
Interconversion of Prony series for relaxation and creep
R. J. Loy, F. R. de Hoog, and R. S. Anderssen 
 
Citation: Journal of Rheology 59, 1261 (2015); doi: 10.1122/1.4929398 
View online: http://dx.doi.org/10.1122/1.4929398 
View Table of Contents: http://scitation.aip.org/content/sor/journal/jor2/59/5?ver=pdfcov 
Published by the The Society of Rheology 
 
Articles you may be interested in 
Logarithmic method for continuous relaxation spectrum and comparison with previous
methods 
J. Rheol. 59, 1081 (2015); 10.1122/1.4922851 
 
Extraction of viscoelastic functions from creep data with ringing 
J. Rheol. 59, 237 (2015); 10.1122/1.4904394 
 
Power series approximations of dynamic moduli and relaxation spectrum 
J. Rheol. 57, 679 (2013); 10.1122/1.4789787 
 
Viscoelastic stress relaxation in film/substrate systems—Kelvin model 
J. Appl. Phys. 93, 2453 (2003); 10.1063/1.1541108 
 
Relations Between Creep and Relaxation Functions in Nonlinear Viscoelasticity with or
Without Aging 
J. Rheol. 29, 245 (1985); 10.1122/1.549789 
 
 

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

130.56.107.4 On: Wed, 28 Oct 2015 07:35:15

http://scitation.aip.org/content/sor/journal/jor2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1684144741/x01/AIP/HA_Pub2Web_ReregisterToCalert_JORO_PDFCovPg_1640x440_10_2013/pei_aipToCAlerts.png/7744715775302b784f4d774142526b39?x
http://scitation.aip.org/search?value1=R.+J.+Loy&option1=author
http://scitation.aip.org/search?value1=F.+R.+de+Hoog&option1=author
http://scitation.aip.org/search?value1=R.+S.+Anderssen&option1=author
http://scitation.aip.org/content/sor/journal/jor2?ver=pdfcov
http://dx.doi.org/10.1122/1.4929398
http://scitation.aip.org/content/sor/journal/jor2/59/5?ver=pdfcov
http://scitation.aip.org/content/sor?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/59/4/10.1122/1.4922851?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/59/4/10.1122/1.4922851?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/59/1/10.1122/1.4904394?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/57/2/10.1122/1.4789787?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/93/5/10.1063/1.1541108?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/29/3/10.1122/1.549789?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/29/3/10.1122/1.549789?ver=pdfcov


Interconversion of Prony series for relaxation and creep

R. J. Loya)

Mathematical Sciences Institute, The Australian National University,
John Dedman Building 27, Union Lane, Canberra ACT 2601, Australia

F. R. de Hoogb) and R. S. Anderssenc)

CSIRO Digital Productivity, GPO Box 664, Canberra ACT 2601, Australia

(Received 13 May 2015; final revision received 11 August 2015;
published 26 August 2015)

Abstract

Various algorithms have been proposed to solve the interconversion equation of linear viscoelasticity

when Prony series are used for the relaxation and creep moduli, G(t) and J(t). With respect to a Prony

series for G(t), the key step in recovering the corresponding Prony series for J(t) is the determination

of the coefficients fjkg of terms in J(t). Here, the need to solve a poorly conditioned matrix equation

for the fjkg is circumvented by deriving elementary and easily evaluated analytic formulae for the

fjkg in terms of the derivative d bGðsÞ=ds of the Laplace transform bGðsÞ of G(t). VC 2015 The Society
of Rheology. [http://dx.doi.org/10.1122/1.4929398]

I. INTRODUCTION

Having obtained experimentally a Prony series representation for the relaxation modu-

lus G(t) of the viscoelastic material being examined, the next step for the practical rheolo-

gist is the determination of the creep modulus J(t). The need for knowing both the

moduli is discussed in Plazek and Echeverria (2000). Determination of J(t) is achieved

by solving the interconversion equation

ðG � JÞðtÞ ¼
ðt

0

Gðt� sÞJðsÞds ¼ ðJ � GÞðtÞ ¼ t: (1.1)

This relation has, of course, been known for some time, see, for example, Gross (1953,

p.47), Hopkins and Hamming (1957), Ferry (1980, Chapter 3.E), Giesekus (1994, Sec.

10.10), Anderssen et al. (2008b), and Loy and Anderssen (2014).

Traditionally, Prony series representations for G(t) are written

GN tð Þ ¼ g0 þ
XN

k¼1

gk exp � t

sk

� �
; gk � 0; sk > 0: (1.2)
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For viscoelastic solids g0 > 0, and the corresponding form (see Sec. II) for J(t) is

JN tð Þ ¼ j0 �
XN

k¼1

jk exp � t

kk

� �
; jk � 0; kk > 0: (1.3)

The exponents fskg and fkkg; k ¼ 1; 2; � � � ; N; correspond, respectively, to the relaxa-

tion and retardation times, and satisfy

0 < s1 < s2 < :::: < sN; 0 < k1 < k2 < :::: < kN:

For viscoelastic liquids g0 ¼ 0, and Eq. (1.3) is replaced by

JNðtÞ ¼ j0tþ j1 �
XN

k¼2

jk expð�t=kkÞ: (1.4)

See Baumgaertel and Winter (1989) and Mead (1994).

Historically, there are many approaches to solving Eq. (1.1) for either of J(t) or G(t),
when the other is given. For example, see Hopkins and Hamming (1957), Knoff and

Hopkins (1972), Dooling (1997), Park and Schapery (1999), Nikonov et al. (2005),

Sorvari and Malinen (2007b), and Luk-Cyr et al. (2013).

Such methods apply to more general forms of G(t), not just the Prony series (1.2), and

often have a requirement to solve a poorly conditioned matrix equation. To exploit the

special form of Prony series, the usual approach is to use Laplace transform techniques.

Recall that the Laplace transform of a bounded or integrable function f on the half-line

½0;1Þ is given by

bf ðsÞ ¼ ð1
0

f ðtÞ expð�stÞdt ðs > 0Þ:

It is well known that bf ðsÞ extends to a function analytic on some right half plane

<ðsÞ > a � 0, and that f 7!bf maps the convolution product of two functions to the point-

wise product of their individual transforms [Widder (1972)]. Consequently, taking the

Laplace transform of Eq. (1.1) yields

bGðsÞ � bJðsÞ ¼ s�2 ðs > 0Þ: (1.5)

Now for a � 0, the Laplace transform of expð�atÞ is ðsþ aÞ�1
, and so for the Prony

series (1.2), (1.3), and (1.4), Eq. (1.5) is an algebraic equation, with cGN ðsÞ and bJN ðsÞ
rational functions of s. Different procedures have been proposed for determining bJN ðsÞ
given cGN ðsÞ in this case. Contributions have been published by Gross (1953), Taylor

(1973), Baumgaertel and Winter (1989), Mead (1994), Tschoegl and Emri (1992), and

Sorvari and Malinen (2007a).

All of these latter approaches assume, to one extent or another, that given GNðtÞ as

Eq. (1.2), necessarily JNðtÞ is as in Eqs. (1.3) and (1.4), both in overall form and in the

number of summands. Our purpose here is to give a completely self-contained and trans-

parent account of getting from GNðtÞ to JNðtÞ (and conversely) without these assumptions.

In particular, simple easily evaluated formulae for the coefficients are given in Table I

below. The numerical aspects are reduced to finding the zeros of certain polynomials, for

which there is a plethora of sources, for example Traub (1982).

The structure of the paper is as follows. Section II gives some background and basic

properties of the rational functions cGN ðsÞ and bJN ðsÞ, Sec. III derives the simple and easily
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evaluated formulae, Sec. IV discusses the determination of the zeros of cGN ðsÞ and bJN ðsÞ,
Sec. V gives a comparison of the new formulae with the results published by Park and

Schapery (1999) and Sorvari and Malinen (2007b), and Sec. VI, a brief comparison with

some other approaches.

II. BACKGROUND

The fact that, given GNðtÞ [resp. JNðtÞ], then JNðtÞ [resp. GNðtÞ] must have the precise

forms (1.2), (1.3), and (1.4) above follows from the work of Whittaker (1918, Theorem 2).

Indeed, it seems that Whittaker (1918), using a resolvent kernel argument, was the first

to show how Eq. (1.2) gives rise to Eqs. (1.3) and (1.4), and conversely. His argument,

when applied to dGNðtÞ=dt and JNðtÞ, shows in particular that the number of exponential

terms in each is the same. Crucially, the exponents for JNðtÞ are the (reciprocals of) zeros

of the rational function scGN ðsÞ, and 0 is one such zero in the case that g0 ¼ 0, which

yields the j0t term in Eq. (1.4). In addition, Whittaker (1918) observed the “interlacing”

properties of the exponents for dGNðtÞ=dt and JNðtÞ. In fact, when g0 � 0, both cGN ðsÞ
and bJN ðsÞ have N poles, and so the interlacing of their exponents takes the form

s1 < k1 < s2 < � � � < sk < kk < skþ1 < � � � < kN�1 < sN < kN: (2.1)

TABLE I. The formulae.

Solid: g0 > 0

GNðtÞ ¼ g0 þ
PN
k¼1

gk expð� t
sk
Þ JNðtÞ ¼ j0 �

PN
k¼1

jk expð� t
kk
Þ

GNðtÞ7!JNðtÞ

jk ¼
XN

i¼0

gib
2
k

ðai � bkÞ2

 !�1

ð1 � k � NÞ ; j0 ¼ g�1
0

JNðtÞ7!GNðtÞ

gk ¼
XN

i¼0

jia2
k

ðbi � akÞ2

 !�1

ð1 � k � NÞ ; g0 ¼ j�1
0

Liquid: g0 ¼ 0

GNðtÞ ¼
PN
k¼1

gk expð� t
sk
Þ JNðtÞ ¼ j0tþ j1 �

PN
k¼2

jk expð�t=kkÞ

GNðtÞ7!JNðtÞ

jk ¼
XN

i¼0

gib
2
k

ðai � bkÞ2

 !�1

ðk � 2Þ ; j0 ¼
XN

k¼1

gka
�1
k

 !�1

;

j1 ¼
XN

i¼1

gi

ai

 !�2 XN

i¼1

gi

a2
i

 !

JNðtÞ7!GNðtÞ

gk ¼
2j0
ak
� j1 þ

XN

i¼2

jia2
k

ðbi � akÞ2

 !�1

ð1 � k � NÞ
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Whereas, when g0 ¼ 0; bJN ðsÞ has N � 1 nonzero poles, cGN ðsÞ has N, and hence the

ordering of the interlacing becomes

s1 < k1 < � � � < sk < kk < skþ1 < � � � < kN�1 < sN: (2.2)

The first explicit consideration of determining JNðtÞ from GNðtÞ available is Gross

(1953), who gives the exponents for JNðtÞ, given GNðtÞ, and formulae for the coefficients

of JNðtÞ involving the derivative of cGN ðsÞ. The arguments use his somewhat unorthodox

calculus of delta functions [Gross and Peltzer (1951); Gross (1987)]. Baumgaertel and

Winter (1989) state without proof several formulae which agree with those of Whittaker

(1918), though their approach is to use the Laplace transform as we do here. Their source

for the interlacing is the lecture notes of Giesekus. These latter are not readily available,

though the work of Giesekus (1994) contains interlacing results.

Mead (1994), considering the liquid case only, states the derivative formulae and

attributes them to Gross (1953). He gives an argument for interlacing, assuming the same

number of exponents without comment.

We have, Eq. (1.5), the “algebraic” form of the interconversion equationcGN ðsÞ � bJN ðsÞ ¼ s�2 ðs > 0Þ: (2.3)

For the specific form (1.2) of GNðtÞ, it follows that

cGN sð Þ ¼
g0

s
þ
XN

k¼1

gk

sþ ak
¼
XN

k¼0

gk

sþ ak
; (2.4)

where ak ¼ s�1
k ; a0 ¼ 0. This is a rational function on the complex plane with simple

poles at �a0;…;�aN . It follows from Eq. (2.3) that bJN ðsÞ is also a rational function.

Furthermore, the zeros of bJN ðsÞ occur at the poles of cGN ðsÞ and are simple. Again, the

poles of bJN ðsÞ, other than 0, occur at the zeros f�b1;…;�bNg of cGN ðsÞ, and these are

simple zeros, since between the poles of cGN ðsÞ

dcGN sð Þ
ds

¼ �
XN

k¼0

gk

sþ akð Þ2
< 0:

For a viscoelastic solid, g0 > 0. Letting s! 0 in Eq. (2.3), it follows that bJN ðsÞ has the

form s�1QðsÞ for a rational function Q(s) with Qð0Þ ¼ g�1
0 . For a liquid, with g0 ¼ 0, we

have instead that bJN ðsÞ¼ s�2QðsÞ for a rational function Q(s) with Qð0Þ¼ð
PN

k¼1 gka�1
k Þ
�1

.

For a known GNðtÞ, and, hence, the corresponding defining coefficients fgkg and fakg,
there are two sets of unknowns fjkg and fbkg to be estimated for the determination of

JNðtÞ from Eqs. (2.3) and (2.4). The direct solution of these equations could involve solv-

ing a highly nonlinear system of algebraic equations. Traditionally, the fjkg and the fbkg
have often been estimated jointly, Nikonov et al. (2005), Luk-Cyr et al. (2013), and

Sorvari and Malinen (2007a, b). This is the reason why such estimation strategies involve

matrix inversion or the solution of nonlinear algebraic equations. However, we give a

simple procedure to determine the coefficients fjkg of the constant and exponential terms

in JNðtÞ from the values of fgkg; fakg, and fbkg. Determining the zeros f�bkg of cGN ðsÞ
is facilitated by the interlacing Eqs. (2.1) and (2.2).

III. NEW ELEMENTARY AND EASILY EVALUATED FORMULA

This approach is different from those previously published in that it directly exploits

the deeper algebraic structure within and between bJN ðsÞ and cGN ðsÞ. Recall that cGN ðsÞ has

1264 LOY, DE HOOG, AND ANDERSSEN
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simple poles at �a1;…;�aN , together with 0 in the case of a viscoelastic solid. It also

has simple zeros at �b1;…� bN .

Since

bJN sð Þ ¼ 1

s2cGN sð Þ
;

the rational function bJN ðsÞ is bounded at infinity, with simple poles at the zeros of cGN ðsÞ
together with a double pole at 0 for a viscoelastic liquid, and a simple pole at 0 for a solid.

Standard residue calculus [Marsden (1973, Theorem 4.1.1 and Table 4.1)] shows that

bJN sð Þ ¼
j0

s2
þ j1

s
�
XN

k¼‘

jk
sþ bk

; (3.1)

with for ‘ ¼ 2 in the liquid case, ‘ ¼ 1 and j0 ¼ 0 in the solid case, where

jk ¼ � b2
k

dcGN

ds
�bkð Þ

 !�1

k � ‘ð Þ: (3.2)

An identical argument shows that

gk ¼ a2
k

d bJN

ds
�akð Þ

� ��1

k � 1ð Þ: (3.3)

Note that this latter holds whether the viscoelastic material is solid (g0 > 0) or liquid

(g0 ¼ 0).

A. Linear viscoelastic solids

Substituting the expressions (3.1) and (2.4) for bJN ðsÞ and cGN ðsÞ into Eqs. (3.2) and

(3.3) gives, for a viscoelastic solid,

jk ¼
XN

i¼0

gib
2
k

ai � bkð Þ2

 !�1

1 � k � Nð Þ

gk ¼
XN

i¼0

jia2
k

bi � akð Þ2

 !�1

1 � k � Nð Þ;

(3.4)

together with g0j0 ¼ 1.

B. Linear viscoelastic liquids

For a viscoelastic fluid, Eq. (3.1) holds, and g0 ¼ 0. For k � 2, the same arguments

hold as for the solid case. Thus, as before, from Eqs. (3.1) and (3.2),

jk ¼
XN

i¼0

gib
2
k

ai � bkð Þ2

 !�1

2 � k � Nð Þ

gk ¼
2j0

ak
� j1 þ

XN

i¼2

jia2
k

bi � akð Þ2

 !�1

1 � k � Nð Þ:

(3.5)
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In Sec. II, we determined

j0 ¼
XN

k¼1

gka
�1
k

 !�1

:

For j1, this is the residue of ðs2cGN ðsÞÞ�1
at 0, and so

j1 ¼
d

ds
cGN sð Þ�1
� �����

s¼0

¼ �
cGN

0
0ð ÞcGN 0ð Þ2
¼

XN

i¼1

gi

ai

 !�2 XN

i¼1

gi

a2
i

 !
:

C. Liquid case as limit of solid cases as g0fi0

The formulae above look distinctly different for the solid and liquid cases. However,

one can think of a liquid as the limiting case of a solid as g0 ! 0. In fact, by considering

the zero �bN of cGN ðsÞ closest to the origin, we can recover the liquid behavior for small

s as g0 ! 0.

From Eq. (3.4),

jN ¼ g0 þ b2
N

XN

i¼1

gi

ai � bNð Þ2

 !�1

:

Here, �bN is the closest zero of bGN to the origin, so that from Eq. (2.4)

bN ¼ g0

XN

i¼1

gi

ai

 !�1

þ O g2
0

� �
:

These give

jN ¼ g�1
0 1� g�1

0 b2
N

XN

i¼1

gi

a2
i

þ O g2
0

� � !
:

However, for fixed s 6¼ 0, and for g0 6¼ 0 small, bN is small, whence

ðsþ bNÞ�1 ¼ s�1ð1� bNs�1Þ þ Oðg2
0Þ:

It follows that

j0

s
� jN

sþ bN

¼ 1

g0s
1� 1� b2

N

g0

XN

i¼1

gi

a2
i

þ O g2
0

� � ! !
1� bN

s
þ O g2

0

� �� �

¼ g�2
0 b2

Ns�1
XN

i¼1

gi

a2
i

 !
þ g�1

0 bNs�2 þ O g0ð Þ

¼
XN

i¼1

gi

ai

 !�2 XN

i¼1

gi

a2
i

 !
s�1 þ

XN

i¼1

gi

ai

 !�1

s�2 þ O g0ð Þ ;

in agreement with the coefficients found earlier.
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IV. NUMERICAL ASPECTS OF DETERMINING THE ZEROS

In this new approach, the formulae are exact except for the determination of the zeros

of cGN ðsÞ or bJN ðsÞ. Since the formula for cGN ðsÞ represents the starting point, the determi-

nation of the fbkg is simplified by exploiting the interlacing property. In particular, forcGN ðsÞ, we have, on an interval ð�ai;�aiþ1Þ,

dcGN sð Þ
ds

¼ �
XN

k¼0

gk

sþ akð Þ2
< � gi

ai � aiþ1ð Þ2
: (4.1)

So the gradient is bounded away from zero, and consequently, numerical methods to

determine the zero will converge geometrically.

On the other hand, for bJN ðsÞ,

d bJN sð Þ
ds

¼
� 2j0

s3
� j1

s2
þ
XN

k¼2

jk

sþ bkð Þ2
g0 ¼ 0ð Þ

� j0

s2
þ
XN

k¼1

jk

sþ bkð Þ2
g0 6¼ 0ð Þ:

8>>>><>>>>: (4.2)

Here, ðd bJN ðsÞÞ=ds will change sign twice in the interval ð�bN; 0Þ in the case g0 ¼ 0, and

once in the case g0 6¼ 0. Furthermore, in both cases, sign changes may occur in other

intervals. Thus, the derivative is certainly not bounded away from zero, and so accurately

determining the zeros can be expected to be much more difficult. This is a reflection of

the result of Anderssen et al. (2008a), and also Taylor (1973).

V. COMPARISON OF NEW METHOD WITH PUBLISHED RESULTS

The elementary structure of the formulae in Table I is immediately apparent.

Alternative formulae for the fjkg (but not the fgkg) are given for both solid and liquid

cases in Eqs. (18)–(22), (A2), and (A3) of Baumgaertel and Winter (1989). However,

they involve more complicated usage of the fbkg. In particular, note that, for a liquid, j0
and j1 are evaluated above (Sec. III B) in terms of only the fgkg and fakg, which are

explicitly known from GNðtÞ.
Sorvari and Malinen (2007a) checked the accuracy of their direct discretization of the

interconversion equation on a test problem using a G2ðtÞ Prony relaxation modulus with

its five parameters listed in Table II. Their algorithm returned, for the corresponding

J2ðtÞ, the five parameters as listed under SM. The graphical relationship between G2ðtÞ
and J2ðtÞ is shown in Fig. 1.

For the evaluation of the new formula (3.2), the retardation times k1 and k2 were

determined using a bisection method to find the zeros of cG2ðsÞ. Because of the global

TABLE II. Sorvari and Malinen (SM) versus new algorithm (LdHA).

i gi si ji SM ji LdHA ki SM ki LdHA

0 1 — 1.00 1.00 — —

1 0.6 5 0.340 0.33939 29.135 29.1355

2 0.4 20 0.160 0.160198 6.864 6.86448
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monotone structure of the curves forming cG2ðsÞ, this simple method converged rapidly.

The identity g0j0 ¼ 1 was next used to determine j0. The resulting estimates for k1 and k2

were then substituted in Eq. (3.4) to determine j1 and j2. These values are also listed in

Table II under LdHA.

The larger example, for which there are 11 terms in the Prony series, was due to Park

and Schapery (1999), and was also considered in Sorvari and Malinen (2007a). The same

procedure as above was used with the results given in Table III.

FIG. 1. The interlacing of the poles and zeros of cG2 ðsÞ (dotted) and bJ2 ðsÞ (solid) for the Sorvari and Malinen

test case.

TABLE III. Park and Schapery (PS) versus new algorithm (LdHA).

i gi si ji PS(5) ji LdHA ki PS ki LdHA

0 2.94� 107 — 4.56� 10�8 4.1525� 10�8 — —

1 1.94� 109 2� 10�2 4.08� 10�12 4.0675� 10�12 2.19� 10�2 2.1859� 10�2

2 2.83� 109 2� 10�1 7.37� 10�12 7.3049� 10�12 2.34� 10�1 2.3105� 10�1

3 5.54� 109 2� 100 2.25� 10�11 2.2456� 10�11 2.88� 100 2.8576� 100

4 6.02� 109 2� 101 6.40� 10�11 6.4084� 10�11 3.80� 101 3.8017� 101

5 3.88� 109 2� 102 2.03� 10�10 1.9937� 10�10 5.25� 102 5.1445� 102

6 1.56� 109 2� 103 6.86� 10�10 6.9284� 10�10 6.61� 103 6.5454� 103

7 4.10� 108 2� 104 2.19� 10�9 2.1175� 10�9 6.03� 104 5.9866� 104

8 1.38� 108 2� 105 6.50� 10�9 6.3124� 10�9 5.89� 105 5.8858� 105

9 3.68� 107 2� 106 1.37� 10�8 1.2293� 10�8 4.27� 106 4.2598� 106

10 7.90� 106 2� 107 6.93� 10�9 6.8231� 10�9 2.57� 107 2.5504� 107

11 9.60� 106 2� 108 1.45� 10�8 1.2946� 10�8 2.95� 108 2.8963� 108
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VI. IMPLEMENTATION

The starting point for the determination of the fjkg is the determination of a Prony se-

ries representation (1.2) from a stress strain-rate or oscillatory shear experiment, from

which the values of N, fgkg and fakg are immediately available.

As highlighted in Table I, the fjkg are defined by simple and easily evaluated analytic

formulae which depend only on the derivative dcGN ðsÞ=ds, and the available estimates for

the f�bkg as the zeros of cGN ðtÞ which, as explained above in Sec. IV, can be easily

determined using bisection.

Its great advantage, which characterizes its simplicity, is that it represents a directly

evaluated formula which avoids the need of earlier methods [Knoff and Hopkins (1972);

Park and Schapery (1999); Sorvari and Malinen (2007a, b)] to construct and solve a

matrix equation to obtain estimates for the fjkg. For example, for the method proposed

by Nikonov et al. (2005, Appendix), the determination reduces to solving the matrix

equation (6.1) which has an ill-posed Vandermonde type structure

a1 a2 � � � aN

a2
1 a2

2 � � � a2
N

� � � � � �
aN

1 aN
2 � � � aN

N

266664
377775

j1

j2

�
jN

266664
377775 ¼

f1

f2

�
fN

266664
377775; (6.1)

where the values of fakg and ffkg are defined in terms of the values of fskg; fkkg and

fgkg.
The quite severe poor conditioning of Vandermonde matrices has been widely dis-

cussed in the numerical analysis literature as it is a commonly occurring matrix structure

which arises in practical applications [Baz�an (2000); Beckermann (2000)].

ACKNOWLEDGMENTS

Preliminary versions of Figure 1 were produced by the MAFA Function Plotter. The

authors wish to thank Daniel Schmidt-Loebe for his help in fine-tuning this online tool.

The authors would also like to thank the referees for their suggestions which helped to

improve the exposition of the paper.

References

Anderssen, R. S., A. R. Davies, and F. R. de Hoog, “On the sensitivity of interconversion between relaxation

and creep,” Rheol. Acta 47, 159–167 (2008a).

Anderssen, R. S., A. R. Davies, and F. R. de Hoog, “On the Volterra integral equation relating creep and relax-

ation,” Inverse Prob. 24, 035009 (2008b).

Baumgaertel, M., and H. H. Winter, “Determination of discrete relaxation and retardation time spectra from dy-

namical mechanical data,” Rheol. Acta 28, 511–519 (1989).

Baz�an, F. S. V., “Conditioning of rectangular Vandermonde matrices with nodes in the unit disk,” SIAM J.

Matrix Anal. Appl. 21, 679–693 (2000).

Beckermann, B., “The condition number of real Vandermonde, Krylov and positive definite Hankel matrices,”

Numer. Math. 85, 553–577 (2000).

Dooling, P. J., C. P. Buckley, and S. Hinduja, “An intermediate model method for obtaining a discrete relaxation

spectrum from creep data,” Rheol. Acta 36, 472–482 (1997).

Ferry, J. D., Viscoelastic Properties of Polymers (Wiley, NY, 1980).

Giesekus, H., Ph€anomenolifishe Rheologie. Eine Einf€uhrung (Springer-Verlag, Berlin, Heidelberg, 1994).

1269INTERCONVERSION OF PRONY SERIES

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

130.56.107.4 On: Wed, 28 Oct 2015 07:35:15

http://dx.doi.org/10.1007/s00397-007-0223-6
http://dx.doi.org/10.1088/0266-5611/24/3/035009
http://dx.doi.org/10.1007/BF01332922
http://dx.doi.org/10.1137/S0895479898336021
http://dx.doi.org/10.1137/S0895479898336021
http://dx.doi.org/10.1007/PL00005392
http://dx.doi.org/10.1007/BF00396332


Gross, B., Mathematical Structure of the Theories of Viscoelasticity (Hermann, Paris, 1953).

Gross, B., “Distribution functions in linear viscoelastic theory,” J. Appl. Phys. 62, 2763–2770 (1987).

Gross, B., and H. Peltzer, “Relations between delta functions,” Proc. Roy. Soc. A 210, 434–437 (1952).

Hopkins, I. L., and R. W. Hamming, “On creep and relaxation,” J. Appl. Phys. 28, 906–909 (1957).

Knoff, W. F., and I. L. Hopkins, “An improved numerical interconversion for creep compliance and relaxation

modulus,” J. Appl. Polym. Sci. 16, 2963–2972 (1972).

Loy, R. J., and R. S. Anderssen, “Interconversion relationships for completely monotone functions,” SIAM J.

Math. Anal. 46(3), 2008–2032 (2014).

Luk-Cyr, J., T. Crochon, C. Li, and M. Levesque, “Interconversion of linearly viscoelastic material functions

expressed as Prony series: a closure,” Mech. Time-Dependent Mater. 17, 53–82 (2013).

Marsden, J. E., Basic Complex Analysis (W. H. Freeman, San Francisco, 1973).

Mead, D. W., “Numerical interconversion of linear viscoelastic material functions,” J. Rheol. 38, 1769–1795

(1994).

Nikonov, A., A. R. Davies, and I. Emri, “The determination of creep and relaxation functions from a single

experiment,” J. Rheol. 49, 1193–1211 (2005).

Park, S. W., and R. A. Schapery, “Methods of interconversion between linear viscoelastic material functions.

part i – a numerical method based on Prony series,” Int. J. Solids Struct. 36, 1653–1675 (1999).

Plazek, D. J., and I. Echeverria, “Dont cry for me Charlie Brown, or with compliance comes comprehension,”

J. Rheol. 44, 931–941 (2000).

Sorvari, J., and M. Malinen, “On the direct estimation of creep and relaxation functions,” Mech. Time-Depend.

Mater. 11, 143–157 (2007a).

Sorvari, J., and M. Malinen, “Numerical interconversion between linear viscoelastic material functions with reg-

ularization,” Int. J. Solids Struct. 44, 1291–1303 (2007b).

Taylor, R. L., “Inversion of Prony series characterization for viscoelastic stress,” Int. J. Numer. Methods Eng. 5,

499–502 (1973).

Traub, J. F., Iterative Methods for the Solution of Equations (Chelsea Publishing Company, New York, 1982).

Tschoegl, N. W., and Emri, I., “Generating line spectra from experimental responses. Part III. Interconversion

between relaxation and retardation time behaviour,” Int. J. Polym. Mater. 18, 117–127 (1992).

Whittaker, E. T., “On the numerical solution of integral-equations,” Proc. Roy. Soc. A 94, 367–383 (1918).

Widder, D. V., The Laplace Transform (Princeton University, Princeton, 1972).

1270 LOY, DE HOOG, AND ANDERSSEN

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

130.56.107.4 On: Wed, 28 Oct 2015 07:35:15

http://dx.doi.org/10.1063/1.339404
http://dx.doi.org/10.1098/rspa.1952.0011
http://dx.doi.org/10.1063/1.1722885
http://dx.doi.org/10.1002/app.1972.070161120
http://dx.doi.org/10.1137/120891988
http://dx.doi.org/10.1137/120891988
http://dx.doi.org/10.1007/s11043-012-9176-y
http://dx.doi.org/10.1122/1.550526
http://dx.doi.org/10.1122/1.2072027
http://dx.doi.org/10.1016/S0020-7683(98)00055-9
http://dx.doi.org/10.1122/1.551117
http://dx.doi.org/10.1007/s11043-007-9038-1
http://dx.doi.org/10.1007/s11043-007-9038-1
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.029
http://dx.doi.org/10.1002/nme.1620050406
http://dx.doi.org/10.1080/00914039208034818
http://dx.doi.org/10.1098/rspa.1918.0024

