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Abstract. Quantum many-body nuclear dynamics is treated at the mean-field level with the time-dependent
Hartree-Fock (TDHF) theory. Low-lying and high-lying nuclear vibrations are studied using the linear response
theory. The fusion mechanism is also described for light and heavy systems. The latter exhibit fusion hindrance
due to quasi-fission. Typical characteristics of quasi-fission, such as contact time and partial symmetrisation of
the fragments mass in the exit channel, are reproduced by TDHF calculations. The (multi-)nucleon transfer at
sub-barrier energies is also discussed.

1 Introduction

The quantum many-body problem is common to all fields
aiming at describing complex quantum systems of inter-
acting particles. Examples range from quarks and gluons
in a nucleon to macromolecules such as fullerenes. Break-
throughs in one field may have a strong impact in others.
For instance, the development of the BCS theory to de-
scribe superconducticity [1] has been crucial to understand
some properties of atomic nuclei due to pairing correla-
tions. Another example is the description of low-energy
fusion with multi-channel tunnelling [2] which is now
used to investigate dissociative adsorption of molecules in
surface science [3].

Nuclear systems are interesting examples of many-
body systems where up to about 500 nucleons (in the case
of actinide collisions) may interact. What makes the dy-
namics of nuclear systems special to test quantum many-
body theories is their almost complete isolation from ex-
ternal environments. Indeed, the coupling of a system to
its environment induces a decoherence process which is
responsible for the quantum to classical transition [4, 5].
Table 1 gives some properties of usual microscopic many-
body systems. Depending on their size and the native time
scale associated to their dynamics, these systems may in-
teract with electromagnetic (EM) fields and with the parti-
cles of the surrounding gas. The outcome of the collision
between atomic nuclei, however, is usually determined be-
fore any decoherence process takes place. This is due
to their small size (few fm) and the fact that the interac-
tion times are of the order of few zeptoseconds, i.e., much
shorter than typical times for gamma emission. As a re-
sult, the coherent superposition of quantum states which
is built up during the collision is preserved during times
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Table 1. Properties of typical many-body systems and the
environment they may interact with, inducing possible quantum
to classical transition. As a result, the equations of motion used

to describe the dynamics of the system is derived from a
quantum or classical mechanics approach.

Nuclei Atoms Molecules
Size ∼ 10−14m ∼ 10−10m ∼ 10−9m
Time scale 10−21s=1zs 10−18s=1as 10−15s=1fs
Environment none EM EM+gas
Eq. of Quantum Quantum Classical
motion (Classical) (Quantum)

which are typically much longer than the collision time it-
self. Heavy-ion collisions are then ideal to investigate fun-
damental aspects of quantum physics, such as collective
motion [6], tunnelling and dissipation [7], coupled chan-
nels [3], and entanglement [8].

Describing nuclear dynamics and predicting the out-
come of heavy-ion collisions is very challenging as sev-
eral mechanisms may occur. Ideally, the same theoretical
model should be able to describe vibrational and rotational
motions and all the reaction outcomes, e.g., (in)elastic
scattering, multi-particle transfer, and fusion. A good
starting point is to consider that the particles evolve in-
dependently in the mean-field generated by the ensemble
of particles. This leads to the well known time-dependent
Hartree-Fock (TDHF) theory proposed by Dirac [9] which
has been applied to many nuclear systems in the past
decade (see Ref. [10] for a review).

In this contribution, we present recent applications of
the TDHF approach to nuclear dynamics, from vibrations
to heavy-ion collisions around the Coulomb barrier. The
TDHF approach is first presented. Low-lying collective
vibrations and giant resonances are then discussed as a
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first application. This is followed by a study of the fu-
sion mechanism in light systems. We then discuss the
quasi-fission mechanism responsible for fusion hindrance
in heavy systems. Finally, we investigate nucleon transfer
at sub-barrier energies.

2 The TDHF approach

The first TDHF numerical calculations in nuclear physics
were performed in the mid 70’s [11, 12]. Standard ap-
plications of the TDHF approach in nuclear physics are
performed with an effective interaction derived from an
energy density functional (EDF). The EDF is the only
phenomenological ingredient of the model. In practice,
Skyrme EDFs are used [13]. They are usually adjusted
to fit only a few nuclear properties, e.g., infinite nuclear
matter, radii and masses of few doubly magic nuclei [14].
The many-body wave function is chosen to be an antisym-
metrised independent particle state at any time t. The Pauli
principle is then exactly treated during time evolution. It
is crucial to treat properly Pauli blocking, which prevents
nucleon-nucleon collisions and makes the mean-field ap-
proximation valid at low energies.

Modern TDHF calculations are fully consistent in the
sense that they treat static properties and dynamics on the
same footing. A proper treatment of nuclear structure is
indeed crucial for near-barrier reactions which are highly
sensitive to couplings between the relative motion and in-
ternal degrees of freedom.

2.1 The TDHF formalism

The TDHF equation is derived from the action (see, e.g.,
appendix A of Ref. [10])

S ≡ S t0,t1 [φ] =

∫ t1

t0
dt 〈φ(t)|

(
i~

d
dt
− Ĥ

)
|φ(t)〉 (1)

where Ĥ is the Hamiltonian of the system and the state of
the A independent particles is constrained to be a Slater
determinant |φ〉 at any time. In the framework of the en-
ergy density functional theory, the expectation value of the
Hamiltonian is written as a functional of the one-body den-
sity matrix ρ: E[ρ] = 〈φ|Ĥ|φ〉. For independent particle
systems, ρ contains the same information as |φ〉. It is ex-
pressed as a function of the occupied single-particle wave-
functions ϕi as

ρ(x, y) =

A∑
i=1

ϕi(x) ϕ∗i (y), (2)

where x ≡ (rsq) describes all the single-particle degrees
of freedom (position r, spin s and isospin q).

Solving the variational principle δS = 0, we get a
set of Schrödinger-like equations for each single-particle
wave-function

i~
d
dt
ϕi(x, t) =

∫
dy h[ρ(t)](x, y) ϕi(y, t), (3)

where the Hartree-Fock single-particle Hamiltonian h[ρ]
reads

h[ρ](x, y) =
δE[ρ]
δρ(y, x)

. (4)

The system of equations (3) are coupled due to the self-
consistency of the HF Hamiltonian. The TDHF equation
can be expressed from these equations in a compact form
as

i~
∂

∂t
ρ =

[
h[ρ], ρ

]
. (5)

2.2 Numerical details

Three-dimensional codes have recently been developed to
solve the TDHF equation for the dynamics of realistic nu-
clear systems [15–19]. Here, the TDHF solution is ob-
tained from the set of equations (3) which are solved it-
eratively in time on a Cartesian grid with hard-boundary
conditions using the tdhf3d code [15]. The SLy4 [14]
parametrisation of the Skyrme EDF is used in calculations
of vibrational modes of the nucleus. To describe heavy-
ion collisions, we use the SLy4d parametrisations [15] in
which center of mass corrections are not accounted for in
the fitting procedure. The lattice spacing is ∆x = 0.8 fm
and the time step is ∆t = 1.5 × 10−24 s.

2.2.1 Dynamics of one nucleus

The study of nuclear vibrations is a common application
of the TDHF theory (see Refs. [16–18, 20–23] for re-
cent studies with three-dimensional codes). The ground-
state of the nucleus is first obtained from a static HF code
with the same EDF as in the dynamical calculation. A
time-dependent perturbation V(t) is then applied to the nu-
cleus. Usually, this perturbation is proportional to a delta-
function δ(t) and can then be applied using a boost opera-
tor on the ground-state at the initial time:

|φ(0)〉 = exp(−iεF̂) |φHF〉, (6)

where F̂ =
∑A

i=1 f̂i is a one-body operator and ε is the boost
velocity. In practice, the boost is applied on the single-
particle wave-functions according to

|ϕi(0)〉 = exp(−iε f̂ ) |ϕHF
i 〉. (7)

In a second step, the time response of the wave-
functions is computed over a finite time of typically 10 −
20 zs. The case of unbound states should be considered
with care as emitted particles bounce back from the edge
of the wall due to the hard boundary conditions. The re-
flected particles can then induce a spurious motion when
interacting with the system [24]. Absorbing boundary con-
ditions should then be considered to absorb the emitted
particles at the edge of the box [17, 24, 25]. Note that one
may be interested in the information contained in these
emitted particles, e.g., to assess the microscopic compo-
sition of a giant resonance [26]. In this case, however,
large boxes need to be considered which prevent the use
of three-dimensional codes.

EPJ Web of Conferences

02001-p.2



2.2.2 Collision of two nuclei

The HF ground state of the nuclei are first computed with
a static HF code. Then, they are placed in a large Cartesian
box at a distance D0 which has to be large enough (typi-
cally D0 ∼ 30 − 50 fm) to account for Coulomb excitation
in the entrance channel.

The initial momenta of the nuclei pα=1,2 are deter-
mined assuming a Rutherford trajectory prior to the initial
time. A Galilean boost of the form

ϕi(rsq; t = 0) = exp(
i
~

pα · r)ϕHF
i (rsq) (8)

is applied at the initial time to the single-particle wave-
functions of the nucleus α.

The evolution is then performed over a finite time (usu-
ally several zs) during which some observables (e.g., dis-
tance between the nuclei, multipole moments...) are com-
puted. The outcome of the collision (e.g., fusion or trans-
fer products) can then be analysed using the wave function
at the final time.

2.3 Beyond TDHF approaches

The TDHF approach gives only classical trajectories for
the time-evolution and expectation values of one-body ob-
servables. In particular, it does not include tunnelling
of the many-body wave function. One way to overcome
this difficulty is to determine the nucleus-nucleus poten-
tial from TDHF trajectories using the Density-Constrained
TDHF [27] or the Dissipative-Dynamics TDHF method
[28]. The sub-barrier fusion probability can then be deter-
mined by integrating the Schrödinger equation with this
potential.

TDHF calculations may also underestimate fluctua-
tions of one-body observables [29, 30]. Such fluctua-
tions have been computed recently at the time-dependent
random phase approximation (TDRPA) limit [31, 32] us-
ing a prescription proposed by Balian and Vénéroni [33],
or using stochastic extensions [34]. In particular, it has
been shown that the width of the mass and charge dis-
tributions of fragments produced in deep-inelastic colli-
sions are strongly underestimated at the TDHF level, while
TDRPA predictions are in reasonable agreement with ex-
perimental data [32].

Pairing correlations responsible for superfluidity in nu-
clei have been included to study vibrations in nuclei [35–
39] and more recently pair transfer reactions [40]. In par-
ticular, it has been shown that these correlations are re-
sponsible for pair vibrations [35] and for an enhancement
of pair transfer cross-sections [40].

Another type of correlations are induced by the col-
lision term which is expected to affect nuclear dynamics
at energies well above the Coulomb barrier, where Pauli
blocking becomes less efficient in preventing nucleon-
nucleon collisions. Recent calculations based on the time-
dependent density-matrix formalism [41] have been per-
formed to investigate the role of the collision term on nu-
clear vibrations [42] and collisions [43, 44].

Although the increase of computational power has
enabled realistic applications of some of these beyond-
TDHF approaches, the numerical cost remains usually too
high for systematic studies. The TDHF theory then re-
mains a popular approach, in particular thanks to its suc-
cesses in the past decade. In the following, we present
some recent applications at the TDHF level.

3 Applications of the TDHF approach to
nuclear dynamics

3.1 Collective vibrations

Atomic nuclei exhibit a large variety of vibrations, from
low-lying collective modes to giant resonances (GR),
which can be modeled by the TDHF theory. In fact, basic
properties of vibrations such as energy and strength can be
computed using the linear response theory, which, applied
within the TDHF framework, is equivalent to the Random
Phase Approximation (RPA).

An interesting aspect of using TDHF codes, however,
is that one is not limited to small amplitude vibrations,
unlike RPA, allowing for investigations of non linear ef-
fects in collective motions. In particular, anharmonicities
and coupling between collective modes have been investi-
gated [20–22].

In the present work, however, we restrict the discus-
sion of nuclear vibrations to the linear response. After a
brief presentation of the linear response theory, we present
applications to low-lying collective modes and to giant res-
onances.

3.1.1 Linear response theory

In the linear response theory, the evolution of the wave-
function after a boost of the form

|Ψ(t = 0)〉 = e−iεQ̂|Ψ0〉, (9)

where |Ψ0〉 is the ground state, is used to determine the
evolution of the operator Q̂ which, in the first order in the
boost velocity ε, reads

∆Q(t) = 〈Ψ(t)|Q̂|Ψ(t)〉 − 〈Ψ0|Q̂|Ψ0〉

' −2ε
∑
ν

|qν|2 sinωνt, (10)

where qν = 〈Ψν|Q̂|Ψ0〉 is the transition amplitude between
the ground state and the eigenstate |Ψν〉 of the Hamiltonian
with eigenenergy Eν = E0 + ~ων.

The strength function is then defined as

RQ(ω) = lim
ε→0

−1
πε

∫ ∞

0
dt ∆Q(t) sin(ωt). (11)

=
∑
ν

|qν|2δ(ω − ων). (12)

Note that the strength function is usually represented as a
function S Q(E = ~ω) according to

S Q(E) = RQ(ω)/~ =
∑
ν

|qν|2δ(~ω − ~ων). (13)
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Figure 1. Strength function of the octupole response in 48Ca.
The associated TDHF time-evolution of the octupole moment is
shown in the inset.

3.1.2 Low-lying collective modes

Figure 1 shows the strength function associated with the
octupole moment

Q30 =

√
7

16π

∫
d3rρ(r)

[
2x3 − 3x

(
y2 + z2

)]
(14)

in 48Ca, where ρ(r) =
∑

s,q ρ(rsq, rsq) is the local part of
the one-body density matrix. The time-evolution of the
octupole moment following the octupole boost is shown
in the inset.

Two collective modes at 5.7 MeV and 9.8 MeV are
seen, exhausting 8% and 18% of the energy weighted sum
rule (EWSR), respectively. The energy of the first peak
overestimates the experimental value of the energy of the
3−1 state, E3−1 = 4.507 MeV, by about 27%. A similar fac-
tor (30%) was obtained in the 208Pb nucleus with similar
calculations [10].

The overestimation of the energy of the 3−1 collective
state might be a general feature of the SLy4 parametrisa-
tion. Systematic calculations of low-lying octupole modes
across the nuclear chart and using various Skyrme interac-
tions should then be performed.

3.1.3 Giant resonances

Some strength can be observed in Fig. 1 above 30 MeV,
which could be associated with a high-energy octupole
resonance (HEOR). HEOR are a type of giant resonance
(GR) for the octupole motion, with typical energies of
110/A1/3 [45]. Other types of giant resonances have been
observed experimentally, such as the isovector giant dipole
resonance (GDR), the isoscalar giant monopole resonance
(GMR, also called the breathing mode) and the isoscalar
giant quadrupole resonance.

Giant resonances are usually unbound and decay by
particle emission, leading to an escape width in the GR
spectra. Other contributions to the width of GR are the
Landau damping [46] and the spreading width. Only the
escape width and the Landau damping are included in the
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Figure 2. (upper panel) Time evolution of the monopole mo-
ment in 40Ca after a monopole boost in the linear regime. (lower
panel) Time evolution of the amplitude of the monople oscilla-
tions (”×”=maxima, ”+”=minima).

TDHF approach. As a result, TDHF calculations of gi-
ant resonances usually underestimate the total width of the
GR.

An example of a TDHF calculation of the monopole
response to a monopole boost in 40Ca is shown in Fig. 2.
The monopole moment is defined as

Q0 =

√
1

4π

∫
d3rρ(r)r2. (15)

To avoid spurious contributions from particles reflected on
the hard box boundary, the calculations are performed on
a large spherical grid of 600 fm with the tdhfbrad code
(without pairing) of Ref. [26, 35].

It can be seen from the top of Fig. 2 that the monopole
oscillations are damped. This damping is due to the di-
rect decay of the GMR by nucleon emission. Fitting the
extrema ∆Qext(t) of the monopole moment with exp(−Γt

2~ )
gives a width Γ ' 3.5 MeV (see lower panel of Fig. 2).

The strength function of the GMR has been computed
from the time response of the monopole moment shown
in the upper panel of Fig. 2. The result is shown in
Fig. 3. The calculated energy of the GMR ET DHF

GMR '

22.1 MeV slightly overestimates the experimental value
Eexp

GMR = 19.2 ± 0.4 [48].
The calculated width of the GMR extracted from the

FWHM of the strength in Fig. 3 is ΓT DHF
tot 4.5 MeV. This

value is 1 MeV larger than the one calculated from Fig. 2
because of the Landau damping. Overall, this width is in
good agreement with the experimental value Γ

exp
tot ' 4.9 ±

0.6 [48]. This indicates that the spreading width, which is
neglected in TDHF, only slightly affects the total width of
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Figure 3. Strength function of the GMR in 40Ca.

the GMR in 40Ca. This is usually the case for the GMR in
light nuclei (see, e.g., Ref. [26] for a study of the GMR in
16O). However, the spreading width becomes dominant in
the GMR of heavy nuclei (see, e.g., a study of the GMR in
208Pb in Ref. [10]).

Finally, it is worth mentioning that recently similar
TDHF calculations have been performed to study the di-
rect decay from the GMR in 16O [26]. The spectrum
of emitted nucleons exhibits structures which reflect the
single-particle structure of the nucleus. To some level, GR
direct decay by nucleon emission could then be used to
investigate the shell levels in light nuclei.

3.2 Fusion mechanism

The merging of collision partners into a compound system
is a complex, highly non-linear, and irreversible process.
It is strongly coupled to internal structures of the colliding
partners resulting from their quantum nature, as well as
other reaction mechanisms such as (multi)-nucleon trans-
fer.

3.2.1 Path to fusion in light systems

The reaction mechanisms depend on the characteristics
of the nuclei and in particular on their mass and charge.
Bringing light nuclei into contact is usually sufficient to
cause them to fuse. This is illustrated in Fig. 4 where the
nucleus-nucleus potential in 16O+16O is plotted as a func-
tion of the relative distance R between the nuclei. We de-
fine R as the distance between the centers of mass of the
matter distribution on each side of the neck. The potential
is obtained from the frozen-HF technique, where the en-
ergy of the system is computed from the EDF considering
HF densities at a fixed distance. As a result, the fusion bar-
rier, generated from the competition between the nuclear
and the Coulomb potentials, is reached at R ' 8.4 fm.

The 16O+16O system has been recently investigated
with modern TDHF codes [47]. Fig. 4 also shows snap-
shots of the density at different distances from a TDHF
calculation at about Ec.m. = 12 MeV. We see that the two
nuclei are still well separated when the fusion barrier is

6 8 10 12 14 16 18 20
R (fm)

-15

-10

-5

0

5

10

15

20

V
 (M

eV
)

Nuclear
Coulomb
Total

Figure 4. Nucleus-nucleus potential as a function of the distance
between the centers of mass of the fragments in the 16O+16O sys-
tem from the frozen-HF technique. The snapshots show densities
at half the saturation density at R = 18, 8.4, 7 and 6 fm from a
TDHF calculation at Ec.m. = 12 MeV with the SLy4d interaction.

reached. A neck is formed inside the barrier, at ∼ 7 fm. At
R ∼ 6 fm, the size of the neck increases and the fragments
merge.

It is well known that fusion around the barrier is highly
sensitive to the structure of the colliding nuclei, in partic-
ular to their low-lying vibrational modes (like those de-
scribed in section 3.1.2) and to their rotational states [2].
The standard approach to describe the coupling between
the relative motion and these internal excitations is the
coupled-channel formalism [3]. However, TDHF calcu-
lations have also been used to describe the effect of rota-
tion and deformation on fusion [49, 50]. One advantage
of the TDHF approach is that the coupling between the in-
ternal structure (e.g., low-lying vibrational and rotational
modes) and the relative motion is included at all orders at
the mean-field level. In particular, the energy of the states
and their transition amplitudes are not input parameters of
the calculations.

In addition, collective vibrations can appear built on
any shape of the system during its path to fusion. In par-
ticular, the pre-equilibrium giant dipole resonance, which
is excited in N/Z asymmetric collisions, has been stud-
ied in detail with modern TDHF codes [51–53]. It has
been shown that the properties of the pre-equilibrium GDR
could be used to infer the characteristics of the system on
its path to fusion. For instance, a lowering of the pre-
equilibrium GDR energy in comparison with the GDR in
a spherical nucleus could be related to a large deformation
of the compound system [52].

3.2.2 Fusion hindrance and quasi-fission in heavy
systems

As mentioned earlier, the path to fusion strongly depends
on the mass and charge of the nuclei. In fact, unlike light
systems, for the fusion of heavy systems contact between
the reactants is clearly not sufficient. Indeed, the latter
exhibit fusion hindrance due to the quasi-fission mecha-
nism. Mass flow between the reactants occurs, leading

Heavy Ion Accelerator Symposium 2013

02001-p.5



0
2
4
6
8

10
12
14
16
18
20
22

Ti
m

e 
(z

s)

8 10 12 14 16 18 20 22
R (fm)

0

50

100

150

200

250

V
 (M

eV
)

Figure 5. Time evolution of the distance between the centers
of mass of the fragments in the 40Ca+238U central collision in
the equatorial configuration at Ec.m. = 205.2 MeV, i.e., 3% above
the frozen-HF barrier for this configuration. The dotted line is in-
dicative of the trajectory (see text). The snapshots show densities
at half the saturation density at different times.

to re-separation of more symmetric fragments in the exit
channel [54, 55]. A good understanding of the competi-
tion between the fusion and quasi-fission mechanisms is
expected to be of great help to optimise the formation and
study of heavy and superheavy nuclei.

The quasi-fission process is associated with typical
contact times between the fragments up to ∼ 20 zs [54–
56]. Although these times are longer than the time needed
to overcome the barrier in light systems (usually less than
2 zs, see, e.g., Ref. [57]), they are several orders of mag-
nitude shorter than the statistical fission time of the heavy
compound nuclei [58, 59]. In fact, quasi-fission occurs
before the equilibration of the degrees of freedom (shape,
charge and mass asymmetry, angular distribution...) and
the quasi-fission products keep a memory of the entrance
channel.

Figure 5 shows a trajectory of the fragments in a cen-
tral collision of 40Ca+238U at Ec.m. = 205.2 MeV which
is 3% above the frozen-HF barrier for the equatorial con-
figuration (i.e., with the deformation axis of the 238U per-
pendicular to the collision axis). Note that the distance
between the fragments is only well defined when they are
well separated, hence the dotted line is only indicative. We
see that the fragments re-separate after about 20 zs due to
quasi-fission. Indeed, we also observe a large mass trans-
fer from the heavy fragment to the lighter one, leading to
the average exit channel 103Mo+175Yb [10]. This partial
equilibration of the mass asymmetry is a clear signature
for quasi-fission.

Systematic comparison of TDHF calculations with ex-
perimental data on quasi-fission are ongoing. Experimen-
tal signatures for quasi-fission can be found in the width
of the fragment mass distribution [54, 60], in the total ki-
netic energy of the fragments [61] and in their mass-angle
distributions [55, 62]. The study of these quantities has
enabled the characterisation of some important properties
of the quasi-fission process, such as the role of the defor-
mation [63, 64], the effect of the magicity and of the N/Z

asymmetry in the entrance channel [65] as well as the in-
fluence of the shells in the exit channel [66]. All these ob-
servations provide an ideal ground for testing theoretical
models of nuclear dynamics including microscopic theo-
ries like TDHF on one hand, and macroscopic approaches
[67, 68] on the other.

Finally, it is worth mentioning that very heavy systems
such as actinide collisions could be considered an alter-
native way to form neutron rich heavy and super heavy
nuclei [68]. In actinide collisions, no fusion is expected
and quasi-fission is by far the dominant process. However,
TDHF calculations predict that some specific orientations
of the nuclei may lead to an inverse quasi-fission process,
where the mass transfer occurs from the lighter nucleus to-
ward the heavier one [69, 70]. Note that shell effects in the
208Pb region may also favour the formation of a heavier
complementary fragment [68].

3.3 Transfer reactions

Let us now consider (multi-)nucleon transfer. This field
has attracted much experimental work in the recent past,
in particular to infer the competition between sequential
and cluster transfer with stable [71–75] and exotic beams
[76–79].

From a theoretical point of view, semi-microscopic ap-
proaches [72] as well as purely microscopic approaches
have been used. The TDHF theory treats the transfer
mechanism at the independent particle level. Thus, it
provides a microscopic benchmark for sequential transfer.
TDHF calculations of transfer reactions have then been
performed with realistic interactions [80–82]. In particu-
lar, by applying a particle number projection technique on
the fragments [81] transfer probabilities can be extracted
[81, 82].

Figure 6 shows the neutron number distribution of the
light fragment in the exit channel of the 58Ni+124Sn cen-
tral collision at Ec.m. = 144.7 MeV computed with TDHF.
The experimental data [71] are from the same reaction
at Ec.m. = 153 MeV (i.e., about 4% below the barrier
VB ' 160 MeV [71]) and θc.m. = 127.5 deg leading to
the same distance of closest approach R0 = 13.93 fm as-
suming Rutherford trajectories.

We see that the order of magnitude for one and two
neutron transfer is well reproduced by the theory, although
the 1n channel is overestimated while the 2n channel is
underestimated. This can be attributed to an effect of pair-
ing correlations, not included in the present calculations,
favouring pair transfer. Scamps and Lacroix have recently
included these correlations at the BCS level on top of a
TDHF code [40]. As a result, they obtained an enhance-
ment of neutron pair transfer due to pairing correlations.

It is also clear from Fig. 6 that the transfer of more
than two neutrons is underpredicted by one or several or-
ders of magnitude. In fact, this is not surprising as the
TDHF theory lacks beyond-mean-field fluctuations which
need to be accounted for to reproduce the transfer of many
particles. This is particularly crucial in deep-inelastic col-
lisions. Such fluctuations have been included in the dy-
namics using a stochastic mean-field approach [34, 83] or
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Figure 6. Neutron number distribution of the light fragment in
the exit channel of the 58Ni+124Sn central collision at Ec.m. =

144.7 MeV computed with TDHF (circles). The squares show
experimental data extracted from Ref. [71] at Ec.m. = 153 MeV'
0.96VB and θc.m. = 127.5 deg leading to the same distance of
closest approach.

the time-dependent RPA [32]. Indeed, it was shown that
the fluctuations enhance the multi-nucleon transfer proba-
bilities as compared to the independent particle picture.

4 Conclusions

The time-dependent Hartree-Fock approach to many-body
systems has been tested on nuclear dynamics. Both low-
lying and high-lying collective vibrations are described.
Only the direct decay of the latter is taken into account,
which provides a good estimate of the width of the giant
monopole resonance in light systems, but leads to an un-
derestimation in heavy systems.

The TDHF approach is also a powerful tool to invest-
gate the complexity of the fusion process. In particular,
the coupling of the relative motion to all collective modes
of the collision partners and of the compound system is
automatically taken into account at the mean-field level.

For reactions involving heavy nuclei, the fusion mech-
anism is in competition with quasi-fission of the di-
nuclear system formed after capture. The quasi-fission
process then prevents the formation of a compound nu-
cleus. TDHF calculations can be used to investigate the
complex dynamics associated with quasi-fission. In par-
ticular, the contact times between the fragments and the
partial symmetrisation of their masses are characteristic of
the quasi-fission process.

Finally, the transfer of one or several nucleons has
been discussed. Although the TDHF calculations repro-
duce the order of magnitude of the transfer probabilities of
one and two nucleons, they underestimate the two-nucleon
transfer channel and overestimate the one-nucleon transfer
channel due to the lack of pairing correlations in the for-
malism. The transfer of many-nucleons requires the inclu-
sions of beyond mean-field fluctuations, e.g., at the time-
dependent RPA level.
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