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Abstract—We derive a closed-form expression for the spatial
fading correlation (SFC) between two arbitrary points in 3D-
space for the uniform limited azimuth-elevation angle of arrival
probability density function (pdf). This expression simplifies the
computation of the SFC, can be used in any 3D antenna array ge-
ometry, and avoids the need to generate separate expressions for
specific antenna array geometries. We corroborate the accuracy
of the closed-form expression through application to 2D and 3D
antenna array geometries. We expect the results presented in this
letter to be of significant importance for performance evaluation
and sensitivity analysis in multi-input multi-output (MIMO)
systems.

Index Terms—Spatial correlation, antenna arrays, MIMO,
uniform distribution, spherical harmonics.

I. INTRODUCTION

In multi-input multi-output (MIMO) systems, the accurate
characterisation of the spatial correlation of fading signals
between the antenna array elements is of significant impor-
tance in determining the capacity and signal quality of such
systems [1]–[3]. In this work, we consider the problem of
accurately determining the spatial fading correlation (SFC)
function of a multiple antenna array for the distribution of
angle-of-arrival (AoA) that is uniformly distributed over a
spatial region of limited azimuth and elevation. This is referred
to as the “uniform limited azimuth-elevation AoA probability
density function (pdf)” or simply the “uniform AoA pdf”.

The SFC for several 2D AoA spatial distributions, which
take into account only the azimuth of an incident signal,
and 3D AoA spatial distributions, which take into account
both azimuth and elevation, have been extensively studied and
various closed-form expressions have been given [1], [4]–[9].
In particular, the uniform AoA pdf has been used extensively
to model the distribution of scatterers and compute the spatial
correlation experienced between multiple-antenna elements to
evaluate the performance of MIMO systems [1], [4], [8], [10]–
[14].

For the uniform AoA pdf, the closed-form SFC function
has been determined for uniform linear array (ULA), uniform
circular array (UCA), uniform rectangular array (URA) and
electromagnetic vector sensors (EVS) antenna arrays [1]. Us-
ing an alternative approach that uses the spherical harmonic
expansion of plane-waves, an expression for the SFC for
the same uniform AoA pdf was given in [6]. Although
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the methodology used in [6] has the advantage that it is
independent of the geometry of antenna array, the expression
given for the uniform AoA pdf SFC was not in closed-
form nor in the most general form. Using the methodology
from [6], this work finds such a closed-form SFC expression
for the uniform AoA pdf. In comparison to the rotationally
symmetric distributions for which closed-form SFC function
has been presented in the literature, we note that the uniform
distribution, being considered here, offers flexibility to model
directional AoA distribution. The proposed SFC expression
enables an exact computation of spatial correlation and is
expected to be of great use for the performance evaluation
of MIMO systems [1], [8], [12].

We first review the necessary mathematical background in
Section II and then we derive the closed-form expression for
SFC in Section III, where we also numerically validate the
accuracy of the closed-form SFC for uniform linear, uniform
circular and regular dodecahedron antenna array geometries.

II. SPATIAL CORRELATION - BACKGROUND

In MIMO systems, the 3D multipath channel impulse re-
sponse for a signal arriving at antenna array is characterized by
the steering vector of the antenna array. For an antenna array
consisting of M antenna elements placed at zp ∈ R3, p =
1, 2, . . . ,M , the steering vector, denoted by α(x̂), is given by

α(x̂) =
[
α1(x̂), α2(x̂), . . . αM (x̂)

]
, αp(x̂) , eikzp·x̂,

(1)
where x̂ ∈ R3 denotes a unit vector pointing in the direction
of wave propagation and k = 2π/λ with λ denoting the
wavelength of the arriving signal. Since the unit vector x̂ ∈ R3

represents a point on the unit sphere, denoted by S2 ⊂ R3,
we also use its representation in spherical coordinates, that
is, x̂ = x̂(θ, φ) , (sin θ cosφ, sin θ sinφ, cos θ)′ ∈ S2 ⊂ R3,
where (·)′ denotes vector transpose, θ ∈ [0, π] denotes the
elevation (strictly the co-latitude since θ = 0 is the zenith)
and φ ∈ [0, 2π) denotes the azimuth (longitude).

A. Functions on the Unit Sphere

Spherical harmonics serve as orthonormal basis functions
for the representation of functions on the sphere and are
defined for integer degree ` ≥ 0 and integer order |m| ≤ ` as

Y m` (x̂) ≡ Y m` (θ, φ) ,

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ,

where Pm` (·) denotes the associated Legendre polynomial of
degree ` and order m [15]. Any finite energy function f(ŷ)
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defined on the unit sphere, where ŷ ∈ S2 ⊂ R3, can be
expanded as

f(ŷ) =

∞∑
`=0

∑̀
m=−`

(∫
S2
f(x̂)Y m` (x̂) ds(x̂)

)
Y m` (ŷ). (2)

Here (·) denotes the complex conjugate operation and ds(x̂) =
sin θ dθ dφ.

B. Spatial Fading Correlation

Let f(x̂) denote the pdf of the angles of arrival of the
multipath components or the unit-normalized power of a
signal received from the direction x̂. Then the SFC function
between p-th and q-th antenna elements, located at zp and zq ,
respectively, with an assumption that signals arriving at the
antenna elements are narrowband, is given by [1], [6], [7]

ρ(zp, zq) ,
∫
S2
f(x̂)αp(x̂)αq(x̂) ds(x̂)

=

∫
S2
f(x̂) eik(zp−zq)·x̂ ds(x̂) ≡ ρ(zp − zq), (3)

which indicates that the SFC only depends on zp−zq and is,
therefore, spatially wide-sense stationary.

III. 3D SPATIAL CORRELATION FOR UNIFORM
DISTRIBUTION

First we define a limited azimuth-elevation region [6]

R =
{

(θ, φ) : θ ∈ [θ◦−∆θ, θ◦+∆θ], φ ∈ [φ◦−∆φ, φ◦+∆φ]
}
,

which is the Cartesian product of a range of positive ele-
vations and limited azimuths. Here, θ◦ and φ◦ denote the
mean elevation of arrival (MEOA) and the mean azimuth
of arrival (MAOA), respectively, and ∆θ and ∆φ represent
elevation spread (ES) and azimuth spread (AS).

Definition 1 (Uniform limited azimuth-elevation AoA pdf).

f(x̂) =


1

C(θ◦,∆θ,∆φ)
, x̂ ∈ R,

0, x̂ ∈ S2\R,
(4)

where C(θ◦,∆θ,∆φ) =
∫
R
ds(x̂) = 4∆φ sin θ◦ sin ∆θ. The

pdf satisfies
∫
S2 f(x̂) ds(x̂) = 1.

As motivated in the introduction, in the following theorem,
we find a closed-form expression for the SFC function, (3),
when f(x̂) is the uniform AoA pdf.

Theorem 1. [Spatial fading correlation for uniform AoA pdf]
If the AoA of the signals received at two antenna elements
placed at zp, zq ∈ R3 follow the uniform AoA pdf (4), then
the SFC, (3), between the antenna elements is given by

ρ(zp − zq) =
im2
√
π

C(θ◦,∆θ,∆φ)

∞∑
`=0

i` j`
(
k‖zp − zq‖

)
×

∑̀
m=−`

√
2`+ 1Q(m;φ◦,∆φ)×

∑̀
u=−`

d`u,m
(π

2

)
d`u,0

(π
2

)
S(u; θ◦,∆θ)Y

m
`

( zp − zq
‖zp − zq‖

)
, (5)

where j`(·) denotes the spherical Bessel function of first kind,
d`u,m(·) denotes the Wigner-d function of degree ` and orders
u,m [15],

Q(m;φ◦,∆φ) = 2 eimφ◦
sin(m∆φ)

m
, (6)

and

S(±1; θ◦,∆θ) = ±i
(

∆θ −
1

2
e±2iθ◦

)
, (7a)

for u = ±1, and

S(u; θ◦,∆θ) =

eiu(θ◦−∆θ)
(
− cos(θ◦ −∆θ) + iu sin(θ◦ −∆θ)

)
u2 − 1

+
eiu(θ◦+∆θ)

(
cos(θ◦ + ∆θ)− iu sin(θ◦ + ∆θ)

)
u2 − 1

, (7b)

whenever u 6= ±1.

Proof. See Appendix A.

Remark 1. It is noted that the uniform limited azimuth-
elevation AoA distribution is directional in nature and is,
therefore, capable to model directional characteristics of AoA
distribution. To the best of our knowledge, the closed-form
SFC function that only depends on the location of antennas has
only been derived for non-directional rotationally symmetric
distributions (e.g., [6], [7], [9]).

Remark 2. If the multipath components arise from clusters
of scatterers [16], the AoA of the signal is modelled by a
mixture (positive weighted sum) of uniform limited azimuth-
elevation distributions, each with a different set of parameters.
For such mixture distribution with pdf g(x̂) defined as

g(x̂) ,
W∑
w=1

αwfw(x̂), with αw ∈ R+,

W∑
w=1

αw = 1, (8)

the SFC between two antenna elements placed at zp, zq ∈ R3,
due to the linearity of the integral in (3) or (9), is given by a
weighted sum of SFC function ρ(zp−zq) derived in Theorem 1
for each of the uniform limited azimuth-elevation distribution
in the mixture.

A. Computation of Spatial Fading Correlation

In the computation of SFC using the proposed formulation,
given in (5), the summation for ` over first few terms yields
sufficient accuracy as higher order Bessel functions decay
rapidly to zero for points near each other in space as noted
in [6], [17]. For the computation of SFC, we are required to
compute Wigner-d functions d`u,m(π/2) for each |u|, |m| ≤ `.
Let D` denote the matrix of size (2`+1)×(2`+1) with entries
d`u,m(π/2) for |u|, |m| ≤ `. The matrix D` can be computed
for each ` = 1, 2, . . . , using the relation given in [18] that
recursively computes D` from D`−1.
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Fig. 1. RDA of 20 antenna elements placed at the vertices of regular
dodecahedron inscribed in a sphere of radius R = 1. Antenna elements at
zp = R× (0.3568, 0,−0.9342)′ and zq = R× (−0.3568, 0, 0.9342)′ are
shaded.
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Fig. 2. Magnitude of the SFC function ρ(z1 − z2) between ULA antenna
elements 1 and 2 spatially separated by distance d. MEOA=MAOA=90◦.

B. Numerical Validation

Here, we validate the proposed result through numerical
experiments. We consider ULA, UCA (for 2D case) and
regular dodecahedron array (RDA for 3D case) in our analysis.
The antenna elements of a ULA are placed at the following
spatial positions: (zp)ULA = (0 + d(p − 1), 0, 0

)′ ∈ R3,
where d denotes the separation distance between the ULA
antenna elements. Similarly, the antenna elements of an M
element UCA are placed at the following spatial positions:
(zp)UCA = (R cos 2πp

M , R sin 2πp
M , 0

)′ ∈ R3, where R denotes
the radius of the array for UCA. For the RDA, the 20
antenna elements are placed at the vertices of dodecahedron
inscribed in a sphere of radius R as shown in Fig. 1 (for
R = 1). Using the proposed closed-form expression for the
SFC function, we determine ρ(z1 − z2) for ULA, ρ(z1 − z2)
for 4 element UCA and ρ(zp − zq) for RDA, where zp
and zq are indicated in Fig. 1. For different uniform limited
azimuth-elevation distributions of AoA, we plot the magnitude
of the SFC function against R/λ for ULA, UCA and RDA in
Fig. 2, Fig. 3 and Fig. 4, respectively, where we also plot the
numerically evaluated SFC, obtained using (3), which matches
with the proposed SFC function and thus corroborates the
correctness of proposed SFC function.
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Fig. 3. Magnitude of the SFC function ρ(z1 − z2) for 4 element UCA of
radius R. MEOA=MAOA=90◦.
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Fig. 4. Magnitude of the SFC function ρ(zp − zq) for RDA of radius R
with MEOA=MAOA=90◦. zp and zq are indicated in Fig. 1.

C. Impact of Angular Spread on Array Response

We compare the impact of change in azimuth of ar-
rival (AOA) and elevation of arrival (EOA) on MIMO system
performance. We employ the proposed closed-form expression
to perform the comparison by computing the SFC between
two antenna elements using UCA (2D) and RDA (3D). We
plot the change in the magnitude of the SFC with respect to
change in ES and AS at 0.5λ spacing, 90◦ MAOA and MEOA
as illustrated in Fig. 5 and Fig. 6 for 2D array and 3D array,
respectively. It can be observed that, in the 2D array case, an
increase in AS has more significant impact on the magnitude
of the SFC than an increase in ES. However, in the 3D array
case it is noted that the magnitude of the SFC is significantly
affected by an increase in both AS and ES, suggesting that the
3D antenna array geometries offer more flexibility in achieving
lower spatial correlation and consequently improving system
performance as also reported in [8].

IV. CONCLUSIONS

For the uniform limited azimuth-elevation AoA pdf, we
have derived a closed-form expression for SFC between two
arbitrary points in 3D-space and, hence, can be applied to any
antenna array geometry. This simplifies the computation of the
SFC and avoids the need to generate separate expressions for
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Fig. 5. Magnitude of the SFC as a function of both AS and ES for UCA
(2D geometry).
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Fig. 6. Magnitude of the SFC as a function of both AS and ES for RDA (3D
geometry).

specific array geometries. Furthermore, we have shown that
the proposed closed-form expression is useful for performing
sensitivity analysis of antenna arrays.

APPENDIX A - PROOF OF THEOREM 1
Using spherical harmonic expansion of plane waves [19]:

eikzp·x̂ = 4π

∞∑
`=0

i`j`
(
k‖zp‖

)∑̀
m=−`

Y m`
(
zp/‖zp‖

)
Y m` (x̂),

and (2) and employing the orthonormality of spherical har-
monics, we first write the SFC function in (3) as [6]

ρ(zp − zq) =

∞∑
`=0

i`j`
(
k‖zp − zq‖

)∑̀
m=−`

Y m`

( zp − zq
‖zp − zq‖

)
× 4π

C(θ◦,∆θ,∆φ)

∫
R

Y m` (x̂) ds(x̂), (9)

where the integral, over the region R, can be decomposed as∫
R

Y m` (x̂) ds(x̂) =

√
2`+ 1

4π

∫ φ◦+∆φ

φ◦−∆φ

eimφ dφ︸ ︷︷ ︸
Q(m;φ◦,∆φ)

×

√
(`−m)!

(`+m)!

∫ θ◦+∆θ

θ◦−∆θ

Pm` (cos θ) sin θ dθ︸ ︷︷ ︸
G(u; θ◦,∆θ)

. (10)

An expression for Q(m;φ◦,∆φ) is given in (6). To determine
G(u; θ◦,∆θ), we use the following relation between the asso-
ciated Legendre function and the Wigner-d function [15]:

Pm` (cos θ) =

√
(`+m)!

(`−m)!
dm,0` (θ), (11)

and the following expansion of Wigner-d functions in terms
of complex exponentials [15], [20]

d`m,n(θ) = in−m
∑̀
u=−`

d`u,m(π/2) d`u,n(π/2) eiuθ. (12)

By defining

S(u; θ◦,∆θ) ,
∫ θ◦+∆θ

θ◦−∆θ

eiuθ sin θ dθ,

which is evaluated in (7b), and substituting backwards from
(12) to (10) in (9) yields the SFC function given in (5).
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