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Abstract 

 

 

The zinc finger of the cerebellum (Zic) genes encode a family of transcriptional regulators critical 

for early embryogenesis. All ZIC proteins contain a zinc finger domain (ZFD) and other 

evolutionary conserved regions. They are pleiotropic in nature since they can influence gene 

expression directly by acting as transcription factors due to their ability to bind target DNA 

sequences, or indirectly as co-factors by interacting with protein partners. Little is known, 

however, about the structural components that allow ZIC proteins to perform these functions. 

Among ZIC family members the protein structure of ZIC3 is relatively well characterised, yet 

details regarding its transactivation domain remain unknown. During embryonic development 

ZIC3 is involved in maintaining pluripotency of embryonic stem cells, formation of the left-right 

(L-R) axis and arrangement of visceral organs. Mutations in Zic3 in humans and animal models 

cause congenital L-R axis defects. The work presented in this thesis maps structural domains 

required for ZIC3 molecular function. Characterisation of a novel allele of murine Zic3 revealed 

that removal of the ZFD and C-terminus renders the mutant protein functionally null and 

incapable of dominantly interfering with the function of other ZIC proteins. To further assess the 

transcription factor function of ZIC3, a new cell-based transactivation assay system using target 

ZIC3-DNA binding sequences was designed. This assay was used to identify regions within the 

ZFD and C-terminus vital for transactivation via ZIC3. In addition other evolutionary conserved 

domains were implicated in transactivation. This study provides a reliable and robust platform 

to investigate the transcription factor function of ZIC proteins and their variants. 
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1.1 TRANSCRIPTION FACTORS: KEY MEDIATORS OF 

BIOLOGICAL FUNCTION 

An adult organism develops from a single cell, the fertilized zygote. This diploid cell has the 

potential to divide and grow into a multicellular organism that contains a multitude of 

differentiated cell types, each with its own specialized function, but with the same genomic DNA. 

The method by which cells with the same DNA become specialised and assemble into tissues 

and organs is the central problem of developmental biology. At the core of this phenomenon is 

the fact that specific regions in the genome (genes) code for proteins that influence cell identity. 

Hence by using different parts of the genome to express varying combinations (or an 

assortment) of proteins, cells become specialised for different functions. This differential gene 

expression is therefore fundamental to all cellular differentiation and tissue formation. 

Differential gene expression is achieved by the combinatorial function of various classes of 

proteins (Kadonaga, 1998), one of which is called transcription factors (Latchman, 1990). 

Transcription factors are modular proteins which contain distinct DNA-binding and 

transcriptional regulatory domains. Typically they bind specific DNA sequences in the promoter 

region (upstream of the coding region of the gene) and/or distal regulatory elements through 

their DNA-binding domains, and interact with the basal transcriptional machinery through their 

transcriptional regulatory domains to promote or repress gene expression (Figure 1.1) (Mitchell 

et al., 1989). Additionally these proteins may also have a protein-protein interaction domain 

that allows them to form dimers or bind with cofactor molecules (co-activator or co-repressor) 

required for their function (Latchman, 1997). Therefore transcription factors either act directly 

to activate/repress transcription, or indirectly by interacting with co-factors molecules which 

then allows them to interact with the transcriptional machinery. The activator or repressor 

functions of transcription factors are dictated by the regulatory element they are bound to, 

structure of the surrounding chromatin, and the type of molecules available in the environment 

(Boyle et al., 2010). Naturally, given their role as gene-regulators, transcription factors are a 
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common target of mutations that result in human congenital defects and diseases (Jimenez-

Sanchez et al., 2001). 

 

 

 

 

More than 1700 transcription factors have been identified in humans and most of these are 

conserved in other taxonomic groups such as yeast, plants, Drosophila, C. elegans, Xenopus and 

mice (Brivanlou et al., 2002, Vaquerizas et al., 2009). Transcription factors are classified based 

on sequence similarities and tertiary structure of their DNA-binding domains (Stegmaier et al., 

2004). These proteins drive the development of whole organisms, maintain physiological 

homeostasis and are involved in repair and regeneration (Latchman, 1997).  

 

 

Figure 1.1: Transcription regulation via transcription factors. Transcription factors (TF) influence gene 

expression by binding to specific DNA sequences (promoters or enhancers). Depending on the target 

sequence, transcription factors interact directly or indirectly by binding to co-factor molecules (cF) with 

the basal transcriptional machinery [general transcription factors (gTF) and RNA polymerase] for initiation 

of transcription. 
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1.1.1 Regulation of Transcription Factor Steady State Levels and 

Activity 

Transcription factors actively influence the rate of gene expression and it is vital their steady 

state levels and activity be strictly regulated. The first step in the synthesis of all proteins is 

conversion of the DNA code to messenger RNA (mRNA). The mRNA molecule is then processed 

for transport to the cytoplasm where the protein synthesizing machinery is located. The protein 

synthesizing machinery translates mRNA into a polypeptide chain, which may require further 

modification to form a mature protein. The mature protein in turn can be held in an inactive 

state, shuttled to and from its site of activity, modified and/or targeted for destruction. The 

regulation of protein steady state levels and activity can therefore occur at many different 

stages. 

 

1.1.1.1 Transcription: mRNA synthesis 

mRNA synthesis occurs in the nucleus, where genes are converted into mRNA via the 

transcriptional machinery. The main enzyme involved in transcription is RNA polymerase, which 

identifies specific DNA binding sites (called promoters), unwinds the double helix structure of 

DNA, catalyzes the formation of the mRNA molecule based on the DNA template and recognizes 

a termination sequence that specifies where the transcript should end (Berg et al., 2002). In 

addition, RNA polymerase can interact with activator or repressor proteins (such as hormones, 

growth factors or transcription factors) to modulate the rate at which transcription takes place. 

In eukaryotes when DNA is transcribed into nascent mRNA, the mRNA molecule undergoes 

several processing steps in the nucleus before transport to the cytoplasm for translation. These 

include 5’-end capping, splicing, 3’-end cleavage and polyadenylation. The  modifications at the 

5`- and 3`-ends stabilize the nascent mRNA, protect it from degradation via exonucleases and 

participate in protein synthesis (Day et al., 1998). Splicing involves removal of non-coding 

sequences (introns) from between coding sequences (exons) to form the mature mRNA 

transcript. If a gene consists of more than one exon, these can be differentially included or 
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excluded from the mature mRNA transcript via alternate splicing (Nilsen et al., 2010). Hence a 

single gene can produce multiple mRNA transcripts. Following the formation of the mature 

mRNA transcript it is bound by several mRNA binding proteins (mRBPs), which interact with 

other proteins in the nuclear membrane to enable cytoplasmic transport. 

 
1.1.1.2 RNA Degradation 

In addition to preparation of mRNA for translation, other mechanisms can regulate mRNA 

stability, inevitably effecting protein steady state levels. These include: 

• miRNA mediated regulation: miRNAs are single-stranded RNA molecules of made up of ~22 

nucleotides (Bartel, 2004). In animals, these molecules have been found to have important 

functions in regulation of signaling pathways, apoptosis, metabolism, cardiogenesis and 

brain development (Kloosterman et al., 2006). miRNAs typically regulate protein synthesis 

via mRNA degradation or translational inhibition. In order to target an mRNA molecule for 

degradation, miRNAs form imperfect hybrids with the 3’UTR of the target mRNA and employ 

exonucleases for degradation of the transcript. For translational inhibition, miRNAs bind to 

mRBPs that attach themselves onto the target mRNA and obstruct the binding of the 

translational machinery, hence inhibiting protein synthesis (Pillai et al., 2007).  

• Nonsense Mediated Decay (NMD): NMD is an evolutionary conserved quality-control 

process in yeast, Drosophila, C. elegans, mammals and plants, which selectively degrades 

mRNAs harbouring premature termination codons (PTCs) (Chang et al., 2007). PTCs can arise 

as a result of mutations (nonsense or frame-shift) or errors during RNA processing; hence 

NMD protects cells from deleterious truncated proteins that may perturb the normal 

cellular homeostasis (Brogna et al., 2009). A critical feature of NMD is that factors involved 

in this process are able to distinguish between PTCs and canonical stop codons. How exactly 

this is achieved is not completely understood, however it appears dependent upon the 

position of the PTC; a transcript will be committed to NMD if a PTC is located 50-55 bases 

upstream of the 3’-most exon-exon junction (Nagy et al., 1998). Thus canonical stop codons 
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bypass NMD as most are located within the last exon. In addition PTCs in the last exon and 

genes lacking introns escape NMD (Maquat et al., 2001). 

 
1.1.1.3 Translation: Protein Synthesis 

Once a mature mRNA transcript reaches the cytoplasm, it is recognized by the protein 

synthesizing machinery. Major components of this machinery are ribosomes (site of protein 

synthesis) and transfer RNA (tRNA; forms a link between nucleic acids and amino acids). Each 

tRNA molecule carries a particular amino acid, which is coded for by a combination of three 

specific nucleotides present on the mRNA transcript (Lodish et al., 2007). The first amino acid of 

all proteins is always methionine. Hence translation is initiated when a tRNA molecule carrying 

methionine binds on to the corresponding nucleotides on the mRNA template. Once the amino 

acid is incorporated, the tRNA molecule carrying it exits the ribosome and makes way for 

subsequent tRNAs to bind and add relevant amino acids to the peptide chain. When tRNAs 

encounter a stop codon, addition of amino acids to the peptide chain halts and the nascent 

peptide chain is released from the ribosome to be further processed. The three-dimensional 

structure of proteins and their activity is dependent on the linear order of amino acids. Hence 

assembly of amino acids in their correct order is critical to the production of functional proteins. 

 

1.1.1.4 Protein modifications 

When peptide formation is complete at ribosomes, nascent peptides are transported to the 

rough endoplasmic reticulum and golgi apparatus in the cell where they undergo post-

translational modifications (PTMs). PTMs involve attachment of specific chemical groups (for 

example phosphates, acetyl groups, ubiquitin residues, SUMO protein) to the protein (Han et 

al., 1992). This leads to alterations in the structure of the protein and has downstream effects 

on the function of the transcription factor such as their interaction with other cellular proteins, 

localization to their site of function or degradation (Parekh et al., 1997, Muratani et al., 2003). 
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Additionally PTMs allow cells to respond to environmental stimuli via PTMs of extant proteins 

(Wells et al., 2001). 

 

1.1.1.5 Nuclear Localization  

Although transcription factors operate in the nucleus of a cell, they are usually held in the 

cytoplasmic compartment of the cell and only translocated to the nucleus upon receipt of 

specific cellular cues (Xu et al., 2004). Once activated, the proteins travel from the cytoplasm to 

the nucleus to reach their target DNA-binding sites. The transport of proteins occurs through 

openings in the nuclear envelope, known as nuclear pores (composed of nucleoporin proteins) 

(Cartwright et al., 2000). The mechanism of transport differs among the various families of 

transcription factors, however in general nuclear import requires the presence of specific 

molecular signals (amino acid sequences in the transcription factor), mobile (shuttling) carriers 

and energy (Nigg, 1997). The molecular signals either directly interact with the nucleoporins or 

interact with other (so called) chaperone proteins that bind to nucleoporins to allow transport 

of the transcription factor by the consumption of energy. In addition the importance of these 

transport mechanisms is highlighted by many mutations resulting in human diseases and 

congenital defects (Brivanlou et al., 2002, Ware et al., 2004, Xu et al., 2004).  

There are several mechanisms by which transcription factors can be directed into the nucleus: 

• Nuclear localization signal-mediated nuclear import: Previous studies investigating the 

biochemical events that take place during nucleocytoplasmic shuttling have characterized 

the specific molecular signals within transcription factors that promote nuclear import (Jans 

et al., 2000). These molecular signals are known as Nuclear Localization Signals (NLSs), which 

are short stretches of basic amino acids that are either monopartite (a cluster of basic 

residues preceded by a helix-breaking residue) or bipartite (two clusters of basic residues 

separated by 9-12 residues) (Hicks et al., 1995, Cokol et al., 2000). They contain a high 

content of arginine and lysine residues that are recognized by a soluble heterodimeric 

carrier that consists of proteins importin-α and importin-β. The importin-α/β complex binds 
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to the NLSs and also associates with nucleoporins (via HEAT repeats in importin-β) allowing 

nuclear import of the transcription factor (Stewart, 2007). 

• Transport via chaperones: Various transcription factors have been found to move into the 

nucleus in an NLS-independent manner (Xu et al., 2004). These transcription factors interact 

with ‘chaperone’ proteins that contain NLSs required for nuclear import. For example, the 

transcription factor STAT itself does not contain an NLS. However its binding partner, 

interferon-γ, consists of a monopartite NLS; it is therefore through this interaction that STAT 

is able to translocate into the nucleus (Johnson et al., 1998). 

• Transport into the nucleus via armadillo repeats: Some transcription factors that do not 

contain NLSs instead possess armadillo repeats that are similar to the HEAT repeats found 

in importin-β. These amino acids facilitate nuclear import through recognition of 

nucleoporins. Armadillo repeats were first identified in the Drosophila melanogaster β-

catenin orthologue, Armadillo, which is a classic example of a protein transported into the 

nucleus without a NLS (Peifer et al., 1994).    

• Transport into the nucleus via sumoylation and related mechanisms: Many transcription 

factors are targets for sumoylation, an event wherein small ubiquitin related modifier 

(SUMO) molecules are conjugated to the protein. Although the consequences of 

sumoylation are diverse, it can regulate the subcellular distribution of a protein. Models 

demonstrating the mechanisms by which sumoylation facilitates nuclear import have been 

suggested and in most instances appear to require a NLS (Melchior et al., 2003). In some 

cases, however, sumoylation of the target proteins is in itself not required for nuclear 

localization. For example, the enzyme essential for sumoylation, Ubc9, was capable of 

facilitating nuclear localization of the transcription factor Vsx-1 (Kurtzman et al., 2001). This 

occurred even when the transcription factor was not sumoylated. Nevertheless an NLS 

appears to be necessary for this mechanism of transport as well.  
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1.1.1.6 Mechanisms of nuclear export  

Transcription factor function can be dampened by nuclear export. The export process is 

fundamentally similar to the import process, as the former also requires the presence of specific 

molecular signals (nuclear exit signals) or proteins that assist the transcription factor in 

interacting with the nuclear export machinery at the nuclear envelope (Wen et al., 1995). 

Mutations in these signals lead to accumulation of the transcription factor in the nucleus, which 

continually promotes gene expression. Hence the biochemical homeostasis is disturbed causing 

various diseases, such as cancer (Giannini et al., 2004). 

 

1.1.1.7 Dimerization  

Some transcription factors require a physical interaction with an identical molecule (homo-) or 

with another molecule (hetero-) to form a functional dimer in order to bind DNA (Amoutzias et 

al., 2008). Depending on the type of transcription factor, the choice of partner and the ongoing 

cellular events, the dimerization process can activate or repress the activity of the transcription 

factor (Klemm et al., 1998). 

 

1.1.1.8 Dominant-negative interference:  

This is a phenomenon where the function of a wild-type protein is abolished due to interference 

by a mutant isoform (formed via alternate splicing or a genetic mutation) (Herskowitz, 1987, 

Stamm et al., 2005). The resultant protein derivative can potentially interfere in the molecular 

functioning of wild-type transcription factor via binding to the target DNA sites, interacting with 

co-factors, or formation of inhibitory heterodimers (Figure 1.2). 
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1.1.1.9 Protein Degradation 

Since transcription factors are highly active in contrast to other proteins in the cell, maintenance 

of their steady-state levels needs to be tightly regulated via keeping a balance between synthesis 

and degradation. This selective and programmed mechanism for protein degradation is 

provided by the ubiquitin-proteasome system (Desterro et al., 2000). The proteasome is a multi-

catalytic protease complex that identifies and specifically degrades ubiquitin-tagged proteins. 

Ubiquitin is a highly conserved protein present in a vast variety of eukaryotic species (Hershko 

et al., 1998), which is covalently conjugated with lysine residues on proteins that are destined 

for degradation via the proteasome. 

  

Figure 1.2: Dominant-negative interference. 

The mutant transcription factor (mTF) can in-

hibit transcription via the wild-type transcrip-

tion factor (TF) by (A) promoter blocking, (B) 

competing for co-factor (cF), or (C) heterodimer 

formation. 
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1.2 THE ZIC FAMILY OF PROTEINS 

Genes that encode developmental regulatory proteins are generally conserved across the 

invertebrate-vertebrate divide (Ohno, 1970). For example, genes involved in the development 

of the Drosophila embryo often have vital roles in development of the vertebrate embryo, even 

though the complexity and developmental mechanisms of the organisms are significantly 

different (Grinberg et al., 2005). The Zic genes are no exception; the vertebrate Zic genes were 

discovered by homology to the Drosophila odd-paired (opa) gene (Aruga et al., 1994). Opa itself 

was isolated from a genetic screen for mutations that disrupt segmentation of the Drosophila 

embryo. Flies unable to produce functional opa gene product lack a portion of every alternate 

body segment and fall into the group of mutants known as pair-rule mutants (Nusslein-Volhard 

et al., 1980). Further analysis of opa mutant flies revealed it also regulates expression of genes 

required for the development of visceral mesoderm and midgut morphogenesis (Benedyk et al., 

1994). 

As observed for many vertebrate genes, evolutionary genome duplication events have expanded 

the one Drosophila opa to multiple paralogs (Grinberg et al., 2005). Mammals have five 

paralogous Zic genes: Zic1, Zic2, Zic3, Zic4 and Zic5, each significantly homologous to the 

invertebrate opa gene and to their respective Zic orthologues. The name ‘Zic’ denotes zinc 

fingers of the cerebellum (the tissue from which they were first isolated) (Aruga et al., 1994). 

Mutational analysis in a variety of vertebrate and mammalian organisms has shown that Zic 

genes play important roles in differentiation of ectoderm and mesoderm derived structures 

during embryogenesis (Houtmeyers et al., 2013). Nonetheless, much remains unknown about 

the molecular mechanism of Zic gene function and regulation. Moreover, the long-standing 

uncertainty regarding whether ZIC proteins act as bona fide transcription factors or co-factors is 

only now beginning to be clarified with evidence that they can act as either class of molecule, 

presumably in a context dependent manner (Ali et al., 2012). 
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1.2.1 Genomic Arrangement 

Sequencing, assembly and annotation of multiple genomes has revealed the ZIC genes have an 

unusual arrangement within the genomes of all vertebrates examined (Houtmeyers et al., 2013). 

In mammals, the five Zic genes reside at three genomic loci. Zic1 and Zic4 exist as a divergently 

transcribed tandem gene pair, as do Zic2 and Zic5, whilst Zic3 is an X-linked singleton in each 

species (Figure 1.3) (Ali et al., 2012). Examination of exon-intron boundaries and phylogenetic 

analysis has revealed that Zic genes can be divided into two subgroups (Subgroup A and 

Subgroup B), based on similarities in nucleotide sequence and protein structure (Aruga et al., 

2006). A hypothetical model of Zic gene evolution by Aruga et al. (2006) proposes that the 

ancestral single copy Zic gene contained one intron and a set of conserved structural domains. 

Tandem duplication of the ancestral gene and sequence modifications led to the generation of 

two isoforms: one that acquired an additional intron, while the other gene copy underwent 

sequence divergence accompanied with the loss of certain structural domains (Houtmeyers et 

al., 2013). Additional genome duplication events produced eight Zic genes organized in four 

bigene clusters, with each cluster containing a Zic gene from Subgroup A (Zic1, Zic2 and Zic3) 

and Subgroup B (Zic4 and Zic5). Nonetheless the maximum number of Zic genes identified in any 

species to date is seven in zebrafish (Grinblat et al., 1998, Toyama et al., 2004), with the varying 

Zic gene copy numbers observed across vertebrate species having arisen by a combination of 

gene loss and de novo duplication events. 

The retention of some Zic genes as tandem gene pairs has implications for their function and 

study. For example, it is likely that the gene pairs share regulatory sequences and have 

overlapping expression patterns. This provides the potential for functional redundancy and/or 

other modes of paired activities, such as dominant-negative interference between co-expressed 

family members. Additionally, the production of animal models in which more than one Zic gene 

is mutated is difficult because the common approach of crossing single mutant strains is 

impractical due to the low chance of a cross over occurring between the individual mutations. 
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1.2.2 Protein Structure and Function 

The defining feature of the OPA protein and its vertebrate orthologues (ZIC1-5) is a zinc finger 

domain (ZFD) that consists of five tandem C2H2-type zinc fingers (ZFs) (Figure 1.4). This type of 

ZF consists of two cysteine and two histidine residues that ligate the zinc (Zn2+) ion, enabling the 

protein to bind DNA (Iuchi, 2001). The ZFD spans over a third of the gene in the C-terminal half. 

Sequence comparisons show that the first zinc finger (ZF1) is well conserved amongst ZIC1-3, 

but is more divergent in ZIC4 and ZIC5 (Aruga et al., 2006). This is part of the basis for the sub-

division of the Zic genes into structural subclasses with Zic1-3 belonging to Subgroup A and Zic4-

5 belonging to Subgroup B. The ZIC ZFD possesses not just DNA-binding ability, but also protein 

binding ability and appears responsible for nuclear localization. Mutations within the ZFD 

adversely affect the function of these proteins by altering these properties (Mizugishi et al., 

2004, Brown et al., 2005, Bedard et al., 2007). 

Figure 1.3: Genomic arrangement of vertebrate ZIC genes. Illustration of the arrangement of ZIC genes 

on the human genome, as shown in the Ensembl genome browser. ZIC1 and ZIC4 are located on 

chromosome (Chr) 3, ZIC2 and ZIC5 are located on chromosome 13, while ZIC3 is on the X-chromosome. 

UTR: untranslated region; ZFNC: zinc finger N-terminal conserved region; ZOC: Zic-Opa conserved region; 

ZF: zinc finger. The figure was adapted from Houtmeyers et al. (2013).  
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Biochemical and genetic experiments have shed some light on the ZFs responsible for DNA and 

protein binding activities. For example, structural analysis of ZIC3 suggests that ZF1 and ZF2 may 

not be canonical (DNA-binding) C2H2-type ZFs. These fingers together form a single structural 

unit called the tandem CWCH2 motif, which is characterized by the presence of a tryptophan (W) 

residue between the two canonical cysteines of each ZF (Aruga et al., 2006). This motif is present 

in the first and second ZFs of a wide range of metazoan species, and may be of biological 

significance since a missense mutation of the tryptophan in ZF1 of ZIC3 is associated with 

congenital heart malformation (Chhin et al., 2007). The molecular role of the CWCH2 motif 

remains unknown, however it is hypothesized that it modulates the DNA-binding capability of 

the other canonical ZFs and/or participate in protein-protein interactions (Houtmeyers et al., 

Figure 1.4: Schematic illustration of ZIC proteins. Structural features of the five human ZIC proteins are 

shown. All contain a C2H2-type ZFD that is highly conserved, with only the first zinc fingers of ZIC4 and 

ZIC5 showing divergence. Each protein also consists of a short, highly conserved ZFNC domain 

(immediately upstream of the first zinc finger). ZIC1, ZIC2 and ZIC3 also share the ZOC domain. All proteins 

contain several low complexity regions (A: alanine, H: histidine, P: proline, S/G: serine/glycine). The figure 

was adapted from Houtmeyers et al. (2013). 
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2013). Furthermore, mutational analysis of Zic2 has revealed that mutation of ZF4 ablates DNA-

binding (Brown et al., 2005) and causes in vivo loss-of-function (Elms et al., 2003b) without 

necessarily affecting protein-protein interactions (Pourebrahim et al., 2011). Further work is 

required, however, to clearly delineate individual and co-operative ZF functions. 

The N- and C-terminal sequences that flank the ZFs vary significantly among all the family 

members. Nonetheless there is one short region (14-21 amino acids in length) at the N-terminus 

of the ZFD (ZFNC) found in all family members across a wide range of species (Aruga et al., 2006) 

whose function remains unknown. Additionally, a small (9-10 amino acids in length) N-terminally 

located domain is conserved amongst vertebrate ZIC proteins that belong to Subgroup A. OPA, 

the Drosophila orthologue, also contains this domain hence it was named the ZIC/Odd-paired 

conserved (ZOC) motif (Aruga et al., 1996, Layden et al., 2010). This domain is required for 

protein-protein interactions (Mizugishi et al., 2004, Himeda et al., 2013). Other structural 

features of the ZIC family include low complexity regions (poly-alanine, -histidine, -proline and -

serine/glycine tracts) located outside the ZFD. The functional relevance of these regions is still 

unclear, however expansion mutations of the C-terminal alanine tract of ZIC2 (Brown et al., 

2005) and the N-terminal alanine tract of ZIC3 (Wessels et al., 2010) are associated with human 

pathology. 

Immunohistochemical staining has revealed that the protein products of Zic genes 

predominantly localize in cell nuclei (Aruga et al., 1994, Yokota et al., 1996), consistent with a 

role in gene expression, DNA replication and repair, or regulation of chromatin and other nuclear 

structures (Aruga, 2004). The ZIC proteins are thought to behave as transcription factors, since 

the orthologous opa is a ZF containing pair-rule gene and all other pair-rule genes are 

transcription factors. Nonetheless recent evidence shows ZIC proteins can influence gene 

expression also as a cofactor or by complexing with transcription machinery or chromatin 

modifying complexes, thus much remains unknown about ZIC protein function. 
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1.2.2.1 The ZIC proteins function as transcription factors in vitro and in vivo 

Perhaps the best evidence that mammalian ZIC proteins act as transcription factors comes from 

the study of point mutations in the human and mouse Zic2 genes. A pathogenic human ZIC2 

variant (ZIC2-R409P) with a missense mutation in ZF5, displayed diminished affinity to target ZIC 

DNA-binding sequence and reduced transactivation ability in cell-based assays (Hatayama et al., 

2011). The mouse ZIC2 variant (ZIC2-C370S) carries a missense mutation in ZF4 and animals 

homozygous for this mutation have a phenotype that shifts in the same direction as an allele in 

which decreased levels of wild-type protein are produced (Elms et al., 2003b). In vitro analysis 

shows that the ZIC2-C370S protein cannot bind DNA or activate transcription (Brown et al., 

2005). These data imply that phenotypes, in either case, are produced due to loss of 

transcription factor function. 

Several studies have attempted to define the consensus DNA binding sequence for ZIC proteins 

(Table 1.1). The first putative ZIC DNA-binding site was identified via a yeast-one hybrid assay, 

where human brain cDNAs were used to identify transcription factors that could regulate the 

expression of the DOPAMINE RECEPTOR 1A (D1A) gene (Yang et al., 2000). Electrophoretic 

mobility shift assay (EMSA) and cell-based reporter assays showed that ZIC2 binds the D1A 

promoter and represses transcription. Similar experiments identified three ZIC binding sites on 

the APOE promoter and cell-based reporter assays showed ZIC proteins could activate 

transcription via this promoter (Salero et al., 2001). Another study used cDNA selection and 

mutational analysis to identify the minimal essential binding site for ZIC1-3 (Mizugishi et al., 

2001). However none of these sequences have been validated in vivo. Two recent studies (Badis 

et al., 2009, Lim et al., 2010) have identified similar consensus ZIC3 DNA-binding sequences 

(Figure 4.3). Badis et al. purified the ZIC3 ZFD and used a universal protein binding microarray 

(PBM) to identify an optimal ZIC3 binding site. Lim et al. performed ChIP-chip on mouse 

embryonic stem cells (ESCs) and found three different sequences to be over-represented in the 

presence of ZIC3 (Table 1.1). Additionally Lim et al. found ZIC3 bound a specific region in the 

promoter of the gene Nanog, which is a pluripotency regulator. Hence it can be inferred that 
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ZIC3 is involved in regulating the pluripotency of ES cells. More molecular evidence is required, 

however, to conclusively determine the regulatory targets of ZIC proteins. Despite the lack of 

confirmation on the in vivo validity of the identified motifs, these binding sequences have been 

used to construct in vitro ZIC transactivation assays, which serves as an important tool in 

assessing the functionality of mutant ZIC proteins and identifying the structural domains 

necessary for normal protein function (Brown et al., 2005, Ahmed et al., 2013).  

 

 

  

Table 1.1: ZIC DNA-binding sequences. All studies identified GC-rich sequences as potential ZIC binding 

sites.  
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1.2.2.2 The ZIC proteins function as cofactors in vitro  

The first evidence that ZIC proteins may act as co-factors came from a candidate approach, 

based on the fact that the ZIC ZFD is highly homologous to that of the GLI proteins (Aruga, 2004). 

GLI proteins are vertebrate orthologues of the Drosophila cubitus interruptus gene, which is the 

transcriptional mediator of the developmentally important Hedgehog signaling pathway 

(Koebernick et al., 2002). The ZIC proteins bind GLI DNA binding sites (GLI-BS), albeit with much 

lower affinities and do not stimulate transcription from GLI-BS (Mizugishi et al., 2001). 

Furthermore ZIC and GLI proteins form heterodimers, with both proteins interacting through 

their ZF3-5 (Koyabu et al., 2001), while no heterodimer formation has been observed between 

the ZIC family members (Brown et al., 2005). This interaction promotes translocation of GLI 

proteins, predominantly localized in the cytoplasm, to the nucleus. Consequently this stimulates 

transcription at GLI-BS above that observed in the presence of only GLI proteins (Mizugishi et 

al., 2001). Although GLI-ZIC heterodimers have never been purified from an in vivo situation, 

Zic3 loss-of-function rescues the digit phenotype in the Gli3 mouse mutant known as extra toes, 

implying some functional relationship between these two molecules (Quinn et al., 2012). 

More recently ZIC proteins have been implicated in the transcriptional response to canonical 

WNT signaling (Pourebrahim et al., 2011, Fujimi et al., 2012). The presence of WNT ligand alters 

transcription of a variety of genes involved in virtually every aspect of embryonic development 

(Clevers, 2006). Upon binding of WNT ligand to its receptor, β-catenin (a cytoplasmic protein) 

translocates to the nucleus where it binds its co-activator TCF to activate expression of target 

genes at TCF DNA-binding sites (Daniels et al., 2005). In the absence of WNT ligand, TCF proteins 

form a repressor complex at TCF DNA binding sites. In vitro and in vivo reporter assays have 

demonstrated that ZIC proteins can repress β-catenin mediated transcription (Pourebrahim et 

al., 2011, Fujimi et al., 2012). Immunoprecipitation revealed that ZIC proteins bind TCF via their 

ZFD to inhibit TCF-dependent transactivation. To date, there is no genetic evidence of this 

interaction during murine development. 



20 

1.2.3 Role during Embryogenesis 

The Zic genes have dynamic expression patterns during embryogenesis and in adults their 

expression has mainly been documented in the central nervous system (Grinberg et al., 2005). 

In the developing embryo all Zic genes are differentially expressed in midline regions, such as 

the dorsal neural tube (forms the brain and spinal cord) and dorsal part of somites (forms 

muscles and vertebrae) (Nagai et al., 1997). In addition, distinct combinations of Zic genes are 

expressed in the limb buds, tail buds and the developing eyes. 

Zic genes are often expressed in overlapping domains providing the possibility of functional 

redundancy. Nonetheless, when mutated individually a range of unique phenotypes are found 

illustrating at least some exclusive functions during mammalian development. For example, loss 

of Zic2 function causes holoprosencephaly, heart defects, hindbrain patterning defects, and 

neural tube defects (Elms et al., 2003b, Warr et al., 2008, Barratt et al., 2014). Mutations in ZIC3 

lead to left-right (L-R) axis malformations and neural tube defects (Gebbia et al., 1997, 

Purandare et al., 2002, Ware et al., 2004) and lack of Zic5 causes craniofacial abnormalities and 

neural tube defects (Furushima et al., 2005). Deletion of Zic1 in mice leads to cerebellar 

malformations and axial skeleton abnormalities (Aruga et al., 1998). Heterozygous deletion of 

ZIC1 and ZIC4 leads to a defect in cerebellar development, known as Dandy-Walker 

malformation (Grinberg et al., 2004). In the case of Zic genes, mutations in Zics1/4, Zic2 and Zic3 

in the mouse give rise to the same defects, as associated with human mutations in these genes. 

Due to practical and ethical constraints the study of developmental processes in humans is 

hindered. Therefore the mouse is used as a model organism for studying human genetic 

disorders and mammalian developmental genetics (Malakoff, 2000).  
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1.3 ZIC3  

1.3.1 Gene Location and Inheritance 

Zic3 is the only mammalian Zic gene family member located on the X-chromosome (Zhu et al., 

2007). In zebrafish there is evidence of a Zic6 remnant, however, in mammals Zic3 is unpaired 

(Ali et al., 2012). X-linkage is associated with a specific pattern of inheritance in man and mouse, 

since in males all X-linked genes have no allelic counterpart; a situation described as 

hemizygosity. Different progeny classes are generated depending upon whether the mutation 

is passaged through the mother or father (Figure 1.5). Both hemizygous males and heterozygous 

females inherit one copy of the mutant allele, however, male carriers generally display 

phenotypes that are more severe than the females due to a combination of factors: (i) all male 

cells have only one copy of the Zic3 gene and hemizygous mutations are functionally equivalent 

to a homozygous autosomal mutation, and (ii) all female cells have only one active Zic3 gene 

and due to the random nature of X-inactivation, females are mosaics of cells that are wild-type 

or mutant. 

 

 

  

Figure 1.5: X-linked Inheritance. (A) Passage through a female carrier (XmX) produces a heterozygous 

female, a hemizygous male and a normal male and female. (B) Passage through a male carrier (XmY) 

produces females that are obligate heterozygotes and males that cannot inherit the mutation. 
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1.3.2 Zic3 expression during murine gastrulation 

Expression of Zic3 mRNA can be detected via whole mount in situ hybridisation (WMISH) in the 

extraembryonic ectoderm of the mouse embryo as early as 5.0 dpc, when the embryo is still a 

symmetrical cylinder of cells (Elms et al., 2004). This expression is maintained until the onset of 

gastrulation. As gastrulation starts (6.5 dpc), expression of Zic3 shifts distally from the 

extraembryonic ectoderm to the epiblast of the embryo. When the primitive streak emerges 

(6.75 dpc), Zic3 expression is confined to the primitive streak and the anterior ectoderm 

(prospective head region). As the node forms at the anterior of the primitive streak (7.0 dpc), 

Zic3 expression is seen in the primitive streak and surrounding ectoderm but not in the node 

(Elms et al., 2004). As gastrulation proceeds (7.5 dpc), this expression remains relatively constant 

with Zic3 transcripts also found in mesodermal wings of the embryonic region, the primitive 

streak and the adjacent ectoderm. When headfolds start to develop (7.75 dpc) Zic3 expression 

departs from the primitive streak and begins in the node. This expression becomes more 

prominent as development proceeds and symmetric expression of Zic3 at the node can be 

viewed until 8.5 dpc (Purandare et al., 2002). At the completion of gastrulation, Zic3 transcripts 

are present at high levels in: 

1. the mesoderm (gives rise to cardiac muscles, skeletal muscles, somites and vertebrae)  

2. parts of the ectoderm (gives rise to the central nervous system, eyes and skin). 

Zic2 and Zic5 are also expressed prior to the onset of gastrulation and are later found in the 

mesodermal and ectodermal germ layers (Furushima et al., 2000, Elms et al., 2004). There is also 

expression overlap during organogenesis where all Zic genes are expressed in the dorsal neural 

tube. Zic1-3 are co-expressed in the dorsomedial somites and the eye, whereas Zics2, Zic3 and 

Zic5 are co-expressed in the limb buds and developing brain, while Zic2 and Zic3 are co-

expressed in the tail bud (Furushima et al., 2005). Despite the overlap in Zic3 expression with 

that of Zic2 and Zic5, analysis of human and mouse mutants shows Zic3 has a unique role in 

establishment of the L-R axis. 
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1.3.3 Regulation of Zic3 Function 

1.3.3.1 Via nucleocytoplasmic shuttling  

As previously described, nuclear entry of transcription factors is facilitated by the presence of 

NLSs, which are recognized by and interact with nuclear import receptors on the nuclear 

membrane (Jans et al., 2000). NLSs usually consist of multiple monopartite or bipartite clusters 

of positively charged basic amino acids, such as arginine (R), lysine (K) and histidine (H) (Hicks et 

al., 1995). No such canonical NLS is found in any ZIC protein sequence; instead two recent 

studies suggest that the ZIC3 ZFD contains an interspersed type NLS, spanning a wide region 

containing other amino acids (Bedard et al., 2007, Hatayama et al., 2008). For example, Bedard 

et al. (2007) reported that 90% of wild-type ZIC3 (in NIH3T3 cells) localized exclusively in the 

nucleus, whereas when putative NLS mutations were made in the ZFD, nuclear localization of 

the mutant proteins was limited to 20-30%. Interspersed NLSs are recognized by the nuclear 

import machinery (importin-α/β complex) near the NPC and the protein allowed entry to the 

nucleus via the NPC (Hicks et al., 1995). In addition, the in vivo significance of failed nuclear 

localization is implied by human genetics. Mutations in the NLS have been identified in human 

patients with ZIC3-related Heterotaxy, implying the inability of ZIC3 to reach the nucleus causes 

L-R axis malformation (Ware et al., 2004). 

 

1.3.3.2 Via dominant-negative interference 

Two experiments raise the possibility that a second post-translational mechanism of ZIC3 

regulation is dominant-negative interference. Firstly, Kitaguchi et al. (2000) injected truncated 

Xenopus zic3 mRNAs (coding for amino acids 1-214 only) in Xenopus blastomeres and allowed 

development to proceed until L-R axis formation. They observed that overexpression of the 

mutant construct attenuated the function of the wild-type protein and caused developmental 

defects (Kitaguchi et al., 2000). Presumably, a naturally occurring short splice variant of Zic3 (as 

found for human ZIC3) (Bedard et al., 2011) could modulate ZIC3 function. Mammalian ZIC3 

mutant proteins, however, cannot act in a dominant-negative manner against wild-type ZIC3 in 
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vivo, due to the X-linked location of the gene (as previously described). It can potentially act as 

a dominant-negative against co-expressed family members such as ZIC2 and ZIC5. This study, 

however, failed to show any interaction of the mutant ZIC3 with its wild-type counterpart, or 

binding of the mutant protein to DNA or essential co-factors. Furthermore Brown et al. (2005) 

investigated the possibility that mutant ZIC2 can interact and interfere with its wild-type 

counterpart. Co-immunoprecipitation and yeast two-hybrid analysis showed that the ZIC 

proteins do not form dimers (Brown et al., 2005). Nevertheless this study demonstrated, via 

reporter gene transactivation assays, that some ZIC2 mutants were capable of antagonizing the 

activity of wild-type ZIC2, in a dose-dependent manner. The mutant proteins evidently retain 

their DNA-binding or protein binding capabilities. Mutational analysis revealed that a functional 

ZFD was required for both functions. 
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1.4 HETEROTAXY 

Despite displaying outward symmetry, most organisms have several internal asymmetries, for 

example humans have both unpaired organs (like the heart or liver) or paired organs in which 

each one of the pairs have asymmetry (like the lungs). These asymmetries derive from an initial 

symmetry breaking event that propagates to one side of the embryo, distinguishing left from 

right (and establishes the embryonic L-R axis). A failure to establish these differences leads to 

laterality disorders, known as Heterotaxy (Figure 1.6), which is a greek term meaning “other 

arrangement” (Ware et al., 2006a). Heterotaxies are therefore characterised by abnormal 

positioning of the thoracic and/or visceral organs and can cause multiple congenital 

malformations (Sutherland et al., 2009). The major cause of morbidity and mortality are complex 

cardiovascular malformations that are sometimes accompanied by defects in the pulmonary, 

gastrointestinal, genitourinary, immune and muscoskeletal systems (Kearns-Jonker, 2006). 

Epidemiological surveys show Heterotaxy underlies 3% of congenital heart defects and has an 

estimated prevalence of 1:10,000 live births (Lin et al., 2000). Although the true prevalence may 

be underestimated due to the wide spectrum of possible phenotypic abnormalities, variable 

expressivity and incomplete penetrance associated with laterality defects. 

Heterotaxy has a complex aetiology, most commonly it is sporadic and both genetic and 

environmental factors contribute to this condition. Associated environmental factors include 

maternal diabetes, maternal cocaine use and monozygotic twinning (Kuehl et al., 2002). 

Mutational analysis in affected children and families has identified associated heterozygous 

defects in a variety of autosomal genes (NODAL, CFC-1, ACVRIIB, FOXH1, LEFTYA) as well as the 

X-linked ZIC3 gene (Carmi et al., 1992, Gebbia et al., 1997). Defining the precise role these genes 

play in L-R axis formation via animal models has advanced the understanding of this disease 

immensely, although there are some complications due to species specific differences in gene 

function  (Kearns-Jonker, 2006). Additionally, in animal models, more than 100 genes have been 

shown to be required for the formation of the L-R axis and it is likely that many of these play 

some role in human Heterotaxy (Sutherland et al., 2009). 
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ZIC3 was the first gene implicated in human Heterotaxy (Gebbia et al., 1997) and remains the 

gene most frequently associated with this condition. Mutations within ZIC3 have been found to 

contribute to 5% of all familial cases of Heterotaxy and 1% to sporadic cases of Heterotaxy (Ware 

et al., 2004). To date twenty-three different mutations in ZIC3 have been reported: twelve 

missense, ten nonsense, one frameshift (Gebbia et al., 1997, Megarbane et al., 2000, Ware et 

al., 2004, D'Alessandro et al., 2011, Cowan et al., 2014). Males are hemizygous for the mutation 

and manifest situs ambiguus (Heterotaxy) with varying degrees of severity. However some male 

carriers (from a family with a history of ZIC3-related congenital defects) have been reported to 

be phenotypically normal (Megarbane et al., 2000, D'Alessandro et al., 2011), indicating that 

other proteins might be able to compensate for ZIC3 function. Females that are heterozygous 

for the mutation are usually asymptomatic. Nevertheless in one family some females carrying 

the mutation have situs inversus (Gebbia et al., 1997). The different phenotypes in females can 

be due to skewed X-inactivation where one X-chromosome carrying normal ZIC3 is inactivated 

while the other X-chromosome carrying the mutated allele remains active (Chhin et al., 2007). 

This pattern of inheritance exhibited by ZIC3 and the fluctuating phenotypes observed makes 

Figure 1.6: Situs arrangements. Situs solitus shows the normal arrangement of visceral organs, with the 

heart, stomach and spleen on the left side, and the liver on the right. Heterotaxy shows the heart and 

visceral organs oriented independently of each other. Situs inversus represents a mirror image reversal of 

all organ asymmetry. This figure was obtained from R. Arkell. 
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diagnosis difficult. Specifically it is difficult to pinpoint the particular tissues and the exact stage 

of development where ZIC3 function is required using human clinical data. 

 

1.4.1 Mouse models of Zic3 dysfunction  

Mice present an excellent system for analysing the function of genes required for mammalian 

development, providing function of the gene of interest is well conserved between man and 

mouse. There is ample evidence that this is the case for ZIC3/Zic3, since multiple strains of mice 

are available with Zic3 loss-of-function mutations (Table 1.2) and in each case mutant embryos 

display similar anatomic abnormalities as observed in human patients of Heterotaxy (Purandare 

et al., 2002).  

 

 

 

Much is known about the molecular circuitry that establishes the murine L-R embryonic axis 

(Figure 1.7) and analysis of embryos null for Zic3 shows they have aberrant expression of Nodal 

and Pitx2, at 8.5 dpc. It was initially proposed that Zic3 may control Nodal expression during L-R 

patterning (Ware et al., 2006b). Recent studies, however, using conditional inactivation of Zic3 

indicate it acts earlier in development than initially proposed (Jiang et al., 2013, Sutherland et 

al., 2013). ZIC3 function in the primitive streak of the gastrula is needed to prevent Heterotaxy.   

Table 1.2: Murine alleles for Zic3 (downloaded from MGI: http://www.informatics.jax.org).  
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Zic3 is thought to be instrumental in other developmental process as it is required to maintain 

pluripotency in ESCs (Lim et al., 2007) and is expressed in an array of developing embryonic 

tissues, such as those that form the central nervous system, muscles and aspects of the visual 

system (Herman et al., 2002). Precisely how Zic3 acts to prevent Heterotaxy and its relevance in 

other developmental processes is yet to be discovered. 

Figure 1.7: Schematic representation of L-R axis formation in the mouse. 1: the node is induced to form 

at mid-gastrulation (7.0 dpc) and in the next 24 hours develops into a shallow, crescent shaped 

depression on the ventral side of the embryo. The cells within the depression are termed pit cells, 

whereas those that form the raised surface that rings the pit are called crown cells (Norris, 2012). 2: a 

monocilium, extending into the extracellular space, forms on the apical surface of each pit and crown 

cell; these become posteriorly polarised over time. Signalling molecules (such as Nodal) are expressed in 

the crown cells. 3: the cilia of the pit cells rotate in a clockwise direction directing first a disorganised, 

then laminar, leftward flow of extracellular fluid within the node. It is posited that this leftward nodal-

flow is sensed by crown cell cilia, prompting a Ca2+ flux in the left crown cells which modifies gene 

expression (Norris, 2012). By the end of this 24 hour period (at 8.0 dpc) the first known asymmetries in 

gene expression are detected within node crown cells (Dand5, and soon thereafter Nodal, become 

asymmetrically expressed in the node crown). WNT ligand is also asymmetrically expressed and canonical 

signalling then amplifies the initial Dand5 asymmetry (Nakamura et al., 2012). 4: the asymmetric signal(s) 

are propagated to the left lateral plate mesoderm (LPM) and prevented from spreading to the right LPM 

by the recently formed midline barrier. 5: Nodal signalling in the left LPM controls its own expression, 

and that of other molecules that ultimately direct organ position and other asymmetries (Norris, 2012). 

A: anterior, P: posterior, D: dorsal, V: ventral, R: right, L: left. Figure obtained from R. Arkell. 
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1.5 SCOPE OF THESIS 

Given the criticality of ZIC proteins for embryogenesis, it is important to understand how ZIC 

proteins function at the molecular level. This includes not only identifying target DNA-binding 

sites or protein partners, but also characterisation of structural domains required for particular 

functions. This thesis aims to: 

1 determine the importance of the ZFD and C-terminus for ZIC3 function, using a novel 

murine allele 

2 design a new ZIC-specific transactivation assay 

3 identify regions within the ZIC3 protein involved in transactivation 
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CHAPTER 2 
MATERIALS AND METHODS 
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2.1 GENOTYPING OF KATUN MICE 

2.1.1 Genomic DNA Extraction 

The katun mouse colony was maintained at the Australian Phenomics Facility at The Australian 

National University according to Australian Standards for Animal Care under protocols approved 

by The Australian National University Animal Ethics and Experimentation Committee.  

Mice were genotyped (sections 2.1.2 and 2.1.4) by PCR screening of genomic DNA extracted 

from ear biopsy tissue. Ear notches were collected in 50 μL of lysis solution [50 mM 

Tris(hydroxymethyl)aminomethane (Tris)-HCl (pH 8.5), 1 mM Ethylenediaminetetraacetic acid 

(EDTA), and 5% Tween 20] containing 2 μL of Proteinase K (10 μg/μL; Sigma Aldrich, Cat. No. 

P2308) and incubated at 55°C for 60 mins, followed by 95°C for 10 mins to inactivate Proteinase 

K. Tissue debris was pelleted by centrifuging at 2,000 g for 5 mins and each sample was diluted 

1:10 in Analar H2O. Embryos were genotyped using a fragment of extra embryonic 

tissue/ectoplacental cone (7.5 dpc) or yolk sac (8.5 dpc and 9.5 dpc). Tissue was collected in 20 

μL (7.5 dpc), 25 μL (8.5 dpc) or 35 μL (9.5 dpc) of lysis buffer (50 mM Tris-HCl, pH 8.5, 1 mM 

EDTA, 0.5% Tween 20) containing 1 μL of Proteinase K (10 μg/μL), followed by incubation at 55°C 

for 25 mins and 95°C for 5 mins to inactivate Proteinase K.  

 

2.1.2 Genotyping PCR and primers 

PCR reactions for optimising genotyping assay involved two buffers: ThermoPrime ReddyMix 

PCR Mastermix (Thermo Scientific; Cat. No. AB-0575/DC/LD/B) and ImmoMix™ (Bioline; Cat. No. 

BIO-25020). All reactions were carried out in a 15 μL volume in the presence of 0.67 μM of each 

oligonucleotide. The ThermoPrime buffer led to final reaction conditions of 75 mM Tris-HCL (pH 

8.8 at 25°C), 20 mM Ammonium Sulphate (NH4)2SO4, 0.01% (v/v) Tween 20, 1.5 mM Magnesium 

Chloride (MgCl2) and also contained an inert gel loading dye. ImmoMix™  led to final reaction 

conditions of 67 mM Tris-HCL (pH 8.3 at 25°C), 16 mM (NH4)2SO4, 0.01% (v/v) Tween 20 and 1.5 

mM MgCl2. PCRs to be analyzed via gel electrophoresis were performed in 96-Well Clear, Flat 
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Top PCR plates (Axygen; Cat. No. PCR-96-FLT-C) and the plate was sealed with an Easy Pierce 

Heat Sealing Film (Axygen; Cat. No. MF-111). All PCRs were performed in an Eppendorf 

Mastercycler® using two Touchdown PCR programs: TD60 and TD65 (Table 2.1). Information on 

primers used for all reactions can be found in Table 2.2. 

 

  

 

 

  

Table 2.1: Thermal profiles of PCR programs used for optimization of 

genotyping assay. 

 

Table 2.2: Primers used for genotyping assays. F: forward 

primer; R: reverse primer. 
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2.1.3 Agarose Gel Electrophoresis 

After PCR amplification or digestion of DNA via restriction enzymes, the size of the resulting 

bands was visualized using agarose gel electrophoresis. Size of the fragment determined 

percentage of agarose in solution. Agarose gels were made by dissolving UltraPure™ Agarose 

(Life Technologies; Cat. No. 16500-500) in TBE buffer (0.1 M Tris-HCl, 0.09 M Boric acid and 0.001 

M EDTA; Amresco). The mixture was heated in a microwave to dissolve the agarose, followed by 

addition of RedSafe™ Nucleic Acid Staining Solution (1:20,000 dilution; Intron Biotechnology, 

Cat. No. 21141). Dissolved agarose solution was poured into a cassette and allowed to set for 60 

mins.  

DNA was prepared for electrophoresis by adding 1 µL of 5x loading dye [20% glycerol (Merck), 

19.2% 0.5 M Na2EDTA (Sigma-Aldrich) and 0.001% bromophenol blue (Sigma-Aldrich)] to every 

5 µL of sample. Samples were loaded in separate wells on the agarose gel, with 0.6 µg of 1 Kb 

Plus DNA Ladder (Invitrogen™; Cat. No. 10787-026) added on either side of the sample group. 

Gels were electrophoresed at 5–6 Vcm-1 for 25-40 mins in 1x TBE and viewed under UV light 

using a Gel Doc XR System (Bio-Rad).  
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2.1.4 Genotyping assays 

Genotyping of animals and embryos from the katun mouse colony was done using the following 

techniques: 

2.1.4.1 Allelic Discrimination 

PCR for allelic discrimination was done using TaqMan® Universal PCR Master Mix (Life 

Technologies; Cat. No. 4304437). All reactions were carried out in a final volume of 10 μL with 

~30 ng of digested ear notch DNA in the presence of 0.9 μM of primers Ark241-Ark242 (Table 

2.2). Additionally 0.25 μM of allele-specific probes (Applied Biosystems®) were used to identify 

the wild-type allele (VIC-CAT CAA GCA GGA GCT G-MGBNFQ) and katun allele (FAM-CAT CAA 

GCA GTA GCT G-MGBNFQ) (Figure 2.1). Reactions were set up in 96-well Half-Skirted PCR 

Microplates (Axygen®; Cat. No. PCR-96-LP-AB-C) covered with Axygen Microplate Sealing Film 

(Fisher Scientific; Cat. No. UC500) and performed using the StepOnePlus™ Real-Time PCR System 

(Applied Biosystems®). The StepOne Software (version 2.2.2; Applied Biosystems®) was used to 

run the assay using the following conditions: an initial pre-PCR read at 60°C for 30 secs to record 

background fluorescence, followed by 95°C for 10 mins to denature the template and a cycling 

stage of 95°C for 15 secs and of 60°C for 1 min for 50 cycles. A post-PCR read was performed at 

60°C for 30 secs to collect data after completion of the PCR. Data was analysed using the same 

software that records the pre- and post-PCR reads and calculates normalized dye fluorescence 

(∆Rn) from the wild-type and mutant alleles as a function of cycle number. Based on this data 

the software called the sample as homozygous for either wild-type or mutant allele, or 

heterozygous with both alleles. 
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Figure 2.1: Allelic discrimination using fluorogenic probes. Wild-type and katun alleles were 

distinguished using non-extendable oligonucleotide fluorogenic probes (Livak, 1999). The VIC® (4,7,2'-

trichloro-7'-phenyl-6-carboxyfluorescein) probe complemented the wild-type allele, while the FAM™ (6-

carboxyfluorescein) probe complemented the katun allele. The probes differed by only one nucleotide 

(at the site of katun mutation), and at the 5' end were labelled with the reporter (VIC® or FAM™) dye and 

at the 3' end with the quencher (MGBNFQ: minor groove binding non-fluorescent quencher). The 

proximity of the reporter dye to the quencher reduced fluorescence via the reporter. During PCR as the 

forward primer extended the target specific probe was degraded by the 5'-3' exonuclease activity of the 

Taq DNA polymerase (Arya et al., 2005), which released the reporter dye allowing it to fluoresce. Both 

probes were included in the same well for each PCR reaction thus fluorescence was only observed when 

target allele for the probe was present (McGuigan et al., 2002). As PCR cycles increased, the fluorescence 

intensity increased that was proportional to the accumulation of the PCR product. The fluorescence was 

measured using a Real-Time PCR machine. This figure was adapted from Applied Biosystems’ Allelic 

Discrimination Getting Started Guide. 
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2.1.4.2 High Resolution Melt Analysis 

PCRs were carried out using ImmoMix™ (Bioline; Cat. No. BIO-25020) and included the LC 

Green® Plus+ Melting Dye (Idaho Technology Inc.; Cat. No. BCHM-ASY-0005). All reactions were 

carried out in a final volume of 15 μL with ~30 ng of digested ear notch DNA in the presence of 

0.67 μM of primers (Table 2.2). Reactions were set up in Hard-Shell® 96-well PCR Plates (BioRad; 

Cat. No. HSP-9665) covered with Axygen Microplate Sealing Film (Fisher Scientific; Cat. No. 

UC500). To avoid evaporation during the HRM process each reaction was covered with ~10 μL 

of mineral oil prior to PCR. On completion of PCR reaction, the 96-well plate containing PCR 

products was placed directly into a Light Scanner HR 96 (Idaho Technologies Inc.) and samples 

melted from 60 to 95°C at a rate of 0.1 secs-1. The LC Green® dye specifically binds to double-

stranded DNA and emits fluorescence that is captured by the Light Scanner HR 96 instrument. 

As temperature increases double-stranded DNA is converted to single-stranded, which 

dissociates LC Green from DNA resulting in a decrease in fluorescence (Figure 2.2). Since melting 

of DNA is dependent on sequence and length, each amplicon has a unique melt profile. The data 

were analysed with LightScanner software (Idaho Technologies Inc.). 
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2.1.5 Reverse-Transcriptase (RT)-PCR  

Embryos to be used for RT-PCR were dissected, staged (by R. Arkell) and individually frozen in 

96-well plates (Axygen; Cat. No. PCR-96-FLT-C) on dry ice and stored at -80°C. Upon geno- and 

sex-typing of the corresponding embryo tissue, the collected embryos were pooled in three 

genotype classes (Zic3+/+, Zic3Ka/X and Zic3Ka/Y). At 7.5 dpc each pool consisted of 10 embryos, at 

8.5 dpc of 4 embryos and at 9.5 dpc of 2 embryos. RNA was extracted from each sample (by R. 

Ali) and DNase treated using the RNAqueous®-4PCR kit (Ambion™; Cat. No. AM1914). 

Quantification of RNA amount was done by Nanodrop spectrophotometry. Approximately 500 

ng of RNA template was included in a random primed cDNA first strand synthesis reaction using 

the SuperScript® VILO™ cDNA synthesis kit (Invitrogen™; Cat. No. 11754-050). A RT negative 

control synthesis reaction was performed in parallel from each RNA sample. To confirm absence 

of contaminating genomic DNA in the original RNA samples, amplification from each cDNA 

sample was performed using primers Ark364 (5`- TCG GAC AAG CCC TAT ATC TG -3`; exon 2 of 

Zic3) and Ark311 (5`- GTT TGC AGA AGC TAT AGC GG -3`; exon 3 of Zic3) using ThermoPrime 

ReddyMix PCR Mastermix (Thermo Scientific; Cat. No. AB-0575/DC/LD/KCL/B) [10 mM Tris-HCl 

(pH 8.3 at 25°C), 50 mM Potassium Chloride, 1.5 mM MgCl2] and the TD60 PCR thermal cycling 

conditions (Table 2.1) with the following modification: extension during cycles was carried out 

at 72°C for 45 secs. PCR products were analysed by agarose gel electrophoresis (section 2.1.3). 

Amplification from genomic DNA produced a 1006 bp product while that from cDNA resulted in 

a 162 bp product. For allele specific PCR each cDNA (0.5 μL) was used in the HRMA assay (section 

2.1.4.2). 
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2.2 PLASMIDS 

2.2.1 Purchased plasmids 

pENTR-3C: pENTR™3C vector (Invitrogen™; Cat. No. 11817-012) used to create ‘Entry’ clones for 

Gateway® Recombination Cloning Technology (Life Technologies). Contains a multiple cloning 

site (MCS) that surrounds the negative selection gene ccdB (Figure 2.3A). For cloning of inserts, 

the vector was linearized with EcoRI [New England BioLabs® (NEB)] and dephosphorylated with 

Antarctic Phosphatase (section 2.3.5). The MCS is flanked by attL sites required for Gateway® LR 

recombination cloning (section 2.3.7.2). A Kanamycin resistance gene is included for selection in 

E. coli. 

V5-DEST: pcDNA3.1/nV5-DEST (Invitrogen™; Cat. No. 12290-012) ‘Destination’ vector used for 

Gateway® Recombination Cloning. Contains a human cytomegalovirus immediate-early (CMV) 

promoter for high-level expression of CDSs. An N-terminal V5-epitope tag is present, followed 

by attR sites that surround the ccdB gene (Figure 2.3B) required for Gateway® LR recombination 

cloning (section 2.3.7.2). An Ampicillin resistance gene is included for selection in E. coli. 

 

 

Figure 2.3: Plasmids maps of vectors used for Gateway recombination cloning. (A) Entry 

vector, pENTR-3C and (B) Destination vector, V5-DEST. attL1, attL2, attR1, attR2: 

recombination sites; ccdB: negative selection gene; pUC ori: origin of replication; KanR: 

Kanamycin resistance gene; AmpR: Ampicillin resistance gene; CMV: human cytomegalovirus 

promoter; V5: epitope tag. 
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EGFP-C1: pEGFP-C1 (Clontech; Cat. No. 6084-1), used to create EGFP-tagged expression clones. 

Contains the CMV promoter upstream of an Enhanced Green Fluorescent Protein (EGFP; 

modified GFP for brighter fluorescence and higher expression in mammalian cells) CDS, followed 

by a MCS. A Kanamycin resistance gene is included for selection in E. coli. 

B:luc2: pGL4.20[luc2/Puro] reporter vector (Promega; Cat No. E675A), used for making reporter 

constructs. Inserts (genomic promoter or synthetic enhancers) were cloned into the vector using 

restriction enzymes sites in the MCS. An Ampicillin resistance gene is included for selection in E. 

coli. 

 

 

 

2.2.2 Wild-type expression constructs 

pENTR-ZIC3-wt: full length human ZIC3 CDS was recovered from the HA-ZIC3-wt expression 

plasmid, a kind gift from Dr Stephanie Ware (Ware et al., 2004). PCR amplification (section 

2.3.8.1) with primers Ark1152_F (5`- ATC CGG TAC Cga att cAC CCT CTC TCA CTT CGG -3`) and 

Ark1153_R (5`- GTG CGG CCG Cga att cCC GCT CTA GAA CTA GTG G -3`) generated ZIC3 amplicons 

that were subsequently cloned into pENTR-3C. Each primer includes a 15 bp region of homology 

(underlined) with the pENTR-3C vector and an additional base pair that regenerated the EcoRI 

site (lower case) for cloning with the In-Fusion™ Dry-Down PCR Cloning kit (Clontech; Cat. No. 

639609) (section 2.3.7.1). 

Figure 2.4: Plasmid map for B:luc2. Enzymes used for cloning 

inserts are shown. luc2: synthetic firefly (Photinus pyralis) 

luciferase CDS optimized for expression in mammalian cells; 

SV40 polyA: signals termination of transcription by RNA 

polymerase II and adds a polyA tail at the 3`-end of the RNA 

transcript; AmpR: Ampicillin resistance gene; synthetic polyA:  

transcriptional pause site for reducing the effects of spurious 

transcription on luciferase expression. 
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V5-ZIC3-wt: mammalian expression construct containing V5-tagged human ZIC3 wild-type CDS, 

downstream of a CMV promoter. Plasmid was constructed with the Gateway® LR recombination 

cloning system (section 2.3.7.2) using pENTR-ZIC3-wt and V5-DEST. 

EGFP-ZIC3-wt: full length human ZIC3 CDS was recovered from HA-ZIC3-wt via PCR (section 

2.3.8.1) using primers Ark1208_F (5`- GAG CTC AAG CTT Cga att cTA CCC TCT CTC ACT TCG G -3’) 

and Ark1209_R (5`- TAC CGT CGA CTG CAg aat tcC CGC TCT AGA ACT AGT G -3`). Each primer 

includes a 15 bp region of homology (underlined) with the EGFP-C1 vector and the EcoRI site 

(lower case) for cloning with the In-Fusion™ Dry-Down PCR Cloning kit (Clontech; Cat. No. 

639609) (section 2.3.7.1). 

pENTR-ZIC2-wt: full length human ZIC2 CDS was amplified from pcDNA-ZIC2, a generous gift 

from Prof. M. Maral Mouradian (Yang et al., 2000). PCR amplification (section 2.3.8.1) with 

primers Ark1150_F (5`- ATC CGG TAC Cga att cAG TGT GGT GGA ATT CCT GGC C -3`) and 

Ark1168_R (5`- GTG CGG CCG Cga att cGA GGG TTA GGG ATA GGC TTA C -3`) generated ZIC2 

amplicons that were subsequently cloned into pENTR-3C. Each primer includes a 15 bp region 

of homology (underlined) with the pENTR-3C vector and an additional base pair that 

regenerated the EcoRI site (lower case) for cloning with the In-Fusion™ Dry-Down PCR Cloning 

kit (Clontech; Cat. No. 639609) (section 2.3.7.1). 

V5-ZIC2-wt: mammalian expression construct containing V5-tagged human ZIC2 wild-type CDS, 

downstream of a CMV promoter. Plasmid was constructed with the Gateway® LR recombination 

cloning system (section 2.3.7.2) using pENTR-ZIC2-wt and V5-DEST. 

pENTR-ZIC5-wt: full length human ZIC5 CDS was excised from pCMV6-XL5-ZIC5 (Origene) via 

EcoRI digestion and ligated into pENTR-3C using T4 DNA ligase (NEB; Cat. No. M0202L). 

Constructed by M. Zavortink. 

V5-ZIC5-wt: mammalian expression construct containing V5-tagged human ZIC5 wild-type CDS, 

downstream of a CMV promoter. Plasmid was constructed (by R. Ali) with the Gateway® LR 

recombination cloning system (section 2.3.7.2) using pENTR-ZIC5-wt and V5-DEST. 
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pENTR-Cdx2: full length mouse Cdx2 CDS was amplified from pcDNA-Cdx2, a generous gift from 

Prof. Stefan Broer (RSB, ANU). PCR amplification with primers Ark1420_F (5`- Tgg atc cAT GGT 

GAG GTC TGC TCT G -3`) and Ark1168 (5`- Act cga gAG CTG TTC GTG GGT AGG A-3`) generated 

Cdx2 amplicons containing restriction sites (lower case letters in primer sequence): BamHI on 

5`-end and XhoI on 3`-end. Amplicons and pENTR-1A ‘Entry’ vector were subjected to restriction 

enzyme digested, followed by ligation. This plasmid was made by K. Barratt. 

V5-Cdx2: mammalian expression construct containing V5-tagged mouse Cdx2 wild-type CDS, 

downstream of a CMV promoter. Plasmid was constructed (by K. Barratt) with the Gateway® LR 

recombination cloning system (section 2.3.7.2) using pENTR-Cdx2 and V5-DEST. 

 

2.2.3 Mutant ZIC3 constructs 

2.2.3.1 Pathogenic variants 

EGFP-ZIC3-katun: full length human ZIC3-katun CDS was recovered from HA-ZIC3-katun (made 

by M. Zavortink) via PCR (section 2.3.8.1) using primers Ark1208_F-Ark1209_R, and the plasmid 

generated using the same method as for EGFP-ZIC3-wt.  

PTC-containing mutants (pENTR-ZIC3-katun, pENTR-ZIC3-E155X, pENTR-ZIC3-C268X, pENTR-

ZIC3-Q292X, pENTR-ZIC3-1507insTT, and pENTR-ZIC3-K408X): all contained a nonsense 

mutation, except pENTR-ZIC3-1507insTT that had a frame-shift (mutation occurred after ZF2 

that installed a stop codon 252 bases downstream in ZF5). Construct names show the particular 

amino acid (E155, C268, Q292 and K408) mutated to a stop codon (X) with numbers indicating 

length of the translated protein product. All mutations were installed using site-directed 

mutagenesis (section 2.3.3.1). pENTR-ZIC3-E155X was made by K. Diamand.    

ZF1 mutants (pENTR-ZIC3-C253S, pENTR-ZIC3-W255G, and pENTR-ZIC3-H286R): each mutant 

contained a missense mutation at a conserved residue in ZF1 (C253, W255, H286), and were 

made by K. Diamand using site-directed mutagenesis (section 2.3.3.1). 
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2.2.3.2 Synthetic variants 

ZF mutants (pENTR-ZIC3-C268S, pENTR-ZIC3-C302S, pENTR-ZIC3-C335S, pENTR-ZIC3-C365S, 

and pENTR-ZIC3-C393S): each construct contained a missense mutation that converted the 

second cysteine (C) of ZF1 (C268), ZF2 (C302), ZF3 (C335), ZF4 (C365) or ZF5 (C393) to serine (S). 

Mutations were installed using site-directed mutagenesis (section 2.3.3.1). All constructs, except 

pENTR-ZIC3-C365S, were made by K. Diamand. 

Deletion mutants (pENTR-ZIC3-ZOCdel, pENTR-ZIC3-ZFNCdel, pENTR-ZIC3-Ndel): mutants were 

missing either the ZOC domain (ZIC3-ZOCdel), the ZFNC domain (ZIC3-ZFNCdel) or the whole N-

terminus region preceding the ZFD (ZIC3-Ndel). Deletions were made by overlap extension PCR 

(section 2.3.3.2). 

All ‘Entry’ clones (pENTR-) were transferred to the V5-DEST expression vector via a Gateway® LR 

Clonase reaction (Life Technologies) (section 2.3.7.2) to generate V5-ZIC3-katun, V5-ZIC3-

E155X, V5-ZIC3-C268X, V5-ZIC3-Q292X, V5-ZIC3-1507insTT, V5-ZIC3-K408X, V5-ZIC3-C253S, V5-

ZIC3-W255G, V5-ZIC3-H286R, V5-ZIC3-C268S, V5-ZIC3-C302S, V5-ZIC3-C335S, V5-ZIC3-C365S, 

V5-ZIC3-C393S, V5-ZIC3-ZOCdel, V5-ZIC3-ZFNC and V5-ZIC3-ZFD. 

 

2.2.4 Reporter constructs 

2.2.4.1 Genomic promoters 

B:luc+:APOE: pXP2-APOE (-189/+1) was a gift from Prof. Francisco Zafra (Salero et al., 2001). The 

vector contains -189 to +1 bases of the Apolipoprotein E (APOE) gene promoter, upstream of the 

Photinus pyralis luciferase gene. The empty pXP2 vector is ‘promoterless’ hence the expression 

of luciferase protein is driven by stimulation of the APOE promoter by binding of a transcription 

factor.   

B:luc2:APOE and B:luc2:APOE:β-globin: the APOE promoter was PCR amplified (section 2.3.8.1) 

from B:luc+:APOE using primers Ark1281_F (5`- ATA TTg gta ccA AGC TCA GAT CCA AGC TTG GGA 

CTG TGG G- 3`) and Ark1282_R (5`- GGA ATG aga tct TCA CAT CTC GAG AGG ACT CAA GGA TCC 

C- 3`), to generate APOE amplicons containing restriction sites (lower case letters in primer 
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sequence): KpnI on 5`-end and BglII on 3`-end. The B:luc2 and B:luc2:β-globin (section 2.2.4.2) 

vectors and APOE amplicons were subjected to restriction enzyme digests (sections 2.3.4 and 

2.3.8.2), followed by ligation (section 2.3.8.3). 

B:luc2:Nanog and B:luc2:Nanog:β-globin: the Nanog promoter was PCR amplified (section 

2.3.8.1) from mouse genomic DNA using primers Ark1543_F (5`- TTg gta ccC TGG GTC ACC TTA 

CAG C -3`) and Ark1544R (5`- CGa gat ctT ATT CTC CCA GGC ACC C -3`), to generate Nanog 

amplicons containing restriction sites (lower case letters in primer sequence): KpnI on 5`-end 

and BglII on 3`-end. The B:luc2 and B:luc2:β-globin (section 2.2.4.2) vectors and Nanog 

amplicons were subjected to restriction enzyme digests (sections 2.3.4 and 2.3.8.2), followed by 

ligation (section 2.3.8.3). 

 

2.2.4.2 Minimal promoters  

B:luc2:β-globin, B:luc2:c-fos and B:luc2:TK: to preserve the MCS of B:luc2, the β-globin, c-fos 

and TK minimal promoters were cloned into the B:luc2 vector using a single restriction enzyme 

digest. The B:luc2 vector was linearized using HindIII (sections 2.3.4 and 2.3.8.2) and treated 

with Antarctic phosphatase (section 2.3.5). The minimal promoters were amplified using primers 

(Table 2.3) that added HindIII restriction sites on either side of the amplicons. Following 

digestion with HindIII, amplicons were ligated (section 2.3.8.3) into the linearized and 

dephosphorylated B:luc2 vector. Correct orientation of promoter in the ligated plasmids was 

determined by DNA sequencing (section 2.3.3.4). 
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2.2.4.3 Synthetic enhancers  

The ZIC DNA-binding sites identified by Salero et al. (2001) and Lim et al. (2010) (Figure 2.5A) 

were used to design six synthetic enhancer motifs (Figure 2.5B). 

 

 

 

Table 2.3: Primers used for amplifying minimal promoters. Lower case letters show recognition site 

of HindIII enzyme. F: forward primer; R: reverse primer. The TOPflash:cfos plasmid was a gift from 

Dr. Sabine Tejpar (Department of Oncology, Katholieke Universiteit Leuven, Belgium). The 

TOPflash:TK plasmid was purchased from Upstate Biotechnology.  

Figure 2.5: ZIC-specific synthetic enhancer motifs. (A) ZIC DNA-binding sites used 

for making synthetic enhancer motifs, which contained (B) six copies a particular 

binding site (ZIC-BS) separated by a 5-nucleotide spacer (5`- TAG AA -3`). The 

green and purple boxes denote restriction enzyme sites used for cloning.  
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B:luc2:APOE-M1, B:luc2:APOE-M2, and B:luc2:APOE-M3: motifs were ordered as cloned inserts 

in the pUC57 vector (Ampicillin resistant) (GenScript). Plasmids were transformed into E. coli by 

electroporation (section 2.3.1) and isolated (section 2.3.2). APOE-M1 and APOE-M3 were 

released from the pUC57 vector using KpnI and BglII restriction enzymes, while APOE-M2 was 

released using KpnI and HindIII (section 2.3.4). Inserts were separated from digested vector by 

agarose gel electrophoresis (section 2.1.3). The digested inserts were excised from the gel and 

extracted using the NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel; Cat. No. 

740609.50), followed by ligation (section 2.3.8.3) into B:luc2 (previously digested with the 

appropriate combination of restriction enzymes). 

B:luc2:Z3M1, B:luc2:Z3M2, and B:luc2:Z3M8: motifs were ordered as forward and reverse 

oligomers (Gene Link™), with restriction enzyme sites on either side of the synthetic enhancer 

motif: KpnI on 5`-end and HindIII on 3`-end. The complimentary oligonucleotides were mixed in 

a 1:1 molar ratio and diluted to a concentration of 1 pmol/µL in oligo annealing buffer [10 mM 

Tris (pH 8.0), 0.1 mM EDTA, and 50 mM Sodium Chloride (NaCl)]. Annealing was carried out in 

Eppendorf Mastercycler® using the following program: 95°C for 5 mins, followed by 1°C/min 

decrease in temperature for 70 mins. Annealed oligomers were precipitated (section 2.3.6), 

followed by digestion with KpnI and HindIII (section 2.3.4) and ligated (section 2.3.8.3) into 

B:luc2 (previously digested with KpnI and HindIII). 

B:luc2:Z3M2:β-globin, B:luc2:Z3M2:c-fos, B:luc2:Z3M2:TK and B:luc2:Z3M8:β-globin: the 

B:luc2:Z3M2 and B:luc2:Z3M8 vectors were digested using HindIII (sections 2.3.4 and 2.3.8.2) 

and treated with Antarctic phosphatase (section 2.3.5). The minimal promoters (previously 

amplified; section 2.2.4.2) were ligated (section 2.3.8.3) into (linearized and dephosphorylated) 

B:luc2:Z3M2 and B:luc2:Z3M8 vectors. Correct orientation of promoter in the ligated plasmids 

was determined by DNA sequencing (section 2.3.3.4). 



49 
 

2.3 MOLECULAR CLONING 

2.3.1 Bacterial transformation 

DNA was transformed into bacteria via heat-shock treatment or electroporation. Plasmids 

generated from In-Fusion™ reactions and site-directed mutagenesis were transformed using 

heat-shock (according to manufacturer’s instructions). All other transformations were done by 

electroporation using DH5α electro-competent Escherichia coli (E. coli) cells. 

For electroporation ~20 ng of plasmid DNA, or 1 µL of a precipitated ligation reaction or LR 

reaction were added to ice-cold E. coli cells. The mixture was transferred to an ice-cold cuvette 

and shocked at 2.5 kV using a BioRad E. coli Pulser (BioRad). Immediately after pulsing 500 µL of 

Luria-Bertani (LB) Broth media (Bacto; Cat. No. 244620) were added to revive the bacteria and 

solution was incubated for 1 hr on a rotating platform at 37°C. The bacterial solution was then 

plated on to LB Agar (Bacto; Cat. No. 244520) containing 0.1 mg/mL of the appropriate antibiotic 

(Ampicillin: Sigma-Aldrich; Cat. No. A9518-5G, or Kanamycin: Sigma-Aldrich; Cat. No. 60615-5G) 

and incubated for 16 hours at 37°C.  

 

2.3.2 Plasmid isolation 

Depending on the amount of DNA required, plasmid DNA was isolated using two methods.  

1. To screen for mutagenized or cloned plasmids, single colonies from LB Agar plates were 

picked and each incubated in 4 mL of LB Broth (containing 0.1 mg/mL of the appropriate 

antibiotic) at 37°C for 16 hours on a rotating platform. 3 mL of this overnight culture 

were then used to isolate plasmid DNA using High Pure Plasmid Isolation kit (Roche; Cat. 

No. 11754785001) (average yield: 7-10 µg). 

2. To obtain a higher quantity and/or purity of plasmid DNA, single colonies from LB Agar 

plates were picked and each incubated in 2 mL of LB Broth (containing 0.1 mg/mL of the 

appropriate antibiotic) at 37°C for 6-8 hours on a rotating platform. This culture was 

added to 100 mL of LB Broth (containing 0.1 mg/mL of the appropriate antibiotic) and 
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incubated at 37°C for 16 hours on a rotating platform. Plasmid DNA was isolated using 

NucleoBond® Xtra Midi (Macherey-Nagel; Cat. No. 740410.50). 

In each case DNA was resuspended in Analar H2O, instead of the supplied buffer. 

 

2.3.3 PCR based mutagenesis and screening 

2.3.3.1 Site-directed mutagenesis 

Point mutations or insertions in ZIC3 CDS were installed using the QuikChange Lightning Site-

Directed Mutagenesis kit (Agilent Technologies; Cat. No. 210518) by following manufacturer’s 

instructions. Mutagenesis PCRs were performed in a 50 µL volume using 100 ng of pENTR-ZIC3-

wt and 0.25 µM of each primer (Table 2.4). Cycling parameters are shown in Table 2.5. Upon 

completion of PCR, samples were treated with 2 µL of DpnI enzyme (supplied with kit) by 

incubation at 37°C for 1 hour. 2 µL of the reaction mix was then transferred into 45 µL XL10-

Gold® ultracompetent bacteria cells (supplied with kit) and transformed via heat shock. 
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Table 2.4: Primers used for site-directed mutagenesis. Primers were designed based on manufacturer 

guidelines of the QuikChange Lightning Site-Directed Mutagenesis kit. Red letters represent the mutated 

base(s). F: forward primer; R: reverse primer. 

Table 2.5: Thermal cycling parameters for site-

directed mutagenesis. 
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2.3.3.2 Overlap extension PCR to create deletion mutants 

The most critical aspect of using overlap extension PCR, for deleting regions within a CDS, is 

primer design (Table 2.6). Primers are constructed to amplify the entire plasmid sequence, 

except the region to be deleted (Pérez-Pinera et al., 2006). The forward primer binds at the C-

terminal side of the target region, while the reverse primer binds at the N-terminal side (Figure 

2.6). Primers bind template via their 3`-ends, while their 5`-ends contain complimentary 

overhangs. Thus the 5`-end of mutant strand from each primer contains a region of homology 

(at least 15-16 bp) that allows annealing into a double-stranded DNA fragment.  

 

 

 

Mutagenesis PCRs were performed with the PfuUltra II Hotstart PCR Master Mix (Agilent 

Technologies; Cat. No. 600850) in a 50 µL volume using 10 ng of pENTR-ZIC3-wt, 0.2 µM of each 

primer and the cycling conditions shown in Table 2.7. When reaction was complete DNA was 

precipitated (section 2.3.6) followed by digestion with DpnI enzyme (NEB; Cat. No. R0176) for 2 

hours. DNA was then precipitated (section 2.3.6) and transformed into E. coli (section 2.3.1). 

Bacterial colonies were screened for the correct plasmid via colony PCR (section 2.3.3.3) and/or 

DNA sequencing (section 2.3.3.4). 

Table 2.6: Primer design for creation of deletion mutants using overlap extension PCR. 

Nucleotides in black show sequence that binds to template. Nucleotides in purple show 

overhangs and the underlined sequence is the region of complementarity between a primer 

pair. The green nucleotides were included in sequence to install the start codon (ATG), since 

the ZIC3-Ndel mutant lacks the first methionine due to deletion of the whole N-terminus. F: 

forward primer; R: reverse primer. 
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Figure 2.6: Creating deletion mutants by overlap extension PCR. 1: primers (pF: forward primer; pR: 

reverse primer) are designed to have their 5`-ends facing each other and 3`-ends oriented such that 

the DNA polymerase extends the entire plasmid, except the region to be deleted. PCR is performed 

with a proofreading DNA polymerase. 2: PCR products are precipitated (to isolate DNA form reaction 

mixture) and 3: treated with DpnI to digest the template methylated plasmid (Lacks et al., 1975). 4: 

Following another round of DNA precipitation, bacteria are transformed with the newly synthesized 

mutant plasmid. Screening of colonies can be done via colony PCR and/or DNA sequencing. 
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2.3.3.3 Bacterial colony screening 

To identify bacterial colonies containing the desired plasmids, colony PCRs were performed. 

Single colonies were picked from agar plates using a sterile pipette tip and resuspended in 20 µL 

of Analar H2O. PCR reactions were performed using the ThermoPrime ReddyMix PCR Mastermix 

(Thermo Scientific; Cat. No. AB-0575/DC/LD/B), 0.67 µM of primers (Table 2.8) and 5 µL of 

resuspended bacteria (as template) in a 20 µL reaction volume. Cycling parameters are shown 

in Table 2.8B.  

 

Table 2.7: Thermal cycling parameters for overlap 

extension PCR. 

Table 2.8: Bacterial colony PCR parameters. (A) Primers used for screening of colonies 

containing the desired plasmids from section 2.2.4 (B:luc2 reporters) or section 2.2.3.2 

(ZIC3 deletion mutants). TA: annealing temperature. (B) Cycling parameters for colony 

PCR. Annealing temperature varied depending on the primers used. Extension time (30 

secs per 0.5 kb) varied depending on the length of DNA to be amplified.  
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2.3.3.4 DNA sequencing 

150-200 ng of plasmid DNA or 3-20 ng of PCR product was sequenced using 3 pmol primer and 

1 µL of BigDye® Terminating mixture (ThermoFisher Scientific) in Sequencing Buffer (70 mM Tris-

HCl and 1.75 mM MgCl2). The reaction was run in an Eppendorf Mastercycler® using the cycling 

parameters shown in Table 2.9.  

 

 

 

Upon completion of sequencing PCR, the amplified DNA was precipitated to remove excess dye 

and nucleotides. To each well containing amplified DNA, 2 µL of 125 mM EDTA (Ajax Chemicals) 

at pH 8.0, 3 µL of 3 M Sodium Acetate (Sigma-Aldrich; Cat. No. S2889) at pH 5.2 and 50 µL of 

100% ethanol were added. After a gentle vortex the reactions were incubated for 15 mins at 

room temperature in a dark environment and DNA was pelleted by centrifugation at 3,220 g for 

30 mins at 4°C. To remove supernatant, the PCR plate was flipped (face-down) and spun at 100 

g for 1 min at 4°C. When residual ethanol had evaporated, 20 µL of HiDi Formamide (Applied 

Biosystems™; Cat. No. 4311320) were added to each reaction. Sequencing samples were 

submitted to the RSB Sequencing Facility for processing using their ABI 3730 sequencer (Applied 

Biosystems). The resulting sequences were analysed using the Geneious software (Biomatters; 

version 5.5.9). 

  

Table 2.9: Thermal cycling parameters for DNA 

sequencing PCR. 
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2.3.4 Restriction Enzyme Digests 

DNA was digested with restriction enzymes for preparation of inserts and vectors for cloning or 

analysis of plasmids post-ligation. For plasmids 1 µg of was digested using 5 U of appropriate 

restriction enzyme (Table 2.10), while for PCR products 1 µg was digested using 1 U of enzyme. 

Reactions were performed with the appropriate NEBuffer (10X stock), Bovine Serum Albumin 

(BSA; 10X stock) and enough Analar H2O such that the final volume was 10-20 times greater than 

the volume of restriction enzyme added. Reactions were incubated at 37°C for 1-3 hours.   

 

 

 

2.3.5 Antarctic phosphatase treatment 

For ligations involving a single restriction enzyme digest, vectors were dephosphorylated using 

Antarctic phosphatase (NEB; Cat. No. M0289), to prevent re-ligation. Upon completion of 

digestion, the enzyme was heat-inactivated (by incubating at 65°C for 20 mins) and 2 U of 

Antarctic phosphatase were added for every 1 µg of digested vector. Appropriate volume of the 

Antarctic phosphatase buffer (NEB; Cat. No. B0289) was added and the reaction incubated at 

37°C for 30 mins, followed by heat-inactivation of the phosphatase 65°C for 30 mins.  

  

Table 2.10: Restriction enzymes used to digest DNA. All enzymes 

were purchased from New England BioLabs® (NEB). DpnI enzyme 

digests methylate DNA. m: methyl (CH3) group; DD: double digest.  
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2.3.6 Ethanol Precipitation 

Plasmid DNA and/or inserts prepared for ligation (via PCR and/or restriction enzyme digest) 

were purified via Ethanol precipitation. To the reaction tube 0.25x of the reaction volume of 10 

M Ammonium Acetate (NH4OAc) was added, followed by 10x the NH4OAc volume of 100% 

Ethanol at -20°C. Tubes were vortexed vigorously for 5 secs and centrifuged at 16,000 g for 20 

mins. Supernatant was removed and 180 µL of 70% Ethanol at -20°C were added followed by 

another spin at 16,000 g for 2 mins. Supernatant was removed and tubes were left on the bench 

to air-dry. Once no Ethanol could be seen in the tubes, 20 µL of Analar H2O were added to 

resuspend the precipitated DNA. 

To purify ligated plasmids from ligation reactions Ethanol precipitation was used with the 

following changes: in a 20 µL ligation reaction, 5 µL of yeast tRNA (1 µg/µL), 12.5 µL of 7.5 M 

NH4OAc and 70 µL of 100% Ethanol were added at -20°C. All other steps were followed except 

DNA was dissolved in 5 µL of Analar H2O. 

 

2.3.7 Recombination based cloning 

2.3.7.1 In-Fusion™ Dry-Down PCR Cloning 

In-Fusion™ cloning allows directional cloning of DNA fragments into any vector, using a 

proprietary enzyme that recombines DNA fragments containing (at least) 15 bp of homology 

with the site of insertion in the linearized cloning vector. ZIC CDS were cloned into pENTR-3C 

and/or EGFP-C1 vectors using the In-Fusion™ Dry-Down PCR Cloning kit, by following 

manufacturer’s instructions. Prior to the In-Fusion™ reaction, inserts (ZIC CDS) and vectors 

(pENTR-3C or EGFP-C1) were digested with EcoRI and dephosphorylated using Antarctic 

phosphatase. The digested fragments (200 ng of insert; 100 ng of vector)  were added to the In-

Fusion™ Dry-Down and the reaction volume brought up to 10 µL. Reaction mix was incubated 

first at 37°C for 15 mins, and then at 50°C for 15 mins before transferring on ice. The reaction 

was then transformed into bacterial cells via heat-shock. 
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2.3.7.2 Gateway® Recombination Cloning Technology 

To obtain V5-epitope tagged expression plasmids the Gateway® Recombination Cloning 

Technology (Life Technologies) was used to transfer CDS from the ‘Entry’ (pENTR) vector to the 

‘Destination’ (V5-DEST) expression vector, by following manufacturer’s instructions. This 

method is based on the site-specific recombination properties of bacteriophage lambda (Landy, 

1989) and relies on the presence of recombination sites (attL: pENTR and attR: V5-DEST) on 

vectors, and enzyme (e.g. LR Clonase) that catalyses the recombination reaction (Figure 2.7). 

 

 

Figure 2.7: Gateway® LR Recombination Cloning. DNA sequences are exchanged between vectors using 

site-specific recombination. The ‘Entry’ vector contains the CDS to be transferred flanked by attL1 and 

attL2 sites and a Kanamycin resistance (KanR) CDS. The ‘Destination’ vector contains the ccdB gene 

flanked by attR1 and attR2 sites and an Ampicillin resistance (AmpR) CDS.  The vectors are mixed with the 

LR Clonase Enzyme mix and incubated at 25°C for 60 mins. The LR Clonase enzyme catalyses the 

recombination between the attL and attR sites of the vectors, allowing transfer of CDS into the 

‘Destination’ vector to create the desired Expression clone. DNA from the reaction is precipitated (section 

2.3.6), transformed into DH5α bacteria and plated onto agar plates containing Ampicillin. Bacteria 

carrying the ‘Entry’ vector or by-product will be non-viable due to lack of AmpR. Bacteria transformed 

with the original ‘Destination’ plasmid will be non-viable due to lethality of the ccdB gene for the DH5α 

strain. Thus the only surviving bacteria on the plate will be carrying the desired Expression clone. 



59 
 

2.3.8 Ligation based cloning 

2.3.8.1 Insert preparation  

Inserts were prepared via PCR amplification. Five PCR reactions were performed to amplify the 

region of interest from template. Each PCR was performed in 10 µL volume using 10 ng of 

template, 0.25 µM of each primer and the cycling condition shown in Table 2.11. 

  

 

 

Reactions were pooled and DNA precipitated using Ethanol precipitation (section 2.3.6). 

Amplified DNA was dissolved in Analar H2O and separated from template using agarose gel 

electrophoresis (section 2.1.3). The correct sized fragment was excised from agarose gel and 

DNA extracted using the NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel; Cat. No. 

740609.50). The gel-extracted PCR product was subjected to a restriction digest (1 µg of PCR 

product was cut using 1 U of appropriate restriction enzyme, by incubating at 37°C for 60 mins), 

followed by agarose gel electrophoresis to obtain digested and purified insert fragments.  

  

Table 2.11: Thermal cycling parameters for insert 

amplification. Annealing temperature varied depending 

on the primers used (listed in section 2.2) 
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2.3.8.2 Vector preparation  

10 µg of vector DNA was digested using 50 U of appropriate restriction enzyme by incubating at 

37°C for 3 hours, followed by Antarctic phosphatase treatment (when required). DNA was 

purified using Ethanol precipitation (section 2.3.6) and digested vector was separated from 

undigested vector using agarose gel electrophoresis (section 2.1.3) by running at 5 Vcm-1 for 10 

mins, followed by 0.5 Vcm-1 for 16 hours. Digested vector was excised from agarose gel and DNA 

extracted using the NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel; Cat. No. 

740609.50).  

 

2.3.8.3 Ligation reaction 

All ligation reactions were performed using T4 DNA Ligase (NEB; Cat. No. M0202L) in a 20 µL 

volume. Each ligation reaction was carried out using 100 U of Ligase and 50 ng of digested vector. 

Amount of insert was calculated using the following formula: 

 

Amount of insert (ng)     =      size of insert (bp)     x     50 ng (amount of vector) 
           size of vector (bp) 

 

Ligations were performed using insert:vector ratios of 3:1 and 10:1. When all components were 

added reactions were incubated at 22°C for 20 mins. Ligated plasmid DNA was precipitated by 

Ethanol precipitation (section 2.3.6) and transformed into DH5α E. coli by electroporation 

(section 2.3.1).  
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2.4 CELL CULTURE 

2.4.1 Cell lines and culture conditions 

Mammalian cell lines African green monkey kidney fibroblast-like cell line (COS-7), Mouse 

embryonic fibroblast cells (NIH3T3), Human embryonic kidney cells (HEK293T), Human primary 

glioblastoma (U87) and Mouse embryonic mesenchymal cell line (C3H-10T1/2) were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich; Cat. No. D6429). Chinese Hamster 

Ovarian cell line (CHO) was cultured in Ham’s F-12 Nutrient Mix (Life Technologies; Cat. No. 

11765-054). All culture media were supplemented with 10% (v/v) fetal bovine serum (Gibco™; 

Cat. No. 10100-147), 2 mM L-Glutamine (Gibco™; Cat. No. 25030-081) and 0.1 mM non-essential 

amino acid solution (Gibco™; Cat. No. 11140-50), and cells were grown in a humidified incubator 

at 37°C with 5% CO2.  

For routine passaging, plating medium was discarded and cells were washed once with 1x 

Phosphate Buffered Saline (PBS) solution (140 mM NaCl, 3 mM KCl, 10 mM phosphate buffer pH 

= 7.4; Amresco). The wash solution was discarded and cells were dissociated from the growth 

surface by adding 0.5 g/L trypsin (Gibco™; Cat. No. 15400-054) and incubating at 37°C for 5 mins. 

Supplemented DMEM was added to inactivate the trypsin and the entire cell/DMEM solution 

was repeatedly pipetted to form a single cell suspension. The desired amount of cells were then 

transferred to new tissue-culture treated plasticware containing fresh supplemented DMEM. 

All experiments reported in Chapter 3, 4 and 5 were performed using HEK293T cells (see 

Appendix 1) 

 

2.4.2 Transfection 

Cells were transfected at 60-90% confluency using Lipofectamine™ 2000 (Invitrogen™; Cat. No. 

11668-019) as per manufacturer’s guidelines. Depending on the type of experiment, the size of 

tissue-culture treated plasticware used varied, thus amount of DNA and Lipofectamine™ 2000 

had to be scaled (Table 2.12). 
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Most transfections were performed in a 12-well plate. Lipofectamine™ 2000 and DNA were 

individually diluted in DMEM (no supplements) and incubated at room temperature for 5 mins. 

The dilutions were mixed and incubated at room temperature for 20 mins. The Lipofectamine™ 

2000 and DNA mixture was then added in a drop-wise manner to each well. The plate was gently 

rocked to mix and returned to the incubator.  

 

2.4.3 Immunofluorescence (IF)  

2.4.3.1 Staining and microscopy 

Cells were grown in 35 mm tissue-culture dishes (Corning; Cat. No. CLS430165) that contained 

sterile 13 mm coverslips (ProSciTech; Cat. No. G402) and transfected with relevant expression 

constructs. 24 hours post-transfection, culture media was removed and replaced with 1x PBS. 

Coverslips were removed and placed in a humidifying chamber. Cells were fixed with 4% 

paraformaldehyde/PBS solution (ProSciTech; Cat. No. C004) at room temperature for 30 mins. 

Coverslips were washed thrice with 1x PBS and cells were then permeabilized with 0.25% 

Triton™ X-100/PBS (Sigma-Aldrich; Cat. No. T9284). Coverslips were washed thrice with 1x PBS 

and then incubated with 5% skim milk/PBS solution (IF blocking buffer) for 16 hours at 4°C. After 

blocking, cells were exposed to primary antibodies [mouse α-V5 (Anti-Xpress™; Cat. No. R960-

Table 2.12: Transfection amounts based on culture plate. The total cell yield varied 

depending the dish/plate used for transfections, thus Lipofectamine™ 2000 and DNA 

amounts were adjusted accordingly. Initially separate dilutions were made for 

Lipofectamine™ 2000 and DNA e.g. in a 12-well plate, 4 µL of Lipofectamine™ 2000 

were diluted in 100 µL of DMEM (no supplements) and 1.6 µg of DNA were diluted in 

another 100 µL DMEM (no supplements).  
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25) at a 1:200 dilution; or rabbit α-GFP (Cell Signalling; Cat. No. #2555) at a 1:300 dilution, and 

rabbit α-LaminB1 (Abcam; Cat. No. ab16048) at a 1:1000 dilution] diluted in IF blocking buffer, 

and incubated at room temperature for 1 hour. Coverslips were then washed six times with IF 

blocking buffer and incubated with the appropriate fluorescent dye (Alexa Fluor® 488 or Alexa 

Fluor® 594) conjugated secondary antibody (α-mouse and α-rabbit at a 1:500 dilution; Molecular 

Probes, Invitrogen) diluted in IF blocking buffer, and incubated at room temperature for 1 hour. 

Transfected proteins (V5- or EGFP-tagged) and LaminB1 were detected using different 

fluorophores. Coverslips were washed six times with 1x PBS, before mounting on to clear white 

glass slides (ProSciTech; Cat. No. G300FB) with anti-fade mounting agent [2.4 mM of n-propyl 

gallate (NPG, Sigma-Aldrich; Cat. No. P3130) in a 1:1 solution of glycerol and 1x PBS]. Edges of 

coverslips were sealed with nail polish. Cells were viewed using the LSM 5 Pascal (ZEISS) confocal 

microscope. 

 

2.4.3.2 Quantification of subcellular localization  

Subcellular distribution of transfected ZIC proteins in 20-100 transfected cells was scored blind 

per experiment. For each cell, the nuclear and cytoplasmic compartments were traced (Figure 

2.8) using the Intuos® 2 graphics tablet (Wacom) and the average fluorescence intensity from 

each compartment [nuclear (NF) and cytoplasmic (CF)] measured using ImageJ (NIH software). 

Background intensity (measured in three different parts of each image) was subtracted from NF 

and CF to obtain corrected fluorescence intensities. These corrected NF and CF values were added 

to determine total fluorescence intensity (TF) from each cell, before calculating the % nuclear 

(NF/ TF) and % cytoplasmic (NF/ TF) fluorescence. Percentages from all scored cells were averaged 

to determine the localization pattern of the protein in the experiment. Three independent 

experiments were conducted and the % localization in each cellular compartment averaged 

across the three experiments. For statistical analysis, GenStat (VSN International) was used to 

perform a non-orthogonal factorial analysis of variance (ANOVA) of the data. Images were 

assembled in Adobe Illustrator CS5. 
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2.4.4 Cell Lysis and Subcellular Fractionation 

Cells were grown in 35 mm tissue-culture dishes or flat bottom cell-culture treated 12-well 

plates (Costar®, Cat. No. CLS3513), transfected with appropriate combination of plasmids and 

harvested for analysis. Proteins were extracted from cells and fractionated using the NE-PER™ 

Extraction kit (Thermo Scientific™; Cat. No. 78833) with some modifications to the 

manufacturer’s protocol. 24 hours post-transfection cells were harvested in DMEM and 

centrifuged at 500 g for 5 mins. Supernatant was removed and (following volumes are for a 12- 

well plate) 50 µL of ice-cold CERI buffer with protease inhibitors (cOmplete™, EDTA-free 

Protease Inhibitor, Roche; Cat. No. 11873580001) added to the cell pellet, followed by vigorous 

vortexing for 15 secs and incubation on ice for 10 mins. 2.75 µL of CERII buffer were added, 

followed by vigorous vortexing for 5 secs and incubation on ice for 1 min. The cell solution was 

then centrifuged at 20,000 g for 15 mins at 4°C to pellet the nuclei and separate the cytoplasmic 

extract (supernatant). When spin was complete, supernatant was transferred to a clean pre-

Figure 2.8: Quantifying subcellular localization. HEK293T cells were transfected with V5-ZIC3-wt and 

immunostained with (A) α-V5 (red) to detect the over-expressed ZIC protein, and (B) α-LaminB1 (green) 

to mark the nuclear envelope. (C) Merged image shows subcellular localization of the protein. (D) 

Exposure of the image shown in B was increased (using Adobe Photoshop CS5) to highlight the 

cytoplasmic boundary. (E, F) ImageJ software was used to encircle the perimeter and measure the area 

occupied by the (E) nuclear and (F) cytoplasmic compartments. Measurement of fluorescence intensity 

from each compartment was made by switching to the red channel (A). 
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chilled tube and ice-cold NERI buffer with protease inhibitors added to the pellet. The pellet was 

vortexed vigorously for 15 secs and incubated on ice for 40 mins, with 15 secs of vortexing every 

10 mins. The tubes were then centrifuged at 20,000 g for 25 mins at 4°C to separate the nuclear 

proteins (supernatant) from debris (pellet). When spin was complete, supernatant was 

transferred to a clean pre-chilled tube. Volumes of reagents were scaled up for cells harvested 

from 35 mm tissue-culture dish. 

 

2.4.5 Sodium Dodecyl Sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE)  

Proteins in cell lysates were separated based on molecular weight (MW) on acrylamide gels. A 

10% gel was used for all experiments (Table 2.13). Constituents of the running gel were mixed 

and cast on to the Mini-PROTEAN® casting apparatus (Bio-Rad), overlaid with hydrated butanol 

(Sigma-Aldrich; Cat No. B7906) and left to polymerize at room temperature for 60 mins. Butanol 

was then removed and top of the running gel washed with MilliQ water. The gel was then 

overlaid with a 3.75% stacking gel (Table 2.13) and a comb was inserted to create wells for 

loading samples. This was left to polymerize for another 60 mins. 
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Samples for SDS-PAGE were prepared by adding Dithiothreitol (20x stock) (Sigma-Aldrich; Cat. 

No. D9163-5G) and NuPAGE® LDS Sample Buffer (4x stock) (Life Technologies; Cat. No. NP0008) 

to give a final concentration of 50 mM and 1x, respectively. Samples were heated for 5 mins at 

90°C to denature proteins, followed by a brief spin to collect everything at bottom of the tube.  

The polymerized gels were put in a Mini-PROTEAN® Tetra Cell apparatus (Bio-Rad), which was 

filled with 1x SDS-PAGE Running Buffer (192 mM Glycine, 24.9 mM Tris base and 3.47 mM SDS). 

30 µL of each sample were loaded into each well on the gel. On either side of the sample group, 

10 µL of PageRuler™ Prestained Protein Ladder (Life Technologies; Cat. No. 26617) was added, 

which showed separation of proteins during electrophoresis and allowed to determine 

approximate size of proteins after Western blotting. When sample loading was complete, 100 V 

were applied to the gels until sufficient separation between relevant size markers on protein 

ladder was observed (1.75-2.5 hours). Proteins on gel were then transferred to a membrane via 

wet transfer. 

Table 2.13: SDS-PAGE gel recipes. Reagents were added to make gels in the 

order shown. Samples were loaded on to the stacking gel and proteins 

separated on the running gel. Volumes are for one gel of 1.5 mm thickness. 
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2.4.6 Wet Transfer 

When SDS-PAGE was complete, gel was removed from the running apparatus and the stacking 

portion of gel discarded. The gel was then placed on to a polyvinylidene difluoride (PVDF) 

membrane (previously activated via immersion in methanol) and together these were 

sandwiched between four pieces (two on either side) of blotting paper (3 mm chromatography 

paper Whatman®; Cat. No. 3030-917) and two sponges, within a gel holder cassette. The 

assembly was completed while the gel and all other components were submerged in 1x Towbin’s 

Buffer (190 mM Glycine, 24 mM Tris base and 20% methanol). The gel holder cassette was then 

transferred to a Mini Trans-Blot Module (Bio-Rad) within a gel tank filled with 1x Towbin’s Buffer. 

Proteins from the gel were transferred to the membrane by applying 15 V for 16 – 18 hours, 

while the tank was placed in ice to minimize heating. 

 

2.4.7 Western Blotting (WB) 

When transfer was complete, the PVDF membrane was removed from cassette and blocked with 

WB blocking buffer [5% skim milk/PBS/0.2% Tween 20 (Sigma-Aldrich; Cat. No. P7949) solution, 

except for the GFP antibody PBS was replaced by TBS (Tris-Buffered Saline: 50 mM Tris, 150 mM 

NaCl, pH 7.5)] at room temperature for 1 hour on a rotating platform. Membrane was then 

immunoblotted with primary antibodies (Table 2.14) for 2 hours on a rolling platform. 

Membrane was then washed four times using WB blocking buffer with each wash lasting 10 

mins, followed by  exposure to the appropriate Horse Radish Peroxidase (HRP) conjugated 

secondary antibody (Table 2.14) for 1 hour. Membrane was then washed four times using 0.2% 

Tween 20/PBS buffer, with each wash lasting 10 mins. 
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To detect protein bands, membranes were incubated with SuperSignal™ West Pico 

Chemiluminscent Substrate (~9.26 µL per cm2 of membrane: Thermo Scientific™; Cat. No. 

34079) for 5 mins in a dark environment. The membrane was then exposed to an X-ray film 

(Amersham Hyperfilm ECL, GE Healthcare Life Sciences; Cat. No. 28-9068-37). Times of exposure 

varied from 10 secs to overnight, depending on visibility of desired bands. Exposed films were 

developed by immersion in Multigrade Paper Developer Solution (Ilford) for ~2 mins, washed in 

water to removed excess solution and fixed by immersion in Rapid Fixer Solution (Ilford). Film 

was washed again with water and left to air-dry. Developed films were scanned and assembled 

in Adobe Photoshop CS5.  

 

2.4.8 Luciferase reporter assays 

Cells grown on flat bottom cell culture treated 12-well plates (Costar®; Cat. No. CLS3513) were 

transfected with the relevant combination of constructs. For ZIC transactivation assays a total 

of 1.6 µg of DNA was added per well: 0.6 µg of the reporter construct and 1.0 µg of the 

expression construct (V5-ZIC) or the empty expression vector (V5-DEST). For ZIC competition 

assays a total of 1.5 µg of DNA were added per well: 0.5 µg of the B:luc+:Apoe reporter construct, 

Table 2.14: Antibodies used for Western blotting. All antibody dilutions 

were carried out in 3 mL of WB blocking buffer. 
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0.5 µg of the wild-type ZIC expression construct and 0.5 µg of the PTC containing ZIC3 mutants 

or the V5-DEST vector when required to equalize the amount of transfected DNA. 6 hours post-

transfection, cells were dissociated from the growth surface by replacing the culture medium 

with 0.5 g/L trypsin and incubating at 37°C for 5 mins. The trypsin was inactivated by adding 

DMEM (with supplements) and cells plated in triplicate on to a solid white tissue-culture treated 

96-well plate (Corning®, Cat. no. CLS3917) at ~50% confluency and placed in the incubator. To 

avoid the potential problem of position bias by the luminometer, sample order on the plate was 

randomized for each independent experimental repeat. The remaining cells in the 12-well plate 

were returned to the incubator and harvested for WB analysis at the time of luminescence 

measurement. 18 hours after re-plating (or 24 hours post-transfection), cells in each well were 

lysed by addition of 100 µL of a 1:1 dilution of ONE-Glo™ Luciferase Assay System (Promega; 

Cat. No. E6110) with DMEM and luminescence measured using the GloMax®-96 Microplate 

Luminometer (Promega) or the TECAN Infinite M1000 Pro.  

Luciferase activity was normalized to V5-DEST (to determine relative luciferase activity: RLA) and 

mean RLA and standard deviation (SD) calculated from three internal repeats (using Microsoft 

Excel). At least three independent experiments were performed for each assay (unless stated 

otherwise) with luminescence values from one representative experiment shown. For statistical 

analysis, GenStat was used to perform an analysis of variance (ANOVA) on raw luminescence 

data from the three independent repeats and calculate Standard Error of the Mean (SEM). SEM 

values for RLA were calculated by dividing the SEM of raw luminescence values by the mean 

luminescence value of V5-DEST from three experimental repeats. A Post Hoc test using the 

Bonferroni correction method (α = 0.01) was performed to identify treatment groups that were 

significantly different. When the difference between means of two treatment groups was larger 

than the computed Least Significant Difference (LSD), the treatments were considered 

significantly different. The software assigned a unique letter (a, b, c, d, e…) to the treatment 

group that was significantly different from all other treatments. When the difference between 
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means of two treatment groups was less than the LSD, they were assigned the same letter 

indicating no significant difference. 

 

2.4.9 ChIP-qPCR 

HEK293T cells, grown in 100 mm TC dishes (Sigma; CLS430167) were transfected with 8 μg of 

the B:luc2:Z3M2:β-globin reporter construct and 16 μg of V5-ZIC3-wt or V5-ZIC3-C365S. 6 h post-

transfection cells were dissociated from the growth surface using 0.5 g/L trypsin and plated in 

150 mm TC dishes (Iwaki; 3030-150). 24 hr post-transfection media was removed and protein-

DNA complexes in cells cross-linked with 1.25% formaldehyde (w/v) (Sigma; F8775) at room 

temperature for 10 min. Cross-linking was terminated by the addition of 125 mM Glycine 

(Amresco; Cat. No. 0167) and cells washed thrice with ice-cold 1x PBS. Cells were scraped in ice-

cold 1x PBS containing 0.02% Tween20 (Sigma; P7949) and pelleted via centrifugation. The pellet 

was resuspended in 1.8 mL of sonication buffer [50 mM Hepes (pH 7.9), 140 mM NaCl, 1mM 

EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 0.1% SDS and protease inhibitors (AEBSF and 

PMSF)]. Cells were sonicated to obtain an average chromatin length of 500 bp using the 

Bioruptor® (Diagenode) at 4°C. To separate cellular debris sonicated samples were spun down 

at 18,000 g for 5 min at 4°C. 

Chromatin was pre-cleared with a 1:1 mixture of protein A (Novex™; 10001D) and protein G 

(Novex™; 10003D) Dynabeads® for 2 h at 4°C on a rotating platform. Pre-cleared chromatin was 

incubated with 7 μg of α-V5 antibody (Abcam; ab9116) in sonication buffer (with protease 

inhibitors) overnight at 4°C on a rotating platform. Following day, beads were washed at 4°C 

once with ice-cold sonication buffer (with protease inhibitors) and thrice with sonication buffer 

containing 500 mM NaCl (with protease inhibitors), followed by one wash with ice-cold Lithium 

Chloride (LiCl) buffer (250 mM LiCl, 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5% NP-40 and 0.5% 

Na-deoxycholate) and two washes with TE (10 mM Tris-HCl (pH 8.0), 1 mM EDTA). Beads were 

resuspended in 91.5 μL of TE and treated with 0.5 μg of RNAse A (Thermo Scientific™; Cat. No. 

EN0531) at 37°C for 30 min. Cross-links were reversed by adding 5 μL of 10% SDS and 50 μg of 



71 
 

Proteinase K (Thermo Scientific™; Cat. No. EO0491) and incubation at 65°C for 5 h. DNA was 

extracted using the AMPure purification system (according to manufacturer’s protocol). 

qPCR was performed using 1 μL of a 1:10 dilution of input (10%) or ChIP-enriched DNA, 

ImmoMix™ (Bioline; Cat. No. BIO-25020), 0.5 μM Ark1566_F and Ark1567_R primers (Table 2.8), 

and SYBR® Green dye in a 10 μL volume. PCR reactions were performed in triplicates, and run 

using the StepOne Real-time PCR machine (Applied Biosystems™) with the following PCR cycling 

conditions: 95°C for 5 mins, followed by 40 cycles of 95°C for 15 secs, 55°C for 20 secs and 72°C 

for 30 secs and a melt curve stage that included 95°C for 15 secs, 55°C for 1 min and 0.3°C 

increase in temperature every 15 secs until it reached 95°C. Data was analysed using the 

StepOne Software (v2.3). The amount of target-specific DNA precipitated was determined 

relative to the amount of non-immunoprecipitated (input) DNA, using the percent input method 

as outlined on: https://www.thermofisher.com/au/en/home/life-science/epigenetics-

noncoding-rna-research/chromatin-remodeling/chromatin-immunoprecipitation-chip/chip-

analysis.html. 
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CHAPTER 3 

THE KATUN MOUSE STRAIN IS A  
NULL ALLELE OF ZIC3 
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3.1 INTRODUCTION 

3.1.1 Zic3 mutant mice model Heterotaxy 

Mutations of the ZIC3 transcription factor are associated with a congenital defect, called X-linked 

Heterotaxy (Gebbia et al., 1997, Sutherland et al., 2009). Practical and ethical constraints 

(imposed by the in utero development of the mammalian embryo) on the study of human 

embryogenesis has led to the mouse becoming the mammalian model of choice for studying 

congenital defects (Bedell et al., 1997). Many examples exist wherein a mutation of the 

orthologous mouse gene recapitulates the human phenotype. This is partly due to significant 

sequence conservation between the human and mouse orthologues. For example, the human 

ZIC3 gene is 1404 bp long with a protein product (ZIC3) of 467 amino acids, while the mouse Zic3 

gene is 1401 bp long with a protein product of 466 amino acids (Figure 3.1). The amino acid 

sequences between the human and mouse proteins are 98% identical, with 99.4% homology 

between their ZFDs. 

 

  

Figure 3.1: Amino acid sequence alignment of human and mouse ZIC3 proteins. Green and brown boxes 

show the evolutionary conserved ZOC and ZFNC domains, respectively. Blue boxes highlight the five C2H2 

zinc fingers (ZF). Asterick (*) = identical residues. Colon (:) = functionally conserved residues. Period (.) = 

weak conservation of residue. Hs = Homo sapiens; Mm = Mus musculus. 
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Mutation of murine Zic3 also leads to heterotaxy, as revealed by the study of several deletion 

alleles (Carrel et al., 2000, Purandare et al., 2002). Deletions show gene function but do not 

reveal fine scale structural information about protein function. A mouse mutant called katun 

(Ka) has been identified (Bogani et al., 2004), which displays phenotypes similar to those seen 

in Zic3 null mice and human patients of heterotaxy. Additionally the katun phenotype displays 

incomplete penetrance and variable expressivity, as is the case for several ZIC3 mutants in 

humans (Megarbane et al., 2000). 

 

3.1.2 The katun mutation 

The kinked tail phenotype (akin to a roller coaster) of carriers formed the basis of naming the 

mutation katun. Subsequent analysis revealed the mutation occurred in Zic3 as a result of a 

spontaneous point mutation prior to ZF1 in Zic3 (Figure 3.2A-D), which changes the amino acid 

glutamic acid (E) to a stop codon (X). Due to installation of a premature termination codon (PTC), 

the katun transcript, if translated, would produce a truncated protein containing only the first 

249 amino acids (Figure 3.2E). The mutation has been maintained via a mouse colony and the 

phenotype and mutation have been found to co-exist in more than 1000 meioses (Ahmed et al., 

2013). Additionally other strains of mice (Mus Castaneus, Mus Spretus, C57BL/6J, 129Sv and 

101/H) were analyzed and none were found to contain the variant allele, eliminating the 

possibility that the katun mutation is a naturally occurring polymorphism. Phenotypic 

comparisons between Zic3 null mice (Ware et al., 2006c) and katun mutant mice (Ahmed et al., 

2013), by analyzing expression of markers for endoderm and mesoderm formation, suggests 

that the katun allele could behave as a null allele (Figure 3.2F-N). There is, however, no 

molecular evidence to support this observation. Hence the katun mouse could serve as a useful 

tool to study the etiology of ZIC3-associated heterotaxy, since it will allow determining the 

molecular causes of the disorder in the presence of a Zic3 variant (as opposed to its complete 

absence).   
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In order to use the katun mutant for this purpose, the type of allele produced as a result of the 

katun mutation must first be characterized. The katun transcript, in theory, should be degraded 

via the NMD machinery since the PTC is located more than 50-55 nucleotides upstream of an 

exon-exon junction (Figure 3.2A) (Nagy et al., 1998). Furthermore the protein product of the 

katun allele contains only the N-terminal half (that contains some evolutionary conserved 

sequences) of ZIC3 and lacks the DNA-binding ZFD (that also contains nuclear localization 

signals) and the remainder of the C-terminus (Figure 3.2E). 
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Figure 3.2: The katun mutation. (A) Mutation occurs at nucleotide 745 of Zic3 CDS (NM_009575.2) 

converting guanine (G) to thymine (T), changing the amino acid Glutamic acid (GAG) to a stop codon (TAG). 

Numbers show lengths of the three exons in Zic3 CDS. (B-D) Sequence traces from exon 1 of murine Zic3 

gene of (B) Wild-type (Zic3+/+), (C) heterozygous female (Zic3Ka/X), and (D) hemizygous male (Zic3Ka/Y), with 

arrows indicating the altered base. (E) Protein structure of ZIC3-wt and ZIC3-katun. The katun protein 

lacks the entire ZFD and C-terminus. (F-N) Stage-matched Zic3Ka/Y (F-H) and Zic3 null (I-N) embryos 

showing altered primitive streak, mesoderm and endoderm formation. Lateral view of embryos is shown, 

with anterior to the left, following WMISH to the RNA named on each panel. (F-L) Cer1 and Lim1 are 

markers for endoderm and mesoderm formation. In Zic3+/+ embryos these markers are expressed in the 

anterior visceral endoderm (black arrow). In Zic3Ka/Y and Zic3 null embryos Cer1 expression is lacking, while 

Lim1 expression is reduced. (H, M, N) Foxa2 shows primitive streak formation. Zic3Ka/Y and Zic3 null 

embryos display ectopic expression of Foxa2 going into the amniotic cavity (black arrows). Panels (B-D) 

and (F-L) were taken from Ahmed et al. (2013). Panels (I-N) were taken from Ware et al. (2006c). 
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3.1.3 Aims 

To determine the molecular basis of the katun phenotype, two questions were asked: (i) is the 

katun phenotype seen in mouse embryos a result of the degradation of the katun transcript 

during gastrulation, and (ii) if the katun protein is expressed, how is the protein function altered? 

To address these questions the following objectives were set out: 

• design a genotyping assay that accurately and reliably distinguishes between wild-type 

Zic3 and katun alleles 

• determine if the katun transcript is present in embryos during L-R axis development 

• verify if the katun protein has stable expression 

• examine the subcellular localization of the katun protein 

• determine if the katun protein can activate transcription 

• investigate if the katun protein can act as a dominant-negative 
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3.2 RESULTS 

3.2.1 Genotyping assay for identifying katun mice 

To facilitate the analysis of the katun mouse strain, a reliable and robust genotyping assay 

capable of detecting a single nucleotide variant (SNV) was required. Two new genotyping assays 

were developed using Allelic Discrimination and High Resolution Melt Analysis (HRMA). 

 

3.2.1.1 Using Allelic Discrimination 

The allelic discrimination assay is a popular PCR-based method used to analyse SNVs (McGuigan 

et al., 2002, Chen et al., 2003). Reactions are performed using primers that amplify the region 

of interest and two different fluorescent probes: one that specifically binds the wild-type allele 

(VIC) and another that binds the mutant allele (FAM). Samples are then identified by measuring 

the change in fluorescence associated with each probe. 

This assay allowed identification of three distinct populations in the katun mouse colony: wild-

type (Zic3+/+), katun heterozygotes (Zic3Ka/X) and katun hemizygotes (Zic3Ka/Y) (Figure 3.3A-C). The 

VIC probe only fluoresced in the presence of the wild-type allele, whereas no fluorescence was 

recorded from the FAM probe. When katun heterozygous DNA was present, both probes 

fluoresced at reasonably equal levels. When katun hemizygous DNA was present, only the FAM 

probe fluoresced while no fluorescence was recorded for the VIC probe. The allelic 

discrimination plot (Figure 3.3D) shows samples divided into three groups based on the 

fluorescence being emitted from each probe. Subsequently this assay was routinely used in the 

laboratory to genotype katun animals and embryos (Ahmed et al., 2013). 
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Figure 3.3: G
enotyping of katun m
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ination. Am

plicons w
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ild-type and m
utant alleles w
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using separate probes for each allele: VIC for w
ild-type and FAM
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utants. The 

am
plification plots (A, B, C) display norm

alized fluorescence from
 each probe at each cycle. For 
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as detected only from
 the VIC probe. For katun 

heterozygotes (Zic3
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 both probes. For katun hem
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(Zic3
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as detected only from
 the FAM

 probe. The allelic discrim
ination plot 
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 the VIC probe against the sam
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Genotyping results using 28 unknow
n anim
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 the katun m

ouse colony show
 three distinct 

populations: w
ild-type (red), katun heterozygotes (green) and katun hem

izygotes (blue). The 

black square at the bottom
 left of the graph is the no tem

plate control. 
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3.2.1.2 Using HRMA 

HRMA distinguishes between PCR-amplified DNA fragments based on their melting kinetics by 

using a DNA-intercalating dye (Wittwer et al., 2003). The first step in designing the assay was 

identifying a PCR reaction that amplified the region of interest (containing the site of katun 

mutation) and created amplicons that could reliably be distinguished (see Appendix 2). When 

optimal reaction conditions were determined, different primer sets were trialled to distinguish 

between wild-type animals, heterozygous katun females (Ka/X) and hemizygous males (Ka/Y). 

Melting curves from each PCR were analysed using two different modes of the LightScanner 

software: “Expert Scanning” mode that displayed shifted melting curves (bottoms of the curves 

are superimposed by shifting along the temperature axis to the point where all double-stranded 

DNA is completely denatured – compensates for well-to-well variations in temperature 

measurements between samples) (Reed et al., 2007), and “Unlabeled Probe Genotyping” mode 

that presented data as normalized melting peaks (derivative curves showing the negative 

derivative of the rate of change of fluorescence (-dF) with respect to changes in temperature 

(dT) – melt peaks display the approximate melting temperature) (Lay et al., 1997).  

Amplicons from primer set 1 were only distinguished as being either wild-type or katun DNA, as 

shown in the shifted melting curve (Figure 3.4A). The software was unable to differentiate in the 

melt profile of heterozygous and hemizygous DNA (Figure 3.4A`). Primer set 2 amplicons were 

only distinguished as being either wild-type or katun DNA (Figure 3.4B). While the shifted 

melting curves of heterozygous and hemizygous DNA appeared reasonably similar, their 

normalized melting peaks looked distinct; nonetheless the software was unable to class them as 

separate samples (Figure 3.4B`). Primer set 3 amplicons had a greater melting temperature 

range (77-82°C) and based on their shifted melting curves, they were also classified as either 

being wild-type or katun DNA (Figure 3.4C). The normalized melting peaks of these amplicons 

clearly displayed three distinct melting profiles with one peak each for wild-type (~81.3°C) and 

hemizygous DNA (~80.9°C) and two peaks for heterozygous DNA (~79.2°C and ~81°C) (Figure 

3.4C`). Hence primer set 4 was chosen to perform all future genotyping of katun animals. 
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Figure 3.4: Identifying an HRMA assay that can distinguish between all genotypes in the katun mouse 

colony. Melting profiles of samples were analysed with the LightScanner software using the “Expert 

Scanning” mode (A, B, C) and the “Unlabeled Probe Genotyping” mode (A`, B`, C`). PCRs were performed 

using genomic DNA (gDNA) from wild-type (+/+), heterozygous (Ka/X) and hemizygous (Ka/Y) carriers. 

Each panel represents an assay done using a particular set of primers: (A and A`) Primer set 1 = Ark209-

Ark242; (B and B`) Primer set 2 = Ark241-Ark242; (C and C`) Primer set 4 = Ark1085-Ark1086. The colour 

of the melting curves in each graph were generated automatically by the LightScanner software, based 

on its ability to distinguish between each genotype. 
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For routine genotyping (colony maintenance) HRMA was used, since all genotypes within the 

colony could be identified. However this assay was unable to distinguish between homozygote 

and hemizygote embryos, thus for embryo genotyping the allelic discrimination assay was used. 

In addition to a genotyping assay, a sextyping was also developed to correctly identify male and 

female animals. This assay used a new set of primers (Primer set 5: Ark1002-Ark1003) that 

bound the Ube1 allele on both the X and Y chromosomes (Thomsen et al., 2012). Since the allele 

length varies on both chromosomes, amplicons from the X-chromosome were 132 bp while 

those from the Y-chromosome were 136 bp (Figure 3.4A). Hence males were expected to show 

two amplicons while females only one. However for males only the 136 bp was visible on the 

gel. When the assay was performed using HRMA, two distinct melt profiles were observed 

(Figure 3.4B). Amplicons from the female DNA displayed a single melting peak at ~81.8°C, while 

male DNA displayed two peaks at ~81.8°C and ~83.3°C. Sextyping via HRMA proved reliable and 

robust and all future assays in the laboratory were done using this method.    

 

 

  

Figure 3.5: HRMA increases reliability of sextyping assay. Genomic DNA (gDNA) extracted from two 

female (XX) and male (XY) adult mice was used to compare sextyping via agarose gel electrophoresis (A) 

and HRMA (B). Both reactions used primer set 5 (Ark1002-Ark1003) that gave amplicons of 132 bp from 

the X-chromosome and 136 bp from the Y-chromosome (F, female; M, male; NTC, no template control). 
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3.2.2 The katun transcript evades NMD 

The katun transcript contains a PTC ~313 bases upstream of the exon 1 – exon 2 junction and is 

expected to be targeted by the NMD machinery (Nagy et al., 1998). Since hemizygous (Zic3Ka/Y) 

animals possess only one copy of Zic3, which has the katun mutation, katun transcripts should 

be absent in these animals. To determine whether the katun transcript is subjected to NMD, 

allele specific RT-PCR was performed using RNA extracted from embryos of each genotype (wild-

type, katun heterozygote and katun hemizygote) at 7.5, 8.5 and 9.5 dpc. The absence of genomic 

DNA in each sample was confirmed by amplification of an intron spanning fragment of the Zic3 

gene (Figure 3.6A-C). The primers correspond to exon 2 (forward primer: Ark364) and exon 3 

(reverse primer: Ark311) sequences and the expected product size of cDNA amplicons is 162 bp 

while for genomic amplicons it is 1006 bp (Figure 3.6D). Once the absence of genomic 

contamination was confirmed from each sample, allele-specific RT-PCR products were produced 

(using Primer set 4) and analyzed by HRMA (Figure 3.6A`-C`). In each case, the melt profile of 

products obtained from cDNA samples were compared with positive control profiles obtained 

from genomic DNA of animals of known genotype. At each embryonic stage, embryos containing 

the normal Zic3 allele exclusively express the wild-type transcript, embryos with one mutant and 

one wild-type allele express a mixture of the two transcripts, whereas embryos containing only 

the mutant allele exclusively express the katun transcript. These data, in addition to WMISH 

analysis showing expression of katun mRNA at gastrulation (Figure 3.7), indicate that the katun 

transcript is not rapidly subjected to NMD during axis formation (the stage at which Zic3-

associated heterotaxy phenotype emerges). This implies that a mutant protein could be 

produced and the heterotaxy phenotype could be due to the aberrant function of this protein.  



86 
 

 

Figure 3.6: The katun mutant transcript is present during gastrulation and organogenesis stage 

embryos. RNA extracted, from wild-type (+/+), heterozygous (Ka/X) and hemizygous (Ka/Y) embryos at 

7.5 dpc (A), 8.5 dpc (B) and 9.5 dpc (C), was reverse transcribed followed by PCR amplification of an intron-

spanning region (using primers Ark364-Ark311). The expected product size for genomic DNA is 1006 bp 

and for cDNA is 162 bp (-RT, without reverse transcriptase; +RT, with reverse transcriptase; g, genomic 

DNA; NTC, no template control). The melting peak plots display DNA melt profiles of Zic3 amplicons after 

PCR (using primers Ark1085-Ark1086) of cDNA synthesized from 7.5 dpc (A`), 8.5 dpc (B`) and 9.5 dpc (C`) 

RNA. (D) Diagram of the murine Zic3 genomic locus showing the location of the mutations and the primers 

used for allele-specific and intron-spanning RT-PCR. 
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3.2.3 Stable expression of katun protein in mammalian cell lines 

The finding that the katun transcript escapes NMD during gastrulation raises the possibility that 

it is translated into a short-lived, truncated protein with some function. Detection of the ZIC3 

protein from wild-type and mutant embryos using SDS-PAGE and Western blotting was not 

successful due to failure of the antibodies to specifically detect endogenous ZIC3 (data not 

shown). Therefore to determine whether the mutant ZIC3 transcript can be translated into a 

stable protein, the katun mutation was introduced in human cDNA using site-directed 

mutagenesis (Figure 3.8A). HEK293T cells were transfected with either a N-terminal V5-epitope 

tagged version of ZIC3 (V5-ZIC3-wt) or ZIC3-katun variant (V5-ZIC3-katun). The predicted sizes 

of the wild-type and katun ZIC3 proteins are 52 kDa and 27 kDa, respectively, with an additional 

~4 kDa corresponding to the V5 tag and spacer fragment within the V5-DEST expression vector. 

Both proteins (V5-ZIC3-wt of ~55 kDa and V5-ZIC3-katun of ~30 kDa) were detected in lysates 

made 24, 42 and 72 hours post-transfection with Western blotting using an α-V5 antibody 

(Figure 3.8B), indicating that the katun protein is stable.  

 

Figure 3.7: The katun transcript accumulates in gastrulation and organogenesis stage mutant embryos. 

(A-E) Lateral views of wild-type (Zic3+/+) or katun hemizygous (Zic3Ka/Y) embryos after WMISH to Zic3 RNA; 

embryos are shown with anterior to the left (A-B, D-E) or top (C). (A-B) 7.0 dpc embryos. (C) 8.5 dpc 

embryos. (D-E) 9.5 dpc embryos. Pictures taken from Ahmed et al. (2013).  
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3.2.4 Subcellular localization of the katun protein 

ZIC proteins are transcriptional regulators and their primary site of function is the nucleus. 

Previous studies have shown that the ZFD contains a cryptic NLS, required for localization of ZIC 

proteins to the nucleus (Bedard et al., 2007, Hatayama et al., 2008). Mutations in this domain 

cause aberrant subcellular distribution when over-expressed in mammalian cell lines (Ware et 

al., 2004). The katun protein lacks the entire ZFD, hence it should be unable to localize in the 

nucleus. Following transfection of HEK293T cells with V5-ZIC3-wt or V5-ZIC3-katun, subcellular 

fractionation of lysates revealed the wild-type protein mostly localized in the nucleus whereas 

significant proportions of the katun protein were seen in both the nuclear and cytoplasmic 

compartments (Figure 3.9A). To confirm this result and quantify the extent of katun nuclear 

accumulation, the subcellular localization of V5-ZIC3-katun was compared with that of V5-ZIC3-

wt by immunofluorescent staining following transfection into HEK293T cells (Figure 3.9C). The 

Figure 3.8: Generation of katun mutation on 

Human ZIC3 cDNA. Site-directed mutagenesis was 

carried out to introduce a point mutation on 

Human ZIC3 cDNA. (A) Sequence read of ZIC3-wt 

and ZIC3-katun from nucleotide positions 736 to 

765 on the Human ZIC3 cDNA (NM_003413.3), 

showing conversion of guanine (G) (black arrow) 

to thymine (T) (asterick) at position 748. This 

conversion causes creation of a premature stop 

codon prior to ZF1. Nucleotides are in black font 

with a clear background. Amino acids are in black 

font with coloured backgrounds. (B) HEK293T cells 

were transfected with the expression plasmids 

shown. Cells were harvested 24, 48 and 72 hours 

post-transfection and subcellular fractionation 

performed to obtain the nuclear fraction that was 

used to detect the overexpressed proteins. The α-

V5 blots shows level of overexpressed protein and 

the α-TBP blot serves as nuclear loading control. 
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transfected protein was detected using an α-V5 antibody, while the nuclear boundary was 

marked using the α-LaminB1 antibody. Consistent with previous studies on subcellular location 

of ZIC proteins, 88.5% of the wild-type (V5-ZIC3-wt) protein was found to be within the nucleus. 

Surprisingly, 61.4% of the mutant (V5-ZIC3-katun) protein accumulated within the nucleus 

(Figure 3.9E).  

This raised the possibility that the N-terminal portion of ZIC3 contains sequences sufficient for 

directed nuclear transport. It is, however, also possible that the small size of the katun protein 

allows it to diffuse into the nucleus since proteins smaller than ~40 kDa have been shown to do 

so (Wei et al., 2003). To distinguish between these possibilities, the size of the katun protein was 

artificially increased by fusion with enhanced green fluorescent protein (EGFP). The subcellular 

localization of EGFP-ZIC3-katun was compared with that of EGFP-ZIC3-wt following transfection 

into HEK293T cells using Western blotting and immunofluorescent staining (Figure 3.9B and D).  

Western blot analysis detected EGFP-ZIC3-wt in the nuclear fraction at ~85 kDa and EGFP-katun 

predominantly in the cytoplasmic fraction at ~55 kDa. Immunofluorescent subcellular 

localization analysis showed that 88.9% of the EGFP-ZIC3-wt protein was within the nucleus, 

whereas only 10.3% of the mutant EGFP-ZIC3-katun protein accumulated within the nucleus 

(Figure 3.9E). The difference between the localization patterns of V5-ZIC3-katun protein and the 

EGFP-ZIC3-katun protein suggests that the katun protein accumulates in the nucleus by passive 

diffusion. 
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Figure 3.9: Truncated katun protein diffuses into the nucleus. (A, B) HEK293T cells were transfected with 

the expression plasmids shown and lysed to generate nuclear (N) and cytoplasmic (C) fractions. Lysates 

were subjected to SDS-PAGE and Western blotting with (A) α-V5 or (B) α-GFP antibodies. (C, D) HEK293T 

cells transfected with the expression plasmids shown were co-immunostained with α-LaminB1 antibody 

(to detect nuclear envelope, in red) and either (C) α-V5 or (D) α-GFP antibodies (to detect overexpressed 

ZIC3 proteins, in green). Overlaid images are shown here. (E) Subcellular localization of V5- or EGFP-

tagged wild-type ZIC3 or katun proteins was quantified using ImageJ. Data presented is combined from 3 

external repeats, with a 100 cells counted for each construct per experiment. *: p < 0.01 ANOVA. 
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3.2.5 The katun protein is a functional null 

3.2.5.1 Katun cannot transactivate 

The ZFD is crucial for ZIC protein function, since it is required for DNA-binding, nuclear 

localization and interacting with protein partner interaction (Matsugi et al., 1990, Gamsjaeger 

et al., 2007). In addition, mutations in any of the ZFs causes diseased phenotypes in humans 

(Chhin et al., 2007, D'Alessandro et al., 2013). Ware et al. (2004) showed that nonsense, 

missense or frameshift mutations in the ZFD of ZIC3 prohibit the mutant protein from activating 

transcription in cell-based reporter assays. Since the katun protein lacks the entire ZFD (Figure 

3.2E), it should not be able to bind target DNA sequences and influence transcription. However 

the katun protein is stable and does localize to the nucleus thus making it possible for the protein 

to exert some effect. 

The ability of V5-ZIC3-katun to stimulate transcription was evaluated using a well-established 

cell-based luciferase reporter assay, involving the APOE promoter (Salero et al., 2001). ZIC 

proteins have been shown to bind the APOE promoter and activate transcription, while DNA-

binding ZIC mutants are unable to illicit transcription from this element (Brown et al., 2005). Co-

transfection of the APOE reporter construct (B:luc+:APOE) with either V5-ZIC3-wt or V5-ZIC3-

katun into HEK293T cells, followed by quantification of luciferase activity demonstrated that 

wild-type ZIC3 significantly increased relative luciferase activity (RLA) while the katun protein 

was unable to elicit a transcriptional response (Figure 3.10A).  

 

3.2.5.2 Katun cannot behave in dominant-negative manner 

The katun protein lacks the ZFD, but possesses a complete N-terminus (amino acids 1-249) 

region that contains some evolutionary conserved sequences (ZOC box, alanine and histidine 

repeat regions) (Figure 3.2E). Kitaguchi et al. (2000) observed developmental defects in Xenopus 

blastomeres after injecting a truncated mRNA expressing the N-terminus (amino acids 1-214) of 

ZIC3. As shown previously the katun protein is unable to stimulate transcription, however it is 

possible that it could interfere in the function of other ZIC proteins. During murine gastrulation, 
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expression of Zic3 overlaps with that of Zic2 and Zic5 in the embryonic ectoderm and mesoderm 

(Houtmeyers et al., 2013). The katun phenotype may be due, at least in part, to the katun protein 

inhibiting other ZIC proteins and preventing their normal function. The ability of V5-ZIC3-katun 

to behave in a dominant-negative manner was evaluated using the APOE cell-based luciferase 

reporter assay. The reporter plasmid was co-transfected in HEK293T cells with either wild-type 

ZIC3, ZIC2 or ZIC5 and V5-DEST or V5-ZIC3-katun and luciferase expression was measured 24 

hour post-transfection (Figure 3.10B). In each of the ZIC proteins tested, presence of the katun 

protein did not significantly alter the ability of the wild-type protein(s) to stimulate transcription. 

 

3.2.5.3 Katun does not inhibit expression of Wnt target genes 

The human ZIC2 and Xenopus ZIC1-5 proteins have recently been shown to act as co-factors that 

inhibit Wnt dependent-β-catenin mediated transcription (Pourebrahim et al., 2011, Fujimi et al., 

2012). Upon Wnt stimulation, β-catenin enters the nucleus and interacts with the TCF 

transcription factors to stimulate transcription of target genes (Behrens et al., 1996). A luciferase 

reporter construct containing consensus TCF binding sites (TOPflash) or mutated TCF sites 

(FOPflash) is routinely used to assess Wnt dependent transcription (Korinek et al., 1997). Co-

transfection of the TOPflash construct with one encoding a stabilized form of β-catenin (β-

catenin-ΔN89) into HEK293T cells drives high levels of luciferase activity but this level is not 

attained in the presence of V5-ZIC3-wt (Figure 3.10C). This indicates that human ZIC3, like ZIC2 

is able to inhibit β-catenin mediated transcription of Wnt target genes in cultured HEK293T cells. 

In addition when ZIC3 is expressed, lower levels of β-catenin ΔN89 are detected consistent with 

the enhanced β-catenin degradation previously seen with the expression of Xenopus ZIC3 (Fujimi 

et al., 2012).  In contrast to wild-type ZIC3 protein, co-transfection with V5-ZIC3-katun does not 

decrease luciferase activity indicating that the katun protein is unable to inhibit Wnt-dependent 

β-catenin mediated transcription. 
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Figure 3.10: The katun protein is functionally inert. HEK293T cells were co-transfected with the reporter 

and V5-DEST or the expression plasmids shown to check for (A) transactivation, (B) dominant-negative 

interference, or (C) inhibition of β-catenin mediated transcription via the katun protein. RLA was 

calculated by dividing luminescence from each expression plasmid by that of V5-DEST. Expression of 

transfected proteins was confirmed via Western blotting with (A-C) α-V5 and (C) α-β-catenin in the 

nuclear and cytoplasmic fractions, respectively. The (A-C) α-TBP and (C) α-β-tubulin blots served as 

nuclear and cytoplasmic loading controls, respectively. (C) The α-β-catenin antibody detects both 

endogenous β-catenin and the smaller exogenously expressed β-catenin-Δ89 (marked by arrows). (A, C) 

Error bars represent SEM, N=3. *: p < 0.01 ANOVA. (B) Error bars represent SD between internal replicates. 

Experiment was repeated twice to confirm results. Panel (C) was taken from Ahmed et al. (2013). 
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3.2.6 PTC-containing ZIC3 mutant transcripts produce proteins that do 

not compete with wild-type ZIC3 

The magnitude of NMD is dependent upon the strength of the splice donor and acceptor sites 

within an intron, with stronger sites (i.e. those that more closely match the consensus sequence) 

subject to increased NMD (Gudikote et al., 2005). To assess whether inefficient NMD of the 

human ZIC3 can be predicted, the mouse Zic3 and human ZIC3 splice sites were compared. As 

shown in Table 3.1, the sites are identical (intron 1/2 and 2/3) or nearly so (intron 2/4). Intron 

2/3 has the weakest splice signals, as indicated by a lower consensus value score.  

 

 

 

The absolute conservation of Zic3 and ZIC3 splice sites prompted the examination of the 

predicted proteins from each of the ZIC3-associated heterotaxy mutations that generate a PTC. 

Six different ZIC3-associated heterotaxy mutations with a PTC have previously been documented 

and the protein stability, subcellular localization and transcriptional ability of each of these 

assessed using cell-based assays (Ware et al., 2004). Two of these mutations generate unstable 

proteins (ZIC3-S43X and ZIC3-Q249X) whereas the remaining mutations generate stable proteins 

that can either be found exclusively in the cytoplasm (ZIC3-C268X and ZIC3-Q292X) or in both 

cytoplasmic and nuclear compartments (ZIC3-1507insTT and ZIC3-K408X). To test whether any 

of these proteins possess dominant-negative properties, the analogous mutant proteins were 

expressed in HEK293T cells in competition with wild-type ZIC3. Expression of each ZIC3 construct 

Table 3.1: Zic3/ZIC3 splice site homology and scores. Splice site consensus values (CV) were calculated 

using Human Splicing Factor (http://www.umd.be/HSF/4DACTION/input_SSF). Upper case letters: Exon 

sequence; lower case letters: Intron sequence.  
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was verified by SDS-PAGE and Western blotting (Figure 3.11). Each mutant construct was unable 

to stimulate transcription, except K408X that retained some transactivation ability [the same 

was noted by Ware et al. (2004)]. Furthermore when co-transfected with wild-type ZIC3, the 

ZIC3-katun, ZIC3-C268X and ZIC3-Q292X proteins did not significantly alter ability of ZIC3 to 

activate transcription, while ZIC3-1507insTT or ZIC3-K408X showed mild hyper-stimulation of 

the APOE promoter suggesting a synergistic response. Note that the ZIC3-Q249X mutation was 

excluded from this analysis because it is probably well-modelled by experiments with the V5-

ZIC3-katun construct.  

 

 

 

  

Figure 3.11: ZIC3-heterotaxy associated mutant proteins do not compete with wild-type ZIC3. 

Competition assay using HEK293T cells co-transfected with the B:luc+:APOE reporter construct and V5-

DEST or the expression plasmids shown, with luminescence quantified 24 hours post-transfection. Graph 

shows mean RLA (with reference to V5-DEST), N=3. Error bars represent SEM. a, b, and c: p < 0.01 ANOVA. 

Expression of the transfected proteins was confirmed via Western blotting with α-V5 and the α-TBP blot 

served as nuclear fraction loading control. 
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3.2.7 PTC-containing ZIC3 mutant transcripts produce proteins that do 

not compete with wild-type ZIC2 and ZIC5 

Given the overlapping expression domains of ZIC3, ZIC2 and ZIC5, the ability of each of the PTC-

containing ZIC3 mutants to dominantly interfere with ZIC2 and ZIC5 was also tested in HEK293T 

cells and expression of each ZIC construct verified by SDS-PAGE and Western blotting. As 

previously shown (Brown et al., 2005), ZIC2 strongly stimulates the APOE promoter element 

(Figure 3.12A). When co-transfected with wild-type ZIC2, ZIC3-katun and ZIC3-1507insTT 

proteins did not significantly alter ability of ZIC2 to activate transcription, while ZIC3-C268X, 

ZIC3-Q292X and ZIC3-K408X showed a small, but significant, inhibitory effect. The ability of ZIC5 

to transactivate the APOE promoter has not previously been tested, but as shown in Figure 3.12B 

the ZIC5 proteins has a small stimulatory effect on this promoter element. In the presence of 

V5-ZIC3-katun, V5-ZIC3-C268X, V5-ZIC3-Q292X and V5-ZIC3-1507insTT no significant change was 

observed in RLA by wild-type ZIC5. Evidently the PTC mutants have differing effects on wild-type 

ZIC3, ZIC2 and ZIC5. 
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Figure 3.12: Dominant-negative behaviour of ZIC3-heterotaxy associated mutant proteins in the 

presence of wild-type ZIC2 and ZIC5. Competition assay using HEK293T cells co-transfected with the 

B:luc+:APOE reporter construct and V5-DEST or the expression plasmids shown, with luminescence 

quantified 24 hours post-transfection. Graphs show mean RLA (with reference to V5-DEST), N=3. Error 

bars represent SEM. (A) a, b, c and d: p < 0.01 ANOVA. (B) a and b: p < 0.01 ANOVA. Expression of the 

transfected proteins was confirmed via Western blotting with α-V5 and the α-TBP blot served as nuclear 

fraction loading control. 
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3.3 DISCUSSION 

Zic genes are vertebrate homologues of Drosophila odd-paired (opa) gene, which is involved in 

the body-plan formation of the Drosophila embryo (Aruga et al., 1996). Previous studies in 

human, mouse, frog and ascidian Zic homologues demonstrated that the Zic gene family 

encodes transcription factors that play critical roles in variety of developmental processes such 

as neurogenesis, myogenesis, skeletal patterning and L-R axis development (Aruga, 2004, 

Houtmeyers et al., 2013). Nonetheless, little is known about the biochemical and molecular 

properties of these ZF proteins. 

The work presented in this chapter focused on understanding the molecular mechanism(s) 

underlying the phenotype of the katun mouse mutant. This mutation arose spontaneously 

during an ENU-mutagenesis experiment (Bogani et al., 2004). Functional assays reported herein 

demonstrate that katun is a null allele of Zic3. Importantly these finding uncovered the 

molecular mechanism of the katun phenotype and provided new insights into the functional 

significance of the different structural domains in ZIC3, namely, the N-terminal region and the 

ZFD.  

 

3.3.1 The katun mouse strain carries a null allele of Zic3 

The katun mutation introduces a nonsense codon into the Zic3 transcript that conforms to the 

rule for PTC recognition in mammalian cells. Allele-specific RT-PCR of 7.5, 8.5 and 9.5 dpc 

embryos showed that the only transcript expressed in Zic3Ka/Y embryos carries the nonsense 

mutation, while both wild-type and mutant transcripts are present in Zic3Ka/X embryos (Figure 

3.6) (Ahmed et al., 2013). In addition expression of the katun protein was observed up to 72 

hours post-transfection in HEK293T cells (Figure 3.8B). Unfortunately a positive control was not 

available to determine whether NMD is at play in HEK293T cells and that they adhere to the rule 

of degrading transcripts with a PTC 50-55 nucleotides prior to an exon-exon junction. This test 

needs to be completed to conclusively ascertain that the katun transcript is a weak target for 
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NMD. Moreover in vitro expression of the katun protein should be checked in other cell lines for 

up to 72 hours post-transfection (Festing, 2001). RT-PCR data and WMISH on katun embryos 

does show that the katun transcript is not degraded (Ahmed et al., 2013), indicating that the 

katun transcript is present at the time of L-R axis formation and raises the possibility that the 

katun mutation does not represent a null allele. 

Investigations into the molecular properties of the katun mutant protein, however, confirmed 

that it lacks activities associated with wild-type ZIC3. The katun protein is truncated just 

upstream of the ZFD, which is required by the wild-type protein for nuclear localization (Bedard 

et al., 2007, Hatayama et al., 2008) and transactivation of target gene expression (Koyabu et al., 

2001, Mizugishi et al., 2001, Ware et al., 2004). Although the katun protein can accumulate in 

the nucleus to appreciable levels (due to passive diffusion rather than active transport) (Figure 

3.9), it is transcriptionally inert (Figure 3.10A) and does not inhibit β-catenin mediated 

transcription (Figure 3.10C) (Ahmed et al., 2013). 

These data establish that the katun protein is null for known ZIC3 molecular activities, but 

Xenopus experiments have implied that a ZIC3 protein similar to katun interferes with the 

function of wild-type ZIC3 during L-R axis formation (Kitaguchi et al., 2000). In addition other 

studies have shown that truncated mutants have the potential to display dominant-negative 

behaviour (Miyamoto et al., 2002, Kiefer et al., 2003). This possibility has not previously been 

biochemically tested for the katun mutant. When the katun protein is placed in competition with 

either wild-type ZIC3 or other ZIC proteins co-expressed at the time of L-R axis formation (ZIC2 

and ZIC5), it does not interfere with their ability to activate transcription of a target promoter in 

HEK293T cells (Figure 3.10B). It remains possible that the katun protein displays dominant-

negative behaviour against other currently unknown protein activities, however, the mutation 

phenocopies other deletion alleles of Zic3 (Purandare et al., 2002, Ware et al., 2006c) indicating 

that dominant-negative behaviour of the katun protein at gastrulation is inconsequential. Taken 

together these data demonstrate that Ka encodes a null allele of Zic3 and that the N-terminal 

portion of mammalian ZIC3 does not encode a dominant-negative molecule (Ahmed et al., 
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2013). 

 

3.3.2 Incomplete NMD can allow ZIC3 PTC-inducing mutations to have 

some function 

The finding that murine Zic3 transcript is a poor substrate for NMD at axis formation suggests 

that this is also the case for the human ZIC3 transcript. Direct assessment of the fate of human 

ZIC3 PTC-containing transcripts during axis formation is not possible and predictions regarding 

the likely NMD behavior based on the murine transcript provide one alternative (Ahmed et al., 

2013). The features that render a transcript as a poor target for NMD are not fully characterized. 

There is, however, evidence that position of the PTC within the transcript and RNA splicing 

influences NMD amplitude (Nagy et al., 1998, Gudikote et al., 2005). The genomic arrangement 

of the murine (Zic3) and human (ZIC3) genes is nearly identical and the splice donor and acceptor 

sites are completely conserved. It is likely that the human ZIC3 transcript is similarly able to avoid 

mRNA surveillance mechanisms, which needs to be considered when assessing the probable 

effect of ZIC3 PTC-inducing mutations (Ahmed et al., 2013). If PTC-containing transcripts are 

translated, the two most likely effects are: (i) proteins that truncate downstream of crucial 

domains might be hypomorphic; and (ii) proteins that do not produce crucial domains might 

encode dominant-negative molecules. 

Six mutations that introduce a PTC into the human ZIC3 transcript have been associated with 

congenital defects (Gebbia et al., 1997, Megarbane et al., 2000, Ware et al., 2004). Four of these 

adhere to the position rule for NMD (i.e. the PTC is sited more than about 50-55 nucleotides 

upstream of an exon-exon junction) (Nagy et al., 1998). The most 5’-ward of the mutations 

(C633A) encodes a severely truncated molecule (S43X) if not degraded. Previous examination of 

this putative protein has shown that it is not stably produced in cell lines (Ware et al., 2004) and 

is therefore likely to generate a null allele regardless of NMD amplitude. The C1250T mutation 

encodes the ZIC3-Q249X protein. An expression construct incorporating this mutation into the 

ZIC3 CDS has previously been reported to produce no protein (Ware et al., 2004). This PTC lies 
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very close to the site of the katun mutation that produces the ZIC3-E250X protein, however the 

katun protein shows stable expression. While there could be several reasons for the discrepancy 

between these results, experiments on the katun protein suggest that even if the ZIC3-Q249X 

protein is generated in vivo it would encode a protein that is unable to behave in dominant-

negative manner (Ahmed et al., 2013). The remaining two mutations (C1338A and C1408T) that 

conform to the NMD PTC position rule would generate proteins that contain part of the ZFD 

(ZIC3-C268X and ZIC3-Q292X, respectively). Previous studies indicate that these proteins are 

transcriptionally inactive, which has also been confirmed by data shown here. In addition these 

proteins fail to dominantly interfere with the transactivation ability of ZIC3 (Figure 3.11) and 

ZIC5 (Figure 3.12B). Interestingly these proteins are able to significantly reduce transactivation 

via ZIC2 (Figure 3.12A). The molecular nature of this needs to be examined further, however it 

implicates that the mutant phenotype is due to a combination of inactivity of ZIC3 and limited 

transactivation via ZIC2. The remaining two mutations (1507insTT and A1741T) introduce a PTC 

close to the last intron and regardless of ZIC3 transcript sensitivity to NMD, are translated into 

stable proteins. Data shown here confirms that ZIC3-1507insTT is transcriptionally inert whereas 

the ZIC3-K408X protein (corresponding to the A1741T mutation) retains some transactivation 

ability. Both proteins cause an increase in transactivation via ZIC3 when co-expressed with the 

wild-type protein. In case of ZIC3-K408X the increase is perhaps due to a synergistic effect of 

both wild-type ZIC3 and the ZIC3-K408X protein on the promoter, however, since ZIC3-

1507insTT is transcriptionally inert the increase in transactivation via ZIC3 is likely due to a 

protein-protein interaction. The ZIC3-1507insTT protein has an intact ZIC3 amino acid sequence 

until after ZF2, thus perhaps it is able to mobilize the transcriptional machinery which then 

allows wild-type ZIC3 to simply bind DNA and activate transcription. Nonetheless, in reality, due 

to the location of Zic3 on the X-chromosome, Zic3 mutant alleles cannot act in a dominant-

negative manner against wild-type Zic3 alleles. This is, (i) due to presence of only one copy of 

the Zic3 gene in males as they possess only one X-chromosome, and (ii) due to X-inactivation in 

females that causes silencing of gene expression from one of the X-chromosomes during 
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embryonic development (Heard et al., 1997). Therefore to conclusively determine the 

dominant-negative activity of these mutants similar experiments were conducted with wild-type 

ZIC2 and ZIC5. When the ZIC3-1507insTT protein was co-expressed with wild-type ZIC2 or ZIC5, 

no change in transactivation was observed. This was surprising, especially in the case of ZIC2 

since two other PTC mutants (ZIC3-C268X and ZIC3-Q292X) can limit transactivation via wild-

type ZIC2. However the difference may be the presence of the ZF2 in the ZIC3-1507insTT. When 

ZIC3-K408X was co-expressed with wild-type ZIC2 it also caused a reduction in transactivation 

via wild-type ZIC2 albeit not as much as that caused by the C268X and Q292X mutants. In 

conjunction with wild-type ZIC5, ZIC3-K408X caused an increase in transactivation. While further 

work needs to be done to assess the authenticity of these data, it can be inferred that the mutant 

phenotype of the ZIC3-K408X variant is due to reduced expression of  ZIC3 and ZIC2 target genes 

and increased expression of wild-type ZIC5 target genes. 
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CHAPTER 4 
THE ZICFLASH ASSAY 
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4.1 INTRODUCTION 

4.1.1 Transactivation assays for ZIC proteins 

Transactivation assays monitor the effect of a transcription factor on a response element. They 

are an invaluable tool for dissecting transcription factor function since they enable rapid and 

highly sensitive comparisons of variant forms of the response element and/or the transcription 

factor itself (Rosenthal, 1987, Jiang et al., 2008). Typically these assays rely on the use of a non-

mammalian reporter gene, such as luciferase, GFP or lacZ, whose expression is regulated by a 

response element, such as a heterologous promoter and/or enhancer sequence (Houck et al., 

2006). The response element is cloned upstream of the reporter gene (Figure 4.1A) and the 

recombinant plasmid transfected into cultured mammalian cells. The transcriptional response is 

quantified based on expression of the reporter gene and is representative of the interaction 

between transcription factor and response element. Since the response element is removed 

from its native genomic context, such that long-range regulatory elements are mostly missing, 

only the cloned portion of the promoter or enhancer is assayed (Landolin et al., 2010). 

Nonetheless such assays are uniquely suited to studying transcription factors since the 

activation of gene expression is directly linked to their function (Paguio et al., 2010).  

Commonly used reporter genes generally express two types of proteins: (i) with intrinsic 

fluorescence (such as GFP), or (ii) enzymes (such as luciferase or β-galactosidase) (Houck et al., 

2006). Hallmark of a good reporter gene is that its protein product is easily assayable and has 

low endogenous background activity (Ma, 2014). The luciferase gene used in this study meets 

this criterion and is one of most commonly used reporters for studying transcription factor 

function (Trinklein et al., 2003, Cooper et al., 2006, Chabot et al., 2007). The luciferase protein, 

a monomeric enzyme of 61 kDa, was initially cloned from the firefly (Photinus pyralis) (de Wet 

et al., 1985, de Wet et al., 1987). Use of the luciferase protein in transactivation assays is based 

on the natural phenomenon of bioluminescence, which involves enzyme-catalysed oxidation of 

substrates resulting in emission of photons (Figure 4.1B) (Bronstein et al., 1994, Fan et al., 2007, 
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Fraga, 2008, Thorne et al., 2010). In general the intensity of light released as a result of this 

chemical reaction is correlated to the chemical concentrations of the reaction components, such 

as the amount of luciferase enzyme produced or the amount of substrate present (Fan et al., 

2007).  

 

 

 

The physics of bioluminescence provides inherent advantages for cell-based assays since the 

emission of light is due to an innate exothermic chemical reaction (Watson, 2011). In contrast, 

fluorescence based methods require an external excitation source that can cause off target 

fluorescence from cellular components resulting in a low signal-to-background ratio, which 

poses difficulties in detecting small changes. Since mammalian systems lack bioluminescence, 

background is basically non-existent allowing detection of as low as 0.05 attomole (10-18) of the 

enzyme (Pazzagli et al., 1992). Additionally the luciferase protein is primed for function 

immediately upon translation without the need for any post-translational processing (de Wet et 

al., 1987), while data generated from luciferase assays are relatively straightforward to analyse 

(Yun et al., 2014). The primary disadvantage is reagent expense and the requirement of a 

Figure 4.1: Luciferase reporter gene assay. (A) Schematic representation of a typical reporter gene 

construct where a response element is cloned upstream of the luciferase cDNA. Transcription factors (TF) 

bind to specific DNA sequences on the response element and activate transcription of luciferase. (B) 

Chemical reaction catalyzed by the luciferase enzyme. The substrate luciferin, in the presence of 

adenosine triphosphate (ATP) and oxygen (O2), is oxidized by the luciferase enzyme, which leads to 

emission of photons. 
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luminometer to take measurements. Nonetheless, despite providing a significantly weaker 

signal intensity than fluorescence, luciferase reporter assays provide exceptional sensitivity and 

a broad dynamic range with a rapid and quantitative platform for studying transcription factors 

regulating mammalian gene expression in vitro (Siebring-van Olst et al., 2013). 

In order to study the transcription factor function of ZIC proteins (and mutants) a reliable and 

robust transactivation assay is needed, which provides a potent signal via wild-type ZIC proteins 

and allows accurate distinction of mutants with hyper- or hypo-morphic activities. These facets 

rely on the specificity of the response element used to stimulate transcription, type of luciferase 

cDNA, vector backbone, and the cell line used for transfections. 

Initial transactivation assays for ZIC proteins used basal viral promoters such as the herpes 

simplex virus thymidine kinase (TK) promoter (Koyabu et al., 2001), or the simian virus 40 (SV40) 

promoter (Ware et al., 2004, D'Alessandro et al., 2013, Cowan et al., 2014). Both promoters 

display enhanced transactivation in the presence of ZIC1-3 (Mizugishi et al., 2001). This 

interaction must, however, be nonspecific since these viral promoters do not contain known ZIC 

DNA-binding sequences, rendering this system sub-optimal for dissection of ZIC protein 

function. Moreover, as demonstrated by Brown et al. (2005), several ZIC2 variants have been 

found to stimulate the TK promoter in an unpredictable manner when used as a transfection 

control, thus providing erroneous results. 

Additionally Salero et al. (2001) used a yeast one-hybrid system followed by electrophoretic 

mobility shift assays to show that ZIC1 and ZIC2 can bind the human APOE promoter region. 

Subsequently this human APOE promoter has been used to assay transactivation via ZIC proteins 

(Salero et al., 2001, Brown et al., 2005, Ahmed et al., 2013). However the APOE promoter is not 

likely to be a real in vivo target of ZIC proteins as Apoe (Harrison et al., 1995) and Zic genes (Elms 

et al., 2004) are not co-expressed during gastrulation (Figure 4.2).  
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Figure 4.2: Zic genes are not co-expressed with Apoe during gastrulation. Lateral view of 7.5 dpc mouse 

embryos following whole-mount in situ hybridization (WMISH) to the genes shown. The (orange) dotted 

line divides the extra-embryonic (above) and embryonic (below) regions. Zic1 (A) and Zic4 (D) are not 

expressed during gastrulation. Zic2 (B) and Zic5 (E) are expressed in the extra-embryonic ectoderm and 

embryonic ectoderm and mesoderm. Zic3 (C) is not expressed in the extra-embryonic region but is 

expressed in the embryonic ectoderm and mesoderm. Apoe (F) is expressed only in the extra-embryonic 

endoderm. WMISH images of Zic2 and Zic3 were taken from Elms et al. (2004). Zic1, Zic4, and Zic5 WMISH 

images were taken by Ruth Arkell. Apoe WMISH image was taken from Harrison et al. (1995). 
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One difficulty in producing a faithful transactivation assays for ZIC proteins is that very little is 

known about bona fide DNA-binding sites for ZIC proteins. In case of ZIC3, recent progress has 

begun to resolve this issue. A universal PBM assay revealed an optimal ZIC3 DNA-binding 

sequence (Badis et al., 2009). In addition, Lim et al. (2010) performed a ChIP-chip experiment 

on mouse ESCs followed by a de novo motif search and identified similar binding sites for ZIC3 

(Figure 4.3). The latter study also showed that ZIC3 is able to bind the Nanog promoter region 

to activate transcription. 

 

 

 

4.1.2 Aims 

Using these data a new transactivation assay (ZICflash) for ZIC3 was devised. Design of the new 

transactivation assay for ZIC3 involved: 

• an overhaul of the transactivation assay protocol 

• using a new generation luciferase reporter 

• testing the suitability of synthetic enhancers 

• selecting appropriate negative controls  

• comparing genomic promoters versus synthetic enhancers  

• choosing an appropriate minimal promoter 

• finding a combination of components that leads to a robust assay for analyzing ZIC-

dependent transactivation. 

 

Figure 4.3: Putative ZIC3 DNA-binding sites. 

(A) Sequence identified by Badis et al., (2009) 

after performing a universal PBM. (B) Sequence 

identified by Lim et al., (2010) after performing 

ChIP-chip on mouse ESCs. 
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4.2 RESULTS 

4.2.1 An improved transactivation assay protocol 

A robust protocol is essential for any experiment since it enables correct inference of the 

underlying biological mechanism from the experimental data. All experiments require repeat 

sampling to increase confidence that the correct value has been obtained (Vaux et al., 2012), 

however, large variation between repeats can obscure small differences between treatment 

groups. Typically two types of repeats are employed within experimental protocols: (i) internal 

replicates (or technical repeats) measure experimental error, such as differences in pipetting 

and; (ii) external replicates (or biological repeats) measure variability between biological 

samples (Blainey et al., 2014). Transactivation assays performed in the laboratory exhibited high 

internal variability and efforts were therefore made to improve experimental design and reduce 

variation between technical replicates. 

The transfection protocol used initially (Protocol 1) involved growing cells, prior to transfection, 

in a 96-well plate. A transfection mix was then made for each treatment group and the mix split 

between each of four wells to produce four internal replicates with luminescence measured 

from each well 24 hours post-transfection (Figure 4.4A). A new transactivation assay protocol 

(Protocol 2) was designed (Figure 4.4B), which involved growing cells in a 12-well plate and the 

addition of the entire transfection mix to one well of cells. 6 hours post-transfection, these cells 

were split and three aliquots from each treatment group transferred to three wells of a 96-well 

plate to produce three internal replicates with luminescence from each well measured 18 hours 

post-splitting. Additionally, media was added to extra wells surrounding the transfected cells to 

prevent evaporation in the edge wells from affecting cell growth and viability. Moreover, the 

remaining cells in the 12-well plate were incubated in parallel with those split for luminescence 

assay and harvested for Western blot analysis.  
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Figure 4.4: Modifications in transactivation assay protocol. Illustration of a typical transactivation assay 

testing the transactivation ability of three expression plasmids (blue, green and purple semi-circles) from 

three reporter plasmids (red, orange and yellow semi-circles). (A) For protocol 1, cells were grown in a 

96-well plate for 24 hours such that at time of transfection each well was 60-70% confluent. Each 

transfection combination had four internal replicates on the plate. 24 hours after transfection luciferase 

substrate was added to each well (yellow wells) and luminescence measured using a luminometer. (B) For 

protocol 2, cells were grown in a 12-well plate for 24 hours such that at time of transfection each well was 

80-90% confluent. 6 hours after transfection cells were split from 12-well plate and transferred to a 96-

well plate such that the following day each well of the 96-well plate was 90-100% confluent. Each 

transfection combination had three internal replicates on the plate. Media was added to empty wells (red 

wells) surrounding the wells containing transfected cells. The remaining cells after splitting were 

incubated overnight in the 12-well plate. 18 hours after splitting (or 24 hours after transfection) luciferase 

substrate was added to each well (yellow wells) and luminescence measured using a luminometer. Cells 

from the 12-well plate were harvested, pelleted and snap-frozen to process for Western blotting. 
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Protocol 1 and 2 were compared using the assay shown in Chapter 3, which compared the 

transactivation abilities of wild-type and katun ZIC3 at B:luc+:APOE (Figure 4.5). Protocol 2 

reduced variation between the internal replicates (in each experimental repeat; N=3) and 

reduced the amount of luciferase substrate used. 

  

 

 

All subsequent transactivation assays were performed using Protocol 2. In all cases the V5-DEST 

parental vector for all expression constructs was used as one treatment group. This provided a 

background luminescence measurement of transactivation by endogenous factors (Doppler et 

al., 2014). Generally throughout subsequent experiments data is presented from one external 

repeat in lumens, directly reporting the raw luminescence scores from the luminometer and 

showing the standard deviation (SD) between three internal repeats. A corresponding Western 

blot shows the presence of transfected proteins. A minimum of three experimental repeats were 

performed for each treatment group and the raw data analyzed using a two-way ANOVA. 

Following statistical analysis, the raw luciferase values were converted to relative luciferase 

activity (RLA) calculated by dividing the raw luminescence value from an expression construct 

Figure 4.5: A more robust transactivation assay protocol. HEK293T cells were transfected in a 96-well 

plate (A) as in Protocol 1, or a 12-well plate (B) as in Protocol 2 with the B:luc+:APOE reporter and the 

expression plasmid shown. 24 hours post-transfection luciferase substrate was added and luminescence 

measured using a luminometer. Errors bars represent standard deviation between three internal 

replicates. Data presented is from one representative experiment.  
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(e.g. V5-ZIC3-wt) by the background luminescence (measured by V5-DEST) and data presented 

as the mean RLA from three external replicate experiments, with error bars indicating the 

standard error of the mean (SEM) and relevant statistics from ANOVA shown on this graph. This 

method provided a direct indication of the effect ZIC proteins had on a particular response 

element, and allowed determination of the ramifications of a particular mutation on the 

transactivational ability of ZIC proteins. 

 

4.2.2 A new generation reporter plasmid (when old is not gold) 

The APOE reporter construct used in Chapter 3 and Figure 4.5 has pXP2 as the backbone. Several 

new generation vectors are now available which use a codon optimized luciferase CDS (called 

luc2) and engineered to decrease cryptic transactivation from backbone sequences. Promega’s 

pGL4.20 (referred to as B:luc2 in this thesis) was selected to determine whether these 

improvements would benefit a ZIC transactivation assay. The APOE promoter from the 

B:luc+:APOE vector was therefore cloned into B:luc2 (Figure 4.6A-C) and checked for integrity by 

sequencing. The new reporter plasmid (B:luc2:APOE) was compared to B:luc+:APOE following 

co-transfection with V5-DEST or V5-ZIC3-wt (or V5-ZIC3-C365S) in HEK293T cells (Figure 4.6D). 

The B:luc2:APOE reporter exhibited both increased raw luminescence via V5-ZIC3-wt and 

decreased background luminescence (i.e. with V5-DEST). Consequently, significantly more 

transactivation was measured at the B:luc2:APOE reporter than at the B:luc+:APOE reporter, 

despite both constructs containing the same response element (see RLA plot in Figure 4.6D). For 

both reporter vectors ZIC3-C365S (DNA-binding mutant: see section 4.2.5) was unable to 

activate transcription. The data indicate the B:luc2 vector is a better choice for the new ZIC 

transactivation assay. 
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Figure 4.6: Vector backbone influences transactivation assay performance. (A) The APOE promoter 

region (-189/+1) was PCR amplified from the B:luc+:APOE plasmid and analysed by agarose gel 

electrophoresis, NTC: no template control . (B) The APOE promoter was cloned into the B:luc2 vector and 

correctly recombined colonies identified via colony PCR and agarose gel electrophoresis. NTC: no 

template control. (C) The expected size of products and other cloning details are shown in the table. (D) 

HEK293T cells were co-transfected with the reporter and expression plasmids shown, and luminescence 

quantified 24 hours post-transfection. The top graph shows one representative experiment. Error bars 

represent SD between three internal repeats. Expression of the transfected proteins was confirmed via 

Western blotting with α-V5 and the α-TBP blot served as nuclear fraction loading control. The bottom 

graph shows mean RLA (with reference to V5-DEST), N=3. Error bars represent SEM. *: p < 0.01 ANOVA. 
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4.2.3 ZIC-specific transactivation via synthetic enhancers 

The APOE promoter used in the experiments above contains three ZIC protein binding sites, in 

addition to binding sites for SP-1 and AP-2 (Figure 4.7A) (Salero et al., 2001). It is possible that 

some background activity of this element occurs via endogenous SP-1 and AP-2 transcription 

factors. The publication of two studies that each identified the same, new ZIC3 binding site 

(Badis et al., 2009, Lim et al., 2010) in addition to the known ZIC binding site in the APOE 

promoter (Salero et al., 2001) provided the opportunity to generate a synthetic enhancer 

composed only of ZIC binding sites, such as in the widely used TOPflash reporter plasmid 

(Korinek et al., 1997). In total, six synthetic ZIC enhancer constructs were designed such that 

there were six copies of a particular enhancer separated by a five nucleotide spacer fragment 

(Figure 4.7C). Three constructs contained multimerized copies of the ZIC-protein binding sites 

from the APOE promoter (APOE-M1, APOE-M2 and APOE-M3; Figure 4.7A) and the other three 

contained sites computed by Lim et al., (Z3M1, Z3M2 and Z3M8; Figure 4.7B). Each construct 

was cloned into the B:luc2 vector (Figure 4.8) and the integrity of new plasmids confirmed by 

sequencing. 

The new reporter constructs were tested for transactivation via ZIC3. Amongst the APOE 

enhancers, highest level of luminescence was observed via the APOE-M2 enhancer (Figure 4.9A). 

However calculation of RLA showed a weak transcriptional response from ZIC3 via APOE-M2 

(~3.2 fold), in comparison to stronger activation seen via APOE-M1 (~5 fold) and APOE-M3 (~4.7 

fold). Amongst the Z3M enhancers, high levels of luminescence were observed from the Z3M2 

and Z3M8 enhancers (Figure 4.9B). Calculation of RLA showed that strongest transcriptional 

activity of ZIC3 was via Z3M8 (~6.3 fold), followed by Z3M2 (~4.5 fold) and Z3M1 (~1.6 fold). 

With all reporters, the transcriptional response via ZIC3-C365S was similar to as observed with 

V5-DEST. Hence four of six synthetic enhancers displayed a greater transcriptional response via 

ZIC3, in comparison to the genomic APOE promoter. 
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Figure 4.7: Known DNA-binding sites of ZIC proteins. (A) Nucleotide sequence of the human APOE 

promoter. Numbers above the sequence represent distance (in bp) from the major transcription start site. 

Bases are coloured: adenine (A) in red; cytosine (C) in blue; guanine (G) in green and thymine (T) in orange. 

Grey boxes highlight binding sites for ZIC proteins (APOE-M1: -188/-169; APOE-M2: -143/-124; APOE-M3: 

-69/-50). Location of binding sites for transcription factors SP-1 and AP-2 are included. (B) Weeder 

program read-out of ZIC3 DNA-binding sites provided by Lim et al. (2010). Data was obtained by 

performing ChIP-chip on mouse embryonic stem cells. (C) The synthetic enhancer was designed to contain 

six copies of a particular ZIC3-binding site (ZIC3-BS) with each separated by a 5-nucleotide spacer 

fragment, cloned upstream of the luciferase (luc2) CDS. 
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Figure 4.8: Construction of synthetic enhancer reporter constructs. (A) The synthetic APOE enhancers 

(APOE-M1, APOE-M2 and APOE-M3) were purchased as cloned fragments in pUC57 vector (Genscript) 

and were PCR amplified from these vectors using primers Ark106-Ark107 and products analysed by 

agarose gel electrophoresis. (B) The synthetic Z3M enhancers (ordered as single-stranded oligos) were 

annealed and analysed by agarose gel electrophoresis. (C, D) Each synthetic enhancer was cloned into the 

B:luc2 vector and success of cloning was determined via PCR of the B:luc2 MCS using primers Ark1566-

Ark1567. Amplicons were resolved on an agarose gel. (E) The expected size of products and other cloning 

details are shown in the table. 
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Figure 4.9: Transactivation via reporter vectors containing synthetic enhancers. HEK293T cells were co-

transfected with the reporter (A) B:luc2:APOE-M1, or B:luc2:APOE-M2, or B:luc2:APOE-M3, or (B) 

B:luc2:Z3M1, or B:luc2:Z3M2, or B:luc2:Z3M8, and the expression plasmids shown. 24 hours post-

transfection luciferase expression was measured. The top graph shows one representative experiment. 

Error bars represent SD between three internal repeats. Expression of the transfected proteins was 

confirmed via Western blotting with α-V5 and the α-TBP blot served as nuclear fraction loading control. 

The bottom graph shows mean RLA (with reference to V5-DEST), N=3. Error bars represent SEM. *: p < 

0.01 ANOVA. 
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The choice of response element plays a critical role in the eventual transactivation, since this is 

the sequence that draws transcription factors to activate transcription of target genes. Thus far 

ZIC3 seemed to provide a better transcriptional response via the synthetic APOE and Z3M motifs. 

However to conclusively decide on the choice of response element to use for ZIC3-mediate 

transcription, another genomic promoter region was tested. Lim et al. (2010) demonstrated that 

wild-type ZIC3 binds the Nanog promoter region and activates transcription. This Nanog 

promoter region was amplified from mouse genomic DNA, cloned into B:luc2  (Figure 4.10A-C) 

and checked for integrity by sequencing. Transactivation via the Nanog reporter was compared 

with the genomic APOE promoter and Z3M2 synthetic enhancer, following co-transfection with 

V5-DEST or V5-ZIC3-wt (or V5-ZIC3-C365S) in HEK293T cells (Figure 4.10D). In comparison to the 

APOE promoter and Z3M2 motif, the Nanog promoter region provided the lowest level of 

luminescence with V5-ZIC3-wt. Highest level of transactivation was measured at the Z3M2 

enhancer (~5.6 fold), followed by the APOE promoter (~3 fold) and the Nanog promoter (~2.5 

fold) (see RLA plot in Figure 4.10D). For all reporter vectors ZIC3-C365S (DNA-binding mutant: 

see section 4.2.5) was unable to activate transcription. The data confirm that the synthetic Z3M2 

enhancer is more potent in promoting transactivation via ZIC3 than the genomic promoters.  
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Figure 4.10: Finding the best response element for transactivation via ZIC3. (A) The Nanog promoter 

region was PCR amplified from mouse genomic DNA (gDNA) and analysed by agarose gel electrophoresis, 

NTC: no template control (B) The Nanog promoter was cloned into B:luc2 and correctly recombined 

colonies identified via colony PCR and agarose gel electrophoresis. NTC: no template control. (C) The 

expected size of products and other cloning details are shown in the table (D) HEK293T cells were co-

transfected with the reporter and the expression plasmids shown. V5-DEST was also co-transfected with 

each reporter to measure background (not shown). 24 hours post-transfection luciferase expression was 

measured. The top graph shows one representative experiment. Error bars represent SD between three 

internal repeats. Expression of the transfected proteins was confirmed via Western blotting with α-V5 

and the α-TBP blot served as nuclear fraction loading control. The bottom graph shows mean RLA (with 

reference to V5-DEST), N=3. Error bars represent SEM. *:  p < 0.01 ANOVA. 
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4.2.4 Choice of negative control 

In order to make judgments regarding the response of an effector in the presence of a stimulus, 

the two variables must be separated and individually assessed on how they are contributing to 

the eventual experimental findings. The aim of this study was to determine the efficacy of 

transactivation via wild-type ZIC3 using different enhancer sequences. This raised two questions: 

1) how much luminescence from transfected cells is due to the reporter plasmid alone, and 2) is 

the change in luminescence, in the presence of wild-type ZIC3, specifically due to DNA-binding?  

The first question was answered by including the empty expression plasmid (V5-DEST), which 

allowed measurement of luminescence purely due to the presence of reporter vector in cells. 

Hence data could be analyzed by comparing luminescence via V5-ZIC3-wt to V5-DEST, or by 

calculating RLA. To answer the second question, a transcription factor was required that was 

unable to recognize and bind ZIC3-DNA target sites, thus limiting its ability to activate 

transcription. The transcription factors used in this study (Figure 4.11A) included: i) ZIC3-katun 

that has previously been shown to fail to activate transcription (Ahmed et al., 2013), presumably 

due to lack of the ZFD required for DNA-binding; ii) ZIC3-C365S that contains a missense 

mutation at the site of the second cysteine in ZF4 (Figure 4.11B). A similar mutation in ZIC2 has 

been shown to abolish DNA-binding activity (Brown et al., 2005); and iii) CDX2, an unrelated 

transcription factor that is known to bind to AT-rich DNA sequences (Freund et al., 1998), 

whereas ZIC proteins generally prefer GC-rich sequences (Aruga, 2004). These transcription 

factors were tested against the reporters B:luc2:Z3M1, B:luc2:Z3M2 and B:luc2:Z3M8 (Figure 

4.11C). Wild-type ZIC3 stimulated transcription from all reporters (as seen before). Surprisingly 

ZIC3-katun was able to activate transcription significantly with all reporters, albeit not at the 

same levels as wild-type ZIC3 with B:luc2-Z3M2 and B:luc2-Z3M8. ZIC3-C365S and CDX2 were 

unable to activate transcription from all reporters, thus both fulfilled the desired solution to 

question 2. Nonetheless ZIC3-C365S was selected as the most appropriate negative control, 

since this variant of ZIC3 differs from wild-type ZIC3 by one amino acid, where CDX2 belongs to 

a completely different family of transcription factors. 
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Figure 4.11: Choosing an appropriate negative control. (A) Schematic representation of the proteins used 

to determine an appropriate negative control. Full length ZIC3-wt contains 467 amino acids. ZIC3-katun 

cDNA contains a premature termination codon and expresses a truncated protein containing only the first 

250 amino acids. ZIC3-C365S is a full length variant containing a point mutation that converts the second 

canonical cysteine to a serine residue on ZF4. CDX2 is an unrelated transcription factor that contains 313 

amino acids. (B) Sequence read of ZIC3-wt and ZIC3-C365S from nucleotide positions 1078 to 1107 on the 

Human ZIC3 cDNA (NM_003413.3), showing conversion of thymine (T) (black arrow) to adenine (A) 

(asterick) at position 1093. This conversion changes the triplet codon for cysteine to serine. Nucleotides 

are in black font with a clear background. Amino acids are in black font with coloured backgrounds. (C) 

HEK293T cells were co-transfected with the reporter and expression plasmids shown, and luminescence 

quantified 24 hours post-transfection. The graph shows one representative experiment. Error bars 

represent SD between three internal repeats. a, b and c: p < 0.01 ANOVA (performed on data from each 

reporter). Experiment was repeated twice to confirm results.   
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4.2.5 Choosing a minimal promoter 

A minimal promoter is a sequence of DNA located ~35 bp upstream and/or downstream of the 

transcription site that interacts with the basal transcriptional machinery (RNA polymerase II) to 

initiate transcription (Smale et al., 2003). Presence of other DNA elements recognized by specific 

transcription factors then allows to increase the rate of transcription. While the Z3M2 synthetic 

enhancer in comparison to previously used promoters provided reasonably higher levels of 

transcription via ZIC3, perhaps a further boost could be provided by adding a minimal promoter. 

The minimal promoters trialed included the human β-globin promoter (amplified from pKS:β-

globin:lacZ), the c-fos promoter (amplified from TOPflash:c-fos) and the viral TK promoter 

(amplified from TOPflash:TK) (Figure 4.12A-C). Amplicons were digested with HindIII, cloned into 

B:luc2 (Figure 4.12D) and checked for integrity by sequencing. 

When tested for transactivation via ZIC3, B:luc2:c-fos provided the highest level of 

luminescence, followed by B:luc2:β-globin and B:luc2:TK (Figure 4.13). However both wild-type 

ZIC3 and ZIC3-C365S repressed transcription via the c-fos promoter. Wild-type ZIC3 was 

significantly able to enhance luciferase expression above background levels via all other 

reporters, albeit RLA was considerably low. ZIC3-C365S was unable to enhance luciferase 

expression beyond background levels (V5-DEST). 
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Figure 4.12: Inclusion of minimal promoters in the B:luc2 reporter. Minimal promoters (A) β-globin, (B) 

c-fos, and (C) TK were amplified from parent vectors for cloning and observed on agarose gels, NTC: no 

template control. (D) The minimal promoters were cloned into the B:luc2 vector and correctly recombined 

colonies identified via colony PCR and agarose gel electrophoresis, NTC: no template control. (E) The 

expected size of products and other cloning details are shown in the table. 
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To investigate if these minimal promoters influence transactivation via the Z3M2 motif, they 

were separately cloned into B:luc2:Z3M2. Cloned plasmids were identified via colony PCR (Figure 

4.14A-B) and checked for integrity by sequencing. When tested for transactivation via ZIC3 

(Figure 4.14C-E), the β-globin promoter in combination with the Z3M2 motif (B:luc2:Z3M2:β-

globin) showed a remarkable increase in transactivation. While both c-fos and TK promoters 

were unable to enhance luciferase expression in comparison to when Z3M2 was present alone. 

Figure 4.13: Choosing an 

appropriate minimal promoter. 

HEK293T cells were co-transfected 

with the reporter and expression 

plasmids shown and luminescence 

quantified 24 hours post-

transfection. The top graph shows 

one representative experiment. 

Error bars represent SD between 

three internal repeats. Expression 

of the transfected proteins was 

confirmed via Western blotting 

with α-V5 and the α-TBP blot 

served as nuclear fraction loading 

control. The bottom graph shows 

mean RLA (with reference to V5-

DEST), N=3. Error bars represent 

SEM. *:  p < 0.01 ANOVA. 
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Since the β-globin promoter significantly enhanced transactivation in combination with Z3M2, 

it was also cloned downstream of Z3M8 to investigate if it will have the same effect. The cloned 

plasmid was identified via colony PCR and checked for integrity by sequencing (Figure 4.15A-B). 

When tested for transactivation via ZIC3, the combination of β-globin promoter with Z3M8 did 

not improve transactivation (Figure 4.15C). As a result the B:luc2:Z3M2:β-globin was selected as 

the best reporter to use for transactivation via ZIC3. 

 

 

  

Figure 4.15: Inclusion of the β-globin minimal 

promoter with Z3M8 does not improve 

transactivation. (A) The β-globin promoter was 

cloned into B:luc2:Z3M8 and correctly recombined 

colonies identified via colony PCR and agarose gel 

electrophoresis. (B) The expected size of products 

and other cloning details are shown in the table. 

(C) HEK293T cells were co-transfected with the 

reporter plasmids shown and V5-DEST or V5-ZIC3-

wt. Data shown represents RLA via V5-ZIC3-wt for 

each reporter (with reference to V5-DEST). Errors 

bars represent SD between three internal repeats 

from one representative experiment. Experiment 

was repeated three times to confirm results. 
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The β-globin promoter was also combined with the APOE and Nanog promoters to investigate 

if transactivation via these genomic promoters can be improved. Cloned plasmids were 

identified via colony PCR (Figure 4.16A-B) and checked for integrity by sequencing. When tested 

for transactivation via ZIC3, B:luc2:Nanog:β-globin displayed the lowest luminescence in 

comparison to B:luc2:APOE:β-globin and B:luc2:Z3M2:β-globin, while addition of the β-globin 

promoter did not improve transactivation via the APOE and Nanog promoters (Figure 4.16C). As 

a result, B:luc2:Z3M2:β-globin was chosen for all further transactivation assays involving ZIC3. 

To confirm transactivation via B:luc2:Z3M2:β-globin was specifically due to the DNA-binding of 

ZIC3, ChIP-qPCR was performed on HEK293T cells transfected with the reporter plasmid and 

ZIC3-wt or ZIC3-C365S (Figure 4.16D). Preliminary data showed that chromatin extracted from 

cells transfected with ZIC3-wt displayed significantly higher enrichment of the Z3M2:β-globin 

region in comparison to ZIC3-C365S, indicating that interaction of ZIC3 with the Z3M2:β-globin 

region is required for enhancing luciferase expression.  
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Figure 4.16: Z3M2 synthetic enhancer combined with β-globin minimal promoter boosts transactivation 

via ZIC3. (A) The APOE and Nanog promoters were cloned into B:luc2:β-globin and correctly recombined 

colonies identified via colony PCR and agarose gel electrophoresis. (B) The expected size of products and 

other cloning details are shown in the table. (C) HEK293T cells were co-transfected with the reporter and 

the expression plasmids shown. V5-DEST was also co-transfected with each reporter to measure 

background (not shown). 24 hours post-transfection luciferase expression was measured. The top graph 

shows one representative experiment. Error bars represent SD between three internal repeats. 

Expression of the transfected proteins was confirmed via Western blotting with α-V5 and the α-TBP blot 

served as nuclear fraction loading control. The bottom graph shows mean RLA (with reference to V5-

DEST), N=3. Error bars represent SEM. *: p < 0.01 ANOVA. (D) qPCR output following ChIP from HEK293T 

cells transfected with B:luc2:Z3M2:β-globin and V5-ZIC3-wt or V5-ZIC3-C365S. Errors bars represent SD 

within three internal repeats.  
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4.3 DISCUSSION 

4.3.1 Good experimental design decreases variability 

A PubMed search (conducted at the time of writing this thesis) using the terms “luciferase 

reporter assay” retrieved more than 13,000 publications (since 1987). Despite their popularity, 

reporter gene assays are plagued by external and internal variability that can be introduced due 

to several non-biological factors (Table 4.1). While designing the new transactivation assay for 

ZIC3, the effects of these factors were considered and efforts made to minimise their influence 

on the experimental data.   

 

Factor Type of variation effected Reference 

Cell Culture   

Passage number External  
Dalby et al., 2004  
Yun et al., 2014 

Cell number/density External 
Dalby et al., 2004  
Yun et al., 2014 

Edge effects Internal 
Houck et al., 2006 
Maddox et al., 2008 

Incubator effects External Maddox et al., 2008 

Pipetting inconsistencies  Internal 
Schagat et al., 2007 
Yun et al., 2014 

 

Transfection factors   

Cytotoxicity External 
Felgner et al., 1987 
Zhi et al., 2010 

Plasmid DNA concentration External 
Felgner et al., 1987 
Romoren et al., 2004 

 

Luminescence assay   

Plate position effects  Internal Malo et al., 2006 

Reagent stability External  Lundin, 2014 

Luminometer External Stanley, 1992 
 

Table 4.1: Non-biological factors that can distort the outcome of reporter gene 

assays. Each of these variables can affect the external and/or internal variability, as 

documented in the listed references.  
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4.3.1.1 Practices used to minimize external variability 

Cell passage number: increasing passage number causes genetic drift (Freshney, 2010), reduces 

transfection efficiency and/or loss of reporter activity (Miraglia et al., 2011). All cell lines used in 

this study were expanded and frozen at an early passage (p = 1-2) and all experiments performed 

within passage 4-15. 

Cell density: plating density can impact cell growth (Dalby et al., 2004) and molecular function 

of the protein of interest (Zhang et al., 2001, Tsuji et al., 2005). The appropriate plating density 

was determined based on cell growth and the same plating procedure used for each experiment. 

Cytotoxicity: transfection reagents are known to be cytotoxic (Felgner et al., 1987, Chesnoy et 

al., 2000, Hawley-Nelson et al., 2008). Appropriate concentration of Lipofectamine for high 

transfection efficiency was determined and the Lipofectamine:cell number ratio kept constant 

for each experiment. 

Plasmid DNA concentration: high plasmid DNA concentrations can adversely influence 

transfection efficiency (Felgner et al., 1987, Romoren et al., 2004). Plasmid DNA amounts were 

optimised by observing the desired expression of transfected constructs. In addition fresh DNA 

preparations, quantified via spectrophotometry and agarose gel electrophoresis, were used for 

each experiment. 

Incubator effects: changing plate position within the incubator can affect cell growth due to 

inconsistencies in temperature regulation and CO2 presence in different areas of the incubator 

(Maddox et al., 2008). All incubations were performed by keeping plates in the same position 

within the incubator. 

Luciferase substrate stability: luciferin is highly sensitive to light and oxygen, and is rapidly 

degraded when exposed to these agents (Lundin, 2014). Small aliquots of the substrate were 

stored and reasonably fresh preparations were used for each experiment.  

Type of luminometer: luminometers vary in their dynamic ranges (Stanley, 1992), which can 

affect their ability to correctly measure luminescence from certain treatment groups where 

changes are too high or too low. Thus the assay was optimised using a particular instrument and 
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the same equipment consistently used for each experiment. 

 

4.3.1.2 Practices used to minimize internal variability 

Experiments performed in Chapter 3 showed that Protocol 1 exhibited minimal external 

variation. However a significant level of internal variation was prevalent, which led to high SD 

resulting in a large SEM; since SEM is directly proportional to SD (Altman et al., 2005). This 

prompted a redesign of the experimental setup to allow comparisons between treatment 

groups with small but meaningful differences. 

Pipetting inconsistencies: pipetting errors introduced during plating or transfection are 

exacerbated over the duration of the experiment and can greatly influence the eventual result 

(Schagat et al., 2007, Yun et al., 2014). Within internal replicates, pipetting inconsistencies can 

affect cell numbers, DNA and transfectant concentrations and the transfection efficiency. 

Protocol 2 minimised pipetting steps prior to transfection and utilised master mixes to reduce 

internal variability. 

Edge effects: Routine experimentation using Protocol 1 showed wells at the perimeter of the 

96-well plate exhibited significantly different luminescence relative to those on the interior. This 

phenomenon, known as “edge effects”, markedly increases internal variation for transiently 

transfected cells (Houck et al., 2006, Maddox et al., 2008). Reasons for edge effects include 

thermal and gas gradients (Burt et al., 1979, Oliver et al., 1981) and differential adsorption 

characteristics across the plate (Kricka et al., 1980). In this study edge effects were circumvented 

by addition of culture medium in wells surrounding the perimeter sample wells. This approach 

limited use to 60 of 96 plate wells but significantly reduced variation between internal replicates. 

Positional effects in luminometer: luminometers vary in their ability to measure luminescence 

from individual wells (Malo et al., 2006), a phenomenon known as positional effect, and 

randomising the position of samples on the 96-well plate greatly decreased internal variability. 

These methods combined to decrease internal variability and ensure reproducibility of 

experimental data. Moreover Protocol 2 both saved on luciferase substrate (as the total 
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numbers of assayed wells is reduced) and enabled post-read processing of transfected cells for 

Western analysis. 

 

4.3.1.3 Other experimental considerations 

A common method to circumvent sample-to-sample variability is the use of an internal control 

plasmid, encoding a different reporter gene (for example, the Renilla luciferase gene), in each 

treatment. The rationale being that this reporter will be constitutively expressed in transfected 

cells and not altered by transfected proteins (Sherf et al., 1996). As such expression from this 

plasmid should correlate to the transfection efficiency and the cells’ general ability to express 

proteins (Schagat et al., 2007). This method is, however, prone to error for a variety of reasons. 

For example, particular treatment groups can influence the expression of the internal control 

plasmid (Everett et al., 1999, Ibrahim et al., 2000, Zhang et al., 2003, Ghazawi et al., 2005) and 

the presence of the internal control plasmid can increase competition for plasmid entry into 

cells. Since this method can erroneously alter experimental results it was not used throughout 

these experiments. Instead, well-to-well variation was detected by analysis of levels of the 

overexpressed proteins by Western blot and exclusion of entire experiments in cases where 

unequal transfection could have skewed measurements. The small internal and external 

variation seen in the data validates this approach. 

Another means of minimizing erroneous conclusions, due to biological and experimental 

variation in the system, is the use of statistical tests (Plant et al., 2000). T-tests, although 

commonly used, suffer from the disadvantage of accruing multiple type 2 errors (McKillup, 

2011). For all transactivation assays reported in this thesis, a two-way analysis of variance 

(ANOVA) was used to assess the effect of two independent variables (or factors) on one 

measurable variable and examine the contribution of individual factors in the total variability of 

the data (Wabed et al., 2010). This type of statistical testing has extensively been used for 

reporter gene assays (Sharma et al., 2003, Berwick et al., 2010, Vaeth et al., 2014). The two 

independent variables in the transactivation assays reported here were: (i) technical repeats 
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(number of experiments), and (ii) transfection treatment groups. The measurable variable was 

the response of cells to the transfection treatment across each technical repeat. Hence the two-

way ANOVA tested three null hypotheses: 1) there is no difference in the response of cells 

between technical repeats, 2) there is no difference in the response of cells to individual 

transfection treatments, and 3) there is no interaction between technical repeats and 

transfection treatments and does that influence the response of cells? For all transactivation 

assays reported when differences were statistically significant, null hypothesis 2 was rejected, 

while null hypothesis 1 and 3 failed to be rejected. 

 

4.3.2 ZICflash reporter boosts ZIC3-dependent transactivation 

4.3.2.1 A suitable reporter vector 

The reporter vector can significantly influence experimental outcome of transactivation assays. 

The ideal reporter vector should express uniformly and optimally in host cells, have minimal off-

target responses and respond sensitively to transcriptional dynamics (Paguio et al., 2005). At the 

start of this project, transactivation assays for ZIC proteins utilised a known ZIC-responsive 

reporter construct containing a fragment of the human APOE promoter (Salero et al., 2001). The 

reporter backbone, pXP2, was constructed more than 25 years ago (Nordeen, 1988). There were 

two problems associated with this vector. Firstly the APOE promoter is most likely a non-specific 

target of ZIC proteins, since the Apoe and Zic genes are not co-expressed during gastrulation 

(Figure 4.2). Secondly background luminescence via the plasmid was unsuitably high, potentially 

due to binding sites for several transcription factors such as CCAAT/enhancer binding protein 

(C/EBPα) (Li et al., 1994) and activator protein-1 (AP-1) (Grimm et al., 1999), within the pXP2 

backbone. Reporter plasmids, such as the pGL4 vectors, have since been modified by removal 

of cryptic regulatory sequences (Paguio et al., 2005) and codon optimisation of the luciferase 

cDNA (called luc2) for expression in mammalian cells (Almond et al., 2003). Comparison of luc+ 

and luc2 cDNAs showed that luciferase expression via luc2 was 4- to 11-fold higher than luc+ 

across different mammalian cell lines (Paguio et al., 2005). The pGL4.20 vector (referred to as 
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B:luc2 in this thesis) was purchased from Promega and exhibited an increased signal:noise ratio 

when the APOE promoter was used to drive luciferase expression via ZIC3 (Figure 4.6). 

Furthermore analysis of the transcriptional landscape from a variety of currently available 

reporter vectors showed that the pGL4 backbone had the lowest level of spurious transcription, 

indicating that this reporter will have minimal background in most cell lines (Nejepinska et al., 

2012). 

 

4.3.2.2 Genomic promoters vs synthetic enhancers 

Expression of reporter genes in transactivation assays is generally driven by two types of 

response elements: (i) genomic promoters, or (ii) artificial/synthetic enhancers, either of which 

contain specific binding sites for the transcription factor being studied. Genomic promoters have 

the advantage of providing a native biological context, since they contain regions of 

chromosomal DNA known to carry sequences required for the controlled expression of a 

particular gene (Miraglia et al., 2011). However signal induction from such elements can be low 

(Paguio et al., 2010). In addition genomic promoters innately contain binding sites for other 

transcription factors which can influence reporter gene expression, complicating data 

interpretation. Synthetic enhancers are sequences of DNA that do not exist in nature and have 

been designed to control gene expression based on knowledge of natural DNA-binding sites of 

the transcription factor (Roberts, 2011). Since transcriptional enhancement from a single 

transcription factor binding site may be too low to be reliably distinguished from background, 

synthetic enhancers are designed using a building block approach such that multiple copies of 

the transcription factor binding sites are placed upstream of the reporter gene to initiate RNA 

polymerase II-mediated transcription (Schlabach et al., 2010). This approach has successfully 

been used to produce synthetic elements that display significantly higher reporter gene 

expression, in comparison to naturally occurring promoters (Jacquet et al., 1989, Mader et al., 

1993). Although synthetic enhancers do not necessarily represent the true nature of 

transcriptional control via the transcription factor within the genome, they provide a useful tool 
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to examine the potencies of transcription factors (Korinek et al., 1997, Li et al., 1999).  

To improve transactivation via ZIC3, synthetic enhancers were created using the known ZIC-

binding sites in the APOE promoter (Salero et al., 2001) and the ChIP-chip identified Zic3-binding 

sites on the Nanog promoter (Lim et al., 2010) (Figure 4.7). While the luminescence generated 

from each enhancer was lower than the genomic APOE promoter, four (APOE-M1, APOE-M3, 

Z3M2 and Z3M8) of the six enhancers provided better transactivation (Figure 4.9). APOE-M1 and 

APOE-M3 motifs also contain known binding sites for SP-1 and AP-2, thus transactivation via 

these elements cannot be conclusively attributed to the activity of ZIC3. In contrast, Z3M2 and 

Z3M8 solely represent ZIC3-binding sites and thus provide a better alternative for assaying 

transactivation via ZIC3 and its variants. To find the most potent response element for 

transactivation via ZIC3, the APOE and Nanog genomic promoter regions were tested in addition 

to the Z3M2 synthetic enhancer. The genomic promoters displayed weak transactivation in 

comparison to the Z3M2 synthetic enhancer (Figure 4.10C), providing further evidence that the 

latter is a more suitable choice for the new transactivation assay. Using the synthetic enhancer 

increased sensitivity of the assay (Yun et al., 2014), eliminated issues regarding repressive 

elements within genomic promoters and provided a “clean” readout of transcriptional activity 

mediated via the DNA-binding of ZIC3.  

 

4.3.2.3 DNA-binding mutant serves as the best negative control 

The most fundamental negative control involves co-transfection of an ‘empty’ expression 

plasmid with the test reporter construct in order to measure background luminescence (Salero 

et al., 2001, Mizugishi et al., 2004, Glait et al., 2006, Lim et al., 2010, Posokhova et al., 2015). 

This control measures transactivation via endogenous factors (i.e. at cryptic binding sites on the 

reporter plasmid) and was routinely used herein. It does not, however, reveal the mode of 

transactivation of the transcription factor of interest. Ideally a second type of control that 

distinguishes whether the observed transactivation is due to DNA binding of the test 

transcription factor or to a secondary activation (i.e. where the transfected protein binds an 
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endogenous protein which contacts the DNA) should also be employed. For this purpose, three 

controls were considered (Figure 4.11):  

(i) An unrelated transcription factor (Cdx2) that cannot transactivate at ZIC3 DNA-binding 

sites.  

(ii) A non DNA-binding structural mutant, (the ZIC3 katun protein that lacks the DNA-

binding domain (Ahmed et al., 2013).  

(iii) A non DNA-binding point mutant that contains other functionally important structural 

units. 

A variant of murine ZIC2 has been identified that meets this criterion. The ZIC2-C370S variant 

(with a cysteine to serine substitution in ZF4) is unable to bind DNA or activate transcription 

(Brown et al., 2005) and causes developmental defects in mouse embryos (Nolan et al., 2000, 

Elms et al., 2003b). The equivalent mutation was introduced into the ZIC3 cDNA (to produce 

ZIC3-C365S) and defective DNA-binding confirmed via ChIP-qPCR (Figure 4.16D). 

Controls (i) and (iii) failed to activate transcription at the Z3M synthetic enhancers, but the katun 

mutant displayed some transactivation ability, perhaps because truncated transcription factor 

mutants can behave unpredictably by interacting with co-regulators (Kiefer et al., 2003, Rudd et 

al., 2007, Zheng et al., 2010). Overall, the availability of a full length ZIC3 variant (Figure 4.11A) 

that specifically blocked DNA-binding was judged the best control for specificity of the ZIC3-

response element interaction (Figure 4.11C) and ZIC3-C365S selected for use in subsequent 

experiments.  

 

4.3.2.4 Inclusion of minimal promoter alters signal 

Synthetic enhancers may not efficiently initiate transcription, thus inclusion of a minimal 

promoter can facilitate assembly of basal transcriptional machinery on the minimal promoter 

and increase presence of transcription factor on the synthetic enhancer (Butler et al., 2001). This 

strategy has successfully been used in reporter gene studies to enhance reporter expression via 

mammalian expression vectors (Foecking et al., 1986, Czarnecka et al., 2012, Redden et al., 
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2015). Key features of a suitable minimal promoter are that it is unresponsive to the 

transcription factor being studied and does not display high background activity due to 

endogenous factors. Previous investigations into transactivation via ZIC proteins used the TK 

(Koyabu et al., 2001) or SV40 (Ware et al., 2004) promoters for driving reporter gene expression. 

Since the transcription assay reported here employs HEK293T cells, the SV40 promoter was not 

useful as several reports suggest that the host cell machinery keeps it constitutively active (Rio 

et al., 1985, Bullock, 1997). The TK promoter has low background activity in HEK293T cells (Chen 

et al., 2011) and can drive low levels of reporter gene expression in the presence of ZIC3 (Figure 

4.13). The human β-globin promoter showed similar trends as TK, while the c-fos promoter 

displayed high background and reduced transactivation in the presence of ZIC3. When combined 

with the Z3M2 synthetic enhancer (Figure 4.14C-E), the human β-globin promoter displayed 

transactivation enhancement to a level never observed before for any ZIC transactivation assay. 

Furthermore it produces low background in HEK293T cells (Figure 4.13) (Soni et al., 2014) and is 

not known to be a real target of ZIC proteins in vivo, since during embryonic development 

expression of β-globin is relatively low and the promoter is most active in the adult bone marrow 

(Mantovani et al., 1988) where ZIC proteins are not known to function. 
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CHAPTER 5 

LINKING STRUCTURE TO FUNCTION 
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5.1 INTRODUCTION 

ZIC proteins can directly influence gene expression by binding to DNA and activating 

transcription (Salero et al., 2001, Brown et al., 2005, Lim et al., 2010), or indirectly by binding to 

TCF and inhibiting transcription of Wnt target genes (Pourebrahim et al., 2011, Fujimi et al., 

2012). These functions require (amongst others) a DNA-binding domain, a transactivation 

domain and a protein-protein interaction domain. The DNA-binding domain recognizes specific 

DNA sites and determines the transcriptional target genes (Latchman, 2008, Zhu et al., 2011). 

When bound to target DNA, the transactivation domain interacts with the transcriptional 

machinery to enhance the rate of gene expression. The protein-protein interaction domain binds 

to specific domains of partner proteins to increase or repress transcription (Wolberger, 1999). 

For ZIC proteins we lack knowledge regarding the location of these and other functional 

domains. 

 

5.1.1 C2H2 type zinc fingers 

 The ZIC ZFD is comprised of five tandem C2H2 ZFs. This type of ZF was first identified in the 

Xenopus transcription factor IIIA (TFIIIA) (Miller et al., 1985) and ~700 human proteins contain 

this motif (Weirauch et al., 2011). The C2H2 consensus sequence is (F/Y)-X-C-X2−5-C-X3-(F/Y)-X5-

ψ-X2-H-X3−5-H, where X represents any amino acid and ψ is a hydrophobic residue (Klug et al., 

1995, Wolfe et al., 2000). This motif is able to tetrahedrally bind a zinc ion (Zn2+) via the 

conserved cysteine (C) and histidine (H) residues (Freedman et al., 1988). Initial work on TFIIIA 

revealed the cysteine loop [(F/Y)-X-C-X2−5-C-X3-(F/Y)] forms two antiparallel β-sheets (Figure 5.1) 

while the histidine loop (X5-ψ-X2-H-X3−5-H) forms an α-helix, and these structural units are held 

together by the Zn2+ ion (Berg, 1988).  
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In each ZIC protein four of the five ZFs (ZF2-ZF5) are well conserved and conform to the C2H2 

consensus sequence (Figure 5.2). Conversely, ZF1 is significantly longer than other C2H2 ZFs (for 

all ZIC proteins) and shows high divergence across several species (Aruga et al., 2006). In addition 

all ZIC proteins contain the tandem CWCH2 motif within their ZF1 and ZF2. The function of this 

motif is unknown, however, based on the position of the tryptophan residues relative to cysteine 

and histidine in the crystal structure of ZIC3 ZF1-ZF2, the tryptophans likely play a role in 

stabilisation of their own ZFs and may be involved in the formation of a hydrophobic core 

between ZF1-ZF2 (Hatayama et al., 2010). 

Figure 5.1: Secondary structure of C2H2 zinc fingers. Schematic representation of three tandem C2H2 zinc 

fingers. Each zinc finger consists of two β-sheets and one α-helix. Individual zinc ions (Zn2+) interact with 

paired cysteine (C) and histidine (H) residues to stabilize protein folding. Hydrophobic residues 

phenylalanine (F) or tyrosine (Y) and leucine (L) that form part of the β-sheets and α-helix respectively, 

are represented in brown circles. Amino acid residues of any type are represented by grey circles. The 

highly conserved linker sequence is represented in green circles. Numbers -1, 2, 3 and 6 represent 

positions (relative to the α-helix) of residues involved in making contact with DNA. This figure was adapted 

from Stubbs et al. (2011). 
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Figure 5.2: ZF motif is highly conserved across ZIC family members. Putative amino acids forming 

secondary structures (α and β side-chains) are labelled based on their position within the ZFs. Conserved 

cysteine (C) and histidine (H) residues are in white with a purple background. Residues forming the 

hydrophobic core are in white with a brown background. Other conserved residues, including the 

tryptophan (W) residues of ZF1 and ZF2, are in red. Non-conserved residues are in black. Linker sequences 

are highlighted with a green background. 
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One common function of C2H2 ZFs is DNA-binding with an affinity determined by certain amino 

acids in the α-helix (Iuchi, 2001, Polozov et al., 2015). In particular, amino acid residues on 

positions -1, 2, 3 and 6 (relative to the α-helix) confer binding specificities on each C2H2 ZF 

(Pavletich et al., 1991, Suzuki et al., 1994). There are examples of proteins that do not follow 

this pattern (Fairall et al., 1993), nonetheless mutating amino acids at these key positions 

changes the ability of ZFs to recognize specific DNA sequences (Choo et al., 1994). Like other 

proteins containing multiple ZFs (Jacobs, 1992), ZIC proteins have dissimilar residues at positions 

-1, 2, 3 and 6 between ZFs, however these residues are highly conserved between corresponding 

fingers across orthologues and paralogues (Aruga et al., 2006). Recognition of target nucleotides 

occurs in the major groove of DNA, where one ZF recognizes a tri- or tetra-nucleotide sequence. 

Contacts between protein and DNA are established via sequence specific hydrogen bonds 

between amino acids side chains and target nucleotides (Michalek et al., 2011). This interaction 

is stabilized by wrapping of the fingers around the major groove of DNA and C-capping of 

protein-DNA complex (see below) (Iuchi, 2001). The tandem arrangement of ZFs allows 

interaction between adjacent fingers and stabilization of the protein-DNA complex (Stubbs et 

al., 2011). 

The Zn2+ ion binding ability of C2H2 ZFs is also critical for DNA interaction, as in the absence of a 

Zn2+ ion or if amino acids in the conserved C2H2 structure are mutated, ZFs lose their ability to 

form the ββα secondary structure and bind DNA (Miller et al., 1985, Lee et al., 1989, Pavletich 

et al., 1991, Patel et al., 2007). In addition to the canonical C2H2 residues there are three other 

conserved amino acids: a phenyalanine (F) or tyrosine (Y) residue prior to the first cysteine, a 

phenyalanine (F) or tyrosine (Y) residue after the second cysteine, and a leucine (L) residue prior 

to the first histidine. Collectively these form a hydrophobic core and in conjunction with the 

cysteines and histidines they provide the structural framework of tertiary folding, while other 

variable residues determine the DNA-binding specificity of each domain (Klug, 2010). 

A highly conserved inter-finger “spacer” or H/C link sequence (linker) connects adjacent ZFs and 

is a vital structural element that contributes to DNA binding by controlling the spacing of fingers 
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along the DNA site (Wolfe et al., 2000, Stubbs et al., 2011). The linker is usually a five amino acid 

segment (consensus sequence: TGEKP) between the final histidine (H) of one finger and the first 

conserved aromatic residue (F/Y) of the next finger. Mutations in the TGEKP linker in 

transcription factor TFIIIA reduce binding affinity by 10-100 fold in vitro, while in vivo these 

mutations result in a loss of function (Choo et al., 1993, Clemens et al., 1994, Ryan et al., 1998). 

Structural analysis has revealed that the lysine (K) residue in the linker makes hydrogen bonds 

with the DNA-phosphate backbone (Elrod-Erickson et al., 1996). In addition, chemical shift 

analysis of ZFs has shown that the linker stabilizes the protein-DNA complex by forming 

hydrogen bonds with the C-terminus (C-capping) of the adjacent α-helix (Laity et al., 2000). ZIC 

proteins possess four linkers, two of which (between ZF2-ZF3 and ZF3-ZF4) conform to the 

consensus sequence. The linker between ZF1-ZF2 is significantly longer (8 amino acids in length) 

than others, with the first 6 amino acids conserved across all ZIC proteins. The linker between 

ZF4-ZF5 consist of the sequence TSDKP and presumably possesses the ability to establish 

connections with the phosphate backbone upon formation of ZIC protein-target DNA complex. 

 

5.1.2 Other evolutionary conserved domains 

Outside of the ZFD, ZIC proteins contain other evolutionary conserved domains, namely the 

ZFNC and the ZOC domains (Aruga et al., 2006). The ZFNC domain [consensus sequence: 

GAF(F/L)RYMRQP-(X0−7)-IKQE] is present in all mammalian ZIC proteins and immediately 

precedes the first ZF. It contains a target site for sumoylation (IKQE), a post-translational 

modification that influences protein localization, transactivational ability or protein-protein 

interactions (Rodriguez et al., 2001). The ZOC domain [consensus sequence: (S/T)RDFL-X3-R]  is 

present only in ZICs 1-3 and is located within the N-terminus of the protein. It has been shown 

to be involved in protein-protein interactions that eventually influence the transcriptional 

output of ZIC proteins. Each ZIC protein containing this domain binds to MDFI (I-mfa), which 

inhibits their translocation to the nucleus (Mizugishi et al., 2004). 
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5.1.3 Aims 

This knowledge regarding putative functional domains of the ZIC proteins can now be examined 

via the new ZIC-specific transactivation assays developed in Chapter 4. The following questions 

will be investigated: 

• Which regions of the protein are required for transactivation? 

• Do individual ZFs contribute differently to the DNA binding and protein-protein binding 

activities of this domain? 
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5.2 RESULTS 

5.2.1 ZIC3 variant proteins 

Domain mapping relies on variant forms of the protein of interest, such as deletions and/or 

missense variants. Changes to protein sequence can, however, alter fundamental characteristics 

such as stability or subcellular localization and this information is fundamental to interpretation 

of functional studies. Each expression construct used in this chapter was therefore introduced 

into HEK293T cells and the stability and subcellular localization of the encoded ZIC3 variant 

protein assessed (Figure 5.3) using the same procedures shown in Chapter 3. This is preliminary 

data and the work was shared amongst laboratory members often assisted by undergraduate 

students. Each protein was detectable following transfection into HEK293T cells and the majority 

of the protein was always found in the nucleus, with three nonsense (ZIC3-E155X, ZIC3-C268X 

and Q292X), two missense (ZIC3- W255G and ZIC3-H286R) mutations and deletion of the N-

terminus (ZIC3-Ndel) having the greatest effect on subcellular localization. 
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Figure 5.3: Subcellular distribution of ZIC3 variants. V5-tagged ZIC3 expression constructs containing the 

relevant mutations were transfected into HEK293T cells. 24 hours post-transfection cells were prepared 

for immunofluorescence microscopy and stained with α-V5 (to detect the transfected protein) and α-

LaminB1 (to mark the nuclear boundary). Images of transfected cells were captured and subcellular 

localization of transfected protein quantified using ImageJ. Green and orange regions represent the 

nuclear and cytoplasmic compartments, respectively. Experiments and data analysis were performed by 

K. Diamand. 
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5.2.2 The ZFD and C-terminal regions of ZIC3 are required for 

transactivation 

To determine which regions of the ZIC3 protein contribute to the transactivation ability of the 

protein, a series of truncated proteins were assayed. Transactivation assays were performed 

using either the B:luc2:Nanog or B:luc2:Z3M2:β-globin reporters, since both contain target ZIC 

DNA-binding sites (see sections 4.2.3 and 4.2.5). The truncated proteins (Figure 5.4A) were 

obtained based on PTC-containing ZIC3 variants associated with Heterotaxy in humans (Gebbia 

et al., 1997, Megarbane et al., 2000) and each was missing the C-terminus and either the whole 

ZFD (ZIC3-E155X and ZIC3-katun) or parts of it (ZIC3-C268X, ZIC3-Q292X, ZIC3-1507insTT, ZIC3-

K408X). Each protein was stably expressed and able to accumulate within the nucleus in 

HEK293T cells, although not always to the same degree as the wild-type protein (Figure 5.3). The 

transactivation ability of these mutants (except ZIC3-E155X) was previously assessed (see 

sections 3.2.7 and 3.2.8) using the B:luc+:APOE reporter, where ZIC3-C268X, ZIC3-Q292X and 

ZIC3-1507insTT failed to activate transcription, while ZIC3-K408X appeared to be a hypomorph 

(Ahmed et al., 2013). When tested using the B:luc2:Nanog or B:luc2:Z3M2:β-globin reporters, 

none of the truncated proteins were able to transactivate (Figure 5.4B-C), further confirming the 

importance of the ZFD and C-terminus. 
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Figure 5.4: ZIC3 PTC-containing mutants are unable to activate transcription. (A) Schematic 

representation of wild-type ZIC3 and PTC-containing mutants. HEK293T cells were co-transfected with the 

reporter B:luc2:Nanog (B) or B:luc2:Z3M2:β-globin (C) and the expression plasmids shown, with 

luminescence measured 24 hours post-transfection. The top graph shows one representative experiment. 

Error bars represent SD between three internal repeats. Expression of the transfected proteins was 

confirmed via Western blotting with α-V5 and the α-TBP blot served as nuclear fraction loading control. 

The bottom graph shows mean RLA (with reference to V5-DEST), N=3. Error bars represent SEM. a and b: 

p < 0.01 ANOVA. 
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The most complete of all PTC-mutants tested (ZIC3-K408X) truncates at amino acid 408 which 

lies between the two canonical histidines in ZF5 of ZIC3. To distinguish if the inability of ZIC3-

K408X to transactivate reporter sequences is due to a defect in ZF5 or to lack of the C-terminal 

domain, ZIC3 proteins with a mutation at the canonical cysteine in each ZF were produced and 

tested in the same assays. Each of these proteins (ZIC3-C268S, ZIC3-C302S, ZIC3-C335S, ZIC3-

C365S and ZIC3-C393S) was stably expressed in HEK293T cells and localised to the nucleus 

(Figure 5.3). Mutation of ZF 1-4 fully ablates transactivation ability, whereas mutation of ZF5 

only partially ablates transactivation ability (Figure 5.5). The contrast between the partial loss of 

transactivation by the ZF5 mutant and the total loss shown by ZIC3-K408X indicates that 

sequences critical for transactivation are located downstream of the ZFD. 
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Figure 5.5: Mutations in ZFs of ZIC3 protein abolish the ability to activate transcription. (A) Position of 

mutations [cysteine (C) converted to serine (S)] on each ZF mutant are shown (in red). HEK293T cells were 

co-transfected with the reporter B:luc2:Nanog (B) or B:luc2:Z3M2:β-globin (C) and the expression 

plasmids shown, with luminescence measured 24 hours post-transfection. The top graph shows one 

representative experiment. Error bars represent SD between three internal repeats. Expression of the 

transfected proteins was confirmed via Western blotting with α-V5 and the α-TBP blot served as nuclear 

fraction loading control. The bottom graph shows mean RLA (with reference to V5-DEST), N=3. Error bars 

represent SEM. a, b and c: p < 0.01 ANOVA. 
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5.2.3 Mutations within ZF-1 abate transactivational ability of ZIC3  

As described in section 5.1.1, ZF1 shows highest divergence amongst ZIC proteins, has a 

significantly longer consensus C2H2 ZF sequence and (along with ZF2) contains the CWCH2 motif 

(Aruga et al., 2006). It has therefore been hypothesized that ZF1 may not be directly involved in 

DNA-binding at ZIC-responsive elements (ZREs) but may facilitate the DNA binding of the 

remaining ZFs (Hatayama et al., 2010) and/or participate in protein-protein interactions 

(Houtmeyers et al., 2013). To determine if this is the case, a series of missense proteins with 

mutations in the first ZF were assayed. The specific substitutions were again selected based on 

information from human genetics with each substitution (ZIC3-C253S, ZIC3-W255G and ZIC3-

H286R) corresponding to a predicted protein in Heterotaxy patients (Gebbia et al., 1997, Ware 

et al., 2004, Chhin et al., 2007). Additionally, each of these residues are evolutionary conserved 

in ZF1 of all ZIC proteins (Figure 5.2; ZIC3-C253 and ZIC3-H286 are part of the C2H2 domain, while 

ZIC3-W255 is the defining feature of the CWCH2 motif) predicting functional significance. Each 

variant protein was stably expressed in HEK293T cells and localised to the nucleus (Figure 5.3). 

When tested for transactivation at the Nanog promoter, in comparison to ZIC3-wt, ZIC3-C253S 

exhibited significantly reduced RLA, while ZIC3-W255G and ZIC3-H286R were unable to 

stimulate transcription from the Nanog promoter (Figure 5.6B). To corroborate these findings 

the mutants were also tested with B:luc2:Z3M2:β-globin (Figure 5.6C). Here, all mutants were 

judged to ablate ZIC3-dependent transactivation. The Western blot analysis used to confirm 

expression of exogenous proteins in the pool of cells used for the luciferase assay consistently 

showed that each variant was apparently expressed at lower levels in comparison to ZIC3-wt. 

These results are in agreement with what has previously been observed in other transactivation 

assays (Ware et al., 2004, Chhin et al., 2007, D'Alessandro et al., 2013) and overall suggest that 

ZF1 is essential for transactivation at ZREs. 
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Figure 5.6: Conserved amino acids in ZF1 of ZIC3 are required for transactivation. (A) Amino acid 

sequences of ZF-1 (position 251-286) of ZIC3-wt, ZIC3-C253S, ZIC3-W255G and ZIC3-H286R are shown. 

Conserved cysteine (C) and histidine (H) residues are in white with a purple background. Residues forming 

the hydrophobic core are in white with a brown background. Other conserved residues are in red. Non-

conserved residues are in black. Each mutated residue is in light blue.  HEK293T cells were co-transfected 

with the reporter B:luc2:Nanog (B) or B:luc2:Z3M2:β-globin (C) and the expression plasmids shown, with 

luminescence measured 24 hours post-transfection. The top graph shows one representative experiment. 

Error bars represent SD between three internal repeats. Expression of the transfected proteins was 

confirmed via Western blotting with α-V5 and the α-TBP blot served as nuclear fraction loading control. 

The bottom graph shows mean RLA (with reference to V5-DEST), N=3. Error bars represent SEM. a, b and 

c: p < 0.01 ANOVA. 



155 
 

5.2.4 Multiple domains contribute to an overall repressive effect of the 

ZIC3 N-terminus. 

Phylogenetic analysis of ZIC proteins has revealed two conserved domains outside the ZFD 

(Aruga et al., 2006): (i) ZFNC domain found in all ZIC proteins, and (ii) ZOC domain present only 

in ZICs 1-3. While the functional significance of the ZFD for transactivation is clear, the 

requirement of the ZFNC and ZOC domains is unknown. To assess the importance of these and 

other N-terminal sequences, one N-terminal deletion and two interstitial deletion mutants were 

constructed (Figure 5.7A). Each of these proteins was stably expressed in HEK293T cells and 

localised to the nucleus (Figure 5.3). When the N-terminal deletion (ZIC3-Ndel) was assayed, it 

was found incapable of eliciting transcription from the Z3M2:β-globin synthetic enhancer, but 

drove vast over stimulation of the Nanog promoter relative to wild-type ZIC3 protein (Figure 

5.7B-C). This suggests interaction with other DNA bound proteins at the Nanog promoter enable 

transactivation via ZIC3-Ndel and in this context the N-terminus has a strong transcriptional 

repression activity. Specific deletion of the N-terminus conserved domains (ZOC and ZFNC) also 

gave contrasting results at the Z3M2:β-globin synthetic enhancer and genomic Nanog reporter 

constructs (Figure 5.7B-C). In both cases deletion of these domains led to hyper-stimulation of 

the Z3M2:β-globin synthetic enhancer but were unable to stimulate the Nanog promoter to the 

same extent as wild-type ZIC3 protein. Overall this indicates that a strong repressive effect of 

these domains at an isolated ZIC3 binding site is converted to a mild stimulatory role at the 

Nanog promoter. These data suggest that regions within the N-terminus that elicit a strong 

repressor effect lie outside of the ZOC and ZFNC domains. 
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Figure 5.7: N-terminal of ZIC3 is required for transactivation. (A) Schematic representation of the ZIC3 

deletion mutants used. ZIC3-ZOCdel is missing the ZOC domain (green band); ZIC3-ZFNCdel is missing the 

ZFNC domain (brown band); and ZIC3-Ndel is missing the entire N-terminal (amino acids preceding ZF1). 

HEK293T cells were transfected with the reporter B:luc2:Nanog (B) or B:luc2:Z3M2:β-globin (C) and the 

expression plasmids shown, with luminescence measured 24 hours post-transfection. The top graph 

shows one representative experiment. Error bars represent SD between three internal repeats. 

Expression of the transfected proteins was confirmed via Western blotting with α-V5 and the α-TBP blot 

served as nuclear fraction loading control. The bottom graph shows mean RLA (with reference to V5-

DEST), N=3. Error bars represent SEM. a, b, c and d: p < 0.01 ANOVA. 
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5.3 DISCUSSION 

As transcriptional regulators, ZIC proteins should be modular in nature. The ZFD is typically 

responsible for binding to DNA, RNA or proteins (Iuchi, 2001, Gamsjaeger et al., 2007). In the 

case of ZIC proteins the ZFD has also been found to be required for localization to the nucleus 

(Bedard et al., 2007, Hatayama et al., 2008). However, for ZIC proteins alone to directly influence 

transcription, they must have a transcriptional regulatory domain that interacts with or recruits 

the basal transcriptional machinery to enhance (or reduce) the rate of transcription (Latchman, 

1997). In contrast to DNA-binding domains, transcriptional regulatory domains are relatively less 

conserved, thus are difficult to locate based on sequence analysis. 

 

5.3.1 Transactivation domain of ZIC3 resides in the C-terminus  

To identify regions within ZIC3 required for transactivation a classic deletion series experiment 

was performed using human ZIC3 PTC-containing variants. Their protein products had C-

terminal truncations that were either missing the whole ZFD (ZIC3-E155X and ZIC3-katun) or part 

of it (ZIC3-C268X, ZIC3-Q292X, ZIC3-1507insTT and ZIC3-K408X). None of these variants 

activated transcription at either the B:luc2:Nanog or B:luc2:Z3M2:β-globin reporters (Figure 

5.4B-C) despite accumulating in the nucleus upon overexpression in HEK293T cells (Figure 5.3). 

Presumably, the lack of some or all ZFs in these mutants would change the overall tertiary 

structure of the protein and prohibit DNA-binding as observed in functional assays of other ZF 

proteins (Gebelein et al., 2001, Kim et al., 2003, Vassen et al., 2005). This assumption could be 

tested by DNA binding assays with the variant proteins and validated ZREs. 

The ZIC3-K408X variant contains most of the ZFD and lacks only the last three residues of ZF-5 

and the adjoining C-terminus (Figure 5.8). Previous transactivation studies with this protein 

categorised it as hypomorphic at either the viral SV40 promoter (Ware et al., 2004) or human 

APOE promoter (Ahmed et al., 2013), but as previously discussed these promoters lack a 

consensus ZIC3 binding site. Conversely, when tested here with a consensus ZIC3 DNA binding 
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sequence, the ZIC3-K408X variant was unable to elicit transactivation (Figure 5.4B-C). This 

finding identified either ZF5, the ZIC3 C-terminus, or both as harbouring sequences critical for 

transactivation. 

 

 

 

To distinguish these possibilities, a missense mutation was made in ZF5 with the aim of 

abolishing ZF5 function while leaving the C-terminus intact. The second cysteine (C) of ZF5 was 

selected for substitution due to its requirement for the ββα structure and Zn2+ ion coordination, 

and serine (S) selected as the substituted residue since it is not a Zn2+ ligand (Pace et al., 2014) 

and the two amino acids differ only in one atom (Figure 5.9). A similar mutation in the second 

cysteine of ZIC2 ZF4 is known to prevent DNA-binding (Brown et al., 2005) and perturb ZIC2 

function in vivo (Elms et al., 2003a). Strikingly, the resulting variant protein (ZIC3-C393S) retains 

some transactivation ability at both the B:luc2:Nanog or B:luc2:Z3M2:β-globin reporters (Figure 

5.5) indicating that the C-terminus is required for transactivation. It would be interesting to 

determine whether specific C-terminus deletion of other ZIC proteins also ablates 

transactivation ability at the ZIC consensus binding sites using the newly generated luciferase 

assays. 

Figure 5.8: Schematic illustration of the K408X mutation. Amino acid sequence of ZIC3 ZF5 (position 389-

410) are shown. Conserved cysteine (C) and histidine (H) residues are in white with a purple background. 

X in red denotes the stop codon (or PTC). 
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5.3.2 Each ZF has a role to play in transactivation 

Since ZIC proteins contain multiple ZFs, it is possible that specific functions are carried out only 

by a particular subset of ZFs (Iuchi, 2005), in particular it is thought the ZIC ZF1 and/or ZF2 may 

have a distinct function from ZF3-5. Using the rationale described above, the second cysteine of 

each ZF was substituted with a serine residue. This mutation in ZF1-4 rendered the proteins 

incapable of transactivation (Figure 5.5B-C) indicating that each ZF is individually required for 

transactivation. To further investigate the function of ZF1, three further missense mutations 

were assayed. As observed before (Chhin et al., 2007), the in vitro expression of these mutants 

was reduced in comparison to wild-type ZIC3 (Figure 5.6B-C). This could be attributed to 

increased degradation of these proteins due to instability in their protein structure as a result of 

the mutation. Transactivation assays showed that mutants were either hypomorphic (ZIC3-

C253S) or nulls (ZIC3-W255G and ZIC3-H286R). Analysis of subcellular localization of these 

mutants showed that significant amounts of protein can enter the nucleus. The most 

conceivable explanation for diminished transactivation is perturbed DNA-binding. Each 

mutation will alter the structural configuration needed for contact with target DNA sites. 

Comparisons of secondary structure display that the ZFDs of ZIC3-C253S and ZIC3-H286R have 

Figure 5.9: Chemical effect of the cysteine to serine conversion on ZFs. Zinc ions (Zn2+) are chelated by 

cysteine residues using their sulphur atom. Cysteines differ from serine residues by a single atom: sulphur 

in cysteine is replaced by oxygen in serine. Due to lack of the Zn2+ ion-interacting sulphur atom, serine 

cannot chelate Zn2+. 
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more random coil than wild-type ZIC3 (Hatayama et al., 2008). Coiling of wild-type ZIC3 normally 

reduces when bound to a Zn2+ ion, however in case of ZIC3-C253S and ZIC3-H286R ZFDs random 

coiling is even higher than wild-type ZIC3 when not bound to a Zn2+ ion, indicating that the 

mutations have impaired coordination of Zn2+ ion via the mutant ZFs. CD spectra of ZIC3-W255G 

showed no difference to wild-type ZIC3, thus the mutation did not have a significant impact on 

protein secondary structure (Hatayama et al., 2008). Thus far no experiments have been 

performed to assess the binding affinity of these mutants to target DNA sequences, however 

based on the crystal structure of GLI (Pavletich et al., 1993) it is possible that ZIC3-ZF1 does not 

directly bind DNA. The proposed lack of DNA-binding in these mutants, therefore, is most likely 

due to the inability of their ZF1 to modulate DNA-binding by adjacent ZFs. 

 

5.3.3 The N-terminus contributes to transcription repression 

To assess importance of ZIC3 N-terminus for transactivation, the ZOC domain (ZIC3-ZOCdel) or 

the ZFNC (ZIC3-ZFNCdel) domain or the whole N-terminus (ZIC3-Ndel) were deleted and assayed 

using B:luc2:Nanog and B:luc2:Z3M2:β-globin reporters (Figure 5.7B-C). Strikingly, the 

transactivation ability of the variant proteins depended upon the response element. Specifically, 

deletion of the entire N-terminus prevented transactivation of the synthetic Z3M2 enhancer but 

drove hyperstimulation of the Nanog promoter, whereas deletion of either the ZOC or ZFNC 

domains hyper-stimulated the synthetic Z3M2 enhancer but had little effect at the Nanog 

promoter. Two differences between the elements in these reporter constructs that may be 

responsible for the opposing consequences are: (i) different ZIC3 target sequences (Figure 4.3B 

and Figure 5.10) and (ii) presence of binding sites for other transcription factors (such as OCT4, 

SOX2, ESRRB and KLF4) on the Nanog promoter (Chen et al., 2008), whereas the Z3M2 synthetic 

element contains only ZIC3 binding sites. 

The ZIC3 target sequence found within the Nanog promoter corresponds to that in Motif 1 

(Figure 4.7B) for which ZIC3-wt protein has a mild-stimulatory effect when tested in a reporter 

assay (Figure 4.9B). One possibility is that the N-terminus differentially stabilizes ZIC3 interaction 
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with different ZIC3 target sequences. This hypothesis could be tested by examining the 

transactivation ability of the N-terminal deletion constructs at the Z3M1 reporter. An alternative 

possibility is that the ZIC3 N-terminus interacts with proteins recruited to the Nanog promoter 

(but not the synthetic enhancer). Such an interaction could alter the conformation of the ZIC3-

Ndel protein enabling it to participate in transactivation and reveal the strong overall repressive 

effect of the ZIC3 N-terminus at the Nanog promoter. Similarly, context specific activity of both 

the ZOC and ZFNC domains occur such that they each contribute to transactivation at the Nanog 

promoter. Although it has been shown that ZIC3 activation of the Nanog promoter is 

substantially unaltered when the OCT4 and SOX2 binding sites are mutated (Lim et al., 2010) 

perhaps ZIC3 interacts with ESRRB, KLF4 or other unidentified proteins to cooperatively activate 

transcription at the Nanog promoter.  

 

 

  

Figure 5.10: Multiple transcription factor binding locus on mouse Nanog gene promoter. A 108 bp 

fragment from mouse genomic DNA (Chr 6: 122707405 - 122707512) was cloned into the reporter plasmid 

(B:luc2). Numbers above the sequence represent distance (in bp) from the major transcription start site 

as identified by Wu da et al. (2005). Bases are coloured: adenine (A) in red; cytosine (C) in blue; guanine 

(G) in green and thymine (T) in orange. Grey boxes highlight binding sites for transcription factors OCT4, 

SOX2, ESRRB, ZIC3 and KLF4. 

ACAGCTTCTTTTGCATTACAATGTCCATGGTGGGACCCTGCAGGTGGGATTAACTGTGA

ATTCACAGGGCTGGTGGGGCGTGGGTGCCGCCTGGGTGCCTGGGAGAATA

-180 -170 -160 -150 -140 -130

-120-129 -110 -100 -90 -80

-188

OCT4 SOX2 ESRRB ZIC3

KLF4
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CHAPTER 6 
CONCLUDING SUMMARY 

 

ZIC proteins are a family of transcriptional regulators critical for embryonic development. The 

work presented here aimed to decipher ZIC3 molecular function, details of which remain mostly 

unknown. This stems from a variety of factors that largely relate to a lack of suitable resources 

and reagents for ZIC functional studies. At the outset of this project: 

i. Most studied mouse alleles were deletion alleles, which reveal the biological role of the 

protein, but yield no knowledge regarding critical functional domains 

ii. Bona-fide ZIC DNA-binding sites were not known prohibiting the production of credible cell-

based reporter assays and identification of ZIC3 target genes 

iii. In vivo validated protein partners were unknown 

iv. Neither antibodies in vivo validated for specificity nor full length recombinant ZIC proteins 

were available 

During the course of this project, novel reagents (the katun mouse allele) and emerging data 

regarding the ZIC3 DNA-binding site (to make the B:luc2:Nanog and B:luc2:Z3M2:β-globin 

reporters) were used to identify ZIC3 functional domains. Characterisation of the katun allele 

revealed removal of the ZFD and C-terminus renders the protein non-functional. Analysis of 

several C-terminally truncated mutants verified the importance of ZFD for ZIC protein function 

and suggested the transactivation domain resides in the C-terminus. The N-terminus appears to 

have changing roles leading to transcriptional activation or repression, perhaps dependent upon 

the presence of particular protein partners (co-regulators). The current study significantly 

advances our understanding of ZIC3 functional domains and suggests several areas for further 

study. 
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1. A C-terminal transactivation domain 

Typically transactivation domains contain a high percentage of acidic [aspartic acid (D) or 

glutamic acid (E)], proline (P), glutamine (Q), or serine (S) and threonine (T) amino acid residues 

(Johnson et al., 1993). Analysis of ZIC3 amino acid sequence (Figure 6.1A) shows that within the 

N-terminus and the ZFD, residues D, E, P, Q, S and T are sparsely populated. In contrast, the C-

terminus (after the ZFD) is dense with D, E, P, Q, S and T residues, with 33 of the 57 residues 

(~58%) consisting of one of these amino acids. Moreover, the C-terminus of the vertebrate 

Subgroup A ZICs contains a previously unannotated evolutionary conserved domain (Figure 

6.1B). This region (SPAASSGYESSTPP: position 417-431 of human ZIC3) should be tested (via 

deletion) using the newly developed cell-based reporter assays to assess its functional 

relevance. 

 

2. N-terminal regions contributing to transactivation 

The N-terminus of ZIC3 contains two amino acid repeat regions (Figure 6.1A): (i) an alanine (A)-

rich region (position 46-55), which is known to have a transcriptional repression function (Licht 

et al., 1990), and (ii) a histidine (H)-rich region (position 87-97), which have been shown to target 

proteins for localization in a nuclear subcompartment, called nuclear speckles (Salichs et al., 

2009). Additionally a previously unidentified evolutionary conserved domain (10 amino acids), 

present in a variety of metazoan species (Figure 6.2), is located in the N-terminus after the ZOC 

domain. Most likely these regions are not involved in the DNA-binding but may play a role in 

interacting with protein partners or transactivation. Affinity chromatography or co-

immunoprecipitation assays can be done to investigate if deletion of these regions, alters 

protein-protein interactions. Additionally the cell-based reporter assays (shown here) should be 

used to assess the requirement of these regions for transactivation. 
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Hs-ZIC1 SPAASSGYES PPST
Mm-ZIC1 SPAASSGYES PPST
Xl-ZIC1 SPAASSGYES PPST
Dr-ZIC1 SPAASSGYES PPST

Hs-ZIC3 SPAASSGYES PPST
Mm-ZIC3 SPAASSGYES PPST
Xl-ZIC3 SPAASSGYEA PPST
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Hs-ZIC2 SPAASSGYES PPST
Mm-ZIC2 SPAASSGYES PPST
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E
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Figure 6.1: C-terminus of ZIC3 contains a high percentage of residues commonly found in transactivation 

domains. Amino acids known to be involved in transactivation domains of transcription factors are 

highlighted. Acidic amino acids [aspartic acid (D) and glutamic acid (E)] are highlighted in red. Proline (P) 

is highlighted in yellow. Glutamine (Q) is highlighted in purple. Serine (S) and threonine (T) are highlighted 

in green. (A) Human ZIC3 amino acid sequence. Bars with ZOC, ZFNC or ZF(1-5) indicate the extent of the 

ZOC and ZFNC domains and the five C2H2 ZFs, respectively. (B) Evolutionary conserved region in C-

terminus of vertebrate Subgroup A ZIC proteins. Hs = Homo sapiens; Mm = Mus musculus; Xl = Xenopus 

laevis; Dr = Danio rerio. 
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3. Further characterization of ZFD variants 

The ZF mutants used in this study show either failed or reduced transactivation. This is most 

likely due to the inability of the mutated ZFs to bind DNA, however this possibility needs to be 

tested. Proteins with multiple ZFs employ some fingers for DNA-binding while others play a 

stabilisation role or could be involved in protein-protein interactions (Iuchi, 2005). The particular 

ZFs of ZIC proteins involved in establishing contacts with DNA, remains to be discovered. Since 

C2H2-type ZFs have a specific ββα structure, Nuclear Magnetic Resonance or X-ray 

crystallography need to be performed to assess how mutations within particular residues effect 

the overall tertiary structure. In addition EMSAs and/or ChIP-qPCR can show how mutations in 

particular locations within ZFs effect DNA-binding. Furthermore the first of four linkers between 

ZF1 and ZF2 in ZIC proteins is significantly different to the other three and does not correspond 

to the consensus linker sequence between ZFs in general. Since linker regions within ZF proteins 

are known to influence DNA-binding affinity (Laity et al., 2000), and suggestions that ZF1 and 

ZF2 of ZIC proteins are not canonical ZFs, this region warrants an assessment of its requirement 

for ZIC protein function. 

  

HVIFPGLHDQ

HMLFPGIHDA

HVIFPSFHDQ
HVMFPGFHEQ
HMLFPGIHDA

Ap-ZIC
Sp-ZIC
Bf-ZIC
Cj-ZIC

Sso-ZIC
HVLFPGLHEPLb-ZIC
HLLFPGLHEQHs-ZIC1
HLLFSGLHEQMm-ZIC1
HLIFPGLHEQXl-ZIC1
HLLFPGLHEQDr-ZIC1
HLLFPGLPEQHs-ZIC2
HLLFSGLPEQMm-ZIC2
HLLFPGIHDQXl-ZIC2
HILFPGIHEQDr-ZIC2
YLLFPGLHEQHs-ZIC3
YLLFPGLHEQMm-ZIC3
HLIFPGLHEQXl-ZIC3
HLLFPGLHDQDr-ZIC3

.:: :* :

Figure 6.2: Sequence alignment of N-terminal evolutionary 

conserved region. Stretch of 10 amino acids (downstream of 

the ZOC domain), found in a wide variety of metazoan 

species: Ap = Asterina pectinifera; Sp = Strongylocentrotus 

purpuratus; Bf = Branchiostoma floridae; Cj = Corbicula sp.; 

Sso = Spisula solidissima; Lb = Loligo bleekeri; Hs = Homo 

sapiens; Mm = Mus musculus; Xl = Xenopus laevis; Dr = Danio 

rerio. Asterick (*) = identical residues. Colon (:) = functionally 

conserved residues. Period (.) = weak conservation of 

residue. 
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4. Further experiments to link structure with function 

i) WNT inhibition: ZIC proteins inhibit β-catenin mediated transcription by binding to the 

TCF protein via their ZFD (Pourebrahim et al., 2011). Preliminary data shows that each 

ZF is required for this function, however ZF1-3 are more critical than ZF4 and ZF5. 

Bimolecular fluorescence complementation assays can be performed to assess how 

mutations at critical residues within each ZF impact the interaction of ZIC proteins with 

TCF. Additionally (as suggested above) determining the effect of each mutation on the 

tertiary structure will aid in understanding the molecular basis of reduced inhibition.  

ii) Transcriptional regulatory domains: a common method for identifying transcriptional 

regulatory domains is the use of the GAL4-UAS fusion reporter system (Lillie et al., 1989, 

Weston et al., 1989, Pei et al., 1991, Pan et al., 2003, Mizugishi et al., 2004). This system 

involves creation of fusion proteins, where parts of the protein of interest are fused to 

the DNA-binding domain of GAL4 (yeast transcriptional activator protein) (Ma, 2014). 

The fusion construct is co-transfected with a reporter plasmid containing a UAS 

(upstream activating sequence) followed by reporter CDS (luciferase, GFP, lacZ). The 

GAL4 DNA-binding domain is able to bind to the UAS and if the fused portion of protein 

of interest contains a transcriptional regulatory domain, changes in reporter expression 

can be quantitatively assayed. For ZIC3, initial investigations can be done by dividing the 

ZIC3 CDS into three subdomains: N-terminus, ZFD, and C-terminus. Once transcriptional 

activity has been observed from one of these, smaller deletion mutants of 50-75 

residues can be created for fine mapping of the transcriptional regulatory domain. 

 

5. Additional mouse mutants  

The Australian Phenomics Facility has identified missense mutants in N-Ethyl-N-Nitrosourea 

(ENU) mutagenized mouse genomes, with three alleles archived at The Australian National 

University (Table 6.1). Two of these (R→L and Y→C) cause amino acid substitutions with altered 

biochemical properties and reside in protein regions with putative function. Recovery and 
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analysis of these alleles may provide additional insight into ZIC3 functional domains. 

Additionally, the CRISPR-Cas9 genome editing system could be used to delete regions of interest 

and assessment of their in vivo relevance.  

 

 

 

In addition to the role of ZIC3 in the formation of the L-R axis, it has been shown to maintain 

pluripotency in embryonic stem cells. Analysis of ZIC3 DNA-binding sites in the mouse (Lim et 

al., 2010) and zebrafish (Winata et al., 2013) genomes has shown that a fraction of ZIC3 DNA 

binding sites are associated with promoters, while a significant portion are at distant genomic 

locations. Additionally binding sites for different transcription factors are present nearby ZIC3 

binding sites, indicating that ZIC3 may act in multi-transcription factor complexes. These data 

suggest that ZIC3 has changing roles and modes of function during embryogenesis. It is 

hypothesised that in pluripotent stem cells, ZIC3 acts a general transcription factor and directly 

interacts with the basal transcriptional machinery. In differentiated cells, however, ZIC3 binds 

to distal elements, perhaps to maintain/complement the differentiated cell state. How this 

change in preference of binding site occurs remains unknown, however one suggestion is that 

replacement of maternal transcript with zygotic ones promotes the distal binding (Giraldez et 

al., 2006). In part, the shift towards binding to enhancers would occur due to changes in 

chromatin structure and/or presence of particular protein partners. Data shown here indicates 

Table 6.1: Murine Zic3 missense alleles archived in the Missense Mutation Library. aa: amino acid. 
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that regions within the N-terminus of ZIC3 influence transcription depending on the 

spatiotemporal context. These possibilities, nonetheless, need testing at the epigenetic, 

transcriptomic and proteomic levels. Moreover the embryonic stage when the mutant Zic3 

phenotype first becomes apparent needs to be identified to determine tissues where ZIC3 

function is required for prevention of ZIC3-associated congenital defects. A multi-pronged 

approach that includes discovery of downstream targets of ZIC3 function and analysis of animal 

models with mutations in specific domains will further aid in understanding the molecular role 

of ZIC3 during embryogenesis. 
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Supplementary Information 

 

 

Appendix 1: Choice of cell line  

An important consideration in the design of reporter gene assays is the type of cell line used 

(Houck et al., 2006). Typically the cell line should reflect the pathological or physiological state 

wherein the transcription factor normally functions (Yun et al., 2014). Thus using primary cells 

is the most desirable option, as it will allow translation of in vitro findings into how the 

transcription factor behaves in vivo. Nonetheless practical considerations limit the use of 

primary cells, since they are difficult to transfect, slow in proliferation, highly susceptible to 

contamination and allow limited subdivisions (or passages) (Maurisse et al., 2010). An 

alternative to primary cells is using established or immortalized cell lines, especially when 

endogenous factors within the cell are not being assayed. Generally immortalised cell lines are 

easier to maintain, faster in growth, produce a higher cell yield per flask and allow easy 

experimental manipulations (such as transfections or chemical treatments) (Freshney, 2010). 

During the development of the transactivation assay reported here, several established cell lines 

(C3H/10T1/2, COS-7, HEK293T, NIH3T3, pCHO, and U87) were tested. The primary requirement 

from these cell lines was high transfection efficiency. With the exception of HEK293T cells, most 

cells lines displayed relatively low transfection efficiency (Figure S1). In addition, growth and 

maintenance of HEK293T cells was generally faster and easier than the other cell lines. 
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When tested for transactivation of the APOE and Z3M synthetic enhancers via wild-type ZIC3 

and ZIC3-C365S, none of the cell lines displayed the expected transactivation trends (Figures S2 

and S3). This was attributed to endogenous factors within these cells reacting unpredictably to 

the presence of the synthetic enhancers and/or interfering with ZIC protein function. In contrast, 

HEK293T cells displayed high levels of luciferase expression via wild-type ZIC3, while 

transactivation via the DNA-binding mutant (ZIC3-C365S) was negligible. For these reasons and 

the fact that HEK293T cells have extensively been used for such studies (Braselmann et al., 1993, 

Lin et al., 2014), these cells were chosen for the transactivation assay reported here. Perhaps 

once the assay has been established, further experiments can be performed in cell lines that 

have high endogenous expression of ZIC proteins, such as the cerebellar cell line A40 (Aruga et 

al., 2000). 

Figure S1: Transfection efficiency across cell lines. HEK293T (A), COS-7 (B), NIH3T3 (C) and pCHO (D) cells 

were transfected with EGFP-ZIC3-wt. 24 hours post-transfection cells were viewed under a fluorescence 

microscope. All images were taken at 100x magnification. 



172 
 

 

Figure S2: Transactivation via B:luc2:APOE-M2 and B:luc2:Z3M2 reporters across cell lines. HEK293T (A), 

COS-7 (B), NIH3T3 (C) and pCHO (D) cells were co-transfected with the luciferase reporter and expression 

plasmids shown. 24 hours post-transfection luciferase expression of cells was measured using a 

luminometer. Graphs display raw values from one experiment. Error bars represent standard deviation 

between internal repeats. Each experiment was repeated at least 2 times. 
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Figure S3: Transactivation via synthetic enhancers in U87 and C3H10T1/2 cells. U87 (A, B) and 

C3H10T1/2 (C, D) cells were co-transfected with different combinations of reporter plasmids and 

expression plasmids as shown. 24 hours post-transfection luciferase expression was measured using a 

luminometer. Graphs display raw values from one experiment. Error bars represent standard deviation 

within internal repeats. Each experiment was repeated at least 2 times. 
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Appendix 2: Genotyping PCR optimisation  

Three sets of primers (1 = Ark209-Ark242; 2 = Ark241-Ark242; 3 = Ark241-Ark999) were tested 

with two different reaction buffers (ThermoPrime ReddyMix 4 and ImmoMix™) on two PCR 

programs (TD60 and TD65) (Figure S4A-B). From each reaction the expected product was 

visualized on an agarose gel, however the amplification efficiency was variable. For all primer 

sets the TD60 program displayed better amplification while there was negligible difference 

amongst the buffers. 

Primer sets 1 and 2 were chosen to test for the HRMA assay. Reactions were performed on the 

TD60 PCR cycling program using genomic DNA from wild-type and katun animals as template. 

Melting profiles of samples were analysed using the “Expert Scanning” mode of the LightScanner 

software. Primer sets 1 and 2 were both able to distinguish between wild-type (grey) and katun 

DNA (red) (Figure S4C-D). The colours of melting curves were assigned intrinsically by the 

LightScanner software, based on its ability to distinguish between each genotype. The PCR 

product of primer set 1 initiated melting at a higher temperature and had a significantly smaller 

melting temperature range (~90-92°C) in comparison to the same of primer set 2 (~80-84°C). 

Moreover amplicons of the two samples from primer set 2 displayed a greater difference in melt 

curves, in comparison to primer set 1. 
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Figure S4: Determining optimal conditions for HRMA assay to genotype katun animals. Diagnostic PCRs 

performed at two PCR cycling conditions: TD60 (A) and TD65 (B), using three different primer 

combinations (1 = Ark209-Ark242; 2 = Ark241-Ark242; 3 = Ark241-Ark 999) and two reaction buffers (a = 

ThermoPrime ReddyMix 4; b = ImmoMix™). Each reaction was performed with (+) and without (-) 

template DNA (C57/B6 genomic DNA). For each reaction the expected product was seen on an agarose 

gel: 1a and 1b = 304 bp; 2a and 2b = 68 bp; 3a and 3b = 144 bp. Primer sets 1 (C) and 2 (D) were used in 

the HRMA assay to distinguish between wild-type (+/+ = grey) and katun (Ka = red) genomic DNA. Graphs 

display shifted melting curves obtained using the “Expert Scanning” mode of the LightScanner software. 
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