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Abstract— This paper investigates the stabilization and opti-
mization problems for a group of identically linear agents with
undirected interaction topology. It is shown that a distributed
control law based on local measurements and relative infor-
mation exchanged from neighboring agents can be designed
for each agent to enable the agent states to be stabilized.
Furthermore, due to the use of a parametric Lyapunov ap-
proach, the designed distributed control law guarantees not
only optimization performance at a network level but also a
convergence rate for the group of agents. Finally, a simulation
example is provided to demonstrate the advantage as well as
the effectiveness of the proposed method.

I. INTRODUCTION

Over the last few years, control of multiagent systems has
received considerable attention, motivated by recent advances
in computation and communication, especially problems
such as synchronization, consensus, flocking, and formation
control, see e.g. [1]–[9]. For more details and developments,
see the survey papers [10] on formation control, [11] on
consensus and references therein.

Multiagent systems with agents interacting with each other
over an interconnection topology are often studied from the
perspective of graph theory [12]. As for the system control of
multiagent systems, there are three possible schemes includ-
ing centralised, decentralised, and distributed control. The
literature tends to favour distributed control [13]. Recently
there has been progress in addressing research efforts on
optimal control for a group of dynamical systems in [14],
which aims at studying how the stability of a multiagent
system is related to the robustness of local controllers and the
network topology. The necessary and sufficient conditions for
stability of an interconnected system of identical vehicles in
terms of the eigenvalues of the graph Laplacian was provided
in [3]. A distributed control law was further investigated in
[15] under the frame of linear quadratic regulator (LQR), in
which different methods were used for the stability analysis.
Furthermore, a linear matrix inequality (LMI) method was
proposed in [16] to find a distributed control law with guar-
anteed LQR cost for identical dynamically coupled linear
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systems. Note here that the widely considered problem was
posed as a LQR cost function and the associated minimiza-
tion problem. A similar LQR cost function was used but in
[14] the solution depended on the maximum vertex degree
while in [16] it is tied to the total number of agents. However,
none of the papers analyzed the convergence rate.

In this paper, we also investigate the stabilization and
optimization problems for a group of identically linear agents
interconnected over an information network, exchanging
relative measurements. The main difference is that a para-
metric Lyapunov design method is presented to stabilize the
network. It is shown that the distributed control law not only
guarantees optimization performance at a network level but
also derives a convergence rate for the group of agents.

The paper is structured as follows. Section 2 contains
all the preliminary notions, including a brief summary of
some relevant results in graph and matrix theory. In Section
3, a LQR cost function and the corresponding optimization
problem are investigated. Section 4 presents the stabilizing
distributed controller design procedure using the local LQR
cost function, and a convergence rate is analytically obtained
by solving the corresponding optimization problem. Its ef-
fectiveness is illustrated by a simulation example in Section
5. Some concluding remarks are given in Section 6.

II. NOTATION AND PRELIMINARIES

A. Notation

The notation used in this paper is standard. The superscript
“T ” stands for matrix transposition. Matrices, if their dimen-
sions are not explicitly stated, are assumed to be compatible
for algebraic operations. The notation P > 0 (≥ 0) means
that P is a real symmetric positive (semi-positive) definite
matrix. In and 0 represent, respectively, the n dimension
identity matrix and zero matrix. The set of real numbers is
denoted by R. The set of real-valued vectors of length m is
given by Rm. The set of arbitrary real-valued m×n matrices
is given by Rm×n.

A concise review of the relationship between the eigen-
values of a Laplacian matrix and the topology of the associ-
ated graph are quoted in this section. Please refer to [17]
for further reading on graph theory. We list a collection
of properties associated with undirected graph Laplacians
and adjacency matrices, which will be used in subsequent
sections of the paper. A graph G is defined as G = (V,A),
where V is the set of nodes (or vertices) V = {1, . . . , N}
and A ⊆ V2 the set of edges (i, j) with i ∈ V , j ∈ V . Let
A(G) = [aij ] denotes the adjacency matrix of the graph G. If
i and j are adjacent nodes of the graph, aij = 1, and aij = 0
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otherwise. We focus on undirected graphs, for which the
adjacent matrix A(G) is symmetric. Let define the Laplacian
matrix of a graph G as L = D(G)−A(G), where D(G) is the
diagonal matrix of vertex degrees. Eigenvalues of Laplacian
matrices have been widely studied by graph theorists. Their
properties are strongly related to the structural properties of
their associated graphs. Every Laplacian matrix is a singular
matrix. The real part of each nonzero eigenvalue of L is
strictly positive. For undirected graphs, L is symmetric,
positive semidefinite matrix, which has only real eigenval-
ues. The smallest eigenvalue of L is exactly zero and the
corresponding eigenvector is given by 1N = [1, . . . , 1]

T .
Moreover, the rank of L is n−1 if and only if L is connected.

Let ⊗ denotes the Kronecker product. We recall some
properties for Kronecker product which will be used through-
out the paper. For matrices A,B,C and D with compatible
dimensions:

1) (αA)⊗B = A⊗ (αB), where α is a constant;
2) (A+B)⊗ C = A⊗B +B ⊗ C;
3) (A⊗B)(C ⊗D) = (AC ⊗BD);
4) (A⊗B)T = AT ⊗BT ;
5) Let A be an m×m matrix with eigenvalues λ1, . . . , λm,

and let B be an n× n matrix with eigenvalues µ1, . . . , µn,
then the mn eigenvalues of A ⊗ B are λiµj , where i =
1, . . . ,m; j = 1, . . . , n.

B. Preliminaries

Consider a linear system{ ·
x(t) = Ax(t) +Bu(t)
x(0) = x0

, (1)

where A ∈ Rn×n and B ∈ Rn×m are, respectively, the
system matrix and control matrix. Define a cost function

J =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (2)

where Q = CTC ≥ 0 and R > 0. We first recall the
following well-known result.

Lemma 1: [18] Consider the linear system (1) and the
cost function (2). Assume that the pair (A,B) is stabilizable
and the pair (A,C) is detectable. Then, J is minimized with

u(t) = −R−1BTPx(t),

where P is the unique positive definite solution to the
following algebraic Riccatti equantion (ARE)

ATP + PA+Q− PBR−1BTP = 0.
We assume that there exists a positive scalar γ such that

P (γ) is the solution to the above ARE, and we choose

Q = γP (γ).

In this case, it becomes

ATP (γ) + P (γ)A− P (γ)BR−1BTP (γ) = −γP (γ), (3)

which leads to the following lemma.
Lemma 2: Consider the linear system (1) and the pair

(A,B) is controllable. Assume that there exists a positive

scalar γ such that γ > −2 min {Re (λ (A))}, and P (γ) is
the solution to the ARE (3). Then,

u∗(t) = −R−1BTP (γ)x(t) (4)

stabilize the linear system (1), and
1) u∗(t) is the solution to the following optimization

problem

inf
u(t)

{∫ ∞
0

eγtu(t)TRu(t)dt

}
, s.t. lim

t→∞
e
γ
2 tx(t) = 0. (5)

2) u∗(t) can minimize the following LQR cost function

J =

∫ ∞
0

(
x(t)T γP (γ)x(t) + u(t)TRu(t)

)
dt. (6)

Proof: See Appendix.
Remark 1: It is noted that the control laws in (4) is the

solution to the optimization problem (5). Meanwhile, it min-
imizes the LQR cost function (6). The term lim

t→∞
e
γ
2 tx(t) = 0

in (5) indicates that the convergence rate of the closed-
loop system is faster than e−

γ
2 t, and (5) corresponds to the

minimal energy control with guaranteed convergence rate
(MECGCR) problem [19].

III. PROBLEM STATEMENT

A. Linear Dynamic Model

Consider a collection of N identical agents, the state-space
representation of the i-th agent’s dynamic is given by

·
xi(t) = Axi(t) +Bui(t) (7)

where xi(t) ∈ Rn and ui(t) ∈ Rm represent the states
and the distributed control inputs. The matrices A ∈ Rn×n
and B ∈ Rn×m, and it is assumed that the pair (A,B) is
controllable. In this paper, each agent is assumed to have
access to its own state and relative external measurements
with respect to the neighbouring agents which it can sense
or interact with. Such a system can be represented as a graph
with N vertices, and each vertex represents an agent. The
existence of relative sensing and communication between
two agents is represented by an edge in the graph. The signals
representing the relative external measurements are assumed
to have the form

zi(t) =
∑
j∈Ji

(xi(t)− xj(t)) (8)

for i = 1 . . . N . The set Ji ⊂ {1, 2, . . . N} /{i} denotes the
external agents, for which the i-th agent has information. The
signals zi(t) represent the sum of the external measurements
relative to the other dynamics which the i-th agent can sense.
At a network of N agents, the state-space representation of
the network is given by

·
X(t) = (IN ⊗A)X(t) + (IN ⊗B)U(t), (9)

where
X(t) =

[
x1(t) . . . xN (t)

]T
,

U(t) =
[
u1(t) . . . uN (t)

]T
.
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At a network level, (8) can be expressed as

Z(t) = (L⊗IN )X(t),

where
Z(t) =

[
z1(t) . . . zN (t)

]T
.

It is assumed that each linear dynamical system has in-
formation about at least one other system which ensures
rank(L) = N − 1.

B. Problem Definition

In this paper, we are interested in the design of state
feedback control laws

ui(t) = Fxi(t) + ΓFzi(t) (10)

for i = 1, . . . , N , where F ∈ Rm×n and Γ = fIm ∈ Rm×m,
f is a scalar. That is, for a positive scalar β, design a set of
control laws (10) such that the LQR cost function

J =

∫ ∞
0

(X(t)T ((IN ⊗ βP (β)) + (L ⊗Q))X(t) (11)

+ U(t)T (IN ⊗R)U(t))dt

where R = RT ∈ Rm×m > 0, Q = QT ∈ Rn×n ≥ 0, and
P (β) is the unique positive definite solution to the following
ARE

ATP + PA− PBR−1BTP = −βP, (12)

is minimized. The procedure to solve this problem is com-
posed from two steps, which are given as below:

1). A decoupled LQR problem: consider the gain matrix
F in (10), find a control law

ui(t) = Fxi(t), (13)

for i = 1, . . . , N , which stabilizes (7) subject to minimizing
a LQR cost function

Ji =

∫ ∞
0

(
xi(t)

TβP (β)xi(t) + ui(t)
TRui(t)

)
dt (14)

for i = 1, . . . , N , where β, P (β) and R are associated with
the LQR cost function given in (11). In this step, the agents
are identical and decoupled, and no interactions among the
agents are considered.

2). A coupled LQR problem: once the matrix F has been
designed, choose a matrix Γ ∈ Rm×m such that all the N
systems (7) are stabilized by the distributed control laws
(10). The state-space control law at the network level is
represented by

U(t) = (IN ⊗ F )X(t) + (L⊗ΓF )X(t), (15)

and the objective is to minimize (11).
Remark 2: According to Lemma 2, the control law (13)

solves an optimization problem

inf
u(t)

{∫ ∞
0

eβtui(t)
TRui(t)dt

}
, s.t. lim

t→∞
e
β
2 txi(t) = 0.

(16)

for i = 1, . . . , N , and the optimization problem (16) can
be viewed as a MECGCR problem. Meanwhile, the control
laws (10) are the solution to the optimization problem

inf
U(t)

{∫ ∞
0

eγtU(t)TRU(t)dt

}
, s.t. lim

t→∞
e
γ
2 tX(t) = 0,

(17)
where γ is a positive scalar.

Remark 3: Similar LQR cost functions (11) are also
considered in [14] and [16]. However, the approaches to
solve the associated LQR problem are different. In [14],
the suboptimal distributed LQR problem is posed as a
single LQR problem exploiting the properties of the graph
associated with the communication topology, but not on the
total number of nodes in the network. In [16], the sub-
optimal distributed LQR problem is solved systematically
in two steps, but the second step creates an optimization
problem which depends on the number of nodes of the graph,
which has to solve the optimization problem in terms of LMI
conditions as many as the the number of nodes. In this paper,
we use a parametric Lyapunov approach to solve the LQR
problem with guaranteed convergence rate.

In the first step, we directly solve a classic decoupled LQR
problem to obtain a set of gains F . The second step is solved
to obtain the matrix Γ. Then, the controllers are obtained. In
what follows, we will design each of these steps in detail.

IV. DISTRIBUTED CONTROL DESIGN

A. Solution to a decoupled LQR problem
Let β > 0 be such that

β > −2 min {Re(λ(A))} ,

where Re(λ(A)) denotes the set of the real parts of the
eigenvalues of A. Then, the feedback gain is

F = −R−1BTP (β), (18)

where P (β) = W−1(β), and W−1(β) is the unique positive
definite solution to the following Lyapunov matrix equation

W (A+
β

2
In)T + (A+

β

2
In)W = BR−1B.

In view of Lemma 2, the feedback gain (18) minimizes the
LQR cost function (14) and solves the optimization problem
(16).

B. Solution to a coupled LQR problem
In this step, we introduce a change of coordinates. It

is known that L is semipositive symmetric. By spectral
decomposition, L =V ΛV T , where V ∈ RN×N is an or-
thogonal matrix formed from the eigenvectors of L, and
Λ = diag (λ1, . . . , λN ) is the matrix of the eigenvalues of
L. Consider an orthogonal transformation

X 7−→ (V ⊗ IN )X = X̄,

U 7−→ (V ⊗ IN )U = Ū .
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In this new coordinates, the LQR performance (11) can be
expressed as

J =

∫ ∞
0

X̄(t)T ((IN ⊗ βP (β)) + (Λ⊗Q)) X̄(t)

+ Ū(t)T (IN ⊗R) Ū(t)dt,

where we have defined X̄(t) = [x̄1(t), · · · , x̄N (t)]
T , Ū(t) =

[ū1(t), · · · , ūN (t)]
T , and (9) can be represented at a network

level in the transformed coordinates as
·
x̄i(t) = (A+BF + λiBΓF )x̄i(t), (19)

ūi(t) = (F + λiΓF ) x̄i(t), (20)

for i = 1, . . . , N . Since Λ is a diagonal matrix, the LQR
performance can be rewritten as

J =

N∑
i=1

∫ ∞
0

(x̄i(t)
T (βP (β) + λiQ) x̄i(t)

+ ūi(t)
TRūi(t))dt. (21)

Since the matrix F is fixed in Step 1, The optimization of the
cost function (21) is further constrained by choosing a proper
matrix Γ ∈ Rm×m in (19) to ensure that a linear feedback
controller results. A direct result of this constraint is that the
optimization is now dependent upon the initial state of the
system. It is assumed that the initial state is x̄i(t0). So the
state trajectory, x̄i(t), is a direct function of the initial state
as stated

x̄i(t) = e(A+BF+λiBΓF )tx̄i(t0) = Φi(t)x̄i(t0).

In view of (19), (20), the cost function (21) is written to
reflect the dependence of the state trajectory on its initial
state.

J = x̄i(t0)T (

N∑
i=1

∫ ∞
0

(Φi(t)
T (βP + λiQ

+ (F + λiΓF )
T
R (F + λiΓF ))Φi(t))dt)x̄i(t0).

By definition, the matrices, Q and P , are symmetric, the cost
function is equivalent to

J = trace

(
N∑
i=1

Pix̄i(t0)x̄i(t0)T

)
,

where

Pi =

∫ ∞
0

Φi(t)
T (βP (β) + λiQ

+ (F + λiΓF )
T
R (F + λiΓF ))Φi(t)dt. (22)

Here, Pi is the solution to the well known Lyapunov stability
equation

(A+BF + λiBΓF )TPi + Pi(A+BF + λiBΓF )

= − (βP (β) + λiQ)− (F + λiΓF )
T
R (F + λiΓF )

(23)

Provided that the initial state of the system represents an
unknown, the mean value of the minimization of the cost

function is sought over all possible x̄i(t0). This is equivalent
to simply minimizing

J̄ = trace

(
N∑
i=1

Pi

)
(24)

subject to (23).
To solve the problem (24), let γ > 0 be such that

γ < 2β + 2 min {Re (λ(A))} .

Then Pi(γ) is the unique positive solution to the following
Lyapunov equation

(A+
γ

2
In +BF + λiBΓF )TPi(γ)

+ Pi(γ)(A+
γ

2
In +BF + λiBΓF )

= − (F + λiΓF )
T
R (F + λiΓF )

for i = 1, . . . , N . The LQR cost function (21) is equivalent
to

J =

N∑
i=1

∫ ∞
0

(
x̄i(t)

T γPi(γ)x̄i(t) + ūi(t)
TRūi(t)

)
dt,

Meanwhile, the control law (20) solves the following opti-
mization problem

N∑
i=1

inf
ūi(t)

{∫ ∞
0

eγtūi(t)
TRūi(t)dt

}
, s.t. lim

t→∞
e
γ
2 tx̄i(t) = 0.

which is equivalent to the optimization problem (17).
In what follows, for the sake of convenience, the con-

straints can be written as

ATi Pi(γ) + Pi(γ)Ai +Qi = 0,

for i = 1, . . . , N , where

Ai = A+BF + λiBΓF +
γ

2
In,

Qi = (F + λiΓF )
T
R (F + λiΓF ) .

By definition, Ai and Qi are parametric matrices, the above
constrain is a Lyapunov matrix equation and Pi(γ) is the
solution to the Lyapunov equation. The minimization of the

LQR cost function (24), minimize trace
(
N∑
i=1

Pi

)
, is stated

in terms of parameters γ and f . The design matrix Γ can be
obtained in terms of the parameter γ.

Remark 4: From the above steps, it is known that we
should solve the the optimization problem in terms of para-
metric Lyapunov equations as many as the number of nodes.
For large scale systems, this would be a little computational
cost. However, it requires less computation than the LMI
conditions in [16].
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V. NUMERICAL EXAMPLE

Consider a group of three agents moving in a plane with
the dynamic of each described by a double integrator in each
of the directions x and y. The system is represented by

·
ζi = Aζi +Bui,

where ζi represents the position and the velocity states of
the i-th agent. The plant matrix and input matrix are given
by

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , B =


0 0
0 0
1 0
0 1

 .
Suppose that a communication network is given by Fig. 1,
which is represented by the Laplacian matrix

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 .
In the first step, for any β > 0, a control law (18) is obtained
by solving a Lyapunov equation, and the solution to the ARE
(12)

P (β) =


β3 0 β2 0
0 β3 0 β2

β2 0 2β 0
0 β2 0 2β

 .
Then, the control gain matrix is given by

F = −R−1BTP (β)

=

[
−β2 0 −2β 0

0 −β2 0 −2β

]
.

For any positive β, let β = 0.07 > 0, the above control gain
matrix can be shown as

F =

[
−0.0049 0 −0.14 0

0 −0.0049 0 −0.14

]
.

Since the LQR cost function (14) and the optimization
problem (16) have been solved, we will exploit the second
step of the design procedure. We assume that the three agents
have an interconnection topology as Fig. 1. A distributed
control law as in (10) is designed by using the constraints,
for i = 1, 2, 3. Following the design procedure in the
second step, we obtain that, for any positive γ such that
γ < 2β+ 2 min {Re (λ(A))}, let γ = 0.05 < 2β, the matrix
Γ for the control gain is given by

Γ = 0.30I2.

Then, the control laws in the form of (10) such that

ui(t) =
[
−0.0049I2 −0.14I2

]
xi(t)

+
[
−0.00147I2 −0.0042I2

]
zi(t),

for i = 1, 2, 3, can solve the LQR cost function (14) and
the optimization problem (17). That is, the control law can
stabilize (7) and guarantee convergence rate of the agents
faster than e−0.025t.

Agent 1

Agent 2 Agent 3

Fig. 1. An undirected communication topology
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Fig. 2. Trajectories of three agents with random initial conditions

To show that this control law can achieve stabilization
and guarantee convergence rate, we simulate the group of
agents with the given control law. Shown in Fig. 2 is the
simulation result for random initial conditions. It is shown
that, for random initial conditions, the control laws enable
the states of each agent to be stabilized.

VI. CONCLUSIONS

In this paper, a distributed control law for identically cou-
pled linear systems was proposed via a parametric Lyapunov
approach, and a two-step design procedure was present. All
the agents were interconnected over an information network,
and were supposed to be stabilized under the distributed
control law, which not only guaranteed optimization perfor-
mance at a network level but also analytically resulted in a
convergence rate for the group of agents.
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APPENDIX

Proof of Lemma 2.
Proof: 1) In view of (4), the closed-loop system matrix

Ac(γ) = A−BR−1BTP (γ) satisfies

P (γ)Ac(γ) +Ac(γ)TP (γ)

= −γP (γ)− P (γ)BR−1BTP (γ)

< 0.

It is implies that the linear system is stable under the control
law (4). Suppose

x̄(t) = e
γ
2 tx(t), ū(t) = e

γ
2 tx(t),

and we have
·
x̄(t) = e

γ
2 t
·
x(t) +

γ

2
e
γ
2 tx(t)

=
(
A+

γ

2

)
x̄(t) +Bū(t)

, Āx̄(t) + B̄ū(t).

Then, the optimization problem (5) is equivalent to

inf
ū(t)

{∫ ∞
0

eγtū(t)TRū(t)dt

}
, s.t. lim

t→∞
e
γ
2 tx̄(t) = 0,

and the solution to this problem is

u∗(t) = −R−1B̄T P̄ (γ)x̄(t), (25)

where P̄ (γ) is the solution to the following ARE:

ĀT P̄ (γ) + P̄ (γ)Ā− P̄ (γ)B̄R−1B̄T P̄ (γ) = 0. (26)

Suppose that P (γ) = P̄ (γ), (25) and (26) are, separately,
equivalent to (4) and (3). According to [20], P̄ (γ) is the
unique solution to (26).

2) It is known [18] that there exists a control law such that
u∗(t) = −R−1BTSx(t) minimizes the LQR cost function
(6), where S is the unique positive solution to the following
ARE:

ATS + SA+ γS − SBR−1BTS = 0. (27)

In what follows, we will prove that S = P (γ). Define 4S =
S − P (γ), and in view of (27) and (3), we obtain

0 = AT 4 S +4SA− SBR−1BTS

+ P (γ)BR−1BTP (γ)

= Ac(γ)T 4 S +4SAc(γ)−4SBR−1BT 4 S.

According to Item 1, we know that Ac(γ) < 0. Then, we can
obtain 4S ≤ 0. That is, S ≤ P (γ). Meanwhile, we define
4P = P (γ)− S, and in view of (27) and (3), we obtain

0 = (A−BR−1BTS)T 4 P

+4P (A−BR−1BTS)−4PBR−1BT 4 P.

Then, we have 4P ≤ 0 , that is, P (γ) ≤ S. Thus, we obtain
S = P (γ), which completes the proof.
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