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ABSTRACT
We determine the near-infrared Fundamental Plane (FP) for ∼104 early-type galaxies in the
6-degree Field Galaxy Survey (6dFGS). We fit the distribution of central velocity disper-
sion, near-infrared surface brightness and half-light radius with a 3D Gaussian model using
a maximum-likelihood method. The model provides an excellent empirical fit to the ob-
served FP distribution and the method proves robust and unbiased. Tests using simulations
show that it gives superior results to regression techniques in the presence of significant and
correlated uncertainties in all three parameters, censoring of the data by various selection
effects and outliers in the data sample. For the 6dFGS J-band sample we find an FP with
Re ∝ σ 1.52±0.03

0 I−0.89±0.01
e , similar to previous near-infrared determinations and consistent

with the H- and K-band FPs once allowance is made for differences in mean colour. The
overall scatter in Re about the FP is σ r = 29 per cent, and is the quadrature sum of an 18
per cent scatter due to observational errors and a 23 per cent intrinsic scatter. Because of the
Gaussian distribution of galaxies in FP space, σ r is not the distance error, which we find to
be σ d = 23 per cent. Using group richness and local density as measures of environment,
and morphologies based on visual classifications, we find that the FP slopes do not vary with
environment or morphology. However, for fixed velocity dispersion and surface brightness,
field galaxies are on average 5 per cent larger than galaxies in groups or higher density environ-
ments, and the bulges of early-type spirals are on average 10 per cent larger than ellipticals and
lenticulars. The residuals about the FP show significant trends with environment, morphology
and stellar population. The strongest trend is with age, and we speculate that age is the most
important systematic source of offsets from the FP, and may drive the other trends through
its correlations with environment, morphology and metallicity. These results will inform our
use of the near-infrared FP in deriving relative distances and peculiar velocities for 6dFGS
galaxies.

Key words: surveys – galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies:
fundamental parameters – galaxies: structure.

1 INTRODUCTION

Empirical correlations between observable galaxy parameters guide
our understanding of the physical mechanisms that regulate the

�E-mail: magoulas@student.unimelb.edu.au

formation and evolution of galaxies. One of the first early-type
galaxy scaling relations was recognized by Faber & Jackson (1976),
and connects galaxy luminosity, L, and stellar velocity dispersion,
σ . The Faber–Jackson relation has the form of a power law, L ∝
σγ , where γ is usually observed to be in the range 3–5. A similar
relation between galaxy luminosity and effective radius, Re, was
derived around the same time (Kormendy 1977). The Kormendy
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relation also has the power-law form L ∝ Rε
e , with ε usually found

to be in the range −1 to −2. Both relations show a wide range of
slopes depending on the properties of the sample under considera-
tion (e.g. absolute magnitude and morphological type) and substan-
tial intrinsic scatter, in the range 0.2–0.5 dex (e.g. Desroches et al.
2007; Nigoche-Netro, Ruelas-Mayorga & Franco-Balderas 2008;
Nigoche-Netro et al. 2010).

However, subsequent examination of the 3D logarithmic space
of size, surface brightness and velocity dispersion revealed that
early-type galaxies populate a more tightly correlated 2D plane
with significantly lower intrinsic scatter (Djorgovski & Davis 1987;
Dressler et al. 1987). This Fundamental Plane (FP) has the power-
law form Re ∝ σa

0 〈Ie〉b, where Re is the effective radius, 〈Ie〉 is the
mean surface brightness enclosed within the effective radius and σ 0

is the central stellar velocity dispersion.
Since the original formulation of the FP relation, the size and

quality of early-type galaxy samples have been steadily improved
(e.g. Bernardi et al. 2003; D’Onofrio et al. 2008; La Barbera et al.
2008, 2010a; Gargiulo et al. 2009; Hyde & Bernardi 2009; Graves,
Faber & Schiavon 2010) in an effort to explain important properties
such as the FP’s observed orientation (or tilt) and its intrinsic scatter
(or thickness).

The tilt of the FP is the difference between the observed coef-
ficients of the plane, a (for log σ 0) and b (for log 〈Ie〉), and the
values a = 2 and b = −1 that would follow if galaxies were homol-
ogous virialized systems with constant mass-to-light ratio (M/L).
The physical origin of this tilt is usually interpreted as being due to
some combination of systematic deviations either from dynamical
homology (i.e. differences in density profile or orbital structure) or
from a fixed M/L. Both effects clearly contribute in some degree,
but neither one by itself appears to explain the entirety of the FP
tilt, leaving its origin an open and much debated question (see e.g.
Ciotti, Lanzoni & Renzini 1996; Busarello et al. 1997; Graham &
Colless 1997; Trujillo, Burkert & Bell 2004; Cappellari et al. 2006;
D’Onofrio et al. 2006).

The other notable property of the FP is its remarkably small
intrinsic scatter or thickness, which has enabled its use as a dis-
tance indicator for early-type galaxies. The intrinsic scatter in the
distance-dependent quantity, Re, is measured to be as small as 10–15
per cent, although the effective precision of the distance estimator,
including observational errors, is typically 20–30 per cent (see dis-
cussion in Section 5.8 and Table 4).

Several authors (Scodeggio et al. 1998; Bernardi et al. 2003;
Hyde & Bernardi 2009; La Barbera et al. 2010b) have detected
a weak steepening of the slope in log σ 0 (i.e. a decrease in a) in
redder passbands. This wavelength variation has also been observed
in near-infrared (NIR) FP samples (e.g. Pahre, Djorgovski & de
Carvalho 1998a; Jun & Im 2008), suggesting a variation of stellar
content (and M/L) along the FP. In contrast, the slope in log 〈Ie〉 (i.e.
b) is found to be largely independent of wavelength.

The FP relation is often claimed to be ‘universal’, in the sense that
the coefficients are similar for galaxies across environments ranging
from the low-density field to high-density clusters (e.g. Jorgensen,
Franx & Kjaergaard 1996; Pahre, de Carvalho & Djorgovski 1998b;
Colless et al. 2001; Reda, Forbes & Hau 2005). However, there are
also suggestions in the literature that there are mild, but statisti-
cally significant, environmental variations (e.g. Lucey, Bower &
Ellis 1991a; de Carvalho & Djorgovski 1992; Bernardi et al. 2003;
D’Onofrio et al. 2008; La Barbera et al. 2010c). Any variation in
the FP between field and cluster galaxies, or for galaxies in clusters
of different richness, would be interesting from the point of view of

the formation of early-type galaxies, but would complicate the use
of the FP as a distance indicator.

The structural similarity of elliptical (E) galaxies and the bulges
of lenticular (S0) and early-type spiral (Sp) galaxies suggests that
the latter classes of object may also populate the FP (Dressler et al.
1987), and Jorgensen et al. (1996) found that the FPs for E and
S0 galaxies were consistent. In contrast, galaxies with both bulge
and disc components have been observed to be offset from ellipti-
cals on the FP (Bender, Burstein & Faber 1992; Saglia, Bender &
Dressler 1993). It is therefore important to examine whether there
are morphological variations in the observed FP, and (if so) whether
these are due to intrinsic differences between E galaxies and the
bulges of S0 and early-type Sp galaxies or to observational contam-
ination of the bulge parameters by the disc for the latter classes of
galaxy. If such morphological variation exists, for either reason, it
would result at some level in offsets and increased scatter of the FP,
and increase the systematic and random errors (respectively) in the
estimated distances and peculiar velocities.

More recent studies (Graves, Faber & Schiavon 2009; La Barbera
et al. 2010b) have focused on the trends in FP space of stellar
population parameters such as age and metallicity. A separate paper
in this series (Springob et al. 2012) explores the variations of age and
metallicity within the 6dFGS FP sample, and looks for variations
of the FP for galaxies with different stellar populations.

One difficulty in comparing the results from different studies
of the FP is that physical variations can be mimicked by biases
resulting from the interaction of the fitting method with the sample
selection criteria or the complicated error dependencies in the data.
The regression methods typically used to fit the FP broadly fall in
the category of linear least squares, and minimize the residuals of
one of the FP variables or the residuals orthogonal to the plane. The
type of least-squares regression chosen is often determined by the
focus of the study (e.g. regression on log Re to estimate distances or
regression on log 〈Ie〉 for a stellar population study), though it is well
known that different regression methods do not necessarily converge
on a unique (or even consistent) best fit, particularly if selection
effects or correlated measurement errors are not fully accounted
for (Hogg, Bovy & Lang 2010). This tendency to use different
regression techniques interchangeably has made it challenging to
compare the results of different FP studies, and in some cases has
led to conclusions that are either incorrect or misleading.

There is also the additional question of whether the traditional
FP model of a 2D plane with Gaussian scatter is statistically robust
or truly representative of the distribution of galaxies in FP space.
Saglia et al. (2001) have shown that a 3D Gaussian model provides
a more accurate (and therefore less biased) representation of the
galaxy distribution, at least for the large, bright, early-type galaxies
in most FP samples.

Given these considerations, we have developed a robust
maximum-likelihood (ML) algorithm for fitting the galaxy distri-
bution in FP space with a 3D Gaussian model. Through simulations
we compare this approach to the usual least-squares regressions of
a plane with Gaussian scatter, and show that it is superior in vir-
tually all respects: more versatile in dealing with complex sample
selection criteria and correlated measurement errors, more robust
against outliers and blunders in the data and providing unbiased and
precise estimates of the FP parameters and their uncertainties.

We apply this method to a sample of ∼104 early-type galaxies
drawn from the 6-degree Field Galaxy Survey (6dFGS). The 6dFGS
is a combined redshift and peculiar velocity survey of galaxies
covering the entire southern sky at |b| > 10◦ (Jones et al. 2004, 2005,
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2009). The FP sample consists of the brightest [highest signal-to-
noise ratio (S/N)] ellipticals, lenticulars and early-type spiral bulges
in the 6dFGS volume out to cz = 16 500 km s−1. This sample will
ultimately form the basis of the 6dFGS peculiar velocity survey
(6dFGSv), with the broad aims of mapping the density and velocity
fields in the nearby Universe and providing tighter constraints on a
range of cosmological parameters (Colless et al. 2005).

The paper is organized as follows. Section 2 outlines the general
3D Gaussian model and ML algorithm that can be used to fit any
FP sample. Section 3.1 describes the FP sample data from the
6dFGS to which we apply our model. We establish the validity
of our methodology and determine the errors on the fits from Monte
Carlo simulations using mock samples described in Section 4. The
overall FP fit results are given in Section 5; variations of the FP
with environment are addressed in Section 6 and dependencies on
galaxy morphology in Section 7. Various aspects of our results
are discussed in Section 8, including the following: the validity
of modelling the FP as a 3D Gaussian; the interpretation of the
scatter about the FP and the proper estimation of distance errors;
the physical insights offered by studying the FP in κ-space; and
the significance of the trends of the residuals about the FP with
environment, morphology and stellar population. Throughout we
assume a flat � cold dark matter (�CDM) cosmology with �m =
0.3, �� = 0.7 and H0 = 100 h km s−1 Mpc−1; this is only used
for converting between angular and physical scales, and in fact
the specific cosmology chosen makes little difference for this low-
redshift sample.

2 MAXIMUM-LIKELIHOOD GAUSSIAN FIT

2.1 Motivation

The FP relation is defined as

log Re = a log σ0 + b log〈Ie〉 + c, (1)

where the coefficients a and b are the slopes of the plane and the
constant c is the offset of the plane. In this study we employ units of
h−1 kpc for effective radius Re, km s−1 for central velocity dispersion
σ 0 and L� pc−2 for mean surface brightness 〈Ie〉. We prefer to use
log 〈Ie〉 rather than 〈μe〉 (which is in units of mag arcsec−2), so
that all our FP parameters are unscaled logarithmic quantities; this
means that the relative errors and scatter are directly comparable in
all axes. Throughout the rest of this paper, we adopt an abbreviated
notation for the FP parameters: r ≡ log Re, s ≡ log σ 0 and i ≡
log 〈Ie〉. Hence, we write the FP relation as

r = as + bi + c. (2)

Traditional methods for deriving the coefficients of equation (1)
have preferred using a form of linear regression that involves min-
imizing residuals in the direction of one of the FP axes (Dressler
et al. 1987), or orthogonal to the plane itself (Jorgensen et al. 1996),
or both (Hyde & Bernardi 2009; La Barbera et al. 2010b). Least-
squares regression is used for its simplicity and relatively fast nu-
merical implementation. However, such regression techniques can
be biased by the choice of variable they minimize, the unacknowl-
edged properties of the model they assume, the selection effects
they fail to model and the (possibly correlated) uncertainties they
do not include in the fit. Simple regressions are thus likely to result
in unreliable and biased fits to the FP.

Specifically, we identify the dominant sources of bias in FP sam-
ples as arising in general from: (i) the model for the FP distribution
and its intrinsic scatter; (ii) selection effects, in the form of both

hard and soft censoring of the sample; and (iii) the measurement
errors on all three FP variables, which are often correlated.

(i) FP distribution model: as discussed above, a 3D Gaussian is
a simple and convenient model that empirically is found to be a
better match to the (censored) observed FP distribution of early-
type galaxies than the standard model of a 2D plane surface with
Gaussian scatter in one direction (see Section 4.1). The standard
model effectively assumes that galaxies uniformly populate the
whole plane, whereas the 3D Gaussian naturally accounts not only
for the scatter about the plane but also for the distribution within the
plane, at least for the bright galaxies included in the 6dFGS sample
and most others.

(ii) Selection effects: censoring of the intrinsic FP distribution is
always present for observed FP samples, in both obvious and not-
so-obvious ways. If the fitting technique is to avoid biased results
due to censoring, it must account for all the selection effects. These
include both hard selection limits in FP variables (e.g. in velocity
dispersion due to the limiting instrumental resolution) and soft (i.e.
graduated) selection limits in any other observable or combination
of observables (e.g. the joint selection on size and surface brightness
due to the flux limit of a sample). Using ML fitting it is straightfor-
ward to incorporate these limits (see Section 2.5); by comparison,
for linear regressions it is significantly more difficult to account for
selection effects more complex than a hard limit in one variable.

(iii) Measurement errors: the modelling of measurement errors in
an FP sample is complicated by the fact that galaxies have different
errors in all three of their FP parameters, and some of these er-
rors are significantly correlated (notably those in r and i). Standard
least-squares regression only accounts for uncorrelated measure-
ment errors (and in naive applications, only measurement errors in
one parameter). However, a ML approach can account exactly for
differing measurement errors and their correlations in a straightfor-
ward way.

2.2 Least-squares regression bias

As discussed above, a ML method is clearly to be preferred in
principle. However, it does not necessarily follow in practice that
the limitations of the linear regression approach result in significant
biases when fitting the FP. We therefore illustrate the consequences
of using linear regressions to fit mock samples simulated by drawing
galaxies from a 3D Gaussian intrinsic FP and applying realistic
measurement errors and selection effects. The process of creating
these mock samples is outlined in Section 4.1.

Three different types of mock samples were fitted with each of the
commonly used linear least-squares regressions (i.e. by minimizing
residuals in the distance-dependent quantity, XFP ≡ r − bi, or the
distance-independent quantity, log σ 0 ≡ s, or the residuals orthog-
onal to the regression line) and also by a ML fit of a 3D Gaussian.
In the left-hand panels of Fig. 1, we compare the fits to these mocks
using the observed effective radius versus predicted effective radius
(calculated from equation 2). The simplest mock sample, panels (a)
and (e), is just the intrinsic distribution with no observational er-
rors or selection effects applied to it; consequently, it is the tightest
sample and the best fit has almost no method-dependent bias.

However, when simulated observational error scatter is added
to the mock FP parameters, panel (b), the sample is significantly
skewed away from the one-to-one line as a result of the systematic
variation in the observational errors with velocity dispersion, size
and surface brightness, as well as the correlation between the ob-
servational errors in size and surface brightness. The skewing effect
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Figure 1. Panels (a)–(d): comparison of the observed effective radius against predicted effective radius (calculated from equation 2) for mock samples all
with the same underlying FP (r = 1.52s − 0.89i − 0.33) and intrinsic scatter, but subject to differing levels of measurement errors and sample censoring –
(a) no measurement errors or censoring (Ng = 8901); (b) measurement errors but no censoring (Ng = 8901); (c) both measurement errors and censoring (Ng

= 5139); (d) as for (c), but with the censored data points shown in red (Ng = 8901). Note that the sample is skewed from the one-to-one line (in black) by
the measurement errors and the censoring of the sample, as indicated by the best-fitting orthogonal regression lines for each sample (in grey). Panels (e)–(h):
for the same mock samples as in (a)–(d), the correlation between the distance-dependent quantity, XFP ≡ r − bi, and the distance-independent quantity, s ≡
log σ 0. The vertical dashed black line indicates the hard cut in log σ 0 (s ≥ 2.05) that is applied, along with other selection cuts, in censoring the mock samples
in panels (g) and (h). In each panel the solid black line indicates the intrinsic FP that the mock samples were generated from; panel (h) also shows as grey lines
the standard least-squares regressions (in two dimensions) minimizing with respect to XFP (dot–dashed) and s (dotted), and the orthogonal regression (dashed);
the solid magenta line shows the ML fit to a 3D Gaussian.

is exacerbated when censoring is also present in the mock sample;
panel (c) shows the situation where the censored data are absent,
while panel (d) is the same but with the censored data shown in red
(though still not included in the fits). This censoring is the result
of observational selection effects operating both on velocity disper-

sion (due to the instrumental spectral resolution limit) and jointly on
size and surface brightness (due to the sample apparent magnitude
limit). The consequences of this skewing of the sample distribu-
tion are illustrated in panels (a)–(d) by the discrepancy between
the one-to-one relation (black line) and the best-fitting orthogonal
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regression (grey line). The overall effect, shown in panels (c) and
(d), is that the best-fitting slope is found to be 0.84 rather than the
true value of unity.

This biasing is also seen in the frequently used 2D projection
of the FP showing the distance-dependent photometric parameter,
XFP ≡ r − bi, and distance-independent spectroscopic parameter,
s ≡ log σ 0. The right-hand panels in Fig. 1 show this projection for
precisely the same mock FP samples as those in the corresponding
left-hand panels. The most obvious selection effect on the mock
sample in the right-hand bottom panel is the velocity dispersion
limit, which censors the red points to the left of the vertical dashed
line at s = 2.05 (i.e. log σ 0 = 112 km s−1). The red points to the right
of this line are those eliminated by the joint selection effect on r and
i due to the apparent magnitude limit of the sample, which tends to
censor galaxies with smaller sizes and fainter surface brightnesses,
but in a way that depends on redshift.

These simulations show that the combined effect from all the
selection criteria and measurement errors skews the best fit when
not accounted for correctly (as is the case for least-squares fitting),
most noticeably for the regressions on XFP and s. The orthogonal
fit (dashed grey line) fits the data well in this projection, but this is
a consequence of fixing the value of b, a priori, to approximately
the correct value. In this case, b has been fixed to the canonical
value of b = −0.75; because this differs from the input value of

b = −0.88 for the mock sample, the fit deviates from the input
plane (particularly at the low σ end). Additionally, Fig. 1 illustrates
why the ML best fit does not appear, by eye, to be a good fit to the
observed data – the observational errors and the selection effects
systematically skew the observed sample away from the underlying
intrinsic distribution.

The conclusion from this exercise is that, for samples with realis-
tic observational errors and censoring, the input FP is best recovered
with the ML method. Regressions on XFP or s lead to highly biased
results, while the 2D orthogonal regression gives a reasonable fit,
at least for this particular combination of observables, only if b is
fixed a priori close to the true value. However, as shown below, re-
gressions on r, s, i and the orthogonal residuals all show significant
biases when fitting the FP parameters in three dimensions, and only
the ML method accurately recovers the FP.

To illustrate the differences resulting from different fitting meth-
ods in three dimensions and the impact of various problems with the
real data, we fit simulated samples with progressively more realistic
properties (just as in Fig. 1). Fig. 2 shows the fitted FP slope values
(a and b) for 1000 mock samples of various types (each sample
containing 8901 galaxies) using least-squares regression in three
dimensions on each of the FP variables (i.e. r, s, i) and orthogonal
to the plane, as well as our 3D Gaussian model fitted using a ML
method. In green are the results of fits to mocks just including the

Figure 2. The best-fitting values for the FP slopes, a and b, for each of 1000 mock FP samples (black dots) fitted with least-squares regressions (in three
dimensions) minimizing the residuals in each of the three FP variables (i.e. r, s and i) and orthogonal to the plane; also fitted with the ML 3D Gaussian. The
labels on each cluster of black points indicate the fitting method used; the colours indicate whether intrinsic scatter, observational errors and selection effects
(censoring) are included in the mock samples, as follows: green indicates the mocks only include the intrinsic scatter of the FP; blue indicates the mocks
include intrinsic scatter and censoring; red indicates the mocks include intrinsic scatter, observational scatter and censoring. The mean values of the fitted
slopes (coloured dots) and the 1σ , 2σ and 3σ contours (coloured ellipses) are overplotted in the colour corresponding to the type of mock sample. The dashed
lines indicate the input FP coefficients (a = 1.52 and b = −0.89) from which all the mock samples were drawn.
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intrinsic scatter of the FP; in blue are the fits to mocks with both in-
trinsic scatter and sample censoring due to the selection criteria; and
in red are fully realistic mocks including all the effects of intrinsic
scatter, selection criteria and observational errors.

The linear regressions on individual FP parameters give biased
estimates of a and b even for the ‘ideal’ case (green), and become
progressively more strongly biased as censoring and observational
errors are included (blue and red). The log σ 0 slope, a, is biased high,
even for the ‘ideal’ case, when an FP sample is fitted by minimizing
the log σ 0 residuals as compared to the other fitting techniques.
This is consistent with previous studies (Jorgensen et al. 1996; La
Barbera et al. 2010b) and is a result of the dominant selection limit
in log σ 0. The sense of the trends in both a and b for all regression
methods agree with those found by Saglia et al. (2001), as shown
in their fig. 6.

Fig. 2 also indicates that orthogonal regression (in three dimen-
sions) is the least biased of the regression methods; however, in the
most realistic simulations (red), it nonetheless returns slopes that
are biased by many times the nominal precision of the fits (given by
the 1σ contour). The ML fitting method clearly outperforms all the
regression methods, recovering the FP slopes without significant
bias for all types of mock samples (see the inset, which expands the
region centred on the input values of the FP slopes).

As might be expected, for all fitting methods the error contours
on the fitted slopes become larger when censoring and observational
errors are applied to the mock samples. Not so obviously, the error
contours for the most realistic mocks (red) are largest for the ML
fit and the regression on s; the apparently greater precision of the
r, i and orthogonal regressions are obtained at the expense of very
substantial biases in the fitted slopes. These regression fits thus give
a false sense of precision while at the same time introducing biases
that are many times larger than the nominal errors on the fitted
slopes.

2.3 3D Gaussian likelihood function

The FP is modelled as a 3D Gaussian in a similar fashion to the
approach adopted by the EFAR survey (Colless et al. 2001; Saglia
et al. 2001) and subsequently by Bernardi et al. (2003). This choice
of model is justified by the good empirical match it provides to the
distribution of galaxies in FP space, at least for samples limited by
their selection criteria to larger, brighter galaxies.

In one dimension the Gaussian probability distribution for a given
galaxy, n, is

P (xn) = 1√
2πσ 2

exp − (xn − x̄)2

2σ 2
(3)

for a variable, xn, with mean x̄ and standard deviation σ . Gen-
eralizing this to three dimensions, the probability density dis-
tribution, P (xn), for a given galaxy, n, occupying the position
xn = (r − r̄ , s − s̄, i − ī) in FP space with respect to the mean
values r̄ , s̄ and ī is

P (xn) = exp[− 1
2 xT

n (Σ + En)−1xn]

(2π)3/2|Σ + En|1/2fn

, (4)

where f n is the normalization factor accounting for the fact that,
due to selection effects, the galaxies do not fully sample the entire
Gaussian distribution. The total 3D scatter in FP space is given by the
addition of the FP variance matrix, Σ (specifying the intrinsic scatter
of the FP distribution in three dimensions), and the observational
error matrix En (specifying the observational errors in r, s and i and
their correlations; this is constructed in Section 3.3).

Figure 3. An interactive 3D schematic of FP space, showing the vectors
v1, v2, v3 (in dark blue) that define the axes (see equation 5) of our Gaussian
model (3σ Gaussian ellipsoid in cyan) as they are oriented with respect to
the three observational parameter axes r, s, i . We also show (in red) the
vectors corresponding to the physical quantities log M, log L, log M/L and
log L/R3 as defined in Section 2.3. We note that the angle between the
vectors log M/L and −v1 and also log L/R3 and −v1 are both within 5◦
of each other. (Readers using Acrobat Reader v8.0 or higher can enable
interactive 3D viewing of this schematic by mouse clicking on the figure;
see Appendix B for more detailed usage instructions.)

The FP space can be described either in terms of the observational
parameters or in terms of the unit vectors showing the principal axes
of the 3D Gaussian characterizing the galaxy distribution (hereafter,
v-space). The FP itself is defined by its normal vector, which is the
eigenvector of the intrinsic FP variance matrix Σ with the smallest
eigenvalue. A representation of the v-space axes (v1, v2, v3) with
respect to the axes of the observational parameters (r, s, i) is shown
in Fig. 3 as a 3D interactive visualization that can be accessed
by viewing this paper in Adobe Reader v.8.0 or higher. All the
interactive 3D figures in this paper were created with custom C

code and the S2PLOT graphics library (Barnes et al. 2006), using the
approach described in Barnes & Fluke (2008).

The resulting vectors that define the axes of the Gaussian are

v̂1 = (1/
√

1 + a2 + b2)v1,

v̂2 = (b/
√

1 + b2)v2,

v̂3 = (ab/
√

(1 + b2)(1 + a2 + b2))v3,
(5)

where

v1 = r̂ − a ŝ − b î,

v2 = r̂ + î/b,

v3 = −r̂/b − (1 + b2)ŝ/(ab) + î, (6)

in terms of the FP slopes a and b. These are the same axes defined by
Colless et al. (2001) for the EFAR FP study, with the exception that
the value of b quoted in this study is the coefficient of log 〈Ie〉 (with
units of L� pc−2) rather than the coefficient of 〈μe〉 (with units of
mag arcsec−2) used in the EFAR study, so that b6dF = −2.5 bEFAR.

The direction of the short axis (v̂1), which runs through (i.e.
normal to) the plane, is fully determined by the fitted slopes a and
b. The long axis (v̂2), which runs along the plane, is fixed by being
orthogonal to v̂1 and having no log σ 0 component. Although this
is fixed by fiat, in fact (as we show in Section 5.4) this is very
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close to the longest natural axis of the 3D Gaussian if no constraints
are placed on its direction. The advantage of this definition of v̂2

lies in its physical interpretation as the direction within the FP
that has no dynamical component, connecting only the photometric
parameters r and i. The third, intermediate axis (v̂3), which runs
across the plane, is orthogonal to both v̂1 and v̂2.

Fig. 3 also shows the relation between the v-space axes and the
physical quantities of dynamical mass (M), luminosity (L), M/L and
luminosity density (L/R3). The logarithm of these quantities can be
expressed as a function of the FP parameters, under the assumption
of homology, as m = r + 2s and l = 2r + i, where m ≡ log M and
l ≡ log (L). The logarithm of M/L is then simply m − l = −r +
2s − i and the logarithm of luminosity density is l − 3r = −r + i.
Therefore, in the case of the virial plane, where a = 2 and b = −1,
the principal axes are aligned with these quantities: m − l = −v1

and l − 3r = −v2. Even for the actual tilted FP, we find the angle
between these vectors is small (our observed FP has v1 offset 5.0◦

from m − l and v2 offset 3.6◦ from l − 3r).
The likelihood function, L, is evaluated from the product of the

probability density function (equation 4) for each galaxy, n, using

L =
Ng∏
n=1

P (xn)1/Sn . (7)

The probability density function is weighted by the fraction of the
survey volume in which the galaxy could have been observed, which
is inversely proportional to the selection probability, Sn, depending
on the magnitude and redshift selection criteria imposed on the FP
sample (see Section 2.5). The probability is normalized over the
region of the FP space allowed by the selection criteria, so that∫

P (x)d3x = 1.
For convenience, the log-likelihood value (lnL) is used, so the

product in equation (7) can be reduced to a summation, and then
evaluated for our particular P (xn):

lnL = −
Ng∑
n=1

S−1
n

[
3

2
ln(2π) + ln(fn)

+ 1

2
ln(|Σ + En|) + 1

2
xT

n (Σ + En)−1xn

]
. (8)

The leading factor in the summation is the weight of the nth galaxy,
given by the inverse of its selection probability. Within the square
brackets, the first three terms are the normalization of the probabil-
ity, and the final term is half the χ2.

2.4 Likelihood function optimization

The log-likelihood of equation (8) is maximized to simultaneously
fit for the eight FP parameters that define the 3D Gaussian model
discussed in the preceding section. The parameters that are derived
from the fit are the following: the slopes of the plane (a and b, which
define the directions of the 3D Gaussian’s axes through equation 5);
the centre of the 3D Gaussian in FP space (r̄ , s̄, ī), which can be
used to calculate the offset of the FP (c = r̄ − as̄ − bī); and the
dispersion of the Gaussian in each of the three axes (σ 1, σ 2 and
σ 3). The set of parameters {a, b, r̄, s̄, ī, σ1, σ2, σ3} that maximize
the log-likelihood of the 3D Gaussian are therefore those that define
the best-fitting model to the FP data. Note that the offset of the FP,
c, is defined in terms of these parameters as c = r̄ − as̄ − bī.

The log-likelihood function is maximized with a non-derivative
multidimensional optimization algorithm called Bound Optimiza-
tion BY Quadratic Approximation (BOBYQA; Powell 2006).
BOBYQA is found to be more robust and efficient than more

generic optimization algorithms such as the Nelder–Mead simplex
algorithm (Nelder & Mead 1965). It performs well under the partic-
ular demands of FP fitting, namely high dimensionality (simultane-
ous optimization of eight parameters) and large sample size (∼104

galaxies). The parameters in the BOBYQA algorithm that can be
tuned to suit the particular function being optimized are the initial
and final tolerances, ρbeg and ρend, and the number of interpolation
points between each iteration, N int. After considerable experimen-
tation, values of these parameters that were found to be efficient
and to give the required accuracy were ρbeg = 10−1, ρend = 10−5

and N int = 30. The BOBYQA algorithm with these parameters was
used for all the fitting presented in this work.

2.5 Selection criteria and fitting

FP studies must employ some form of model to analyse censored
or truncated data resulting from observational selection effects. If
these models fail to account for statistical effects that are due to
selection, they run the risk of biasing the fitting method being used
to recover the FP. We now describe the dominant selection limits
– both hard and graduated – that pertain to FP data and how a ML
fitting method can account for this censoring in a straightforward
and transparent manner.

A central velocity dispersion lower limit is typical of FP sur-
veys, which are unable to measure dispersions accurately below the
instrumental resolution of the spectrograph. Because this limit is
applied to just one of the FP parameters (i.e. s), the appropriate 3D
Gaussian normalization is calculated by integrating over the volume
of the distribution that remains after the velocity dispersion cut, as
outlined in Appendix A. In this way the likelihood is appropriately
normalized and the ML method correctly accounts for the truncation
of the FP in velocity dispersion by this hard selection limit.

Most FP samples are drawn from flux-limited surveys, excluding
galaxies fainter than some apparent magnitude limit. This selection
effect can be accounted for by weighting the individual likelihood
of each galaxy by the inverse of its selection probability S; this is
analogous to a 1/Vmax weighting (Schmidt 1968).

For the case of an FP survey with explicit redshift limits, the
selection probability is proportional to the fraction of the survey
volume between these limits over which a particular galaxy can
be observed given the survey’s apparent magnitude limit. This is a
function of the limiting distance Dlim

n (in h−1 Mpc) out to which the
galaxy n, with an absolute magnitude Mn, can be observed given
the survey magnitude limit mlim in a given passband, and can be
calculated as

Dlim
n = 100.2(mlim−Mn−25). (9)

If the redshift czlim
n corresponding to this luminosity distance is

larger (smaller) than the high (low) redshift limit of the survey, czmax

(czmin), then a galaxy with that absolute magnitude will definitely
have been observed (or not) and the selection probability is S = 1(0).
However, if czlim

n is between the minimum and maximum survey
redshifts, then the selection probability is given by the fractional
comoving volume in which it could be observed given the apparent
magnitude limit. Therefore, the selection probability function is

Sn =

⎧⎪⎪⎨
⎪⎪⎩

1 czlim
n ≥ czmax

V (czlim
n )−V (czmin)

V (czmax)−V (czmin) czmin < czlim
n < czmax

0 czlim
n ≤ czmin

, (10)

where V(cz) is the comoving volume of the survey out to redshift
cz. This definition of Sn is similar to the selection probability of
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the EFAR survey, although their selection probability function was
based on a size parameter rather than absolute magnitude (Saglia
et al. 2001).

In addition to these selection effects, an FP sample may contain
spurious outliers whose significance is best characterized by a χ2

value. The χ2 for a particular galaxy n can be calculated as

χ2
n = xT

n (Σ + En)−1xn. (11)

Note that this is twice the exponent of the Gaussian probability
distribution of equation (4) and appears in the final term of equa-
tion (8). Thus χ2 measures the departure of a galaxy in FP space
from a given 3D Gaussian model, and outliers can be identified and
removed based on their extreme (and extremely unlikely) values of
χ2. The refined sample, excluding these high-χ2 outliers, can then
be refitted to achieve an improved fit that is not biased by outliers.

3 6DFGS FUNDAMENTAL PLANE DATA
AND SAMPLE

3.1 Fundamental Plane data

The 6dFGS provides a comprehensive census of galaxies and mea-
sured redshifts in the Southern hemisphere out to a depth of z ∼ 0.15
(Jones et al. 2004, 2005). Primary targets were selected from the
K-band photometry of the Two Micron All Sky Survey (2MASS)
Extended Source Catalogue (Jarrett et al. 2000), with secondary
samples selected to approximately equivalent limits in the 2MASS
J and H bands and the SuperCOSMOS (Hambly et al. 2001) rF

and bJ bands. The total apparent magnitude limits of the 6dFGS are
(K, H, J, rF , bJ) ≤ (12.65, 12.95, 13.75, 15.60, 16.75). The survey
extends across the entire southern sky and, because of its NIR selec-
tion, reaches down to 10◦ from the Galactic plane in J, H and K (for
bJ and rF the survey reaches down to 20◦ from the Galactic plane).
It is the largest combined redshift and peculiar velocity survey by a
factor of 2, with the additional advantage of homogeneous sampling
of the galaxy population over a large volume of the local Universe.

We initially select galaxies suitable for the 6dFGS peculiar ve-
locity subsample (6dFGSv) from the parent redshift survey sample
(6dFGSz) by selecting galaxies with reliable redshifts (i.e. redshift
quality Q = 3–5) and redshifts less than 16 500 km s−1 (i.e. z <

0.055). The redshift limit is imposed because at higher redshifts
the key spectral features used to measure log σ 0 are shifted out of
the wavelength range for which sufficiently high resolution spectra
are available (Campbell 2009). These criteria select ∼43 000 of the
∼125 000 galaxies in the 6dFGS redshift survey.

The spectra of these galaxies is classified by matching the ob-
served spectrum, via cross-correlation, to template galaxy spectra.
The sample only includes galaxies with spectra that, within the 6dF
fibre region, are a better match to early-type spectral templates (E/S0
galaxies) than to late-type templates (Sbc or later). The sample can
therefore be characterized in spectral terms as galaxies that, within
the 6dF fibre region, have dominant old stellar populations with
little or no ongoing star formation. Morphologically, the sample
galaxies are either ellipticals and lenticulars or early-type spirals
with the bulge filling the 6dF fibre.

These ∼20 000 early spectral type galaxies had their central
velocity dispersions measured using the Fourier cross-correlation
technique (Campbell 2009). These velocities were then corrected
for the effect of the fibre aperture size to a uniform log Re/8 aperture
following the formula of Jorgensen, Franx & Kjaergaard (1995).
The sample of galaxies with early-type spectra, sufficiently high
S/N for reliable velocity dispersion measurements (S/N > 5 Å−1)

and velocity dispersions greater than the instrumental resolution
limit (s ≥ 2.05, i.e. σ 0 ≥ 112 km s−1) contains 11 561 galaxies.

The FP photometric parameters (Re and 〈μe〉) for our sample
were derived from 2MASS. The relatively large 2MASS point
spread function (PSF), with full width at half-maximum (FWHM)
≈3.2 arcsec, required a procedure to derive PSF-corrected param-
eters. For each galaxy we analysed the pixel data provided by the
2MASS Extended Source Image Server as follows. We adopted the
apparent magnitude (m) measured by 2MASS from the ‘fit extrapo-
lation’ method (i.e. j_m_ext, h_m_ext, k_m_ext) and determined
the circular apparent half-light radius (rAPP) of the target galaxy on
the 2MASS image. A model 2D Gaussian PSF image was derived
from stars on the parent 2MASS data ‘tile’. GALFIT (Peng et al. 2002)
was run with the galaxy image and model PSF image as inputs to
find the best-fitting 2D Sérsic model. The half-light radius was de-
termined for the Sérsic model before and after convolution with the
PSF (rMODEL and rSMODEL). The difference rSMODEL − rMODEL is
subtracted from rAPP to derive the PSF-corrected half-light radius
(i.e. the effective radius Re). The effective radius was observed in
angular units of arcseconds, Rθ

e , and converted to physical units of
h−1 kpc, Re, using the galaxy’s angular diameter distance, DA(z).

The 2MASS data for the J, H and K bands were analysed inde-
pendently. As the 2MASS PSF is well determined and we only use
the Sérsic model to provide the PSF correction, this procedure is
very robust. The effective surface brightness (〈μe〉) is derived via
〈μe〉 = m + 2.5 log[2π(Rθ

e )2]. Additionally, each surface bright-
ness was corrected for the effects of surface brightness dimming
and Galactic extinction, and also K-corrected for the effect of red-
shift on the broad-band magnitudes (Campbell 2009).

It is most natural to have all FP parameters in logarithmic units,
so surface brightness values were converted from magnitude units
(i.e. 〈μe〉 in mag arcsec−2) to log-luminosity units (i.e. log 〈Ie〉 in
L� pc−2) using

log〈Ie〉 = 0.4 M� − 0.4〈μe〉 + 8.629, (12)

where the absolute magnitude of the Sun, M�, depends on the
passband. For the J band, M� = 3.67; for the H band, M� = 3.33;
and for the K band, M� = 3.29.1 The value used for the magnitude
of the Sun does not impact the fit, however, as it is simply a constant
offset that is applied to the surface brightness.

Finally, the FP sample with both spectroscopic measurements
from 6dFGS and photometric measurements from 2MASS in the
J, H and K bands contains 11 287 early-type galaxies in total. In
Fig. 4 we show the 6dFGSv redshift distribution (red), which is
truncated at czmax = 16 120 km s−1 (a limit we apply as described
in Section 3.2). This maximum redshift is approximately at the me-
dian redshift of the full 6dFGS redshift sample (grey); the 6dFGSv
galaxies are sampled across this entire redshift range.

3.2 Selection function

In our FP analysis there are selection limits imposed on or inherent
in the sample that the fitting model must incorporate to provide
accurate FP coefficients. In Section 2.5, we explained how these
limits are included in our model, and now we provide the specific
details of the selection criteria for the 6dFGSv data, as summarized
in Table 1.

1 The values for the absolute magnitude of the Sun quoted here are from
http://mips.as.arizona.edu/~cnaw/sun.html.
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Figure 4. Redshift distribution of the 6dFGSv FP sample (red; Ng = 8901)
with maximum redshift czmax = 16 120 km s−1 compared to the full 6dFGS
redshift sample (grey; Ng = 124 646).

The 6dFGS FP sample of 11 287 galaxies (Campbell 2009) has
a velocity dispersion limit (s ≥ 2.05) that is set by the instru-
mental resolution of the V-band 6dFGS spectra. This limit is only
achieved for galaxies with observed redshifts cz < 16 500 km s−1,
since at higher redshifts crucial spectral features such as Fe 5270 Å,
Mg b 5174 Å and Hβ 4861 Å begin to move out of the V-band spec-
tra and into the lower resolution R-band spectra. For the 6dFGS
peculiar velocity sample we in fact impose a stricter upper red-
shift limit of cz ≤ czmax = 16 120 km s−1 in the cosmic microwave

background (CMB) frame in order to avoid an asymmetry on the
sky when redshifts are converted from the heliocentric frame to the
CMB frame (which we use for the peculiar velocities). This upper
redshift limit for the sample excludes 750 galaxies.

We also only include galaxies with CMB frame redshifts high
enough (cz ≥ czmin = 3000 km s−1) that their peculiar velocities
are not significant relative to their recession velocities and so do
not appreciably increase the scatter about the FP. This removes a
further 92 low-redshift galaxies from the sample. However, unlike
other selection criteria, galaxies excluded from the FP fitting by
these upper and lower redshift limits are reinstated in the sample
when deriving distances and peculiar velocities.

The morphologies and spectra of all the galaxies in the FP sample
were classified by eye, as described in Section 3.5. Based on this
visual inspection, 429 galaxies were removed on the basis of their
morphological type, contamination of their fibre spectrum by a disc
component, the (real or apparent) merger of their image with stars or
other galaxies, or discernible emission-line features in their spectra.

Our sample has slightly brighter flux limits than the original
6dFGS magnitude limits (Jones et al. 2009), reflecting the changes
in the 2MASS (and, consequently, 6dFGS) magnitude limits that
occurred after the 6dFGS sample was selected. To maintain high
completeness in each passband over the whole sample area, we
impose magnitude limits of J ≤ 13.65, H ≤ 12.85 and K ≤ 12.55.
At fixed luminosity distance, the magnitude limit is a strict cut in
the r–i plane; given the distance range of the sample, this flux limit
translates into a graduated selection effect in the r–i plane. In fitting
the FP distribution we can account for the galaxies excluded by this
selection effect by weighting the likelihood of each galaxy with a
selection probability as described in Section 2.5.

Table 1. Summary of the 6dFGS FP sample selection criteria. The criteria apply to central velocity dispersion s,
redshift distance cz (upper and lower limits), morphology, apparent magnitude m, selection probability S and χ2. The
column Nexc shows the number of galaxies that would be removed by the specified selection cut alone. However, the
number in brackets for each subtotal (or total) is the actual number of galaxies excluded when multiple selection limits
are combined (i.e. without double counting the galaxies that are eliminated by more than one selection criterion).

Sample Selection limit Ng Nexc Comments

6dFGSz 124 646 Full redshift sample (with good quality z)

6dFGSFP 11 287 Galaxies with derived FP parameters

6dFGSv s ≥ 2.05 287 Aperture-corrected s cut
cz ≥ 3000a 92 Lower cz limit
cz ≤ 16120a 750 Upper cz limit
Morphology 429 Flagged classification (Section 3.5)
Subtotal 9794 1558 (1493)

6dFGSvJ J ≤ 13.65 1024
S ≥ 0.05 32
χ2 ≤ 12 48
Total 8901 1104 (893) J-band FP sample

6dFGSvH m ≤ 12.85 1427
S ≥ 0.05 41
χ2 ≤ 12 45
Total 8568 1513 (1226) H-band FP sample

6dFGSvK m ≤ 12.55 1398
S ≥ 0.05 32
χ2 ≤ 12 46
Total 8573 1476 (1221) K-band FP sample

aThese galaxies are excluded from the fitting of the FP, but are included when deriving FP distances and peculiar
velocities.
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Figure 5. The distribution of χ2 for the galaxies in the observed J-band FP
sample (black) and for mock galaxies in a sample drawn from the best-fitting
3D Gaussian model (red). The smooth curve is an analytic χ2 distribution
with 2.65 degrees of freedom, derived by fitting to the mock sample (there
are fewer than 3 degrees of freedom due to the censoring of the 3D Gaussian
by selection effects).

Finally, in order to reduce the impact on the fit from a small
number of galaxies with extremely low selection probabilities, we
impose a minimum selection probability requirement (S ≥ 0.05; see
equation 10). We also remove outliers and blunders by requiring
χ2 ≤ 12. This χ2 limit was derived empirically by comparing the
χ2 distributions for the observed galaxies and for mock galaxies
drawn from the best-fitting 3D Gaussian model, as illustrated in
Fig. 5 for the J-band sample (the H- and K-band samples are very
similar). The number of observed galaxies at a given χ2 begins to
exceed the number of mock galaxies for χ2 > 12, which we attribute
to outliers or blunders. The J, H and K samples have 48, 45 and
46 galaxies, respectively, above this limit (see Table 1), so we are
typically removing just 0.5 per cent of each sample.

The selection probability requirement is the only sample selection
criterion that induces a significant residual bias, because it is the
only one not accounted for in the normalization of the probability
distribution when computing the likelihood. We therefore correct
for the (small) residual biases it produces by calibrating its impact
using mock FP samples, as described in Section 4.1.

After applying all these selection criteria to obtain the samples
to which we fit the FP, the numbers of galaxies remaining in each
of the passbands are 8901 (J band), 8568 (H band) and 8573 (K
band). The numbers of galaxies for which we can derive peculiar
velocities are somewhat larger, since we can reinstate at least the
galaxies excluded by the lower redshift limit.

3.3 Measurement uncertainties

Each galaxy in the FP sample has an associated uncertainty from
the measurement errors in each of its FP observables: size, ve-
locity dispersion and surface brightness. The treatment of these
errors is often simplified or approximated when fitting the FP – e.g.
La Barbera et al. (2010b) use mock galaxy samples to approximate
errors and correlations. However, the ML method allows us to deal
with the errors in all the observables (and their correlations) in a
straightforward manner (see Section 2.3). For galaxy n, the mea-
surement uncertainties are included through the error matrix, En,

given by

En =

⎛
⎜⎜⎝

ε2
rn

+ ε2
rpn

0 ρriεrnεin

0 ε2
sn

0

ρriεrnεin 0 ε2
in

⎞
⎟⎟⎠ . (13)

The quantities εr, εs and εi are the observational errors on the FP
parameters r, s and i, and their estimation is discussed in Campbell
(2009).

The errors in the velocity dispersions, εs, are based on the Tonry
& Davis (1979) formula derived for the Fourier cross-correlation
technique, and are dependent on the measured S/N in the cross-
correlation peak. These error estimates are validated by the large
number of repeat velocity dispersion measurements in the 6dFGS
sample. The typical error on the velocity dispersions in the 6dFGS
FP sample is around 0.054 dex or 12 per cent.

The photometric errors, εr and εi, were estimated by studying the
scatter when comparing the sizes and surface brightnesses obtained
from the three independent 2MASS passbands. We assume that the
surface brightness colours (i.e. the values of ij − ih, ij − ik and
ih − ik) are very similar for every galaxy within each narrow range
of apparent magnitude and that the dominant cause of variation from
one galaxy to the next is the error in the surface brightness mea-
surements. We then compute the mean square deviation in surface
brightness colour for the J and H bands, δ2

jh, over the N galaxies
within a specified apparent magnitude bin, given by

δ2
jh =

(
�n=1,N [(ij,n − ih,n)− < ij − ih >]2

)
/N. (14)

If we assume that δ2
jh is the sum of the mean square errors in ij and

ih, and that δ2
jk and δ2

hk are likewise the sum of the mean square
errors in ij and ih, and ih and ik, respectively, then we can solve for
the error in ij alone, obtaining

εi,j =
[
0.5

(
δ2
jh + δ2

jk − δ2
hk

)]1/2
. (15)

This is the error on ij, which we compute separately in apparent
magnitude bins of width 0.2 mag. We similarly compute εi,h and
εi,k, shifting the magnitude bins by the mean colour of the galaxies
in the sample to get the surface brightness errors in each band as a
function of apparent magnitude.

Fig. 6 shows the J-, H- and K-band surface brightness errors as
a function of J, H and K apparent magnitude. We approximate the
errors using the following relations, which are shown as dashed
lines in Fig. 6:

εi =
⎧⎨
⎩

0.024mJ − 0.232 mJ ≥ 11.7

0.048 mJ < 11.7
,

εi =
⎧⎨
⎩

0.028mH − 0.248 mH ≥ 10.6

0.048 mH < 10.6
,

εi =
⎧⎨
⎩

0.040mK − 0.352 mK ≥ 10.3

0.060 mK < 10.3
.

(16)

Note that at bright apparent magnitudes we conservatively truncate
the J- and H-band errors at 0.048 mag and the K-band error at
0.060 mag.

There is no correlation between the errors in s and those in r or
i, but there is a strong correlation between those in r and i. This
is quantified by a correlation coefficient that is determined empiri-
cally by studying the distribution of the differences in r against the
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Figure 6. The blue (green, red) points show the derived measurement error
on ij (ih, ik) as a function of mJ (mH , mK ). The measurement errors, εi, are in
units of log (L� pc−2). We approximate these measurement error relations
by the dashed lines of the corresponding colours, which are specified by
equation 16).

differences in i for pairs of independent passbands. The coefficient
is found to be ρri = −0.95 for all passbands. To preserve this cor-
relation, the error in r is calculated directly from the error in i using
εr = 0.68εi. For the J band, the typical error in the effective radius
is around 0.049 dex (11 per cent) and in surface brightness is around
0.073 dex (17 per cent). However, in the correlated combination in
which these quantities appear in the FP, namely XFP = r − bi, the
typical error in XFP is just 0.016 dex (4 per cent).

There is an additional error term for effective radius, εrp, which
allows for the uncertainty in the conversion of angular to physical
units under the assumption that the galaxy is at its redshift distance
(i.e. neglecting the unknown peculiar velocity). This error term is
approximated as εrpn = log(1 + 300 km s−1/czn), which assumes a
typical peculiar velocity of 300 km s−1 for the galaxies in the sample
(Strauss & Willick 1995). Because we explicitly exclude from the
sample galaxies at low redshifts, where the peculiar velocities are
potentially large relative to the recession velocities (see Section 3.2),
εrp is typically <3 per cent and contributes less than 10 per cent to
the overall error in r.

We note that a similar error on surface brightness exists due to
the use of observed redshifts (uncorrected for peculiar velocities) in
computing the cosmological dimming. However, we do not include
this in our measurement error matrix because it is typically less than
0.4 per cent, which is negligible when added in quadrature to the
photometric measurement errors.

3.4 Group catalogue

Groups and clusters in the 6dFGS sample were identified using a
friends-of-friends group-finding algorithm (Merson et al., in prepa-
ration). The algorithm follows a similar procedure to the group-
finding method used to construct the 2dF Percolation-Inferred
Galaxy Groups (2PIGG) catalogue of the 2dF Galaxy Redshift Sur-
vey (Eke et al. 2004), but it is recalibrated to the specifications
(redshift depth and sample density) of the 6dFGS.

This group catalogue is used to test the universality of the FP
(i.e. whether the FP coefficients vary with galaxy environment) and
to derive mean redshifts for groups and thus group distances and
peculiar velocities (in addition to distances and peculiar velocities
for single galaxies). Combining galaxies into groups is important to
our future peculiar velocity analysis for two reasons: (i) it minimizes
the ‘Finger-of-God’ distortions of distances and peculiar velocities

produced by virialized structures in redshift space; (ii) it allows us
to correct any variations in the FP with environment that might bias
the distance and peculiar velocity estimates.

From the initial 11 287 galaxies in the 6dFGS FP subsample, there
were 3186 galaxies found in groups containing at least four members
(and so deemed to have reliable group membership status). The
flux-limited nature of our survey meant that the faintest members
of a group might not have been observed, so the richness of a
group (which we use as proxy for global environment) is defined as
the number, NR, of observed galaxies in the group brighter than a
specified absolute magnitude, chosen so that galaxies brighter than
this would be visible throughout the sample volume. Any galaxy
not in a group was given a richness NR = 0, signifying its status as
either a field galaxy or a bright member of a poor group.

In addition to this group catalogue, we also determine parame-
ters that define each galaxy’s local environment using the method
described in Wijesinghe et al. (2012).

In this catalogue, local environment is represented by the pro-
jected comoving distance, d5 (in Mpc) to the fifth nearest neighbour
and the surface density, �5 (in galaxies Mpc−2), is therefore de-
fined as �5 = 5/πd2

5 . To exclude contamination from foreground
and background galaxies, these density measurements are made
within a velocity cylinder of ±1000 km s−1. In our final FP sample,
there are 8258 galaxies for which we can calculate reliable values
of these estimators of local environment.

3.5 Morphological classification

All 11 287 galaxies in the 6dFGS FP sample were visually inspected
to provide morphological classifications. Each galaxy was examined
by up to four experienced observers, and on average classified twice.
This was done to determine and flag any galaxies without dominant
bulges that might bias, or add scatter to, the FP fits, and also to
allow us to test whether ellipticals, lenticulars and spiral bulges
have different FP distributions.

All of the galaxies were visually inspected using the 2MASS J-,
H- and K-band images and also the higher resolution SuperCOS-
MOS images in the bJ and rF bands. The galaxies were classified
into the standard morphological types: elliptical (E), lenticular (S0),
spiral (Sp) and irregular or amorphous (Irr), plus the transition cases
E/S0, S0/Sp and Sp/Irr. The presence of dust lanes was also flagged.
The galaxy images had 6.7-arcsec-diameter circles superimposed in
order to determine whether the 6dF fibre enclosed only bulge light
or whether there was significant contamination by light from the
discs of S0 and Sp galaxies. At the same time, the 6dFGS spectra
were scrutinized for any discernible emission features.

From this sample there were 429 galaxies excluded on the basis of
one or more of the criteria defined below. If any one of these criteria
was flagged by two or more classifiers, or flagged by the single
classifier in cases where a galaxy was only classified once, then the
galaxy was excluded as not being bulge dominated or as problematic
in some other respect. The exclusion criteria were the following: (i)
galaxy morphology classified as irregular or amorphous; (ii) galaxy
identified as edge-on with a full dust lane; (iii) significant fraction
of light in fibre is from a disc; and (iv) light in fibre contaminated
by nearby star, galaxy or defect.

4 MOCK GALAXY FP SAMPLES

We now describe the process of generating mock catalogues from a
model that reproduces all of the main features of the observed data
sample as closely as possible. It is important that the mock samples
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Figure 7. The distribution of the observed FP parameters log Re, log σ 0 and log 〈Ie〉 for the 6dFGS J-band sample (black) and a mock sample (red) of the
same size (Ng = 8901) and the same selection criteria, with FP coefficients a = 1.52 and b = −0.89.

are robust and well calibrated, as they serve several functions. We
use them for the following: to perform comparisons of different
fitting methods (Section 2.2); to validate the ML fitting method and
the assumption of a 3D Gaussian model for the data (Sections 4.1
and 5.3); to correct for residual bias effects (Section 4.2); and to
determine the accuracy and precision of the fits (Section 5.2).

4.1 Mock sample algorithm

We create mock samples from a given set of FP parameters
{a, b, c, r̄, s̄, ī, σ1, σ2, σ3} using the following steps to generate each
mock galaxy.

(i) Draw values for v1, v2 and v3 at random from a 3D Gaussian
with corresponding specified variances σ 1, σ 2 and σ 3.

(ii) Transform these values from the v-space (principal axes)
coordinate system to the {r, s, i}-space (observed parameters) co-
ordinate system using the inverse of the relations in equation (5)
with the specified FP slopes (a and b) and FP mean values (r̄ , s̄

and ī).
(iii) Generate a comoving distance from a random uniform den-

sity distribution over the volume out to czmax = 16 120 km s−1 using
the assumed cosmology. This comoving distance is converted to an
angular diameter distance in order to calculate an angular effective
radius from a physical effective radius.

(iv) The redshift of each mock galaxy is also derived from this
comoving distance; it must be greater than the lower limit on cz to
remain in the mock sample.

(v) Derive an apparent magnitude from the surface brightness
and effective radius (in angular units) of each galaxy, obtained at
step (ii), using m = 〈μe〉 − 2.5 log[2π(Rθ

e )2].
(vi) Estimate rms measurement uncertainties from this magni-

tude via the prescription given in Section 3.3, and use these uncer-
tainties to generate Gaussian measurement errors in {r, s, i} from
the error matrix in equation (13) (including the correlation between
εr and εi).

(vii) Add these measurement errors to {r, s, i} to obtain the
observed values of the FP parameters; the velocity dispersion must
be greater than the lower selection limit to remain in the mock
sample.

(viii) Compute the observed magnitude using the observed values
of r and i (i.e. including measurement errors); it must be brighter
than the limiting magnitude for the galaxy to remain in the sample.

(ix) Compute the selection probability from the observed mag-
nitude and redshift using equations (9) and (10); it must be greater

than the minimum selection probability for the galaxy to remain in
the mock sample.

This process is repeated until the desired number of galaxies is
generated for the mock sample.

Fig. 7 compares the distributions of effective radius, velocity dis-
persion and surface brightness for the 6dFGS J-band FP sample and
a mock sample generated from the best-fitting 3D Gaussian model
(see below) having the same number of galaxies, the same selection
criteria and the same observational errors. The mock sample accu-
rately replicates the distributions of the galaxies in FP space, both
for the observed parameters (r, s and i) and the ‘natural’ parameters
(v1, v2 and v3), which are shown in Fig. 8. This close match between
the model and the data justifies our use of a 3D Gaussian model for
the distribution of galaxies in FP space.

4.2 Residual bias corrections

The only effect that is not explicitly corrected for in the ML fitting
process, and which introduces a (small) bias, is the exclusion of low-
selection-probability (i.e. high-weight) galaxies. These galaxies are
excluded because (a) they may be outliers and (b) they enter the
likelihood with high weights and may therefore distort the fits.
They cannot be directly accounted for in the ML fit because we do
not have an explicit model for the distribution of outliers.

In practice, this bias is small because only a small number of
galaxies are excluded, and may be quantified under the assumptions
of our model using mock samples. By applying the same selection
criteria to the mocks as we do to the data, we can recover the
correction �y for the residual bias in some parameter y as the
difference between the value yobs obtained from fitting the observed
data and the value ymock recovered as the average from ML fits to
many mock samples:

�y = yobs − ymock, (17)

where y can be any of the parameters describing the 3D Gaussian
model, {a, b, c, r̄, s̄, ī, σ1, σ2, σ3}. To correct fits to the observed
data for residual bias, these corrections should be added to the
best-fitting FP parameter values to recover the ‘true’ parameters:

ycor = yobs + �y. (18)

These corrections were obtained for mock samples of increasing
sample size, with Ng ranging from 1000 to 10 000 galaxies. For
all parameters the bias correction was found to be constant for all
sample sizes. We have therefore employed a fixed bias correction
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Figure 8. The distribution of the natural FP parameters v1, v2 and v3 for the 6dFGS J-band sample (black) and a mock sample (red) of the same size
(Ng = 8901) and the same selection criteria, with FP coefficients a = 1.52 and b = −0.89.

Table 2. Bias corrections for each of the FP parameters. These corrections
are added to the fitted parameters to remove the residual bias. Note that these
corrections are small for all parameters.

a b c r̄ s̄ ī σ 1 σ 2 σ 3

0.022 −0.008 −0.027 −0.006 −0.001 0.004 0.0002 0.0026 0.0013

for each parameter regardless of sample size. These corrections are
listed for each fitted FP parameter in Table 2.

5 THE FUNDAMENTAL PLANE

5.1 The 3D Fundamental Plane

FP studies in optical passbands are relatively abundant, while studies
in NIR passbands are less so. It is only recently that large, homoge-
neous FP data sets across both optical and NIR wavelengths have
become available (Hyde & Bernardi 2009; La Barbera et al. 2010a).
Using NIR photometry in FP analyses is advantageous because in
these passbands, the lower extinction reduces the variations due to
dust, and the dominance of older stellar populations reduces the
variations due to recent star formation (at least in the absence of a
significant population of intermediate-age asymptotic giant branch
stars – cf. Maraston 2005). Comparison of optical and NIR obser-
vations can reveal the effect of variations in the M/L values on the
FP.

Fig. 9 is a 3D visualization of the 6dFGS J-band FP sample that
can be interactively viewed in the full 3D space of the observed
parameters r, s and i. This figure (like Fig. 3) was created with the
S2PLOT programming library. It is important to show the 3D view
of the FP, rather than the 2D plots usually found in the literature,
because information is lost in projecting the FP on to two dimen-
sions from its native three dimensions and the true properties of
the 3D distribution of the FP are disguised. Fig. 9 reveals in three
dimensions the well-known features of the FP, including the small
scatter in the edge-on view relative to the other two dimensions
and the Gaussian nature of the distribution in all three dimensions;
the impact of sampling effects, such as the hard selection limit in
velocity dispersion, are also readily apparent.

5.2 Fundamental Plane parameters and uncertainties

Using our ML fitting routine we recover the best-fitting FP in the
J, H and K passbands for samples containing 8901, 8568 and 8573

galaxies, respectively. The full details of the FP fits in these bands are
given in Table 3, including all eight fitted parameters together with
the constant of the fit (c), the offset of the plane in the r-direction (r0;
see below), the total rms scatter about the FP in the r-direction (σ r)
and the total rms scatter in distance (σ d); the difference between
these two scatters is discussed in Section 8.

The errors in the best-fitting FP parameters that are given in
Table 3 are estimated as the rms scatter in fits to multiple mock
samples generated as described in Section 4 using the parameters
of the best-fitting FP. The distribution of the parameters derived
from ML fits to 1000 mock samples (each sample containing 8901
galaxies, as for the 6dFGS J-band sample) are shown in Fig. 10.
Note that the residual bias corrections (the differences between
the input parameters and the mean of the fitted parameters) are
comparable to or less than the rms scatter in the fits (i.e. comparable
to or less than the random errors in the fitted values). This highlights
the accuracy with which the ML method recovers the FP parameters
even in the presence of significant observational errors and various
types of sample censoring.

Both the bias corrections and the random errors are small; the
fractional errors in the FP slopes (a and b) and dispersions (σ 1,
σ 2 and σ 3) are all less than 2 per cent. For the offset of the FP,
c ≡ r̄−as̄−bī, the uncertainty is 0.054 dex or 12 per cent. However,
as a measure of the uncertainty in the relative sizes and distances of
galaxies due to the fit, this ‘intercept’ offset is misleading. A better
measure is the uncertainty in r̄ , which is 0.9 per cent; but even this is
an overestimate of the practical impact of the uncertainty in the fit,
as the point (r̄ , s̄, ī) is at the edge of the observed distribution (i.e.
the observed distribution is well fitted by a Gaussian centred close
to the velocity dispersion limit). The most realistic estimate of the
uncertainty in the r-axis offset of the fitted FP, as it affects size and
distance estimates for 6dFGS galaxies, is given by the uncertainty
in r0, the r-value of the fitted FP at a fiducial point in the middle
of the observed sample: s0 ≡ 2.3 and i0 ≡ 3.2. The rms scatter in
r0 ≡ as0 + bi0 + c is just 0.5 per cent.

5.3 Model validation

That our 3D Gaussian model is a good representation of the observed
distribution of galaxies in FP space is verified by the remarkable
similarities between the mock and data likelihoods. The histogram
of log-likelihood values in Fig. 11 gives the distribution from the
same 1000 mock simulations as Fig. 10, derived in two ways: first by
calculating the likelihoods for all the mocks using the best-fitting
FP of the data (red histogram), and secondly, by calculating the
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Figure 9. Interactive 3D visualization of the 6dFGS J-band FP in {r, s, i}-space. The best-fitting plane (in grey) has slopes a = 1.523 and b = −0.885, and
an offset c = −0.330. The galaxies are colour coded according to whether they are above (blue) or below (black) the best-fitting plane. The 1σ , 2σ and 3σ

contours of the 3D Gaussian distribution (light grey) can be toggled in the interactive plot environment. (Readers using Acrobat Reader v8.0 or higher can
enable interactive 3D viewing of this schematic by mouse clicking on the figure; see Appendix B for more detailed usage instructions.)

likelihoods using the best-fitting FP values from each individual
mock (black histogram). It makes little difference which method is
used, as the distribution of likelihoods for these two situations are
very similar.

The mean of each histogram (red: lnL = 20 878 ± 225; black:
lnL = 20 897±224) is plotted as a solid line. The likelihood of the
best fit to the actual data (lnL = 21 126) is shown by the dashed
vertical line and is larger than these means but still well within the
range of likelihoods spanned by the mock samples. The fact that
the likelihood recovered from the data is higher than that from the
mocks (i.e. lnL is more positive) is a result of excluding the χ2

outliers from the data, which may also remove the extreme tail of
the Gaussian distribution. Genuine outliers do not exist in the mock
samples and so no χ2 clipping is applied, and the lower likelihoods
of the mock samples in Fig. 11 reflect this difference.

In summary, the similarity in likelihood values indicates that the
fitting algorithm has accurately recovered the input FP and also that
the 3D Gaussian model is a suitable representation of the observed
FP distribution.

5.4 Additional σ component of 3D Gaussian vectors

Our 3D Gaussian model of the FP assumes that the s component of
the v2 vector is zero, i.e. the vector representing the longest axis of
the 3D Gaussian lies wholly in the r–i plane. This is based in part
on previous studies (Colless et al. 2001; Saglia et al. 2001), and in
part assumed for convenience and simplicity.

We can test how accurate this assumption is by extending the
vector definitions of equation (5) to include this component, with
coefficient k, defining the set of orthogonal axes as

v1 = r̂ − a ŝ − b î,

v2 = r̂ − k ŝ + (1 − ka)î/b,

v3 = (ka2 − a + kb2)r̂ + (ka − 1 − b2)ŝ + (kb + ab)î, (19)

and then including this extra parameter in our fitting algorithm. We
then perform a nine-parameter ML fit with the same J-band FP
sample of galaxies and find a best-fitting value k = 0.09 ± 0.01 and
a J-band FP given by
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) r = (1.51 ± 0.03)s − (0.86 ± 0.01)i − (0.39 ± 0.06). (20)

Therefore, when there are no constraints placed on the components
of v2, the s component is close to – but slightly larger than – zero.
The coefficient of s is much smaller than the coefficients of any of
the other vector components, the intrinsic scatter about the plane
(σ 1 = 0.052) is the same to within 0.5 per cent and the error in
distances is 24.3 per cent (i.e. slightly larger than for the standard
eight-parameter model). Hence, the addition of this ninth parameter
provides no practical advantages, and we retain the simplifying
approximation of fixing k ≡ 0.

5.5 Adding age to the Fundamental Plane model

Springob et al. (2012) found that there is a clear trend of galaxy age
through the FP (i.e. along the v1 direction), as expected from models
of the effect of stellar populations on M/L values (e.g. Bruzual
& Charlot 2003; Korn, Maraston & Thomas 2005). The variation
of age through the FP is shown in Fig. 12, a 3D plot of the FP
space distribution of the subsample of 6579 galaxies with stellar
population parameters measured by Springob et al. (2012), with
colour encoding log age. Here we investigate whether this trend in
age can be incorporated into the FP model and used to reduce the
overall scatter of the FP by exploring a very simple extension of the
model that allows for a linear trend of age through the FP.

We include an age component in our existing FP model by adding
log age as a fourth dimension in FP space along with r, s and i. We
assume that age varies almost entirely in the v1 direction (normal to
the plane), as suggested by the results of Springob et al. (2012). We
therefore assume the v2 and v3 vectors have no age component, and
derive a fourth v-space vector that is orthogonal to the other three
vectors. The resulting vector definition of this new 4D Gaussian
model is

v1 = r̂ − a ŝ − b î − kA Â,

v2 = r̂ + î/b,

v3 = −r̂/b − (1 + b2)ŝ/(ab) + î,

v4 = r̂ − a ŝ − b î + (1 + a2 + b2) Â/kA, (21)

where kA is the component of A = log age in the v1 direction.
Additional parameters that need to be fitted along with kA in this
model are the mean of the 4D Gaussian in log age (Ā) and the
intrinsic scatter in the v4 vector (σ 4); this gives a total of 11 free
parameters to be fitted. Both the intrinsic variance matrix, Σ, and
the observed measurement error matrix, E, are also extended to four
dimensions to include σ 4 and age measurement errors, respectively.

The 4D Gaussian model including age is then fitted to this sub-
sample resulting in an FP given by

r = (1.56 ± 0.03)s − (0.89 ± 0.01)i − (0.13 ± 0.01)A

− 0.43 ± 0.06, (22)

with σ 1 = 0.048 ± 0.001 and σ 4 = 0.40 ± 0.01. Although the
intrinsic scatter through the FP (σ 1) is reduced from its value in the
standard 3D Gaussian model (where σ 1 = 0.053), the large scatter
in σ 4 and steeper slope in s suggest that the scatter in distance has
not been reduced by including an age component. In fact, the scatter
in distance (see Section 8.3) is slightly larger, at σ d = 0.010 dex
(23.3 per cent), than for the standard 3D Gaussian model, where
σ d = 0.097 dex (22.5 per cent).

We conclude the following: (i) there is a statistically significant
contribution from age variations to the scatter through the FP, which
is slightly reduced by including age in the FP model; and (ii) the
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Figure 10. Histograms of the ML best-fitting values of the J-band FP parameters {a, b, c, r̄, s̄, ī, σ1, σ2, σ3} from 1000 simulations. Each panel is labelled
at the top with the name of the parameter, the input value of the parameter for the 1000 mock samples and the mean and rms of the best-fitting parameters
obtained from ML fits to these mocks; a Gaussian with this mean and rms is overplotted on the histograms. The vertical dashed line shows the input value
of the parameter and the vertical solid line shows the mean of the best-fitting values. The residual bias correction (see Section 4.2) is the offset between the
dashed line and the solid line; in all cases, this is comparable to or smaller than the modest rms scatter in the fitted parameter.

combination of large measurement errors on individual galaxy ages,
intrinsic scatter in age about the FP and the tilt of the FP (specifically,
the angle between v1 and r) means that – for the 6dFGS sample
– including age does not improve the distance estimates obtained
from the FP. This might change, however, if substantially more
precise age measurements were available.

5.6 Bayesian model selection

To justify our choice of the standard 3D Gaussian model, as defined
in Section 2, over the alternative models we have considered in
Sections 5.4 and 5.5, we compare these models using the Bayes
information criterion (Schwarz 1978).

The Bayes information criterion, or BIC, can be used to choose
between different models and determine whether increasing the
number of free parameters in the model will result in overfitting. It
has the advantages of being easy to compute and independent of the
assumed priors for the models, and in the limit of large sample size
it approaches −2ln (B), where B is the Bayes factor that gives the

relative posterior odds of the models under comparison. The BIC
depends on the size of the sample (N), the log-likelihood of the best
fit (lnL) and the number of free parameters in the model (k), and is
given by

BIC = −2 ln(L) + k ln(N ). (23)

The model with the lowest BIC value is preferred.
For the standard eight-parameter model of Section 2, the BIC

value is −42 075, as compared to −42 287 for the nine-parameter
model including an additional σ component in the v2 vector (Sec-
tion 5.4) and −31 833 for the 11-parameter model including age as
an additional parameter (Section 5.5). Therefore, the BIC indicates
that the 11-parameter model including age is not an improvement
on the standard model, as was previously concluded in Section 5.5.
However, the nine-parameter model that includes a σ component
in the v2 vector does have a lower BIC value than the standard
eight-parameter model, and so is the objectively preferred model.
We nonetheless choose to employ the standard eight-parameter
3D Gaussian model because of its simpler physical interpretation,
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Figure 11. Distribution of likelihood values from 1000 mock samples.
The FP coefficients used to generate these mock simulations are the same
values used to generate the mocks in Fig. 10. The likelihood values in the
red histogram were calculated for each mock sample using these identical
input FP values, whereas the likelihood values in the black histogram were
calculated using the individual best fit for each mock. The mean likelihoods
from these mocks (red: lnL = 20 878 ± 225; black: lnL = 20 897 ± 224)
are indicated by the solid lines, and are comparable to but lower than the
best-fitting likelihood obtained for the actual data (lnL = 21126), shown
by the dashed black line.

reduced computational burden and marginally better precision in
estimating distances.

5.7 Fundamental Plane differences between passbands

Table 3 gives the best-fitting FP parameters for each of the J, H
and K bands. The FP slopes a and b are consistent between these
passbands at about the joint 1σ and 2σ levels, respectively. All three
samples also have the same (small) intrinsic scatter orthogonal to
the FP, σ 1 = 0.05 dex (12 per cent). Fig. 13 illustrates the variation
with wavelength of the fitted FP slopes a and b, and also the offset
of the FP in the r-direction (the latter quantified by r0, defined above
in Section 5.2). The figure shows the results of fitting FPs to 1000
mock samples in each passband with input parameters given by
the best-fitting FP for the corresponding observed sample (as per
Table 3). It also shows the mean values of the fitted parameters for
the mock samples, and the 1σ and 2σ contours of their distributions.
As expected, the bias-corrected mean coefficients accurately recover
the input values; for reference, the coefficients of the best-fitting FP
for the observed J-band sample are marked in each plot as a pair of
dashed black lines.

The marginally significant (2σ ) difference in the slopes between
the J and K bands may be due to the fact that J-band M/L values are
almost independent of metallicity, whereas this is not the case in the

Figure 12. Interactive 3D visualization of the 6dFGS J-band FP with individual galaxies colour coded by log age. (Readers using Adobe Reader v8.0 or higher
can enable interactive 3D viewing of this schematic by mouse clicking on the figure; see Appendix B for more detailed usage instructions.)
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Figure 13. Uncertainties on the FP parameters for the 6dFGS J sample (yellow; Ng = 8901), H sample (orange; Ng = 8568) and K sample (red; Ng = 8573).
The points show the best-fitting FP parameters for each of 1000 mock samples that take as input the best-fitting FP parameters for the observed sample in each
band. The mean values of the fitted FP parameters from the mocks, and their 1σ and 2σ contours, are also plotted. For reference, the input FP parameters
used to generate the samples for the J band are indicated as dotted lines. Left: b versus a, showing similar FP coefficients although with a very weak trend of
decreasing a and increasing b with increasing wavelength. Centre: b versus r0, showing significant offsets between the FPs in the three passbands. Right: a
versus r0, again showing the FP offsets.

K band (Worthey 1994). In this regard, it is worth noting that the
J-band FP is (marginally) closer to the virial plane than the K-band
FP.

In the centre and right-hand panels, there is a clear offset in r0

between passbands, with r0 increasing at longer wavelengths. We
expect the differences in r0 between passbands should be consis-
tent with the mean colours. To quantify the mean difference in r0

(i.e. �r0) as a function of mean colour and surface brightness, we
assume that the FP slopes are consistent in each band (a good ap-
proximation given the similarity of the coefficients in Table 3) and
that the galaxies are homologous. These approximations lead to the
following relation:

�r0 = b(�i0 + 0.4〈J − H 〉), (24)

where 〈J − H〉 is the mean colour in the J and H bands (or similarly
〈J − K〉 for the J and K bands) and �i0 is the mean difference in i0,
the surface brightness offset of the FP at a fiducial point (here taken
to be s0 = 2.3 and r0 = 0.35). For b = −0.88, the mean offset in r0

between J and H bands (as calculated from equation 24) is −0.14
as compared to the offset of −0.12 observed directly from the fits
(see the r0 values in Table 3). Similarly, for the J and K bands,
the predicted �r0 is −0.19, as compared to the observed offset of
−0.17 from the fits.

The predicted values are very close to the offsets observed, so we
conclude that the offsets in r0 between passbands are a consequence
of the mean colours, as expected. Equivalently, allowing for the
mean colours the FP is consistent between the J, H and K bands.

5.8 Comparison to literature

A summary of previous FP slope determinations from the literature
is given in Table 4, along with the passband, sample size and fitting
method of each study. Where more than one regression method was
employed, the slopes from the orthogonal regression fit are given.
The coefficients of surface brightness, b, were converted to the units
used in this work (i.e. as the coefficient of i ≡ log 〈Ie〉 rather than
〈μe〉, where the conversion is bi = −2.5bμ). In those studies where
an orthogonal rms scatter about the plane was quoted (based on an
orthogonal regression or ML fit), we have listed this value in the σ⊥
column and converted it to an rms scatter in the r ≡ log Re direction
using σ r = σ⊥(1 + a2 + b2)1/2 (for reference, this scaling factor
is 2.0 for a = 1.5 and b = 0.88). Note that the rms scatter in r ≡

log Re in dex, δr, is conventionally converted to a fractional scatter
in Re in per cent, σ r, using σr ≡ (10+δr − 10−δr )/2.

Table 4 shows the increase over time in the size of the samples be-
ing studied and also the variety of fitting techniques employed, with
the more recent studies generally preferring orthogonal regression
or ML fits. The fitted value of the FP coefficient of velocity disper-
sion, a, is typically found to be 1.2–1.4 at optical wavelengths and
1.4–1.5 in the NIR. Within individual studies in the optical, a tends
to be larger in redder passbands; between studies the differences are
at least as large as this trend. By contrast, b is generally consistent
with being constant across passbands within any individual study,
although it varies over the range −0.74 to −0.90 when comparing
different studies.

A direct comparison of the 6dFGS FP to the results of other
studies is constrained by the fact that only one study uses J- and
H-band samples (La Barbera et al. 2010b), and only two studies
use K-band samples (Pahre et al. 1998a; La Barbera et al. 2010b).
Moreover, neither of these studies uses a ML fitting technique, so
we have chosen to compare with orthogonal regressions, where
available, as the next best-fitting method. Our s ≡ log σ 0 slope
(a = 1.52) is consistent with the other NIR FP fits in being steeper
than is generally found in optical passbands. Our i ≡ log 〈Ie〉 slope
(b = −0.89) is at the upper end of the range of previous results.
Due to the large sample and homogeneous data afforded by the
6dFGS, the fractional errors on both slopes (for a less than 2 per
cent and for b less than 1 per cent) are significantly smaller than is
the case for older FP samples, and comparable to those obtained for
the similarly large and homogeneous SDSS and UKIDSS (United
Kingdom Infrared Telescope Infrared Deep Sky Survey) samples
(Hyde & Bernardi 2009; La Barbera et al. 2010b).

The most recent FP studies analysing large data sets across multi-
ple passbands have found a steepening of the FP slope a going from
shorter to longer wavelengths, while in general the slope b remains
constant (Hyde & Bernardi 2009; La Barbera et al. 2010b). This
trend, however, is observed across optical to NIR wavelengths, but
(as here) not over the JHK passbands (see Table 4). This implies, as
expected, that there is relatively little variation with mass or size in
the dominant stellar populations (and hence the stellar M/L) across
these NIR passbands.

The recent SPIDER (Spheroids Panchromatic Investigation in
Different Environmental Regions) FP study by La Barbera et al.
(2010b) provides the closest match to 6dFGS in both sample size
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Table 4. Best-fitting FP slopes a and b as reported by previous studies in the literature. Also listed are the passband, sample size and fitting method used in
each study. FP fits in optical and NIR passbands are shown, respectively, in the upper and lower halves of the table. Where available, the observed scatter
orthogonal to the FP (σ⊥) and the scatter about the FP in log Re (σ r) are given.

Survey Band Ng a b σ⊥ (per cent) σ r (per cent) Type of fit

Dressler et al. (1987) B 97 1.33 ± 0.05 −0.83 ± 0.03 − 20 Inverse regression
Djorgovski & Davis (1987) rG 106 1.39 ± 0.14 −0.90 ± 0.09 − 20 Two-step inverse regression
Lucey et al. (1991b) V 66 1.26 −0.82 − 17 Forward regression
Guzman, Lucey & Bower (1993) V 37 1.14 −0.79 − 17 Forward regression
Jorgensen et al. (1996) r 226 1.24 ± 0.07 −0.82 ± 0.02 − 17 Orthogonal regression
Hudson et al. (1997) R 352 1.38 ± 0.04 −0.82 ± 0.03 − 21 Inverse regression
Müller et al. (1998) R 40 1.25 −0.87 − 19 Orthogonal regression
Gibbons, Fruchter & Bothun (2001) R 428 1.37 ± 0.05 −0.84 ± 0.03 − 21 Inverse regression
Colless et al. (2001) R 255 1.22 ± 0.09 −0.84 ± 0.03 11 20 ML Gaussian
Bernardi et al. (2003) g 5825 1.45 ± 0.06 −0.74 ± 0.01 13 25 ML Gaussian
Bernardi et al. (2003) r 8228 1.49 ± 0.05 −0.75 ± 0.01 12 23 ML Gaussian
Hudson et al. (2004) V\R 694 1.43 ± 0.03 −0.84 ± 0.02 − 21 Inverse regression
D’Onofrio et al. (2008) V − 1.21 ± 0.05 −0.80 ± 0.01 − − Orthogonal regression
La Barbera et al. (2008) r 1430 1.42 ± 0.05 −0.76 ± 0.008 15 28 Orthogonal regression
Gargiulo et al. (2009) R 91 1.35 ± 0.11 −0.81 ± 0.03 − 21 Orthogonal regression
Hyde & Bernardi (2009) g 46 410 1.40 ± 0.05 −0.76 ± 0.02 16 31 Orthogonal regression
Hyde & Bernardi (2009) r 46 410 1.43 ± 0.05 −0.79 ± 0.02 15 30 Orthogonal regression
La Barbera et al. (2010b) g 4589 1.38 ± 0.02 −0.79 ± 0.003 − 29 Orthogonal regression
La Barbera et al. (2010b) r 4589 1.39 ± 0.02 −0.79 ± 0.003 − 26 Orthogonal regression

Scodeggio, Giovanelli & Haynes (1997) I 109 1.25 ± 0.02 −0.79 ± 0.03 − 20 Mean regression
Pahre et al. (1998a) K 251 1.53 ± 0.08 −0.79 ± 0.03 − 21 Orthogonal regression
Bernardi et al. (2003) i 8022 1.52 ± 0.05 −0.78 ± 0.01 11 23 ML Gaussian
Bernardi et al. (2003) z 7914 1.51 ± 0.05 −0.77 ± 0.01 11 22 ML Gaussian
La Barbera et al. (2008) K 1430 1.53 ± 0.04 −0.77 ± 0.008 14 29 Orthogonal regression
Hyde & Bernardi (2009) i 46 410 1.46 ± 0.05 −0.80 ± 0.02 15 29 Orthogonal regression
Hyde & Bernardi (2009) z 46 410 1.47 ± 0.05 −0.83 ± 0.02 15 29 Orthogonal regression
La Barbera et al. (2010b) J 4589 1.53 ± 0.02 −0.80 ± 0.003 − 26 Orthogonal regression
La Barbera et al. (2010b) H 4589 1.56 ± 0.02 −0.80 ± 0.005 − 27 Orthogonal regression
La Barbera et al. (2010b) K 4589 1.55 ± 0.02 −0.79 ± 0.005 − 28 Orthogonal regression
6dFGS (this paper, Table 3) J 8901 1.52 ± 0.03 −0.89 ± 0.008 15 30 ML Gaussian
6dFGS (this paper, Table 3) H 8568 1.47 ± 0.02 −0.88 ± 0.008 15 29 ML Gaussian
6dFGS (this paper, Table 3) K 8573 1.46 ± 0.02 −0.86 ± 0.008 15 29 ML Gaussian

and passbands: we can compare the J, H and K ML Gaussian FP
fits for more than 8500 6dGFS galaxies with orthogonal regression
FP fits in the same bands for 4589 SPIDER galaxies. The two
studies obtain almost identical values of a in the J band (1.52 and
1.53), but 6dFGS finds a to be significantly smaller in the H and
K bands (1.47 and 1.46), while SPIDER finds slightly larger values
in these bands (1.56 and 1.55). The differences between the two
studies in the H- and K-band values of a are significant relative to
the estimated uncertainties (3.2σ ). Within each of the 6dFGS and
SPIDER studies the values of b are consistent across the three bands;
however, 6dFGS finds b in the range −0.89 to −0.86, while SPIDER
obtains a more positive value, b = −0.79. This difference in b is
highly significant relative to the estimated uncertainties (>8σ ), but
may be at least partly attributed to the fact that orthogonal regression
tends to find systematically higher values of b, as shown in Fig. 2.

As well as comparing the slopes of the FP fits, it is interesting to
consider the scatter about the FP found in different studies. The rms
scatter about the FP relation projected in the log Re direction (σ r in
Table 4) is usually taken as an estimate of the rms uncertainty in
distances and peculiar velocities when the FP is used as a distance
estimator. This uncertainty is widely quoted as being 20 per cent or
even smaller, a figure reflected in Table 4 for the older FP samples.
However, the scatter in log Re calculated in this way for the most
recent studies (La Barbera et al. 2008; Hyde & Bernardi 2009; La
Barbera et al. 2010b), and for the 6dFGS sample, is in fact almost

30 per cent. This is somewhat surprising, given that these recent
samples are large and generally contain good-quality homogeneous
measurements of the FP parameters. In part the difference may
be due to the fact that these larger samples may contain a more
heterogeneous mix of galaxy types than the older ‘hand-picked’
samples (see Section 7 below). However, a major source of this
discrepancy is that it is not correct to interpret the rms scatter
about an orthogonal regression or ML fit, projected in log Re, as
the uncertainty in distance. As discussed in detail in Section 8.3,
if one correctly accounts for the distribution of galaxies in the FP,
then the true distance error, σ d, is significantly smaller than σ r.
For the 6dFGS sample, while the rms scatter about the FP in the
log Re direction is σ r = 29 per cent, the rms scatter in the distance
estimates is in fact σ d = 23 per cent.

6 ENVIRONMENT AND THE FUNDAMENTAL
PLANE

We investigate possible variations in the FP with group environment,
characterized by richness, and with local environment, character-
ized by a nearest neighbour density measure.

First, we consider potential environmental effects that correlate
with the scale of the dark matter haloes that galaxies inhabit, us-
ing the richness estimates from the group catalogue described in
Section 3.4 as a proxy for halo mass. We define four subsamples
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Figure 14. Interactive 3D visualization of the 6dFGS J-band FP with individual galaxies colour coded by the richness of the group environment they inhabit:
6495 field galaxies in black; 1248 galaxies in low-richness groups in blue; 546 galaxies in medium-richness groups in green; and 612 galaxies in high-richness
groups in red (these richness classes are defined in the text). The best-fitting plane (in grey) for the entire sample (with a = 1.523, b = −0.885 and c = −0.330)
is shown for reference. (Readers using Acrobat Reader v8.0 or higher can enable interactive 3D viewing of this schematic by mouse clicking on the figure; see
Appendix B for more detailed usage instructions.)

according to richness NR: galaxies in the field or very low richness
groups (NR ≤ 1), galaxies in low-richness groups (2 ≤ NR ≤ 5),
galaxies in medium-richness groups (6 ≤ NR ≤ 9) and those galax-
ies in high-richness groups and clusters (NR ≥ 10). There are 6495
field galaxies, 1248 in low-richness groups, 546 in medium-richness
groups and 612 in high-richness groups and clusters.

The distribution of these richness subsamples in FP space can
be viewed in the interactive 3D visualization of Fig. 14, where
the galaxies in the 6dFGS J-band FP sample are colour coded by
the richness of the group environment they inhabit. From exam-
ination of these distributions it is apparent that these subsamples
tend to populate similar FPs. This is broadly confirmed by the best-
fitting FP parameters for each of these richness subsamples given in
Table 3. The FP slopes a and b are similar within 1σ for all four
richness subsamples and the full J-band sample, and the offset of
the FP, given by r0, is similar for the three subsamples of galaxies
in groups. The one significant difference is between the offset for
the field galaxy subsample and the group subsamples.

These similarities and differences are clarified in Fig. 15, which
shows the best-fitting parameters of each richness subsample, along

with the 1σ and 2σ error contours determined from 200 mock
samples. The consistency of the FP slopes is shown in the left-
hand panel of this figure, while the difference in FP offsets between
the field and group subsamples is shown in the centre and right-
hand panels. This offset is �r0 ≈ 0.02 dex, which is relatively small
compared to the total scatter in r of the full sample (σ r = 0.127 dex).
Nonetheless, it corresponds to a systematic size or distance offset of
about 4.5 per cent, and is statistically significant at >3.7σ . Such an
offset would have an appreciable impact on estimates of the relative
distances of field and group galaxies if it were not accounted for.

We repeat this analysis for the sample of 8258 galaxies for which
we have local environment estimates, as described in Section 3.4.
This sample is divided by local surface density (�5) into three ap-
proximately equal-sized subsamples: 2664 galaxies in low-density
environments (�5 ≤ 0.07), 2812 galaxies in medium-density en-
vironments (0.07 < �5 ≤ 0.25) and 2782 galaxies in high-density
environments (�5 > 0.25). We fit FPs to each of these subsamples
individually, deriving the best-fitting parameters given in Table 3.
The coefficient of velocity dispersion, a, is similar across the three
subsamples and also with respect to the global sample. There is
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Figure 15. Same as Fig. 13, but comparing the FP fits to four richness samples spanning field (grey; Ng = 6495), low richness (blue; Ng = 1248), medium
richness (green; Ng = 546) and high richness (red; Ng = 612) galaxy samples. The points in each panel are the fits to 200 mocks of each of these four
subsamples; the large black circles show the means and the ellipses the 1σ and 2σ contours of the distribution of fitted parameters. The dashed lines show, for
reference, the best-fitting parameters for the full J-band sample.

Figure 16. As for Fig. 13, but comparing the FP fits to three local surface density, �5, samples spanning low �5 (blue; Ng = 2664), medium �5 (green; Ng =
2812) and high �5 (red; Ng = 2782) galaxy samples. The points in each panel are the fits to 200 mocks of each of these three subsamples; the large black
circles show the means and the ellipses the 1σ and 2σ contours of the distribution of fitted parameters. The dashed lines show, for reference, the best-fitting
parameters for the full J-band sample.

weak variation (at the 2σ level) in the surface brightness coeffi-
cient, b, with galaxies in denser environments tending to have an
FP with a shallower b slope; galaxies in the low surface density sam-
ple exhibit the largest variation in b from the global FP. However,
the strongest trend with local environment is in the offset of the FP,
where r0 is systematically smaller for galaxies with higher surface
density. The significance of this trend is clearly shown in the centre
and right-hand panels of Fig. 16, where we plot the best-fitting FP
slopes, a and b, and the r0 offset from 200 mock simulations of each
local surface density subsample.

Comparing the local density FP fits illustrated in Fig. 16 to those
for richness shown in Fig. 15, we find the same consistency in a and
the same trend with environment in r0. The trend in b as a function
of local surface density is not seen for global environment, although
this may possibly be because our higher richness subsamples have
too few galaxies to recover such a weak trend.

Suggestions of environmental dependence in the FP (or the Dn–
σ relation) first emerged in studies where a weak offset between
galaxies in clusters (such as Coma and Virgo) and the field was
detected (Lucey et al. 1991a; de Carvalho & Djorgovski 1992).
However, it was later suggested that these differences could be at-
tributed to errors in measurement, as no such offset in the FP was
subsequently found between field and cluster galaxies in other sim-
ilar studies (Burstein, Faber & Dressler 1990; Lucey et al. 1991b;
Jorgensen, Franx & Kjaergaard 1996). As samples of early-type
galaxies increased, and the range covered in environment and mass

was extended, trends with environment were found for local density
indicators such as clustercentric distance (Bernardi et al. 2003) and
local galaxy density (D’Onofrio et al. 2008). The latter study also
found a strong trend in the FP slopes a and b with local galaxy
density, but no trend with global environment parameters such as
richness, R200 and velocity dispersion. More recently, La Barbera
et al. (2010c) explored the role of environment in the FP and found
a strong trend with local galaxy density (and a weaker trend with
normalized clustercentric distance), independent of passband. Ev-
idence of this trend is indicated by a lower offset of the FP for
galaxies in high-density regions compared to low-density regions,
consistent with previous results (Bernardi et al. 2003; D’Onofrio
et al. 2008). The slope a was found to decrease in high-density
regions (in all passbands), while b tended to weakly increase with
local galaxy density (a trend that disappears in the NIR). Similar
trends in the FP parameters were found for galaxies in groups and
the field.

The results obtained for the 6dFGS sample are consistent with
other recent studies, in that the variation of the FP is more pro-
nounced for parameters that reflect local density or environment
than for those that are proxies for global environment. Even though
we compare the offset between FPs using r0 rather than c (as La
Barbera et al. 2010c do), the trend we find with surface density
(i.e. lower r0 for galaxies in higher density environments) is at least
qualitatively consistent with that of the SPIDER study. However, to
anticipate the discussion in Section 8.5, these variations in the FP
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Figure 17. Interactive 3D visualization of the 6dFGS J-band FP in (r, s, i)-space. The best-fitting plane (in grey) for the J band (with a = 1.523, b = −0.885
and c = −0.330) is plotted for reference. The galaxies are colour coded according to morphology: 6956 early types in red and 1945 late types in blue. (Readers
using Acrobat Reader v8.0 or higher can enable interactive 3D viewing of this schematic by mouse clicking on the figure; see Appendix B for more detailed
usage instructions.)

with environment are smaller than the variation found with age; if
the age of the stellar population were the main driver of FP vari-
ations, then the environmental variations might be primarily the
result of correlations between environment and stellar population.

7 MORPHOLOGY AND THE FUNDAMENTAL
PLANE

We examine the morphological variation of the FP using a visual
classification of each galaxy’s morphology from multiple experi-
enced observers, as described in Section 3.5. The J-band FP sample
was divided into two morphological subsamples: 6956 elliptical
and lenticular galaxies (those classified as E, E/S0 or S0) and 1945
early-type spiral bulges (those classified as S0/Sp or Sp and having
bulges filling the 6dF fibre aperture). Note that the initial NIR selec-
tion criteria mean there are relatively few of the latter class, and that
these may have some degree of bias towards larger log Re. We do
not separate the E and S0 galaxies into separate subsamples since
there is significant overlap in our morphological classifications for
these two classes. We note that the FP is, in general, found to be

consistent between samples of E and S0 galaxies (Jorgensen et al.
1996; Colless et al. 2001), and that, in fitting the E and S0 galaxies
as one morphological subsample, we find the same scatter about the
FP as that for the full sample.

Fig. 17 is an interactive 3D visualization of the J-band FP sample
colour coded by morphology, with the ellipticals and lenticulars in
red and the early-type spiral bulges in blue. This figure shows that
the two morphological subsamples populate slightly different loca-
tions within the FP, with the early-type spiral bulges more common
at larger log Re.

The best-fitting FP parameters for these two subsamples are given
in Table 3, and their relative values and errors are illustrated using
mock samples in Fig. 18. The figure shows that the FP slopes, a
and b, are consistent for the different morphological classes but that
the offset in log Re, while small (�r0 = 0.045 dex) relative to the
overall scatter in log Re, is highly significant (7σ ) and corresponds
to a systematic error of 10 per cent in sizes and distances. An offset
of this amplitude would have a substantial impact on estimates of
the relative distances of E/S0 galaxies and Sp bulges if it were not
accounted for.
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Figure 18. Same as Fig. 13, but comparing the FP fits to the two morphological subsamples: 6956 elliptical and lenticular galaxies (E/S0) in red and 1945
early-type spiral bulges (Sp bulges) in blue; the full J-band sample of 8901 galaxies is shown in grey. The points in each panel are the fits to 200 mocks of the
two morphological subsamples and to 1000 mocks of the full sample; the large black circles show the means of the fitted parameters and the ellipses show the
1σ and 2σ contours of the distribution. The dashed lines show, for reference, the best-fitting parameters for the full observed J-band sample.

In addition to the difference in FP offset, there is a large shift in
the centroid of the distribution within the FP, with the early-type
spiral bulges having r̄ = 0.304, while the ellipticals and lenticulars
have r̄ = 0.155; i.e. the spiral bulges are typically 35 per cent larger.
We speculated that this may be due to the selection criteria imposed,
namely that the spiral bulges had to fill the 6dF fibre apertures. We
therefore resampled the elliptical/lenticular sample to have the same
apparent size distribution as the spiral bulges, and refit the FP to
this subsample; this did not induce an offset in r0 as observed in
the spiral bulges. We conclude that this offset is not primarily a
selection effect, but rather a real difference between the FPs of the
ellipticals/lenticulars and the early spiral bulges.

8 DISCUSSION

8.1 The Fundamental Plane as a 3D Gaussian

Although throughout this paper we emphasize the value of fitting
a 3D Gaussian model to the FP, this is not saying that the intrinsic
FP is necessarily Gaussian. That may be the case in some axes,
but in others (e.g. in luminosity or velocity dispersion) the intrinsic
distribution very likely takes some other form (such as a Schechter
function) – a form that is only approximated by a Gaussian over the
range of values in our sample (i.e. the bright/large/massive end of
the distribution).

We have chosen to use a Gaussian model because it is computa-
tionally easy and because empirically it fits the data in our sample
(as evidenced by Fig. 8). In practice, the observed FP is consistent
with (well modelled by) a Gaussian partly due to either (or both)
the sample selection criteria or the observational errors. The er-
rors are approximately Gaussian and are relatively large in the raw
quantities r, s and i (although not in some combined quantities like
r − bi). Convolving these errors with the intrinsic FP results in a
more Gaussian distribution.

This effect is compounded by the selection criteria. For exam-
ple, the velocity dispersion cut-off truncates the probable Schechter
function of the intrinsic distribution in such a way that the truncated
distribution can be fitted by a truncated Gaussian (the exponential
part of a Schechter function is similar to a Gaussian that is truncated
near its peak). This truncated distribution is then blurred and made
more Gaussian by the observational errors.

In sum, although a Gaussian intrinsic distribution is statistically
a sufficiently good model for the data in the 6dFGS sample (as

well as being computationally convenient), the substantial effects
due to the sample selection criteria and observational errors mean
that we cannot conclude that the underlying physical distribution
is Gaussian. While the ML method successfully fits a Gaussian to
the intrinsic FP distribution, a more realistic distribution might fit
as well or better.

8.2 Fundamental Plane scatter

In general, the total scatter in r that we recover for the 6dFGS
FP (σ r ≈ 29 per cent) is comparable to that found in other recent
studies (Gargiulo et al. 2009; Hyde & Bernardi 2009; La Barbera
et al. 2010b), but larger than the value typically quoted as the
FP distance error (σ r ∼ 20 per cent) found in earlier studies (see
Table 4). However, it is important to note that the larger value of
σ r found in recent studies (and here) is the rms scatter, projected
along the r-direction, about the best-fitting orthogonal or ML FP. In
Section 8.3, we show that this overestimates the actual FP distance
errors.

Here we examine the individual components contributing to the
overall scatter about the FP. This scatter results from a combination
of intrinsic scatter in the FP relation (the physical origins of which
are subject to investigation), observational errors and contamination
from outliers (such as non-early-type galaxies or merging objects).
To understand how each of these contributes to the total rms scatter
in r, we split σ r into the quadrature sum of these components:

σ 2
r = (aεs)

2 + ε2
X + σ 2

r,int. (25)

The first term represents the effect of the rms observational scat-
ter in velocity dispersion, εs, on the overall scatter in r. Because εs

is scaled by a, the FP coefficient of s, this term is larger for samples
with larger FP slopes. Since a tends to increase with wavelength
(a ≈ 1.2–1.4 in optical passbands and a ≈ 1.4–1.5 in NIR pass-
bands), this term is generally larger for NIR-selected samples (such
as 6dFGS) than for optically selected samples (such as SDSS). The
rms velocity dispersion error of the 6dFGS sample is εs = 0.054 dex
(i.e. 12 per cent, comparable to other large survey samples; see
Campbell 2009). Therefore, given our J-band slope of a = 1.52,
this term amounts to a contribution to the overall scatter of about 18
per cent. To more directly determine the effect of the errors in s on
the FP fits, we have fitted subsamples restricted to smaller εs values
(see Table 5). We find no change in the FP slopes (at the 1σ level),
a small but significant change in the offset and a modest reduction
(at most 5 per cent) in the overall scatter in log Re, consistent with
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Table 5. Best-fitting FP dependence on velocity dispersion error.

εs Ng a b r0 σ r

No limit 8901 1.523 ± 0.026 −0.885 ± 0.008 0.345 ± 0.002 0.127
≤0.07 7913 1.523 ± 0.026 −0.896 ± 0.009 0.346 ± 0.002 0.124
≤0.06 6694 1.529 ± 0.029 −0.903 ± 0.010 0.349 ± 0.002 0.122
≤0.05 4692 1.528 ± 0.032 −0.909 ± 0.011 0.356 ± 0.003 0.118
≤0.03 1855 1.558 ± 0.053 −0.894 ± 0.018 0.376 ± 0.005 0.108

that expected from the smaller value of εs and the above formula
for the total scatter.

The second term in equation (25) is the rms observational scatter
in the combined photometric quantity XFP ≡ r − bi, which accounts
for the high degree of correlation between the measurement errors
in r and i (see Section 3.3). This correlation conspires to make the
value of this term negligible in comparison to the other terms; for
all the 6dFGS passbands, εX ≤ 4 per cent.

The final term represents the intrinsic scatter of the FP relation
in the r-direction. For a pure 3D Gaussian distribution, the intrinsic
scatter in r would be given by σ r = σ 1(1 + a2 + b2)1/2, which, for
our typical values of a = 1.5 and b = −0.88, yields σ r ≈ 2.0 σ 1.
However, because our observed distribution is heavily censored by
our selection criteria, the actual distribution of galaxies in FP space
is a truncated 3D Gaussian, and so we cannot apply this formula.
Instead, we must calculate σ r either from equation (25), taking
the difference between the total scatter and the rms measurement
errors, or as the rms scatter in r − as − bi for mock samples drawn
from the same intrinsic 3D Gaussian and the same selection criteria,
but with no measurement errors. Both these approaches yield the
same estimate for the intrinsic scatter in r for our J-band sample:
σr,int ≈ 23 per cent. The intrinsic scatter is therefore the single
largest contributor to the overall scatter about the 6dFGS FP.

Thus we have our total scatter in r of 29 per cent being the
quadrature sum of 18 per cent scatter from the measurement errors
in velocity dispersion, 4 per cent scatter from the measurement
errors in the photometric quantities and 23 per cent scatter from the
intrinsic dispersion of the FP distribution.

8.3 Distance errors

We have found that the scatter about the 6dFGS FP in r is 29 per
cent. However, this does not mean that, when we use this FP fit to
measure distances, we will only measure them to this precision. To
understand why this is the case, we must consider the procedure
used to measure distances and peculiar velocities from the FP.

In the most naive approach, one would convert the observed
angular radius of a galaxy to a physical radius assuming that the
distance to the galaxy is given by its redshift distance. The peculiar
velocity of the galaxy would then be approximated by the offset of
this galaxy from the FP in r. Since the peculiar velocity is measured
from the offset along the r-direction, the average scatter from the
FP in r then represents the total error in galaxy distances and pe-
culiar velocities (from the combination of measurement errors and
intrinsic scatter).

However, there is a more general (and precise) way to estimate
the peculiar velocity. The peculiar velocity of a galaxy n is given
by its offset along the r-direction from a particular value, r∗

n . This
r∗
n is the most likely radius for galaxy n, given a particular set of

observed values of the velocity dispersion and surface brightness,
sn and in. In the preceding paragraph, we assumed that r∗

n is a point
on the FP, given by r∗

n = asn + bin + c. This assumption is valid

if the FP is best modelled as an infinite plane with uniform scatter.
However, the assumption is not valid if the distribution of galaxies
in FP space is best modelled by a 3D Gaussian and the minor axis
of this Gaussian is not aligned with the r-axis.

In equation (4), we show the expression for the probability density
distribution of a single galaxy n. In equation (8), we give the sum of
the log of such probability densities for all galaxies in our sample.
For a single galaxy n, however, the likelihood is

ln P (xn) = −
[

3

2
ln(2π) + ln(fn) + 1

2
ln(|Σ + En|)

+ 1

2
xT

n (Σ + En)−1xn

]
.

(26)

For a particular galaxy with known observational errors, each of
these terms is fixed except the final χ2 term, which is a quadratic
function of the physical parameters r, s and i.

Since we directly observe s and i, we can fix them at the observed
values sn and in. We can then use this equation to give us the
probability density distribution of r for fixed s = sn and i = in (i.e.
P(r|s, i)). This is a quadratic function of the form

ln P (r|s, i) = k0 + k1(r − r̄) + k2(r − r̄)2, (27)

where k0, k1 and k2 are functions of sn, in, the observational errors
for the galaxy, and the FP fit parameters (a, b, r̄ , s̄, ī, σ 1, σ 2 and σ 3).
They can thus be obtained by expanding the matrix multiplication
terms in the preceding equations. The effective expectation value
for galaxy distances and peculiar velocities occurs at the ML – i.e.
the maximum of this quadratic function:

r∗ − r̄ = −k1/(2k2). (28)

This value varies from galaxy to galaxy, depending both on the
galaxy’s position in FP space and its observational errors. If we
evaluate this in the case of no errors, and insert the values of the FP
fit parameters given in Table 3 for the J-band sample, we find that
the effective expectation value for distances is given by the plane
r∗ = 1.18s − 0.80i + 0.152; this relation differs quite markedly from
the underlying FP. However, since we do in fact have observational
errors, and they vary from galaxy to galaxy, the peculiar velocity
expectation values for individual galaxies will not be confined to a
plane.

We have evaluated this J-band zero-point (i.e. the ML distance)
for every galaxy in our sample, and find that the scatter about
the zero-point is 23 per cent. This, then, is the distance error in
the J band assuming no Malmquist bias corrections; we therefore
anticipate that 23 per cent does not necessarily represent our final
distance error, which will be explored in a future paper.

This 23 per cent scatter in distance is significantly smaller than
the 29 per cent that is naively obtained by calculating the scatter in
r about the best-fitting FP. The difference is purely a consequence
of the fact that, in our empirically well-justified 3D Gaussian model
for the distribution in FP space, galaxies are not symmetrically
distributed about the FP in the r-direction. Thus for fixed s and i,
the probability density of galaxies in r is not maximized on the FP,
the expectation value for the observed distance is not the redshift
distance, the expectation value of the peculiar velocity is not zero
and the scatter in distance and peculiar velocity relative to this
expectation value is less than the scatter relative to the FP.

8.4 The Fundamental Plane in κ-space

Bender et al. (1992) proposed studying the FP using κ-space, a
coordinate system related to key physical parameters such as galaxy
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Figure 19. The κ-space distribution of the 6dFGS J-band FP sample (black) and the galaxies excluded by our selection criteria from a corresponding mock
sample (red). Left: the κ3–κ1 projection of the FP showing the best-fitting relation (κ3 ∝ 0.110κ1, solid line) and the lower limit on M/L as a function
of mass (2

√
3κ3 − √

2κ1 > −4.0; long-dashed line). Centre: the κ2–κ1 projection showing the upper limit defining the ‘zone of exclusion’ for dissipation
(κ1 +√

3κ2 < 12.3; short-dashed line), similar to that proposed by Bender et al. (1992); also the apparent lower limit on luminosity density (
√

3κ2 − κ1 > 2.0;
long-dashed line). Right: the κ3–κ2 projection.

mass (M) and luminosity (L). Bender et al. took as their observed
parameters log σ 2

0 , log Ie and log Re (with σ 0 in units of km s−1, Re

in units of kpc and Ie in units of L� pc−2) and defined κ-space in
terms of the orthogonal set of basis vectors with amplitudes given
by

κ1 ≡
(

log σ 2
0 + log Re

)/√
2 = (2s + r)/

√
2,

κ2 ≡
(

log σ 2
0 + 2 log Ie − log Re

)/√
6 = (2s + 2i − r)/

√
6,

κ3 ≡
(

log σ 2
0 − log Ie − log Re

)/√
3 = (2s − i − r)/

√
3. (29)

In this coordinate system, κ1 is proportional to log M, κ2 is propor-
tional to log(I 3

e M/L) and κ3 is proportional to log (M/L).
FP samples in κ-space (Burstein et al. 1997; Bernardi et al. 2003;

Kourkchi et al. 2012) are often plotted in the κ3–κ1 projection (to
show an almost edge-on view of the FP) and the κ2–κ1 projection
(to show an almost face-on view of the FP). Fig. 19 shows the κ-
space distribution for the J-band 6dFGS FP sample (black points)
in all three 2D projections of κ-space. The galaxies rejected from a
mock set of galaxies by the 6dFGS sample selection criteria are also
shown (in red) to illustrate the effects of censoring on the observed
κ-space distribution.

We can compute the principal axes of the FP distribution in (r, s,
i)-space, (v1, v2, v3), in terms of (κ1, κ2, κ3) using the inverse of
the transform defined by equation (29) to map from κ-space to (r,
s, i)-space followed by the transform defined by equations (5) and
(6) to then map to (v1, v2, v3). Inserting the values of a and b for
the best-fitting J-band FP given in Table 3, we obtain

v1 = +0.083κ1 + 0.002κ2 − 0.754κ3,

v2 = −0.469κ1 + 0.882κ2 − 0.050κ3,

v3 = −0.631κ1 − 0.312κ2 + 0.422κ3. (30)

As expected, v1 (the direction normal to the FP) is very close to
κ3, which is proportional to log M/L. However, because the trans-
formation from (r, s, i)-space to κ-space is non-orthogonal, there
is significant mixing in κ-space between v1 and v3, with v1 · v3 =
−0.6 (although they are orthogonal in (r, s, i)-space).

In κ-space, the best-fitting J-band FP derived in (r, s, i)-space is
given by

κ3 = 0.110κ1 + 0.002κ2 + 0.216. (31)

This is significantly shallower than the relation found by Bender
et al. (1992), which was κ3 ∝ 0.15κ1 (although the difference is in
part due to the fact that Bender et al. were working in the B band
and the 6dFGS result is for the J band). Because the coefficient
of κ2 is so small, equation (31) is essentially a relation between
κ3 ∝ log M/L and κ1 ∝ log M. Neglecting the κ2 term and using the
definitions of κ1 and κ3 given in equation (29) yields

log M/L√
3

= 0.110
log M√

2
+ constant, (32)

which corresponds to M/L ∝ M0.135.
It is illuminating to derive this same relationship starting from

the assumption that M/L has a simple power-law dependency on
mass. Letting m = log M and l = log L, and assuming that (ignoring
constants) m = 2s + r and l = 2r + i, if the M/L is a power of mass,
m − l = αm, then we can write the FP as

r = 2

(
1 − α

1 + α

)
s −

(
1

1 + α

)
i + constant. (33)

By equating FP coefficients with equation (2), we get two relations
for α, namely α = (2 − a)/(2 + a) and α = −(1 + b)/b. For
an arbitrary FP relation, there is no requirement that these two
relations give consistent values for α. However, as it happens, for
the particular values a ≈ 1.52 and b ≈ −0.88 that are very close
to the best-fitting J-band FP for the 6dFGS sample, these relations
give consistent values of α ≈ 0.136. Hence our best-fitting FP is
consistent with (but does not require) a simple scenario in which
M/L is a power of mass, namely M/L ∝ M0.136 (or, equivalently,
M/L ∝ L0.157).

This relation [strictly, the relation given by equation (31) with κ2

fixed at its mean value of 4.2] is shown as the solid line in Fig. 19.
Because the transformation from (κ1, κ2, κ3) is, by definition, or-
thogonal to (r, 2s, i) but not orthogonal to (r, s, i), the transformation
from (r, s, i)-space to κ-space does not preserve the shape of the
3D Gaussian. Consequently, this linear relation is not a particularly
compelling description of the κ-space distribution, even though the
transformed 3D Gaussian fit is still a good match to the data (as
shown by the mock galaxy sample).

The 6dFGS galaxies respect the zone of exclusion in the κ1–κ2

plane suggested by Bender et al. (1992), corresponding to an upper
limit on the amount of dissipation that a hot stellar system of a
given mass undergoes. This limit is indicated by the short-dashed
line in the centre panel of Fig. 19, given by κ1 + √

3κ2 < 12.3.
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Figure 20. Correlation of orthogonal residuals relative to the best-fitting FP (a = 1.52 and b = −0.89) with various galaxy properties: local density (�5),
morphological type (m-type) and group richness (NR) (all as defined in this paper), and log age, [Z/H] and [α/Fe] (as defined in Springob et al. 2012). In each
panel the best-fitting line for the binned residuals is given along with the corresponding reduced χ2 value.

The long-dashed line in the same panel provides another limit,√
3κ2 −κ1 > 2.0, corresponding to a lower bound on the luminosity

density, L/R3, of an early-type galaxy of a given mass. However,
this requires further investigation, as more compact galaxies may
be catalogued in the 2MASS data base as stars and consequently
would be excluded from our study. The sharpest and most striking
limit is that indicated by the long-dashed line in the left-hand panel
of Fig. 19, 2

√
3κ3 − √

2κ1 > −4.0. This implies that for these
early-type galaxies, there is a minimum M/L that increases with
increasing mass as (M/L)min ∝ M1/2. Since these galaxies all have
similar stellar populations, this suggests that more massive galaxies
have a maximum stellar-to-total mass ratio that decreases as M−1/2.

8.5 Fundamental Plane residual trends

In Sections 6 and 7, we examined the dependence of the 6dFGS
FP on environment and morphology by comparing the FP fits for
appropriate subsamples of galaxies. Here we take an alternative
approach by looking at the trends of the orthogonal residuals from
the FP (defined as [r − (as + bi + c)]/

√
1 + a2 + b2) with various

galaxy properties. As well as morphology, group richness (NR)
and local density (�5), we also consider three stellar population
parameters discussed in Springob et al. (2012): log age, metallicity
([Z/H]) and α-enhancement ([α/Fe]). For this particular purpose,
we convert our morphological classification scheme to a discrete
scale where 0 = elliptical, 2 = lenticular, 4 = spiral and 1, 3 and 5
are the respective transition classes.

Fig. 20 shows the mean residuals orthogonal to the best-fitting
global J-band FP (with a = 1.52 and b = −0.89) as a function
of these properties. The mean orthogonal residuals are computed
in bins of �5 (for 8258 galaxies), morphological type and NR (for
8901 galaxies), and log age, [Z/H] and [α/Fe] (for 6679 galaxies).
A weighted least-squares regression is performed to quantify the
significance of a linear trend in the binned data. The slope and

offset of the linear fit for each galaxy property (and their errors) are
given at the top of each panel, along with the reduced χ2 of the fit.

The strongest trend of the FP residuals is clearly with the age
of the stellar population, and amounts to ∼0.08 dex over the full
range in age; the next strongest trend is with [α/Fe], amounting to
∼0.05 dex over the observed range. Both these trends are highly
statistically significant, although a line is not a good fit to the rela-
tion in the case of [α/Fe]. The residuals from the FP show relatively
weaker (although still statistically significant) trends with morpho-
logical type, local density, group richness and metallicity. These
results are consistent with our fits to subsamples defined on the
basis of these properties, and confirm the equivalent analysis by
Springob et al. (2012). We refer the interested reader to that pa-
per for a more extensive investigation of the variations of stellar
populations in FP space, including a detailed comparison to the
similar study by Graves et al. (2009, 2010) and Graves & Faber
(2010).

If galaxy ages could be precisely determined, then these results
imply that it would be possible to reduce the intrinsic scatter about
the FP by a few per cent. However, the substantial uncertainties
in estimating the ages of stellar populations mean that even this
modest gain cannot be realized with current observational data and
existing stellar population models.

9 CONCLUSION

The 6dFGS FP sample comprises ∼104 early-type galaxies from
the 6dFGS. We provide the first comprehensive visualization for
the entire FP parameter space (without projection) by displaying
this large and homogeneous data set in fully interactive 3D plots.

We demonstrate that significant biasing can occur when deriving
a best-fitting FP using least-squares regression (the predominant
fitting method used in previous studies). Standard regression tech-
niques implicitly assume models that fail to accurately represent the
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underlying distribution of galaxies in FP space, and moreover do
not fully account for observational errors and selection effects that
tend to bias the best-fitting plane. We show that a 3D Gaussian pro-
vides an excellent empirical match to the distribution of galaxies in
FP space for the 6dFGS sample, and we use a ML fitting technique
to properly account for all the observational errors and selection
effects in our well-characterized sample.

With this approach we obtain a best-fitting FP in the 2MASS
J band of Re ∝ σ 1.52±0.03

0 I−0.89±0.01
e . Fits in the H and K bands

are consistent with this at the 1σ level once allowance is made for
differences in mean colour, implying that M/L variations along the
FP are consistent among these NIR passbands.

We deconstruct the scatter in r about the FP, σ r, into contributions
from observational errors and intrinsic scatter, and find that the
overall scatter of 29 per cent is the quadrature combination of an
18 per cent observational contribution and a 23 per cent intrinsic
contribution. The observational contribution is strongly dominated
by the velocity dispersion errors, and compounded by the fact that
the FP slope is steeper in NIR passbands than in optical passbands
– the FP coefficient of σ 0 is a ≈ 1.5 for J, H and K and a ≈ 1.2–1.4
for B, V and R, so the same error on σ 0 contributes 15–50 per cent
more scatter to σ r for the NIR FP than the optical FP.

The overall scatter in Re about the 6dFGS FP is larger than
the widely quoted value of 20 per cent, but in fact is consistent
with virtually all recent studies of large samples of galaxies (see
Table 4). Moreover, the actual scatter in distance estimates is not
the same as the scatter in Re about the best-fitting ML FP. We
show that the true scatter in distance (and peculiar velocity) must
be calculated relative to the expectation value of the distance (and
peculiar velocity), which does not lie in the FP. This is because
our empirically validated 3D Gaussian model of galaxies in FP
space has an asymmetric distribution about the FP in the r-direction.
Consequently, the expectation value of the distance (and peculiar
velocity) lies in a plane with a shallower slope than the actual FP.
When the scatter is properly computed relative to this expectation
value, we find that the rms scatter in distance (or peculiar velocity)
is in fact 23 per cent (neglecting any corrections for Malmquist
bias).

We investigate possible changes in the FP with environment,
looking for variations with both global environment (quantified by
group or cluster richness) and local environment (quantified by
the surface density to the fifth nearest neighbour). We find little
variation of the 6dFGS FP slopes (i.e. the coefficients of velocity
dispersion and surface brightness) with either of these measures
of environment. However, there is a statistically and physically
significant offset of the FP with environment in the sense that, at
fixed velocity dispersion and surface brightness, galaxies in the field
and low-density regions are on average about 5 per cent larger than
those in groups and higher density regions.

Morphological classification of our FP sample allows us to sep-
arate the galaxies into two broad types: elliptical (E) and lenticular
(S0) galaxies are combined into one subsample, and early-type spi-
ral (Sp) galaxies define the other type. For the latter, the construction
of our sample means that we are effectively determining the FP pa-
rameters for the bulges of these galaxies. We find that this sample of
early-type Sp bulges has FP slopes and scatter consistent with the
E/S0 galaxy sample, although the FPs are offset in the sense that,
at fixed velocity dispersion and surface brightness, early-type Sp
bulges are on average about 10 per cent larger than E/S0 galaxies.
Contrary to our expectations, this does not appear to be a selection
effect. Since the 6dFGS FP sample is dominated by E/S0 galaxies
(6956 E/S0 galaxies and 1945 Sp bulges), the additional scatter in

the overall FP from the offset in the FPs of the two types of galaxies
is negligible.

Complementing the analysis of Springob et al. (2012), we de-
termine the trends in the residuals of the FP as functions of group
richness, local density, morphology, and the age, metallicity and
α-enhancement of the stellar population. We find that the strongest
trend is with age, and we speculate that, of the galaxy properties
considered here, age is the most important systematic source of
offsets from the FP, and may drive (through the correlations of age
with environment, morphology and metallicity) most of the varia-
tions with the other galaxy properties. Demonstrating that this is the
case, however, requires detailed analysis of the covariances between
all these quantities, which we defer to a future paper.

The contributions to the intrinsic scatter about the FP from the
mix of morphologies, environments and stellar populations present
in the 6dFGS sample are at most (in the case of the ages of the
stellar populations) a few per cent. Although it is in principle pos-
sible to compensate for these effects, any corrections based on the
mean relations between FP residuals and the properties of indi-
vidual galaxies would in practice introduce more scatter than they
would remove, due to the substantial uncertainties in determining
these properties. In any case, the bulk of the intrinsic scatter would
appear to be due either to physical parameters not considered here
or to genuinely stochastic variations in the structure of galaxies.

Nonetheless, the systematic offsets of the FP for galaxies with
different morphologies, environments and stellar populations are
significant, and will need to be accounted for when, in future papers,
we use these FP determinations to derive distances and peculiar
velocities for this sample of ∼104 early-type galaxies covering most
of the Southern hemisphere and reaching out to 16 500 km s−1.
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APPENDIX A: LIKELIHOOD
NORMALIZATION

For a trivariate Gaussian with lower selection limits of rcut, scut and
icut, the likelihood normalization integral is

fn =
∫ ∞

rcut

∫ ∞

scut

∫ ∞

ucut

exp
[

1
2

(
xT

n (Σ + En)−1xn

)]
√

(2π)3|Σ + En|
dx, (A1)

where xn = (rn, sn, in). To determine f n numerically, we transform
the integral using the Cholesky decomposition of the matrix sum
Σ + En = C and then again using the standard normal distribution
function, �(y), given by

�(y) = 1

2π

∫ y

−∞
exp−(1/2)θ2

dθ. (A2)

A final substitution is made to perform the integration over a unit
cube, resulting in the integral

fn =
(

1 − �

(
rcut

C00

))

×
∫ 1

0

(
1 − �

[
scut

C11
− C10

C11
�−1

(
(1 − w0)�

(
rcut

C00

)
+ w0

)])

×
∫ 1

0

(
1 − �

[
ucut

C22
− C20

C22
�−1

(
(1 − w0)�

(
rcut

C00

)
+ w0

)

− C21

C22
�−1

(
(1 − w1)�

[
scut

C11

− C10

C11
�−1

(
(1 − w0)�

(
rcut

C00

)
+ w0

)]
+ w1

)]) ∫ 1

0
dw.

(A3)

In practice, our model only includes an explicit selection cut in
velocity dispersion (σ ≥ σ cut). The above equation then reduces to

fn =
∫ 1

0
1 − �

[
scut

C11
− C10

C11
�−1(w0)

]
dw0. (A4)

APPENDIX B: INTERACTIVE 3D FIGURES

Several of the figures presented here (namely Figs 3, 9, 12, 14 and
17) can be accessed as 3D interactive visualizations when viewing
this paper in Adobe Reader v8.0 or higher. Once 3D viewing is
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enabled by clicking on the figure, the 3D mode allows the reader to
rotate, pan and zoom the view using the mouse.

The tool bar on each 3D figure contains a whole host of interactive
elements which can help in exploring the 3D visualization. We
particularly direct the reader’s attention to the following tool bar
features: (i) you can restore the initial default view at any time
using the home button; (ii) you can rotate to any orientation you
prefer and, where relevant, to special, author-selected 3D views (e.g.
the edge-on view of the FP); these can be selected from the Views
drop-down menu; (iii) you can toggle the model tree, which allows
individual plot features (e.g. scatter points, planes, vectors) of the
3D figure to be turned on and off, giving the viewer greater control
of the interactive figure. Suggested interactions with particular 3D
figures include the following.

(a) In Fig. 3, use the model tree to toggle the v-space vectors and
mass/luminosity vectors one at a time to see how they compare in

our 3D Gaussian model. Also, rotate the figure to view the small
angle between v1 and m − l and also v2 and l − 3r .

(b) Fig. 9 not only contains the J-band FP sample of galaxies,
but also the H- and K-band samples. They can be enabled in the
model tree by selecting ‘H Band’ or ‘K Band’, respectively. For an
unimpeded view of the individual galaxies, toggle the best-fitting
plane (called ‘FP’ in the model tree); this also applies to Figs 14
and 17. In the Views drop-down menu, select ‘Edge-on’ to view the
FP in the projection with the smallest scatter.

(c) In Fig. 14, rotate and pan across the FP galaxies to explore
where the richness subsamples lie on the FP.

(d) In Fig. 17, toggle the individual points of each morphology
subsample to see the differences in the way their distributions pop-
ulate FP space.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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