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ABSTRACT
The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls
the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is
non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving
mechanisms. Although some of these parameters were explored, most previous works assumed
that the gas is isothermal. However, we know that cold molecular clouds form out of the warm
atomic medium, with the gas passing through chemical and thermodynamic phases that are not
isothermal. Here we determine the role of temperature variations by modelling non-isothermal
turbulence with a polytropic equation of state (EOS), where pressure and temperature are
functions of gas density, P ∼ ρ� , T ∼ ρ� − 1. We use grid resolutions of 20483 cells and
compare polytropic exponents � = 0.7 (soft EOS), � = 1 (isothermal EOS) and � = 5/3
(stiff EOS). We find a complex network of non-isothermal filaments with more small-scale
fragmentation occurring for � < 1, while � > 1 smoothes out density contrasts. The density
probability distribution function (PDF) is significantly affected by temperature variations, with
a power-law tail developing at low densities for � > 1. In contrast, the PDF becomes closer to
a lognormal distribution for � � 1. We derive and test a new density variance–Mach number
relation that takes � into account. This new relation is relevant for theoretical models of the
SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars
form. We derive the SFR as a function of � and find that it decreases by a factor of ∼5 from
� = 0.7 to 5/3.

Key words: equation of state – hydrodynamics – turbulence – ISM: clouds – ISM: structure –
galaxies: ISM.

1 IN T RO D U C T I O N

Interstellar turbulence is a key for star formation (Elmegreen &
Scalo 2004; Mac Low & Klessen 2004; McKee & Ostriker 2007;
Padoan et al. 2014). Yet our observational and theoretical un-
derstanding of interstellar turbulence is limited. This is primarily
because turbulence is an intrinsically complex, three-dimensional
(3D) phenomenon occurring only at very high Reynolds numbers
(Krumholz 2014), which are difficult to achieve in terrestrial ex-
periments. What we do know is that turbulence in the interstel-
lar medium is highly compressible and supersonic (Larson 1981;
Heyer & Brunt 2004; Roman-Duval et al. 2011; Hennebelle &
Falgarone 2012), significantly exceeding the complexity of in-
compressible turbulence (Kolmogorov 1941; Frisch 1995). Super-
sonic, compressible turbulence is difficult to study analytically, but
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some important steps have been taken (Lazarian & Pogosyan 2000;
Boldyrev, Nordlund & Padoan 2002; Lazarian & Esquivel 2003;
Schmidt, Federrath & Klessen 2008; Galtier & Banerjee 2011; Aluie
2011, 2013; Banerjee & Galtier 2013, 2014). In order to unravel the
statistics and properties of turbulence in detail, however, one must
ultimately resort to full 3D computer simulations.

Attempts to model supersonic turbulence in a computer reach
back to the early studies by Porter, Pouquet & Woodward (1992) and
Porter & Woodward (1994). However, it is only within the last few
years with the advent of supercomputers that we can now measure
the scaling of the turbulent density and velocity with high precision
(Cho & Lazarian 2003; Kowal & Lazarian 2007; Kritsuk et al.
2007; Lemaster & Stone 2009; Schmidt et al. 2009; Federrath et al.
2010; Konstandin et al. 2012a; Federrath 2013a). But an important
limitation of these studies is that they all rely on the assumption
of isothermal gas. The real interstellar medium, however, consists
of several density and temperature phases (Hollenbach, Werner &
Salpeter 1971; McKee 1989; Wolfire et al. 1995; Ferrière 2001).
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Even molecular clouds do exhibit potentially important temperature
variations that can be approximated with a polytropic equation of
state (EOS), relating pressure P, temperature T and density n,

P ∼ n�, T ∼ n�−1. (1)

The polytropic exponent � is close to unity, � = 1 (isothermal
gas), over a wide range of densities, from hydrogen number densi-
ties of n ∼ 1–1010 cm−3, with the temperature varying in the range
3 K < T < 10 K for solar-metallicity gas (Omukai et al. 2005).
Radiation-hydrodynamical calculations including chemical evolu-
tion and cooling by Masunaga & Inutsuka (2000) also show that
� ∼ 1 for n � 109 cm−3. More recent 3D calculations including
a detailed chemical network find that � ∼ 0.5–0.9 in the range
10 cm−3 � n � 104 cm−3 (Glover & Mac Low 2007a,b), followed
by � ∼ 1 at higher densities (Glover et al. 2010). As the gas becomes
optically thick, � rises to � ∼ 1.1 for 109 � n/cm−3 � 1011, � ∼ 1.4
for 1011 � n/cm−3 � 1016, followed by a phase where � ∼ 1.1 in
which molecular hydrogen is dissociated (1016 � n/cm−3 � 1021;
Masunaga & Inutsuka 2000). Finally, the gas becomes almost
completely optically thick (� = 5/3), when a new star is born
(n � 1021 cm−3). It must be emphasized that all the phases with
n � 1010 cm−3 occur inside dense, collapsing cores with sizes
<0.1 pc, while the phases with � ∼ 0.5–1.1 are relevant for molec-
ular cloud scales, L ∼ 0.1–100 pc. Turbulent gas in the early Uni-
verse likely had a somewhat higher effective polytropic exponent,
because of slightly less efficient cooling (Abel, Bryan & Norman
2002; Greif et al. 2008; Wise, Turk & Abel 2008; Romeo, Burkert &
Agertz 2010; Schleicher et al. 2010; Clark et al. 2011; Hoffmann &
Romeo 2012; Safranek-Shrader et al. 2012; Schober et al. 2012;
Latif et al. 2013).

The aim of this study is to determine the role of temperature
variations on the filamentary structure and the density probability
distribution function (PDF) of molecular clouds in the interstellar
medium. Here we measure the density PDF in non-isothermal gas
governed by polytropic turbulence and derive the density variance–
Mach number relation as a function of the polytropic exponent �.
Finally, we use the new density PDF to determine the star for-
mation rate (SFR) in polytropic clouds, given the virial parame-
ter, turbulent driving, Mach number and polytropic �. We note
that the influence of temperature variations has been explored in
previous complementary studies (Vázquez-Semadeni 1994; Passot
& Vázquez-Semadeni 1998; Wada & Norman 2001; Kritsuk &
Norman 2002; Li, Klessen & Mac Low 2003; Audit & Hen-
nebelle 2005, 2010; Jappsen et al. 2005; Hennebelle & Audit 2007;
Kissmann et al. 2008; Kim, Kim & Ostriker 2011; Seifried et al.
2011; Peters et al. 2012; Gazol & Kim 2013; Toci & Galli 2015),
and we extend these here to much higher resolution and focus on
the implications for star formation.

The paper is organized as follows. Section 2 summarizes the
hydrodynamical simulation methods. Sections 3 and 4 present the
filamentary structure and time evolution of polytropic turbulence.
In Section 5 we determine the density PDF of polytropic clouds
and we derive a new density variance–Mach number relation for
polytropic gases in Section 6. We then show in Section 7 that this
new PDF leads to SFRs varying by a factor of ∼5 in the polytropic
regime with 0.7 ≤ � ≤ 5/3, occurring in real molecular clouds. Our
conclusions are listed in Section 8.

2 N U M E R I C A L S I M U L AT I O N S

We use the FLASH code (Fryxell et al. 2000; Dubey et al. 2008),
version 4, to solve the compressible hydrodynamical equations

on 3D, uniform, periodic grids of fixed side length L. To guar-
antee stability and accuracy of the numerical solution, we use the
HLL5R positive-definite Riemann solver (Waagan, Federrath &
Klingenberg 2011).

We drive turbulence by applying a stochastic acceleration field
Fstir as a momentum and energy source term. Fstir only contains
large-scale modes, 1 < |k| L/2π < 3, where most of the power is
injected at the kinj = 2 mode in Fourier space, i.e. on half of the
box size (for simplicity, we drop the wavenumber unit L/2π in the
following). This large-scale driving is favoured by molecular cloud
observations (e.g. Ossenkopf & Mac Low 2002; Heyer, Williams &
Brunt 2006; Brunt, Heyer & Mac Low 2009; Roman-Duval et al.
2011). The turbulence on smaller scales, k ≥ 3, is not directly af-
fected by the driving and develops self-consistently. We use the
stochastic Ornstein–Uhlenbeck process to generate Fstir with a fi-
nite autocorrelation time-scale (Eswaran & Pope 1988; Schmidt,
Hillebrandt & Niemeyer 2006), set to the turbulent crossing time on
the largest scales of the system, T ≡ L/(2σ v), where σ v is the ve-
locity dispersion on the integral scale, L/2 (for details, see Schmidt
et al. 2009; Federrath et al. 2010; Konstandin et al. 2012a). The
turbulent driving used here excites a natural mixture of solenoidal
and compressible modes, corresponding to a turbulent driving pa-
rameter b = 0.4 (Federrath et al. 2010). All simulations were run
for 10 turbulent crossing times, 10 T, allowing us to study conver-
gence in time and to average PDFs and spectra in the regime of fully
developed turbulence.

The setup and numerical methods are the same as in previous
studies (e.g. Federrath, Klessen & Schmidt 2008, 2009; Federrath
et al. 2010, 2011, 2014b; Federrath 2013a). The important difference
is that instead of an isothermal EOS, we here use a polytropic EOS,

P = P0 (ρ/ρ0)� , (2)

with the mean density ρ0 and the normalization pressure P0 =
ρ0c

2
s (� = 1), i.e. normalized with respect to the isothermal sound

speed (� = 1). As these simulations are scale free, we set L = 1,
ρ0 = 1, P0 = 1, and provide measurements of the gas density, tem-
perature, pressure and sound speed always relative to the respective
mean values, which covers all the physics in the simulations and
allows us to scale the simulation quantities to any arbitrary cloud
size for comparisons with observations. In order to study the in-
fluence of temperature variations on the statistics of supersonic
non-isothermal turbulence (in particular its effect on the density
PDF and SFR), we vary the polytropic exponent � in equation (2)
and perform simulations with

(i) � = 0.7 (soft EOS),
(ii) � = 1 (isothermal EOS),
(iii) � = 5/3 (stiff EOS).

In order to test and establish numerical convergence, we run
simulations with grid resolutions of 2563, 5123, 10243 and 20483

compute cells. Table 1 lists the key parameters of all our polytropic
turbulence simulations.

3 T H E F I L A M E N TA RY S T RU C T U R E O F
P O LY T RO P I C T U R BU L E N C E

Fig. 1 shows projections (integration along the line of sight) of the
3D density (top panels) and temperature (bottom panels) in our nu-
merical simulations with � = 0.7 (left-hand panels) and � = 5/3
(right-hand panels). These column density and column temperature
projections are close to what an observer would see in a real molec-
ular cloud observation. Several large- and small-scale filaments are
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Table 1. Simulation parameters and statistical measures.

Simulation N3
res � MV MM Sim σ s, V Sim σ s, M PDF σ s, V PDF σ s, M PDF θ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PT2048G0.7 20483 0.7 8.4 ± 0.4 12.4 ± 0.5 1.83 ± 0.08 1.74 ± 0.07 1.73 ± 0.03 1.56 ± 0.05 0.07 ± 0.02
PT1024G0.7 10243 0.7 8.6 ± 0.3 12.5 ± 0.6 1.84 ± 0.11 1.67 ± 0.04 1.78 ± 0.03 1.60 ± 0.05 0.07 ± 0.02
PT512G0.7 5123 0.7 8.5 ± 0.4 12.6 ± 0.6 1.84 ± 0.10 1.67 ± 0.05 1.69 ± 0.09 1.53 ± 0.16 0.07 ± 0.03
PT256G0.7 2563 0.7 8.5 ± 0.4 12.6 ± 0.7 1.92 ± 0.08 1.60 ± 0.05 1.78 ± 0.06 1.60 ± 0.11 0.07 ± 0.04

PT1024G1 10243 1 11.6 ± 0.6 10.7 ± 0.6 1.94 ± 0.11 1.57 ± 0.07 1.82 ± 0.08 1.59 ± 0.11 0.10 ± 0.04
PT512G1 5123 1 11.8 ± 0.6 10.7 ± 0.6 1.98 ± 0.11 1.57 ± 0.06 1.84 ± 0.07 1.59 ± 0.11 0.10 ± 0.04
PT256G1 2563 1 11.7 ± 0.6 10.7 ± 0.6 2.05 ± 0.13 1.51 ± 0.05 2.01 ± 0.12 1.52 ± 0.17 0.20 ± 0.07

PT2048G5/3 20483 5/3 13.3 ± 0.5 6.3 ± 0.4 2.17 ± 0.11 1.27 ± 0.03 2.12 ± 0.15 1.26 ± 0.17 0.41 ± 0.08
PT1024G5/3 10243 5/3 13.2 ± 0.5 6.3 ± 0.3 2.17 ± 0.15 1.27 ± 0.04 2.10 ± 0.16 1.26 ± 0.19 0.40 ± 0.09
PT512G5/3 5123 5/3 13.2 ± 0.5 6.3 ± 0.3 2.12 ± 0.15 1.28 ± 0.04 2.04 ± 0.17 1.27 ± 0.20 0.37 ± 0.10
PT256G5/3 2563 5/3 13.4 ± 0.7 6.3 ± 0.3 2.15 ± 0.12 1.27 ± 0.04 1.98 ± 0.11 1.30 ± 0.13 0.32 ± 0.06

Notes. Column 1: simulation name. Columns 2 and 3: grid resolution and polytropic exponent � in equation (2). Columns 4 and 5: volume-weighted
and mass-weighted rms Mach number. Columns 6 and 7: volume-weighted and mass-weighted standard deviation of logarithmic density fluctuations
in the simulations (Sim σ s, V and Sim σ s, M). Columns 8 and 9: same as columns 6 and 7, but fitted via the Hopkins (2013b) PDF, equation (4).
Column 10: intermittency parameter θ from the Hopkins (2013b) PDF fit. Note also the relations between θ , σ s, V and σ s, M, given by equation (5).

readily identifiable and would deserve deeper analyses along the
lines of André et al. (2010), Henning et al. (2010), Men’shchikov
et al. (2010), Schmalzl et al. (2010), Arzoumanian et al. (2011),
Hill et al. (2011), Hennemann et al. (2012), Peretto et al. (2012),
Schneider et al. (2012) and Hacar et al. (2013). We clearly see that
the small-scale column density structure strongly depends on poly-
tropic � with � < 1 leading to a more fragmented density field
with filaments of high density contrast, while � > 1 smoothes out
small-scale density contrasts. Comparing these different � models
with observations of filaments could reveal important clues about
the thermodynamic state of molecular clouds.

The temperature structure shown in the bottom panels of Fig. 1
follows our expectations, such that for � = 0.7, the dense gas clouds
in the simulation are colder than their surrounding low-density gas,
while the opposite applies in the � = 5/3 case. Real molecular
clouds are in the � � 1 regime for number densities of n ∼ 102–
105 cm−3 (Omukai et al. 2005; Glover & Mac Low 2007a,b; Glover
et al. 2010). The gas becomes optically thick and turns into the � > 1
regime only in the very dense cores for n � 1010 cm−3 (Masunaga
& Inutsuka 2000; Omukai et al. 2005). We note that our numerical
experiments are scale free and can thus be applied to both cases,
depending on �.

Fig. 2 shows slices through the mid-plane of our computational
domain. The top and bottom panels display density and sound speed,
respectively. These spatial slices reveal individual shocks and multi-
shock interactions. As expected, the sound speed drops in the shocks
if � < 1, while it increases in the shocks if � > 1. We also see that
most of the volume is occupied by post-shock gas, i.e. gas that
is currently in a state of expansion or rarefaction, which exhibits
the opposite behaviour to the compressed gas: rarefied gas heats
up for � < 1 and cools down for � > 1. Thus, we expect the
volume-weighted average sound speed to be higher for � = 0.7
than for � = 5/3. In contrast, the mass-weighted average sound
speed (which is dominated by shocked regions) is expected to be
lower for � = 0.7 than for � = 5/3.

4 T H E T I M E E VO L U T I O N O F PO LY T RO P I C
T U R BU L E N C E

We start all our simulations with gas initially at rest and with
a homogeneous density ρ0 in a 3D periodic box. The turbulent
driving accelerates the gas to our target velocity dispersion σ v.

Depending on the choice of polytropic exponent (� = 0.7, 1, 5/3),
we expect different average sound speeds and Mach numbers. Fig. 3
shows the time evolution of the average sound speed (top panels)
and rms Mach number (middle panels). The left-hand panels show
the volume-weighted averages and the right-hand panels show the
mass-weighted averages. After two turbulent crossing times, t ≥ 2 T,
all volume- and mass-weighted averages are converged in time
and only fluctuate by about 10 per cent around their typical, time-
averaged value.

The top-left panel of Fig. 3 shows that the volume-weighted sound
speed increases for � < 1, while it decreases for � > 1 (we always
use the well-studied isothermal case, � = 1, as a reference). The
mass-weighted averages shown in the top-right panel, on the other
hand, exhibit the opposite behaviour. This can be readily understood
when we consider how the sound speed changes upon compression
of the gas in a shock for different �. For example, if � < 1, then
a compression leads to cooling, decreasing the sound speed in the
shocks. In contrast, the gas heats up in expanding, rarefied regions.
Since most of the volume is always in a state of rarefaction or
expansion, because the shocks only occupy a small fraction of the
volume, the volume-averaged sound speed increases for � = 0.7
compared to � = 1. On the other hand, since most of the mass
is in shocks and the gas cools when it is compressed for � < 1,
the mass-weighted sound speed decreases for � = 0.7 compared
to � = 1. The opposite happens for gas with � > 1, which heats
up during a compression and cools down during a rarefaction: cs, V

decreases, while cs, M increases with respect to the isothermal case.
The middle panels of Fig. 3 show the volume-weighted Mach

number MV = σv/cs,V (left-hand panel) and the mass-weighted
rms Mach number MM = σv/cs,M , respectively. Since the veloc-
ity dispersion σ v is the same in all our numerical experiments,
the dependence of the Mach number on � is basically the inverse
of the dependence of the sound speed on �. It is worth pointing
out that the volume- and mass-weighted rms Mach numbers for
the isothermal case (� = 1) are very similar,1 because the sound

1 The mass-weighted rms Mach number for � = 1 is ∼9 per cent smaller
than the volume-weighted rms (see Table 1), because the mass-weighted
rms puts more weight on the shocks, which have somewhat smaller velocity
dispersion, because they represent stagnation points of the overall turbulent
flow.
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Figure 1. Density projections (top) and temperature projections (bottom) for our non-isothermal turbulence simulations with polytropic exponent � = 0.7
(left) and � = 5/3 (right) when the turbulence is fully developed. We clearly see how gas with � < 1 cools when it is compressed in dense shocks, while
gas with � > 1 heats up during compression. Real molecular clouds are in the � � 1 regime over a wide range of gas densities and only when dense cores
form do they turn into the � > 1 regime as the gas becomes optically thick. We also see that lower � results in a more fragmented density cloud on small
scales, while � > 1 smoothes out density fluctuations. These polytropic turbulence simulations use unprecedented resolutions of 20483 grid cells. The units
are always shown normalized to the respective average values. An animation of this still frame is available in the online version of the journal.

speed is the same, while it is important to distinguish volume- and
mass-weighted averages for non-isothermal gases (� �= 1).

Finally, the bottom panels of Fig. 3 show the rms vorticity
(∇ × v) and rms divergence (∇ · v) of the turbulent velocity field,
which are largely insensitive to changes in �. This is because the
turbulent driving primarily determines the amount of solenoidal
and compressible modes in the velocity field, while baroclinic
vorticity production (Mee & Brandenburg 2006; Del Sordo &
Brandenburg 2011; Federrath et al. 2011), which is only possible in
non-isothermal gases such as our � �= 1 cases, is negligible com-
pared to the directly induced solenoidal and compressible modes.

5 T H E D E N S I T Y PD F O F P O LY T RO P I C
T U R BU L E N C E

The density PDF provides an important statistical measure of the
distribution of gas densities in the interstellar medium of galaxies

(Berkhuijsen & Fletcher 2008; Hughes et al. 2013) and in molecular
clouds in the Milky Way. The PDF has recently attracted attention,
because it provides us with valuable information about the potential
of a cloud to form stars (Federrath & Klessen 2012; Padoan et al.
2014, and references therein). The key feature of the PDF is that
we can use it to determine the dense gas mass fraction of a cloud,
capable of forming stars. Submillimetre observations of the column
density PDF in the spiral arms of the Milky Way show that narrower
PDFs with less dense gas are typically found in rather quiescent
clouds (in terms of star formation), while clouds with a wider PDF
and correspondingly higher dense gas mass fraction are actively
forming stars (Kainulainen et al. 2009; Schneider et al. 2012, 2013;
Ginsburg, Federrath & Darling 2013; Kainulainen, Federrath &
Henning 2013, 2014). Recent ALMA observations in the Galactic
Centre by Rathborne et al. (2014) also reveal the typical features
seen in the density PDFs produced by supersonic turbulence (e.g.
Federrath et al. 2008; Federrath & Klessen 2013).

MNRAS 448, 3297–3313 (2015)
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Figure 2. As Fig. 1, but here we show slices of the gas density (top) and slices of the sound speed through the mid-plane of our 3D turbulent domain with
20483 grid cells. For polytropic � < 1 (left-hand panels), the sound speed decreases in the shocks, while it increases for � > 1 (right-hand panels), which
has important consequences for the Mach number and density PDFs, and for the SFR. An animation of this still frame is available in the online version of the
journal.

5.1 The density PDF in isothermal gas

Most of the underlying theoretical and numerical work on the den-
sity PDF is based on the assumption of isothermal gas (� = 1;
Padoan, Nordlund & Jones 1997; Klessen 2000; Kritsuk et al.
2007; Lemaster & Stone 2008; Brunt, Federrath & Price 2010a,b;
Federrath et al. 2010; Price, Federrath & Brunt 2011; Konstandin
et al. 2012b; Micic et al. 2012; Molina et al. 2012; Federrath 2013a;
Moraghan, Kim & Yoon 2013; Lee, Chang & Murray 2014), lead-
ing to a lognormal PDF in the logarithmic density contrast s ≡
ln (ρ/ρ0),

pV (s) = 1(
2πσ 2

s,V

)1/2 exp

(
− (s − s0)2

2σ 2
s,V

)
. (3)

The lognormal PDF contains two parameters: (1) the volume-
weighted density variance σ s, V and (2) the mean value s0, which
is related to the variance by s0 = −σ 2

s,V /2 due to mass conserva-
tion (Vázquez-Semadeni 1994; Federrath et al. 2008). There are
a few important studies where the influence of temperature vari-
ations on the PDF has been explored (Vázquez-Semadeni 1994;
Passot & Vázquez-Semadeni 1998; Wada & Norman 2001;
Kritsuk & Norman 2002; Li et al. 2003; Audit & Hennebelle 2005,
2010; Hennebelle & Audit 2007; Kissmann et al. 2008; Seifried
et al. 2011; Gazol & Kim 2013), showing that the PDF tends to
depart significantly from the lognormal form given by equation (3)
if the gas is non-isothermal. Here we extend these previous studies
to much higher resolution in order to determine the density PDF
of highly supersonic, non-isothermal, polytropic turbulence and to
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Figure 3. Time evolution of the volume-weighted average sound speed cs, V (panel a), the mass-weighted average sound speed cs, M (panel b), the volume-
weighted root-mean-square (rms) Mach number MV (panel c), the mass-weighted rms Mach number MM (panel d), the rms vorticity 〈(∇ × v)2〉1/2 (panel e)
and the rms divergence 〈(∇ · v)2〉1/2 (panel f) for simulations with polytropic exponent � = 0.7 (dotted), � = 1.0 (solid) and � = 5/3 (dashed). The turbulence
is fully developed after two turbulent crossing times, t ≥ 2 T, as indicated by the vertical dotted lines in each panel.

provide a theoretical model for the width of the PDF and for the
SFR as a function of the polytropic exponent �.

5.2 The density PDF in non-isothermal gas

Fig. 4 shows the density PDFs of s ≡ ln (ρ/ρ0) obtained in our
simulations with polytropic � = 0.7, 1 and 5/3. We immediately see
that the density PDF depends on �. For � > 1, we find that a power-
law tail develops at low densities, consistent with earlier numerical
work in one-dimensional geometry (Passot & Vázquez-Semadeni
1998). For � = 0.7 and 1, we see a more symmetric distribution, but
we do not see a clear power-law tail at high densities for � < 1. This

is because our simulations are in 3D and multiple shock interactions
lead to a more lognormal distribution as a result of the central limit
theorem (Vázquez-Semadeni 1994) than in the one-dimensional
simulations by Passot & Vázquez-Semadeni (1998).

We apply fits to all PDFs in the top panels of Fig. 4 for different
�, shown as thin solid lines. The fit function is given by the Hopkins
(2013b) intermittency PDF model,

pV (s) = I1

(
2
√

λ ω(s)
)

exp [− (λ + ω(s))]

√
λ

θ2 ω(s)
,

λ ≡ σ 2
s,V /(2θ2), ω(s) ≡ λ/(1 + θ ) − s/θ (ω ≥ 0), (4)
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The PDF and SFR of polytropic turbulence 3303

Figure 4. Top panels: the density PDF of supersonic, polytropic turbulence with � = 0.7 (dotted), � = 1 (solid) and � = 5/3 (dashed). The left-hand panel
shows the volume-weighted PDFs, while the right-hand panel shows the mass-weighted PDFs of the logarithmic density contrast s ≡ ln (ρ/ρ0). Each simulation
PDF is fitted with the Hopkins (2013b) intermittency PDF model, equation (4), shown as thin solid lines. They provide excellent fits to the PDFs of isothermal
(� = 1) and non-isothermal (� �= 1) intermittent turbulence with two fit parameters (the standard deviation σ s and the intermittency parameter θ ), listed in the
last three columns of Table 1. Bottom panels: same as top panels, but showing a resolution study with 5123, 10243 and 20483 grid cells. The 1σ time variations
are shown as error bars only for the N3

res = 20483 models, but the time variations are similar for all resolutions.

where I1(x) is the modified Bessel function of the first kind. Equation
(4) is motivated and explained in detail in Hopkins (2013b). It con-
tains two parameters: (1) the volume-weighted standard deviation of
logarithmic density fluctuations σ s, V and (2) the intermittency pa-
rameter θ . The volume-weighted and the mass-weighted variances
are given and related by (Hopkins 2013b)

σ 2
s,V = 2λθ2 = σ 2

s,M (1 + θ )3. (5)

In the zero-intermittency limit (θ → 0), equation (4) simplifies to
the lognormal PDF, equation (3). Hopkins (2013b) shows that the
intermittency form of the PDF (equation 4) provides excellent fits
to density PDFs from turbulence simulations with extremely differ-
ent properties (solenoidal, mixed and compressive driving, Mach
numbers from 0.1 to 20, and varying magnetic field strengths). It
has also been used to study convergence of the PDF with numerical
resolution (Federrath 2013a). Here we show in Fig. 4 that equation
(4) furthermore provides very good fits to the density PDFs from
simulations with different polytropic exponent �. The PDF fit pa-
rameters are listed in the last three columns of Table 1.

The bottom panels of Fig. 4 show a resolution study, comparing
the density PDFs obtained for grid resolutions of 5123, 10243 and
20483 compute cells. We find numerical convergence over a wide
range of densities around the peak of all distributions. The highly
intermittent low-density tail for � = 5/3 gas shows strong variations

in the volume-weighted form of the PDF (left-hand panel), but is
nearly converged in the mass-weighted representation (right-hand
panel). We find that higher resolution is required to obtain numerical
convergence if � < 1, because the gas is much more fragmented
and filamentary on small scales than for � > 1, as we have seen
in the projections of Fig. 1. However, the variations with resolution
are of the same order or smaller than the 1σ temporal variations
shown as grey error bars for the 20483 simulations in Fig. 4. Table 1
lists all PDF properties for each simulation model and resolution,
demonstrating convergence of the main PDF properties, σ s, V, σ s, M

and θ .

5.3 The column density PDF in polytropic gas

The column density PDF has become an important statistical mea-
sure for the density structure of the interstellar medium in exter-
nal galaxies (Berkhuijsen & Fletcher 2008; Hughes et al. 2013),
in molecular clouds in the Milky Way (Kainulainen et al. 2009;
Schneider et al. 2012, 2013; Ginsburg et al. 2013; Kainulainen et al.
2013, 2014), and in the Galactic central molecular zone (Rathborne
et al. 2014). Here we produce column density PDFs from our poly-
tropic turbulence simulations for comparison with observations.

Fig. 5 shows the column density PDFs in our simulations with
� = 0.7 and 5/3. Each panel represents a different line-of-sight
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3304 C. Federrath and S. Banerjee

Figure 5. Column density PDFs of the logarithmic column density contrast η ≡ ln (N/N0) in the simulations with polytropic � = 0.7 (dotted) and � = 5/3
(dashed). The panels show the column density PDFs for projections along the x-axis (left-hand panel), y-axis (middle panel) and z-axis (right-hand panel). The
standard deviation ση is given in each panel and is consistent with observations. For � > 1, the PDFs are slightly skewed towards lower column densities,
while they roughly follow lognormal distributions for � � 1, consistent with the trend seen in the volumetric PDFs (cf. Fig. 4).

projection, along the x-axis (left-hand panel), the y-axis (middle
panel) and the z-axis (right-hand panel). We find that the column
density PDFs for � � 1 are close to lognormal distributions, while
the PDFs for � > 1 develop a power-law tail towards low column
densities. This trend with � is consistent with what we found for
the volumetric density PDFs in Fig. 4. The differences with � are
less pronounced in the column density PDFs, because the projection
averages out features seen only in the 3D distributions. Nevertheless,
the systematic differences between column density PDFs from gas
with different � are significant and recovered in all of the three
line-of-sight projections.

The standard deviation of the column density contrast, ση, is
given in each panel of Fig. 5. Consistent with the volumetric PDFs,
we find that ση decreases slightly (but systematically) with in-
creasing �. Since ση is the column density contrast normalized to
the mean column density N0, it can be easily and directly com-
pared with observations. Schneider et al. (2012) find ση ∼ 0.63 in
Herschel observations of the Rosette molecular cloud, consistent
with, but slightly lower than, our numerical simulations. How-
ever, the Mach number in Rosette is M ∼ 7, while here we have
M ∼ 10, so we expect a somewhat lower ση in the observations.
Furthermore, we have not included magnetic fields in these sim-
ulations, which would further reduce the column density variance
(Molina et al. 2012). Given these limitations, the agreement between
the simulations and the observations is encouraging.

5.4 The pressure, sound speed and Mach number
distributions of polytropic turbulence

Fig. 6 shows the pressure PDFs (top panels), sound speed PDFs
(middle panels) and Mach number PDFs (bottom panels). As ex-
pected for a polytropic EOS, the pressure distribution for � > 1
is significantly wider than for � < 1. The sound speed distribu-
tions follow a similar trend. They tend to have a wide tail towards
low sound speeds for � > 1, whereas they are narrow and close to
lognormal distributions for � < 1. The sound speed is constant in
isothermal gas (� = 1), so the PDF is a delta function. We find a wide
distribution of Mach numbers with power-law tails towards small
Mach numbers in all cases. The Mach number PDF for � = 5/3
also develops a power-law tail at high Mach numbers, where the
Mach numbers can locally reach extremely high values of several
hundred to a few thousand.

In preparation for our derivation of the density variance–Mach
number relation for polytropic turbulence, presented in the next
section, we show here density–Mach number correlation PDFs in

Fig. 7. These have been used earlier to explain the nearly lognormal
form of the density PDF in isothermal gas (Passot & Vázquez-
Semadeni 1998; Kritsuk et al. 2007; Audit & Hennebelle 2010;
Federrath et al. 2010). If the gas is isothermal, there should not be
any net correlation between density and Mach number, which is seen
in the middle panel of Fig. 7. In contrast, for � �= 1, it is straightfor-
ward to show that the local Mach number must depend on the local
density, followingM ∼ c−1

s ∼ (P/ρ)−1/2 ∼ ρ1/2ρ−�/2 ∼ ρ(1−�)/2.
This is indeed the case, as seen in the top and bottom panels
of Fig. 7, showing our simulation results for � = 0.7 and 5/3,
respectively. The dotted line is the theoretical prediction for the
average run of the Mach number as a function of gas density,
M ∼ ρ(1−�)/2, which provides an excellent match to our simu-
lations.

6 D E N S I T Y VA R I A N C E – M AC H N U M B E R
R E L AT I O N I N P O LY T RO P I C G A S E S

The density variance–Mach number relation is a key ingredient
to theoretical models of the SFR (Krumholz & McKee 2005;
Hennebelle & Chabrier 2011; Padoan & Nordlund 2011; Federrath
& Klessen 2012), the star formation efficiency (Elmegreen 2008),
the initial mass function of stars (Hennebelle & Chabrier 2008,
2009, 2013; Chabrier & Hennebelle 2011; Hopkins 2013a;
Chabrier, Hennebelle & Charlot 2014) and the Kennicutt–Schmidt
relation (Federrath 2013b).

The σ s–M relation has been studied numerically for isothermal
gas by Padoan & Nordlund (2011), Price et al. (2011), Konstandin
et al. (2012b), Seon (2012) and Molina et al. (2012), resulting in

σ 2
s = ln

(
1 + b2M2 β

β + 1

)
. (6)

This equation provides us with the density variance as a function of
the Mach number M, the turbulent driving parameter 1/3 ≤ b ≤ 1
(Federrath et al. 2008, 2010) and the ratio of thermal to magnetic
pressure, plasma β. The theoretical derivation of this important
relation has so far only been done for isothermal gas in Padoan &
Nordlund (2011) and Molina et al. (2012). Here we generalize their
analysis to the non-isothermal, polytropic regime of turbulence,
consisting of a 3D network of interacting non-isothermal shocks
and filaments (cf. Figs 1 and 2).

In order to derive the density variance–Mach number relation
for polytropic gas, we must first determine how the density contrast
in a single shock depends on the strength of the shock, i.e. how it
depends on the Mach number. Once we have derived the density
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Figure 6. Pressure PDF (top), sound speed PDF (middle) and Mach number PDF (bottom) for simulations with polytropic � = 0.7, 1.0 and 5/3. The left-hand
panels show the volume-weighted form of the PDF and the right-hand panels show the mass-weighted form. As expected, � > 1 leads to a wider pressure
distribution than � < 1. The sound speed PDF for � = 1 is a delta function, because the sound speed is constant for � = 1. The Mach number PDFs exhibit
very wide distributions and they always have power-law tails towards small Mach numbers. The local Mach number can reach several hundreds to thousands
for � = 5/3.

contrast ρ/ρ0 for a single shock, we average over the whole
ensemble of such shocks in a cloud with volume V to obtain the
density variance of the cloud,

σ 2
ρ/ρ0

= 1

V

∫
V

(
ρ

ρ0
− 1

)2

dV , (7)

which can be approximated with the density contrast itself,

σ 2
ρ/ρ0

� ρ

ρ0
(8)

for the relevant case of supersonic turbulence, ρ 
 ρ0 (Padoan &
Nordlund 2011; Molina et al. 2012). Thus, we only have to find

the density contrast ρ/ρ0 produced in a non-isothermal, polytropic
shock.

6.1 Density contrast in non-isothermal shocks

Starting from the Rankine–Hugoniot shock jump conditions in the
frame where the shock is stationary, the one-dimensional Euler
equations for mass and momentum conservation can be written as

ρ1v‖,1 = ρ2v‖,2 (9)
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Figure 7. Density–Mach number correlation PDFs for � = 0.7 (top), � = 1
(middle) and � = 5/3 (bottom). For a polytropic EOS, the theoretical
expectation for the average run of the Mach number as a function of density
is given by the dotted lines in each panel, M ∼ ρ(1−�)/2, which matches
the simulation outcome. For � = 1, we expect no net correlation between
local Mach number and local density. For � = 5/3, we see that the highest
Mach numbers of a few thousand are reached in very low density gas, which
is a result of the adiabatic cooling of expanding, low-density gas, drastically
reducing the local sound speed.

ρ1v
2
‖,1 + P1 = ρ2v

2
‖,2 + P2. (10)

Note that ρ, v and P are the density, velocity and thermal pressure.
The velocity is always perpendicular to the shock front, i.e. parallel
to the flow direction, which we denote with a ‖ subscript. The indices
1 and 2 denote pre-shock and post-shock conditions, respectively.

The pressure in polytropic gas is given by

P = c2
s ρ/�, (11)

from the sound speed c2
s = ∂P/∂ρ = �P/ρ for a polytropic EOS,

equation (2). Inserting this EOS into the momentum equation (10)
yields

ρ1

(
v2

‖,1 + c2
s,1/�

) = ρ2

(
v2

‖,2 + c2
s,2/�

)
(12)

= ρ2

(
v2

‖,1ρ
2
1/ρ

2
2 + c2

s,2/�
)
, (13)

where we have eliminated the post-shock velocity v‖, 2 in the second
step, by use of mass conservation, equation (9). As a consequence
of the polytropic EOS, the post-shock sound speed cs, 2 is given by

c2
s,2 = c2

s,1 (ρ1/ρ2)1−� , (14)

which we use to replace c2
s,2 in equation (13):

ρ1

(
v2

‖,1 + c2
s,1/�

) = ρ2

(
v2

‖,1ρ
2
1/ρ

2
2 + c2

s,1 (ρ1/ρ2)1−� /�
)
. (15)

In order to simplify this equation, we divide both sides by ρ1 and
by c2

s,1 and multiply by �, which yields

�
v2

‖,1
c2

s,1

+ 1 = �
v2

‖,1
c2

s,1

(
ρ1

ρ2

)
+

(
ρ1

ρ2

)−�

. (16)

Now we swap indices such that the pre-shock gas is denoted by the
average quantities with subscript 0 and we drop the index for the
post-shock gas:

�
v2

‖,0
c2

s,0

+ 1 = �
v2

‖,0
c2

s,0

(
ρ0

ρ

)
+

(
ρ0

ρ

)−�

. (17)

Finally, we identify the pre-shock Mach number perpendicular to
the shock front (i.e. parallel to the flow direction), M‖ = v‖,0/cs,0.
If the pre-shock gas is turbulent, then the compressive velocity
component perpendicular to the shock is only a fraction b of the
total pre-shock velocity v0, such that v‖, 0 = b v0. The parameter
b is the compressive-to-solenoidal mode mixture parameter, which
is typically in the range 1/3 ≤ b ≤ 1, depending on whether the
turbulence is driven by a solenoidal forcing (b ∼ 1/3) or by a
compressive forcing b ∼ 1 (Federrath et al. 2008, 2010; Schmidt
et al. 2009; Konstandin et al. 2012a,b; Federrath 2013a). We can
thus replace v2

‖,0/c
2
s,0 = b2M2 in equation (17), which yields

�b2M2 + 1 = �b2M2

(
ρ0

ρ

)
+

(
ρ0

ρ

)−�

. (18)

Rearranging equation (18) and collecting terms for the density
contrast x ≡ ρ/ρ0 gives

x� + �b2M2(x−1 − 1) − 1 = 0. (19)

We must solve this equation for the density contrast x, but the equa-
tion is transcendental and cannot be solved for a general polytropic
exponent �. Thus, we have to consider explicit solutions for specific
values of � for which the general equation (19) can be solved. To
this end, we chose to explore solutions for � = 1/2, 1 and 2, cov-
ering the whole range of expected �s in real gases and to compare
with our numerical simulations, which also fall in this range.

6.1.1 Density contrast for � = 1/2 (soft EOS)

Setting � = 1/2 in equation (19) allows us to solve for the density
contrast, which yields three formal solutions, but the only physical
solution is

x ≡ ρ

ρ0
= 1

8

(
4 b2M2 + b4M4 + b3M3

√
8 + b2M2

)
. (20)

The trivial solution is x = 1 (i.e. no density contrast) and the other
non-trivial solution in this case fails to reproduce the boundary
condition x = 1 for bM = 1, which must always be fulfilled when
a shock just starts to form, i.e.M‖ → 1. Both these formal solutions
are excluded, which leaves us with the only physical solution given
by equation (20) for the case � = 1/2.
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6.1.2 Density contrast for � = 1 (isothermal EOS)

For � = 1 in equation (19) we find two formal solutions, with the
only non-trivial one being

x ≡ ρ

ρ0
= b2M2, (21)

which is the well-known solution for isothermal gas, as derived
before by Padoan & Nordlund (2011) and Molina et al. (2012).
Thus, our generalized equation (19) for the density contrast naturally
includes the trivial case of isothermal gas.

6.1.3 Density contrast for � = 2 (stiff EOS)

The only physical solution of equation (19) for � = 2 is

x ≡ ρ

ρ0
= 1

2

(
−1 +

√
1 + 8 b2M2

)
. (22)

6.2 Theoretical prediction for the density variance–Mach
number relation

Now that we have derived the density contrast ρ/ρ0 in non-
isothermal, polytropic shocks for three extreme cases, � = 1/2,
1 and 2 given by equations (20), (21) and (22), respectively; we can
now insert these solutions into the density variance–Mach number
relation, equation (8), which immediately yields σ 2

ρ/ρ0
as a function

of the turbulence parameters b and M for each �. We do not repeat
the corresponding solutions for σ 2

ρ/ρ0
here, because they are simply

given by the density contrast itself. Instead, we apply the standard
conversion from linear density variance σ 2

ρ/ρ0
to logarithmic density

variance σ 2
s in the variable s = ln (ρ/ρ0), which – independent of

the underlying distribution – is always given by

σ 2
s = ln

(
1 + σ 2

ρ/ρ0

)
(23)

� ln (1 + ρ/ρ0) , (24)

as routinely used, because the PDF of the logarithmic density con-
trast s is nearly lognormal for the case � = 1 (Padoan et al. 1997;
Passot & Vázquez-Semadeni 1998; Federrath et al. 2008; Price et al.
2011; Molina et al. 2012). We follow the same definitions in order
to enable direct comparisons with these previous works. Although
the PDF for non-isothermal gas (� �= 1) is not lognormal, as we
have seen in Fig. 4, we can still use the same definitions. Insert-
ing our solutions for the density contrast from equations (20)–(22)
into equation (24) yields the following new density variance–Mach
number relations:

σ 2
s = ln

[
1 + 1

8

(
4 b2M2 + b4M4 + b3M3

√
8 + b2M2

)]

for � = 1/2, (25)

σ 2
s = ln

[
1 + b2M2

]
for � = 1, (26)

σ 2
s = ln

[
1 + 1

2

(
−1 +

√
1 + 8 b2M2

)]
for � = 2. (27)

Finally, these relations can be modified to account for magnetic
pressure, by replacing the thermal pressure P in the derivation,

equation (10), with the sum of the thermal and magnetic pressures:

P → P + Pmag

⇐⇒ �ρc2
s → �ρc2

s + (1/2)ρv2
A. (28)

Using the square of the Alfvén speed, v2
A = 2c2

s β
−1 from the stan-

dard definition of the plasma β = P/Pmag, we can replace the sound
speed by an effective magnetic sound speed and the Mach number
by an effective magnetic Mach number,

cs → cs

(
1 + β−1

)1/2
, (29)

M → M (
1 + β−1

)−1/2
. (30)

Replacing M in equations (25)–(27) accounts for magnetic pres-
sure, which stiffens the gas upon compression and reduces the den-
sity variance with respect to the non-magnetized case, because of
the additional magnetic pressure. We note that the simple replace-
ment of the sonic Mach number given by equation (30) is equivalent
to the more elaborate derivations presented in Padoan & Nordlund
(2011) and Molina et al. (2012) and yields the same replacement for-
mula as previously derived for purely isothermal gas in Federrath &
Klessen (2012), because � cancels out during the replacement steps
above.

Thus, we have derived theoretical predictions for the density
variance, as a function of M, b, β and �, which we will now
compare to the results of our numerical simulations, in order to test
these predictions.

6.3 Theory–simulation comparison of the σ s–M relation in
polytropic gases

Fig. 8 shows the theoretical σ s–M relations derived in the previous
section, for γ = 0.5, 0.75, 1, 1.5 and 2. The analytic solutions
for � = 0.5, 1 and 2 correspond to equations (25), (26) and (27),
respectively, while the theoretical curves for � = 0.75 and 1.5 were
obtained by numerical integration of equation (19).

First of all, we see that the density variance decreases with in-
creasing polytropic �. This is expected, because increasing � leads
to higher pressure in the shocks, stopping them from becoming
denser. We also observed in Fig. 1 that density fluctuations are
smoothed when � is increased. Both lead to a decreasing σ s with
increasing �.

We now add our numerical simulations to the theoretical curves
in Fig. 8. They are shown as crosses and diamonds with the 1σ

uncertainties plotted as error bars. The simulation data agree very
well with the theoretical prediction. Minor deviations come from the
fact that we would have to compute the rms pre-shock Mach number
in the 3D simulations for this theory–simulation comparison. This is
because the pre-shock Mach number determines the density contrast
in our theoretical derivation. Thus, we would have to detect the pre-
shock gas and compute the rms Mach number only from that gas. In
Fig. 8, instead of the pre-shock Mach number, we plot the volume-
weighted rms Mach number averaged over all the gas, including
contributions from the post-shock gas. However, the post-shock gas
is primarily located in the dense shocks, by definition, so we can
reasonably approximate the pre-shock Mach number by taking the
volume-weighted rms Mach number shown in panel c of Fig. 3.
The volume-weighted quantities primarily correspond to pre-shock
gas, because most of the volume is pre-shock gas, while most of the
mass is in post-shock gas. For the same reason, it is also important
to get a global value of the density variance σ s from the simulations.
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Figure 8. Density variance–Mach number relation for the simulations and for the theoretical predictions based on equation (19). Simulation data points are
shown for � = 0.7 (blue), 1.0 (green) and 5/3 (red), where the crosses and diamonds, respectively, correspond to σs = √

σs,V σs,M directly taken from the
simulation data and reconstructed based on the Hopkins (2013b) fit to the density PDFs shown in Fig. 4. They agree within the 1σ uncertainties shown as error
bars for each simulation data point (cf. Table 1). Theoretical curves are shown for � = 0.5, 0.75, 1, 1.5 and 2. The analytic solutions for � = 0.5, 1 and 2
correspond to equations (25), (26) and (27), respectively. The intermediate curves for � = 0.75 and 1.5 are numerical solutions of equation (19). The theory
and simulations agree within the error bars. The intersection of each theoretical curve is always located at M× = 1/b and σs ,× = √

log(2), independent of
�. Note that all theory curves and simulations use b = 0.4, which corresponds to the natural mode mixture produced by the turbulent driving applied here
(Federrath et al. 2010).

The theories indeed predict σ s for all the gas, including both pre-
shock and post-shock contributions to the total variance. This is
why we have to take both the volume- and mass-weighted density
variance into account for the comparison with the theoretical model
of the σ s–M relation. The most straightforward combination is an
arithmetic or geometric mean of σ s, V and σ s, M. Fortunately, it turns
out that both arithmetic and geometric mean are very similar.

In summary, Fig. 8 shows very good agreement between the the-
oretical prediction of the density variance–Mach number relation
with the simulations. In this comparison, we have to be careful
to evaluate the Mach number and the density variance for the ap-
propriate shock regions. The theory provides an average of the
pre-shock and post-shock density variance as a function of only
the pre-shock Mach number. Thus, we approximate the total den-
sity variance as the mean of the volume- and mass-weighted vari-
ance, σs = √

σs,V σs,M , and we approximate the pre-shock Mach
number with the volume-weighted rms Mach number in the simu-
lations. This yields excellent agreement between our new theoret-
ical σ s–M relations and the numerical simulations of polytropic
turbulence.

7 T H E S F R O F PO LY T RO P I C T U R BU L E N C E

Here we derive a theoretical prediction for the dependence of the
SFR on the polytropic exponent �. We first briefly review previous
results for isothermal gas (� = 1) based on a simple lognormal ap-
proximation of the density PDF and then generalize the basic ansatz
for the SFR to non-lognormal PDFs arising in highly intermittent
and non-isothermal gas (� �= 1).

7.1 The SFR in isothermal gas (� = 1)

Our starting point is the summary of SFR models in Federrath &
Klessen (2012) and Padoan et al. (2014), which are all based on the
statistics of supersonic self-gravitating turbulence. The simple idea
behind this derivation is that only dense gas above a certain density
threshold (to be determined in Section 7.2.3) forms stars. Thus, we
just have to integrate the density PDF from the threshold to infinity,
weighted by ρ/tff(ρ) with the freefall time tff (ρ) = (3π/32Gρ)1/2,
in order to derive an SFR, i.e. the mass of a cloud forming stars per
unit time,

SFR ∼
∫ ∞

ρcrit

ρ

tff (ρ)
p(ρ) dρ. (31)

This integral can be written in terms of the logarithmic density
s ≡ ln (ρ/ρ0) to simplify the integration and to enable us to use the
standard normalized form of the density PDF pV(s), as for example
plotted in Fig. 4,

SFR ∼
∫ ∞

scrit

exp

(
3

2
s

)
pV (s) ds. (32)

Note that the coefficient 3/2 in the exponential term comes from
the transformation of ρ/tff(ρ) ∼ ρ/ρ−1/2 ∼ ρ3/2 ∼ exp (3s/2).
Equation (32) is known as the multi-freefall model of the SFR, be-
cause the density dependence of the freefall time is evaluated inside
the integral (Hennebelle & Chabrier 2011; Federrath & Klessen
2012). Assuming a lognormal PDF given by equation (3), we can
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solve equation (32) analytically (Federrath & Klessen 2012), result-
ing in

SFR ∼ 1

2
exp

(
3

8
σ 2

s,V

) [
1 + erf

(
σ 2

s,V − scrit(
2σ 2

s,V

)1/2

)]
. (33)

For this result to be useful, we still have to specify the volume-
weighted density variance σ 2

s,V and the threshold density scrit, which
we will do after we have derived the SFR for the general case where
� �= 1, in the next section. We emphasize that we cannot just insert
our new density variance–Mach number relations for � �= 1 from
equations (25)–(27) here in this SFR form, because equation (33)
was derived by assuming that the PDF is lognormal, which is a bad
approximation for � �= 1 (cf. Fig. 4). We have to use a better form
of the PDF in cases with � �= 1.

7.2 The SFR in non-isothermal gas (� �= 1)

The solution for the SFR given by equation (33) is strictly valid
only for an exactly lognormal PDF. However, as we have seen in
Fig. 4, a lognormal approximation for the density PDF in cases with
� �= 1 is not appropriate and even for isothermal gas (� = 1), the
PDFs are subject to intermittency corrections, causing them to de-
part from the simple lognormal form, due to skewness and kurtosis
(Vázquez-Semadeni 1994; Padoan et al. 1997; Passot & Vázquez-
Semadeni 1998; Li et al. 2003; Kowal, Lazarian & Beresnyak 2007;
Kritsuk et al. 2007; Federrath et al. 2010; Price & Federrath 2010;
Konstandin et al. 2012b; Federrath 2013a; Hopkins 2013b). Es-
pecially strong compressibility induced by hypersonic shocks and
compressive driving of the turbulence leads to intense intermit-
tent fluctuations (Federrath et al. 2010; Federrath 2013a). Thus,
we have to solve the general ansatz for the SFR given by equation
(32) with a more appropriate form of the PDF pV(s). As we have
seen in Fig. 4, the density PDFs for all cases (� = 1 and � �= 1)
can be well approximated with the intermittency PDF model by
Hopkins (2013b), given by equation (4), so we insert that pV(s) into
equation (32). The resulting integral cannot be solved analytically
anymore, so we have to resort to semi-analytic solutions. To this end,
we have to determine the two Hopkins (2013b) PDF parameters, θ

and σ s, V.

7.2.1 Relation for the intermittency parameter θ

First, we need a relation between the intermittency parameter θ of
the Hopkins (2013b) PDF and turbulence parameters, such as the
Mach number M and the driving mixture b. Fortunately, Hopkins
(2013b) already established such a relation and found that θ ∼ bM
for � = 1 with a proportionality constant of ∼0.05. Here we extend
this relation for cases where � �= 1, by fitting to our simulation data
set (cf. the last column of Table 1). Fig. 9 shows the intermittency
parameter measured in our simulations from the Hopkins (2013b)
density PDFs of Fig. 4 as a function of �. We see a clear trend of
increasing intermittency θ with increasing �, roughly following a
power law given by

θ = 0.035 bM�2. (34)

Note that we find a somewhat smaller coefficient of 0.035 than
Hopkins (2013b), but it is still within the uncertainties between
our and Hopkins’ fit for the special case � = 1. Equation (34) is
the first required link between the Hopkins (2013b) PDF and the
fundamental cloud parameters b, M and �, which determine the
SFR.

Figure 9. The Hopkins (2013b) PDF intermittency parameter θ as a func-
tion of polytropic � in our simulations. The dotted line shows a fit with
θ = 0.035 bM�2, which provides a reasonably good approximation for
the dependence of θ on the fundamental turbulence parameters, b, M
and �.

7.2.2 Relation for the density variance σ 2
s,V

Secondly, we have to find a relation for the volume-weighted density
variance σ 2

s,V . Fortunately, we have just derived new expressions for
this as a function of � in Section 6 and Fig. 8. We must be careful,
however, because we have seen in Section 6 that the derived equa-
tions (25)–(27) actually provide a combination of volume-weighted
and mass-weighted density variance and not directly the volume-
weighted σ s, V, which is what we actually have to insert into the
Hopkins (2013b) PDF. Furthermore, we found in Section 6 and in
Fig. 8 that the total derived σ s can be well approximated as the
average (either geometric or arithmetic mean) of σ s, V and σ s, M.
Using the geometric mean for simplicity and inserting the relation
between σ 2

s,V and σ 2
s,M from equation (5), we find

σ 2
s � σs,V σs,M = σ 2

s,V (1 + θ )−3/2

⇐⇒ σ 2
s,V = σ 2

s (1 + θ )3/2

⇐⇒ σ 2
s,V = σ 2

s

(
1 + 0.035 bM�2

)3/2
, (35)

where we used equation (34) in the last step. We emphasize that this
relation is only relevant for intermittency θ > 0. In the well-known
and previously studied case of ideal isothermal and non-intermittent
turbulence, the PDF is lognormal and the volume-weighted σ s, V

and the mass-weighted σ s, M are identical (e.g. Vázquez-Semadeni
1994; Li et al. 2003). That special case is included by our general
equation (35) as the limiting case with zero intermittency (θ = 0),
for which indeed σ s = σ s, V = σ s, M. However, we have to account
for the fact that generally σ s, V �= σ s, M, due to skewness and kurtosis
in the PDF (cf. 4). This is what we achieve with the new relation
established in equation (35). With equation (35) in hand, we can
now directly use our new density variance–Mach number relations
for σ 2

s (equations 25–27) from Section 6 in order to get σ 2
s,V as a

function of the basic cloud parameters �, M and b.

7.2.3 The density threshold for star formation

Finally, we need a model for the density threshold scrit, which serves
as the lower limit of the SFR integral in equation (32). Models for
scrit based on the Krumholz & McKee (2005), Padoan & Nordlund
(2011) and Hennebelle & Chabrier (2011) theories were already
discussed in Federrath & Klessen (2012) and Padoan et al. (2014).
For the sake of simplicity and because we are here primarily inter-
ested in how the SFR depends on �, we ignore magnetic fields
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and use the critical density of the Krumholz & McKee (2005)
and Padoan & Nordlund (2011) models, which are identical in
this case. They were furthermore found to provide the best predic-
tion of the SFR in star cluster formation simulations by Federrath
& Klessen (2012) and Federrath et al. (2014a). Thus, the density
threshold is a result of turbulence balancing gravity at the sonic scale
(e.g. Vázquez-Semadeni, Ballesteros-Paredes & Klessen 2003;
McKee & Ostriker 2007; Federrath et al. 2010), which leads to

scrit ∼ ln
(
αvirM2

)
, (36)

where αvir = 2Ekin/Egrav is the ratio of twice the kinetic-to-
gravitational energy of a cloud, known as the virial parameter
(Bertoldi & McKee 1992; Federrath & Klessen 2012). The co-
efficients in equation (36) are of order unity and were determined
in Federrath & Klessen (2012), but for our purposes, it is sufficient
to consider only the basic dependence of scrit on αvir and M.

7.3 Theoretical prediction of the SFR as a function of �

Now that we have θ , σ 2
s,V and scrit as a function of �, M, b and

αvir from equations (34)–(36), we can directly insert them together
with the Hopkins (2013b) PDF (equation 4) into the main SFR
equation (32), which leads to the following symbolic form:

SFR(�, αvir,M, b)

∼
∫ ∞

scrit(αvir,M)
e3s/2 pV (s, σ 2

s,V (�,M, b), θ (�,M, b)) ds. (37)

The dependence on � enters in the PDF pV through the
volume-weighted density variance σ 2

s,V (σ 2
s (�,M, b), �,M, b)

(equation 35), through our new derivation of the density variance–
Mach number relation for σ 2

s (�,M, b) from Section 6, and through
the dependence of the intermittency parameter θ (�,M, b) via equa-
tion (34).

We can now go ahead and solve equation (37) numerically. To
keep it simple and to focus on the dependence of the SFR on �,
we choose standard Milky Way cloud parameters and fix them to
M = 10 (Larson 1981; Elmegreen & Scalo 2004; Mac Low &
Klessen 2004; McKee & Ostriker 2007; Hennebelle & Falgarone
2012; Schneider et al. 2012; Federrath 2013b), b = 0.4 (Federrath
et al. 2008, 2010; Brunt 2010; Brunt et al. 2010a,b; Price et al. 2011;
Burkhart & Lazarian 2012; Kainulainen & Tan 2013; Kainulainen
et al. 2013) and αvir = 1 (Larson 1981; Heyer et al. 2009; Kauff-
mann, Pillai & Goldsmith 2013). We then solve the coupled system
of equations for a range of polytropic exponents, � = 0.1–1.9 in
steps of 
� = 0.1. A MathematicaTM notebook, which combines
all the relevant equations and solves for the density contrast and for
the SFR, is available from the authors.

The result is plotted in Fig. 10, which shows the SFR as a func-
tion of �. First of all, we compare the semi-analytic solution (shown
as diamonds) provided by equation (37) for the special case � = 1
(isothermal gas) with the analytic solution for the same case (shown
as a square). This is the only case where an analytic solution given by
equation (33) can be derived, assuming that the PDF is a lognormal
distribution. We find that the more accurate semi-analytic integral
over the Hopkins (2013b) PDF instead of the lognormal PDF gives a
19 per cent lower SFR than the lognormal approximation for � = 1.
This is because the Hopkins (2013b) PDF accounts for some small
fraction of intermittency present even in the � = 1 case (cf. Figs 4
and 9), which skews the high-density PDF tail to somewhat smaller
densities and thus reduces the SFR by a small fraction compared
to the lognormal approximation. However, the difference between

the analytic (lognormal) and semi-analytic (Hopkins) integral for
� = 1 is only 19 per cent. From this, we conclude that the analytic
estimate based on the lognormal approximation as summarized in
Federrath & Klessen (2012) is accurate to within a few tens
percentile.

For the general case with � �= 1, however, we need the semi-
analytic estimate shown as diamonds in Fig. 10. We see that the
SFR depends on � and varies by about two orders of magnitude
in the range � = 0.1–1.9. The relevant range of � for molecu-
lar clouds, however, is significantly narrower. The polytropic ex-
ponent can be approximated with � = 1 (isothermal gas) over a
wide range of number densities, from n ∼ 1–1010 cm−3 with the
temperature varying between T ∼ 3 K and T ∼ 10 K for solar-
metallicity gas (Omukai et al. 2005). Radiation-hydrodynamical
calculations including chemical evolution and cooling by Masunaga
& Inutsuka (2000) also show that � ∼ 1 for n � 109 cm−3 and
then it rises to � ∼ 1.1 for 109 � n/cm−3 � 1011, � ∼ 1.4 for
1011 � n/cm−3 � 1016, followed by a phase where � ∼ 1.1 in which
molecular hydrogen is dissociated (1016 � n/cm−3 � 1021). Finally,
the gas becomes almost completely optically thick (� = 5/3), when
the star is born (n � 1021 cm−3). It must be emphasized, how-
ever, that all the phases with n � 1010 cm−3 only occur inside the
dense, collapsing cores with transonic-to-subsonic velocity disper-
sions (Goodman et al. 1998; Motte, Andre & Neri 1998; Jijina,
Myers & Adams 1999; Andre, Ward-Thompson & Barsony 2000;
Caselli et al. 2002; Csengeri et al. 2011), which have already de-
coupled from the large-scale, supersonic turbulence in the cloud.
The phases with � > 1 only apply in relatively high-density gas,
which may affect only a very small fraction of the high-density tail
in the PDF. These high-density corrections are thus not expected to
change the overall cloud SFR significantly.

Densities around the peak of the PDF and higher are expected to
primarily contribute to the SFR integral and it is indeed around such
densities (n ∼ 102–105 cm−3) that Omukai et al. (2005), Glover &
Mac Low (2007a,b) and Glover et al. (2010) find that the polytropic
exponent can vary between � ∼ 0.5 and 1.1, followed by the opti-
cally thick regime with � = 5/3 at high densities. Looking at our
semi-analytic predictions in Fig. 10, we see that the SFR varies by
about a factor of ∼3 in the range � = 0.5–1.1 and by a factor of
∼5 in the range � = 0.7–5/3. We conclude that the dependence
of the SFR on � is significant, changing the SFR by factors of a
few for solar-metallicity gas. The dependence of the SFR on � may
be even more important for low-metallicity gas or in extreme envi-
ronments such as starburst galaxies, where the heating and cooling
balance can lead to �-values significantly different from unity (Abel
et al. 2002; Greif et al. 2008; Wise et al. 2008; Romeo et al. 2010;
Schleicher et al. 2010; Clark et al. 2011; Hoffmann & Romeo 2012;
Safranek-Shrader et al. 2012; Schober et al. 2012; Latif et al. 2013).

8 C O N C L U S I O N S

We determined the density PDF in hydrodynamical simulations of
supersonic, non-isothermal, polytropic turbulence. We run hydro-
dynamical simulations with grid resolutions of up to 20483 cells
and with polytropic exponents � = 0.7, 1 and 5/3, approximating
the thermodynamical properties of gas in the interstellar medium
and in molecular clouds, for various density regimes (Masunaga &
Inutsuka 2000; Omukai et al. 2005; Glover & Mac Low 2007a,b;
Glover et al. 2010). We determine the filamentary structure of poly-
tropic turbulence, measure the density PDF and provide theoretical
predictions for the density variance–Mach number relation and for
the SFR as a function of �. We now list our detailed conclusions.
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Figure 10. Dependence of the SFR on the polytropic exponent �. The diamonds are semi-analytic solutions of equation (37) for � = 0.1–1.9 in steps of

� = 0.1 and standard parameters (M = 10, b = 0.4, αvir = 1), using an integral over the Hopkins (2013b) PDF. The dotted line is a power-law approximation
with SFR ∼ �−4/3 valid for � �1. The box shows the corresponding SFR computed with the lognormal PDF approximation for � = 1 from FK12 (Federrath &
Klessen 2012), which is strictly valid only for zero intermittency (θ = 0). Fortunately, the intermittency correction introduced with the Hopkins (2013b) PDF is
relatively small for � = 1, reducing SFR by ∼19 per cent compared to the simple lognormal approximation. For � �= 1 however, the lognormal approximation
breaks down (cf. Fig. 4), requiring us to integrate the Hopkins (2013b) PDF in order to compute semi-analytic solutions for � �= 1 (shown as diamonds).

(i) Non-isothermal polytropic turbulence produces a complex
network of shocks and filaments. A soft EOS (� < 1) leads to the
typical temperature structure seen in molecular clouds: cold dense
gas surrounded by warm diffuse gas. The filaments are more frag-
mented on small scales if � < 1, while turbulent density fluctuations
are smoothed out if � > 1 (stiff EOS; cf. Fig. 1).

(ii) Dense gas cools upon compression for � < 1, leading to a
lower sound speed in the shocks, while gas with � > 1 heats up
during compression, leading to an increased sound speed in the
shocks and filaments (cf. Fig. 2).

(iii) It is important to distinguish volume-weighted and mass-
weighted quantities for non-isothermal turbulence (� �= 1). For a
fixed velocity dispersion, the volume-weighted rms Mach number
increases with increasing �, while the mass-weighted rms Mach
number decreases compared to isothermal gas (cf. Fig. 3).

(iv) The density PDF depends significantly on the polytropic
exponent. For � > 1 the PDF develops a power-law tail towards
low densities, while it is close to a lognormal distribution for � � 1
(cf. Fig. 4). The variance and intermittency parameter of the density
PDF are converged with numerical resolution.

(v) The column density PDFs (cf. Fig. 5) show the same sys-
tematic trend with � as the volumetric density PDFs. The standard
deviation of the column density contrast ση produced in the simu-
lations is consistent with observations.

(vi) Higher � produces a wider pressure distribution than lower
�. We find power-law tails towards low Mach number values in the
Mach number PDFs, independent of �. The local Mach numbers
reach several hundreds to a few thousand for � = 5/3, while they
are capped at a few tens for � � 1 (cf. Fig. 6).

(vii) The Mach number–density correlations in the simulations
match the theoretical expectation given by M ∼ ρ(1−�)/2 (cf.
Fig. 7).

(viii) Our new theoretical derivation of the density variance–
Mach number relation in polytropic gases is well reproduced by the
outcome of the numerical simulations (cf. Fig. 8). We find that the
density variance decreases with increasing � for a fixed pre-shock
(or volume-weighted) Mach number.

(ix) The intermittency of the density PDF (which is a measure for
how strongly the PDF departs from a simple lognormal distribution)
increases with increasing � (cf. Fig. 9). We provide a fit function
that describes the dependence of the intermittency parameter θ on
the Mach number M, the turbulent driving parameter b and the
polytropic �, given by θ = 0.035 bM�2.

(x) We derive a theoretical prediction for the dependence of the
SFR on �, by numerically integrating the Hopkins (2013b) inter-
mittency PDF, equation (4). For isothermal gas (� = 1), we find that
the intermittency corrections reduce the SFR by ∼19 per cent com-
pared to the previously established lognormal approximation. For
� �= 1, however, intermittency corrections are important and lead to
significant changes in the SFR. We find that the SFR increases by
a factor of ∼1.7 for � = 0.7 compared to � = 1. For � = 5/3, the
SFR decreases by a factor of ∼3 compared to � = 1 (cf. Fig. 10).
This leads to overall variations in the SFR by a factor of ∼5 within
the range 0.7 ≤ � ≤ 5/3.

We conclude that temperature fluctuations can introduce significant
variations in the density PDF and in the SFR. While molecular
clouds can be approximated as being close to isothermal (� = 1)
over a wide range of densities, there are regimes in which the EOS
turns from isothermal to soft with � = 0.7, and then to a stiff EOS
with � = 1.1, followed by � > 1.4 when the gas becomes optically
thick in the dense star-forming cores (Omukai et al. 2005). Our
study demonstrates that we expect a systematic evolution of the
density PDF and SFR as the gas evolves and passes through these
different thermodynamic phases.
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