies between 

samples and even within single field of view, revealing luminescent texture within the 

melt layer (Fig. 18A, C-D). In false colour panchromatic images this makes the melt 

zone vary between blue and blue-green, forming a unique colour that is distinct from the 

surrounding primary and authigenic quartz. 

Importantly for understanding the process of melt-generation, the CL images reveal the 

presence of clasts of unmelted material with the same luminescence as the adjacent host 

rock. This may indicate that cataclastic processes have occurred prior to formation of 

melt and that melting results in a structural change in the silica that is reflected in 

cathodoluminescence. Interestingly, the wall rock immediately adjacent to the melt 

forms thin (<1μm) luminescing rims at the fault – melt interface (most clearly seen in 

the grey-scale panchromatic images; e.g. Fig. 18C & F). The spectrum taken at location 

1 (Fig. 18F), shows a significant increase in the intensity of the peak centred at ~3.0eV 

(λ = 410nm), indicating a possible transition between the defects forming the emissions 

in the quartz and the melt. However, it must be noted that the interaction volume of the 

electron beam potentially limits the resolution of such features. Using a Monte Carlo 

simulation of the present operating conditions, the interaction width of the electron 

beam is in the order of 200nm.  

3.3.2 Stress-driven failure of favourably-oriented faults (aseismic slip) 

During BSE-SEM imaging of mature optimally-oriented (θr = 30°) faults (with 

displacement > 4mm), a number of textures were identified that were noticeably 

different from normal gouge and cataclastic damage (Fig. 20). Less porous and more 

cohesive lenses of material form in the gouge of the fault core either adjacent to an 

asperity contact (Fig. 20E), or adjoining the slip interface (Fig. 20B & G). 

Cathodoluminescence analysis was undertaken on two optimally-oriented samples, 

BIS001 and BIS004, both of which had slipped for approximately 4.5mm at Pc = 

100MPa and at a nominal axial displacement rate of ~3.63μm.s-1. BIS001 showed no 

evidence of macroscopic stick-slip during deformation, while BIS004 transitioned from 

the yield point directly into a regime with small amplitude stick-slip (Δ[σ1-σ3] = 

10MPa).  
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Figure 21: Cathodoluminescence of unfavourably oriented (θr=60º) interface reactivated by fluid-
driven failure (stick-slip behaviour).  
Images and spectra acquired from MIS027, reactivated at Pc = 80MPa, Pf = 50MPa. (A) False colour 
panchromatic CL image of a melt welded section of the fault. The melt layer cuts across the centre of the 
image at an inclined angle from the upper left to lower right side and appears as black to blue-green. Note 
the epoxy in these images appears as black (non-luminescing). (B) BSE-SEM image of the same area 
shown in (A). Red arrows indicate the location of the fault zone. (C) False colour panchromatic CL image 
of another section of melt welded fault. Note the variation in intensity of emissions within the melt layer. 
(D) BSE-SEM images of the area shown in (C). Red arrows indicate location of the fault zone. (E) 
Panchromatic CL image showing the region indicated in E and indicating the locations of recorded 
spectral analyses. Representative spectra for the melt and quartz shown in images (F)-(H), with all 
recorded spectra shown in Appendix 5. As for melt formed in dry conditions, the melt formed under 
water-saturated conditions has a broad peak centred at ~3.0eV and secondary peaks at approximately 
2.0eV and 2.4eV. The intensity of the emissions produced by the melt formed in saturated conditions is 
lower than those recorded in nominally dry conditions, with emissions <5,000 counts. 
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The original quartz grains show CL spectral peaks consistent with those described 

previously, with the broad main quartz peaks occurring at ~1.9-2.0eV (λ = 620-650nm) 

and ~3.0eV (λ = 410nm). However, the textually altered zones described above show a 

luminescent signature that is very different from the quartz, with sharp boundaries 

delineating the original quartz and damaged material (Figs. 20C & F). The intensity of 

the luminescence in these zones is generally lower than the quartz, although zones of 

locally higher CL intensity are present (Figs. 20A & D). The CL spectra produced by 

the damaged material has characteristics and overall shape similar to those measured for 

the melt layer in the unfavourably oriented fault. The main peak occurs at ~3.0eV (λ = 

410nm), with secondary peaks forming at 2.55eV (λ = 485nm) and ~1.9eV (λ = 

650nm). However, the relative peak strength of the blue, 3.0eV peak is less intense than 

in the melt layer, causing the sample have a distinct green to green-blue hue, in the 

false-colour panchromatic image stacks (Fig. 20A, C, D, F). It is clear from the images 

and analysis that cataclastic processes and the formation of gouge, do not, in 

themselves, cause the observed changes in the CL signature of the damaged material. 

Gouge clasts with the same luminescence as the adjoining host quartz are abundant in 

the pores adjacent to the fault, and are even interspersed within the damaged material. 

Likewise the damaged material is fragmented and intermingled in the gouge, suggesting 

cataclastic re-working of previous slip surfaces and damaged material.  

3.3.3 Fluid-driven failure of unfavourably-oriented faults 

The melt-welded interface of MIS027, a sample with a fault oriented at θr = 60° and 

reactivated by fluid-driven failure, was examined using SEM-CL to provide a 

comparison between the CL signatures of melt formed under nominally dry and fluid-

saturated conditions. BSE-SEM imaging had revealed that melt generated during both 

fluid- and stress-driven failure was largely indistinguishable. However, the greater 

sensitivity of CL to subtle variations in composition or structure related to changes in 

defect density (for example OH defects), intimated that this method could be useful for 

identifying potential differences between the melts. The acquired spectra revealed a 

strong similarity between both the location and shape of the main peaks and those peaks 

identified during analysis of the melt formed under dry conditions, with the main peak 

occurring at ~3.0eV (λ = 410nm), and secondary peaks forming at 2.4eV (λ = 517nm) 

and ~2.0eV (λ = 620nm) (Fig. 20). The overall emission intensity is lower for the melt 
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Figure 22: Cathodoluminescence of hydrothermally treated, melt-welded interface. 
Images and spectra acquired from MIS038, reactivated at Pc = 50MPa, then hydrothermally pressed for 6 
hours at T = 900ºC, Pc = 250MPa and Pf = 150MPa. For description please see following page.  
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formed under fluid-saturated conditions and in many places is not sufficient to produce 

a distinctive colour during the panchromatic imaging. However, where the 

luminescence is sufficiently intense, the false colour images indicate that the melt layer 

has a similar hue to the damaged material produced under aseismic conditions, with a 

distinctive green-blue shade (Figs. 21A & C).  

As with the melt formed during dry stress-driven failure, the melt generated under water 

saturated conditions shows internal variation in the intensity of the luminescence within 

the melt layer (Figs. 21A & C). The melt exhibits rudimentary banding and localised 

zones of higher luminescent intensity. Quartz clasts with the same luminescence as 

adjacent quartz grains are incorporated within the melt layer and typically show 

relatively sharp melt-clast boundaries.  

3.3.4 Hydrothermal treatment of a melt-bearing slip surface 

As described in Section 3.2.1, BSE-SEM imaging has limitations for monitoring the 

evolution of grain shapes and boundaries where the overgrowths are essentially of the 

same composition and have the same mean atomic number (Z-contrast) as the original 

material. Variations in trace impurities and defects between the original quartz and 

overgrowths mean that CL can provide useful information about processes occurring 

during hydrothermal hot-pressing. CL imaging and analysis of MIS038 (θr = 60°), 

slipped at room temperature and then hydrothermally treated for 6 hours at 900ºC, 

reveals that quartz overgrowths formed during hot-pressing have a high intensity blue 

luminescence, with the main peak centred at ~3.0eV (λ = 410nm). Although these 

quartz overgrowths have the same main peak location as the melt, the overall shape of 

the spectra acquired in analysis of the hydrothermal overgrowths is distinctive, with the 

Figure 22 continued. 
In false colour CL images hydrothermal overgrowths occur as the bright blue cement between the clasts. 
Epoxy appears as dark green to black regions that correlate with the black areas in the BSE-SEM images. 
Red arrows in the BSE-SEM images indicate the estimated locations of the faults prior to hydrothermal 
treatment. (A) – (B) False colour panchromatic CL and corresponding BSE-SEM image of extensively 
fractured region that has subsequently undergone significant healing. Note the absence of very fine-
grained clasts. (C)-(D) False colour panchromatic CL and corresponding BSE-SEM image of an area of 
the fault that, in places in the BSE-SEM images, appears completely healed. Hydrothermal quartz forms 
deposits up to ~5μm thick around some grains. (E)-(F) False colour CL and BSE-SEM image of a melt 
welded region of the fault core that reveals both the formation of hydrothermal overgrowths and also the 
preservation of small patches of melt. (G) Panchromatic CL image showing the enlarged region indicated 
in E with the location of recorded spectral analyses detailed. (H)-(J) Representative spectra for the 
residual melt, hydrothermally precipitated quartz and undeformed quartz respectively. Areas of analysis 
are indicated in image G. Other recorded spectra are shown in Appendix 5. 
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notable absence of secondary peaks. The hydrothermal overgrowths are particularly 

sensitive to modification from the electron beam with a progressive decrease in 

emission intensity of the ~3.0eV peak from 50,000 counts to approximately 10,000 

counts in the space of 1.5 minutes of continuous exposure. 

The panchromatic images (Figs. 22A, C and E) reveal the absence of sub-micron sized 

gouge particles and the substantial cementation of the remaining gouge and fractured 

grains. Quartz cementation, and possibly compaction, has resulted in a reduction of 

fault-core porosity and the production of the extensively healed fault zone observed 

during BSE-SEM imaging. There is no evidence of interpenetration between particles 

forming the original gouge; rather clasts are observed to be mantled with quartz 

overgrowths that are uneven in thicknesses up to 5µm. In the false colour images 

overgrowths luminesce with a distinctive pale blue hue. The partially healed to fully 

healed microfractures are similarly illuminated during the CL imaging. TEM 

investigation undertaken by Giger [2007] suggests that the overgrowths are epitaxially 

accreted crystalline quartz with little apparent variation in the crystal structure between 

areas of original quartz and the overgrowths. 

In a number of locations relict melt formed prior to hydrothermal treatment is preserved. 

The lenses of melt abut the quartz wall rock on one side and are separated from the fault 

zone on the other side by an approximately 2μm thick reaction zone of hydrothermal 

quartz. It is interpreted that the melt is preserved where fluid-melt interaction is 

hindered by a lack of fluid access; such as in Figures 22E-G. Interestingly, the melt 

layer in contact with pore fluids is primarily not dissolved and transported away from 

the site, but rather appears to potentially devitrify and crystallise in situ leading to the 

crescent shaped rim of hydrothermal quartz surrounding the residual melt. The CL 

spectra collected in the melt layer and quartz wall rock are typical of the emission 

spectra associated with each of these materials and described previously (Figs. 22H,J). 

The spectra from the reaction zone is dominated by the strong emissions centred at 

approximately 3.0eV (λ = 410nm), and lacks significant secondary peaks giving the 

same peak profile as the hydrothermal quartz (Fig. 22I). 

3.4 3D Microstructural analysis using microcomputed X-ray tomography 
Microcomputed X-ray tomography is a technique that allows the non-destructive  

 



Reactivation of Misoriented Faults 
 

132 
 

 

Figure 23: X-ray micro-tomography images and slices showing the 3-D structure of a full sample. 
Deformed specimen of experiment MIS031 was imaged using micro X-ray CT. Image has a resolution 
(voxel size) of approximately 5µm. (A)-(C) Show the exterior structure of the sample following 
deformation. (D)-(F) Slices made through the sample parallel to the slip direction. (G)-(I) Slices made 
perpendicular to the slip direction. Note that the change in intensity near the outer edges of the sample, 
giving the impression of radial fractures, are an artefact of beam hardening due to the sample being 
imaged inside its copper jacket.   
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imaging and investigation of internal features of an object in 3D. The simple, essentially 

single-phase mineral composition of Fontainebleau sandstone used during these 

experiments creates a bimodal X-ray attenuation distribution based on average density 

of any given volume or voxel, enabling the tomographic data to be separated into pore 

and mineral phases. In addition, the density contrast between the quartz grains and 

epoxy/air filled voids allows the identification of many fractures, enabling three-

dimensional visualisation of damage associated with fault rupture. As part of the 

microstructural investigation of this suite of experiments, three samples were imaged 

using the microcomputed X-ray tomography method. MIS031 was imaged with a voxel 

size of ~5µm to provide a macroscopic view of the entire sample (due to beam 

hardening and end effects, the data presented in Figure 23 shows the full sample 

diameter for the length of the fault zone rather than the full sample), allowing spatial 

relationships between the pre-ground existing faults and newly developed fractures to 

be visualised (Fig. 23). 2D slices through the sample can also be taken at any 

orientation. Serial sectioning of the 3D dataset, via 2D slices reveal interconnectivity 

between the new fractures and the pre-existing fault plane that is not immediately 

apparent using two dimensional analytical methods such as BSE-SEM.  

For the other two samples (MIS012 and MIS018), a smaller volume has been imaged at 

a higher resolution. A subset of the high-resolution data obtained from MIS018 with a 

voxel size of 1.5µm is shown in Figures 24 & 25. Individual voxel density information 

has been used to segment the dataset, allowing colours to be assigned to the different 

phases. By visualising only the pores and large aperture fractures, the damage zone on 

either side of the fault can be explored, revealing significant damage-zone asymmetry. 

The characteristic pore shape and geometry of the Fontainebleau sandstone is 

essentially undamaged on one side of the fault, whereas extensive fracturing increases 

porosity and modifies the pore structure on the other side (Fig. 24B &G). 

A further subset of the tomography data for MIS018 was created to specifically 

investigate the fault zone and immediately adjacent grains (Fig. 25). Imaging only the 

damage network in this subset of data allows an inferred spatial distribution of the melt-

welded areas on the fault surface to be quantified. This methodology assumes that, as 

the melt has the same atomic composition and similar density to quartz, the melt layer 
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Figure 24: High-resolution X-ray tomography images showing the 3-D structure of a small volume. 
This sample is a subset of the high-resolution data obtained from MIS018 and has voxel size of 1.5µm. 
The tomography data has been assigned colours with quartz being shown by pale grey, fractures by dark 
grey and pores are in shades of brown. (A) A 3D image of a sub-set of data from MIS018 showing the 
unfavourably oriented fault. The different faces are indicated by Roman numerals and shown in 2D slices 
in images (C)-(F). Images (B) and (D) show the pore and large aperture fracture network produced during 
the deformation of the sample. Note the asymmetry in the damage formed on the different sides of the 
fault. 
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Figure 25: High-resolution X-ray tomography images of the fault zone. 
Images are from a subset of the high-resolution data shown in Fig. 24 obtained from MIS018. (A-F) 
Shows the location of the sub-sample relative to the data set shown in Fig. 24. The tomography data 
focuses specifically on the fault zone and adjacent ~75µm of rock. The faces indicated by Roman 
numerals correlate with the faces defined in Figure 24. D1 and D2 refer to directions of viewing the fault 
that are orthogonal to the fault surface. Images looking in direction D1 are shown in C-D, while images 
looking in direction D2 are shown in images E-F. Figure (D) and (F) show the pore network and damage 
zones associated with images (C) and (E) respectively. As the quartz is transparent in images (D) and (F), 
the white zones represent areas where grain interfaces that are frictionally welded, producing continuous 
SiO2 through the full depth of the imaged section. (G) A 2D BSE-SEM image mapped in the same sample 
(MIS018) showing the different morphology of the fault zone where there is a thin melt layer between 
grain contacts as opposed to grains adjacent to pores or damage zones.   
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will not significantly alter the attenuation of X-rays during scanning; this makes the 

melt-welded regions appear as continuous quartz. It follows that if the segmented data 

associated with the quartz is removed or made transparent during visualisation (Figs. 

25D & F), any transparent region across the fault zone represents areas where the grain 

interfaces are frictionally welded, forming a continuous quartz - silica glass transect 

through the imaged section. The validity of this assumption is confirmed using BSE-

SEM imaging of a region from the same sample (Fig. 25G) which shows melt-welding 

at every grain-to-grain interface. This method does, however, understate the volume of 

melt that is produced, especially were melt has formed and been displaced to a position 

adjacent to a pore space (e.g. highlighted region in Fig. 25G which shows melt adjacent 

to a damage zone). 

Although there is likely to be significant variation in the extent of melt welding within 

the sample due to factors such as the formation of damage zones at the fault tip, the 

microcomputed tomography data allows quantification of the 3-D spatial extent of the 

melt. Analysis using the software package, Image J, indicates that approximately 48% 

of the fault shown in Figure 25 is melt-welded. This could have significant influence on 

the cohesive strength of the fault.  

4. Discussion 
The experiments described in this chapter have, for the first time, demonstrated the 

formation of semi-continuous frictional melt on essentially pure quartz fault interfaces 

that have slipped at room temperature and in both dry and water-saturated 

environments. The generation and subsequent quenching of sub-micron thick layers of 

melt has a significant influence on the ensuing mechanical behaviour and 

microstructural development of both the fault and its associated damage zone. These 

ideas will be considered and elaborated in the following section; discussion commences 

with a brief analysis of the recorded mechanical data and how it relates to Mohr-

Coulomb failure theory. 

4.1 Misoriented fault reactivation: A comparison with theoretical 

principles 
While a detailed deliberation of the mechanics of fault reactivation is beyond the scope 

of this thesis, having been examined in depth elsewhere [Jaeger, 1959; Sibson, 1985, 
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1990b; Hill and Thatcher, 1992; Jaeger et al., 2007], the following overview provides 

context for the discussion.  

In the brittle regime, potential for fault reactivation, as opposed to fault initiation, can be 

assessed, to a first order, by comparing the parameters of cohesion and coefficient of 

friction between the fault zone and surrounding rock mass. Within the intact rock 

samples, conditions of failure can be defined by: 

 𝜏𝑓 = 𝐶 + 𝜇𝜎𝑛′ =  𝐶 + 𝜇(𝜎𝑛 − 𝑃𝑓) 1 

where 𝜏𝑓 is the critical shear strength, 𝐶 is the cohesive strength of the rock, 𝜇 is the 

coefficient of internal friction and 𝜎𝑛′ is effective normal stress given by (𝜎𝑛 − 𝑃𝑓), 

where is 𝜎𝑛 is normal stress and 𝑃𝑓 is the pore fluid pressure, where present [Hubbert 

and Rubey, 1959]. In the case of re-shear along an existing cohesionless fault, failure 

strength is broadly defined by Amontons’ law: 

 𝜏 = 𝜇𝑠𝜎𝑛′ =  𝜇𝑠(𝜎𝑛 − 𝑃𝑓) 2 

where 𝜇𝑠 is the coefficient of static friction. These equations have been used to define a 

failure envelope for both the intact Fontainebleau sandstone and the pre-ground sliding 

surfaces (Fig. 25). A coefficient of internal friction of 1.17 is estimated for the intact 

rock failure of Fontainebleau sandstone; this value falls outside the typical range for 

most intact rocks (0.5 < µ < 1) [Hoek, 1965; Jaeger et al., 2007]. The cohesive strength 

of the intact rock is estimated to be ~81MPa based on the intersection point of the shear 

failure envelope with the y-axis. However, it is likely that, as confining pressure is 

reduced, the failure criterion deviates from the linear Coulomb relationship (see 

Appendix 5). Under laboratory conditions, maximum cohesive strength values for 

sandstones and granites have been estimated to between 20-30MPa [Handin et al., 

1963; Jaeger et al., 2007] and possibly represent a more realistic strength 

approximation. A decrease in the cohesive strength of ~9MPa is observed for new faults 

forming after frictional lock-up. For the pre-ground sliding surfaces, the estimated 

coefficient of static friction is 0.54, assuming that these faults are cohesionless at the 

time slip. This value is lower than the experimentally-determined friction coefficients of 

Byerlee [1978] that indicate friction coefficients of sliding surfaces usually lie within 

the range 0.6 < μs < 0.85. However, the coefficient of static friction is consistent with 

findings of Cox [1998] for bare interface sliding experiments on the same material. 
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If it is assumed, for the current suite of experiments, that the existing fault plane 

contains the σ2 axis, stress conditions for the reactivation of faults oriented at varying 

angles to the maximum principal stress, can be defined in terms of the ratio of the 

effective principal stresses as [Sibson, 1985]: 

 𝑅 =
𝜎1′
𝜎3′

=
(1 + 𝜇𝑠𝑐𝑐𝜕𝜃𝑟)
(1 − 𝜇𝑠𝜕𝑡𝑡𝜃𝑟)

 3 

where R is the effective stress ratio, 𝜃𝑟 is reactivation angle defined as the angle of the 

fault relative to the orientation of the maximum principal stress. A fault can be defined 

as being optimally-oriented for reactivation (𝜃𝑜𝑎𝑡) when R has a minimum positive 

value and is calculated by: 

 𝜃𝑜𝑎𝑡 = 0.5𝜕𝑡𝑡−1(1 𝜇𝑠⁄ ) 4 

[Sibson, 1974]. As θr increases or decreases away from θopt the effective stress ratio 

increases (Fig. 26), ultimately approaching infinity and causing lock-up at 2θopt. In order 

to achieve fault reactivation under such conditions, either 𝜎1′ → ∞ or 𝜎3′ → 0, as 

𝑃𝑓 → 𝜎3. Where θopt < θr < 2θopt, faults are referred to as ‘misoriented’, whereas faults 

with orientations greater than 2θopt is regarded as ‘severely-misoriented’. For θr > 2θopt 

reactivation can only be achieved if the effective minimum principal stress is tensile (Pf 

> σ3) [Sibson, 1985, 1990a]. This analysis indicates that the optimal angle for fault 

reactivation for the current suite of experiments is ~31°, and that frictional lock-up 

should occur at ~62°. These estimates are consistent with the experimental observations 

that fault reactivation occurs for θr up to 60°, and that failure on a new optimally-

oriented fault occurs for θr = 65°. 

The current suite of experiments highlights the point that there can be major differences 

in the shear strength during intact rock failure and reactivation of an existing optimally-

oriented fault. Although part of this difference is related to the high cohesive strength 

(~81MPa) of intact rock, an important result is that the coefficient of internal friction  

(~1.17) is substantially higher than the coefficient of static friction (~0.54) associated 

with fault reactivation. The resulting differences in shear strengths have a significant 

impact on the relative ease of reaction of misoriented faults versus nucleation of new 

intact rock failure. 
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Figure 25: Failure envelopes and theoretical analysis of the mechanical results. 
(A) Failure and reactivation envelopes for stress-driven deformation events. Data points represent shear 
and normal stress values at failure or fault reactivation. The slope of the associated failure/reactivation 
envelope (assuming a Mohr-Coulomb relationship) represents either the coefficient of internal friction for 
rock failure (1.17) or the coefficient of static friction for fault reactivation (0.54). The intercept of the 
envelope with the y-axis provides an indication of the cohesive strength of the sample. A second failure 
envelope is also shown for the data generated upon failure of the new optimally-oriented fault after lock 
up of the existing fault (indicated by the purple line). Normal stress and shear stress values of two 
severely misoriented (frictionally locked) faults are plotted in green. These points lie very close to the 
estimated failure envelope for intact rock. (B) Shear stress and normal stress data from the fluid-driven 
failure and fault reactivation experiments are plotted alongside the failure envelopes defined by the stress-
driven failure/reactivation data. Note the good fit with the existing envelopes.  
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Figure 26: Conditions for the reactivation of existing faults. 
The effective stress ratio for the reactivation of cohesionless faults plotted as function of the reactivation 
angle [after Sibson, 1985], for experimental sliding surfaces where μs = 0.54. The low frictional value of 
the experimental faults (compared with the typical range for experimental faults [Byerlee, 1978] increases 
the range of fault orientations that can theoretically be reactivated prior to frictional lock-up, 
encompassing experimental faults inclined from θr = 25-60º to the cylinder axis. The orientation of θopt is 
shown for both fault reactivation (solid line) and intact rock failure (dashed line). Schematic sample 
cross-sections show the orientation of the formation of new faults in intact rock where μ = 1.17 and the 
optimal and lock-up angles of faults where μs = 0.54. 
 

4.2 Interpretation of microstructural processes  
It has been shown, over a series of experiments with progressively increasing 

reactivation angles, that the mechanical behaviour of the interfaces evolves from 

aseismic creep, through increasing amplitude stick-slip, to ultimately frictional lock-up 

and the generation of a new optimally-oriented fault (Fig. 4). The varying mechanical 

behaviour is accompanied by changes in the development of microstructures at scales 

ranging from that of the macroscopic damage zone, down to structures developed on 

sub-micron scales within the fault core. Importantly, microstructural analysis shows the 

development of (1) highly damaged, possibly amorphous material within the fault core 

of aseismically-slipped faults and (2) the generation of frictional melt in faults ruptured 

during stick-slip events. The generation of pseudotachylyte on the fault surface has 
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significant effects on the strength and behaviour of the fault through a process termed 

‘melt-welding’. This process significantly contributes to the increase in damage 

observed along the slip zone.  

In this section the key mechanical data and microstructural observations will be 

integrated to explore the physical processes controlling the reactivation of both 

favourably- and unfavourably-oriented faults. Due to the fundamental importance of 

amorphisation and, in particular the generation of frictional melt, on sample-scale 

behaviour including the development of damage zones, fault lock-up and the formation 

of new faults, these areas will be discussed first. Amorphisation and the development of 

frictional melt on nominally dry fault surfaces will be examined in terms of processes 

leading to their formation, conditions that influence the volume of melt produced, the 

timing of melting within the rupture, and the influence of the formation of melt on the 

development of fault damage. The second section then considers the significant 

microstructural differences between nominally dry and water-saturated experiments, 

including the formation of melt and other slip-related fault damage. The next section 

looks at the processes involved in the formation of new, optimally-oriented faults 

formed after frictional lock-up of misoriented faults; and the final section discusses the 

interpretation and implications of the high resolution cathodoluminescence 

investigations. 

4.2.1 Amorphisation and the formation of frictional melt in nominally dry slip zones 

Production of amorphous material within the fault core 

During slip on both favourably- and unfavourably-oriented faults, increasing 

displacement is associated with increased fracture development and the formation of a 

variety of damage-related microstructures within the fault core. In this section, 

discussion will focus on the types and possible mechanisms resulting in the formation of 

amorphous material on the fault slip surfaces.  

In experiments on favourably-oriented faults, slip behaviour is characterised by slip-

hardening, aseismic sliding that results in the formation of lenses of highly damaged, 

low porosity material between and adjacent to, asperity contacts. This material has a 

lower porosity than the surrounding more granular gouge. In both BSE-SEM and SEM-

CL imaging this material is distinct from both the adjacent wall rock and more typical 
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gouge. The CL spectra acquired within these regions is different from the quartz wall-

rock and gouge, and has the same emission profile as the silica melt (see Section 4.3.4). 

Similarly, unfavourably-oriented faults (θr = 55º) halted prior to the onset of stick-slip 

contain < 1µm thick layers of low porosity material in which, sub-micron diameter 

clasts are set within an unresolvable, but lower electron intensity matrix. Based on (1) 

TEM observations made in Chapter 2 of morphologically similar damaged material, (2) 

CL observations, (3) close proximity of the damaged material to highly stressed 

contacts, and (4) heat generation estimations, it is suggested that this material may be 

partially mechanically amorphized. The aseismic sliding rates (axial displacement rate 

~3.6μm.s-1) during slip are insufficient to generate sufficient frictional heating to result 

in frictional melting. However, further TEM analysis on these samples will be required 

to test this hypothesis.  

Increasing reactivation angle and slip displacement is accompanied by the onset of a 

stick-slip sliding regime. High slip velocities and large displacements during slip (up to 

~500µm), are associated with the stick-slip behaviour. Simple thermal calculations 

(methodology outlined in Chapter 2) indicate that these slip events can result in the 

intense frictional heating of grain-to-grain contacts and the formation of frictional melt. 

If it is assumed that slip occurs at velocities > 0.15m.s-1, and that the maximum asperity 

size is equivalent to the total slip displacement, the increase in asperity temperature is 

estimated to exceed the non-equilibrium temperature of fusion for quartz (~1500°C 

[Navrotsky, 1994] – see Appendix 5) within the duration of the slip event. 

The glass produced by frictional melting exhibits microstructurally distinct textures 

such as elongate vesicles and rare ribbon-like filaments that were confirmed as being 

characteristic of glass in Chapter 2 using TEM diffraction patterns. The frictional melt 

varies in morphology from small isolated clast-rich zones of melt at asperity contacts to 

semi-continuous essentially clast-free regions of melt located between opposing grain 

interfaces across the slip surface. Where melt layers have been translated to a position 

adjacent a pore or void, the glass is generally observed to have a planar surface that is 

essentially free of incorporated grains and crystalline fragments. Within many samples 

the melt layer grades into an increasingly clast-rich zone that forms areas of melt-

indurated gouge. The differences in clast abundance across the melt layers possibly 

provides an indication of melt temperatures [O'Hara, 2001], with highest temperatures 
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being associated with regions of few clasts and likely to be at, or close to, the melt 

generation surface.  

During some experiments the amplitude of co-seismic stress drop increases with 

successive slip events (e.g., MIS003, where θr = 50º where co-seismic shear stress drop 

increases from 82MPa to 164MPa), even though there is minimal change in differential 

stress at the initiation of each stick-slip event. This could result either from (1) an 

increase in the splay-like secondary fault traces leading to an increased area of fault slip 

being accommodated on more favourably-oriented fault segments, or (2) progressive 

changes in fault zone microstructure leading to more effective slip weakening. 

Microstructural analysis of the fault surfaces at various displacements indicates that the 

most efficient melt generation occurs during the first slip event on the essentially 

undamaged fault surfaces (e.g. see MIS037 in Fig. 13). This raises the possibly that a 

highly viscous melt may actually hinder fault slip during the first slip event by acting as 

a viscous brake [Fialko and Khazan, 2005]. During subsequent slip events, the 

activation of other, more efficient weakening mechanisms, or smaller volumes of melt, 

may increase the slip distance.  

Conditions that influence the volume of melt produced and implications for fault 

weakening 

Quenched frictional-melt or glass forms within the slip zone of many of the samples in 

the current suite of experiments. The volume of melt produced during the experiments 

can be related to (1) the processes of fault development (i.e., the contrast between melt 

development in samples that contain a pre-existing fault surface but are frictionally-

locked and pristine samples of intact rock), (2) the fault reactivation angle (in samples 

with pre-existing faults), (3) the confining pressure and (4) the net displacement and 

displacement rate during the rapid slip events. Essentially, the generation of frictional 

melt correlates with increasing normal stresses and activation of rapid slip events. 

One of the main differences between the fault-core microstructures of newly-formed 

faults (either resulting from intact rock failure or rupture following existing fault lock-

up) are the relative volumes of frictional melt formed during rupture. During intact rock 

failure, frictional melt is not abundant, with only 2 to 3 examples per sample. It 

typically forms either relict cohesive zones of melt-indurated gouge within an otherwise 

fine-grained incohesive layer, or develops at locations where grain impingement has 
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resulted in inferred high local stress concentrations. In contrast, larger quantities of melt 

are generated during the failure of new, optimally-oriented faults after lock-up of pre-

existing misoriented faults. The melt zones are up to 1mm in length and 20µm wide. 

The differential stress supported by the different sample types (intact versus frictionally-

locked) are approximately equal prior to failure; accordingly, the significant differences 

in melt volume are attributed to differences in rupture style. During intact rock failure 

experiments, fault propagation occurs approximately co-seismically, as shown by 

accompanying sample dilation and coseismic pore fluid pressure drop. However, where 

a new optimally-oriented fault forms after frictional lock-up of a pre-existing fault, the 

new fault largely develops more slowly (over a period of >10 seconds) prior to its 

rupture. Fault generation and possible differences in energy expenditure between the 

two modes of fault development are discussed in greater detail in Section 4.2.3. 

During reactivation experiments, melt forms on every fault interface that has 

experienced rapid slip with co-seismic stress drops > ~60MPa. At more favourable 

reactivation angles (i.e. θr ≤ 40º) and low confining pressures (Pc = 50MPa), the 

development of melt is sporadic, with discontinuous regions of melt forming mainly at 

asperity contacts. With increasing misorientation, the increasing displacement 

associated with stick-slip events is accompanied by an increasing volume of melt 

generated during slip. Sliding surfaces begin to develop a continuous layer of melt 

between the two surfaces resulting in localised fault welding. At reactivation angles θr ≥ 

55º, every grain-to-grain contact is separated by a layer of glass; this results in melt-

welding of potentially in excess of 50% of the total fault surface. These melt-welded 

grain contacts form continuous glass-filled layers between the two fault surfaces over 

distances of approximately 1mm. 

To understand implications of the changes in melt volume in terms of possible 

weakening and/or strengthening behaviour, especially in the context of previous high-

velocity friction experiments, it would be useful to constrain melt volume observations 

of the current suite of experiments in terms of the existing terminology of ‘flash 

heating’ and ‘continuous melting’. ‘Flash heating’ was a concept introduced to the fault 

mechanics field by Rice [1999] to describe highly localised frictional heating of stressed 

asperity contacts, resulting in thermal-induced changes to the frictional properties of the 

micro-asperities. However, despite a number of experimental studies claiming to have 

induced fault weakening through flash heating [Hirose and Shimamoto, 2005b; Han et 
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al., 2007; Goldsby and Tullis, 2011], the meaning of this term, including factors such as 

the dimensions of the asperities, remain poorly-defined in a geological context. 

Goldsby and Tullis [2011] undertook high-velocity friction experiments on a number of 

crustal silicate rocks in which significant reductions in friction coefficients were 

observed. Friction coefficients decreased from ~0.6 to 0.1-0.2 with increasing 

displacement. The remarkable weakening was attributed to flash heating of microscopic 

asperity contacts. However, limited microstructural work meant that the physical 

manifestation of this flash heating remained unexplored, including whether or not flash 

heating resulted in localised melting of asperity tips. A number of other experimental 

studies [e.g., Hirose and Shimamoto, 2005b; Di Toro et al., 2006a] have shown two 

stages of fault weakening during the onset of frictional melting. The first stage of 

weakening is typically ascribed to flash heating of micro-asperity contacts, whereas the 

second stage is thought to relate to the development of a continuous melt layer. 

However, a microstructural examination of experiments halted during the initial phase 

of weakening demonstrated the formation of melt patches approximately 110-160μm in 

diameter, about 7-10μm thick and occupying up to 10% of the fault area [Hirose and 

Shimamoto, 2005b]. The authors suggest that the formation of well-defined melt patches 

at this point indicates that melting must have proceeded beyond flash heating.  

Consequently, while flash heating has been explored theoretically and numerically 

[Rice, 1999; Rempel, 2006; Beeler et al., 2008], and is supported by the mechanical data 

from high velocity experiments [Goldsby and Tullis, 2011], the physical processes 

remain enigmatic, due largely to the difficulty, until now, of recovering fault surfaces 

that have experienced low displacement and high velocity slip [Niemeijer et al., 2012]. 

The current experiments highlight both the relevance of conventional experiments in 

understanding incipient slip processes and also the need for detailed high spatial 

resolution analytical and imaging work to be undertaken alongside the mechanical 

observations.  

Timing relationships between the formation of gouge and frictional melt 

The relative timing of the formation of frictional melt compared with other slip-related 

microstructures has implications for understanding dynamic processes during fault 

rupture, including (1) the mechanisms by which melt forms, (2) the timing of high 

velocity slip and (3) mechanisms of fault weakening and strengthening. The close 
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spatial association of gouge and pseudotachylytes in both experimental [Spray, 1995] 

and natural fault zones [e.g. Di Toro and Pennacchioni, 2005], has led to the view that 

cataclasis could be a precursor to frictional melting. However, the microstructures 

formed during the current suite of experiments indicate that the relationship between 

frictional melting and the formation of gouge particles may be complex with cycles of 

frictional melting, quenching and gouge formation occurring multiple times within even 

a single slip event. 

Fault zones formed during intact rock failure, or following frictional lock-up of a pre-

existing fault surface, have complex structures. These include the presence of multiple 

fault strands, overprinting Riedel shears, and the development of glass. Microstructural 

examination of the fault zones indicates that many zones of frictional melt may have 

formed early during fault development on an initially uneven rupture surface. Slip on 

the uneven surface is energetically inefficient and the potential weakening effects of 

melt generation would be short-lived once heat production stopped. It is suggested that 

strengthening of quenching melt resulted in the transfer of slip to elsewhere in the fault 

core, thereby resulting in the subsequent formation of brittle shear bands. The 

overprinting hierarchy of Riedel shears represents a progressive change in slip 

localisation during rupture [Logan et al., 1992]. However, in other locations, both the 

lack of significant deformation of the melt layer, relative to the surrounding fault core, 

and the formation of glass-indurated gouge zones suggests (1) simultaneous formation 

melt and gouge, and/or (2) melt development late in the slip event as a result of slip 

localisation within a well-developed gouge layer.  

For fault reactivation experiments, in many locations the wall rock adjacent to melt-

weld sites is extensively fractured and in some cases pulverised; this has resulted in the 

formation of fragmented grains, many of which show little evidence of rotation or 

displacement and are essentially in situ. It has been suggested previously that zones of 

fine-grained gouge could be the result of implosion brecciation [Sibson, 1986] or cyclic 

loading and unloading of normal stress across the fault during earthquakes [Brune, 

2001]. The large pore spaces in the Fontainebleau sandstone make cyclic loading and 

unloading feasible for slip events > 50-100μm, on the initially planar pre-existing slip 

surface. In terms of understanding a deformation sequence, it does not appear likely to 

be able generate a dense melt layer adjacent to an incohesive and usually highly porous 

gouge layer. Accordingly, it is suggested that in some situations frictional melting 
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occurs prior to the formation of gouge. In experiments halted after a single slip event, 

microstructures are dominated by the presence of frictional melt, with little evidence of 

fracturing or gouge formation. Further, the scarcity, and at times, absence of clasts 

within the melt-welded layer of reactivated unfavourably-oriented faults also supports 

the possibility that cataclastic processes are not always a precursor to frictional melting.  

In other locations there is ample evidence of the occurrence of numerous quartz clasts 

within the melt layer. These clasts could be incorporated either as a result of (1) the 

melting of a gouge rich-layer, or (2) the passive assimilation of clasts into the melt layer 

through fracturing and melt invasion of the wall rock during melt formation. As 

mentioned previously, the differences in clast abundance across the melt layers may 

provide an indication of melt temperatures [O'Hara, 2001] and the location of the melt 

generation surface. Numerous examples of banded melt textures indicate that, even 

during single slip events, multiple generations of melt can occur. It is suggested during 

slip, melt forms at asperity contacts, quenches as the asperities move past each other, 

and then melt again as new asperities come into contact. Accordingly, banding of melt 

may not be a reliable indicator of multiple slip events. 

Influence of melt generation on the formation of the fault damage zone 

The development of fault damage zones potentially has a significant role in the 

mechanical evolution of a fault zone by influencing the near-field stress orientations 

[Faulkner et al., 2006], altering fluid distribution by creating conduits, barriers or 

directionality in flow paths [Caine et al., 1996], and by altering fault strength through 

modifying the fault structure [Biegel and Sammis, 2004; Mitchell and Faulkner, 2009]. 

Therefore, an important aspect of understanding fault development and reactivation is 

identifying the processes that contribute to the mechanical and microstructural evolution 

of fault damage zones. In the current suite of experiments the development of the low-

displacement fault damage zone adjacent to the principal slip surface has, for the first 

time, been integrally linked to the generation of frictional melt on the fault surfaces 

(Fig. 27).  

  



Reactivation of Misoriented Faults 
 

148 
 

 

Figure 27: The role of melt-welding in the formation of damage and the development of new faults. 
(A) A schematic illustration showing a melt welded fault interface. Melt is indicated by the orange layer, 
pores adjacent to the slip surface are indicated as the black voids and the Fontainebleau sandstone fault 
blocks are indicated in grey. If the fault zone is subjected to continued loading, the red circles indicate 
areas of high compressive stress concentration whereas the blue circles indicate regions of dilatant stress. 
(B) During continued loading, fractures form from dilatant areas. In areas close to the fault tip, these 
fractures form the splay-like secondary fault traces. Fault movement is accommodated on the new fault 
traces. Continued reactivation of the existing fault results in additional melt welding and new secondary 
fault traces forming replacing the first. (C) Towards the centre of the sample, fracturing associated with 
melt-welding forms parallel with the misoriented fault zone. Ultimately the melt-welded core is isolated 
from the fault surfaces forming an ‘island’ of quenched melt. (D) On faults where θr ≥ 55º, a new fault 
trace develops from a melt-welded zone via the coalescence of extension fractures. Before the fault has 
propagated through the whole sample, strain is being accommodated on the fault. This in turn, changes 
the stress concentrations at the fault tip and results in the development of wing fractures at a high angle to 
the developing fault surface. 
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At the sample-scale, fault damage associated with the reactivation of misoriented faults, 

is characterised by the formation of triangular zones of intense fracturing that develop 

asymmetrically near the fault ends (see inset, Fig. 27B). The location of these damage 

zones is consistent with areas of dilation associated with fault slip. In this section, the 

role that melt-welding plays in the development of these damage zones will be 

discussed in more depth, commencing with insights about the role that increasing 

displacement has on the microstructural evolution of the damage zone. 

Very little fault damage occurs until after the first stick-slip event (e.g., Fig. 11). At this 

early stage of fault zone development, off-fault damage is limited to a small number of 

intergranular fractures at the fault tips and minor fracturing within the grains 

immediately adjacent to the slip zone (e.g., Figs. 11 & 14). However, at the end of the 

first major slip event, many samples show the development of frictional melt within the 

fault core, which commonly welds localised segments of the fault. If the fault is 

subjected to continued loading, these melt-welded areas can modify local stress-fields, 

resulting in the concentration of compressive and dilatant stresses (Fig. 27A). Fractures  

begin to form from the dilatant regions [Chester and Chester, 2000]. In areas close to 

the fault tip, these fractures nucleate at a more favourable orientation, forming the 

splay-like secondary fault traces (Figs. 27B, 15A). Subsequent fault slip is more readily 

accommodated on the new fractures rather than the melt-welded, pre-existing slip 

surface. However, with repeated reactivation, additional melt welding occurs at the 

junction between the existing misoriented fault and the new fault splay, resulting in 

stress concentrations and the formation of new fractures. The first fracture is deactivated 

as slip is transferred onto the new fracture, resulting in the development of a series of en 

echelon slip zones at the fault ends and the progressive decrease in slip on the 

unfavourably oriented fault segment. Continued deformation at the fault ends leads to 

the development of largely incohesive zones in the dilatant regions at the fault ends. The 

process of developing fault-end splays nucleating from melt-welded zones is more 

prevalent in samples slipped at lower confining pressures (Pc = 50MPa). 

Towards the centre of the sample, fracturing associated with melt-welding forms sub-

parallel with the misoriented fault zone, by-passing the melt zone and forming a series 

of fractures at a high angle to the sample shortening direction (Fig. 27C). Chester and 

Chester [2000] showed that locally inhomogeneous stress states along faults can result 

from variations in fault plane geometry leading to the formation of fractures that locally 
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range in orientation from parallel to perpendicular to the fault plane. It is suggested that 

melt-welded zones form ‘rheological’ asperities that may have a similar effect on local 

stress states as the geometric asperities formed by varying fault topography.  

Many fault-parallel fractures also form asymmetrically around the fault core with 

extensive damage on one side of the fault and essentially no damage on the other (Figs. 

10C, E, 16B, C). Ultimately, after multiple stick-slip events the melt-welded core is 

isolated from the fault surfaces, forming an undeformed ‘island’ of quenched melt 

(Figs. 27C, 13D) and resulting in the progressive widening of the fault core [cf. Spray, 

1992]. Damage is interpreted to form preferentially on the dilatant side of the fault.  

In fault zones where θr ≥ 55º, a new, optimally-oriented fault trace nucleates from a 

melt-welded zone of the misoriented fault through the growth and coalescence of 

extension fractures [cf. Anderson, 1942; Wilson et al., 2003; Mitchell and Faulkner, 

2009]. These fractures form approximately parallel with the axial shortening direction 

(Fig. 27D). However, before the fault has propagated through the whole sample, 

significant strain is accommodated on the fault (e.g., MIS018, Fig. 11E). Constraints 

imposed on the sample by the assembly geometry result in slip preferentially occurring 

through translation of the newly forming hangingwall, causing a change in the stress 

concentrations at the fault tip and the formation of wing fractures at a high angle to the 

developing fault surface (Fig. 27D). 

4.2.2 Formation of damage and frictional melting in a water-saturated environment 

One of the key microstructural observations made during this suite of experiments is the 

difference in the fault-related microstructures between bare interfaces reactivated under 

dry conditions and those reactivated under water-saturated conditions (either wet stress-

driven failure or fluid-driven failure). Although the mechanical data shows comparable 

shear strength and frictional values immediately prior to failure for both wet and dry 

stress-driven experiments (MIS022 and MIS012) at the same effective confining 

pressures, very little wear-related damage occurs on the fault surfaces reactivated in wet 

conditions. Faults slipped in nominally dry conditions show the formation of high 

displacement damage such as gouge and splay-like secondary fault traces. In contrast, 

the saturated faults reactivated under equivalent experimental conditions show no 

evidence of damage on the slip surface where θr ≤ 50º. At a high angle of misorientation 

(θr ≥ 55º), fault damage adjacent to the slip zone mostly consists of low displacement 
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damage such as extension fractures related to Hertzian loading, and fracturing 

associated with stress concentrations at the tips of melt-welded zones (see Section 

4.2.1).  

The relationship between the formation of low displacement damage zones (and related 

porosity development) and the development of frictional melt in water-saturated is 

clearly shown in Figure 28. In this graph the temporal evolution of pore volume is 

shown over the course of an experiment where increases in pore fluid pressure were 

used to repeatedly induce failure. The pore volume of the sample initially decreased 

slightly, possibly representing crack closure, before increasing approximately linearly 

until ~1800 seconds. Up to this point, slip is characterised by regular small 

displacement stick-slip events. At ~1800 seconds, the size of the slip event increases 

markedly and is thought to be associated with the first melt-welding slip event. This 

 

 

  
 
Figure 28: Correlation between change in pore volume, displacement during rapid slip events and 
damage formation in fluid-driven failure experiment (MIS041). 
Black data points represent the change in the pore volume of the sample relative an initial baseline; red 
data points show the temporal evolution of the axial displacement during rapid slip events, including the 
estimated onset of melt welding. Pore volume initially decreases slightly, possibly representing crack 
closure, before increasing approximately linearly until ~1800 seconds and is accompanied by regular 
small displacement slip events. The first melt-welding slip event has a larger displacement than preceding 
events. Subsequently the pore volume increases exponentially prior to the failure of the new, more 
favourably-oriented fault. 
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supposition is supported by the difficultly that was subsequently encountered in trying 

to achieve reactivation, indicating the probable influence of melt welding on the 

cohesive strength of the fault surface. In the period following initial melt welding, fluid-

pressure was repeatedly cycled in an attempt to induce failure. During this period, the 

pore volume was found to increase exponentially prior to the failure of the new, more 

favourably-oriented fault.  

The presence of pore fluids within a fault zone has commonly been cited as a reason for 

the apparent scarcity of pseudotachylytes in natural fault zones [e.g., Sibson and Toy, 

2006]. It has been proposed that thermal pressurisation effects could be sufficient to 

reduce the effective normal stress to a level where frictional melting cannot be achieved 

[Spray, 1992]. Further experimental exploration of these ideas has been hampered by 

technical limitations of the high-velocity shear apparatus, which to date, has not allow 

the testing of materials in a high pore fluid pressure regime. However, experiments 

undertaken during this present study have conclusively demonstrated the formation of 

frictional melt on unfavourably-oriented, water saturated faults, with effective confining 

pressures ≥ 15MPa. In the following section, a potential mechanism to explain both 

observations of minimal fault damage and the generation of frictional melt in water 

saturated environments will be explored. It will be shown that these two seemingly 

incompatible processes could in fact be integrally linked through a process of fluid 

lubrication. 

The absence of wear-induced damage along the slip surfaces of faults activated in high 

fluid pressure environments indicates that the pore-fluid has a more complicated effect 

on the sample interface than merely reducing the effective normal stress. One possible 

explanation for the differences in observed damage between saturated and dry faults, is 

that the interstitial fluids between asperity contacts may act as an elastohydrodynamic or 

boundary lubricant (Fig. 29) [Hamrock et al., 1994; Brodsky and Kanamori, 2001]. The 

concepts of elastohydrodynamic and boundary lubrication arise from engineering 

studies of friction in bearings and gear assemblies. If a pore fluid is present in a slip 

interface, as the displacement and velocity of slip increase, the viscous fluid between 

fault surfaces resists motion forming a localised high pressure gradient [Brodsky and 

Kanamori, 2001]. The increased pressure reduces friction and elastically deforms the 

fault surface, dilating the two sliding surfaces. If the increase in fault aperture and the 

thickness of the lubricating film are greater than the surface roughness, there is no 
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asperity contact and no damage (Fig. 29D) [Brodsky and Kanamori, 2001]. Further, as 

there is no asperity contact there can be no frictional heating or the formation of 

frictional melt. However, elastohydrodynamic lubrication is sensitive to the viscous 

properties of the interstitial fluid, ambient pore-fluid pressures and the normal stress 

acting on asperity contacts [Johnson et al., 1971]. At high normal stresses, the lubricant 

layer is reduced to a film only a few molecules thick, or even a molecular monolayer 

with very different properties from the bulk fluid [Allen and Drauglis, 1969]. In such 

situations the lubrication regime shifts from being dominantly elastohydrodynamic 

through to being ultimately a boundary lubricant where the lubricating properties are 

controlled by the molecular interactions between the fluid film and fault surface (Fig. 

29A, C).  

The effectiveness of water as a boundary lubricant is affected by molecular-scale silica-

water interactions [Lasaga and Gibbs, 1990] that control whether the hydrated fault 

surface will act as a lubricant. In a boundary lubrication regime there is extensive 

asperity contact, with the fault load being essentially supported by asperity contacts. 

Because the two sides of the fault asperities are separated only by the molecular-scale 

layer, the boundary lubricant is not as effective at reducing either friction or preventing 

wear as elastohydrodynamic lubricants. It has been suggested that the frictional 

properties of the fault in a boundary lubrication regime can even be comparable to those 

of solid-solid interfaces [Brodsky and Kanamori, 2001]. With the prevalence of 

asperities under high normal stress, frictional heating does occur, potentially resulting in 

frictional melting of asperity contacts. 

Although aspects of elastohydrodynamic lubrication share similarities with the principle 

of thermal pressurisation [Sibson, 1973], elastohydrodynamic and boundary lubrication 

potentially provide a better mechanical solution for the observed microstructural 

changes. Thermal pressurisation is a process arising from a discrepancy between 

thermal expansion of the bulk pore fluid and fault rock during frictional heating 

[Ghabezloo and Sulem, 2009]. If the hydraulic diffusivity of a porous or damaged fault 

zone is sufficiently high that thermally pressurised fluids can escape efficiently from the 

pressurized slip zone, then fault strength is maintained, and favours the onset of 

frictional melting [Rempel and Rice, 2006]. Although in the current suite of 

experiments, the Fontainebleau sandstone is a macroscopically porous medium, 

microscale hydraulic diffusivity at grain-to-grain interfaces is potentially very low. 
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Figure 29: Elastohydrodynamic and boundary lubrication: its effect on the formation of fault gouge 
and frictional melt. 
(A) Schematic illustration of influence of viscosity, speed and load on the lubrication regime and ensuing 
coefficient of friction. (B) Unlubricated or nominally dry samples are characterised as having a higher 
coefficient of friction in A and asperity interactions lead to the formation of gouge and/or frictional 
melting. (C) Boundary lubrication occurs at high normal stresses and low speeds and is indicated as 
having a high coefficient of friction in A, although not as high as an unlubricated fault. Boundary 
lubrication is thought to potentially hinder the formation of gouge, but frictional heating at highly stressed 
asperity contacts could still result in frictional melting. (D) Elastohydrodynamic lubrication occurs at 
increasing speeds where normal stress is not sufficient cause asperities to penetrate the lubricating film. It 
results in low frictional values (A) and as asperities are not in direct contact, there is no abrasive wear or 
gouge formed.   
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During a fault rupture where slip times are estimated to be < 10ms, the ability of a 

pressurised interstitial pore fluid to escape along a grain-to-grain interface is questioned. 

Although aspects of thermal pressurisation almost certainly play a role in the fluid 

lubrication process, especially in the mixed boundary – elastohydrodynamic lubrication 

and boundary lubrication regimes where asperity contact occurs (Fig. 29A), this 

mechanism fails to capture the subtleties of the nano- and molecular scale fluid-rock 

interactions. Even in a relatively simple quartz-water system, there are complexities in 

both the physics and chemistry of water-rock interaction that are driven by the extreme 

dynamic stress and temperature conditions at the fault interface. These include the 

adsorption of water onto the interface at stressed Si-O bonds, the formation of silica gels 

on the grain surfaces, and potential interactions between protruding polysilicic acid 

groups [Revil, 2001], all of which could influence the mechanical behaviour of the fault. 

In cases where θr ≥ 55º, fault surfaces are locally welded by frictional melt. The 

significant increase in volume of melt between the sample where θr =55º and θr =60º is 

consistent with the ~23% increase in peak normal stress with the 5º increase in 

reactivation angle. It is feasible that asperity contact stresses in a sample where bulk 

normal stress is between 437-539MPa, could be in excess of 4-5GPa assuming a 10% 

real contact area [Logan and Teufel, 1986]. Such high contact stresses could result in 

significant frictional heating during fast slip, potentially inducing localised asperity 

penetration of any lubricating film and/or vaporisation of the interfacial fluid. Any 

transition from elastohydrodynamic lubrication to boundary lubrication or even an 

unlubricated state, would result in a drastic change in wear rate and/or rate of heat 

generation [Sadeghi, 2010]. The presence of water at asperity interfaces may also 

influence melting temperatures and kinetics by serving as a localised flux, potentially 

resulting in the formation of a hydrated silica melt [Kennedy et al., 1962]. During this 

process strained Si-O bonds may preferentially re-bond with OH- anions [Lasaga and 

Gibbs, 1990; Nakamura et al., 2012] assisting in the break-up of the strongly bonded 

quartz crystal framework. Unfortunately, the small melt sample size has restricted 

efforts to investigate this possibility using techniques such as FT-IR spectroscopy. 
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4.2.3 Development of new faults 

Cohesive strengthening through melt welding 

Fault healing and strength recovery is commonly thought of as a time-dependent 

process resulting from compaction and cementation of the fault core, over timescales of 

decades to centuries [Fredrich and Evans, 1992; Tenthorey et al., 2003; Tenthorey and 

Cox, 2006]. However, the current suite of experiments demonstrates that cohesive fault 

strengthening can also occur due to melt welding, almost instantaneously after seismic 

rupture in a stick-slip regime. The most dramatic examples of the effects of fault 

strengthening occurs on unfavourably-oriented faults where θr ≥ 55°. During fault 

rupture significant areas of the fault interface frictionally heats and melts, forming a  

 

 

Figure 30: Mohr diagram showing effect of melt welding on the strength of fault surfaces. 
Mohr diagram illustrating the experimental data from MIS004, where θr=60º. The geometry of the failure/ 
reactivation envelopes reflect the friction coefficient and cohesive strength defined in section 4.1. Ci 
refers to the cohesive strength of intact rock and Cr is an indicative estimation of the cohesive strength of 
the existing fault following melt welding. The first stick-slip event (see inset) occurs on the pre-existing 
fault surface as shown by the intersection of the first Mohr circle (grey circle) with the incohesive fault 
reactivation envelope. During this rupture melting occurs over a considerable area of the fault interface, 
effectively welding the surfaces and increasing the cohesive strength of the fault. Subsequent re-loading 
results in the second (black) Mohr circle intersecting the intact rock failure envelope prior to conditions 
being met that would allow the continued reactivation (intersection with melt-welded reactivation 
envelope).  
 



Reactivation of Misoriented Faults 
 

157 
 

semi-continuous zone of melt-welding. Subsequent re-loading impedes reactivation of 

the existing misoriented slip surface, and drives the formation of a new optimally-

oriented fault. The evolving stress states in sample MIS004 (θr = 60º) are depicted using 

a Mohr circle in Figure 30.  

During this experiment the first slip event occurs on the pre-existing fault, where θr = 

60º (fault ruptures are indicated on the schematic loading curve shown in Fig. 30 - see 

inset). Slip occurs when the first Mohr circle (indicated by the grey line) intersects the 

incohesive fault reactivation envelope, marked with a red star. During this rupture 

frictional melting occurs on the existing fault interface, welding the surfaces at the end 

of the slip event. It is assumed that the main change induced by the generation of 

frictional melt is an increase in the cohesive strength of the existing fault surface and 

that any change in the coefficient of static friction is negligible. Although, the increase 

in the cohesive strength of the fault has not been quantified experimentally, a minimum 

increase can be estimated based on sample behaviour during subsequent re-loading. 

During the second loading the existing misoriented fault de-activates when a new 

optimally-oriented fault nucleates. For this to occur, conditions necessary for the failure 

of intact rock must be achieved prior to the conditions necessary to reactivate the melt-

welded existing fault. On the Mohr diagram this is shown by the intersection of the 

second Mohr circle (black circle indicating the stress states immediately prior to the 

second failure) with the intact rock failure envelope, as indicated with the second red 

star.  

Differences in fault development processes between intact-rock failure and new faults 

formed after frictional lock-up of misoriented faults 

The mechanical and microstructural data from the current suite of experiments indicate 

differences in the process of fault development between fault zones formed during intact 

rock failure and new optimally oriented faults formed following lock-up of 

unfavourably-oriented faults. Faults formed during intact rock failure are observed to 

propagate approximately co-seismically, as shown by the significant co-seismic sample 

dilation and associated large pore fluid pressure drops in experiments where pore fluid 

pressures were monitored. In contrast, new favourably-oriented faults, generated as a 

consequence of lock-up of a pre-existing misoriented fault, propagate ‘slowly’ without 

fast rupture and accompanying stress drop. For ease of discussion, faults that develop by 

this latter method are referred to developing aseismically (or without sudden, 
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macroscopic stress drop), although on a grain scale this is unlikely to be true. Previous 

experiments investigating fault growth have reported acoustic emissions associated with 

microfracture formation and localisation prior to macroscopic failure [Lockner et al., 

1992]. Experiments halted at peak stress and prior to sudden stress drop capture the new 

fault in the process of development, and indicate nucleation from the pre-existing 

unfavourably-oriented fault surface in regions of melt welding. Precursory brittle creep 

on the newly-forming fault is associated with up to ~200µm of displacement.  

The volume of frictional melt produced within the new fault zone is also significantly 

different between the two styles of fault propagation. During intact rock failure, melt is 

localised, forming mainly at restraining bends created by the uneven fault surface, or at 

locally impinging grain contacts. In contrast, the new fault developed during 

reactivation experiments contains much larger volumes of melt, with some melt layers 

being up to 1.2mm long and 20µm wide. This indicates that there is a significant 

difference in the way energy is expended during rupture in the two types of 

experiments. 

During rupture propagation and co-seismic slip, elastic energy that is stored in the wall 

rock, sample assembly and machine is released. The release of this energy produces 

mechanical work that is commonly referred to as an ‘energy budget’ that is defined as:  

 𝑊𝑓 = 𝑄 + 𝐸𝑠 + 𝑈𝑠 5 

where 𝑊𝑓 is total mechanical work, 𝑄 is heat produced during frictional sliding, 𝐸𝑠 is 

energy radiated as seismic waves and 𝑈𝑠 is surface energy for gouge and fracture 

formation [Scholz, 2002].  

Previous research suggests that the majority of energy is expended in heat production 

with relatively minor contribution expended as seismic energy [McGarr, 1999] and an 

almost negligible contribution from the formation of the rupture surface [e.g. Chester et 

al., 2005]. However, the latter of these assumptions is based on Griffith’s fracture 

model where fractures are assumed to propagate under equilibrium conditions [Scholz, 

2002]. During seismic rupture this contribution may be significantly higher as a result 

of complex fracture surface development and gouge production [Reches and Dewers, 

2005]. If a greater dissipation of energy occurs through fracture development, abrasive 
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wear and dynamic pulverization, the amount of energy that is converted to heat may be 

reduced, delaying the onset of melting.  

In light of this discussion it is suggested that the ‘slow’ growth of new, favourably-

oriented faults results in fault zones that are well-developed prior to the first sudden slip 

event. The existence of a fault prior to rupture minimises the proportion of energy that 

is consumed by damage processes and maximises frictional heating and melt 

production. On the other hand, during sudden intact rock failure, fault growth and slip 

are more contemporaneous with fault rupture and associated sudden stress drop. 

Consequently a greater portion of the energy budget is consumed by the formation of 

damage, which results if lower volumes of melt. 

4.3.4 Cathodoluminescence: insights and interpretation 

SEM-CL is an optical phenomena based on the generation of visible radiation through 

the excitation of a sample induced by high-energy electron bombardment [Pagel et al., 

2000]. CL arises from imperfections within the crystal lattice, including structural 

defects and impurities that cause variations in the wavelength and intensity of the 

luminescent emissions. CL is derived from two main sources, intrinsic luminescence 

and extrinsic luminescence. Intrinsic luminescence is characteristic of the host material 

and enhanced by structural defects such as vacancies in the crystal lattice, dislocations 

and shock damage that distorts the crystal lattice [Marshall, 1988; Gucsik et al., 2003]. 

Extrinsic luminescence is caused by elemental impurities that are incorporated within 

the crystal lattice as either interstitial ions (occupying a non-structural position) or 

through the substitution of the silicon cations or oxygen anions by different elements 

[Marshall, 1988]. The broad CL emission bands produced by quartz are often 

associated with activation by lattice defects (self-trapped exciton, oxygen vacancies, 

non-bridging oxygen hole centres) and the incorporation of trace elements (e.g. Al, Ti, 

Ge, Fe, H, Li, Na) [Stevens Kalceff and Phillips, 1995; Gotze et al., 2001; Gotze, 2012 

and references contained therein]. However, assignment of spectral peaks to a particular 

defect centre or impurity is often difficult due to the complex interaction between the 

activator and surrounding lattice structure [Gotze, 2012]. 

Interpretation of CL spectra is further complicated by the lack of a unique relationship 

between the energy of the emitted CL photons and the chemical state of a luminescent 

impurity, as exists for X-ray emission. Similarly, the intensity of the emission band is 
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not necessarily proportional to the concentration of the emitter, with the shape and 

intensity of the CL bands being dependent on a range of factors, including the crystal 

structure, chemical composition and both the collection conditions and measurement 

system [Remond et al., 2000; Gotze, 2012]. So important are the operating conditions to 

any measurement, that without corrections for system response and detailed information 

on the beam and measurement conditions, it may not be possible to directly compare CL 

spectra acquired with different systems [Remond et al., 2000].  

Despite the complexity of understanding the origin of the luminescence, CL provides 

unique information on the internal structures and growth and deformation history of 

quartz that are not as readily discernible by any other technique [Gotze, 2012]. Although 

this method can be used to identify subtle changes in crystal structure and composition, 

it has not been extensively used during the study of experimentally produced 

pseudotachylytes, possibly due to resolution limitations of many SEM-CL systems. The 

SEM cathodoluminescence (SEM-CL) results in this study indicate that a unique 

emission signature is associated with the formation of frictional melt in Fontainebleau 

sandstone. The CL spectra is dominated by broad peaks and an almost total absence of 

the sharp emission lines associated with the incorporation of trivalent ions in the form 

of rare earth elements [Remond et al., 2000].  

In one of the few identified studies were CL was undertaken, Pec et al., [2012] used 

panchromatic SEM-CL to analyse partially amorphous material found within 

experimentally deformed granite gouges and noted the high levels of luminescence 

within the slip zones and at sites of high stress. These observations are consistent with 

the bright luminescence that was observed in the high stress zones immediately adjacent 

to the melt in fault core of the current suite of experiments and may represent an 

increase in defect density within the 500nm wide crystalline zone adjacent to the melt 

(e.g., Fig. 19C, F).  

Interestingly, spectral analysis of experimentally shocked natural quartzites shows a 

distinct difference in the CL spectra between unshocked and shocked samples, with a 

shift in the centre positions of the broad luminescence bands after experimental 

treatment at 12GPa and 100-750°C [Gucsik et al., 2003]. The dominant peak forms 

within the blue light spectrum between 2.9-3.4eV (λ=426-368nm), with exact position 

depending on the temperature conditions. The peak is attributed to the formation of 
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intrinsic defects resulting from distortion of the SiO4
4- tetrahedra and possible partial 

amorphisation. A similar shift in peak shape and location occurs in the spectra collected 

from melt in the current suite of experiments. A dominant broad band occurs at ~3.0eV 

(λ = 410nm) and secondary peaks located at ~2.55eV (λ = 485nm) and ~1.9eV (λ = 

650nm) (Fig. 20H). The variations in intensity within the melt layers are possibly 

related to the micro-distribution of activator elements such as aluminium [Gucsik et al., 

2003]. 

The same distinctive spectra are also observed in damaged material in the fault core of 

optimally-oriented faults that have slipped aseismically for distances > 2mm, and also in 

melt generated under water-saturated conditions. However, in both cases luminescence 

is less intense than for melt formed under nominally dry conditions. For the 

aseismically slipped faults, the slip rates of these experiments are interpreted to be 

insufficient to induce frictional melting of the fault interfaces (see thermal calculations 

in Chapter 2). Instead it is thought that these zones may represent mechanically 

amorphized or partially amorphized material where changes in the lattice structure and 

development of defects results in the development of a spectral signature similar to that 

of melt formed under both nominally dry and saturated conditions. Boggs et al., [2001] 

observed that CL-bright and -dark zones within shocked quartz of the Ries impact 

structure correspond to the presence of planar deformation features with the non-

luminescent regions associated with amorphous material. These observations were 

attributed to a possible lack of suitable activators or a high density of closely-spaced 

energy levels that served as traps that prevent the emission of photons. Whether these 

explanations apply to the present suite of experiments requires further analysis of both 

the structural and trace element composition of the quartz and damaged materials using 

such methods as TEM and ion microprobe. However, the identification of a distinct 

change in CL emissions with the formation of frictional melt and possible 

amorphous/damaged material, highlights the value of further exploring CL techniques 

as a means of analysis for experimentally-deformed fault surfaces. This method 

potentially provides a rapid means of identifying modified or potentially amorphous 

material that could then be the subject of other analysis. 

Within the 6 hour hydrothermal treatment (T = 900°C, Pc = 250MPa, Pf = 150MPa) of a 

melt-bearing sample, there was almost complete overprinting of melt textures. Imaging 

using BSE-SEM showed the hydrothermally treated melt zones were indistinguishable 
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from the surrounding quartz grains. In CL-mode, the distinctive melt-related emissions 

were almost completely replaced by emissions typically of the hydrothermal quartz with 

melt being preserved only in a few locations, possibly as a result of isolation from the 

hydrothermal fluids. These results provide insights into the longevity of melt and the 

deformation processes activated during hydrothermal isostatic pressing (HTIP).  

The hydrothermally precipitated quartz produces a short-lived, high-intensity blue 

luminescence with an emission band at approximately 3.0eV (λ = 410nm); this is 

distinguishable from the melt/amorphous material by the lack of secondary bands at 

2.55eV and 1.9eV. The high intensity of the CL could result from either an increase in 

CL activators such as aluminium [Alonso et al., 1983; Gotze et al., 2001], or the 

presence of defects such as (H3O4) centres [Yang and McKeever, 1990], both of which 

are associated with 3.2-3.1eV emissions. Similar CL-bright regions were observed by 

Giger [2007] in hydrothermal overgrowths produced during the HTIP of fine-grained 

quartz gouge. Microprobe analysis revealed elevated Al-content in these overgrowth 

zones. 

Previous analysis of microstructures formed during both HTIP and deformation of 

quartz aggregates [e.g. Cox and Paterson, 1991; Dewers and Hajash, 1995; Kanagawa 

et al., 2000; Giger et al., 2007] and fault healing experiments [Tenthorey and Cox, 

2006] has led to the recognition that dissolution-precipitation creep is activated on 

laboratory timescales under the same experimental conditions used during the 

hydrothermal treatment of the melt-welded interface. Evidence for the solution-transfer 

interpretation includes changes in grain shapes and grainsize distribution, 

interpenetration of grains and the formation of ridge and plateau structures at grain 

interfaces. In the current sample, sub-micron sized particles are absent from the HTIP 

fault surfaces, suggesting coarsening through the process of Ostwald ripening [Parks, 

1984]. However, the apparent lack of grain interpenetration on remaining gouge 

particles revealed by the CL imaging suggests that stress-driven solution-transfer 

processes have not been activated in this sample during the HTIP process.  

The rapid overprinting of melt-related textures and accompanying CL spectral signature 

has implications for thin layers of silica pseudotachylytes in natural fault systems. 

Within hours of rupture in a fluid-active fault zone, all evidence frictional melting may 

be removed from the rock record. Given that frictional melt has been shown to form at 
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normal stresses >300MPa, on room temperature, small displacement (<600μm) slip 

experiments in a quartz sandstone, it is suggested that frictional melting may play a 

more significant role in crustal fault processes than previously thought. This idea, and 

the implications of thin layers of melt forming on natural faults, is discussed in more 

depth in Chapter 4. 

5. Conclusions 
A series of room temperature experiments has been undertaken using Fontainebleau 

sandstone to explore the mechanical and microstructural evolution of fault surfaces 

inclined between 25º and 70º to the maximum shortening direction, representing faults 

that vary from optimally-oriented to severely-misoriented for failure. These faults have 

been reactivated in both dry conditions and at controlled pore water pressures, using 

two different mechanisms of loading. The first, referred to as ‘stress-driven failure’ 

involved increasing the axial load at constant rate until failure, whereas ‘fluid-driven 

failure’ was achieved by maintaining a constant axial load and increasing pore fluid 

pressure until slip occurred.  

Although initial reactivation of the faults obeys frictional theory, continued reactivation 

is strongly influenced by the dynamic evolution of the fault surface, most notably 

through the development of frictional melt. Rapid slip events in the stick-slip regime are 

shown to form a locally continuous layer of frictional melt in both the dry and water-

saturated samples, with the extent of melt formation being positively correlated with 

increasing angle of misorientation and associated increase in normal stress. Structural 

analysis of the fault core over a range of scales, reactivation angles, confining pressures 

and displacements, has provided unique insights into the evolution of the fault surface. 

This includes through the development of frictional melt and its subsequent impact on 

the mechanical strength and microstructural development of the fault. Using BSE-SEM 

imaging, pseudotachylyte is identifiable in the fault core by the formation glass layers 

that are a different intensity to the surrounding quartz. Key textures that distinguish this 

material as being of a melt origin include the presence of entrained clasts within a non-

porous matrix, strained vesicles, occasional drawn out filaments and the invasion of 

adjacent fractures, which produces an uneven melt substrate-boundary. SEM-CL 

investigations reveal that the melt has a distinctive luminescent signature with the 
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dominant broad band centred at ~3.0eV (λ = 410nm) and secondary peaks at ~2.55eV (λ 

= 485nm) and ~1.9eV (λ = 650nm).  

Samples in which deformation has been halted prior to the activation of a rapid slip 

event show evidence of the formation of thin bands of sub-micron-sized gouge that 

forms a discontinuous, up to 1μm thick layer along the slip surface. The gouge layer is 

comprised of fragments that range in size between ~100-500nm; they are set within a 

matrix that is unresolvable using BSE-SEM imaging, and potentially represents a 

partially amorphous matrix. The formation of this fine gouge layer prior to the first 

stick-slip event is in broad agreement with the continuum of behaviours proposed in 

Chapter 2 and is interpreted to form as a precursor to the frictional melt. Aseismic slip 

on favourably-oriented faults also produces a highly damaged and possibly amorphous 

material at grain-to-grain contacts. This material is morphologically different from 

crystalline gouge and in CL produces an emission profile that is essentially the same as 

the frictional melt.  

The generation of pseudotachylyte on slip surfaces has significant effects on the 

strength of the fault via a process termed ‘melt-welding’. In this process melt quenching 

after melt production welds the grain-to-grain contacts. Microcomputed X-ray 

tomography of the fault zone has allowed estimation of the three-dimensional spatial 

extent of frictional melt on slip surfaces. Approximately 50% of the total fault area is 

fused, thereby significantly increasing the cohesive strength of the fault. Melt-welding 

is observed to act as a catalyst in the formation of fracture damage along the slip zone, 

with much of the gouge, microfractures and secondary fault traces observed to initiate at 

sites where quenched frictional melt is subsequently sheared. On the most 

unfavourably-oriented faults the increase in cohesive strength due to melt welding is 

sufficient to drive fault lock-up and results in the generation of a new favourably-

oriented fault.  

Frictional melt also forms during water-saturated stress- and fluid-driven failure, with 

no apparent change in peak shear stress between wet and nominally dry samples. Melt 

formed under hydrous conditions includes a larger number of entrained clasts than melt 

formed under dry conditions, possibly indicating a lower melt temperature. CL 

emissions have similar peak location and geometry as melt formed under dry 

conditions, but luminesces at a lower intensity. Microstructurally the faults reactivated 
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by fluid-driven processes differ from those reactivated by stress-driven failure, by 

showing little evidence of fault surface modification by attrition-related wear processes 

suggesting a mechanical contribution by mechanisms such as elastohydrodynamic and 

boundary lubrication.  

Hydrothermal treatment of the fault zone for a period of 6 hours results in the melt 

being readily destroyed. CL analysis suggests that quenched melt devitrifies in situ and 

forms epitaxial overgrowths on the adjacent grains. Some local transport and 

precipitation of the silica has produced mantles of hydrothermally precipitated quartz on 

clasts in the fault core. However, there is no conclusive evidence for the activation of 

stress-driven solution transfer processes on the time scale of the hydrothermal 

treatment.  

Finally, the ease with which pseudotachylytes have been generated on these quartz 

sandstones at room temperature and low effective confining pressures (Pc’ > 15MPa ), 

indicates that the formation of frictional melt in natural fault zones may be more 

prevalent than previously thought. However, the preservation potential of thin melt 

layers on geological timescales is probably low, given the rate at which pure-silica 

pseudotachylytes devitrify in hydrous environments.  



166 
 

 



167 
 

 

Chapter 4 

Frictional melt formation during crustal 

faulting: implications and future directions 
 

1. Dynamic changes on fault interfaces: implications for 

crustal faulting processes 
The propagation of seismic slip is generally attributed to the activation of fault 

weakening mechanisms at high slip velocities [Di Toro et al., 2006b]. During seismic 

rupture, dynamic conditions on the slip interface alter the structure and chemistry of the 

fault surfaces [Niemeijer et al., 2012]. Extreme thermal and mechanical conditions 

induce microstructural changes from the micron to molecular scale, resulting in 

deviations in mechanical behaviour away from that predicted by empirical frictional 

laws. The increased understanding of dynamic fault processes has led to a growing 

realisation that in order truly understand the physics of the macro-scale brittle-frictional 

behaviour, we must first comprehend the microscale processes [Viti, 2011]. However, 

despite the significant advances that have been made towards understanding fault 

processes at high slip velocities, much remains uncertain. Little is known about the 

mechanisms that drive fault instability and the microstructural processes that control 

mechanical weakening have been poorly explored [Niemeijer et al., 2012]. The links 

between experimental and natural fault surface processes remain largely speculative, 

due to both apparatus limitations and the meta-stability of many slip-related products. 

With the exception of frictional melt (pseudotachylyte) formation, none of the 

experimentally inferred fault weakening mechanisms have been conclusively 

demonstrated to operate within natural faults. However, the results presented in this 

thesis contribute new insights into the behaviour and microstructural development of 

fault surfaces, especially during the early stages of seismic instability. 
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Figure 1: Comparison between experimentally-derived fault strength and the differential stress 
required to theoretically reactivate cohesionless thrust faults in the dry continental crust 
Differential stress profiles for frictional reactivation of a cohesionless thrust fault with varying 
reactivation angles (θr) at increasing depth in the crust. Shaded regions indicate the experimentally-
derived strength data. Red area shows the differential stress value at yield point for optimally-oriented 
fault deformed at elevated temperatures (Chapter 2) and the pale blue rectangle indicates yield point 
values from the misoriented fault experiments (Chapter 3). 
 

This work is based on the findings of two series of experiments undertaken at realistic 

crustal stress conditions (Fig. 1) and over small slip displacements using a conventional, 

internally-heated, triaxial deformation apparatus. Experiments used pre-ground bare 

interfaces on pure quartz sandstone to simulate the growth and development of localised 

slip within fault zones. Two types of experiments have been undertaken: the first set of 

experiments presented in Chapter 2, involved high temperature (400-927ºC) reactivation 

of approximately optimally-oriented fault surfaces. The second suite (Chapter 3), was 

undertaken at room temperature on faults oriented at between 25-70º to the shortening 

direction, representing faults that range from optimally-oriented to severely-misoriented 

for reactivation. All experiments were slipped at stress conditions comparable to 

conditions in faults in the upper to lower seismogenic regime in the continental crust. In 

Figure 1, experimental fault strength data from immediately prior to rupture is 

compared with the differential stress profiles for frictional reactivation of a cohesionless 

thrust fault with varying reactivation angles (θr) at increasing depth in the crust. The 
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differential stress at the point of reactivation is assumed to be linearly dependent on 

depth, assuming that, for a reverse fault, σv = σ3. Differential stress is calculated by: 

 (𝜎1 − 𝜎3) =
𝜇𝑠(𝑐𝑐𝜕𝜃𝑟 + 𝜕𝑡𝑡𝜃𝑟)

(1 − 𝜇𝑠𝜕𝑡𝑡𝜃𝑟)
𝜌𝜌𝜌 1 

Where 𝜇𝑠 is the coefficient of static friction assumed to be 0.75 (within the typical 

frictional range defined by Byerlee [1978] ), 𝜌 is crustal rock density (assumed to be 

2400kg/m2, 𝜌 is gravity and 𝜌 is depth [Sibson, 2004]. The estimated strength of an 

approximately optimally-oriented thrust fault with the same coefficient of static friction 

as the Fontainebleau bare slip interfaces (i.e. 𝜇𝑠 = 0.5) is also shown for reference (see 

red line, Fig. 1). 

A novel aspect of this research has been the combination of realistic normal stresses 

with small displacement, sub-seismic to seismic slip events to examine processes 

operating during the early stages of fault weakening (Fig. 2). Much of the seminal work 

 

 

Figure 2: Comparison of experimental conditions for high velocity experiments on quartz interfaces 
Plot of the range of slip velocities and normal stress conditions for experiments undertaken on pure 
quartz, bare fault interfaces. The current experiments were undertaken on a gas-medium triaxial 
apparatus, whereas all other experiments were undertaken on a rotary shear type apparatus. Note that, 
during the current experiments, significantly higher normal stresses have been used, in contrast to 
previous high velocity experiments. Note also, that the indicated slip velocities for the current rapid slip 
experiments are estimated on the basis of the recorded seismic data. However, these slip rates could be 
considerably faster. 
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investigating high-velocity slip behaviour, has required the use of unrealistically low 

normal stresses and large sliding distances [e.g. Shimamoto and Tsutsumi, 1994; Hirose 

and Shimamoto, 2005a]. However, these high-velocity experiments have revealed 

complex, and as yet poorly understood, mechanical behaviour during the initial stages 

of seismic slip [e.g. Di Toro et al., 2006b; Proctor et al., 2014]. Much of the uncertainty 

arises from the technical difficulty associated with producing and recovering high 

velocity, but small displacement slips [Niemeijer et al., 2012]. In contrast, the 

experiments presented in this thesis show the onset of microstructural changes, such as 

amorphisation and frictional melting, occurring at slip distances that are up to several 

orders of magnitude smaller than previously recognised. The use of sophisticated 

microstructural techniques including, high resolution FE-SEM and CL-SEM, FIB-TEM 

and microcomputed X-ray tomography, has enabled documentation of these early slip-

related microstructures over a range of scales, and in both two- and three-dimensions. 

These results have significant implications for our understanding of (1) the evolution 

fault strength and mechanical behaviour, (2) fault behaviour in both hydrous and 

anhydrous environments, and (3) more broadly, on the conditions and environments in 

which pseudotachylytes form. These implications are discussed in more detail in the 

following sections. 

1.1 Implications of amorphisation and frictional melting on the strength 

and mechanical behaviour of faults 
The experiments presented in this thesis show, for the first time, an evolution in 

microstructures on fault surfaces that occur within slip distances of 50-500µm. The 

microstructural changes are correlated with changes in mechanical behaviour. Initial 

aseismic sliding is associated with the formation of a gouge layer that is interspersed 

with potentially amorphous material. After the onset of a sliding instability and rapid 

slip, the fault surfaces show clear evidence for the formation of pure-silica 

pseudotachylyte. Previously, the results of high-velocity friction experiments have 

predicted fault-weakening distances to be in the order of 0.1-1+ metres [e.g. Di Toro et 

al., 2006a; Faulkner et al., 2010]. However, weakening distances of 4-40μm inferred 

from models [Beeler et al., 2008], are more consistent with the potential weakening 

distances in the current small-displacement experiments. The onset of mechanical and 

microstructural changes during these sub-millimetre displacements has implications for 
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earthquake source parameters such as fault weakening distances, and potentially for co-

seismic fault strength and behaviour.  

The potentially amorphous material formed during aseismic slip, at both room 

temperature and elevated temperatures, is interspersed with crystalline clasts forming a 

matrix that is similar in appearance to the ‘gels’ produced during some high velocity 

sliding experiments [Goldsby and Tullis, 2002; Di Toro et al., 2004; Hayashi and 

Tsutsumi, 2010]. This amorphous material is considered to form by intense 

comminution of the gouge particles resulting in a loss of crystalline structure, in a 

similar manner to previously observed grinding or mechanical induced amorphisation 

[Yund et al., 1990; Watson and Parker, 1995; Nakamura et al., 2012]. The possible 

presence of mechanically amorphized material at the slip interface has implications for 

energy dissipation, dynamic friction properties and fault stability. Once slip has 

initiated, the early generation of an amorphous layer could significantly reduce the 

temperatures required to achieve viscous flow (glass transition) [Navrotsky, 1994], 

thereby potentially enhancing formation of frictional melt. 

Slip-induced frictional-melting occurs within the first 50µm of rapid fault slip during 

stick-slip behaviour, forming discontinuous to semicontinuous melt layers up to 2µm 

thick, over 10-60% of the fault surface. In contrast, slip distances of greater than 3 

metres were required for the onset of assumed continuous melting on novaculite 

surfaces during high velocity friction experiments undertaken at 12.5MPa normal stress 

[Di Toro et al., 2006b]. In the experiments presented in Chapter 2, changes in the 

morphology of the frictional melt textures on small displacement slip surfaces are 

associated with identifiable changes in slip acceleration and velocity. Comparatively 

high-velocity slip events are associated with the formation of drawn out ‘ribbon’ 

textures, glass filaments and striated glass patches, implying a comparatively low melt 

viscosity. In contrast, low-velocity slip is associated with the formation of localised 

glass patches that contain a higher abundance of clasts and no evidence of significant 

melt redistribution resulting from melt flow during slip. These glass patches are inferred 

to indicate higher melt viscosities. 

It was proposed that changes in melt-viscosity could be driven by ‘over-shoot’ of the 

melting temperature resulting in the significant superheating of both the crystalline wall 

rock / clasts and melt. Although potentially applicable to many types of natural fault 
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surfaces, the relatively high viscosity and polymerised structure of the silica melt means 

that that superheating may play a more significant role in the formation of melt in a 

quartz- or other framework-silicate-dominated system, than would perhaps be the case 

in faults containing other mineral assemblages. Additionally, the relatively fast melting 

kinetics of more mafic minerals could result in a more rapid transition into a melt-

lubricated viscous-shear regime, potentially minimising frictional heating and more 

sluggish melting of quartz clasts. This work has highlighted the need for a better 

understanding of the physics of melting processes including (1) how the melt front 

propagates away from the melt generation surface in different minerals, (2) how the 

melting process transitions from the generation of localised melt patches into 

continuous melting, and (3) the relative timing between heating and the onset of melt 

lubrication. Improved knowledge in these areas would significantly improve 

understanding of the role of frictional melting in influencing fault mechanics early 

during slip events.  

Experiments show that, upon quenching melt welds the fault slip surface, increasing 

cohesive strength and contributing significantly to the formation of fault damage during 

subsequent slip events. In Chapter 3, it was shown that on the most unfavourably-

oriented faults, the increase in cohesive strength associated with melt welding drives 

fault lock-up and generation of new optimally-oriented faults. These results suggest that 

micron-thick layers of melt may play a ‘hidden’ role in the development of damage 

zones in natural faults by modifying local stress-states, resulting in the formation of 

lateral and terminal damage zones, including the asymmetric damage patterns 

commonly observed on natural faults [e.g. Flodin and Aydin, 2004]. In extreme 

examples, the generation of pseudotachylyte and melt-welding could result in fault 

death and the consequent migration of slip to new rupture surfaces within the host rock 

[e.g., Di Toro and Pennacchioni, 2005]. 

The close spatial association of cataclasites and pseudotachylytes observed in both 

experimental [Spray, 1995] and natural fault zones [e.g., Di Toro and Pennacchioni, 

2005], has given rise to the view that cataclasis is a precursor to frictional melting. 

Further, it has been suggested that the transition from cataclasites to pseudotachylytes 

may, in some situations, record the evolution from aseismic creep to seismic slip [Di 

Toro and Pennacchioni, 2005]. However, the microstructures formed during the current 

suite of experiments indicate that the relationship between frictional melting and 
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formation of gouge particles may be more complex. The formation of clast-free layers 

of pseudotachylyte during the first slip event potentially provides evidence for melt 

generation without prior gouge formation. With continued loading, fault damage 

nucleates from areas adjacent to melt-welded regions. Stress cycling induced by the 

interaction between pores and highly stressed grain-to-grain contacts [Chester and 

Chester, 2000; Brune, 2001] may result in the intense fragmentation of areas adjacent to 

the melt zones. Ultimately continued damage leads to a widening of the fault zone, 

which may potentially inhibit future slip localisation and melt development.  

1.2 Implications of identified fault slip behaviours in hydrous 

environments 
Fault zones play an important role in localising and directing crustal fluid flow [Caine 

et al., 1996; Cox et al., 2001; Faulkner et al., 2010]. In fluid-active faults, the evolution 

of shear stress and pore fluid pressures may be coupled in complex ways, resulting in 

fault rupture being induced by either changes in pore fluid pressure (fluid-driven 

failure), or changes in stress states (stress-driven failure) [Cox, 2010]. The experiments 

presented in Chapter 3 provide new insights into slip behaviour and the generation of 

fault damage in a hydrous environment through both stress- and fluid-driven failure. 

Additionally, the longevity of slip-related microstructures has been explored in both 

Chapters 2 and 3, through the introduction of hydrothermal fluids following slip. 

Implications of key results are discussed in greater depth in the following section. 

The most notable difference between the microstructures formed in the cores of faults 

reactivated under dry versus water-saturated conditions, is the absence of gouge and 

attrition-related wear products in the hydrous faults. These results suggest that pore-

fluids have a more complicated effect on the slip interface than simply reducing the 

effective normal stress. It was proposed that the activation of molecular- to nano-scale 

lubricating effects of interfacial fluids may inhibit the formation of damage through the 

process of boundary and elastohydrodynamic lubrication [Hamrock et al., 1994; 

Brodsky and Kanamori, 2001]. Although substantial evidence from the engineering 

field supports the idea of interfacial fluid lubrication, the concept is experimentally 

untested in geological materials. Identification and isolation of specific lubricating 

process would be difficult, especially when coupled with potentially significant changes 

in co-seismic fault porosity and permeability, and the activation of other mechanisms 

such as thermal pressurisation. However, the lack of abrasive wear, especially in fluid-
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driven reactivation experiments, has implications for the interpretation of fault 

processes in high pore-fluid factor environments. 

There is a long-held belief that pseudotachylytes do not form in saturated environments 

[Sibson, 1973, 1975; Magloughlin and Spray, 1992; Sibson and Toy, 2006]. At mid- to 

lower-crustal conditions, the potential for frictional melt generation is reduced by 

thermal activation of fluid-controlled deformation mechanisms such as hydrolytic 

weakening and dissolution-precipitation creep [Griggs, 1967; Cox, 1998 and 

unpublished data]. In the low temperature environments of the upper crust, fluids are 

thought to inhibit melt formation by more efficiently transporting heat away from 

asperity contacts [Violay et al., 2014], or through activation of thermal pressurisation 

[Sibson, 1973] and interfacial lubricating mechanisms [Brodsky and Kanamori, 2001]. 

However, documented examples of natural pseudotachylytes forming in fluid-active 

settings such as subduction zones [Austrheim and Andersen, 2004; Rowe et al., 2005; 

Ujiie et al., 2007], landslips [Masch et al., 1985; Lin, 2008a] and even during drilling 

processes [Killick, 1990] have led a number of authors [Rempel and Rice, 2006; 

Bjornerud, 2010] to question these assertions. However, until now technical and 

apparatus limitations have prevented the exploration of frictional melt formation in 

hydrous conditions, at controlled fluid pressures. 

In Chapter 3, experiments exploring the reactivation of unfavourably-oriented faults 

conclusively demonstrated that frictional melting does occur on sliding interfaces in 

quartz rocks under controlled pore-fluid pressures and at high effective normal stresses. 

Given the fluid-active nature of many crustal faults, these results indicate that the 

formation of pseudotachylyte in quartz-rich rocks may be more prevalent and play a 

more significant role in crustal fault mechanics than previously thought. However, the 

thickness (< 2μm) and metastability of the amorphous material and frictional melt, 

suggests that similar textures on natural faults might not be preserved over geological 

timescales, especially in the presence of reactive pore fluids. During the current 

experiments, it has been shown that under hydrothermal conditions, melt textures are 

rapidly destroyed over time scales of <1hour at 500ºC. Extrapolating these results to 

natural fault zones at upper- to mid-crustal conditions, it is suggested that on time scales 

shorter than interseismic periods, all evidence of frictional melting could be removed 

from the microstructural rock record. These results provide a tangible reason for the 

apparent scarcity of silica-rich pseudotachylytes in nature. 
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1.3 Implication for the conditions and environments in which 

pseudotachylytes form 
The presence of fault-related pseudotachylyte is generally conceded to be the only 

unequivocal evidence of seismogenic slip within the geological record [Sibson, 1975]. 

As such, understanding conditions of melt formation places important constraints on the 

interpretation of the history of exhumed faults. Although pseudotachylytes have been 

documented on faults exhumed from depths from 3-60km, observations of natural 

pseudotachylytes remain rare [Sibson and Toy, 2006]. This has led to the view that 

certain factors must supress fictional melting on many fault zones [Bjornerud, 2010]. 

Among factors thought to hinder the formation of frictional melt is the thickness of the 

slip zone, potentially resulting in mechanical work being distributed over a wider area, 

or the activation of other fault weakening mechanisms. However, the evidence of 

micron-scale frictional melt that has been presented in this thesis challenges a number 

of previous conclusions about the environment in which pseudotachylyte forms, 

including that: (1) frictional melt generation is largely restricted to low porosity 

crystalline rock [Sibson and Toy, 2006]; (2) frictional melting occurs mainly in dry 

environments with no intergranular pore fluids [Spray, 1992; Sibson and Toy, 2006]; (3) 

the host rock is intact or faults have a high cohesive strength [Sibson and Toy, 2006]; 

(4) quartz rocks may not form frictional melt due to the weakening effects of hydrated 

silica gels [Goldsby and Tullis, 2002]; and (5) seismic velocities and slip distances of 

centimetres to metres are required to frictionally melt rock under crustal conditions [Di 

Toro et al., 2006b]. These assumptions have been based on observation of both natural 

pseudotachylytes and high velocity friction experiments.  

Importantly, it has been shown in the experiments presented in this thesis, that faults 

within a macroscopically porous, siliceous sedimentary rock can generate frictional melt 

under realistic crustal stress conditions, in both dry and water-saturated environments. 

However, the small melt volumes produced implies that silica-melt potentially could go 

unrecognised in both field and laboratory settings. This highlights the importance of 

analysing small displacement faults, using high-resolution microstructural techniques, 

to explore the evolution of microstructures and micromechanics at the sub-micron scale. 

Nevertheless, small melt volumes are also susceptible to such processes as 

devitrification and recrystallization, or mechanical overprinting during continued 
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deformation, making the microstructural record of the presence of glass potentially 

transient and readily destroyed.  

2. Future research directions  
In this thesis it has been demonstrated that frictional melting readily occurs during small 

displacement (< 500μm) slip events on porous, pure quartz interfaces at normal stresses 

of ~200-550MPa. These experiments have been completed on both favourably- and 

unfavourably-oriented faults over a range of experimental conditions including, 

nominally dry and fluid-saturated environments. Although the results have expanded 

our understanding of aspects of fault behaviour, they have also generated many 

questions and highlighted a number of areas that warrant further research. For instance, 

a closer integration of high velocity, large displacement experiments with low 

displacement triaxial experiments would increase understanding of the mechanisms that 

enable the transition from a frictionally locked or aseismically creeping interface to 

extreme velocity weakening. Better constraints on factors such as real contact area and 

slip duration would enable improved numerical modelling of the temperature evolution 

on the slip surface. The microstructural development of unfavourably-oriented faults 

could be used to guide modelling of stress orientations and thereby improve 

understanding of the processes involved in the reactivation of inherited faults. Further 

experiments using different rock types would provide insights into the applicability of 

the current observations to faults containing other mineral assemblages and levels of 

porosity. In the following section a number of avenues for potential investigation are 

discussed including, where relevant, progress that has been made to address them. 

2.1 Improved understanding of slip duration and evolution of slip 

velocities  
The novel use of seismic recording equipment has allowed a systematic distinction to be 

made between low and high velocity slip regimes during stick-slip behaviour on 

optimally-oriented faults at elevated ambient temperatures (Chapter 2). Differences in 

sliding velocity were correlated with variations in the development and morphology of 

the frictional melt, suggesting that melt generation alters the dynamic properties of the 

slip interface. However, technical limitations of the equipment have resulted in potential 

under-sampling of velocity during slip events, and consequently there are poor 

constraints on slip duration and absolute slip velocity. Achieving better precision in the 
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time resolution of slip duration, velocity and, if possible, characterising the evolution of 

a single slip event, are crucial to understanding the process of melt generation. Such 

knowledge is needed to facilitate detailed numerical modelling and allow further 

exploration of (1) the potential for superheating of both fault interfaces and melt, and 

(2) the role of pseudotachylyte in initiating and arresting seismic slip.  

To address this issue, a system is needed that can sample and record displacement 

information at the estimated rupture velocity (equating to approximately the shear wave 

velocity [Johnson and Scholz, 1976; Scholz, 2002]). In collaboration with the Centre for 

Gravitational Physics at the Australian National University, work has commenced on 

developing a laser interferometry system that will have a time resolution of between 10-

4-10-7s. The interferometry system involves a single beam of coherent light from a laser 

source that is split into two identical beams by a beam splitter. Each of the beams 

travels a different route; one beam path has fixed length and is regarded as a reference, 

while the other is injected into a fibre that is mounted onto the apparatus on the main 

vessel. The beam bounces off a corner cube attached to the yoke, and is reflected back 

into the fibre. This path has a variable length as the upper yoke of the apparatus moves 

relative to the main pressure vessel during deformation. Its position is comparable to the 

current location of the existing LVDT that is used to measure sample shortening. The 

two beams are recombined before arriving at a detector, creating a phase difference or 

interference pattern that can be used to diagnose and measure changes in displacement 

along the path. The velocity of the fibre light source relative to the mirror is encoded 

into a frequency at the detector and displacement is encoded as a number of fringes and 

relative position between peaks. The data is processed using a custom-written script in 

MATLAB. The non-calibrated velocity data is scaled against the calibrated 

displacement data measured by the LVDT thereby allowing precise time and position 

information to be recovered. Although some aspects of the evolution of slip velocity 

likely reflect the response of the loading frame during elastic strain release, the 

recovered data will provide valuable insights about behaviour during slip. These will be 

used to better constrain thermal simulations. Although the system is still under 

development, initial tests reveal promising results and development will continue in the 

latter half of 2015. A representative range of both elevated temperature and misoriented 

fault experiments will be repeated once the system is operational. 

https://en.wikipedia.org/wiki/Coherence_(physics)
https://en.wikipedia.org/wiki/Beam_splitter
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2.2  Quantifying real contact area 
The microstructures produced during experimental rupture highlight the point that 

significant stress concentration occurs at fault asperities, and in the case of porous 

sandstone, onto individual grain-to-grain contacts. During loading and fault rupture, 

static and dynamic stresses form large transitory stresses that are sufficient to generate 

dislocations within the structurally dry quartz. These high stresses have implications for 

both the formation of amorphous material through mechanical and solid state processes, 

and for the rapid generation of frictional heat, to the point of superheating the fault core. 

The temperature of melt can influence the viscosity, the extent of clast melting, fault 

lubrication and subsequent strength recovery resulting in the termination of slip. 

Consequently, constraining the area of real contact at slip interfaces under different 

experimental conditions is an important factor for accurately modelling fault surface 

processes. While a first order analysis has been undertaken during this study, further 

quantification could reveal additional insights about the spatial relationships between 

melt formation, distribution and melt welding, and the role of melt-related processes in 

influencing the evolution of sudden slip events. 

2.3 Constraining structural and chemical variation in the melt 
Understanding the structural mechanisms and molecular dynamics associated with 

frictional melting potentially may help to constrain factors such as melting temperature, 

melt structure and viscosity that are important parameters for numerical and thermal 

modelling of interface properties. For instance, temperature of melting could be reduced 

significantly compared to the equilibrium conditions, if mechanical amorphisation is 

indeed a precursor to the development of melt, or if fluids present at the fault interface 

serve as flux, depressing the melting temperature. Additionally, subtle composition 

changes, such as trace element enrichment or the incorporation of hydroxyl groups 

within the melt structure, could be activated by the melting process. These may have a 

significant effect on the rheology and material properties of the melt [Urbain et al., 

1982; Bansal and Doremus, 1986]. 

The high resolution cathodoluminescence (CL) investigations undertaken in this study 

have shown that the melt formed during rapid slip and ‘amorphous’ material formed 

during aseismic sliding share a distinct emission profile. This could indicate that 

structural and/or compositional changes induced by the loss of long-range order results 

in the formation of specific defects that activate or quench the CL. Expanding CL 
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investigation to include high temperature experiments and coupling CL analysis with 

other high-spatial resolution analytical techniques, such as FT-IR or Raman 

spectroscopy, and mass-spectrometry, may help to constrain the origin of the defects. 

FIB-TEM investigations of the room temperature melt and amorphous material will also 

provide structural information about these materials, including any evidence of relict 

crystal structure, defect types and density. Nano Fourier transform infrared spectroscopy 

(nano-FTIR), with a spatial resolution of approximately 20nm could potentially be used 

to help constrain the presence of structurally bound water within the melt layer. The use 

of nano secondary ion mass spectrometry (nanoSIMS) and laser ablation inductively 

coupled plasma mass spectrometery (LA-ICP-MS) could be investigated to determine if 

trace element content of the melt layer is significantly different from the wall rock 

quartz. 

2.4 Understanding mechanical amorphisation during aseismic slip 
The role that dynamically generated amorphous material plays in modifying fault 

behaviour and stability remains, to a large extent, poorly understood. Previous 

experimental work has demonstrated significant dynamic weakening of quartz 

interfaces at high slip velocities, with this phenomena being attributed to the formation 

of hydrated amorphous silica gels [Goldsby and Tullis, 2002; Di Toro et al., 2004; 

Hayashi and Tsutsumi, 2010]. In the current experiments at both room temperature and 

elevated temperatures, apparently amorphous material has been generated during 

aseismic sliding and identified using both CL and TEM methods. These observations 

have resulted in the hypothesis that mechanical amorphisation may be a precursor to 

fault instability and thermal melting. However, further experimental work and detailed 

microstructural analysis using FIB-TEM is needed to explore this possibility. 

Additionally, work is also needed to explore any potential differences between 

mechanically amorphized silica and slip-induced ‘gels’ identified during previous rotary 

shear experiments. 

2.5 Dynamic evolution of fault strength 
Further experiments, over a range of conditions, are needed to quantify the magnitude 

of cohesive strengthening resulting from melt welding. The initial visualisation work 

undertaken using microcomputed X-ray tomography has shown significant promise in 

mapping the 3-D extent of the melt-welded surfaces. The use of this technique should 

be expanded to explore the temporal evolution of the fault surfaces during continued 
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reactivation, including a quantification of the spatial extent of melt welding over 

successive slip events. This would provide useful insights into strengthening during the 

maturation of a fault, including the role of the potentially competing processes of 

damage formation and fault zone widening. In turn, this could be useful for 

understanding whether frictional melts are the product of slip on immature faults, as 

many preserved natural pseudotachylytes suggest [Wenk et al., 2000], or whether 

frictional melting continues to influence the slip behaviour and strength of mature 

faults. 

During the interseismic period, the presence of amorphous silica produced by rapid slip 

could potentially increase the rate at which time-dependent fault strengthening occurs 

under hydrothermal conditions. The high solubility of amorphous silica compared to 

quartz [Dove and Rimstidt, 1994] could serve to increase silica saturation of pore fluids 

and enhance cementation processes. Expansion of HTIP experiments to include hold-

slide-hold experiments would allow investigation of changes in time-dependent healing 

rates on pseudotachylyte-bearing faults; this knowledge has implications for fault 

reactivation. 

2.6 Expansion of investigations to other rock types  
An area that needs further investigation is whether the observations made in this thesis 

are unique to an essentially pure quartz rock, or whether they have application to a 

broader range of rock types. A suite of experiments investigating fault reactivation of 

low-porosity dolomite has been undertaken and is awaiting microstructural analysis; 

however, a range of other crustal rocks also need to be explored. This would allow a 

comparison of whether other major crustal rocks types such as felsic, mafic and ultra-

mafic igneous rocks, along with various sedimentary and metamorphic rock types, also 

melt during high normal stress, low displacement stick-slip events. In turn, this could 

provide an important comparison with the behaviours and microstructures observed 

during the imposed high velocities, high displacement and low normal stress conditions 

of rotary shear experiments.  

2.7 Improved understanding of fluid-driven fault reactivation 
The fluid-driven fault reactivation experiments have shown notable differences in the 

rupture style and microstructures formed during reactivation, compared with stress-

driven experiments. However, as only a small number of experiments have been 
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undertaken, additional experiments, over a wider range of conditions and materials, are 

needed to gain a clearer understanding of the mechanisms that cause the observed 

differences in mechanical behaviour and microstructural response. Exploration of 

potential elastohydrodynamic and boundary lubrication effects could be accomplished 

using different pore fluids (e.g. argon or changing pore water chemistry) and 

undertaking fluid-driven failure experiments over a range of pore fluid pressures. 

Alternatively, experiments undertaken at controlled pore fluid pressures on a high 

velocity apparatus would allow direct measurement of frictional values with changing 

slip velocity.  

Precise calibration of the volume monitor during room temperature, controlled pore 

fluid pressure experiments may allow damage evolution to be quantified by in situ 

measurement of changes in crack porosity in the slip zone. A better understanding of 

fluid-driven fault reactivation and failure is important for understanding differences 

between failure modes, which in turn has implications for field interpretation of faults in 

fluid-active environments, as well as understanding earthquake nucleation, recurrence 

and the magnitude of co-seismic stress drops.  

2.8 Natural faults 
The identification of nano- to micro- scale frictional melt on the experimental fault 

interfaces suggests that there could be significant benefits in applying the nano-scale 

microstructural approaches used in this thesis to more thoroughly assess the potential 

distribution of very thin melt layers in natural faults. The current research suggests that 

pseudotachylyte may be more prevalent than previously thought, but is simply not 

identified because: (1) the melt layer is very thin, requiring nano-scale microstructural 

analysis, or (2) due to its thickness and metastability, any frictional melt within the fault 

zone is rapidly devitrified and/or over-printed, becoming unrecognisable. 

3.  Outlook 
Identifying mechanisms that cause dynamic instability and weakening on faults is 

important for understanding earthquake dynamics and the seismic cycle. However, the 

hypocentral depths (10-15km) of many of the large earthquakes make direct observation 

and study impossible. Consequently developing an understanding of mechanisms and 

processes that control fault behaviour, strength and stability requires a multi-faceted 



Implications and Future Directions 
 

182 
 

research approach that combines experimental, field and microstructural studies with 

seismic and numerical modelling to build an integrated theoretical framework. Over the 

past fifteen years significant advances have been made in all these fields, although an 

identifiable gap exists in experimental research of slip surfaces at confined, realistic 

stress conditions. Although the development of rotary-shear type apparatus has provided 

numerous insights into frictional behaviour of faults at high slip velocity, experimental 

conditions involving imposed velocities on nominally dry samples at low normal 

stresses and high displacements, imply that the experiments may not be indicative of 

fault processes at depth. This thesis has demonstrated both the relevance and potential 

benefits of integrating classic triaxial experiments with other modes of research to 

provide important insights into potential triggering mechanisms, slip processes and 

micromechanics at various slip rates early during slip events.  

The application of high spatial resolution microstructural analysis in this project has 

demonstrated that very thin frictional melt layers can be generated during small slip 

events (< 500μm) and at moderate effective normal stresses (> 200MPa). This discovery 

opens up potential for greater understanding of the contribution of melting and other 

amorphisation processes to the mechanics of seismic and aseismic slip. It is hoped that 

this work stimulates an examination of melting and other amorphisation processes in a 

wide range of rock types via (1) experimental approaches, and (2) more careful analysis 

of natural fault damage products employing techniques such as high resolution SEM 

and SEM-CL, in conjunction with FIB-TEM and high spatial resolution micro analysis 

tools. 
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Appendix 1 

Apparatus calibration and corrections 
 

1. Overview 
Experiments were undertaken using an internally-heated, gas-medium, rock deformation 

apparatus [Paterson, 1970]. Argon is used as the confining medium and the apparatus 

allows the independent control and measurement of temperature, pore fluid pressure, 

axial displacement rate and axial load. 

The sample is heated by a two-zone, vertically-orientated furnace located within the 

pressure vessel. The furnace consists of two independent molybdenum windings that 

provide uniform temperature in an approximately 20mm long ‘hot-zone’. The windings 

are coiled onto a grooved high-density alumina tube insulated by fibrous alumina-silica 

(ASH) and then tightly packed within a stainless steel can. To minimise thermal 

instability resulting from convection within the argon confining medium, the space 

above the hot zone within the central bore of the furnace is filled with a removable 

steel-alumina sleeve.  

Temperature is monitored using a type-K (chromel [90% nickel, 10% chromium] - 

alumel [95% nickel, 2% manganese, 2% aluminium and 1% silicon]) thermocouple 

inserted through the upper hollow PSZ pistons to immediately (<1mm) above the 

alumina spacer at the upper end of the sample. 

Axial load is measured using an internal load cell and is generated through axial 

shortening produced by a rate-controllable hydraulic axial displacement system. The 

axial load/force can be converted to axial stress (σ1) if it is assumed that deformation 

involves constant volume deformation. The amount of axial shortening is measured 

outside the pressure vessel using a linear variable differential transducer (LVDT).  

Axial load is applied to the sample through partially stabilized zirconia (Nilcra™ TS, 

MgO stabilised PSZ) ceramic pistons. The pistons have a 2 mm diameter axial hole 
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which allows the pressurised fluid to access the specimen [Tenthorey and Cox, 2006; 

Giger et al., 2008]. To maintain constant pore fluid pressure during deformation, the 

pressurised fluid is isolated from the pore fluid intensifier and then pore pressure servo-

controlled by a volume monitor. 

During the first 15 months of the project, significant refurbishments of the apparatus 

were undertaken, including: 

a) The incorporation of a newly-designed, fully digital data recording system 

b) Changes to the upper pore fluid volume monitor with the new system 

eliminating the need for a gear box assembly 

c) The construction of a new furnace. 

d) Significant maintenance to the confining pressure pumping system 

Due to these changes to the apparatus, particularly in the data acquisition processes, a 

complete recalibration was undertaken. Although calibration techniques have previously 

been developed, a summary of the methods involved are outlined in the following 

section. 

1.1 Apparatus calibration and corrections 

1.1.1 Confining pressure and pore fluid pressure calibrations 

Confining pressure is measured by a Harwood manganin cell and pore fluid pressure is 

measured by an electric resistance strain gauge pressure transducer. The output voltage 

from these pressure gauges was calibrated using a Heise pressure gauge and an open 

system between the pore fluid and confining pressure.  

1.1.2 Calibration of LVDTs 

The linear variable differential transducers (LVDTs) are used to precisely measure 

displacement and the apparatus contains three: one LVDT measures the piston 

displacement on the outside of the pressure vessel and two are located in the pore fluid 

volume monitors and are used to (1) measure the volume of the pore fluid injected into, 

or leaving the sample, and (2) control the limit switches for servo-controlled pore fluid 

system. These LVDTs are calibrated by using a micrometer to measure (with an 

accuracy of approximately 1μm) the displacement and establish the relationship to the 

LVDT output voltage. 
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1.1.3 Temperature calibration of the furnace 

The ability to independently control the power to the two separate furnace windings 

allows the furnace to be calibrated to produce a uniform temperature distribution along 

a 20mm zone corresponding with the location of the sample. Outside this zone there is a 

steep fall-off in temperature that is necessary to prevent the thermal destruction of the 

O-ring seals located at the top and bottom of the jacketed assembly. 

The calibration of temperature distribution along the length of the sample assembly is 

undertaken using an assembly of hollow PSZ pistons and a hollow alumina sample that 

allows an Inconel sheathed type-K thermocouple to traverse the full length of the 

assembly. The power settings for the upper and lower windings are then adjusted until 

the desired temperature profile is achieved. The furnace calibration is repeated 

incrementally over a range of temperatures from 300°C to 927°C and the range of 

operating confining pressures from 30MPa to 250MPa. As the furnace ages, calibrations 

are also periodically repeated to assess changes in the temperature profile arising from 

the deterioration of furnace properties and efficiency. 

1.1.4 Calibration of the internal load cell 

The internal load cell used in the apparatus consists of four SR-4 strain gauges arranged 

in a Wheatstone bridge configuration. A critical factor in accessing precise data from 

the load cell is the accurate measurement of its elastic distortion [Paterson and Wong, 

2005]. As the distortion of the load cell is measured as a component of the total 

displacement this includes contributions from elastic distortions in the apparatus frame, 

pistons and the sample, as well as the load cell.  

To eliminate other contributions to overall distortion, the load cell was calibrated by 

undertaking parallel tests using a symmetrical steel spring with known spring constant 

and a steel cylinder of known dimensions and Young’s modulus. The recorded cylinder 

displacement is then subtracted from the spring displacement at a common load cell 

output voltage so that the load cell calibration factor (𝛿𝐿 𝛿𝛿)⁄  can be calculated: 

 
𝛿𝐿 𝛿𝛿⁄ =

(𝛿𝐷𝑠 𝛿𝛿⁄ − 𝛿𝐷𝑐 𝛿𝛿⁄ )
1 𝑘𝑠⁄ − 𝜆 𝜋𝑣2𝐸⁄  

 

1 
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where, 𝛿𝐷𝑠 𝛿𝛿⁄  is the ratio of the spring displacement and output voltage, 𝛿𝐷𝑐 𝛿𝛿⁄  is 

the relationship between the cylinder displacement and output voltage, 𝑘𝑠 is the spring 

constant determined using an Instron Press (pers. comm. Jackson, 1997), 𝜆 is the length 

of the steel cylinder, 𝑣 is the radius and 𝐸 is the elastic modulus of the steel cylinder. 

Calibrations were undertaken at room temperature and over a range of confining 

pressures from atmospheric pressure – 200MPa. A slight elastic hysteresis was observed 

between loading and unloading. As the deformation experiments are concerned with the 

loading of the sample, only the loading phase of the spring and steel cylinder 

measurements were used in the calculation of the load cell gain. 

1.1.5 Corrections for apparatus elastic distortion 

For calculations of strain and strain rate, the axial displacement measured using the 

LVDT must be corrected for the component contributed by the elastic distortion of the 

apparatus (including the frame, load cell and pistons). The extent of apparatus distortion 

is typically proportional to the applied force (although some non-linearity occurs at 

small forces [Paterson and Wong, 2005]). A calibration was undertaken in 2004 (pers. 

comm. Tenthorey, 2004) using a specimen composed of LUCALOX, a high purity 

aluminium oxide ceramic with the same dimensions and assembly as the usual rock 

samples. The apparatus distortion is calculated by subtracting the portion of 

displacement accommodated by the LUCALOX from the total displacement (𝐷𝑑), thus 

giving an indication of the displacement arising from the apparatus:  

 𝐴𝑒𝑒𝑡𝑣𝑡𝜕𝐴𝐴 𝐷𝐷𝐴𝜕𝑐𝑣𝜕𝐷𝑐𝑡 =
𝐷𝑑
𝐿
−

𝜆𝑠
𝜋𝑣2𝐸

 2 

 

Where L is load, 𝜆𝑠 is the length of specimen, 𝑣 is its radius and 𝐸 is the Young’s 

modulus of the LUCALOX. Apparatus distortion has been calculated to be 

approximately 0.0149mm/kN axial load (pers comm. Tenthorey, 2004).  
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1.1.6 Determining slip velocity of stick-slip events 

Increased constraints on slip duration and insights into seismic slip velocity and 

acceleration were explored through the installation of a seismometer and accelerometer 

at the top of the apparatus as outlined in Chapter 2. However, as noted in the earlier 

discussion, the estimated rupture time is several orders of magnitude less than the 

sampling rate of the seismic instrumentation and therefore it is suggested the seismic 

data recorded during the experiments is not sufficient to provide absolute information 

about rupture propagation. Additional work has been undertaken to increase time-

resolution using a laser interferometry system described in the Section 2.1 of Chapter 4. 

This method has allowed an indirect quantification of sample slip velocity by measuring 

the vertical motion of the apparatus yoke relative to the pressure vessel. The line-of-

sight measurement made by the interferometer is equivalent in its position to the 

existing LVDT. The calibrated displacement measurements made by the LVDT have 

been used to scale the interferometry data. Effects of machine stiffness have been 

estimated and adjusted using the apparatus distortion tests outlined in Appendix 1.1.5. 

 

 
Figure 1: Unprocessed time-displacement curves for a series of experimental tests using the 
interferometry system. 
Each line represents a 10millisecond record of a slip event and the subsequent machine resonance. The 
largely regular signal oscillations are thought to be the result of reverberation of the stick-slip event 
through different components of the apparatus. Note the similarity in duration of the different slip events, 
regardless of displacement.  
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The interferometry system utilises a trigger system and data acquisition buffer to record 

2 seconds of data, prior to, during and after the slip event. Examples of slip events 

produced during testing of the system are shown in Figure 1. If it is assumed that, to a 

first order, slip is represented by a logistic function, the duration of the slip event can be 

estimated (Fig. 2). After the initial slip event, indicated by the significant rapid 

movement of the yoke at between approximately 0.7-1.7ms, approximately regular 

oscillations commence that thought to be the result of ringing in the apparatus and 

loading frame as a consequence of the sample slip. Further investigation is needed to 

better understand the machine response to slip. However, an estimate of maximum 

velocity can be calculated by taking the first derivative of the fitted curve and indicates 

velocities of up to 40cm.s-1 for slip on existing fault surfaces (Fig. 2B). 

 
 
Figure 2: Modelled displacement and velocity as a function of time during slip. 
(A) The raw displacement data is represented by the solid black line and has been scaled using the 
displacement data recorded from the LVDT. The red dashed line indicates the fitted curve assuming 
sigmoidal-type behaviour. The vertical dashed line marks the point of maximum velocity. (B) The solid 
blue line represents the corresponding modelled velocity, with a peak velocity at approximately 40cm.s-1. 
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Figure 3: Estimated fault asperity temperatures. 
(A) Asperity temperatures for faults experiencing stick-slip have been calculated using Equation 8 in 
Chapter 3. There is a strong correlation between the calculated asperity temperatures and the observed 
microstructures. Faults that produce small displacements, and consequently lower velocities, have 
reduced estimated asperity temperatures. All experiments indicated by the blue squares in (A) do not have 
sheared melt textures, but rather have gouge covered surfaces with the formation of the fractured glass 
patches indicated in (B). In contrast all experiments indicated by the red squares in (A) have larger 
displacements and higher velocities, producing the sheared melt textures as indicated in (C).   
 
A key observation from the analysis of the preliminary interferometry data is the 
consistency of the modelled slip durations. While this suggests that the apparatus may 
play an important role in influencing slip rates and duration, it has allowed a first order 
estimation of the mean slip velocity in the existing experiments. If it is assumed that 
these experiments similarly slip over time intervals of approximately 1 millisecond, and 
that slip during this interval is approximately linear, fault asperity temperatures can be 
estimated and are shown in Figure 3. Although this data suggests a continuum of slip 
velocities from slow (< 10cm.s-1) to fast (>10cm.s-1) rather than the two distinct regions, 
as was qualitatively described in Chapter 2, there is a strong correlation between 
estimated slip velocities and observed microstructures. All ‘high-velocity’ slip events 
are characterised by the formation of drawn out glass filaments and the thermal 
modelling suggests that these events have the highest asperity temperatures. In contrast 
the ‘low-velocity’ slip experiments are microstructurally characterised by the formation 
of fractured glass patches and the calculated temperatures are uniformly lower. 
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Appendix 2 

Corrections for jacket strength contribution 

and change in contact area of the sliding 

interface 

1. Experimental methodology  
When movement occurs along the experimental fault surfaces, both the annealed copper 

sleeve and outer jacket must deform, shearing along a narrow zone adjacent to the 

inclined fault surfaces. Consequently the sleeve and jacket contribute to the strength of 

the assembly and this additional strength must be calculated and corrected by 

subtracting the force required to deform the jackets from the total force recorded by the 

load cell. The methodology adopted for the calculation of the jacket correction uses a 

low strength sliding assembly to simulate the sliding fault surfaces and identify the 

strength contribution of a single metal sleeve. This was achieved by first calculating the 

strength of a double-jacket assembly (comprising of an outer jacket and inner sleeve) 

and then a single-jacket assembly (Fig. 1B). The subtraction of the strength of the 

single-jacketed assembly from the double-jacketed assembly allows an estimation to be 

made of the strength of the inner metal sleeve, which in turn, can be used to estimate the 

total jacket strength. Jacket strength calibration experiments (Table 1), have been 

undertaken over a range of confining pressures, axial displacement rates and 

temperatures, reflecting experimental conditions of the deformation experiments. 

1.1 Room temperature experiments 
The room temperature jacket strength experiments used a test assembly comprising of 

two alumina forcing blocks ground on a 30º incline relative to the maximum shortening 

direction, between which a 0.5mm thick graphite foil was placed (Fig. 1A). As a suite of  
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Figure 1: Jacket strength calibration assembly. 
(A) Jacket strength calibration assembly comprising of two alumina forcing blocks between which is 
placed a single layer of graphite foil. During the high temperature jacket calibration experiments the 
graphite layer is replaced with annealed gold. (B) Jacket arrangement for strength correction experiments 
showing the location of the second metal sleeve – refer to text for details. (C) X-Ray diffractogram for the 
graphite foil used for jacket strength calibrations. The diffraction profile shows a very sharp (002) 
reflection, with minor (004) and (006) peaks also present. The graphite peaks associated with the 010, 
011, 012, 013, 110 and 112 planes are absent indicating that the graphite crystals in the foil contain a very 
strong crystallographic orientation. Inset shows magnified diffraction profile to highlight background 
levels. An unexplained minor peak is distinguishable from the background at 53°, however, the peak 
intensity indicates only a trace concentration.   
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Table 1: Details of jacket strength calibration experiments.  
Experiment Temp 

(°C) 
P(c) 

(MPa) 
No. of 

Jackets 
Material 
at Fault 

Interface 

Type of 
Jacket 

(sleeve/jacket) 

Axial Displacement 
Rate  

(mm·s-1) 

JSC021 25 1 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC022 25 5 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC014 25 10 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC018 25 10 2 Graphite Cu/Cu 3.6x10-4, 1.78x10-3 
JSC013 25 20 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC016 25 20 2 Graphite Cu/Cu 3.6x10-4, 1.78x10-3 
JSC012 25 30 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC015 25 30 2 Graphite Cu/Cu 3.6x10-4, 1.78x10-3 
JSC011 25 30 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC020 25 30 1 Graphite Cu♦ 3.6x10-4, 1.78x10-3 
JSC019 25 30 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC004 25 50 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC005 25 50 2 Graphite Cu/Cu 3.6x10-4, 1.78x10-3 
JSC027 25 50 2 Graphite Cu/Cu‡ 3.6x10-4 
JSC028 25 50 1 Graphite Cu‡ 3.6x10-4 
JSC006 25 100 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC007 25 100 2 Graphite Cu/Cu 3.6x10-4, 1.78x10-3 
JSC008 25 100 1 Graphite Cu 3.63x10-3 
JSC009 25 100 2 Graphite Cu/Cu 3.63x10-3 
JSC010 25 100 2 Graphite Cu/Cu 3.63x10-3 
JSC023 25 200 1 Graphite Cu 3.6x10-4, 1.78x10-3 
JSC024 25 200 2 Graphite Cu/Cu 3.6x10-4, 1.78x10-3 
JSC038 900 100 2 Gold Fe/Fe 3.6x10-4 
JSC039 900 100 1 Gold Fe 3.6x10-4 
JSC044 850 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC046 850 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC034 800 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC048 800 100 2 Gold Fe/Fe† 1.8x10-4→ 7.2x10-4 
JSC032 800 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC043 750 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC042 750 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC033 700 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC031 700 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC049 700 100 2 Gold Cu/Fe 1.8x10-4→ 7.2x10-4 
JSC045 650 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC047 650 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC029 600 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC030 600 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC036 600 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC035 600 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC037 600 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC040 600 100 2 Gold Fe/Fe 1.8x10-4→ 7.2x10-4 
JSC041 600 100 1 Gold Fe 1.8x10-4→ 7.2x10-4 
JSC050 400 100 2 Gold Cu/Cu 1.8x10-4→ 7.2x10-4 
JSC051 400 100 1 Gold Cu 1.8x10-4→ 7.2x10-4 
JSC052 500 100 2 Gold Cu/Cu 1.8x10-4→ 7.2x10-4 
JSC053 500 100 1 Gold Cu 1.8x10-4→ 7.2x10-4 
JSC054 600 100 2 Gold Cu/Cu 1.8x10-4→ 7.2x10-4 
JSC055 600 100 1 Gold Cu 1.8x10-4→ 7.2x10-4 

♦  Experiment to test the effect of annealing the copper jacket prior to the experiment. 
‡ Forcing block oriented at 50° to the maximum principal stress. 
† Sleeve made from the wasting down of the jacket material. 
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experiments was undertaken on misoriented faults (Chapter 3), potential differences in 

jacket strength resulting from changes in the jacket shear zone geometry also were 

tested using forcing blocks oriented at 50º to the maximum shortening direction. 

Graphite foil was selected as the room temperature interfacial material owing to its low 

friction properties (as shown by its use as a solid state lubricant [Savage, 1948]) and its 

uniform and repeatable mechanical behaviour during the sliding experiments. The 

composition, structure and crystallographic orientation of the graphite foil were 

confirmed using XRD (Fig. 1C). The results indicate a strong crystallographic 

alignment, with the surface of the graphite foil aligned parallel with the basal plane of 

the graphite crystal structure. 

Each calibration assembly was slipped for ~1mm at a nominal axial shortening rate of 

0.36μm.s-1. To estimate the magnitude of the velocity dependence of the assembly 

strength, the assemblies were subjected to a velocity step after ~1mm of slip, at which 

point the axial displacement rate was increased to 1.78μm.s-1 for further ~0.2mm 

displacement. A number of experiments were also undertaken at an axial shortening rate 

of 3.63μm.s-1. 

1.2 High temperature experiments 
The jacket correction experiments undertaken at elevated temperatures used a similar 

test assembly to that described above. However, rather than using the graphite foil, 

which has the potential to oxidise at high temperatures, a thin layer (0.1mm) of 

annealed gold was placed at the interface between the alumina forcing blocks. Previous 

experiments [Giger, 2007] had shown that the gold has a very low shear strength when 

used in this application at temperatures above 600°C. Each assembly was then subjected 

to a velocity stepping regime, using nominal axial displacement rates of between 0.18 – 

0.72 μm.s-1 over a total maximum axial displacement of 1mm.  

The experiments were undertaken on both double and single-jacketed assemblies at 

temperatures between 400-600°C for copper jackets and between 600-900°C for iron 

jackets. The copper tubing used for experimental jacketing is a commercial purity, thin-

walled (0.25mm) tube, and the iron tubing was supplied by Uniform Tubes Inc. of 

Collegeville, Pennsylvania, and contains between 0.07-0.10% carbon and a number of 

other trace level impurities. 
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2. Results 

2.1 Room temperature jacket corrections 
The room temperature stress-displacement curves of the alumina-graphite assemblies 

are characterised by a poorly-defined yield point, followed by slip-hardening behaviour. 

Although the experimental assembly exhibits work hardening during slip, the strength 

differences between the single and double-sleeved assemblies does not significantly or 

consistently change with displacement (and are consistent with the observations of 

Chester [1994]). The dominant cause of the slip hardening is attributed to the graphite-

alumina interface and/or the graphite, rather than the jacket. Although copper is well 

known for cold-working behaviour at low temperature, it is suggested that the most 

rapid formation of dislocations, may occur within the initial stages of slip [Thompson, 

1934]. The absence of measurable strain hardening simplifies the application of the 

jacket correction as constant jacket strength can be assumed after yield.  

The strength of the graphite assembly increases with increasing confining pressure (Fig. 

2C). The pressure dependence (which suggests frictional behaviour) is attributed to the 

graphite-forcing block interface, rather than the metal sleeve and jacket, as the latter 

deforms by pressure insensitive, intracrystalline plastic deformation mechanisms. 

Deformation within the graphite foil layer is also possible, but examination of the 

deformed specimen and the location of the graphite foil relative to the alumina forcing 

blocks indicate that the majority of the strain is accommodated on one of the graphite-

alumina interfaces. 

Minor velocity strengthening was observed during the velocity stepping experiments. 

Results of experiments JSC008-JSC010, undertaken at nominal axial displacement rates 

of 3.63μm.s-1, show a minor (approximately 3MPa) increase in the shear strength of the 

double-jacketed assemblies when compared with the experiments undertaken at an axial 

displacement rate of 0.36-1.78μm.s-1 (Fig. 2B). For the purposes of the calculation of 

jacket strength, the velocity effects at room temperature are too small to be accurately 

isolated and calculated. The essentially immaterial effect of velocity on the room 

temperature experiments is supported by the limited effect that velocity has on the rates 

of flow of copper at low temperatures [Frost and Ashby, 1982]. 
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Figure 2: Room temperature jacket strength calibration experiments. 
(A) The effect of jacket collapse at different confining pressures on jacket strength during the initial 
0.8mm of shear displacement. When the initial collapse was undertaken at higher confining pressures it 
resulted in a high yield point and a lower rate of strain hardening during slip. (B) The effect of velocity on 
strength. Higher velocities resulted in a minor (~3MPa) increase in shear strength over the 0.8mm of 
shear displacement. (C) The effect of increasing confining pressure on the shear strength of the double 
jacketed assemblies.  
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In low confining pressure (< 50MPa) experiments, the yield strength was significantly 

reduced with decreasing confining pressure and there was a longer period of more 

intense strain hardening. It is suggested this phenomena is the result of permanent 

deformation being activated earlier on the samples deformed at lower confining 

pressures and is interpreted as resulting from incomplete jacket collapse onto the 

sample. The impact of potentially altering the extent of jacket collapse is indicated by 

the shape of the initial loading curve and the recorded strength during the first 1mm of 

displacement (Fig. 2A). As pore fluid experiments commonly involve low effective 

confining pressures, this observation resulted in modification of loading procedures to 

ensure full jacket collapse occurs prior to the commencement of deformation. Full 

jacket collapse is achieved by maintaining > 50MPa effective confining pressure for at 

least 1 hour prior to loading. 

2.1.1 Calculation of jacket strength 

Failure envelopes have been constructed using data from room temperature experiments 

undertaken at various confining pressures (Fig. 3). Best-fit values were determined for 

assembly strength at various displacements commencing at an initial displacement of 

0.5mm. This approach was adopted to reduce the potential uncertainty arising from both 

the identification of the yield point (given its poor definition in the experimental results) 

and potential jacket collapse effects. Curves have been plotted at 0.1mm increments of 

axial displacement up to 0.9mm (Fig. 3A).  

The results have been plotted assuming the empirical failure criterion that follows 

Mohr’s hypothesis: 

 𝜎1 = 𝜌(𝜎3) 1 

where σ1 is a function of σ3, although not necessarily a linear function (Fig. 3). The 

intercept between the failure envelope and the y-axis provides an estimate of the 

strength of the assembly at zero confining pressure, where it is assumed that the 

dominant strength of the assembly arises from the confining pressure-insensitive jacket 

contribution. Each of the corresponding double- and single-jacketed strength estimates 

are then subtracted to provide the strength of the metal sleeve.  
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To apply the corrections to the experimental data, the sleeve strength is considered in 

terms of the load (F) that it supports. Assuming that the total load on the double jacket 

assembly can be expressed as: 

 𝐹𝐽,𝑆𝑠,𝑆 = 𝜎𝐽,𝑆𝑠,𝑆 ∙ 𝐴𝐽,𝑆𝑠,𝑆 2 

where 𝐹𝐽,𝑆𝑠,𝑆 is the load supported by the jacket (J), sleeve (Sl) and sample (S), 𝜎𝐽,𝑆𝑠,𝑆 is 

the strength of the double jacketed assembly at zero confining pressure (as described 

above) and 𝐴𝐽,𝑆𝑠,𝑆 is the total area of the jacket, sleeve and sample. Similarly, the load 

supported by the single jacketed assembly is: 

 𝐹𝐽,𝑆 = 𝜎𝐽,𝑆 ∙ 𝐴𝐽,𝑆 3 

Thus, the load supported by the sleeve can be expressed as: 

 𝐹𝑆𝑠 = 𝜎𝐽,𝑆𝑠,𝑆 ∙ 𝐴𝐽,𝑆𝑠,𝑆 − 𝜎𝐽,𝑆 ∙ 𝐴𝐽,𝑆 4 

Assuming that the load borne by the copper jacket is proportional by area to that of the 

copper sleeve, the total jacket strength can be estimated as: 

 𝐹𝐽,𝑆𝑠 =
𝐴𝐽
𝐴𝑆𝑠

𝐹𝑆𝑠 + 𝐹𝑆𝑠  5 

For room temperature results refer to Table 3. 

2.2 High temperature jacket corrections 
The high-temperature jacket strength calibration experiments were undertaken assuming 

that the metal jackets deformed by pressure insensitive intracrystalline deformation 

mechanisms. Therefore experiments for both copper and iron jacket assemblies were 

undertaken at a constant confining pressure of 100MPa. The jacket material referred to 

as ‘iron’ is a low carbon (0.1%) steel and its behaviour is complicated by two 

crystallographic phase transitions (Ferrite + Cementite / Ferrite + Austenite / Austenite). 

The experimental results show a sharp strength discontinuity between 850º and 900º, 

which is consistent with the discontinuity observed at the Ferrite – Austenite phase 

boundary, and results from distinctive changes in the physical properties of the steel 

(such as lattice parameter, Burger’s vector, modulus and diffusion coefficients at this 

transition).  
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Figure 3: Results of room temperature copper jacket strength experiments  
(A) Estimated failure envelopes for the graphite foil assemblies over a range of displacements with shear 
stress plotted as a function of normal stress. The results indicate either (1) that the failure strength of the 
assembly does not follow a linear Coulomb relationship or (2) that the experiments have reached the 
brittle-ductile transition of the graphite or graphite-alumina interface. (B) Construction of a failure 
envelope with axial stress plotted as a function of confining pressure. The upper group of results indicates 
the double-jacketed specimens while the lower group represents the results of the single jacket 
experiments. 
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Figure 4: High temperature iron jacket strength calibration experiments  
Representative experimental data showing differential stress plotted as a function of axial displacement 
for high temperature (800°) jacket strength experiments. The data is from JSC034 and JSC032, a double 
and single jacketed assembly respectively. These two curves show the effect of the velocity stepping at a 
single confining pressure. Arrows indicate a change in velocity (arrow pointing up indicates an increase 
in velocity and downwards pointing arrow indicates a velocity decrease) with experiments commencing at 
0.36μm.s-1 before being stepped up to 0.72μm.s-1, and down to 0.18μm.s-1. This sequence has been 
repeated twice per experiment. 
 
 
Published deformation mechanism maps for both copper and iron [e.g. Frost and Ashby, 

1982] indicate an increase in deformation rate sensitivity with increasing temperatures. 

A velocity dependence of assembly strength was observed with the strength of the 

assembly increasing with increasing velocity. Although the high temperature copper 

experiments revealed a velocity dependence during the rate-stepping experiments, the 

subtraction of the single and double jacketed loads indicates that the between 400-600ºC 

the strain rate dependence is not large enough in the copper to be experimentally 

determined.  

Where experiments are repeated using iron jacket material cut from different lengths, 

the resulting strength estimations show some variability in strength which is attributed 

to heterogeneity in structure and composition among the lengths of iron tubing. To 

overcome this issue a number of the experiments were repeated using jacketing material 

from different lengths of tubing to establish a representative strength. 
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2.2.1 Calculation of jacket strength 

In high temperature experiments there is a rapid transition from elastic loading into an 

approximately steady-state stable sliding regime (Fig. 4). This allowed a simpler 

treatment of the results than could be achieved for room temperature calibrations. 

However, a slow leak in the hydraulics of the axial displacement system resulted in 

variability in nominal axial displacement rates relative to the predetermined estimated 

value. To allow a comparison of the data, the actual axial displacement rate was 

calculated from the experimental data and the stress-axial displacement rate for each 

experiment was plotted in log-log space. This provided a linear relationship and allowed 

the strength information from the desired axial displacement rates to be recovered.  

The estimated strength contribution of the single and double iron-jacketed assemblies 

were calculated over temperatures between 600°-900°C using 50°C increments and 

axial displacement rates of 0.18μm.s-1, 0.36μm.s-1 and 0.72μm.s-1. The heterogeneity of 

the strength of the iron tubing can be seen in the distribution of the data points in Figure 

5. The estimated load supported by of the single jacketed assembly was then subtracted 

from the corresponding double jacketed assembly to provide an estimation of the load 

supported by the iron sleeve.  

Assuming that the load borne by the iron jacket is proportional by area to that of the 

iron sleeve, the estimated load supported by the iron jacketed is calculated as: 

 𝐹𝐽 =
𝐴𝐽
𝐴𝑆𝑠

𝐹𝑆𝑠 6 

where 𝐹𝐽 is the load supported by the jacket, 𝐴𝐽 is the area of the jacket, 𝐴𝑆𝑠 is the area 

of the sleeve and 𝐹𝑆𝑠 is the load supported by the sleeve. 

To calculate the strength of the copper sleeve at high temperatures, an assembly 

consisting of a copper sleeve and an iron jacket was compared with the strength of an 

assembly consisting only of a single iron jacket. At 600°C the strength of copper jacket 

is negligible and by 700° it is below experimental resolution. Final calculated strength 

contributions of the iron jacket and copper sleeve assemblies are shown in Table 3. 
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Figure 5: Results of high temperature jacket strength calibration experiments  
(A) Axial load supported by a copper jacket assembly is plotted as a function of temperature. Red and 
black curves indicate double and single jacketed assemblies respectively over a range of axial 
displacement rates. The difference between the two curves is indicated by small blue triangles. Note that 
the influence of velocity on the strength of the assemblies is less than can be experimentally determined. 
(B) Graph estimating the axial load supported by an iron jacketed assembly over a range of temperatures 
and axial displacement rates. As in (A) the load supported by a double and single assembly is indicated 
along with the estimated load supported by an iron sleeve. Note the spread in jacket strength values 
resulting from heterogeneity in the starting material. The strengthening observed at the Ferrite + 
Austenite → Austenite transition is consistent with previously observed behaviour (e.g. Frost and Ashby 
[1982]). However the significant strength of the single jacketed experiment (possibly as a result of 
material heterogeneity) results in the estimated total strength of the iron sleeve being an approximately 
linear relationship across all phases.   
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Table 2: Estimation of strength contribution of copper jackets 
 
 

Load supported by copper sleeve (kN) 
25° 400° 500° 600° 650° 700° 
1.3 1.0 0.7 0.4 0.2 0.0 

 
 
Load supported by copper jacket + sleeve (kN) 

25° 400° 500° 600° 
3.3 2.6 1.7 0.9 

 
 
 Estimation of stress reduction on experiment (MPa) 

25° 400° 500° 600° 
42.2 32.6 21.2 11.5 

 

 

Table 3: Estimation of strength contribution of iron jacket 
 
 
 Load supported by iron sleeve (kN) 

Axial 
Displacement 
Rate (μm.s-1) 

600° 650° 700° 750° 800° 850° 900° 

7.2 2.1 1.8 1.5 1.2 0.9 0.6 0.4 
3.6 2.0 1.7 1.5 1.2 0.9 0.6 0.3 
1.8 1.9 1.6 1.3 1.0 0.8 0.5 0.2 

 
 

Load supported by iron jacket and copper sleeve (kN) 
Axial 

Displacement 
Rate (μm.s-1) 

600° 650° 700° 750° 800° 850° 900° 

7.2 3.6 2.9 2.3 1.9 1.4 1.0 0.6 
3.6 3.5 2.9 2.2 1.8 1.4 0.9 0.5 
1.8 3.3 2.7 2.0 1.6 1.2 0.7 0.3 

 
 

Estimation of stress reduction on experiment (MPa) 
Axial 

Displacement 
Rate (μm.s-1) 

600° 650° 700° 750° 800° 850° 900° 

7.2 45.6 37.4 29.3 23.7 18.2 12.6 7.0 
3.6 44.5 36.4 28.4 22.9 17.4 12.0 6.5 
1.8 42.0 34.0 26.0 20.5 15.0 9.5 4.1 
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3. Application of jacket correction to experimental data 
To apply the jacket strength correction to the experimental data it is assumed that the 

yield point of the fault controls the yield of the jacket assembly. For simplicity, at the 

experimental yield point, the jacket and sleeve are assumed to simultaneously achieve 

both the calculated strength (𝜎𝑆𝑠,𝐽) and a state of perfect plasticity. Prior to yield the load 

that the jackets support is assumed to increase linearly with displacement and thus the 

following two-stage approach to the jacket correction has been adopted.  

Sample strength �𝜎𝑆(𝜕)� as a function of time is given by: 

𝜎𝑠(𝜕) =
𝐹𝑑 − � 𝜕 − 𝜕0

𝜕𝑌 − 𝜕0
 ∙ 𝐹𝐽,𝑆𝑠�

𝐴𝑆
, 𝜕 < 𝜕𝑦  

𝜎𝑠(𝜕) =
𝐹𝑑 − 𝐹𝐽,𝑆𝑠

𝐴𝑆
, otherwise 6 

where 𝐹𝑑 is the total force recorded by the load cell, 𝜕 is the sample time, 𝜕0 is the 

recorded time that the experiment commenced, 𝜕𝑌 is the time recorded at yield and 𝐴𝑆 is 

the cross-sectional area of the sample perpendicular to the direction which the axial 

force is applied. 

4. Correcting for change in contact area of the sliding interface 
The sliding interface of the sample has an elliptical shape formed when the cylindrical 

specimen is ground at an angle of between 30° - 70° to the cylindrical axis. During 

experiments force is applied to the sample through the cylinder ends. Axial stress is 

calculated as force acting on the sample area perpendicular to the direction of 

shortening. The shear stress and normal stress acting on the slip surface are then 

determined based on the inclination of the fault surface to the bulk maximum principal 

stress.  

During the experiment the apparent contact area of the elliptical sliding surfaces is 

reduced as the fault blocks become offset with increasing shear displacement. The 

change in contact area results in the axial load being distributed over a reduced area, 

increasing the stress for any given load. The change in fault contact area can be 
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calculated in terms of the change in area perpendicular to the axial stress, allowing a 

corrected value to be calculated for the axial stress, shear stress and normal stress. 

The vertical component of the shear displacement is given by the displacement 

measurements of the LVDT and knowing the angle of inclination of the fault surface, 

simple trigonometry can be used to calculate the horizontal component: 

𝑑ℎ = 𝑑𝑣tanθ 8 

where 𝑑ℎ is the horizontal displacement, 𝑑𝑣 is the vertical displacement of the fault and 

θ is the incline of the fault surface relative to the maximum shortening direction. 

However, the contact area of the sliding surface is already reduced by a chamfer which 

is ground on the leading edge of the fault to prevent the forcing block rupturing the 

jacket during slip. As such, area over which the axial stress is distributed can then be 

calculated using the equation: 

𝐴 = 𝜋𝑣 ∙ (𝑣 − (2𝑑𝑐 + 𝑑ℎ) 9 

where r is the radius of Fontainebleau cylinder 𝑑𝑐 is the horizontal width of the 

chamfer. A certain amount of horizontal displacement can occur on the slip surface 

prior to there being any change in fault contact area. Further it can be assumed that no 

slip occurs on the fault during elastic loading, so accordingly the horizontal 

displacement can be expressed as: 

𝑑ℎ = 𝑑ℎ(𝑡) − (𝑑𝑦 + 𝑑𝑐) 10 

where, 𝑑ℎ(𝑡) is the horizontal displacement calculated by (8) at any point in time during 

the experiment, 𝑑𝑦 is the horizontal component of displacement recorded at the yield 

point. Substituting (10) into (9) the area can be calculated as: 

𝐴 = 𝜋𝑣 ∙ (𝑣 + 𝑑𝑦 − �𝑑𝑐 + 𝑑ℎ(𝑡)�) 9 
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Appendix 3 

Starting Material 
 

Fontainebleau sandstone is a well-sorted quartz sandstone that formed during the early 

Oligocene in the Paris Basin of northern France [Haddad et al., 2006]. Its nearly pure, 

quartz composition, equigranular grain shapes, and porous properties make this 

sandstone eminently suitable for rock deformation experiments and it has previously 

been used in a number of different studies [e.g. Kanagawa et al., 2000; El Bied et al., 

2002; Giger et al., 2008] 

1.  Grain Properties  
Optical and SEM analysis of the Fontainebleau sandstone revealed that it is composed 

dominantly of equigranular grains with subangular to rounded interfaces. Where the 

grains abut pore spaces the quartz shows the development of euhedral faceted surfaces 

(Fig. 1A-B). Dusty inclusion trails decorate the primary detrital grain surfaces 

indicating initially highly rounded grains that are now overgrown by authigenic quartz. 

Most detrital grains are monocrystalline, although a small proportion are polycrystalline 

and show signs of being recrystallised prior to erosion and deposition. The equigranular 

nature of the Fontainebleau sandstone indicates a high level of grain size sorting prior to 

deposition. The starting material has a narrow grain size distribution of approximately 

200-250µm. 

The grains show the consistent presence of euhedral quartz overgrowths beyond their 

original grain boundaries (Fig. 1C-D) and many of the detrital grains show planar bands 

of inclusions that appear consistent with being healed micro-cracks. Occasional grains 

exhibit undulose extinction and rare grains show presence of deformation lamellae, both 

of which suggest deformation of the source rock prior to erosion. No lattice preferred 

orientation was observed which is consistent with a shallowly buried (<100m) 

sandstone that has undergone limited diagenesis and no significant deformation [Thiry 

et al., 1998; Haddad et al., 2006]. 
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Figure 1: Microstructure and composition of the Fontainebleau sandstone starting material 
(A) - (B) SE-SEM images of a broken surface of the Fontainebleau sandstone. Note the euhedral quartz 
overgrowths which form the angular structure of the pore network. Micro-cracks within the Fontainebleau 
grains are evident in (B). (C)-(D) Panchromatic cathodoluminescence SEM images of the Fontainebleau 
sandstone. Evidence of the original detrital grains and the darker overgrowth rims are clearly visible. A 
number of phases of overgrowth are evident by the banding in image D, and possibly represents different 
episodes of ground water saturation and quartz precipitation. (E) X-Ray diffractogram for the 
Fontainebleau sandstone sample. Inset shows magnified diffraction profile to highlight background levels. 
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SE-SEM analysis of a broken surface of the sandstone revealed the presence of rare 

intragranular micro-cracks (Fig. 1B) – a phenomena that is usually regarded as being 

unusual in Fontainebleau sandstone [Tenthorey et al., 2003]. However, the occurrence 

of these micro-cracks is sufficiently rare that they do not pose a problem either in the 

post-experimental microstructural analysis or by altering porosity and fluid flow within 

the sample. 

2 Composition  
XRD analysis indicated that the sample was essentially pure quartz with only possible 

trace impurities (Fig. 1E) that were largely indeterminate from the background. Using 

Diffracplus Eva 10 (2003) software it was found that these impurities were most likely 

trace muscovite, hematite and clays, however, their concentration was too low to allow 

accurate identification or quantification. Optical microscopy on thin sections of the 

starting material also revealed rare tourmaline. 

3. Porosity and Pore Structure  
Porosity was measured in six Fontainebleau sandstone samples obtained from disperse 

locations in the starting material block using the methodologies described in Section 4 

(below). Results indicate that the sample has a total porosity of between 5.7% - 8.3% ± 

0.3%. In contrast the accessible porosity, calculated using the imbibition method, is 

estimated to be between 4.3% - 5.6% ± 0.2% (Fig. 2C).  

Microscopic analysis of the Fontainebleau sandstone starting material (Fig. 2A-B) 

reveals that all the pore structures are connected along grain boundaries and that there is 

negligible intragranular porosity. The difference, therefore, between the measurements 

for total porosity and accessible porosity is attributed to a percolation threshold 

phenomenon. It is suggested that, at the relatively low measured total porosities, the 

average pore entry radius is too small to allow all the pore spaces to be completely filled 

during imbibition at atmospheric pressure. A difference between the total and accessible 

porosity for low porosities (<10%) in Fontainebleau sandstone is in agreement with the 

data presented by Bourbié and Zinszner [1985]. A critical porosity (the point at which 

all pore connectivity is lost and permeability ceases) has been identified as being 

between 2.5-5% [Lockner and Evans, 1995; Mavko and Nur, 1997]. 
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Figure 2: Initial pore structure and porosity of the Fontainebleau sandstone starting material 
(A) BSE-SEM image of an epoxy impregnated sample of the Fontainebleau sandstone. The epoxy filled 
pores and pore throats (at the grain interfaces) image as the dark areas in the micrograph. The 
intragranular spots represent surface damage / plucking which occurred during sample preparation. Note 
the large size and angular shapes of many of the nodal pores (up to 100μm in diameter) and 
comparatively narrow apertures of the sheet like pore throats. (B) SE-SEM image detailing the cross 
section of three pore triple junctions (3-grain interfaces) and the sheet-like throats at two-grain interfaces. 
(C) Results of porosity tests undertaken on the Fontainebleau sandstone starting material. Accessible 
porosity is plotted against total porosity for each of the samples. The solid line indicates full pore 
accessibility (𝜙 = 𝜙𝑚). 
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SEM analysis of the pore structure reveals that the porosity is dominated by large 

angular nodal pores with diameters of up to 100μm (Fig. 2A). These nodal pores 

provide the majority of the storage capacity or porosity of the rock and are connected by 

narrow sheet-like pore throats that dominantly control the pore fluid transport properties 

[Bernabé, 1991]. In terms of experimental properties, the accessible porosity of the 

Fontainebleau sandstone readily facilitates access of pore fluid to the fault interface.  

4. Methods for Calculating Porosity 
Two different methods were employed for calculating porosity. The first method, or 

density method, provides an estimate of the total porosity of the rock, while the second 

technique, referred to as the imbibition method, measures accessible porosity.  

4.1 Density Method 

Total porosity can be defined as the fraction of the bulk rock (V) that is not occupied by 

solid matter [Dullien, 1992]. As the starting material to be used in the current suite of 

experiments is essentially monomineralic, the pore volume and porosity ϕ, can be 

calculated directly from the mineral density and the dry weight of the sample, by the 

equation: 

 𝜙 = 1 −
𝜌𝑠
𝜌𝑔

 1 

where, 𝜌𝑠  is sample density calculated by the ratio of sample mass to sample volume, 

and 𝜌𝑔 is the grain density calculated from the average mineral density of quartz as 

provided in literature [e.g. Fredrich et al., 1993].  

4.2 Imbibition Method 

The dry rock sample is immersed and vacuum-saturated in water. To obtain the 

saturated submerged weight, the sample is weighed suspended in a bath of the 

immersion fluid using a platinum basket attached to the stirrup of the measuring 

balance. In order to reduce the potential for error, the basket is suspended from the 

balance by a fine platinum wire so that only the diameter of the wire intersects the water 

surface. Next, the saturated weight in air is measured by removing the sample from the 

immersion bath, drying the excess surface water and weighing the sample. 
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Using the density of the immersion fluid, the differences in weight between the 

saturated (𝑀𝑠𝑚𝑡) and saturated submerged (𝑀𝑠𝑠𝑎) sample are be used to calculate the 

bulk volume (V): 

 𝛿 =
𝑀𝑠𝑚𝑡 − 𝑀𝑠𝑠𝑎

𝜌𝑓
 2 

The accessible pore volume (Vap) is then calculated as the difference in weight between 

the water-saturated sample and the oven-dried sample (measured in Method 1): 

 𝛿𝑚𝑎 =
𝑀𝑠𝑚𝑡 − 𝑀𝑑𝑟𝑦

𝜌𝑓
 3 

Finally the accessible porosity (𝜙𝑚) is calculated as the ratio between pore volume and 

total volume, which can be expressed as: 

 𝜙𝑚 =
𝛿𝑚𝑎
𝛿

 4 
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Appendix 4 

Summary of Experiments 
 

Glossary of abbreviations used in this appendix: 

Pc Confining pressure 

Pc’ Effective confining pressure 

τP Peak shear stress 

σnP Peak normal stress 

μ* Coefficient of friction prior to the stress drop associated with stick-slip  

μss Coefficient of friction during stable sliding 

Drs  Shear displacement during rapid-slip event 

trs Time taken for stress drop during rapid-slip event 

vrs Estimated velocity during rapid-slip event 

Ars Estimated peak acceleration during rapid-slip event 
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1. Frictional melt experiments 
Table 1: Summary of nominally dry frictional sliding experiments undertaken on bare interface faults 
 

No. Temp. 
(°C) 

Jacket 
Config. 

Pc  
(MPa) 

Piston 
Velocity 
(μm.s-1) 

τP 
(MPa) 

Stress 
Drop 

(MPa) 

μ* μss Dss 
(μm) 

trs (sec) vrs 
(mm.s-1) 

Ars 
(m.s-2) 

Melt Stick-
slip 

BIS007 400 Cu/Cu 100 0.36 132 - - 0.69 - - - - No No 
BIS009 500 Cu/Fe 100 0.36 144 - - 0.74 - - - - No No 
BIS010 900 Cu/Fe 100 0.36 170 79 0.78 - 142 - - - Yes Yes 
BIS011 650 Cu/Fe 100 0.36 151 48 0.80 - 89 - - - No Yes 
BIS019 927 Cu/Fe 100 0.36 167 87 0.83 - 151 - - - Yes Yes 
BIS020 650 Cu/Fe 100 0.36 141 37 0.76 - 65 - - - No Yes 
BIS026 900 Fe/Fe 100 0.36 134 36 0.75 - 61 - - - Yes Yes 
BIS027 800 Cu/Fe 100 0.36 110 49 0.64 - 83 - - - No Yes 
BIS029 800 Cu/Fe 100 0.36 165 111 0.85 - 196 - - - Yes Yes 
BIS030 700 Cu/Fe 100 0.36 137 33 0.76 - 58 - - - No Yes 
BIS032 850 Cu/Fe 100 0.36 159 73 0.83 - 126 - - - Yes Yes 
BIS033 900 Cu/Fe 100 0.36 187 94 0.88 - 171 - - - Yes Yes 
BIS034 900 Cu/Fe 100 0.36 166 85 0.84 - 150 - - - Yes Yes 
BIS035 900 Cu/Fe 100 0.36 168 90 0.85 - 158 - - 0.95 Yes Yes 
BIS036 800 Cu/Fe 100 0.36 147 79 0.79 - 158 0.015 10.5 0.42 Yes Yes 
BIS037 800 Cu/Fe 150 0.36 204 - - - - - - - No No 
BIS038 800 Cu/Fe 150 0.72 207 112 0.72 - 225 0.0115 19.6 0.99 Yes Yes 
BIS039 750 Cu/Fe 100 0.36 145 75 0.90 - 15 0.011 13.6 0.11 No Yes 
BIS040 750 Cu/Fe 150 0.72 191 84 0.73 - 170 0.012 14.2 0.90 Yes Yes 
BIS041 900 Cu/Fe 50 0.36 93 53 0.89 - 106 0.011 9.6 0.16 No Yes 
BIS042 700 Cu/Fe 150 0.72 187 96 0.76 - 192 0.0123 15.7 0.77 Yes Yes 
BIS043 650 Cu/Fe 150 0.72 190 127 0.73 - 218 0.012 18.2 0.97 Yes Yes 
BIS044 600 Cu/Fe 150 0.72 178 - - 0.69 - - - - No No 



Appendix 4 
 

229 
 

BIS045 600 Cu/Fe 200 0.72 219 - - 0.64 - - - - No No 
BIS046 600 Cu/Cu 200 0.72 228 - - 0.66 - - - - No No 
BIS048 700 Fe/Cu 50 0.36 71 19 0.76 - 35 0.0145 2.4 0.05 No Yes 
BIS049 800 Fe/Cu 150 0.72 188 - - 0.71 - - - - No No 

 

Table 2: Summary of experiments undertaken with subsequent hydrothermal pressing or slipped in the in the presence of fluids 
 

No. Temp. 
(°C) 

Jacket 
Config. 

Pc 
(MPa) 

Pf 
(MPa) 

Pc’ 
(MPa) 

Time of 
Hot 

Pressing 

Axial 
Disp. 
Rate 

(μm.s-1) 

τP 
(MPa) 

Stress 
Drop 

(MPa) 

μ* μss Drs 
(μm) 

Melt Stick-
slip 

BIS024 900 Cu/Fe 100 0 100 - 0.36 162 82 0.83 - 143 Yes Yes 
 900 Cu/Fe 250 150 100 1hr - - - - - - -  

BIS028 900 Cu/Fe 100 0 100 - 0.36 156 77 0.81 - 133 Yes Yes 
 500 Cu/Fe 250 150 100 1hr - - - - - - -  

BIS050 700 Fe/Cu 200 Drained ?  0.72 229 - - 0.67 - No No 

 

  



Appendix 4 
 

230 
 

2. Misoriented fault experiments 
Table 3: Stress-driven fault-reactivation experiments undertaken on bare interface faults at 100MPa confining pressure 
 

No. Angle 
θ (°) 

Pc  
(MPa) 

Piston 
Velocity 
(μm.s-1) 

Peak 
Diff. 

Stress 
(MPa) 

τP 
(MPa) 

σnP 
 (MPa) 

Stick-slip 
/ Failure 

No. of 
rapid 
slip 

events 

Stress 
drop of 
largest 

slip event 
(MPa) 

Shear 
disp. of  
largest 

slip event 
(mm) 

Total 
exp. disp. 

(mm) 

Comments 

MIS005 25 100 3.63 425 163 176 Low 
amplitude 
stick-slip 

- - - 1.69  

BIS008 30 100 3.63 438 190 208 Yes 7 35 0.075 1.66  
MIS001 35 100 3.63 495 233 262 Yes 7 67 0.125 1.44  
MIS002 40 100 3.63 545 268 323 Yes 12 63 0.144 1.99  
MIS037 45 100 3.63 499 250 349 Yes 1 84 0.183 0.67 Halted after first 

major slip 
MIS007 45 100 3.63 654 327 428 Yes 6 208 0.463 2.63  
MIS003 50 100 3.63 770 379 548 Yes 3 340 0.149 2.25  
MIS006 55 100 3.63 1037 487 796 Yes 2 623 0.878 1.81†  
MIS038 60 100 3.63 934 404 804 Yes 1 227 0.177 1.37†  
MIS004 60 100 3.63 933 430 845 Yes 2 529 0.846 1.91†  
 
† Total experimental displacement is given as axial displacement rather than shear displacement due to the formation of a new optimally oriented fault. 
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Table 4: Stress-driven fault-reactivation experiments undertaken on bare interface faults at 50MPa confining pressure 
 

No. Angle θ 
(°) 

Pc  
(MPa) 

Piston 
Velocity 
(μm.s-1) 

Peak 
Diff. 

Stress 
(MPa) 

τP 
(MPa) 

σnP 
 (MPa) 

Stick-slip / 
Failure 

No. of 
rapid 
slip 

events 

Stress 
drop of 
largest 

slip event 
(MPa) 

Shear 
disp. of  
largest 

slip event 
(mm) 

Total 
exp. disp. 

(mm) 

Comments 

MIS013 25 50 3.63 298 114 104 No - - - 1.69  
BIS012 30 50 3.63 302 131 127 Low 

amplitude 
stick-slip 

- - - 1.82  

MIS008 40 50 3.63 397 196 216 Yes 12 30 0.063 2.03  
MIS009 45 50 3.63 439 219 270 Low 

amplitude 
stick-slip 

17 17 0.036 1.89  

MIS035 50 50 3.63 375 185 272 Low 
amplitude 
stick-slip 

- - - 0.84 Halted prior to first 
major slip 

MIS010 50 50 3.63 649 319 432 Yes 5 191 0.436 2.37  
MIS036 55 50 3.63 755 355 558 Yes 1‡ 302 0.794 1.44 Halted after first 

major slip 
MIS011 55 50 3.63 776 365 572 Yes 3 466 0.611 1.86†  
MIS031 55 50 3.63 787 370 579 Yes 3 391 0.715 1.98† Sample prepared for 

microCT scanning 
MIS012 60 50 3.63 823 356 669 Yes 2 418 1.265 1.68†  
MIS017 60 50 3.63 591 256 494 Yes 1 152 0.297 0.53 Halted after first 

major slip 
MIS018 60 50 3.63 827 358 671 Yes 1 309 0.561 1.09 Halted just prior to 

failure on new 
optimally oriented 

fault 
MIS028 65 50 3.63 788 394 445 Yes 1 505 0.638 1.27†  
MIS029 70 50 3.63 802 401 452 Yes 1 540 0.834 1.48†  
 
† Total experimental displacement is given as axial displacement rather than shear displacement due to the formation of a new optimally oriented fault. 



Appendix 4 
 

232 
 

 

 

Table 5: Stress-driven fault-reactivation experiments undertaken in the presence of pore fluids 
 

No. Angle θ 
(°) 

Pc 
(MPa) 

Pf 
(MPa) 

Pc’ 
(MPa) 

Piston 
Velocity 
(μm.s-1) 

Peak 
Diff. 

Stress 
(MPa) 

τP 
(MPa) 

σnP 
 (MPa) 

Stick-
slip / 

Failure 

No. of 
rapid 
slip 

events 

Stress 
drop of 
largest 

slip 
event 

Shear 
disp. of  
largest 

slip 
event 

Total 
exp. 
disp. 
(mm) 

MIS022 60 80 30 50 3.63 755 327 620 Yes 2 421 0.726 1.938 
MIS023 55 80 55 25 3.63 596 280 427 Yes 11 277 0.484 2.04 

 

Table 6: Fluid-driven fault-reactivation experiments 
 

No. Angle θ 
(°) 

Pc 
(MPa) 

Pf 
(MPa) 

Pc’ 
(MPa) 

Piston 
Velocity 
(μm.s-1) 

Peak 
Diff. 

Stress 
(MPa) 

τP 
(MPa) 

σnP 
 (MPa) 

Stick-
slip / 

Failure 

No. of 
rapid 
slip 

events 

Stress 
drop of 
largest 

slip 
event 

Disp. of  
largest 

slip 
event 

Total 
exp. 
disp. 
(mm) 

MIS024 40 80-100 30-80 15-50 3.63 230 113 159 Yes 28 33 0.059 1.33 
MIS026 50 80 30-65 15-50 3.63 333 164 246 Yes 14 62 0.123 1.20 
MIS041 55 80 30-65 15-50 3.63 575 270 437 Yes 10 157 0.280 2.02 
MIS027 60 80 30-65 15-50 3.63 612 265 539 Yes 2 396 0.664 1.41 
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Table 7: Stress-driven failure of intact rock 
 

No. Angle θ (°) Pc  
(MPa) 

Piston 
Velocity 
(μm.s-1) 

Peak Diff. 
Stress 
(MPa) 

τP 
(MPa) 

σnP 
(MPa) 

Stress drop 
during slip 

event 
(MPa) 

Shear disp. 
during slip 

event 
(mm) 

Total exp. 
disp. 
(mm) 

IRF006 16 15 3.63 588 165 61 406 0.694 1.28 
IRF005 17 30 3.63 664 186 88 480 0.796 1.66 
IRF018 23 50 3.63 811 302 186 502 0.850 1.35 
IRF004 25 70 3.63 964 342 230 588 0.970 1.89 

 
 
 
Table 8: Fluid-driven failure of intact rock 
 

No. Angle θ (°) Pc 
(MPa) 

Pf (MPa) Pc’ 
(MPa) 

Piston 
Velocity 
(μm.s-1) 

Peak Diff. 
Stress 
(MPa) 

τP 
(MPa) 

σnP 
 (MPa) 

Stress 
drop of 
largest 

slip event 

Shear 
disp. of  
largest 

slip event 

Total exp. 
disp. 
(mm) 

IRF015 23 80 30-65 15-50 3.63 613 220 109 335 0.600 1.02 
IRF017 24 80 30-60 20-50 3.63 650 249 139 390 0.697 1.10 
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Appendix 5 

Supplementary Information 
 

FIB milling and the correlation of SEM and TEM microstructures  
One of the most powerful tools for understanding fault-surface microstructure used in 

this study was the preparation of TEM foils using focused ion beam (FIB) milling. This 

technique provides an ability to correlate detailed topographical and microstructural 

information from SEM imaging with subsurface compositional and structural 

information using the TEM [Giannuzzi and Stevie, 2005].  

The images depicted in Figure 1 show the process of FIB milling, starting with the 

identification of a target site as indicated by the red line. A 1.5µm think layer of 

platinum is deposited over the full length of the intended section to protect it from ion 

beam damage during milling. Then, using a high beam current to allow fast ion milling, 

two stepped trenches are milled on either side of the platinum strip, leaving a wall of 

sample material that is typically one to two microns thick. Features such as cracks, 

pores and clasts present in the substrate are now visible and can be imaged using the 

electron beam to provide a reference for correlation once the sample preparation is 

finished (see fractures indicated by white arrows in Fig. 1). Relative slip sense of the 

FIB foils is also recovered. 

The beam current is reduced and the sample is thinned on both sides, using the ion 

beam, to a nominal thickness of approximately 0.3µm. At this point the base of the 

sample is cut, but the ends are left intact to provide structural integrity to the foil. 

During final thinning the beam current is progressively reduced and thinning is 

carefully and slowly undertaken until the foil has a thickness of approximately 100nm, 

making it electron transparent. Once thinning and cleaning is complete, the ends of the 

sample are milled to separate the foil from the bulk substrate. The sample is lifted from 

its milled position using a glass needle and a micromanipulator and transferred onto a 

copper TEM grid with a carbon support film. The foil is then imaged using the TEM.  
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Figure 1: Correlation between SEM microstructures and FIB section 
Images show the selection of a location on the fault surface (A), followed by various stages in the milling 
process. (B) Shows deposition of platinum layer and the milling of an initial trench adjacent to the sample 
location. (C) Depicts final TEM foil prior to the ends being cut. The wafer thickness is approximately 
100nm. (D) Low magnification view of the milled TEM foil on the sample surface. (E) Final sample 
imaged using TEM. White arrows in images B,C and E indicate pre-existing cracks in the sample and 
show that fracturing is not the result of the milling process. The geometry and features preserved in the 
FIB section can be related to the SEM imaged fault surface, allowing microstructures and the slip sense to 
be recovered.   
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TEM Energy Dispersive Spectroscopy (Chapter 2) 
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Figure 2(A-C): TEM-EDS spectra 
Identified peaks can be correlated with either the sample or sample preparation techniques. Silicon and 
oxygen form the elemental constituents of silica glass and it is notable that aluminium is below detection 
limits. Carbon is derived from the carbon film that the FIB sample is mounted on; platinum is deposited 
during the FIB milling to protect the sample and the gallium is associated with the gallium ion beam used 
during sample milling.  
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Indexed Diffraction Patterns (Chapter 2) 

 

Figure 3: Indexed diffraction patterns from FIB section 4, BIS043.  
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XRD data for high temperature experimental fault surfaces (Chapter 2) 

 
Figure 4: X-ray diffraction patterns for experimentally slipped and control sample surfaces  
All peaks can be identified to be related to the sample, sample processing (assembly jacketing, acid 
dissolution etc.), or the holder that was custom built to allow XRD analysis of the slip surface in situ. 
Note that a broadening of the main quartz peak at 2θ ≈ 26.7 on samples where amorphous material is 
evident in microstructural analysis.  
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Estimating the area of real contact (Chapter 2) 
The microstructures formed during frictional sliding reveal a heterogeneous sliding 

surface with melt flow textures, fused patches, gouge and open voids, indicating that the 

two sliding surfaces only touch over a small fraction of their nominal contact area, on 

areas referred to as asperities. The reduced contact area results in a dramatic 

concentration of normal stress at the points of contact [Bowden and Tabor, 1950, 1964; 

Logan and Teufel, 1986; Dieterich and Kilgore, 1994]. As the load supported by the 

asperity forms an integral component of the frictional work that is done on a fault, being 

able to estimate the area of real contact is important for understanding temperature 

increases, the formation of melt and the potential for other solid state/mechanical 

amorphisation processes to occur.  

The fault surfaces can be assumed to be analogous to a framework of Hertzian contacts 

between two rough elastic planes, with an increase in applied normal stress resulting in 

an increase in the total asperity contact area [Greenwood and Williamson, 1966; Nielsen 

et al., 2010]. In an purely elastic model this results from an increase in the number of 

contacts rather than an increase in the individual size of the contacts [Logan and Teufel, 

1986; Dieterich and Kilgore, 1994]. For quartz surfaces, previous investigations [e.g., 

Logan and Teufel, 1986; Stesky and Hannan, 1987] suggest, that to a first order, the 

relationship between real contact area and the applied normal stress is linear, and in the 

form:  

 𝐴𝑅 =  
𝜎𝑛
𝜎𝑄

 (1) 

where 𝐴𝑅 is the real contact area of the fault, 𝜎𝑛 is the apparent macroscopic normal 

stress acting on the fault plane and 𝜎𝑄 is the shear strength of quartz during unconfined 

compressive failure. Based on the frictional contact theory of Bowden and Tabor [1950, 

1964], it can be assumed that an asperity on the fault surface can support a load 

equivalent its compressive failure strength. Consequently many flash heating models 

[e.g. Greenwood, 1991; Rice, 2006; Goldsby and Tullis, 2011] assume that normal load 

supported by any individual contact is independent of the load being applied the fault. 

However, the strong positive correlation between normal stress and melt production on 

experimental fault interfaces outlined in Chapter 2, Section 3.1 suggests that this 
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assumption does not hold for the current suite of experiments, and is explored further 

during the thermal calculations in Chapter 2, Section 4.1.4. 

The shear strength of quartz during unconfined compressive failure has been 

experimentally determined to be within the range of 2.2 to 10GPa at temperatures 

<600°C [Brace, 1963; Logan and Teufel, 1986; Stesky and Hannan, 1987; Masuda et 

al., 2000]. Indentation hardness tests [Brace, 1963; Evans, 1984] suggest that the 

strength of quartz is temperature dependent, and therefore the estimated real contact 

area may change with increasing temperature. However, for the purpose of the first-

order thermal calculations presented in Chapter 2 this possibility has been ignored and 

real contact area is calculated assuming an unconfined compressive failure strength 

between 2.2-10GPa. 

 

Figure 5: Relationship between area of real contact and apparent normal stress, assuming different 
compressive strengths for the quartz asperities. 
 

Melting temperature of quartz (Chapter 2) 
To be able to interpret the values calculated during the thermal modelling, an estimation 

of the anticipated melting temperature is needed. The thermodynamic melting point is 

defined as the temperature where the free energies of the crystalline and liquid phases 

are equal [Wolf et al., 1990]. In quartz this can be difficult to determine with only subtle 
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differences in free energy between crystalline and amorphous states, suggesting that the 

structural reorganisation upon the destruction of crystalline order (lattice periodicity) is 

not significant [Navrotsky, 1994]. Further, numerous factors such as pressure, 

temperature, rate of temperature increase and differential stress states all potentially 

influence the conditions under which melting occurs. Previous research [e.g. Navrotsky, 

1994; Hudon et al., 2002] suggests that under ambient pressures the melting 

temperature for quartz ranges from 1470 – 1723ºC.  

In the context of pseudotachylite research, where heating and melting occurs within a 

fraction of a second, a particularly pertinent issue is the influence of high temperature 

phase transitions on melting temperatures. When β-quartz is heated rapidly, it can by-

pass the sluggish reconstructive β-quartz - β-cristobalite phase transition, melting 

directly into a metastable state at temperatures between 1400 - 1550°C [Navrotsky, 

1994; Hudon et al., 2002; Bourova and Richet, 2012]. Conversely increases in pressure 

potentially may result in significant increases in melting temperatures with experiments 

suggesting that melting occurs at ~1900ºC at 1GPa and at ~2150 at 2GPa under isostatic 

conditions [Hudon et al., 2002]. It is not known how the complex stress states on the 

fault surface may influence the melting properties, nor how the evolution of stress states 

during sliding may enhance or impede melting. 

Trace contaminants and/or fluid within the SiO2 system may act as a flux, lowering the 

melting temperature relative to equilibrium melting conditions of a pure quartz system. 

Experimental studies of equilibrium melting of quartz + water system show that the 

liquidus is 1250ºC at Pc=100MPa and 1160ºC at Pc=150MPa [Kennedy et al., 1962]. 

As discussed in Chapter 2, the small quantity of melt produced during the current suite 

of experiments makes compositional analysis difficult because the concentration of 

contaminants is beyond the limits of detection of conventional techniques such as 

energy dispersive X-ray spectroscopy (EDS). However, given the lack of detectable 

incorporated water during IR spectroscopy of the starting material, the levels of 

structurally bound water within the grains (in the form of OH defects) is estimated to be 

negligible. Therefore any fluid within the sample would likely be restricted to fluid 

inclusions, interfacial films and trapped pore fluids. 
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Physical properties of quartz used for thermal calculations (Chapter 2) 
 

 Density 
𝝆 (𝒌𝒌.𝒎−𝟑) 

Specific heat 
𝒄𝒑(𝑱.𝒌𝒌−𝟏.𝑲−𝟏) 

Thermal 
conductivity 
𝒌(𝑾.𝒎−𝟏𝑲−𝟏) 

Thermal 
diffusivity 
𝜿(𝟏𝟎−𝟔𝒎𝟐𝒔−𝟏) 

Quartz 2650 1186 7 2.23 

 
Data obtained from Di Toro and Pennacchiono [2004] and references contained therein. 
 
 
 
 

Mechanical data from experiments used for frictional heating calculations  
 

Sample Melt 
Textures 

Displacement 
(mm) 

Velocity 
(mm/s) 

Shear Stress 
(MPa) 

Normal 
Stress 
(MPa) 

Friction 

BIS043 Melt 0.218 18.17 190 261 0.727 
BIS042 Melt 0.192 15.67 187 245 0.763 
BIS041 No Melt 0.106 9.64 93 105 0.887 
BIS040 Melt 0.17 14.17 191 262 0.73 
BIS039 No Melt 0.15 13.64 145 161 0.899 
BIS038 Melt 0.225 19.57 207 287 0.721 
BIS036 Melt  0.158 10.53 147 187 0.787 
BIS048 No Melt 0.0350 2.41 71 93 0.764 
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Thermal modelling: effect of varying parameters (Chapter 2) 
 

 
 
Figure 6: Calculations estimating the average increase in temperature on the fault surface showing 
the effect of sliding velocity. 
(A) Graph showing frictional heating of the fault zone as a function of increasing distance perpendicular 
to the fault core. These calculations are based on the slip times estimated from the seismic data. (B) 
Results of A show a temperature profile resembling a stationary heat source with a largely even diffusion 
of heat from the asperity contact. (C) Frictional heating of the fault zone as a function of increasing 
distance perpendicular to the fault core, assuming the slip times estimated from the seismic data is 
underestimated by a factor of 50. The velocities used in these calculations approach seismic slip rates. (D) 
Results of C show the severe distortion of the temperature profile by the velocity of the sliding contact 
and suggest the majority of heating is confined to the region immediately adjacent to the slip zone.  
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Figure 7: Effect of varying parameters on the production of heat on the fault surfaces 
(A) Sensitivity of the model 1 (used to calculate frictional heating of the fault surfaces) to changes in fault 
width. When fault widths <5μm, there is essentially no impact of calculated fault temperatures. Faults in 
the current suite of experiments have a fault width of approximately 1-2μm. (B) Schematic illustration of 
the effect of a slow moving heat source (low Péclet number) [after Stachowiak and Batchelor, 1993]. (C) 
Estimated increase in fault surface temperature using data acquired from experiments. The change in 
estimated temperature with increasing displacement from the interface suggests a low Péclet number. (D) 
Change in asperity temperatures as a function of asperity radius in response to flash heating. Graph shows 
the effect of different sliding velocities. (E) The effect of different asperity strengths and diameters on the 
change in asperity temperature. (F) Change in asperity temperature using experimental data (see 
Appendix 5) and assuming a real fault contact area of 10% [Logan and Teufel, 1986]. Estimated normal 
stress acting on asperities (real contact area) is indicated and range from 0.9-2.9GPa. 
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Figure 8: Effect of parameter uncertainty on the calculated total asperity temperature 
(A) Graph showing estimated maximum asperity temperature using experimental data and assuming a 
asperity contacts account for 10% of the fault area. (B) Graph depicting estimated maximum asperity 
temperature assuming that the slip interface has a 10% real contact area and that the slip duration has 
been overestimated by 200% (C) Shows the effect of an asperity strength of 4GPa and an overestimated 
slip time. (D) Visualises the effect on total asperity temperature for a very high (8GPa) asperity strength. 
For C-D, it is assumed that the maximum normal stress of the interface is given by the compressive 
failure strength of the asperity, which is assumed as to be the same as for the material (i.e. quartz). Note 
that changing asperity normal stress to being equivalent to estimated values for the compressive strength 
of quartz results in convergence of the estimated maximum temperatures at large asperity contact radii 
compared with the results form experimental data (A). Further, the results are no longer consistent with 
the experimental observations of melt production. 
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Figure 9: Change in asperity temperature as a function of real contact area and asperity strength 
(A) Estimated change in asperity temperature as a function of real contact area/asperity strength over a 
range of sliding velocities and assuming a fault displacement of 200μm and apparent normal stress of 
200MPa. (B) Estimated change in asperity temperature plotted as a function of real contact area assuming 
varying displacement and a constant velocity. (C) Graph showing the estimated change in asperity 
temperature as a function of real contact area using experimental data for apparent normal stress, velocity 
and displacement. (D) Visualises the estimated total asperity temperature including ambient experimental 
conditions for experimental data. Note the good correlation between observed melt and estimated 
maximum temperatures. 
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Loading curves of intact rock and misoriented fault experiments (Chapter 3) 

 

Figure 10: Comparison of stress-strain curves for intact rock failure and misoriented fault 
experiments. 
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Figure 11: Comparison of loading curves for misoriented fault experiments between 50MPa and 
100MPa confining pressure. 
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Figure 12: Loading curves for misoriented fault experiments. Comparison made between 
experiments undertaken at nominally dry conditions and water saturated conditions.  
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Figure 13: Morh Diagram showing the construction of failure envelopes for Fontainebleau 
sandstone 
The failure envelope has been constructed using experimental data with the diameter of the circle 
representing differential stress at failure. The green dashed failure envelope assumes a linear relationship 
and estimates a high value of cohesive strength and large value of internal friction. The solid red failure 
has been estimated assuming a non-linear relationship between shear and normal stress at failure.  
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Spectral analysis using cathodoluminescence (Chapter 3) 

Misoriented Fault Experiments: MIS017 θr = 60°, nominally dry conditions 

 

Figure 14: Cathodoluminescence analysis of a melt-welded interface created by the stress-driven 
reactivation of a θr=60º fault under nominally dry conditions. 
Images and spectra acquired from MIS017, reactivated at Pc = 50MPa. (A) Panchromatic CL image of a 
melt-welded section of the fault. Melt can be seen as the dark band in the centre of the image. (B-C) BSE-
SEM, panchromatic CL images (respectively) showing the location of spectral analyses. Spectra are 
shown, identified by location. 
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Misoriented Fault Experiments: MIS017 θr = 60°, nominally dry conditions 

 

Figure 15: Cathodoluminescence analysis of a melt-welded interface created by the stress-driven 
reactivation of a θr=60º fault under nominally dry conditions. 
Images and spectra acquired from MIS017, reactivated at Pc = 50MPa. (A) Panchromatic CL image of a 
melt-welded section of the fault. Melt can be seen as the dark band in the centre of the image. Note the 
banding of an authigenic quartz overgrowth which is approximately parallel to the melt. Clasts can be 
seen within the melt layer, as well as material that varies in luminescence intensity. (B-C) BSE-SEM, 
panchromatic CL images (respectively) showing the location of spectral analyses. Spectra are shown, 
identified by location. 
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Misoriented Fault Experiments: MIS017 θr = 60°, nominally dry conditions 

 

Figure 16: Cathodoluminescence analysis of a melt-welded interface created by the stress-driven 
reactivation of a θr=60º fault under nominally dry conditions. 
Images and spectra acquired from MIS017, reactivated at Pc = 50MPa. (A) False coloured CL image of a 
melt-welded section of the fault. Melt can be seen as the blue band in the centre of the image (B-C) BSE-
SEM, panchromatic CL images (respectively) showing the location of spectral analyses. Spectra are 
shown, identified by location.  
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Misoriented Fault Experiments: BIS004 θr = 30°, aseismic slip 

 

Figure 17: Cathodoluminescence analysis of an optimally-oriented, aseismically slipped fault under 
nominally dry conditions. 
Images and spectra acquired from BIS004, reactivated at Pc = 100MPa. (A) False coloured CL image of 
the fault core of a mature, optimally oriented fault. Damaged/potentially amorphous material can be seen 
as the green-blue zones at the centre of the image. Inset shows the location of B and C. (B-C) BSE-SEM, 
false coloured CL images (respectively) showing the location of spectral analyses. Spectra are shown, 
identified by location. 
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Misoriented Fault Experiments: BIS004 θr = 30°, aseismic slip 

 

Figure 18: Cathodoluminescence analysis of an optimally-oriented, aseismically slipped fault under 
nominally dry conditions. 
Images and spectra acquired from BIS004, reactivated at Pc = 100MPa. (A) False coloured CL image of 
the fault core of a mature aseismically slipped fault. Damaged/potentially amorphous material can be seen 
as the green luminescent zones at the centre of the image. (B) BSE-SEM showing the location of spectral 
analyses. Spectra are shown, identified by location.  
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Misoriented Fault Experiments: BIS001 θr = 30°, aseismic slip 

 

Figure 19: Cathodoluminescence analysis of an optimally-oriented, aseismically slipped fault under 
nominally dry conditions. 
Images and spectra acquired from BIS001, reactivated at Pc = 100MPa. (A) False coloured CL image of a 
melt-welded section of the fault. Damaged/potentially amorphous material can be seen as the green-blue 
zones at the centre of the image. (B) BSE-SEM image showing the location of spectral analyses. Spectra 
are shown, identified by location. 
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Misoriented Fault Experiments: MIS027 θr = 60°, elevated pore fluids 

 
 
Figure 20: Cathodoluminescence analysis of a melt-welded interface created by the fluid-driven 
reactivation of a θr=60º fault under water saturated dry conditions. 
Images and spectra acquired from MIS027, reactivated at Pc’ = 15-50MPa. (A) False coloured CL image 
of a melt-welded section of the fault. Melt zone can be seen by the dark-green band with very low 
luminescence running across the sample. (B-C) BSE-SEM, panchromatic CL images (respectively) 
showing the location of spectral analyses. Spectra are shown, identified by location. 
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Misoriented Fault Experiments: MIS027 θr = 60°, elevated pore fluids 

 

 
Figure 21: Cathodoluminescence analysis of a melt-welded interface created by the fluid-driven 
reactivation of a θr=60º fault under water saturated dry conditions. 
Images and spectra acquired from MIS027, reactivated at Pc’ = 15-50MPa. (A) False coloured CL image 
of a melt-welded section of the fault. Melt zone can be seen by the dark green-blue band running across 
the sample. Note the variation in intensity of the luminescence within the melt band. (B-C) BSE-SEM, 
panchromatic CL images (respectively) showing the location of spectral analyses. Spectra are shown, 
identified by location. 
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Misoriented Fault Experiments: MIS038 θr = 60°, hydrothermally treated for 6 hours 

at 900°C following slip 

 

Figure 22: Cathodoluminescence analysis of a melt-welded interface that has been hydrothermally 
treated for 6 hours following slip. 
Images and spectra acquired from MIS038, reactivated at Pc = 100MPa and then hydrothermally treated 
for 6 hours at Pc = 250MPa, Pf = 150MPa and T = 900MPa. (A-B) Panchromatic CL and BSE-SEM 
images (respectively) showing the location of spectral analyses. Note the presence of relict melt within 
the core of the fault that is surrounded by a hydrothermal quartz rim. Spectra are shown, identified by 
location. 
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Misoriented Fault Experiments: MIS038 θr = 60°, hydrothermally treated for 6 hours 

at 900°C following slip 

 

Figure 23: Cathodoluminescence analysis of a melt-welded interface that has been hydrothermally 
treated for 6 hours following slip. 
Images and spectra acquired from MIS038, reactivated at Pc = 100MPa and then hydrothermally treated 
for 6 hours at Pc = 250MPa, Pf = 150MPa and T = 900MPa. (A-B) Panchromatic CL and BSE-SEM 
images (respectively) showing the location of spectral analyses. Note the cementation of the gouge 
particles by precipitated hydrothermal quartz (pale blue in the false coloured CL image). Spectra are 
shown, identified by location. 
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