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Using molecular dynamics simulations, we study field free relaxation from a non-uniform initial
density, monitored using both density distributions and the dissipation function. When this density
gradient is applied to colour labelled particles, the density distribution decays to a sine curve
of fundamental wavelength, which then decays conformally towards a uniform distribution. For
conformal relaxation, the dissipation function is found to decay towards equilibrium monotonically,
consistent with the predictions of the relaxation theorem. When the system is initiated with a more
dramatic density gradient, applied to all particles, non-conformal relaxation is seen in both the
dissipation function and the Fourier components of the density distribution. At times, the system
appears to be moving away from a uniform density distribution. In both cases, the dissipation function
satisfies the modified second law inequality, and the dissipation theorem is demonstrated. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4941584]

I. INTRODUCTION

There are situations where thermodynamics ceases to
be useful. The precise point where this occurs is poorly
appreciated and perhaps poorly understood; thermodynamics
only works for equilibrium or for systems that can be
effectively modelled as being in some equilibrium like state.
For example, in the case of transition state theory,1,2 as
frequently used in chemistry, the system must be in quasi-
equilibrium, and for linear irreversible thermodynamics, the
system must be in local equilibrium.3 Without any form of
equilibrium, thermodynamics fails to define either the entropy
or the temperature. Important issues about the limits for the
applicability of thermodynamics were given consideration
over 100 years ago,4–8 but seem to have been largely
forgotten with the passing of time. Perhaps, the apparent
disinterest in this early work is because of an almost complete
lack of progress, on extending the range of applicability
for thermodynamics, made in the interim. Over the past
decade, there has been considerable theoretical progress
on the fundamental statistical mechanics of nonequilibrium
systems, which has now reached a stage where it may be
applied to areas that have previously been solely the domain
of thermodynamics. As it turns out, this requires us to
change some of our long held views about the nature of
the second law of thermodynamics around the boundaries of
thermodynamics’ applicability. To study this, here, we will
consider atomic simulations of systems which are relaxing
towards equilibrium.

Nonequilibrium states may be broadly classified into
three distinct classes.

1. Those that are being driven by some external field or agent
and appear to be stationary in time. Such a nonequilibrium

a)Currently at Aalto: COMP Centre of Excellence, Department of Applied
Physics, Aalto University, 00076 Aalto, Espoo, Finland.

steady state is distinct from an equilibrium state because
it has a net flow of energy going through the system. The
source for this energy flow is the work done by the external
field, and the energy is eventually dissipated to the thermal
reservoir which regulates the system’s temperature.

2. We may have a similar driven nonequilibrium system that
is not time independent. Such a system may or may not be
periodic, and it could be driven by a time dependent field
(i.e., it may be nonautonomous). It could be driven by a time
independent field but displays time dependent behaviour
due to turbulence. If we were to monitor this latter case in
terms of ensemble averages, it may well appear to be in
a steady state and could be seen as belonging in the first
class above.

3. The system may have had something done to it in the past,
but is now left alone and is relaxing towards equilibrium.
The time it takes to reach what is deemed to be equilibrium
will depend on system details, with glassy systems capable
of taking exceedingly long times to relax while ordinary
liquids could relax in a small fraction of a second. The
time at which a system is first deemed to be in equilibrium
will depend on the details of what properties are being
measured and to what accuracy.

It is the third of these nonequilibrium classes which we
concern ourselves with here, and we will study this by making
extensive use of a relatively new quantity and concept,
the dissipation function. This third nonequilibrium class is
arguably the simplest of the three; it allows us to bring
long standing problems about the domain of applicability for
thermodynamics4–8 into sharp focus and allows us to see how
the recent dissipation function approach successfully rectifies
these issues. By way of introduction, consider a tuning fork (as
used to tune musical instruments). If we strike the tuning fork
and observe its relaxation, we may observe how it rings due
to its two prongs oscillating at a single harmonic frequency.

0021-9606/2016/144(7)/074107/8/$30.00 144, 074107-1 © 2016 AIP Publishing LLC
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This is certainly a thermal system and one we might suppose
thermodynamics should apply to. However, thermodynamics
concludes that the Helmholtz free energy for such a system
must decay monotonically. How may we reconcile the case
of an oscillating system or more generally a non-monotonic
decay with the second law of thermodynamics? Here, we will
show how non-monotonic decays, which are not compatible
with traditional thermodynamics, are able to be properly
addressed using the dissipation function and the modified
second law inequality that the fluctuation theorem based
approach produces. Further, we will show how such non-
monotonic decays may occur in a simple fluid that is merely
relaxing from a nonequilibrium state.

The dissipation function has been shown to be a very
useful tool in analysing non-equilibrium systems9,10 including
relaxing systems that are particularly relevant here,11,12 and
it is the central quantity in the Evans-Searles fluctuation
theorem,13,14 the relaxation theorem,15 a modified version of
the second law inequality,16 and the dissipation theorem.17,18

Importantly the dissipation function and the modified second
law equality that partners it, allow for the possibility of
non-monotonic relaxation, which is in sharp distinction to
traditional thermodynamics. Further, this modified second
law has been derived from the microscopic equations of
motion, as opposed to a justification based on consistency
with macroscopic observations, in the case of the traditional
second law. A dissipation focussed computational study of
relaxation has been reported previously for a model of an
optically trapped particle, in a system which relaxes non-
monotonically towards equilibrium.19 There has also been an
experimental study on the relaxation from the steady state to
equilibrium of a vacuum trapped nanoparticle.20 This study
used a form of relative entropy which happens to coincide with
the dissipation function. We will extend this area of research
by computationally studying the relaxation process from an
initial nonequilibrium density gradient in a many particle fluid
that is of a prototypical thermodynamic nature and look at
monotonic as well as non-monotonic relaxation scenarios.
We will study the relaxation process using the dissipation
function, as well as other more intuitive measures.

II. INITIAL CONDITIONS

Our chosen system for studying the relaxation process
is a fluid of particles that begins with a non-uniform density
distribution. We will model the relaxation of this system with
molecular dynamics using a 2-dimensional fluid of Weeks-
Chandler-Anderson21 (WCA) particles with square periodic
boundary conditions.22 Reduced units are used all in terms of
the three units: the length unit σ from the WCA potential,
the energy unit ϵ from the WCA potential, and the time unit

mσ2/ϵ , where m is the particle mass. The coupled first
order ordinary differential equations of motion are solved
using the 4th order Runge-Kutta algorithm for coupled 1st
order ordinary differential equations with a timestep of 0.001.
The density of the 32 particle system is 0.6, the thermostat
temperature is set to T = 1, and an ensemble of 106 trajectories
is simulated for each case. The simulation is subjected to a
two step process.

1. Initially, the simulation is set up in a perturbed equilibrium.
This is done by adding a colour field to the potential of
the equilibrium system, which imposes a density gradient
(inhomogeneity) across the system. Despite this density
gradient, the system is initially in a perturbed equilibrium,
with a known canonical distribution function.

2. The colour field is switched off, and the system relaxes
towards a homogeneous equilibrium.

The initial set of 106 coordinates Γ(q,p) is sampled
periodically from a long perturbed equilibrium simulation
trajectory. Knowing the initial distribution function is a
necessary condition for calculating the form of the dissipation
function. A number of different perturbations were used to
study different relaxation processes.

III. SINUSOIDAL PERTURBATION—COLOUR FIELD

For simplicity, the first perturbation used to generate a
density gradient in the initial system is a sine curve as a
function of x position,

Ue, i =
a
2

sin
(

2πxi

bL

)
, (1)

where a determines the strength of the applied perturbation
and bL is the length of the periodic cell. Using a smooth
continuous perturbation function is convenient because the
resulting form for the dissipation function is easier to work
with. We studied a gentle relaxation process by using a colour
field. The equations of motion used to set up the initial
distribution are

q̇i(t) = pi/m, (2)
ṗi(t) = Fi(t) − αpyij + ciFe, i − µ, (3)

α =
Fy · py

py · py
, (4)

µ = *
,

N
i=0

ciFp, i
+
-
/N, (5)

Fe, i = −
∂Ug, i

∂x
i, (6)

where qi gives the position of the ith particle, pi gives the
momentum, py is the vector of the y components of the
momentum for all of the particles, m is the particle mass, Fi

is the interparticle force on the ith particle, and ci = (−1)i is
the colour label to control the direction of the perturbation to
the potential of each particle. The term µ is added to keep
the total momentum of the system to zero. The applied colour
field may exert more force to the system as a whole in one
direction or another, depending on the position of the particles,
and the term, µ, effectively moves the reference frame of the
simulation with the system’s centre of mass. By using a colour
field to set up the initial distribution, there will be a density
gradient across the system in both types of particles, while the
total density distribution will be relatively uniform, allowing
for gentle relaxation dominated by the mixing of particles that
only differ in terms of their label. Once the initial distribution
has been set up, the system undergoes field free relaxation
with an isokinetic thermostat. The equations of motion are
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the same as for the setup, but ci is 0. The thermostat is only
applied in the y direction so that any flows in the x direction
are not directly effected by it.

A. Derivation of dissipation function

The dissipation function constitutes the primary tool we
will use in studying the relaxation process. It is the central
quantity in both the relaxation theorem15 and the dissipation
theorem,17,18 both of which are applicable to systems relaxing
to equilibrium. The form of the dissipation function for our
system can be derived from its definition,12,23

Ωt(Γ) ≡ ln
(

f (Γ,0)
f (StΓ,0)

)
−
 t

0
Λ(SsΓ)ds, (7)

whereΩt is the time-integrated dissipation function, f (Γ,0) is
the phase space density of phase space position Γ at time 0, St

is the natural time evolution operator, andΛ is the phase space
expansion factor. No perturbation is applied to the dynamics
during the trajectory, so the phase space expansion factor is
determined by the thermostatted dynamics of the system and
is given by its usual expression,

Λ =
∂

∂Γ
· Γ̇ = βQ̇, (8)

where β = 1/kBT , kB is Boltzmann’s constant, and Q̇ is
the rate of change in heat of the system, not including
the energy from the perturbation applied to generate the
initial distribution. The initial canonical distribution is
given by

f (Γ,0) = exp[−βH(Γ)]
dΓ exp[−βH(Γ)] . (9)

The energy of the system, H , can be split up into the energy
from particles and particle interactions, H0, and the energy
due to the potential perturbation, h(Γ), which determines the
initial state,

H(Γ) = H0(Γ) + h(Γ), (10)

resulting in the dissipation function being given by

Ωt = −β(h(StΓ) − h(Γ)). (11)

For our system, the potential due to the perturbation is given by
Eq. (1), h(Γ) = N

i=1 ciUe, i(Γ), and so the resulting expression
for the dissipation function is

Ωt = β
a
2
*
,

N
i=1

ci sin
(

2πxi(t)
bL

)
−

N
i=1

ci sin
(

2πxi(0)
bL

)
+
-
. (12)

The streaming derivative,

dg(x(t), t)
dt

=
∂g(x(t), t)

∂x
dx(t)

dt
+
∂g(x(t), t)

∂t
, (13)

of this gives us the instantaneous dissipation function,

Ω(StΓ) = βaπ
mbL

*
,

N
i=1

cipxi(t) cos


2πxi(t)
bL


+
-
. (14)

We can monitor the relaxation process by computing
the dissipation function for our ensemble of simulations

as they relax and expect the ensemble average of the
integrated dissipation function to obey the second law
inequality,



Ω̄t

�
= ⟨Ωt⟩ /t > 0. (15)

This is different to the traditional second law inequality
in two important regards; first, the dissipation function
(which is the subject) is a finite time averaged quantity,
Ω̄t = −β 1

t

 t

0 ds ḣ(StΓ), and second, it is explicitly ensemble
averaged and is valid arbitrarily far from equilibrium. In
contrast, the traditional second law inequality, ∆Q/T > ∆S,
is supposedly valid in the thermodynamic limit, but leaves
both the entropy S and the temperature T undefined,
except for special cases where local-equilibrium or quasi-
equilibrium arguments may be used. We might assume
that the temperature is constant,24 as would be the case if
we used the temperature of the (infinitely large) thermal
reservoir.

B. Density profile

We can visualise the initial distribution of the system by
creating a histogram of the x positions of the particles from
an ensemble of simulations. From this, we can calculate the
average particle density in each part of the system, shown in
Figure 1. The strength of the perturbing potential is set to
a = 2.5 for all perturbations.

C. Relaxation

From our initial distribution, we can monitor the density
distribution as the system relaxes. The ensemble was simulated
for 5 × 104 time steps over the relaxation process. A sample
of density profiles of the system at different points in time is
shown in Figure 2. The distribution of green particles (those
for which ci = −1) appears to relax to a sine curve, whose
amplitude decreases with time. The distribution of red particles

FIG. 1. Average density in the system as a function of x position. A sine
potential perturbation was applied to the equations of motion of the particles
to generate this distribution, seen in Eq. (6) with a = 2.5.
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FIG. 2. A sample of density profiles as the system relaxes. The density profile
of the green particles is shown.

(ci = 1, not shown) mirrors the green particle distribution, and
the total density relaxes to a uniform distribution quickly.

To quantify our study of the relaxation process, we
can perform a least squares fit of these density distribution
graphs to a sine curve of fundamental wavelength. That
is, we fit the density as a function of position to the
equation

D = A sin
(

2πx
bL

)
+

ρ

2
(16)

to give the amplitude of the sine wave, A, which is plotted
against time in Figure 3. We use the density of the green
particles, where ci = −1. As expected, the density approaches
a uniform distribution as the relaxation time approaches
infinity.

We can also monitor the relaxation of the system by
calculating the value of the instantaneous dissipation function

FIG. 3. Least squares fit of the density distributions of the green particles to
a sine curve with wavelength equal to the box length. The amplitude of the
least squares fit is plotted against time as the system relaxes.

FIG. 4. Average value of the instantaneous dissipation function, shown as
black ticks, calculated along the relaxation process. The integral of the auto-
correlation function of the dissipation function is included as yellow triangles
to demonstrate the dissipation theorem. Note that the error bars cannot be
seen on this scale.

throughout the relaxation process, seen in Figure 4. Initially,
the average value of the dissipation function is zero because
the distribution is even in the momenta, since it is an
equilibrium distribution under the potential perturbation. It
rises rapidly, before relaxing monotonically towards zero
as the system approaches equilibrium. We know from the
relaxation theorem, if the deviation function in the distribution
relaxes conformally then the average instantaneous dissipation
function relaxes to zero monotonically.15 After a very short
initial transient, the density distribution graphs in Figure 2
appear to relax conformally, so this monotonic behaviour of
the dissipation function is expected. We can also observe from
Figure 4 that since the average of the instantaneous dissipation
function is always positive, the integrated dissipation function
is always greater than zero, satisfying the second law
inequality.

The dissipation theorem17,18 relates a phase functions
average value to its transient correlation function with the
instantaneous dissipation function. We can demonstrate the
dissipation theorem with this system, using the instantaneous
dissipation function as the argument. The dissipation theorem
then becomes

⟨Ω(StΓ)⟩ =
 t

0
⟨Ω(Γ)Ω(SsΓ)⟩ds. (17)

The RHS of Eq. (17) is included in Figure 4, and a close
agreement is seen between the average of the dissipation
function and the integral of the correlation function,
demonstrating the dissipation theorem in this relaxing system.
The necessary and sufficient condition for relaxation to
equilibrium is  ∞

0
ds ⟨Ω(0)Ω(s)⟩ = 0, (18)

which is thus called the heat death equation.10
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IV. MORE COMPLEX POTENTIAL
PERTURBATION—COLOUR FIELD

To look at more complex relaxation processes, we can
study the relaxation from different perturbing potentials. We
start with a sum of two sine functions to generate the initial
distribution,

Ue, i =
a
2

(
sin

(
2πxi

bL

)
+ sin

(
4πxi

bL

))
. (19)

The equations of motion used were the same as in Eqs. (2)-(6),
and the instantaneous dissipation function for this system is
given by

Ω(StΓ) = βaπ
mbL

*
,

N
i=1

cipxi(t)
(
cos


2πxi(t)

bL


+ 2 cos


4πxi(t)

bL

)
+
-
. (20)

A. Density profile

The initial distribution can be seen in Figure 5.
We can see that the distribution of each colour is
complex, and the total density distribution is far from uni-
form.

B. Relaxation

We let the system relax from the initial distribution in
the same way as above. Examples of the density distributions
throughout the relaxation process are shown in Figure 6.
We can see that the density of green particles remains
fairly complex, before apparently relaxing to a sine curve
of fundamental wavelength. This sine curve then decays
conformally towards a uniform distribution. The dissipation
function (not shown) has the same behaviour as the first
case.

In order to quantitatively monitor the relaxation, we do a
least squares fit of the green particles density distribution to
the sum of two sine waves. The density distribution function
at each time is fitted to an equation of the form

FIG. 5. Distribution generated by perturbing the equations of motion with
a potential equal to the sum of two sine curves, Eq. (19). The total density
distribution is shown in black, and the two colours shown in red and green.

D = A1 sin
(

2πx
bL

)
+ A2 sin

(
4πx
bL

)
+

ρ

2
. (21)

The parameters A1 and A2 are plotted against time in Figure 7.
We can see that the higher frequency component decays faster.
We fitted each series in Figure 7 to an exponential function,
A1 = 0.225 exp[−0.142t] and A2 = 0.259 exp[−0.574t]. The
amplitude of the second harmonic decays four times as fast
as the amplitude of the fundamental. This is the same trend
observed by Fourier25 for temperature gradients. Compared to
the fundamental, the peak to the trough distance of the second
harmonic is half as far, and the density gradient is twice as
steep. This results in the second harmonic decaying four times
as fast as the fundamental.

V. APPROXIMATE SQUARE WAVE POTENTIAL
PERTURBATION APPLIED TO ALL PARTICLES

To study an even more dramatic relaxation process,
we can apply an approximate square wave perturbation to

FIG. 6. Relaxation of the system from a distribution generated by a pertur-
bation that was the sum of two sine curves. Density distributions of the green
particles are shown for a selection of times along the relaxation process.
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FIG. 7. A least squares fit of the density distribution of the green particles to
the sum of two sine curves, Eq. (21). Both amplitudes are plotted, where A1
is the amplitude of the sine curve of fundamental wavelength, and A2 is the
amplitude of the shorter wavelength component.

every particle in the system. This was done using a finite
number of terms of the Fourier decomposition of a square
wave,

Ue, i =
4a
π

11
n=1,3,5...

(
1
n

sin
(

2πnxi

bL

))
, (22)

which is displayed graphically in Figure 8. To apply a
single-colour field, we set ci = 1 for all particles in the
system, Eq. (3). The instantaneous dissipation function is
given by

Ω(StΓ) = 8βa
mbL

*.
,

N
i=1

pxi(t) *.
,

11
n=1,3,5...

cos
(

2πnx
bL

)
+/
-

+/
-
. (23)

FIG. 8. Approximate square wave used to perturb the equations of motion to
generate the initial distribution (where the amplitude is determined by a = 1).

FIG. 9. Density distributions of the system initially and as it relaxes. The
purple line shows the average density within the system.

A. Non-monotonic relaxation

This single-colour field perturbation results in a large
density gradient across the system and a very non-uniform
initial distribution, seen in Figure 9.

The relaxation of the density distribution in time is fairly
complex, also seen in Figure 9. The easiest way to monitor
the distribution quantitatively is to preform a discrete Fourier
transform (DFT) on each distribution, and then plot each
component with time. The DFT fits the density distribution to
an equation of the form

D =
N
i=1

Ai sin
(

2iπx
bL

)
+ Bi cos

(
2iπx
bL

)
. (24)

A few key components can be seen in Figure 10. A
particularly interesting component, the first sine component,
A1, is plotted separately in Figure 11. We can see that
it displays non-monotonic relaxation; as the amplitude
approaches zero, it “bounces,” passing through zero a number

FIG. 10. A selection of components of the discrete Fourier transform of the
density distribution throughout the relaxation process.
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FIG. 11. Amplitude of the first sine component of the discrete Fourier trans-
form as the system relaxes with time.

of times before finally relaxing to it. This means that at times,
the density is moving away from a uniform distribution.

Figure 12 displays the calculated dissipation function
of the system, which also shows non-monotonic relaxation.
The points where the instantaneous dissipation function is zero
correspond to the stationary points in the first component of the
density distribution; there is instantaneously, approximately,
no change in the distribution. While the instantaneous
dissipation function is not always positive in this system,
the integrated dissipation function, also plotted in Figure 12,
is always greater than zero. This is consistent with the second
law inequality.

We can use the dissipation function to demonstrate
the dissipation theorem in this system, and again, we see

FIG. 12. Value of the instantaneous dissipation function as the system relaxes
towards equilibrium, displayed as black tics. The form of the dissipation
function is given in Eq. (23). An average dissipation of zero is marked by
the red line. The integral of the autocorrelation function is shown in yellow
squares. The ensemble average of the integrated dissipation function is plotted
with purple crosses. Note that the error bars cannot be seen on this scale.

a good agreement between the average and the integrated
autocorrelation function, also plotted in Figure 12.

VI. CONCLUSION

Field free relaxation was studied in systems relaxing
from a non-uniform initial density, monitored using both
density distributions and the dissipation function. When
this density gradient was in terms of colour labeled
particles the density distribution decayed to a sine curve
of fundamental wavelength, which then after a very short
initial transient, decayed conformally towards a uniform
distribution. After the short transient, the dissipation function
decayed towards equilibrium monotonically, consistent with
the predictions of the relaxation theorem for a conformally
relaxing system. When the system was initiated with a
more dramatic density gradient, applied to all particles,
non-conformal relaxation was seen in both the dissipation
function and the Fourier components of the density
distribution. At times, the system appeared to be moving
away from a uniform density distribution. In both cases,
the dissipation function based second law inequality (as
derived from the fluctuation theorem) was satisfied, and the
computational results were consistent with the dissipation
theorem.

The observed non-monotonic decay is in sharp distinction
with traditional macroscopic thermodynamics. Under this
scenario, the relevant quantity (for the NVT systems under
focus here) would be the Helmholtz free energy,

A = U − T S,

where U is the internal energy and T is assumed to be the
temperature of the thermal reservoir, which is constant. A
relaxing system has no work done on it (by construction)
and so ∆Q = ∆U. The second law inequality, ∆S > ∆Q/T , is
supposed to be applicable (arguably incorrectly) to a relaxing
system at any instant in time and for any time interval where
the system is relaxing, which leads us directly to

dA
dt

< 0.

This is the precise argument that is used in traditional
thermodynamics to conclude that A must be a minimum
at equilibrium for a NVT system, e.g., see page 125 of
Kondepudi and Prigogine.24 Obviously, this also precludes
a system from non-monotonic decay, but in the present
paper, we have shown explicitly how a thermal system,
which is widely believed to be one that thermodynamics
should apply to, is able to decay non-monotonically. In sharp
distinction, the dissipation function based on our second
law inequality, Eq. (15), does allow for non-monotonic
decay and is observed to hold for all of the cases studied
here.

One might wonder what would happen if we were
to monitor the Helmholtz free energy directly during the
relaxation. Unfortunately, this cannot be done because
traditional thermodynamics does not define the entropy or the
temperature of a nonequilibrium system. As the traditional
Clausius inequality points out, away from equilibrium, the
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entropy is not a state function. This in turn implies that the
temperature is not well defined for irreversible processes,
Refs. 4–8.
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