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Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The

electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial

mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a

low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field

(HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their

respective electric field strength limits and gives more accurate results of the ion mobility

coefficient and effective ion temperature over the entire electric field strength range. Annular

modelling is applied to an argon plasma and numerical results of the density peak position, the

annular boundary loss coefficient and the electron temperature are given as functions of the annular

geometry ratio and Paschen number. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927461]

I. INTRODUCTION

A cylindrical plasma is made annular when an inner

object is inserted and this implementation is widely seen in

low temperature plasma applications ranging from the probe

within a plasma column1,2 to the inner quartz tube in a

plasma source,3–5 or the central electrode in a plasma jet.6,7

Two dimensional fluid simulations (no azimuthal flow) for a

cylindrical plasma8,9 have shown that, by using the variable

separation technique, the partial differential equation (PDE)

for the momentum conservation can be separated into the

forms of two ordinary differential equations (ODEs) in the

axial and radial directions. The two ODEs are weakly

coupled through the drag term caused by the ionization fre-

quency from the particle conservation. When either (axial or

radial) dimension is the main interest for a specific plasma

system, the other dimension may be assumed to be “frozen,”

i.e., a quiescent or constant plasma flux such that no plasma

loss occurs in this dimension. Then, the primarily concerned

dimension can be separately solved at the cost of some loss

in accuracy which depends on the specific flow in the

assumed frozen dimension. This methodology has been

widely applied in a number of modelling studies10–12 and its

validity has also been verified by experiments.13–15 Axial

transport in an annular plasma is similar to that in a cylindri-

cal plasma. The implementation of an inner cylinder in a

cylindrical plasma does not change the axial boundary condi-

tion and has a small effect on the axial flow except for the

value of the coupled drag term. However, radial transport in

an annular plasma is quite different from that in a cylindrical

plasma. The annular geometry greatly affects the radial

boundary conditions: a cylindrical plasma has a central point

of maximum ion density and zero electric field, but the

central point disappears in an annular plasma and is replaced

by an inner wall boundary. In this case, the density peak

position becomes a variable in the annulus and the radial

transport changes from one direction (outward) in a cylindri-

cal plasma to two directions (outward and inward) in an

annular plasma. Hence, the major transport properties of

annular plasmas are characterized in the radial dimension

and the radial dimension could be reasonably assumed to be

frozen as discussed above. The radial transport of collision-

less annular plasmas has been previously investigated by

using a free-fall model1 and a fluid model.16 Our work

focuses on the radial transport of annular collisional plasmas

with the interest of single-component, electron-positive-ion,

and low temperature discharge. The transport of charged

particles is described in terms of “diffusion” and “mobility”

due to the advantages of unifying the unmagnetized and

magnetized plasmas into a simple algebraic form.11,17 The

diffusion represents the momentum balance between the

active density gradient and passive collisions, and the mobil-

ity represents the balance between the electric field and colli-

sions.18 By using this representation method, the modelling

results for unmagnetized annular plasmas, which is the case

of the present study, form the basis of the future study for

magnetized plasmas.

The radial transport of an unmagnetized plasma is

governed by local ambipolarity for which the ions and elec-

trons have the same drifting flux (non-ambipolarity may

arise in the magnetized plasma).17,19 The light electrons are

in quasi-equilibrium in a low temperature plasma (or a

weakly ionized plasma) and a one-temperature Maxwellian

distribution is assumed for the electrons. The heavy ions are

not in equilibrium and their transport behaves following a

more complicated process due to the ion-neutral collisions,

i.e., elastic ion-neutral collision and resonant charge transfer

collision. The effect of long-range Coulomb collisions, i.e.,

ion-ion and ion-electron collisions, is negligible in a low

temperature plasma, and the ion momentum transfer is deter-

mined by the ion-neutral collisions of which description

depends on the thermalization treatment for ions and neu-

trals. The combination of cold neutrals and warm ions isa)yunchao.zhang@anu.edu.au
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normally applied,10,20 and the opposite case of cold ion

beam and warm neutrals has been reported by Fruchtman.8

Both ions and neutrals remain thermalized in this study and

they are connected by using the effective ion tempera-

ture.21,22 The neutral depletion effect23 is neglected and the

neutrals are assumed to be homogeneously distributed. The

radial transport of ions is described by three ion mobility

based models: a low electric field (LEF) model, an interme-

diate electric field (IEF) model, and a high electric field

(HEF) model. Since the ion diffusion coefficient becomes a

complicated electric-field-dependent parameter18,22 when the

ion drift velocity is large compared to the ion thermal veloc-

ity (which is the case for IEF and HEF models), its effect

was normally neglected in previous HEF studies.10,11 The

present study follows a consistent path and neglects the

diffusion effect for ion transport, i.e., the ions behaving an

ion-mobility-governed manner.

In the LEF model, the ion-neutral collisions are domi-

nated by the neutral thermal effect and the electric field effect

is negligible. The ion mobility coefficient is independent of

the electric field and given by the first Chapman-Enskog

approximation.24 The dependency of the ion mobility coeffi-

cient on the electric field appears as the electric field strength

is increased. At the upper limit of the electric field strength

described by the HEF model, the ion-neutral collisions are

dominated by the strong electric field and the neutral thermal

effect is negligible (cold gas limit). The ion mobility coeffi-

cient is inversely proportional to the square root of the elec-

tric field strength.10,25 Both the neutral thermal effect and

electric field effect are considered in the IEF model, and the

ion-mobility coefficient is expressed in terms of the effective

ion temperature.21,22 To the best of our knowledge, the pres-

ent paper is the first to use the IEF model to study the ion

transport in low temperature plasmas. The total momentum-

transfer cross section for ion-neutral collisions (including the

elastic ion-neutral collision and resonant charge transfer colli-

sion) is approximated to be a constant for the low temperature

plasma of interest.8,11 In a bounded plasma, the LEF domi-

nates the central region of maximum density and the HEF

dominates the near-wall presheath region, which accelerates

the ions to the Bohm velocity.26,27 There are two asymmetric

presheath regions near the inner and outer walls across an an-

nular plasma. The presheath width extends as the gas pressure

decreases,28 hence the LEF and HEF regimes dominate the

high pressure and low pressure plasmas, respectively. This

study shows that the IEF model approaches the LEF and HEF

models at their respective electric field strength limits and

smoothly connects the center region (dominated by the LEF

regime) and the near-wall region (dominated by the HEF

regime) within an annular plasma.

II. EQUILIBRIUM OF ELECTRONS

The electron flux ~Ce ¼ ne~ue and ion flux ~Ci ¼ ni~ui, rep-

resenting the mean drifting motion of electrons and ions, are

given as the sum of “diffusion” due to the density gradient
~rni;e (subscripts “i” and “e” denoting ions and electrons,

respectively) and “mobility” due to the electric field ~E
(Ref. 17)

~Ce ¼ �~~De
~rne � ne

~~K e
~E; (1a)

~Ci ¼ �~~Di
~rni þ ni

~~K i
~E; (1b)

where
~~Di;e and

~~K i;e are the diffusion tensor and mobility

tensor, respectively. The non-diagonal terms are zero in the

two tensors due to the absence of magnetic field. The swarm

motion of electrons and ions is governed by local ambipolar-

ity of ~Ci ¼ ~Ce and the quasi-neutrality ni ¼ ne ¼ n is held

for the bulk plasma. Combining Eqs. (1b) and (1a) yields

ð~~De � ~~DiÞ~rnþ nð~~K e þ ~~K iÞ~E ¼ 0: (2)

An electron loses an energy fraction of �me=mg � 1

during an electron-neutral collision, while an ion loses about

half of its collisional energy during an ion-neutral collision.

As a result, the electron temperature is much higher than the

ion temperature Te � Ti. The electrons diffuse quickly along

the high pressure (ne � eTe) gradient and respond easily to

the electric field due to the light inertial mass. In a low

temperature plasma, the diffusion and mobility are much

faster for electrons than for ions, and the diagonal elements

of the diffusion and mobility tensors satisfy Dðj;jÞe � D
ðj;jÞ
i

and Kðj;jÞe � K
ðj;jÞ
i (j¼ 1, 2, 3 is the index for tensor ele-

ments).11,17 Equation (2) can be further simplified to give

~~De
~rnþ n~~K e

~E ¼ 0; (3)

which is equivalent to neglecting ~Ce in the left hand side

(LHS) of Eq. (1a). The above equation shows that the mean

drifting motion of electrons is small compared to the motion

caused by either the mobility or diffusion. The electrons are

in quasi-equilibrium under the forces of electric field and

pressure gradient. In this case, the electrons can be described

by the Boltzmann relation with the assumption of one-

temperature Maxwellian distribution11,18

n ¼ n0 exp
/
Te

� �
; (4)

where n0 and / are the maximum electron (ion) density and

the plasma potential, respectively. Applying the gradient op-

erator to both sides of the Boltzmann relation yields

~E ¼ �~r/ ¼ �Te

~rn

n
: (5)

Substituting this formula into Eq. (3) and considering that

the density gradient ~rn should be nontrivial yields

~~De ¼ Te
~~Ke ; (6)

which is the famous “Einstein relation” connecting the mo-

bility and diffusion coefficients in an equilibrium state.

III. RADIAL TRANSPORT OF IONS

The ion flux ~Ci cannot be neglected for the heavy and

non-equilibrium ions in Eq. (1b), and the mean ion drifting
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velocity ~ui ¼
~Ci

n is used to define the plasma boundary where

it reaches the Bohm velocity. The ions are bounded by an

inner wall at radius ra and an outer wall at radius rb in an an-

nular plasma. The wall sheath width is normally much

smaller than the scale of a plasma and the plasma boundaries

are approximately located at the inner and outer walls. The

annular plasma can be treated as axially symmetric and no

azimuthal flow in the absence of a magnetic field. Hence, on

first approximation, a constant axial plasma flux is assumed

(frozen axial dimension) and the radial dimension separately

solved at the cost of some loss in accuracy (which depends

on the specific flow in the assumed frozen dimension) as

mentioned in Section I. The radial transport (denoted by the

subscript “r”) is of primary interest and given by

Cir ¼ �Dir
dn

dr
þ nKirEr: (7)

Combining the Boltzmann relation (5) and the above formula

yields

Cir ¼ � Dir þ TeKirð Þ dn

dr
¼ �Df r

dn

dr
; (8a)

uir ¼
Cir

n
¼ �Df r

dn

ndr
¼ Df r

Te
Er; (8b)

where Df r ¼ Dir þ TeKir is defined as the effective radial

diffusion coefficient. In the LEF regime, the ion diffusion

and mobility coefficients Dir and Kir are connected by the

linear Einstein relation Dir ¼ TiKir, and Dfr is rewritten as

Df r ¼ ðTi þ TeÞKir � TeKir. However, in the IEF and HEF

regimes, Dir and Kir violate the linear Einstein relation and a

nonlinear generalized Einstein relation (GER) should be

used.21 The diffusion effect was neglected for the HEF

model in previous studies10 for simplicity. The present study

follows the same assumption of no diffusion effect for the

IEF and HEF models, resulting in the relation

Df r ¼ TeKir; (9)

which is satisfied for all the three models now, and the expres-

sion for the radial ion flux Cir (8a) is determined by Kir.

A. Ion mobility coefficient

The ion mobility coefficient Kir exhibits different prop-

erties in regard to the dominance between the neutral thermal

effect and the electric field effect. The formula deduction of

Ki is very complicated18 and not the purpose of this paper.

Here, we give a summary of the important results.

In the LEF model for which the electric field effect is

small compared to the neutral thermal effect, Kir can be

solved by the first Chapman-Enskog approximation24

Kir ¼
3 pð Þ

1
2

8

e

ngr�m

1

mieTg

� �1
2

; (10)

where Tg is the neutral gas temperature and r�m is a cross sec-

tion averaged over a distribution of ion-neutral collisional

energy �c

r�m ¼
1

2 eTð Þ3
ð1

0

rm �cð Þe�
�c
eT�2

c d�c: (11)

As rm is weakly dependent on the collisional energy of inter-

est in the low temperature plasma, it is approximated to be a

constant (hard sphere collision).8,11 In this case, the distinc-

tion between r�m and rm disappears, r�m¼ rm.

In the HEF model for which the neutral thermal effect is

small compared to the electric field effect (equivalent to the

cold gas limit), Kir is inversely proportional to the square

root of the electric field strength25,29

Kir ¼ nH
e

mingrmjErj

� �1
2

; (12)

where the constant nH slightly varies depending on the cho-

sen mobility model and we use nH ¼ 4
p

� �1
2 from the Smirnov

model.25,29 It should be noted that the absolute value of Er is

used in the above formula as Er can be either positive or neg-

ative within an annulus (always positive in a cylinder).

In the IEF model for which neither the neutral thermal

effect or the electric field effect is neglected, an effective ion

temperature Tif is defined to include both effects21,22

3

2
eTif ¼

3

2
eTg þ

1

2
mgu2

dr: (13)

The first term and second term in the right hand side (RHS)

represent the contribution of the neutral thermal effect and

electric field effect during an ion-neutral collision, respec-

tively. udr ¼ KirEr is a drift velocity purely caused by the

electric field (called the electric drift velocity), equivalent to

the ion mean drift velocity uir in a homogeneous plasma. In a

non-homogeneous plasma udr should be less than uir which

includes the influence of both electric field and density gradi-

ent. As the diffusion effect (due to the density gradient) is

neglected in the present study, udr¼ uir is satisfied by substi-

tuting Df r ¼ TeKir into Eq. (8b). Kir is given in terms of Tif

for the IEF model18

Kir ¼ nI
e

ngrm

1

mieTif

� �1
2

; (14)

which is an implicit equation for Kir and the constant

nI ¼ 3 pð Þ
1
2

8
is taken from the Mason model.18,22 In order to

make it explicit, two dimensionless parameters are intro-

duced: a dimensionless electric drift velocity ûdr ¼ 8
p

� �1
2 udr

�uth

and a dimensionless electric field parameter êr ¼ aI rb

Te
Er ,

where aI ¼ 3 2pð Þ
1
2

16
eTe

rmPas
. Formula (14) is rewritten as

ûdr 1þ 2

3
û2

dr

� �1
2

¼ êr; (15)

which is a quadratic equation of ûdr and its real solution is

given by

jûdrj ¼
3ð Þ

1
2

2
1þ 8

3
ê2

r

� �1
2

� 1

" #1
2

: (16)
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A dimensionless ion mobility coefficient is defined as

K̂ ir ¼ ûdr

êr
and it is proportional to Kir of which the final

expression is given by

Kir ¼
6pð Þ

1
2

8

�uthrb

Te

1þ 8
3
a2

I Ê
2

r

� �1
2

� 1

� 	1
2

jÊrj
: (17)

B. Governing equation for radial transport

The radial continuity equation for particle balance is

given by

dCir

dr
þ Cir

r
� �izn ¼ 0; (18)

where �iz ¼ ngliz is the ionization rate, and the rate constant

liz for one-temperature Maxwellian electrons is given by

liz ¼
8e

pmTe
3

� �1=2 ð1
0

riz �eð Þe�
�e
Te�e d�e; (19)

where �e and riz are the electron energy and ionization cross

section, respectively.

Substituting the ion flux (8a) into Eq. (18) yields

d2n̂

dr̂2
þ 1

r̂

dn̂

dr̂
þ �izr

2
b

Df r
n̂ þ 1

Df r

dDf r

dr̂

dn̂

dr̂
¼ 0; (20)

where n̂ ¼ n
n0

and r̂ ¼ r
rb

are the normalized ion density and

radial position, respectively. The above equation is normally

used in the LEF model for which
dDf r

dr ¼
dDf r

dEr

dEr

dr ¼ 0 due to
dDf r

dE ¼ 0 as shown in formula (10). In the IEF and HEF mod-

els, Dfr is a function of the electric field with
dDf r

dE 6¼ 0, and it

is more convenient to express Eq. (20) in terms of the dimen-

sionless electric field Êr ¼ dg
dr̂ as below, where g ¼ � /

Te
is the

dimensionless plasma potential and Êr also satisfies

Êr ¼ rb

Te
Er ¼ � dn̂

n̂dr̂.

1þ Êr

Df r

dDf r

dÊr

 !
dÊr

dr̂
þ Êr

r̂
� Ê

2

r �
�izr

2
b

Df r
¼ 0: (21)

Now the radial transport of ions in the annulus can be

fully described by adding the boundary conditions, which

are given by making the ion mean drift velocity uir equal to

the Bohm velocity uB ¼ eTe

mi

� �1=2

at the inner wall ra and

outer wall rb

ðuirÞr¼ra
¼ �uB; ðuirÞr¼rb

¼ uB: (22)

Replacing uir by the equation variables n̂ (for Eq. (20)) and

Êr (for Eq. (21)) using formula (8b) and dimensionless rela-

tions defined above yields

� dn̂

n̂dr̂

� �
r̂¼ra

rb

¼ Êr

� �
r̂¼ra

rb

¼ � uBrb

Df r
;

� dn̂

n̂dr̂

� �
r̂¼1

¼ Êr

� �
r̂¼1 ¼

uBrb

Df r
: (23)

IV. ELECTRIC FIELD BASED MODELS

A. LEF model

Df r ¼ KirTe is independent of the radial position
dDf r

dr ¼ 0 for the LEF model as stated above, hence Eq. (20) is

reduced to

d2n̂

dr̂2
þ 1

r̂

dn̂

dr̂
þ b2

Ln̂ ¼ 0; (24)

where bL satisfies b2
L ¼

�izr
2
b

Df r
¼ 2lizrm �uth

3u2
B

Pas

eTg

� �2
. Pas ¼ pgrb

(pg ¼ eTgng is the neutral gas pressure) and �uth ¼ 8eTg

pmR

� �1
2

are

the Paschen number for neutral gas and the mean thermal

velocity for ion-neutral collisions, respectively. The bound-

ary condition for the LEF model is given by substituting for-

mulas (9) and (10) into (23)

� dn̂

n̂dr̂

� �
r̂¼ra

rb

¼ � uBrb

Df r
¼ � 2rm�uth

3uB

Pas

eTg
¼ �wL; (25a)

� dn̂

n̂dr̂

� �
r̂¼1

¼ uBrb

Df r
¼ 2rm�uth

3uB

Pas

eTg
¼ wL: (25b)

Equation (24) is a Bessel-type equation and its general

solution is given by

n̂ ¼ C1J0ðbLr̂Þ þ C2Y0ðbLr̂Þ; (26)

where J0 and Y0 are zero order Bessel functions of the first

kind and second kind, and C1 and C2 are coefficients to be

determined. Substituting the above solution into the bound-

ary condition (25) yields

a1;1 a1;2

a2;1 a2;2

� 	
C1

C2

� 	
¼ 0: (27)

The entries in the coefficient matrix are given by

a1;1 ¼ bLJ1 bL

ra

rb

� �
þ wLJ0 bL

ra

rb

� �
;

a1;2 ¼ bLY1 bL

ra

rb

� �
þ wLY0 bL

ra

rb

� �
;

a2;1 ¼ bLJ1ðbLÞ � wLJ0ðbLÞ;
a2;2 ¼ bLY1ðbLÞ � wLY0ðbLÞ;

where J1 and Y1 are first order Bessel functions of the first

kind and second kind, respectively. The determinant of the

coefficient matrix in Eq. (27) must vanish for a nontrivial

solution det½a	 ¼ 0, which determines the electron tempera-

ture Te. The ratio of C2 to C1 is given by C2

C1
¼ � a1;1

a1;2
¼ j, and

solution (26) is rewritten as

n̂ ¼ C1½J0ðbLr̂Þ þ jY0ðbLr̂Þ	; (28)

where C1 is determined at the peak position of the normal-

ized radial density profile r̂p, satisfying dn̂
dr̂ ¼ 0 and n̂ ¼ 1.

One argument about the annular solution (28) is its conver-

gence for an infinitesimal inner radius ra ! 0, as the Bessel
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function of the second kind diverges near zero. Appendix A

proves that the solution is convergent for an infinitesimal ra

due to the adjustable constant j.

B. HEF model

Dfr for the HEF model is obtained using formulas (9)

and (12) and its derivative with respect to the variable Êr is

given by

dDf r

dÊr

¼ � 1

2

Df r

Êr

: (29)

Substituting formulas (9), (12), and (29) into Eq. (21) yields

dÊr

dr̂
þ 2

Êr

r̂
� 2Ê

2

r � 2bHjÊrj
1
2 ¼ 0; (30)

where bH ¼
liz prmð Þ

1
2

2uB

Pas

eTg

� �3
2
. The boundary condition for the

HEF model is given by substituting formulas (9) and (12)

into (23)

Êr

� �
r̂¼ra

rb

¼ � uBrb

Df r
¼ � prm

4

Pas

eTg

� �1
2

jÊrj
1
2 ) Êr

� �
r̂¼ra

rb

¼ � prm

4

Pas

eTg
;

(31a)

Êr

� �
r̂¼1 ¼

uBrb

Df r
¼ prm

4

Pas

eTg

� �1
2

jÊrj
1
2 ) Êr

� �
r̂¼1

¼ prm

4

Pas

eTg
: (31b)

Equation (30) is an Abel-type equation with no analytical so-

lution and the boundary value problem (BVP) for the HEF

model is numerically solved using the MATLAB solver,30

“BVP4C,” for which the Hermite-Simpson method was used

to solve the ordinary differential equation; an initial solution

guess was also evaluated as usually done for most boundary

value problems. The validity of this solver has been verified

as follow: it was used to numerically solve the LEF model

which has an analytical solution as demonstrated in Sec.

IV A, and the numerical results calculated from the solver

were equal to the results from the analytical solution.

C. IEF model

Dfr for the IEF model is obtained using formulas (9) and

(17) and its derivative with respect to the variable Êr is given

by

dDf r

dÊr

¼ � 1

2

Df r

Êr

1� 1

1þ 8
3
a2

I Ê
2

r

� �1
2

2
4

3
5: (32)

Substituting formulas (9), (17), and (32) into to Eq. (21)

yields

1þ 1

1þ 8

3
a2

I Ê
2

r

� �1
2

2
64

3
75

dÊr

dr̂
þ 2

Êr

r̂
� 2Ê

2

r

� 2bI

jÊrj

1þ 8

3
a2

I Ê
2

r

� �1
2

� 1

" #1
2

¼ 0; (33)

where bI ¼ 32
3p

� �1
2 liz

�uth

Pas

eTg
. The boundary condition for the IEF

model is given by substituting formulas (9) and (17) into (23)

Êr

� �
r̂¼ra

rb

¼�uBrb

Df r
¼� 2Te

3Tg

� �1
2 jÊrj

1þ8

3
a2

I Ê
2

r

� �1
2

�1

" #1
2

) Êr

� �
r̂¼ra

rb

¼� 16

3p

� �1
2 rmPas

eTe
1þ 2Te

3Tg

� �2

�1

" #1
2

; (34a)

Êr

� �
r̂¼1 ¼

uBrb

Df r
¼ 2Te

3Tg

� �1
2 jÊrj

1þ 8

3
a2

I Ê
2

r

� �1
2

� 1

" #1
2

) Êr

� �
r̂¼1 ¼

16

3p

� �1
2 rmPas

eTe
1þ 2Te

3Tg

� �2

� 1

" #1
2

: (34b)

Equation (33) is a nonlinear ordinary differential equation

(ODE) with no analytical solution and the BVP for the IEF

model is numerically solved using the same method as that

used in the HEF model.

V. MODELLING RESULTS

A. Unification of IEF model

The ion mobility coefficient (17) and the effective ion

temperature (13) in the IEF model are unified parameters for

the LEF and HEF models. In order to check their universal

property, a dimensionless ion mobility coefficient K̂ ir and a

dimensionless effective ion temperature T̂ if are first defined.

The former parameter follows the same definition of K̂ ir ¼
ûdr

êr
in the IEF model for all the three models and the latter pa-

rameter is given as follow. Substituting udr ¼ p
8

� �1
2 �uthûdr into

formula (13) gives T̂ if ¼ Tif

Tg
¼ 1þ 2

3
û2

dr for the IEF model.

Since the first term and second term in the RHS represent the

contribution of the neutral thermal effect and electric field

effect, respectively, the definition of T̂ if can be generalized

to the LEF and HEF models: In the LEF model, the electric

field effect is negligible and T̂ if ¼ 1; in the HEF model, the

neutral thermal effect is negligible and T̂ if ¼ 2
3

û2
dr. The

expressions for K̂ ir and T̂ if are summarized as below

IEF model : K̂ ir ¼ 1; T̂ if ¼ 1; (35a)

HEFmodel : K̂ ir ¼
4

p
2p
9

� �1
4

j 1
êr
j

1
2; T̂ if ¼

2

3
K̂ ir êr

� �2
; (35b)
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IEF model : K̂ ir ¼
3ð Þ

1
2

2

1þ 8

3
ê2

r

� �1
2

� 1

" #1
2

ĵerj
;

T̂ if ¼ 1þ 2

3
K̂ ir êr

� �2
: (35c)

Figures 1(a) and 1(b) present the K̂ irðĵerjÞ curve and

T̂ if ðĵerjÞ curve for the LEF model (dashed-dotted line), the

IEF model (solid line), and the HEF model (dashed line).

Figure 1(a) shows that K̂ ir is a decreasing function of ĵerj for

the three models, and Figure 1(b) shows that T̂ if is an

increasing function of ĵerj. In both Figures 1(a) and 1(b), the

IEF curve is consistent with the LEF curve for the range of

ĵerj < 0:1, and it is consistent with the HEF curve for the

range of ĵerj > 10. Hence, K̂ ir and T̂ if for the IEF model are

unified parameters for the other two models at their respec-

tive electric field strength limits. The IEF transport equation

(33) also has a universal property: it is reduced to the LEF

transport equation (24) when Êr approaches zero, and it is

reduce the HEF transport equation (30) when Êr approaches

infinity. A detailed proof is given in Appendix B.

B. Numerical results for argon plasma

We illustrate the annular modelling results for a low tem-

perature argon plasma. The input parameters are the Paschen

number Pas and the annular geometry ratio ra

rb
; the output

parameters are the normalized ion density n̂, the boundary

loss coefficient LR (defined later in formula (37)), and the

electron temperature Te. The argon has an atomic mass of

mg ¼ 39:95 u (u ¼ 1:6605� 10�27 kg is the atomic mass

unit) and a neutral gas temperature of Tg ¼ 0:026 V (room

temperature). The ionization cross section riz formulated by

Phelps31 is used for the argon ionization calculation (19)

riz ¼
970

�þ 70ð Þ2
�� 15:8ð Þ þ 0:06e�

�
9 �� 15:8ð Þ2; (36)

FIG. 1. (a) K̂ irðĵer jÞ curve obtained by the LEF model (dashed-dotted line),

the IEF model (solid line), and the HEF model (dashed line). (b) T̂ if ðĵerjÞ
curve obtained by the LEF model (dashed-dotted line), the IEF model (solid

line), and the HEF model (dashed line).

FIG. 2. (a) Radial profile of K̂ ir for an annular geometry ratio of ra

rb
¼ 0:4

with a Paschen number of Pas ¼ 0:01 Torr cm obtained by the LEF model

(dashed-dotted line), the IEF model (solid line), and the HEF model (dashed

line). (b) Radial profile of n̂ for ra

rb
¼ 0:4 with Pas ¼ 0:01 Torr cm obtained

by the LEF model (dashed-dotted line), the IEF model (solid line), and the

HEF model (dashed line).
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where riz is in the unit of 10�20 m2. A total momentum-

transfer cross section (including the elastic ion-neutral colli-

sion and resonant charge transfer collision) of rm ¼ 10�18 m2

is used for ion-neutral collisions in the low temperature argon

plasma.11 As rm is a constant, Pas is proportional to the

Knudsen number Kn ¼ ki

rb
, where ki is the ion mean free path.

It should be noted that the collisional annular model has a

validity limit of Kn� rb�ra

rb
. The annular plasma becomes

collisionless when Kn � rb�ra

rb
and the present modelling will

be invalid for the collisionless scenario.

Figures 2(a) and 2(b) present the radial profile of K̂ ir

and n̂ for a typical annular geometry ratio of ra

rb
¼ 0:4 with a

low Pas number of Pas ¼ 0:01 Torr 
 cm (for which ki is com-

parable to the annular width ðrb � raÞ with Kn � 1
3
; rb�ra

rb

¼ 0:6) obtained by the LEF model (dashed-dotted line), the

IEF model (solid line), and the HEF model (dashed line).

Figure 2(a) shows that the IEF profile reaches its maximum

at r̂ � 0:64 and the HEF profile approaches infinity at

r̂ � 0:64, indicating a small electric field nearby. The LEF

profile remains constant across the radial dimension due to

the neglect of electric field effect (similar phenomenon as

shown in Figure 1). Figure 2(b) shows that the n̂ profiles

obtained by the three models are asymmetric around a simi-

lar peak position of r̂p � 0:64, which is related to the peak

position of IEF and HEF profiles in Figure 2(a). The bound-

ary-to-maximum density ratio is about n̂a;b � 0:95 for

the LEF model and �0:8 for the IEF and HEF models.

Figures 3(a) and 3(b) present the radial profile of K̂ ir and n̂
for ra

rb
¼ 0:4 with a high Pas number of Pas ¼ 1:0 Torr cm (for

which ki is small compared to ðrb � raÞ with Kn � 1
300

)

obtained by the LEF model (dashed-dotted line), the

IEF model (solid line), and the HEF model (dashed line).

Figure 3(a) shows that the IEF profile reaches its maximum

at r̂ � 0:67 and the HEF profile approaches infinity at

r̂ � 0:66 (not completely shown in Figure 3(a) to maintain

visual clarity). Figure 3(b) shows that the n̂ profiles are

asymmetric around a similar peak position of r̂ p � 0:67. The

boundary density ratio is about n̂a;b � 0:1 for the three

models.

Figures 2(a) and 3(a) show that the K̂ ir profile of the IEF

model is consistent with that of the LEF model in the central

peak region (or LEF regime) and consistent with that of the

HEF model in the boundary region (or HEF regime). The

IEF K̂ ir profile’s central consistency with the LEF profile

dominates for a high Pas number (Figure 3(a)) and its bound-

ary consistency with the HEF profile dominates for a low Pas

number (Figure 2(a)). The universal property of radial K̂ ir

profile obtained by the IEF model in Figures 2 and 3 is con-

sistent with the K̂ irðĵerjÞ curve in Figure 1(a). The IEF model

gives more accurate results of K̂ ir; T̂ if , and n̂ (determined by

the expression of K̂ ir) than the LEF and HEF models over

the entire electric field strength range and it will be used to

further investigate the radial transport properties of the annu-

lar plasma.

The shape of radial n̂ profile across the annulus is

characterized by the density peak position r̂ p and boundary

density ratios. An annular boundary loss coefficient LR, simi-

lar to the boundary density parameters hR and hl for the

cylindrical and plane-parallel plasmas,11 is defined for an an-

nular plasma as

LR ¼
ra

rb
n̂a þ n̂b: (37)

It is a generalized boundary density ratio and can be used to

estimate the value of the maximum density n0 by considering

power balance.8,11 Figures 4(a) and 4(b) present the r̂p
ra

rb

� �
curve and LR

ra

rb

� �
curve obtained by the IEF model for differ-

ent Pas numbers of Pas ¼ 0:01 Torr cm (dashed-dotted line),

0:1 Torr cm (solid line), and 1:0 Torr cm (dashed line).

Figure 4(a) shows that r̂p is a monotonically increasing func-

tion of ra

rb
and the variation is stronger in the low ra

rb
range. r̂p

approaches to the middle of the annulus (shown as the dotted

line) when ra

rb
> 0:8. r̂p is greater for a higher Pas number

compared to a lower Pas number. Figure 4(b) shows that LR

is also a monotonically increasing function of ra

rb
and the

FIG. 3. (a) Radial profile of K̂ ir for an annular geometry ratio of ra

rb
¼ 0:4

with a Paschen number of Pas ¼ 1:0 Torr cm obtained by the LEF model

(dashed-dotted line), the IEF model (solid line), and the HEF model (dashed

line). (b) Radial profile of n̂ for ra

rb
¼ 0:4 with Pas ¼ 1:0 Torr cm obtained by

the LEF model (dashed-dotted line), the IEF model (solid line), and the HEF

model (dashed line).
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variation is greater in the high ra

rb
range. In the low ra

rb
range LR

increases faster for a higher Pas number, while in the high ra

rb

range LR increases faster for a lower Pas number. Contrarily

to r̂p in Figure 4(a), LR is greater for a lower Pas number

than for a higher Pas number.

Figures 5(a) and 5(b) present the r̂pðPasÞ curve and

LRðPasÞ curve obtained by the IEF model for different annu-

lar geometry ratios of ra

rb
¼ 0:2 (dashed-dotted line), 0.4

(solid line), 0.6 (dashed line), and 0.8 (dotted line). Figure

5(a) shows that r̂p is an increasing function of Pas (consistent

with the results in Figure 4(a)) and the total increment Dr̂p

over the variable range of 10�3 Torr cm < Pas < 10 Torr cm

is reduced for higher ra

rb
, with an increment of Dr̂p � 0:08 for

ra

rb
¼ 0:2 and Dr̂p � 0:003 for ra

rb
¼ 0:8. Figure 5(b) shows

that LR is a reversed-“S”-shape decreasing function of Pas

(consistent with the results in Figure 4(b)) and the variation

is stronger in the middle range between �0:01 Torr cm and

�1 Torr cm than in the edge ranges. LR approaches to zero

when Pas reaches a high value of Pas � 10 Torr cm. Figures

5(a) and 5(b) show that r̂p is a more robust parameter than

LR as a function of the Pas number.

Figure 6(a) presents the Te
ra

rb

� �
curve obtained by the

IEF model for different Pas numbers of Pas ¼ 0:01 Torr cm

(dashed-dotted line), 0:1 Torr cm (solid line), and

1:0 Torr cm (dashed line). Te is an increasing function of ra

rb

and the variation is stronger in the high ra

rb
range. The Te

ra

rb

� �
curve exhibits higher values and increases faster for a lower

Pas number, with an increment of DTe � 12:0 eV for

Pas ¼ 0:01 Torr cm; DTe � 2:3 eV for Pas ¼ 0:1 Torr cm,

and DTe � 0:9 eV for Pas ¼ 1:0 Torr cm over the range of

0:01 < ra

rb
< 0:9. Figure 6(b) presents the TeðPasÞ curve

obtained by the IEF model for different annular geometry

ratios of ra

rb
¼ 0.2 (dashed-dotted line), 0.4 (solid line),

0.6 (dashed line), and 0.8 (dotted line). Te is a decreasing

FIG. 4. (a) r̂ p
ra

rb

� �
curve obtained by the IEF model for different Paschen

numbers of Pas¼ 0.01 (dashed line), 0.1 (solid line), and 1 (dashed-dotted

line). The dotted-line shows the normalized middle position of the annulus

as a function of ra

rb
. (b) LR

ra

rb

� �
curve obtained by the IEF model for different

Paschen numbers of Pas¼ 0.01 (dashed line), 0.1 (solid line), and 1 (dashed-

dotted line).

FIG. 5. (a) r̂ pðPasÞ curve obtained by the IEF model for different annular ge-

ometry ratios of ra

rb
¼ 0:2 (dashed line), 0.4 (solid line), 0.6 (dashed-dotted

line), and 0.8 (dotted line). (b) LRðPasÞ curve obtained by the IEF model for

different annular geometry ratios of ra

rb
¼ 0:2 (dashed line), 0.4 (solid line),

0.6 (dashed-dotted line), and 0.8 (dotted line).
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function of Pas and the variation is more pronounced over

the low Pas number range. In the high Pas number range of

Pas > 1 Torr cm, Te approaches a similar value for different

annular geometries, with Te � 1:8 eV at Pas ¼ 1 Torr cm and

Te � 1:2 eV at Pas ¼ 10 Torr cm. The TeðPasÞ curve shows

higher values and decreases faster for a higher ra

rb
, with a drop

of DTe � �3:4 eV for ra

rb
¼ 0:2; DTe � �3:9 eV for ra

rb
¼

0:4; DTe � �4:8 eV for ra

rb
¼ 0:6, and DTe � �7:5 eV for

ra

rb
¼ 0:8 over the range of 0:01 Torr cm < Pas < 1:0 Torr cm.

Figures 4(b), 5(b), 6(a), and 6(b) show that Te has a positive

correlation with LR with respect to the variables ra

rb
and Pas.

VI. SUMMARY

The radial transport properties of low temperature

annular plasmas were investigated. The electrons were in

quasi-equilibrium and governed by the Boltzmann relation.

The annular modelling given in this work is ion-mobility-

based (the diffusion effect was neglected as mentioned

above), and its applicable range is determined by the accu-

racy of the ion mobility coefficient. The mobility coefficient

calculated by the LEF or HEF model has a good accuracy at

the low or high electric field limit for which the validity has

been verified in previous studies for cylindrical and plane

parallel plasmas. The IEF model presents a more unified mo-

bility coefficient over the entire electric field strength range

and approaches the results of LEF and HEF models at the

respective electric field limits as shown in Section V. Hence,

the IEF model gives more accurate results compared to the

LEF and HEF models over the entire electric field range.

Future studies will aim at comparing the IEF results to other

experimental or computational studies, which, to the best of

our knowledge, are not yet readily available in the literature.

The annular modelling was applied to a low temperature

argon plasma. The normalized radial density profile obtained

by the IEF model joins the LEF model in the central peak

region and joins the HEF model in the boundary region. The

radial profile is asymmetric around the peak position with

the latter found closer to the inner wall. The density peak

position is an increasing function of the annular geometry

ratio and Paschen number. An annular boundary loss coeffi-

cient is defined to characterize the boundary density ratios,

and it is an increasing function of the annular geometry ratio

and a decreasing function of the Paschen number. More ions

are lost to the walls for a higher annular geometry ratio,

and the radial transport of ions is more effective for a low

Paschen number (high Knudsen number) due to less ion-

neutral collisions. The electron temperature has a positive

correlation with the annular boundary loss coefficient with

respect to the variable annular geometry ratio and Paschen

number. When the boundary loss of ions is enhanced, the

electron temperature increases to provide more ionization

and satisfies particle balance.

APPENDIX A: INFINITESIMAL INNER RADIUS LIMIT
OF LEF MODEL

The convergence of LEF solution (28) at an infinitesimal

inner boundary r̂ ¼ ra

rb
! 0 is determined by the second term

jY0ðbLr̂Þ. Define a function Fðr̂Þ as

F r̂ð Þ ¼ jY0 br̂ð Þ ¼ �
bLJ1 bL

ra

rb

� �
þ wLJ0 bL

ra

rb

� �

bLY1 bL

ra

rb

� �
þ wLY0 bL

ra

rb

� � Y0 br̂½ 	:

(A1)

When r̂ ¼ ra

rb
approaches zero, (1) J0 and J1 approach unity

and zero, respectively, and (2) Y1 diverges faster than Y0

with Y1

Y0
! þ1. Then, F ra

rb

� �
can be rewritten as

F
ra

rb

� �� 	
ra!0

¼ 1

bL

wL

Y1 bL

ra

rb

� �

Y0 bL

ra

rb

� �þ 1

� 0: (A2)

FIG. 6. (a) Te
ra

rb

� �
curve obtained by the IEF model for different Paschen

numbers of Pas¼ 0.01 (dashed line), 0.1 (solid line), and 1 (dashed-dotted

line). (b) TeðPasÞ curve obtained by the IEF model for different annular ge-

ometry ratios of ra

rb
¼ 0:2 (dashed line), 0.4 (solid line), 0.6 (dashed-dotted

line), and 0.8 (dotted line).
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Hence, the annular solution (28) is convergent and reduced

to the classic cylindrical solution of n̂ ¼ J0ðbLr̂Þ for an infin-

itesimal inner boundary.

APPENDIX B: ELECTRIC FIELD LIMITS OF IEF MODEL

At the limit of infinitesimal electric field, Êr ! 0;

1þ 8
3
a2

I Ê
2

r

� �1
2

can be approximated by its first order Taylor

expansion 1þ 4
3
a2

I Ê
2

r

� �
. Substituting this approximation

into Eq. (33) and considering aIjÊrj � 1 yields

dÊr

dr̂
þ Êr

r̂
� Ê

2

r � b�I ¼ 0; (B1)

where b�I ¼ 3ð Þ
1
2

2
bI

aI
¼ 2lizrm �uth

3u2
B

Pas

eTg

� �2
is equal to b2

L.

Substituting Êr ¼ � dn̂
n̂dr̂ into the above equation gives

d2n̂

dr̂2
þ 1

r̂

dn̂

dr̂
þ b�I n̂ ¼ 0; (B2)

which is exactly the LEF transport equation (24) at the low

electric field strength limit.

At the other limit of infinite electric field, Êr !1;

1þ 8
3
a2

I Ê
2

r

� �1
2

is approximated by 8
3

� �1
2aIjÊrj. Substituting this

approximation into Eq. (33) and considering aIjÊrj � 1 yields

dÊr

dr̂
þ 2

Êr

r̂
� 2Ê

2

r � 2b��I jÊrj
1
2 ¼ 0; (B3)

where b��I ¼ 3
8

� �1
4 bI

aIð Þ
1
2

¼ 4
3

12
p3

� �1
4 liz prmð Þ

1
2

2uB

Pas

eTg

� �3
2

is 5% higher

than bH, hence the IEF transport equation (B3) is a good

approximation to the HEF transport equation (30) at the high

electric field strength limit.
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