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A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection
at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be
attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain
scale.We instead apply forcing on a length scale smaller than the domain, andwith variation in both horizontal
directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a
dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net
heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the
significance of plume merging, support the hypothesis that the key driver of convection is the production
of available potential energywithout necessarily supplying total potential energy, and imply that contributions
to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.
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The complex dynamics of convection, turbulence, and
heat transport in Rayleigh-Bénard convection, where a
temperature difference is applied between the top and
bottom of a layer of fluid, continue to challenge modern
physics [1–3]. Under strong forcing the convection is
turbulent and a particular problem has been to understand
the cause and consequences of a large-scale circulation, or
“wind” [4–6], and turbulent dissipation [7].
In recent direct numerical simulations (DNS) of

Rayleigh-Bénard convection [7] the roles of large and small
scales of motion were separated, showing quantitatively for
the first time that under stronger forcing the flow and heat
transport are increasingly dominated by large-scale, long-
lived flow structures. (By strong forcingwemeanRa > 109,
where Ra ¼ gαΔTH3=κν is the Rayleigh number, with
gravitational acceleration g, applied temperature difference
ΔT across the fluid depthH, and the fluid thermal expansion
coefficient α, diffusivity of heat κ, and kinematic viscosity
ν). Large-scale winds release gravitational potential energy
(PE) and transport heat more rapidly than do the smaller
scales. At the same time the wind undergoes shear insta-
bility, transferring kinetic energy (KE) into small scales of
turbulence. Although the dissipation rate is a maximum in
the boundary layers, as measured [8,9], the DNS [7] shows
that almost all dissipation occurs throughout the interior
(bulk) of the flow. The net (volume integrated) production of
KE and the dissipation rate scale as NuRa [1,7,10] and,
hence, approximately as Ra1.3 (utilizing the heat transport
result Nu ∼ Ra0.3 [6,11]). The wind is the main source of
shear production, allowing greater turbulent dissipation. It
emerges in this system despite perfectly uniform boundary
conditions and is qualitatively understood to involve a
sweeping up of many small-scale plumes at the boundaries
into larger, more efficient structures.

Convection also occurs when a temperature difference is
applied on a horizontal boundary along the length of a box
of fluid [12–14]. The resulting “horizontal convection”
may, for example, contribute significantly to global over-
turning of the oceans [15–20]. Once in thermal equilibrium
this kind of convection carries no net heat transport through
any horizontal level and the forcing boundary conditions
impose a horizontal length scale, which is realized as the
dominant scale in the flow. Laboratory experiments reveal
small-scale convective instabilities in limited regions
[14,21] becoming turbulent for RaL ∼ 1012 (in this case
the forcing parameter, RaL, is defined using the horizontal
scale of forcing L in place of H [12]). Simulations show
turbulent statistics [22] at RaL ∼ 1011 and transitions from
viscous to inertial regimes [13] commencing at RaL ∼ 1010,
not fully complete in terms of the energetics at RaL ∼ 1015.
The turbulent solutions were explained [23], as the

dissipation, or net production of KE, is actually the
difference between two much larger conversions: a large
production of KE [representing conversion of the available
potential energy (APE) [24] produced by the boundary
buoyancy forcing [17]] in a plume at one end of the box
(equivalent to localized deep sinking at high latitude
locations in the oceans), but a continual conversion of
KE back into APE in other regions (where there is slow
vertical flow despite stable density stratification). Scaling
theory and DNS show that the production of APE by the
boundary thermal forcing, hence, gross KE production,

increases nonlinearly as Ra13=10L [13] (similar to the result
for the Rayleigh-Bénard convection, where APE and net
KE production scale together [7]). Thus, in horizontal
convection for any RaL > 109 gross KE production far
outstrips the net (which scales only linearly as RaL),
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leaving viscous dissipation accounting for a negligible
fraction of the APE production. (Almost all of the APE
is instead converted into background PE through irrevers-
ible mixing [13,23,25]). These observations led to the
hypothesis [13,23] that dissipation plays at best a secondary
role and is not a useful indicator of the rate of the
circulation.
All previous studies of horizontal convection have been

limited by two conditions: the temperature difference
applied on the boundary was unidirectional and on the
scale of the domain (like a meridional gradient at the ocean
surface), which together force a dominant two-dimensional
circulation over the length of the domain, and a single plume
into which the KE generation and shear production are
focused.We remove both constraints in order to examine the
implications for the scales of motion, development of
turbulence, and role of dissipation. DNS was carried out
for a layer of depthH in a square domain of widthW above a
planar horizontal boundary heated and cooled in a square
array (Fig. 1 bottom plane). The boundary temperature was
prescribed as T ¼ ΔTsin2ðπx=LÞsin2ðπy=LÞ, where ðx; yÞ
are horizontal coordinates, ΔT is the temperature differ-
ence, L is the wavelength of the pattern, and n is the
number of wavelengths within the computational domain
0 ≥ ðx; yÞ ≥ nL. The forcing scale L and domain width
W ¼ nL for our investigation would ideally be vastly
different. However, we also focus on large RaL, for which
the computational demand, given lengthy integrations to
thermal equilibrium [21], restricts us ton ≤ 4, or up to 16 hot
patches. The flow is fully defined by four dimensionless
parameters: RaL, n,H=L, and the Prandtl number Pr ¼ ν=κ.
Solutions were computed for Pr ¼ 1 with n ¼ 3 and 4,
H=L ¼ 0.5 and 5, and RaL ¼ 1012.
The DNS solves the Navier-Stokes and continuity

equations in the incompressible, Boussinesq approximation
with a linear density-temperature relation, as previously
described and tested for both the Rayleigh-Bénard and
horizontal convection [7,13]. A pseudospectral approach
was used for most solutions, with periodic boundary
conditions on all lateral boundaries, impermeable and
no-slip boundaries at the top and bottom, and adiabatic
at the top. A more demanding simulation was carried out
for impermeable sidewalls (with n ¼ 4, H=L ¼ 5) using
finite differences in all directions. The solutions rigorously
satisfy grid resolution and time step criteria, along with grid
convergence, mechanical energy and heat budget tests
[7,13]. Each case was initiated with a uniform fluid
temperature and allowed to evolve in time until it reached
thermal equilibrium indicated by no long-term secular
trend and vanishing net heat transport through the
bottom boundary. Flow statistics describing the roles of
large and small length scales are estimated by decompos-
ing the velocity field and mechanical energy budget at
each location into a time mean (windowed over three
buoyancy time scales and equivalent to large length scales)

and fluctuating components of higher frequencies (smaller
length scales), following recent methodology for Rayleigh-
Bénard convection [7].
For the shallow layer (H=L ¼ 0.5) (Fig. 1, left panel) the

convection forms an array of discrete, coherent plumes in
which the fluid ascends vertically above each boundary hot
patch. Remarkably, despite zero net heat flux, the plumes
are turbulent and expand with height as a result of turbulent
entrainment of the surrounding fluid; fluid between the
plumes descends. The plumes persist in the stable array,
indicating that inertial interactions between them are weak.
The flow is qualitatively like that in previous studies with
one-dimensional boundary forcing and a single line plume
[13,14], accepting that in the present case there is radial
convergence of flow into each plume.
In the deep layer (H=L ¼ 5) with n ¼ 3, the array of

coherent plumes again remains stable in thermal equilib-
rium. However, for n ¼ 4 [Fig. 1, right panel, and Fig. 2(a)]

FIG. 1 (color). Snapshots of DNS solutions for n ¼ 4 and
RaL ¼ 1012: on the left a shallow layer (H=L ¼ 0.5), on the right
a deep layer (H=L ¼ 5). From the bottom: temperature distri-
bution imposed on the boundary (red: hot, blue: cold), horizontal
sections showing velocity component u in the x direction at
z=H ¼ 0.04 (just above the bottom boundary layer) and z=H ¼
0.5 (mid-depth), and, at the top, 3D maps of vertical velocity w
(shown only where w is positive, black where negative, with the
solution in the upper 10% of the domain removed to reveal w on
the plane, z=H ¼ 0.9). Scales show u and w normalized by
ðgαΔTHÞ1=2.
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individual warm plumes are seen only intermittently.
Large-scale sweeping motions tend to carry the warm fluid
away from the heated patches of the base, collecting it into
one or two updrafts. These large updrafts are of similar size
and speed as the downdrafts, an obvious difference from
the highly asymmetric structure of vertical motions in
previous horizontal convection studies. Further, these
domain-filling overturns are unsteady and occasionally
reverse on time scales long compared with the typical time
for fluid to be carried around the domain [Fig. 2(b)]. The
bottom boundary layer has a logarithmic profile of the
horizontal velocity during phases of maximum mean wind
velocity [Fig. 2(b), left and right panels], strong evidence
that the boundary layer is turbulent as a result of local shear
instability. The logarithmic velocity structure disappears at
times when the wind is reversing [Fig. 2(b), middle panel].

The flow field is also characterized by a full spectrum of
length scales throughout the interior: the kinetic energy
spectrum (Fig. 3) shows the −5=3 power law expected for
an inertial turbulence range over at least 2 orders of
magnitude in wave number (for the deep layer), and a
steeper dissipation range at small scales extending to the
Kolmogorov scale. Notably, the energy spectrum in this
deep-layer case has a maximum at the domain scale, 4L,
rather than at the forcing scale.
Vertical profiles of temperature, turbulent dissipation

rate (εturb), production of turbulent kinetic energy by shear
instabilities (P), and APE-to-turbulence KE conversion
(Bturb) [7,13] for the deep-layer case are shown in
Fig. 4. Shear production and turbulent dissipation are
similar and fairly uniform with height, and an order of
magnitude larger than buoyancy flux, as turbulence is
produced mainly by shear instability rather than convec-
tion. Thus, turbulence production and dissipation are
almost entirely outside the thin boundary layer.
The simulations show also that the total viscous dis-

sipation over the volume of the domain is achieved
predominantly through small-scale turbulence. In the sol-
ution of Figs. 3 and 4, which has periodic side boundaries,
the total dissipation is approximately 3 times larger than the
production Φi of potential energy (which is by molecular
diffusion of heat down the stable average vertical temper-
ature gradient between the top and bottom of the fluid),
whereas the solution with impermeable sidewalls shows
total dissipation exactly equal to Φi, as theoretically
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FIG. 2 (color online). The velocity field for the deep-layer case
(H=L ¼ 5). (a) Vertical velocity w on a vertical plane at x=L ¼
1.875 (which passes through a row of hot spots on the bottom
boundary), shown at three instants separated by eight buoyancy
time scales ½H=ðgαΔTÞ�1=2. Large scales of vertical exchange and
boundary layer sweeping are dominant. (b) Instantaneous vertical
profiles of horizontal velocity u averaged over the horizontal area
of the domain at each height z, for the same times as (a). These
illustrate a reversal of the mean horizontal wind. Insets show on
log-log scales the depth dependence of the magnitude juj of the
horizontal velocity in the bottom 10% of the domain. The
velocity boundary layer extends from the bottom to z ≈ 0.01H
with a logarithmic dependence (slope of dotted lines) through
more than 90% of the boundary layer during active phases of the
large-scale wind.
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FIG. 3 (color online). Kinetic energy power spectra [in dimen-
sionless form after normalizing velocity by ðgαΔTHÞ1=2] as a
function of horizontal wave number k (normalized by the wave
number 2π=L of the forcing) for n ¼ 4, RaL ¼ 1012: deep layer
(red line), shallow layer (blue line). Data are averages over 20
distributed locations in the interior of the flow. Vertical dotted
lines show the width of the domain at 2π=L ¼ 0.25 and thermal
forcing scale at 2π=L ¼ 1.0; the Kolmogorov wavelength at the
end of the dissipation range is at 2π=L ¼ 3 × 102 and 1.5 × 102

for the deep and shallow layers, respectively. A −5=3 slope
(broken line) describes the results in the deep layer for
0.25 < kL=2π < 30.
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required [26]. Vertically periodic boundary conditions have
also been shown to promote inertia-dominated dynamics in
Rayleigh-Bénard convection [27]. However, in the present
system the impermeable boundary solution shows that the
turbulent nature of the flow is not dependent on the use of
periodic side boundary conditions.
In contrast, the production of APE is very much larger

than both the dissipation rate and production of PE (by 103

times for the deep layer with periodic side boundaries, a
factor 2 orders of magnitude larger than was found for the
usual horizontal convection problem at the same RaL [23]).
The full mechanical energy cycle is explained as for
horizontal convection [10,13,23]: the APE arises through
conversion from background PE by the horizontal
differences in boundary heat flux and it is released to
tge KE of either the upwelling plumes (shallow layer) or the
large-scale circulation (deep layer), before most of the KE
is returned to APE by vertical advection against the stable
interior density gradient elsewhere in the domain, and
ultimately returned to background PE by diffusion of heat
in the thin boundary layer on the base.
Thus, coherent turbulent plumes dominate the flow in the

shallow layer case as a consequence of a supply rate of APE
that is very large compared with negligible rates of PE
production and KE dissipation. Still, greater production of
APE in the deep layer owing to the larger height, likely
coupled with as yet unexplored dependence on the aspect
ratio n ¼ W=L, leads to plume interactions and regime
change to a strong dominance of domain-scale motions.

Note that the present flow is conceptually like eight
horizontal convection boxes placed end to end in each
direction, each having the value of RaL used here; in the
shallow layer case the eight end wall plumes become four
fixed turbulent plumes, whereas in the deep-layer case the
plumes merge into a single, stronger large-scale updraft that
causes much greater shear production. The strength of the
large-scale circulation and turbulent nature of the flow
despite zero net buoyancy flux and negligible PE produc-
tion support the hypothesis [17,23,25] that APE production
by boundary buoyancy forcing is the key driver in the
physics of convection more generally. The multiple simi-
larities between the deep-layer case and Rayleigh-Bénard
convection (at Ra > 1010 [7]) include a large role of shear
instability, an inertial cascade of energy down to small
scales overwhelmingly in the interior, a logarithmic profile
in the boundary layer [28], and a dominance of the long-
lived domain scales of motion in the mechanical energy
budget and transport of heat. On the other hand, the
significance of turbulent dissipation in the two kinds of
convection is very different, amounting to one half of the
APE released in Rayleigh-Bénard convection [10,25] but to
only a small term in the (even the net) mechanical energy
budget when heating and cooling is at the same horizontal
boundary.
The small-scale forcing geometry is conceived for the

purposes of revealing aspects of the dynamics beyond those
seen under a domain-scale boundary temperature gradient.
It shows that sweeping of the boundary layer and merger of
plumes is a key to the formation of large-scale, more
efficient circulation despite greater shear and dissipation.
Further examination of the parameter dependence and of
superposing small- and domain-scale gradients is war-
ranted to assist in a conceptual understanding of the role
of convection in the global meridional overturning circu-
lation of the oceans, which is generally seen as a response
to the zonally averaged meridional gradient of surface
boundary conditions [15–20]. A zonal average overlooks
the additional energy input by zonal variations in buoyancy
forcing and may underestimate the role of convection.
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FIG. 4 (color online). Vertical profiles of (a) normalized
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εturb and Bturb. All quantities are horizontal averages over the area
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conversions, nondimensionalized by the domain total rate of
generation (Φi) of potential energy divided by fluid depth (H)
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