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We investigate continuous-time quantum walks of two indistinguishable particles [two bosons, or two fermions,
or two hard-core bosons (HCBs)] in one-dimensional lattices with nearest-neighbor interactions. The results
for two HCBs are consistent with the recent experimental observation of two-magnon dynamics [Fukuhara
et al., Nature (London) 502, 76 (2013)]. The two interacting particles can undergo independent walking and/or
co-walking depending on both quantum statistics and interaction strength. Two strongly interacting particles
may form a bound state and then co-walk like a single composite particle with a statistics-dependent walk
speed. Analytical solutions for the scattering and bound states, which appear in the two-particle quantum walks,
are obtained by solving the eigenvalue problem in the two-particle Hilbert space. In the context of degenerate
perturbation theory, an effective single-particle model for the quantum co-walking is analytically derived and the
walk speed of bosons is found to be exactly three times that of fermions and HCBs. Our result paves the way for
experimentally exploring quantum statistics via two-particle quantum walks.
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I. INTRODUCTION

The quantum walk (QW) [1,2], the quantum counterpart of
the classical random walk (CRW), is not only a fundamental
phenomenon in quantum transport, but also a practical tool for
developing quantum algorithms and implementing quantum
computations. In contrast to CRWs, which gradually approach
an equilibrium distribution, QWs spread ballistically if there
is no decoherence. The nonclassical features of QWs offer
versatile applications in quantum simulation [3], quantum
computation [4,5], detecting topological states [6–8], probing
bound states [7,9,10], and so on.

Up to now, single-particle QWs have been implemented
with several experimental systems. In those experiments, the
roles of quantum walkers are taken by single particles such
as neutral atoms [11], atomic ions [12], photons [13], atomic
spin impurities [14], and nuclear-magnetic-resonance systems
[15]. Attributable to their superpositions and interference
features, single-particle QWs yield an exponential speedup
over CRWs [16]. However, it has been demonstrated that
such an exponential speedup can be also achieved by classical
waves [17].

In contrast, multiparticle QWs may have exotic nonclassical
correlations, which may bring new benefits to practical
quantum technologies. It has been found that two-particle
discrete QWs sensitively depend on the entanglement or
correlations [18,19]. Naturally, the quantum statistical nature
of two bosonic (fermionic) walkers result in the emergence of
bunching (anti-bunching) in two-particle QWs [18]. Moreover,
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multiparticle QWs can be used to implement universal quan-
tum computations [5]. By using linear [20–22] and nonlinear
photonic waveguide arrays [23,24], two-particle QWs have
been implemented in several laboratories. Exotic quantum
correlations have been observed even in the absence of
interparticle interactions [22,25,26]. Recently, the coexistence
of free and bound states [27] has been observed via two-particle
QWs of atomic spin impurities in one-dimensional (1D) optical
lattices [10].

Although there are some studies on two-particle QWs
involving quantum statistics and interparticle interactions,
most of them only consider either how quantum statistics
affects the QWs of two noninteracting particles [21,26]
or how interparticle interaction affects the QWs of two
interacting particles with a specific quantum statistics [10,24].
A comprehensive study on how two-particle QWs depend
on both quantum statistics and interparticle interactions is
still lacking. It is particularly interesting how the quantum
co-walking of two interacting particles quantitatively depends
on the quantum statistics of two walkers. Here co-walking
means that the two walkers are fully synchronized and walk
as a single composite unity.

In this article we investigate two-particle continuous-time
QWs in 1D lattices with nearest-neighbor interactions. We
concentrate on analyzing quantum statistic affects in the
QWs of two interacting particles. We show the bunching
and antibunching dynamics induced by the Bose and Fermi
natures of quantum walkers and systematically investigate
the statistics-dependent quantum co-walking. In addition
to the numerical results, we derive an analytical model
for the statistics-dependent quantum co-walking by employing
degenerate perturbation theory. We present both analytical
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and numerical results, which are consistent with each other.
Our analytical results give a quantitative understanding of
the quantum statistic effects in the quantum co-walking of
two interacting indistinguishable particles. In particular, our
prediction on two hard-core bosonic walkers agrees with the
experimental observation of the two-magnon dynamics [10].
In the scenario of the quantum-optical analog [28,29], our
two-particle QWs can be experimentally verified by the light
propagations in 2D waveguide arrays [29,30].

The structure of this paper is as follows. In this section we
introduce background and motivation. In Sec. II we describe
our models and discuss some key properties of them. In
Sec. III we solve the eigenvalue problem in the two-particle
Hilbert space and derive several analytical solutions for the
two-particle eigenstates and their eigenenergies. In Sec. IV we
analyze the two-particle QWs under three different types of
statistics: bosonic, fermionic, and hard-core bosonic ones. In
both position and momentum spaces, two-body correlations
of bosonic and fermionic walkers show subtle bunching
and antibunching signatures, respectively. However, hard-core
bosonic walkers show an antibunching signature in the position
space and a bunching signature in the momentum space. In
Sec. V we analytically derive the effective single-particle
model for the co-walking of two quantum walkers under strong
interparticle interactions. We discuss the implementation of
our model and summarize the results in Sec. VI.

II. MODEL

We consider QWs of two indistinguishable particles in a
1D lattice system described by the following Hamiltonian with
periodic boundary conditions (PBCs):

Ĥ = −J

L∑
l=−L

(â†
l âl+1 + H.c.) + V

L∑
l=−L

n̂l n̂l+1. (1)

Here the total number of lattice sites is Lt = 2L + 1, â
†
l

(âl) creates (annihilates) a particle on the lth lattice (l =
−L, . . . ,0, . . . ,L), n̂l = â

†
l âl is the particle number, J is

the nearest-neighbor hopping, and V stands for the nearest-
neighbor interaction. Below we only discuss the Hamiltonian
of the attractive interaction V < 0.

The two-particle (i.e., N̂ = ∑L
l=−L n̂l = 2) propagation in

our systems represents a class of continuous-time two-particle
QWs. The continuous-time QWs can be generalized from
the continuous-time CRWs [2,16]. A CRW on a graph is
described by a matrix M, which transforms the probability
distribution (PD) p = {pl} over a vertex set v = {l} (here pl

is the probability of finding the walker at the lth vertex). The
elements Mll′ give the jumping rate from the lth vertex to
the l′th vortex. The PD evolution of such a walk follows
d
dt

p(t) = −Mp(t) and the solution is given as p(t) = e−Mtp(0)
with the initial condition p(0). In the quantum case, the matrix
M is replaced by the so-called adjacency matrix H [4,31],
which generates an unitary evolution e−iHt instead of e−Mt .
Starting from an initial state |ψini〉, the quantum state evolves
according to |ψ(t)〉 = e−iHt |ψini〉 and the PD over the vortex
set is given by the quantum projection pl = |〈l|ψ(t)〉|2 with
|l〉 denoting the quantum state of the walker localized at the
lth vortex. In our system, the graph for the two walkers is

the 1D lattice and the Hamiltonian matrix Ĥ plays the role of
the adjacency matrix.

We consider three typical types of commutation relations
(CRs): bosonic, fermionic, and hard-core bosonic ones. The
bosonic CRs read [âl ,âk] = [â†

l ,â
†
k] = 0 and [âl ,â

†
k] = δlk .

The fermionic CRs obey {âl ,âk} = {â†
l ,â

†
k} = 0 and {âl ,â

†
k} =

δlk . The hard-core bosonic CRs are described by [âl ,âk] =
[â†

l ,â
†
k] = [âl ,â

†
k] = 0 for l �= k, while {âl ,âl} = {â†

l ,â
†
l } = 0

and {âl ,â
†
l } = 1.

The Hamiltonian (1) is associated with the quasiparticle
representation for an XXZ Heisenberg chain [32,33]. By using
the mapping |↓〉 ↔ |0〉, |↑〉 ↔ |1〉, Ŝ+

l ↔ â
†
l , Ŝ−

l ↔ âl , and
Ŝz

l ↔ n̂l − 1
2 , the hard-core bosonic system is equivalent to

the XXZ Heisenberg chain [32]

ĤXXZ = −Jex

∑
l

(
Ŝx

l Ŝx
l+1 + Ŝ

y

l Ŝ
y

l+1 + �Ŝz
l Ŝ

z
l+1

)

+hz

∑
l

Ŝz
l , (2)

with Jex = 2J , � = − V
2J

, hz = V , and Ŝ±
l = Ŝx

l ± iŜ
y

l . It has
been demonstrated that such an XXZ Heisenberg chain can
be realized by ultracold two-level atoms in optical lattices
[10,14,34].

III. TWO-PARTICLE EIGENSTATES

In this section we solve the eigenvalue problem in the two-
particle Hilbert space and give the eigenstates that appear in the
two-particle QWs. Since [N̂,Ĥ ] = 0, the total particle number
N̂ is conserved and all initial two-particle states keep evolving
in the two-particle Hilbert space. For two bosons, the Hilbert
space is spanned by the basis

B(2)
B = {|l1l2〉 = (

1 + δl1l2

)−1/2
â
†
l1
â
†
l2
|0〉},

with −L � l1 � l2 � L. For two fermions or two hard-core
bosons (HCBs), the Hilbert spaces are spanned by the basis

B(2)
FH = {|l1l2〉 = â

†
l1
â
†
l2
|0〉},

with −L � l1 < l2 � L. Given B(2)
B and B(2)

FH , it is easy to find
the Hamiltonian matrix H (2) in the two-particle sector.

Introducing Cl1l2 = 〈0|âl2 âl1 |�〉, the eigenstates can be
expanded as |�〉 = ∑

l1�l2
ψl1l2 |l1l2〉 with ψl1l2 = Cl1l2 (1 +

δl1l2 )−1/2. Independent of the quantum statistics of particles,
the eigenequation Ĥ |�〉 = E|�〉 can be written in the unified
form

ECl1l2 = −J
(
Cl1,l2+1 + Cl1,l2−1 + Cl1+1,l2 + Cl1−1,l2

)
+V δl1,l2±1Cl1l2 , (3)

with δl1,l2±1 = 1 if l1 = l2 ± 1 and δl1,l2±1 = 0 if l1 �= l2 ± 1.
Here the PBC requires Cl1+Lt ,l2 = Cl1,l2+Lt

= Cl1l2 . The CRs
require that Cl1l2 = Cl2l1 for bosons, Cl1l1 = 0 and Cl1l2 =
−Cl2l1 for fermions, and Cl1l1 = 0 and Cl1l2 = Cl2l1 for HCBs.

The motion of the two-particle system can be separated
by the motion of the center of mass R = 1

2 (l1 + l2) and that
of the relative position r = l1 − l2. By employing the ansatz
Cl1l2 = eiKRφ(r), the eigenequation reads

Eφ(r) = JK [φ(r − 1) + φ(r + 1)] + V δr,±1φ(r), (4)
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with JK = −2J cos(K
2 ), δr,±1 = 1 if r = ±1, and δr,±1 =

0 if r �= ±1. Therefore, the PBC requires eiKLt = 1 and
φ(r + Lt ) = eiKLt /2φ(r) with the quantized total quasimo-
mentum K = 2πα/Lt with α = −L,−L + 1, . . . ,L. Corre-
spondingly, the CRs require that φ(r) = φ(−r) for bosons,
φ(0) = 0 and φ(r) = −φ(−r) for fermions, φ(0) = 0 and
φ(r) = φ(−r) for HCBs.

The PBC and CRs indicate that {φ(r)|r = 0, . . . ,L} for
bosons and {φ(r)|r = 1, . . . ,L} for fermions or HCBs are
independent variables. Thus the two-particle Hamiltonian
matrix block for bosons with total quasimomentum K can
be written as

Ĥ
(2)
B (K) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2JK

JK V JK

JK 0 JK

. . .
. . .

. . .
JK 0 JK

JK JB
K

⎞
⎟⎟⎟⎟⎟⎟⎠

; (5)

the one for fermions reads

Ĥ
(2)
F (K) =

⎛
⎜⎜⎜⎜⎝

V JK

JK 0 JK

. . .
. . .

. . .
JK 0 JK

JK JF
K

⎞
⎟⎟⎟⎟⎠ (6)

and the one for HCBs is in the form

Ĥ
(2)
H (K) =

⎛
⎜⎜⎜⎜⎝

V JK

JK 0 JK

. . .
. . .

. . .
JK 0 JK

JK JH
K

⎞
⎟⎟⎟⎟⎠ . (7)

Here we define JH
K = JB

K = −JF
K = eiKLt /2JK .

The Hamiltonian matrices (5)–(7) can be diagonalized
numerically and analytically [35]. When V �= 0, for all three
cases (bosons, fermions, and HCBs), there are two types of
eigenstates: bound states (BSs) and scattering states (SSs).
For SSs, the amplitude of the wave function φ(r) oscillates as
the relative position r , while for BSs, it decays exponentially.
The general eigenstate for Eq. (4) can be expressed as

φ(r) = A+eikr + A−e−ikr , (8)

with the two constants (A+, A−) and the quasimomentum k.
For SSs, the quasimomentum k is real. However, for BSs, the
quasimomentum k is purely imaginary. The eigenenergy is
given as

E
(2)
K,k = 2JK cos(k) = −4J cos

(
K

2

)
cos(k), (9)

with the quasimomentum k determined by the physical
parameters and the statistical properties. Below we will show
how to determine the quasimomentum k.

A. Scattering states

Due to the real value of k, the scattering states are invariant
under the transformation k → k ± 2π and k → −k. Thus we
only need to consider 0 � k < π .

For fermions, the PBC and CRs require that

(JK − V eik)A+ + (JK − V e−ik)A− = 0,

eikLt A+ + (−1)αA− = 0.

By eliminating A+ and A−, one can obtain that the quasimo-
mentum k obeys

eikLt = (−1)α
JK − V eik

JK − V e−ik
. (10)

To give all possible values of k, one has to solve Eq. (10),
which is actually an algebraic equation of eik . Thus, the
corresponding eigenstate reads

φ(r) ∝ eikr − e−ikrei(K/2+k)Lt , 1 � r � N. (11)

For HCBs, the quasimomentum k satisfies

eikLt = (−1)α−1 JK − V eik

JK − V e−ik
(12)

and the corresponding eigenstate is

φ(r) ∝ eikr + e−ikrei(K/2+k)Lt , 1 � r � N. (13)

For bosons, the ansatz should be modified as

φ(r) =
{
φ0, r = 0
A+eikr + A−e−ikr , 1 � r � N,

(14)

with the quasimomentum k satisfying

eikLt = (−1)α
JK (eik − e−ik) + V (1 + e2ik)

JK (eik − e−ik) − V (1 + e−2ik)
. (15)

Thus the corresponding eigenstate is given as

φ(r) ∝ eikr + e−ikrei(K/2+k)Lt , 1 � r � N, (16)

with φ(0) = φ0 = φ(1)/ cos(k).

B. Bound states

The bound states correspond to purely imaginary k = iη

(η > 0) satisfying the conditions (10), (12), and (15). For a
finite Lt , no compact formulas for η are available. However,
when Lt is sufficiently large, the factor eikLt = e−ηLt become
small and, as an approximation, one can assume e−ηLt ≈ 0,
which is exact (e−ηLt = 0) when Lt → ∞. Then the conditions
for η read

JK = V e−η for fermions or HCBs,
(17)

JK (e−η − eη) + V (1 + e−2η) = 0 for bosons.

Solving Eqs. (17), one can obtain

eη = V/JK (18)

for fermions or HCBs (as long as |V | > |JK |) and

eη = 1

3

(
β + 3 + β2

�0
+ �0

)
,

(19)
�0 = (18β + β3 + 3

√
3
√

β4 + 11β2 − 1)1/3

for bosons (as long as β2(β2 + 11) > 1), where β = V/JK .
According to Eq. (9), given k = iη for a BS, its eigenenergy

reads

E
(2)
K,η = 2JK cosh(η) (20)
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FIG. 1. (Color online) Two-particle spectrum for a 21-site system
(1) with different interaction strength |V/2J |. Shown on the left is
the weak interaction |V/2J | = 1/2 and on the right is the strong
interaction |V/2J | = 2. Each point represents an eigenenergy E for
a given quasimomentum K .

with η determined by Eq. (17). Thus, for the BS of fermions
or HCBs, according to Eq. (18), its eigenenergy reads

E
(2)
FH (K) = V + 4J 2

V
cos2

(
K

2

)
, (21)

when |V/2J | > 1 and Lt → ∞. Obviously, Eq. (21) fully
agrees with the eigenenergies obtained from the Bethe ansatz
[36]. For the case of strongly interacting bosons, that is, |β| →
∞, we have eη > β = V/JK and eη/β → 1 for positive β.
Thus, according to Eqs. (18)–(20), for the case of an attractive
interaction, the BS eigenenergy of bosons is lower than that
of fermions or HCBs and their difference vanishes when
|V/2J | → ∞.

In Fig. 1 we show the energy spectrum for the two-particle
system. For a weak interaction |V/2J | < 1, there is only one
band, in which SSs and BSs are mixed. For a strong interaction
|V/2J | > 1, there are two minibands, in which the upper band
corresponds to SSs and the lower band corresponds to BSs.

IV. TWO-PARTICLE QUANTUM WALKS

In this section we focus on the time-evolution dynamics of
two-particle states, i.e., the two-particle QWs. In particular,
by analyzing two-particle correlations in both position and
momentum spaces, we explore how the interaction and
statistics affect the two-particle QWs.

In units of � = 1, the two-particle QWs obeys the time-
dependent Schrödinger equation

i
d

dt
|ψ(t)〉 = H (2)|ψ(t)〉, (22)

with |ψ(t)〉 = ∑
l1�l2

ψl1l2 (t)|l1l2〉 for bosons and |ψ(t)〉 =∑
l1<l2

ψl1l2 (t)|l1l2〉 for fermions and HCBs. Here we consider
the two-particle QWs from an initial state of two particles
sitting in neighboring lattice sites |ψini〉 = â

†
0â

†
1|0〉. Here |0〉

denotes the vacuum state.
To explore the correlation between two quantum walkers,

we calculate the time-dependent two-particle correlation in
position space

�qr (t) = 〈ψ(t)|â†
q â

†
r âr âq |ψ(t)〉 (23)

and those in momentum space

�αβ(t) = 〈ψ(t)|ĉ†αĉ
†
β ĉβ ĉα|ψ(t)〉, (24)

with |ψ(t)〉 in Eq. (22). Here ĉ†α = 1√
Lt

∑L
l=−L e−ipαl â

†
l is

the discrete Fourier transformation of â
†
l , in which the

quasimomentum pα = 2πα/Lt and the integer α = −L,

− L + 1, . . . ,L. The two-particle correlation in position and
momentum spaces for different quantum statistics and interac-
tion strength provide clear insight into the two-particle QWs
(see Figs. 2 and 3 for a 21-site system). For systems with the
same parameters but different lattice sizes Lt , our numerical
results show that, before the two particles collide with the
boundaries, the finite-size effect and the boundary effect are
negligible.

FIG. 2. (Color online) Two-particle correlations of quantum walkers in position space. The first, second, and third rows correspond to
Bose, Fermi, and HCB statistics, respectively. The interaction-hopping ratios |V/2J | are (a) 0, (b) 0.5, and (c) 40. Here the total number of
lattice sites is Lt = 21, the evolution time is given by J t , and we only show the instantaneous correlations before the particles collide with the
boundaries l = ±10.
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FIG. 3. (Color online) Two-particle correlations of quantum walkers in momentum space with the same setting as in Fig. 2.

It is possible to distinguish co-walking from independent
walking through examining the evolution of the spatial
correlation �qr (t). The significant correlations at two specific
lines (q = r ± d) in the (q,r) plane is a signature of the
co-walking of the two particles, where d is a fixed integer
dependent on the form of the interparticle interaction. For
our systems with the nearest-neighbor interactions, the spatial
correlation peaks [i.e., the peaks of �qr (t)] appear on the two
minor-diagonal lines (q = r ± 1). This is a typical signature
of the two-particle co-walking.

In position space, the correlations of two bosonic walkers
(the first row of Fig. 2) show bunching behavior, while the
correlations of two fermionic walkers (the second row of
Fig. 2) and two hard-core bosonic walkers (the third row
of Fig. 2) show antibunching behavior. We observe that the
correlations of fermions and HCBs in position space show
almost no difference. This is because a spin- 1

2 Heisenberg
XXZ model, which is equivalent to a hard-core Bose-Hubbard
model [32], can be exactly mapped onto a Hubbard-like model
of spinless fermions via Jordan-Wigner transformation [33].
Although boundary conditions for the Hubbard-like model
of spinless fermions depend on the total particle number
[33], before the two walkers hit the boundaries, the boundary
condition effect on the two fermionic walkers is the same
as that on the two hard-core bosonic walkers. Therefore, the
correlations are almost the same for fermions and HCBs in
position space.

On the other hand, the correlations of bosonic and hard-core
bosonic walkers in momentum space show bunching behavior
(see the first and third rows of Fig. 3). Nevertheless, the
correlations of fermionic walkers (the second row of Fig. 3)
show antibunching behavior. This means that bunching and
antibunching in momentum space can show the difference
between fermions and HCBs. Therefore, bunching and anti-
bunching of the two quantum walkers in both position and
momentum spaces completely reveal the difference among
bosons, fermions, and HCBs.

The spatial correlations �qr on the minor diagonal lines
(q = r ± 1) are gradually enhanced when the interaction-
hopping ratio increases (see Fig. 2). Since �q,q±1 presents

a joint probability of finding one walker on the qth site and the
other walker on the (q ± 1)th site, the significant correlations
on the minor diagonal lines is a robust signature of quantum
co-walking. The quantum co-walking is also an important
signature of the existence of two-particle bound states (see
[10,27] for the case of two magnons). A detailed discussion of
quantum co-walking will be presented in the next section. Usu-
ally, two interacting quantum walkers simultaneously undergo
independent walking and co-walking when the interaction is
not strong enough.

V. EFFECTIVE DYNAMICS OF TWO-PARTICLE
QUANTUM CO-WALKING

In this section we will analytically derive an effective
single-particle model for the quantum co-walking of two inter-
acting particles and discuss the statistics-dependent behavior
of quantum co-walking. We present a quantitative description
of the quantum statistics effect in two-particle QWs.

Under strong interparticle interactions (|V/J | � 1), the
two quantum walkers behave as a single composite particle
and their QWs are dominated by quantum co-walking. As
|V/J | � 1, one thus can treat the hopping term

Ĥ1 = −J

L∑
l=−L

(â†
l âl+1 + H.c.) (25)

as a perturbation to the interaction term

Ĥ0 = V

L∑
l=−L

n̂l n̂l+1 (26)

in the considered Hamiltonian (1). By employing the second-
order perturbation theory for degenerate systems [37], we
analytically obtain an effective single-particle model for the
co-walking of the two quantum walkers.

To implement the perturbation analysis, we should
give the projection operator onto the subspace involved
the quantum co-walking and the projection operator onto
the orthogonal component of the involved subspace. The
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unperturbed Hamiltonian Ĥ0 has only two eigenvalues:
(i) E0 = V (<0) for the Lt -fold degenerated ground states
{|Gl〉 = |l,l + 1〉 : −L � l � L} and (ii) El1l2 = 0 for excited
eigenstates {|El1l2〉 = |l1,l2〉 : l1 �= l2 ± 1,−L � l1 � l2 � L}
for bosons and {|El1l2〉 = |l1,l2〉 : l1 �= l2 ± 1, − L � l1 <

l2 � L} for fermions and HCBs. The quantum co-walking only
involves the subspace spanned by Lt independent ground states
{|Gl〉}. DefiningU0 = {|Gl〉}, the projection operator ontoU0 is

P̂0 =
∑

l

|Gl〉〈Gl|.

Introducing V0 as the orthogonal complement of U0, the
projection onto V0 reads

Ŝ =
∑

El1 l2 �=E0

1

E0 − El1l2

∣∣El1l2

〉〈
El1l2

∣∣.
Therefore, the effective Hamiltonian up to second order is
given as

Ĥ
(2)
eff = ĥ0 + ĥ2 = E0P̂0 + P̂0Ĥ1ŜĤ1P̂0. (27)

Since El1l2 = 0, we have

ĥ2 = J 2

V

∑
ll′jj ′l1l2

[|Gl〉〈Gl|T̂j

∣∣El1l2

〉

× 〈
El1l2

∣∣T̂j ′ |Gl′ 〉〈Gl′ |
]
, (28)

where the hopping operators T̂k = â
†
kâk+1 + â

†
k+1âk , the

summation indices {l,l′,j,j ′} take values from {−L,−L +
1, . . . ,L}, and {l1,l2} is summed over all states of El1l2 = 0.

Introducing the notation

T
jl

l1l2
= 〈Gl|(â†

j âj+1 + â
†
j+1âj )

∣∣El1l2

〉
, (29)

∣∣G′
l1l2

〉 =
∑
j l

T
jl

l1l2
|Gl〉, (30)

we have 〈G′
l1l2

| = ∑
j ′l′ 〈Gl′ |T j ′l′∗

l1l2
and

ĥ2 = J 2

V

∑
ll′jj ′l1l2

|Gl〉T jl

l1l2
T

j ′l′∗
l1l2

〈Gl′ |

= J 2

V

∑
l1l2

∣∣G′
l1l2

〉〈
G′

l1l2

∣∣. (31)

By using the CRs and âl â
†
k|0〉 = δlk|0〉, after some algebra we

obtain∣∣G′
l1l2

〉 =
√

2δl1l2

(∣∣Gl1−1
〉 + ∣∣Gl1

〉) + δl1,l2−2
(∣∣Gl1

〉 + ∣∣Gl1+1
〉)

+ ε′δl1−2,l2

(∣∣Gl2

〉 + ∣∣Gl2+1
〉)
. (32)

Here ε′ = 1 for bosons and HCBs, while ε′ = −1 for fermions.
Inserting Eq. (32) into Eq. (31), we get

ĥ2 = J 2

V

∑
l1l2

[
2δl1l2

(∣∣Gl1−1
〉 + ∣∣Gl1

〉)(〈
Gl1−1

∣∣ + 〈
Gl1

∣∣)

+ δl1,l2−2
(∣∣Gl1

〉 + ∣∣Gl1+1
〉)(〈

Gl1

∣∣ + 〈
Gl1+1

∣∣)
+ δl1−2,l2

(∣∣Gl2

〉 + ∣∣Gl2+1
〉)(〈

Gl2

∣∣ + 〈
Gl2+1

∣∣)]. (33)

For the case of fermions or HCBs, δl1l2 = 0 and δl1,l2−2 = 1
for (l1,l2) = (l,l + 2) with l = (−L,−L + 1, . . . ,L − 2) and
δl1−2,l2 = 1 for (l1,l2) = (−L,L − 1) and (−L + 1,L); thus
we have

ĥ2 = J 2

V

L∑
q=−L

(|Gq〉 + |Gq+1〉)(〈Gq | + 〈Gq+1|). (34)

For the case of bosons, besides the terms included in the case of
fermions or HCBs, δl1l2 = 1 for (l1,l2) = (l,l) with l = (−L,

− L + 1, . . . ,L − 1,L) should be included; thus we have

ĥ2 = 3J 2

V

L∑
q=−L

(|Gq〉 + |Gq+1〉)(〈Gq | + 〈Gq+1|). (35)

In our model of nearest-neighbor interaction, for two walkers
starting from two neighbor lattice sites, their co-walking can be
described by a superposition of multiple ground states |Gq〉 =
â
†
q â

†
q+1|0〉 = |nq = 1,nq+1 = 1〉 with different q (where q =

−L,−L + 1, . . . ,L − 1,L). During the process of co-walking,
the two particles behave like a single composite particle.

In order to capture the single-particle nature of the co-
walking, we introduce creation operators b̂

†
q for the composite

particle consisting of one particle on the qth lattice site and
the other particle on the (q + 1) th lattice site. Explicitly,
b̂
†
q ⇔ â

†
q â

†
q+1 and |nc

q = 1〉 = b̂
†
q |0〉 ⇔ |nq = 1,nq+1 = 1〉 =

â
†
q â

†
q+1|0〉. Then, from Eq. (35), the two bosonic walkers obey

an effective single-particle Hamiltonian

Ĥ B
eff = JB

eff

∑
q

(b̂†q b̂q+1 + b̂
†
q+1b̂q) + μB

eff

∑
q

b̂†q b̂q , (36)

with the hopping strength JB
eff = 3J 2

V
and the chemical potential

μB
eff = V + 6J 2

V
. The spectrum of the Hamiltonian (36) can be

obtained by substituting the ansatz |ψ〉 = ∑
m eiKmb̂

†
m|0〉 into

the eigenvalue problem Ĥ B
eff|ψ〉 = EB

eff|ψ〉. With some ana-
lytical calculations, it is easy to yield the single-quasiparticle
spectrum

EB
eff(K) = V + 12J 2

V
cos2

(
K

2

)
. (37)

Similarly, from Eq. (34), the two fermionic walkers and the
two hard-core bosonic walkers obey the same effective single-
particle Hamiltonian

Ĥ FH
eff = JFH

eff

∑
q

(b̂†q b̂q+1 + b̂
†
q+1b̂q) + μFH

eff

∑
q

b̂†q b̂q , (38)

but with JFH
eff = J 2

V
, μFH

eff = V + 2J 2

V
and spectra

EFH
eff (K) = V + 4J 2

V
cos2

(
K

2

)
. (39)

We observe that, for fixed values of J and V , the hopping
strengths JB

eff and JFH
eff of the composite particle essentially

depend on their quantum statistics. This means that quantum
statistics has a significant effect on the co-walking of two
interacting walkers. In time-evolution dynamics, different
values of hopping strength mean different walk speed. Thus it
is possible to explore statistics-dependent quantum co-walking
via observing the walk dynamics.
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FIG. 4. (Color online) Quantum co-walking of two strongly in-
teracting walkers with |V/2J | = 40. Shown on the left is the time
evolution of the minor diagonal correlations �q,q+1 and on the right
is the two-particle correlations �final

q,r for the final states.

In Fig. 4 we show our numerical results for the time
evolution of the minor diagonal correlations �q,q+1 and the
final two-particle correlations �final

q,r with |V/2J | = 40. From
the correlations �final

q,r in the right column of Fig. 4, we find
that the two strongly interacting walkers are dominated by
quantum co-walking. From the time evolution of �q,q+1 in
the left column of Fig. 4, we see that the walk speed of two
bosonic walkers is just three times that of the two fermionic and
hard-core bosonic walkers. These numerical results of spread
are consistent with our analytical prediction JB

eff = 3JFH
eff from

the second-order perturbation theory.

VI. SUMMARY AND DISCUSSION

We have explored how quantum statistics and interpar-
ticle interactions affect two-particle QWs in 1D lattices
with nearest-neighbor interactions. Due to the interparticle
interactions, two particles with different quantum statistics
undergo independent walking and/or co-walking. The QWs
are dominated by independent walking in the weak-interaction
limit and by co-walking in the strong-interaction limit. We have
analytically derived the effective single-particle model for the
co-walking of two strongly interacting particles. We find that
the walk speed for the co-walking of two bosons is exactly three
times that for the co-walking of two fermions or two HCBs.
Although we only consider the two-particle QWs in attractive
systems (V < 0) in this article, similar QWs may be found in
repulsive systems (V > 0), which have free scattering states
in the lower band and repulsively bound states in the upper
band [38]. Our results for the case of two HCBs agree with the
recent experimental observation of quantum dynamics of two
atomic spin impurities [10]. Besides observing bound states

FIG. 5. (Color online) Classical simulation with two-
dimensional optical waveguide arrays. Each circle represents
a waveguide. Green-colored and uncolored circles label waveguides
with different refractive indices. The black lines connecting different
circles denote their couplings. Shown on the left are the waveguide
arrays for simulating two bosons and on the right are the waveguide
arrays for simulating two fermions or two hard-core bosons.

[7,10], our results of two-particle QWs provide promising
applications in exploring quantum statistics.

Furthermore, beyond a theoretical model, the two interact-
ing quantum walkers in our models can be experimentally sim-
ulated with ultracold atoms in optical lattices and light waves
in waveguides. By using spin impurities of ultracold atoms in
optical lattices, two-magnon dynamics in the 1D Heisenberg
XXZ chain has been observed in a recent experiment [10].
It was a dramatic realization of two-HCB quantum walks
with an intermediate interaction (� = |V/2J | = 0.986). The
strong-interaction regime (� � 1) can be achieved by Fes-
hbach resonance [39]. Moreover, based on the quantum-
optical analogs using engineered photonic waveguides [28,29],
the two-particle QWs obeying the Hamiltonian (1) can be
simulated via light propagations. As a single quantum walker
in a 2D lattice is equivalent to two quantum walkers in a 1D
lattice [3], the two-particle QWs in 1D lattices can be simulated
with light waves in 2D waveguide arrays [29,30]. The temporal
evolution of the superposition amplitude Cl1l2 in the two-
particle Hilbert space is mapped onto the spatial propagation
of the optical field El1l2 in the (l1,l2)th waveguide. According to
the evolution equation (22) of Cl1l2 , the propagation equation
for El1l2 is given by

i
d

dz
El1l2 = − J

(
El1,l2+1 + El1,l2−1

)

− J
(
El1+1,l2 + El1−1,l2

) + Vl1l2 El1l2 , (40)

with Vl1l2 = V δl1,l2±1 and the propagation distance z. In Fig. 5
we show the 2D waveguide arrays for simulating two-particle
QWs with Lt = 21. Similar to the 2D waveguide arrays
used in recent experiments [29,30], the waveguide arrays
shown in Fig. 5 can be fabricated in a silica substrate by
direct waveguide writing with femtosecond lasers [40]. Here
the interparticle interaction strength V is controlled by the
difference of refractive indices between green-colored and
uncolored waveguides.
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