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Abstract. The Samoan mantle plume samples two or more mantle components including: an 23 

extreme EM2 composition with 87Sr/86Sr >0.720, and a primitive component with high 24 
3He/4He. The high 87Sr/86Sr melts have a unique potential to constrain the composition of the 25 

EM2 mantle end-member that is commonly attributed to subduction recycling. However, a 26 

previous study of H2O, CO2, S, F and Cl in Samoan glasses was hampered by the presence of 27 

unresolved assimilated sea water.   The current study builds on the earlier work by extending 28 

the volatile database to include the trace halogens Br and I, and reporting new volatile data 29 

for additional glasses with 87Sr/86Sr up to 0.7125 and 3He/4He of up to 15 Ra (Ra is the 30 

atmospheric 3He/4He ratio of 1.39×10-6). 31 

The selected glasses with MgO of 4.0 to 6.5 wt. % have CO2 concentrations of 4 to 32 

200 ppm that reflect degassing of CO2 on the seafloor.  In contrast, the glasses contain 0.7-1.9 33 

wt. % H2O, 880-1870 ppm F, 470-1700 ppm Cl, 1.8-6.9 ppm Br, 18-130 ppb I and 0.6-1.5 34 

wt. % K.  Correlations between the concentrations of these elements suggest the melts retain 35 

H2O concentrations close to pre-degassing values and demonstrate the melts have been 36 

variably affected by assimilation of seawater-derived brines.  The brines are indicated to have 37 

had salinities of 55 ± 15 wt. % salt, F/Cl ratios close to seawater (e.g. <0.0001), Br/Cl ratios 38 

~40 % higher than seawater, and I/Cl ratios ten times the seawater value. It is calculated the 39 

melts assimilated brine fractions of 0 to 0.45 wt. %, which contributed up to ~30 % of the 40 

total H2O and up to ~70% of the total Cl in the melts. 41 

After accounting for the effects of brine assimilation, the Samoan melts are suggested 42 

to have a fairly constant magmatic Cl/K of 0.05 ± 0.2, which is lower than the median MORB 43 

value. Assimilation-corrected H2O/Ce values are not correlated with 87Sr/86Sr, but the sample 44 

with the highest 87Sr/86Sr of 0.7125 has an assimilation-corrected H2O/Ce of 83 ± 3, that is 45 

significantly lower than typical MORB values of 150-300. These data confirm that the 46 

Samoan EM2 source is depleted in H2O, and perhaps Cl, relative to lithophile elements of 47 

similar compatibility.   48 

The glasses deemed free of seawater components, including the least enriched sample 49 

with 3He/4He of 15 Ra and the most enriched sample with 87Sr/86Sr of 0.7125, have 50 

indistinguishable Br/Cl and I/Cl that are within the narrow range determined for EM1 and 51 

EM2 glasses from Pitcairn and Society and mid-ocean ridge basalts (e.g. Br/Cl = 0.0028 ± 52 

0.0006; I/Cl = 0.00006 ± 0.00003; 2σ).  The uniformity of mantle Br/Cl and I/Cl could be 53 

explained if halogens are not significantly subducted into the mantle.  However, an 54 

alternative possibility is that the subduction zone ‘filter’ controls the abundance ratios of 55 

halogens recycled into the mantle, and recycled halogens with associated H2O, have been 56 

circulated throughout the mantle.   57 

 58 

 59 

60 
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1. Introduction 61 

The enriched trace element and isotope signatures of Oceanic Island Basalts (OIB) 62 

that sample the EM1, EM2 and HIMU mantle reservoirs are commonly attributed to the 63 

involvement of recycled sediments and/or altered oceanic crust/lithospheric materials 64 

introduced by subduction-recycling (e.g. Eiler et al., 2000; Hofmann and White, 1982; 65 

Hofmann, 2003; Jackson et al., 2007; White and Hofmann, 1982; Weaver, 1991; Workman et 66 

al., 2008; Zindler and Hart, 1986).  OIB melts commonly have high concentrations of H2O 67 

and other volatiles compared to MORB (e.g. Moore, 1970; Schilling et al., 1980); however, it 68 

is unclear if the high volatile content of EM1 and EM2 melts can be explained by subduction 69 

recycling.  EM1 and EM2 melts are typically depleted in H2O relative to trace elements of 70 

similar compatibility (e.g. Ce, La) that are inferred to have a recycled origin (e.g. Dixon and 71 

Clague, 2001; Dixon et al., 2002; Wallace, 2002; Workman et al., 2006; Kendrick et al., 72 

2014a). Furthermore, a high proportion of seawater-derived volatiles (e.g. H2O, Cl, noble 73 

gases) entering subduction zones are lost as slab fluids into the sub-arc mantle, and the extent 74 

to which these volatiles can be subducted into the deeper mantle is unclear (Hilton et al., 75 

2002; Ito et al., 1983; Parai and Mukhopadhyay, 2012; Rüpke et al., 2004).   The relative 76 

abundances of magmatic volatiles and trace elements in OIB melts that sample deeply 77 

recycled components can therefore provide a better understanding of global volatile recycling 78 

processes (Dixon et al., 2002; Wallace, 2002; Workman et al., 2006), with implications for 79 

the relative importance of subducted versus primordial volatile components in the Earth’s 80 

mantle (cf. Holland and Ballentine, 2006; Mukhopadhyay, 2012; Staudacher and Allègre, 81 

1988).   82 

Samoan OIB are of particular interest for constraining the composition of the EM2 83 

mantle end-member because they record the strongest 87Sr/86Sr enrichment of any known 84 

mantle component (>0.720; Jackson et al., 2007; 2009). Furthermore, submarine glasses 85 
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which are required for measuring the magmas volatile contents have been recovered with 86 

87Sr/86Sr up to 0.7125, compared to a maxima of 0.706 in EM2 glasses from the Society 87 

seamounts (Fig 1; Devey et al., 1990).  The Samoan glasses can be used to place potentially 88 

unique constraints on the volatile characteristics of the EM2 end-member, provided the 89 

geochemical complexity in melts is sufficiently well understood.  Current data indicate that 90 

isotopic variation in Samoan melts result from mixing an EM2 component with a primitive 91 

component characterised by lower 87Sr/86Sr and high 3He/4He (e.g. Fig 1; Farley et al., 1992; 92 

Jackson et al., 2007). However, additional mantle components could also be present, and a 93 

previous study of volatiles (CO2, H2O, S, F and Cl) in Samoan lavas was hampered by the 94 

unresolved presence of assimilated seawater (Workman et al., 2006).   95 

The aim of the current study is to further elucidate the origins of halogens and water 96 

in Samoan melts.  This is achieved by analysing the scarcest halogens Br and I, in addition to 97 

Cl and F, and extending the volatile database to include the most enriched glasses now 98 

available (Jackson et al., 2007).  The new data are of particular interest because iodine is an 99 

essential element for life that has a high abundance in organic-rich marine sediments and has 100 

previously been suggested as a possible marker for subducted sedimentary components in the 101 

mantle (Deruelle et al. 1992).   We have already shown that the enriched mantle reservoirs 102 

sampled by the Society and Pitcairn seamounts have MORB-like I/Cl (Kendrick et al., 2012a; 103 

2014a); however, we deemed the current study necessary to test if the more strongly enriched 104 

Samoan melts with exceptionally high 87Sr/86Sr (Fig 1) might be characterised by more 105 

elevated I/Cl ratios.  In addition, multi-element correlations between F, Cl, Br, I, H2O and 106 

incompatible trace elements such as K enable us to rigorously evaluate possible seawater 107 

assimilation processes (Kendrick et al., 2013a).  We demonstrate that Samoan melts 108 

assimilated variable amounts of high salinity brine(s), and we use a quantitative mixing 109 
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model to correct the measured H2O and Cl abundances for assimilation, thus providing 110 

improved constraints on mantle-derived H2O and Cl in all of the samples investigated.  111 

 112 

2. Samples and methodology  113 

The samples selected for the current study include: i) nineteen pristine glasses from 114 

Samoan volcanoes in the SW Pacific, including fourteen samples previously characterised by 115 

Workman et al. (2006); ii) palagonite separated from a Samoan glass, and iii) two pristine 116 

glasses from Baffin Bay, Canada.    117 

The Samoan glasses were all dredged from water depths of between 780 and 4400m. 118 

The majority of samples were recovered during the 1999 AVON2/3 cruise of RV Melville 119 

from the Vailulu’u, Malumalu and Ta’u volcanoes at the eastern end of the Samoan chain 120 

(Fig 2; Workman et al., 2004; 2006).  The Vailulu’u volcano represents the current 121 

expression of the Samoan hotspot and U-series and 40Ar-39Ar dating indicate the samples 122 

from Vailulu’u, Malumalu and Ta’u have ages of between ~100 yrs and ~0.3 Ma 123 

(McDougall, 2010; Hart et al., 2000; Sims et al., 2008; Workman et al., 2006).  Additional 124 

samples recovered during the AVON2/3 cruise and the 2005 ALIA cruise of RV Kilo Moana 125 

(Jackson et al., 2007; Koppers et al., 2008; 2011), were selected from the more westerly Muli 126 

and Taumatau volcanos for this study.  Sample 128-21 recovered from Taumatau, at the 127 

western termination of the Samoan chain, has an age of 4.8 Ma (Fig 2; Koppers et al., 2008), 128 

and the highest 87Sr/86Sr of any glass yet recovered from Samoa (Jackson et al., 2007).    129 

The palagonite alteration separated from the surface of ALIA-104-04 glass was 130 

analysed to test if significant halogens are incorporated into altered glass and therefore if 131 
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undetected alteration of magmatic glasses could significantly influence our results (cf. 132 

Kendrick et al., 2012b; 2013a).    133 

The Baffin Bay glasses which sample the proto-Icelandic plume, are ~60 Ma and 134 

were selected from coastal outcrops, their eruption depths are unknown but pillow textures 135 

suggest subaqueous conditions (Jackson et al., 2010; Robillard et al., 1992; Kent et al., 2004).  136 

These glasses are related to the picrites that preserve the highest measured terrestrial 3He/4He 137 

ratio of ~50 Ra in olivine phenocrysts (Starkey et al., 2009; Stuart et al., 2003). They have 138 

primitive Pb isotope signatures and primitive 3He/4He up to 24 Ra, that are probably lower 139 

than the picrites because of their low He concentrations and radiogenic ingrowth of 4He over 140 

the ~60 Ma since eruption (discussion in Jackson et al., 2010).  These samples were selected 141 

to test if high 3He/4He glasses from Baffin Bay and Samoa have similar and unique Br/Cl and 142 

I/Cl ratios characteristic of high 3He/4He reservoirs within Earth’s mantle (see also Kendrick 143 

et al., 2013a).   144 

Analyses undertaken for this study include: i) Cl, Br, I and K measurements on all 145 

Samoan and Baffin samples conducted using the noble gas method utilising irradiation-146 

produced noble gas proxy isotopes (38ArCl, 80KrBr, 128XeI and 39ArK; Kendrick, 2012).  147 

Pristine glass fragments (0.4-2 mm in size) were hand-picked under a binocular microscope 148 

and cleaned using distilled water and acetone.  10-30 mg of each sample was then irradiated 149 

in either position 5c of the McMaster nuclear reactor, Canada (irradiation UM#48; 15th 150 

December 2011; 42 hours; total neutron fluence of 1.2×1019 neutrons cm-2; thermal/fast = 151 

2.7); or in the Central Thimble facility of the USGS Triga reactor, Denver, USA (irradiation 152 

UM#53; 28th November 2012; 80 hours; total neutron fluence of 6.4×1018 neutrons cm-2; 153 

thermal/fast = 0.8).    154 
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Irradiation produced noble gas proxy isotopes were extracted from the samples by 155 

heating in an ultra-high vacuum tantalum resistance furnace. Palagonite was analysed in 20 156 

minute heating steps at temperatures of 300 °C and 1500 °C, because up to 50% of the 157 

halogen-derived noble gases in palagonite are released at 300 °C.  In comparison, noble gases 158 

are only released from glasses at >500 °C (Kendrick et al., 2012a) and the glasses were 159 

preheated to 300 °C before being fused in single 20 minute heating step at 1500 °C.  The 160 

extracted gases were purified by standard gettering procedures and analysed with the MAP-161 

215 noble gas mass spectrometer at the University of Melbourne (see Kendrick, 2012 or 162 

Kendrick et al., 2013a for details).   163 

Noble gas proxy isotopes were converted to Cl, Br, I, K and Ca abundances on the 164 

basis of 38ArCl/Cl, 80KrBr/Br, 128XeI/I, 39ArK/K and 37ArCa/Ca production ratios monitored with 165 

the Hb3gr 40Ar-39Ar flux monitor (1072 Ma; Roddick, 1983) and three scapolite standards 166 

(Kendrick, 2012; Kendrick et al., 2013a).  The reported concentrations were cross-checked 167 

with electron microprobe Cl, K and Ca determinations undertaken at the University of 168 

Melbourne (see Table S1; Kendrick et al., 2014a).  Halogen concentration and ratio 169 

measurements have internal precision as high as 1-2% (2σ; Table S1).  However, 170 

standardisation limits 2σ reproducibility between irradiations to the 5% level for Br and 10 % 171 

for I (Fig S2), and the external precision is estimated at 10% for all elements (see Kendrick, 172 

2012 and Kendrick et al., 2013a for detailed discussion).    173 

SIMS measurements of H2O, CO2, S, F and Cl in three new samples (77-09, 104-04 174 

and 128-21) were undertaken at the Department of Terrestrial Magnetism, Carnegie Institute 175 

of Washington, using a Cameca IMS 6F ion microprobe, following procedures comparable to 176 

those of Workman et al. (2006).   Several glasses from dredges 71, 77, 78, 79, 104 and 128 177 

were analysed by electron microprobe and laser ablation inductively coupled plasma mass 178 
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spectrometry at the University of Melbourne.  The operating conditions of the Cameca SX-50 179 

electron microprobe included an accelerating voltage of 15 keV, current of 30 nA and 20 sec 180 

counting times, which gave a detection limit of 260 ppm for Cl.   The Agilent 7700x ICP-MS 181 

is coupled to a 193 nm excimer laser.  The glasses were analysed using a beam diameter of 182 

~80 μm and BHVO2G as the calibration standard: BCR2G, analysed as an unknown, gave 183 

reproducible results close to recommended values (Table S1).  Typical analytical conditions 184 

have been described in detail elsewhere (Woodhead et al., 2007). 185 

 186 

3. Results 187 

The new volatile, trace and major element data for Samoan and Baffin glasses are 188 

summarised together with representative data from the literature in Table 1 and presented 189 

with the standard data in the electronic supplement (Table S1; Fig S2).   190 

The Samoan glasses represent alkali basalts and trachy-basalts, they contain 45.2 to 191 

48.2 wt. % SiO2, 3.4 to 6.1 wt. % total alkalis (Na2O + K2O), and 6.5 to 4.0 wt. % MgO. The 192 

Baffin glasses are basalts with ~49 wt. % SiO2, ~2.2 wt. % alkalis (Na2O + K2O), and ~8.5 wt. 193 

% MgO (Table S1; Kent et al., 2004; Workman et al. 2006). 194 

The Samoan glasses have 4 to 200 ppm CO2 but are strongly enriched in incompatible 195 

trace elements with 0.6 to 1.7 wt. % K.  They have water concentrations of 0.67-1.9 wt. % 196 

H2O, and halogen concentrations of 490-1790 ppm Cl, 1.9-7.2 ppm Br, 19-130 ppb I and 197 

900-1900 ppm F (Fig 3; Table 1).   In contrast, the Baffin glasses have much lower 198 

concentrations of incompatible trace elements and volatiles with ~0.1 wt. % K, 70-80 ppm 199 

Cl, 130-240 ppb Br and 3-6 ppb I (Fig 3; Table 1).  The low halogen content of the Baffin 200 

glasses is unlikely to be explained by degassing because the Cl concentrations are at the 201 

Commented [MK1]: Standard data for BCR2G are in Table 1, 
halogen standards are shown in Fig S2 
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upper end of the range determined for melt inclusions in related samples (Maisonneuve, 202 

2012) and the glasses have normal K/Cl ratios of 13-20 (Cl/K = 0.05-0.08) that do not 203 

suggest Cl loss.  204 

The concentrations of Cl, Br and I vary over more than two orders of magnitude 205 

between the Baffin and Samoan samples (Fig 3).  The majority of samples have I/Cl within 206 

the range of [60 ± 30]×10-6 that is typical of OIB and MORB glasses (Fig 3c; see Kendrick et 207 

al., 2013a). In contrast, the Samoan samples with the highest Cl concentrations have 208 

unusually high Br/Cl ratios of up to 4.3×10-3; these values exceed the range of [2.8 ± 0.6]×10-209 

3 (2σ) defined by 55 MORB and OIB glasses from other locations analysed by the same 210 

technique (Kendrick et al., 2013a), and 45 glasses analysed in other laboratories (Jambon et 211 

al., 1995; Schilling et al., 1980), that are collectively considered typical of the mantle (Fig 212 

3b).  The highest K/Cl of 18 (Cl/K = 0.06) determined for the Samoan samples is fairly 213 

typical of mantle values defined by a global database of 566 submarine glasses (Fig S3; 214 

Michael and Cornell, 1998; Kendrick et al., 2012b), but the samples with the highest Cl 215 

concentrations have low K/Cl of 5.7 (Cl/K = 0.17) and the lowest measured F/Cl of 0.5 (Figs 216 

3ad). 217 

The palagonite separated from sample 104-04 has concentrations of 35 ppm Cl, 200 218 

ppb Br, 85 ppb I and 0.09 wt. % K, which indicate that it is depleted in Cl, Br and K by ~7-30 219 

times, and enriched in I by ~5 times, compared to pristine glass from this sample (Table 1).  220 

As a result, the palagonite has an I/Cl ratio of 2400×10-6 that is 140 times greater than the 221 

unaltered glass (Table S1).  The high concentration of I in palagonite confirms that the I/Cl 222 

ratio of a glass separate could be influenced by the presence of undetected palagonite 223 

contaminants, or incipient alteration (Kendrick et al., 2013a); however, it is important to note 224 

that minor contamination is unlikely to significantly influence the Br/Cl or K/Cl ratios.     225 

Commented [MK2]: This section makes it clearer than the basis 
for ‘mantle’ halogen ratios is 55 MORB and OIB glasses 
 
Consistent with many more from Jambon and Schilling – but 
thesestudies had different standards. 
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The purity of our glass separates was tested by performing duplicate analyses of glass 226 

separated from samples 76-08 and 78-01, that were both strongly affected by palagonite 227 

alteration of the rims.  Similar results were obtained for 76-08-a and 76-08-b (Tables 1 and 228 

S1), confirming efficient removal of contaminating material and demonstrating that the 229 

iodine data are reliable for the majority of samples that were more easily prepared as high 230 

purity glass separates (Table 1).  In contrast, duplicates of 78-01 gave significantly different 231 

results for I/Cl, which confirms the sensitivity of this measurement to minor contamination.  232 

In this case 78-01-a with an I/Cl ratio of 90×10-6 is considered most representative of the melt 233 

(Table 1), and the higher I/Cl of 270×10-6 obtained for 78-01-b is ascribed to contamination 234 

and has been omitted from the figures for clarity (Table 1).    235 

 236 

4. Discussion 237 

The H2O and halogen content of the Samoan glasses is partly controlled by the mantle 238 

source; however, before evaluating the volatile systematics of the source we must first 239 

determine the extent to which these volatiles have been modified by shallow level processes 240 

including fractional crystallisation, degassing and seawater assimilation. 241 

4.1 Magma degassing and assimilation of seawater components 242 

 The Samoan glasses have vesicularities of 1 to 30 vol. % and low CO2 concentrations 243 

of 4-230 ppm that provide evidence for degassing (see Fig 4; Table 1; Workman et al., 2006).   244 

The combined H2O and CO2 data indicate that many of the melts were in equilibrium with a 245 

H2O-rich vapour phase (shown by the isopleths in Fig 4a).  However, the glasses are 246 

suggested to preserve water concentrations close to their pre-degassing values because: i) 247 

very little H2O is lost during open system degassing (Fig 4a); and ii) the equilibrium vapour 248 

phase in samples 68-03 and 73-03 (erupted at the shallowest depths of ~1000 m, with 249 

Commented [MK4]: This paragraph has been shortened and 
moved forward from the discussion – we did perform some 
duplicate analyses 
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vesicularities of 5-20 vol. %), is calculated to contain only 0.01-0.05 wt % H2O, thus 250 

demonstrating that the low water content of these samples (0.7 wt. %; Fig 4) cannot be 251 

explained by closed system degassing (Workman et al., 2006; this study).  Complex multi-252 

stage degassing scenarios are possible; however, we demonstrate below that the majority of 253 

Samoan melts were more strongly influenced by H2O added through assimilation processes 254 

than by H2O lost during degassing.   255 

 In the absence of significant H2O degassing, the concentration of H2O, as well as 256 

incompatible trace elements such as K and Cl, are expected to vary in the Samoan melts as a 257 

result of partial melting, mixing isotopically distinct components in the mantle source, and 258 

subsequent fractional crystallisation (Fig 5).  The liquid lines of descent (LLD) in Fig 5 were 259 

modelled with Petrolog3 (Danyushevsky and Plechov, 2011) by progressively removing 260 

olivine, pyroxene, plagioclase, ilmenite and magnetite, assuming K, Cl and H2O are all 261 

perfectly incompatible (Fig 5).   The Samoan volcanoes sample multiple magma batches and 262 

the concentrations of K, H2O and Cl in the mantle end-members are not known. However, it 263 

is significant that, in contrast to K and H2O, Cl does not follow the expected broad trend 264 

toward higher concentrations in the more evolved melts (Fig 5).  The lack of a relationship 265 

between Cl and MgO, together with the low K/Cl of Cl-rich glasses (Fig 2a and 4; K/Cl of 266 

<10 or Cl/K of >0.1), could be explained if some of the melts assimilated seawater-derived Cl 267 

(e.g. Coombs et al., 2004; Kendrick et al., 2013a; Kent et al., 1999; 2002; le Roux et al., 268 

2006; Michael and Cornell, 1998; Michael and Schilling, 1989).    269 

Possible assimilation processes are evaluated in Fig 6 by examining F, Cl, Br, I, H2O 270 

and K co-variation in three element diagrams that use Cl as a common denominator.  This 271 

method of plotting the data is advantageous for this purpose because mixing trends are 272 

revealed as straight lines (Fig 6). The binary mixing trends in Fig 6 are interpreted to result 273 

Commented [MK5]: This caveat is added to address reviewer 1 
comments – we have not fitted a curve to the data the LLD are to 
illustrate melt evolution which applies regardless of batch. 
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from mixing mantle-derived halogens and halogens introduced by an assimilated brine 274 

because:  275 

i) Extrapolation of the data suggests that one end-member has the 276 

characteristics of a brine including: 1) low H2O/Cl that indicates a high 277 

salinity; 2) low K/Cl of <0.2 that is required to maintain charge balance in a 278 

Cl- dominated, Na+, Ca++, Fe++, K+ brine; and 3) low F/Cl ratio that would 279 

result from the low solubility of F in a seawater-derived Ca- (± P-) bearing 280 

aqueous solution (Fig 6; Seyfried and Ding, 1995).  In contrast, the second 281 

end-member has K/Cl, H2O/Cl, Br/Cl and I/Cl ratios similar to those defined 282 

as representative of the mantle in several previous studies of submarine 283 

MORB and OIB glasses (Jambon et al., 1995; Schilling et al., 1978, 1980; 284 

Michael and Cornell, 1998; Kendrick et al., 2012ab; 2013a; 2014a). 285 

ii) The variations in Br/Cl, K/Cl, F/Cl and H2O/Cl are not correlated with 286 

87Sr/86Sr (or 3He/4He), which is the expected result of assimilating brines 287 

with very high concentrations of Cl, and low concentrations of Sr, relative to 288 

the melts (Kendrick et al., 2013a).  In contrast, correlations between K/Cl 289 

and 87Sr/86Sr, or Br/Cl and 87Sr/86Sr, might be expected if the variation was 290 

intrinsic to the mantle or related to subduction recycling (e.g. Stroncik and 291 

Haase, 2004; Kendrick et al., 2012a; 2014a).   292 

iii) Similar mixing trends have been observed in MORB previously and are 293 

therefore unrelated to subduction but can be explained by brine assimilation 294 

(Kendrick et al., 2013a). 295 

iv) The samples closest to the suggested brine end-member come from the 296 

Vailulu’u volcano which is the most hydrothermally active of the Samoan 297 

Commented [MK6]: This section is organised differently, the 
brine characteristics are listed prominently. 
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volcanos investigated (Staudigel et al., 2004), and therefore a likely location 298 

for magmas to assimilate hydrothermal brines.   299 

v) The lack of a correlation between Cl and MgO provides independent 300 

evidence that the melts have assimilated seawater-derived Cl in some form 301 

(Fig 5). 302 

The good fit of the mixing model to halogen data for glasses from 5 different 303 

volcanoes that erupted from ~100 yrs to 5 Ma is extremely significant (Fig 6).  It suggests 304 

that over the last 5 Ma, all the Samoan volcanoes have had sources characterised by similar 305 

Br/Cl, I/Cl, F/Cl, H2O/Cl and K/Cl ratios and that the magmas have been affected by 306 

remarkably uniform assimilation processes (section 4.1.1).   This observation is consistent 307 

with the uniformly high salinity of brines (55 ± 15 wt. % salts) assimilated by magmas 308 

exhibiting anomalously high Cl concentrations at other mid-ocean ridge and oceanic island 309 

settings investigated for Cl assimilation processes (see Fig 8 of Kendrick et al., 2013a; data of 310 

Coombs et al., 2004; Kent et al., 1999; 2002; le Roux et al., 2006; Wanless et al., 2011).  As a 311 

point of comparison, assimilation of Cl at both Samoan and Hawaiin volcanoes appears to be 312 

related to location (Dixon and Clague, 2001), and in contrast to some previous studies, there 313 

is no evidence that the most evolved melts have assimilated the highest proportion of Cl (Fig 314 

5; cf. Wanless et al., 2011).   315 

 316 

4.1.1 Brine characteristics and origin 317 

Hydrothermal vent fluids typically have K/Cl of <0.05 and F/Cl of <0.0001 that are 318 

close to the seawater values of 0.02 and 0.00007, respectively (Li and Schoonmaker, 2003; 319 

Mottl et al., 2011).  As already mentioned, a low K/Cl ratio is required to maintain charge 320 

balance in a seawater-derived Na-Ca brine (Vanko, 1988), and a low F/Cl ratio is expected 321 

Commented [MK7]: This is important supporting evidence 
assimilation has occurred. 
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because of fluorine’s uptake by minerals and low solubility in aqueous fluids (e.g. Frohlich et 322 

al., 1983; Seyfried and Ding, 1995).   The salinity of vent fluids is variable, and typically in 323 

the range 1-8 wt. % salts (Oosting and von Damm, 1996; Fontaine et al., 2007), but much 324 

higher salinity fluids with up to 60 wt. % salt are preserved in fluid inclusions from deeper 325 

greenschist-amphibolite facies environments in the oceanic crust (Vanko, 1986; 1988; Kelley 326 

et al., 1993).  Therefore, the uniformly high salinity of the brines (55 ± 15 wt % salt) 327 

assimilated by magmas from several different Samoan volcanoes (Fig 6), and other seafloor 328 

locations (see Kendrick et al., 2013a data of Wanless et al. 2011, Coombs et al., 2004; Kent 329 

et al, 1999; 2002; Le Roux et al., 2006), suggests that: i) assimilation may be restricted to 330 

high salinity brines by the relative solubilities of Cl and H2O in silicate melts; and ii) 331 

assimilation is more likely to occur at depths of >2-3 km in the crust rather than on the 332 

seafloor (see also Coombs et al., 2004; Kendrick et al., 2013a; le Roux et al., 2006). 333 

The Br/Cl and I/Cl ratios of the melts do not fit the binary mixing model in Fig 6 as 334 

well as the K/Cl, F/Cl and H2O/Cl ratios.  This is not explained by analytical uncertainty 335 

which is at the 2-8 % level (2σ) for both Br/Cl and I/Cl (Table S1).  Palagonite contamination 336 

(or incipient alteration of the glasses) has the potential to influence the glasses’ I/Cl ratios; 337 

however, the low concentrations of Cl and Br in palagonite indicate that its presence would 338 

have a negligible effect on Br/Cl ratios (section 3; Table 1).   Therefore we suggest that the 339 

quality of fit for both Br/Cl and I/Cl in our mixing model (Fig 6) is influenced by variation of 340 

these ratios in the assimilated brines. This is possible because whereas K/Cl, F/Cl and H2O/Cl 341 

are all fixed by requirements of solubility and charge balance, Br and I are highly soluble 342 

trace constituents. As a result the Br/Cl and I/Cl ratios of brines behave as essentially free 343 

variables. The mixing model indicates that, on average, the Samoan melts assimilated brines 344 

with Br/Cl of ~0.005, that were about 40 % higher than seawater, and I/Cl ratios that were on 345 

average about ten times seawater (Fig 6c,d and e).    346 
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A previous study of magmatic glasses demonstrated that, as in Samoa, brines 347 

assimilated by melts from the Galapagos Spreading Centre and the NW part of the Lau Basin 348 

had Br/Cl ratios 10’s of percent higher than seawater (Kendrick et al., 2013a). However, in 349 

contrast to Samoa, these glasses preserved I/Cl ratios closer to the seawater value (Kendrick 350 

et al., 2013a).  The data available for vent fluids demonstrate that fluid interaction with I-rich 351 

organic matter present in marine sediments elevates the I/Cl ratios, and to a lesser extent 352 

Br/Cl ratios, of some vent fluids above seawater values (Campbell and Edmund, 1989; You et 353 

al., 1994; Kawagucci et al., 2011). The majority of vent fluids preserve seawater-like Br/Cl 354 

(e.g. von Damm et al., 1997; Seyfried et al., 2003); however, lower than seawater Br/Cl ratios 355 

are known from condensed vapour phases (~1 wt % salt) emitted at 9-10° N on the East 356 

Pacific Rise (Oosting and von Damm, 1996).    357 

It is concluded that the elevated I/Cl ratios inferred for the Samoan brines are 358 

consistent with a fluid history involving interaction with sediments. A number of processes 359 

may have contributed to the elevated Br/Cl ratios of the brines including fluid interaction 360 

with sediments, and partitioning of H2O>Cl>Br into hydrous alteration minerals such as 361 

amphibole (Fig 6; Kendrick et al., 2013a).  It remains unclear if high salinity brines formed 362 

by phase separation under specific conditions might also be enriched in Br/Cl relative to the 363 

vapour phase (Oosting and von Damm, 1996; Berndt and Seyfried, 1997; von Damm et al., 364 

1997; Liebscher et al., 2006; Foustoukos and Seyfried, 2007).  However, sub-critical 365 

seawater would boil when heated to magmatic temperatures during assimilation, with the 366 

likely result that vapour phases would be preferentially vented on the seafloor, and the dense 367 

residual brines would be preferentially assimilated by the magma (Fig 6; Kendrick et al., 368 

2013a) and/or retained in the lower crust (e.g. Bischoff and Rosenbauer, 1989). 369 

If brine assimilation occurred at depths of >2 km beneath the seafloor as suggested, 370 

then the preservation of the mixing trends in Fig 6 is consistent with the suggestion that very 371 
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little H2O was lost during degassing of CO2 from these melts (Fig 4a; Table 1).  Sample 128-372 

21 with only 4 ppm CO2 (Fig 4a), lies on the mixing lines in Figs 6b and 6d, suggesting 373 

minimal H2O loss occurred (Fig 4a).  The Vailulu’u samples show scatter in H2O/Cl; 374 

however, the samples recovered from ~1000 m in dredges 70 and 73 (Table 1) include both 375 

the lowest and highest H2O/Cl ratios, suggesting the scatter is unrelated to degassing (Fig 6a). 376 

The preservation of the mixing trends also suggests ratios of incompatible elements (e.g. 377 

Br/Cl, I/Cl, F/Cl, H2O/Cl) were not significantly altered by fractional crystallisation of the 378 

Samoan magmas after assimilation (Fig 6).   379 

 380 

4.2 Samoan mantle source characteristics 381 

The mixing model in Fig 6 enables the amount of H2O and Cl introduced into the 382 

Samoan magmas by brine assimilation to be quantified. The calculations can be undertaken 383 

using any ratio that differs between the mantle and brine and 10% increments of the total Cl 384 

are shown on each of the mixing lines in Fig 6 with the associated uncertainties summarised 385 

for individual samples in Table 1.  The Br/Cl data are important because this ratio exhibits 386 

limited variation in the mantle (0.0028 ± 0.0006 (2σ); Kendrick et al., 2013a; 2014a), 387 

suggesting the least contaminated Samoan samples with Br/Cl of 0.0029 lie close to the 388 

mantle end-member (Fig 6).  In comparison, the Br/Cl of the brine obtained from the 389 

regression of data in Fig 6c (0.0046 ± 0.004; 2σ), is about twice the mantle value.  In contrast, 390 

hydrothermal fluids have F/Cl of <<0.01 (Seyfried and Ding, 1995; Li and Schoonmaker, 391 

2003), which is many times lower than the  maximum F/Cl of 2.3 measured in a Samoan 392 

glass (Fig 6a).  As a result, mixing calculations based the F/Cl ratio, using conservative 393 

estimates for the brine (0.01000 ± 0.00999) and mantle (2.4 ± 0.5) end-members (Fig 6a), 394 
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give results that are more precise but indistinguishable from similar calculations undertaken 395 

with the Br/Cl data (cf. samples 76-08-a and 76-08-b in Table 1).  396 

The mixing calculations indicate that sample 75-10 with the highest measured F/Cl 397 

ratio assimilated between zero and 26% of its total Cl, and the other T’au samples from 398 

dredges 74 and 75 probably also assimilated very little Cl (Table 1).  In comparison, samples 399 

68-03, 71-02, 71-11, 71-13, 71-22 and 76-11 are estimated to have assimilated about 70% of 400 

their total Cl (Table 1).  The quantitative mixing model developed here indicates that water 401 

assimilation is more significant than was previously recognised on a qualitative basis (cf. 402 

Workman et al., 2006).  However, the proportion of the H2O assimilated by the T’au magmas 403 

is close to zero and probably accounts for a maximum of 20-30 % of the total H2O in samples 404 

68-03 and 73-03 (Table 1).   In absolute terms, the T’au melts are estimated to have 405 

assimilated up to a few hundred parts per million of brine and sample 71-02 is estimated to 406 

have assimilated 0.45 ± 13 wt. % brine (Table 1).  Based on reasonable estimates for the 407 

densities of brine (1.3-1.4 g cm3) and melt (2.6-2.7 g cm3), this is equivalent to a maximum of 408 

8 or 9 cm3 of brine being assimilated by a litre of magma (Fig 6; Table 1). 409 

The assimilation-corrected H2O/Ce and Cl/K ratios of Samoan melts are plotted 410 

together with the measured F/Nd ratio, which is not influenced by brine assimilation, as a 411 

function of 87Sr/86Sr in Fig 7.  Note that each ratio represents an element pair of similar 412 

compatibility, and that Cl/K is used in preference to K/Cl to enable comparison of 413 

volatile/lithophile pairs expressed in the same format (whereas K/Cl provides a common 414 

denominator in Fig 6).  The MORB mantle has H2O/Ce of 150-300 (e.g. Michael, 1995) and 415 

F/Nd of 20 ± 6 (Workman et al., 2006), but as a result of unresolved seawater assimilation, its 416 

Cl/K is less well defined (Michael and Cornell, 1998): we adopt a Cl/K of 0.05-0.1 that 417 

encompasses the median value of previous MORB analyses (0.08 ± 0.01), but it should be 418 

noted that MORB can have much lower Cl/K values (see Fig S3).   419 
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 The assimilation-correction reduces the measured H2O/Ce ratio by 0-30 %, which has 420 

a minor impact on the interpretation of the H2O data (Fig 7a; Table 1; Workman et al., 2006). 421 

In contrast, the assimilation correction has a profound effect on the Cl/K data reducing 422 

measured Cl/K ratios from maxima of 0.17-0.18 to assimilation-corrected values of ~0.05 423 

(Figs 7b; Table 1).  The mean assimilation-corrected Cl/K of 0.05 ± 0.02 (2σ) is controlled by 424 

the binary mixing model used to correct the data (Fig 6), and the scatter of the data around 425 

the mean corrected Cl/K value therefore reflects the fit quality of the model (Fig 6).  The 426 

modelling indicates that most of the variation in Cl/K (or K/Cl) measured in Samoan glasses 427 

results from brine assimilation (Fig 6); however, the fit quality means that minor systematic 428 

variation in the Cl/K of the Samoan source is not precluded (Fig 7b).   429 

In general, the model indicates the Samoan source has lower H2O/Ce and Cl/K than 430 

median MORB, but F/Nd at the high end of the MORB range (Fig 7).   Therefore, despite 431 

their overall trace element and volatile enrichment, the Samoan, Society and Pitcairn EM 432 

magmas are all depleted in H2O and Cl, but not F, compared to median MORB and lithophile 433 

elements of similar compatibility (Kendrick et al., 2014a).   A relative depletion of Cl as well 434 

as H2O may therefore be a characteristic of EM reservoirs (Fig 7; Dixon et al., 2002, Wallace, 435 

2002; Stroncik and Haase, 2004; Kendrick et al., 2014a).  However, pooling the data from 436 

Society, Pitcairn and Samoa which extends to the highest 87Sr/86Sr (Fig 1), suggests that the 437 

H2O/Ce and Cl/K ratios are not strongly correlated with 87Sr/86Sr (Fig 7; cf. Workman et al., 438 

2006), and/or that part of the Samoan source probably has higher H2O/Ce and Cl/K at any 439 

given 87Sr/86Sr than either the Pitcairn or Society sources (Fig 7).   440 

 Finally, the five Samoan glasses least affected by brine assimilation (samples 74-02; 441 

75-02; 75-10; 77-09 and 128-21) include sample 128-21 with the highest 87Sr/86Sr of 0.7125, 442 

and sample 75-02 with a 3He/4He of 15 R/Ra (Table 1) that represent the EM2 and primitive 443 

components of the Samoan plume, respectively (Fig 1; Jackson et al., 2007).   The Br/Cl and 444 
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I/Cl ratios of these samples are similar to the Baffin Bay sample with 3He/4He of 24 R/Ra 445 

(Table 1) and other MORB and OIB samples, suggesting that all these mantle reservoirs have 446 

Br/Cl and I/Cl ratios similar to the MORB range (Fig 8; Kendrick et al., 2013a; 2014a). This 447 

conclusion is further supported by the mixing systematics of Br/Cl and I/Cl in glasses with 448 

3He/4He of 16-28 Ra from the NW part of the Lau Basin (Kendrick et al., 2013a).   449 

4.3 Implications for the global volatile cycling 450 

The apparent uniformity of Br/Cl and I/Cl in the Earth’s mantle (Fig 8; I/Cl = 0.00006 451 

± 0.00003) reflects the similar compatibilities of these elements in the mantle (e.g. Schilling 452 

et al., 1980; Balcone-Boissard et al., 2010; Kendrick et al., 2012b), and is in stark contrast to 453 

the behaviour of these elements in Earth’s surface reservoirs and subduction zones.  The 454 

Br/Cl ratio varies by more than an order of magnitude in the surface reservoir and I/Cl is even 455 

more variable (e.g. Holser, 1979; Muramatsu and Wedepohl, 1998; Kendrick et al., 2013b). 456 

Seawater has an I/Cl ratio of 0.000003 that is ~10,000 times lower than the maximum values 457 

of ~0.03 found in some organic-rich marine sediments, sedimentary marine pore fluids and 458 

serpentinites (Kendrick et al., 2013b; John et al., 2011; Muramatsu and Wedepohl, 1998; 459 

Muramatsu et al., 2001; Snyder et al., 2005).    460 

The uniformly low I/Cl of the mantle (0.00006 ± 0.00003) compared to the maximum 461 

of ~0.03 in sedimentary rocks and serpentinites, could be simply explained if halogens are 462 

not significantly recycled into the mantle, and halogens have a dominantly primordial origin 463 

in the mantle (Schilling et al., 1978).  However, it is increasingly recognised that a significant 464 

portion of the volatiles entering subduction zones could be deeply subducted into the mantle 465 

(e.g. Jacobsen and van der Lee, 2006; Walter et al., 2011). Furthermore, the non-radiogenic 466 

noble gas isotopes in the mantle are now believed to have a dominantly subducted 467 

atmospheric origin (cf. Porcelli and Wasserburg, 1995; Sarda et al., 1999; Sarda 2004; 468 
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Trieloff et a., 2000; Holland and Ballentine, 2006), implying that subduction of other 469 

seawater-derived volatiles is likely.     470 

Estimated rates of Cl subduction in sediments, altered ocean crust and serpentinites 471 

are more poorly defined than Cl outputs through volcanism and it is unclear from the existing 472 

data if there is a net flow of Cl into the mantle, or a net flow of Cl out of the mantle, at the 473 

present day (cf. Table 2; Schilling et al., 1978; Ito et al., 1983; Sharp and Barnes, 2004; Sano 474 

et al., 2008; Barnes and Cisneros, 2012).  The scenario in Table 2 demonstrates that contrary 475 

to early assumptions, net subduction of Cl is possible, if Cl and other volatiles are 476 

inefficiently lost through magmatic arcs.  In this scenario, we envisage that deeply subducted 477 

Cl would be stored in cold deep reservoirs within the slab, such as serpentinites, that can be 478 

subducted beyond magmatic arcs (Schmidt and Poli, 1998; Green II et al., 2010). The 479 

subducted Cl would then be incrementally lost into mantle reservoirs beyond the arc, with 480 

perhaps ~1-10 % of the initial Cl concentrated with other trace elements in the EM source 481 

(Kendrick et al. 2014b).  This figure is comparable to the proportion of subducted H2O 482 

estimated to reach the EM source (Dixon et al., 2002).  Higher efficiencies of Cl loss through 483 

the arc are of course possible, if balanced by significant reductions in the input flux, or 484 

increases in the arc magma Cl flux (cf. Table 2).  However, the net flow of Cl is more likely 485 

to have been into the mantle, in the past, if primordial heavy halogens (like noble gases), had 486 

very low abundances as a result of catastrophic outgassing early in Earth’s history (Tolstikhin 487 

et al., 2014), or if volatiles were introduced to Earth in a late veneer post-dating accretion of 488 

the mantle (Wӓnke, 1981; Deruelle et al., 1992; Javoy, 1997; Bonifacie et al., 2008; Holland 489 

et al., 2009). 490 

The relative uniformity of mantle Br/Cl and I/Cl (Fig 8) can be reconciled with 491 

significant Cl subduction in the following ways: one possibility is that the subduction of Cl in 492 

sedimentary rocks and serpentinites with high I/Cl is balanced by subduction of altered ocean 493 
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crust, which has an unknown halogen signature but could include much lower I/Cl. 494 

Alternatively, if the altered ocean crust has Br/Cl and I/Cl overlapping the MORB range 495 

subduction of altered ocean crust could dominate the Cl subduction budget (cf. Table 2; 496 

Kendrick et al., 2014b). A second possibility is that halogens present in sediments and 497 

serpentinites with initially high I/Cl might be fractionated during subduction such that I is 498 

preferentially lost in fluids, and the minerals, fluid inclusions and grain boundaries hosting 499 

halogens in deeper slab environments acquire MORB-like Br/Cl and I/Cl ratios (cf. Kendrick 500 

et al., 2011).  A combination of these processes seems plausible because studies of eclogite 501 

facies serpentinites have shown that Cl is preferentially subducted to greater depths than Br 502 

or I (Kendrick, et al., 2011; John et al., 2011). Furthermore, halogens in subduction related 503 

fluids have I/Cl ratios that decrease across the arc from maximum values of ~0.01 in the 504 

forearc, to ~0.001 in the arc and to lower MORB-like ratios of <0.0001 in some backarc 505 

basins (Kendrick et al., 2013b; 2014b).  The alternative possibility that halogens were not 506 

subducted into the sources of the investigated back arc basin basalts (BABB) with MORB-507 

like Br/Cl and I/Cl, is not favoured by the elevated Cl/K and H2O/Ce ratios of these BABB, 508 

that demonstrate up to 90 % of their total Cl is related to subduction (Kendrick et al., 2014b).   509 

   510 

5. Summary and conclusions 511 

Submarine glasses from Samoa contain halogens derived from the mantle and introduced by 512 

assimilation of high salinity brines (e.g. 55 ± 15 wt % salts), with F/Cl of close to seawater, 513 

Br/Cl of ~0.005 that is ~40% higher than seawater, and I/Cl of ten times the seawater value.  514 

Quantitative corrections for brine assimilation show 0-70 % of the total Cl and 0-30 % of the 515 

total H2O in the Samoan melts investigated was introduced by brines accounting for up to 516 

0.45 % of the melt mass.  The preservation of the mixing trends in melts that have 517 
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experienced some degassing favours the dominance of open system degassing with minimal 518 

H2O loss. 519 

Assimilation-corrected data confirm that, despite an overall volatile enrichment, the 520 

Samoan EM2 end-member with Cl/K of 0.05 ± 0.02 (2σ) and H2O/Ce of 83 ± 3 is modestly 521 

depleted in Cl relative to K as well as H2O relative to Ce, compared to median MORB.  522 

Furthermore, the samples least affected by brine assimilation, with 87Sr/86Sr of 0.7045-523 

0.7125, have indistinguishable Br/Cl and I/Cl, within the MORB range that is currently 524 

estimated as (2.8 ± 0.6)×10-3 for Br/Cl and (60 ± 30)×10-6 for I/Cl (2σ; Kendrick et al., 525 

2013a).  The uniformity of mantle Br/Cl and I/Cl can be explained if the subduction zone 526 

‘filter’ controls the relative abundances of Cl, Br and I in deeply subducted slabs and recycled 527 

halogens have been circulated throughout the entire mantle. Differences in the Cl/K and 528 

H2O/Ce of different mantle components then reflect the efficiency and timing of slab 529 

dehydration.   530 
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Table 1. Summary of measured and assimilation-corrected volatile data for Samoan and Baffin samples 
Volcano/Location Vailulu’u  Ta’u  Malumalu 
Sample number 68-03 70-01 71-02 71-11 71-13 71-22 73-03 73-12 74-02 75-02 75-10 76-03 
Depth (bars) 100-60 150-70 440-400 440-400 440-400 440-400 100-80 100-80 250-190 270-190 270-190 280-200 

Selected volatiles1   
 

      
 

CO2 ppm  23 7 179 150 150 200 13 12 46 21 35 52 
H2O wt %  0.67 1.0 1.2 1.3 1.1 1.2 0.71 0.81 1.4 1.5 1.2 1.3 
F ppm 930 920 900 920 880 1030 1000 980 1870 1370 1230 1180 
Cl ppm 1570 1010 1790 1610 1520 1530 1600 1360 870 720 650 1610 
Br ppb 6290 3830 7230 5480 6510 6580 6600 5420 2480 2120 1890 5630 
I ppb 59 47 82 56 74 71 75 59 41 46 40 72 

Selected major and  trace elements           
MgO wt % 6.0 6.3 6.5 6.2 6.2 5.5 5.9 6.0 4.0 4.9 5.2 5.5 
K wt % 0.98 0.81 1.06 0.99 0.97 0.84 1.30 1.07 1.37 1.13 1.07 1.56 
Ce ppm 91 72 96 88 86 90 97 109 161 112 110 123 

Assimilation-correction model  (2σ uncertainties)2  
 

      
 

F/Cl *s 0.61 ± 0.7 1.0 ± 0.1 0.60 ± 0.07 0.61 ± 0.07 0.64 ± 0.07 0.61 ± 0.07 0.91 ± 0.10 0.89 ± 0.10 1.9 ± 0.2 1.9 ± 0.2 2.3 ± 0.3 1.1 ± 0.1 
Br/Cl ×10-3              
Classim ppm 1170 ± 90 590 ± 100 1350 ± 110 1210 ± 100 1120 ± 100 1150 ± 90 1000 ± 140 860 ± 120 180 ± 160 160 ± 130 20 ± 150 870 ± 180  
Clmantle ppm 390 ± 90 420 ± 100 450 ± 110 400 ± 100 400 ± 100 380 ± 90 600 ± 140 500 ± 120 690 ± 160 560 ± 130 630 ± 150 740 ± 180 
H2Oassim wt. % 0.17 ± 0.08 0.09 ± 0.04 0.20 ± 0.09 0.18 ± 0.08 0.17 ± 0.08 0.17 ± 0.07 0.15 ± 0.07 0.13 ± 0.06 0.03 ± 0.03 0.02 ± 0.02 0.00 ± 0.02  0.13 ± 0.06 
H2Omantle wt. % 0.50 ± 0.08 0.91 ± 0.04 0.98 ± 0.09 1.12 ± 0.08 0.93 ± 0.08 1.03 ± 0.08 0.56 ± 0.07 0.68 ± 0.06 1.37 ± 0.03 1.48 ± 0.02 1.20 ± 0.02 1.17 ± 0.06 
Brine wt. % 0.39 ± 0.11 0.19 ± 0.06 0.45 ± 0.13 0.40 ± 0.11 0.37 ± 0.11 0.38 ± 0.11 0.33 ± 0.10 0.28 ± 0.09 0.06 ± 0.06 0.05 ± 0.05 0.01 ± 0.05 0.29 ± 0.10 
% assim. Cl 75 ± 6 59 ± 10 75 ± 6 75 ± 6 74 ± 6 75 ± 6 62 ± 9 63 ± 9 21 ± 19 22 ± 18 3 ± 23 54 ± 11 
% assim H2O 26 ± 11 9 ± 4 17 ± 7 14 ± 6 15 ± 7 14 ± 6 21 ± 9 16 ± 7 2 ± 2 2 ± 1 0 ± 2 10 ± 5 
Cl/Kmeasured 0.16 0.12  0.17 0.16 0.16 0.18 0.12 0.13 0.06 0.06 0.06 0.10 
Cl/Kcorrected 0.04 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 
H2O/Cemeasured 74 139 123  148 128 133 73 74 87 134  109 106 
H2O/Cecorrected 55 ± 8 127 ± 6 102 ± 9 127 ± 9 109 ± 9 114 ± 8 58 ± 7 63 ± 5 85 ± 2 132 ± 2 109 ± 2 95 ± 5 

Selected isotopes1           
87Sr/86Sr 0.70540 0.70537 0.70594 0.70539  0.70547 0.70562 0.70665  0.70452 0.70453 0.70641 
3He/4He (R/Ra) 10.0  9.5 9.9  9.6    15.1   

1 – CO2, H2O and F data by SIMS, Cl, Br and I data by the noble gas method (see Table S1 for the full dataset).  Legacy data are shown in bold italics are from Workman et al. (2004; 2006); 
Jackson et al.(2007; 2010); Kent et al. (2004); the 3He/4He ratios measured by crushing are reported as R/Ra where Ra is the atmospheric 3He/4He value of 1.39×10-6.    

2 - The model parameters are derived from the measured H2O, F, Cl and Br together with the following formula: 
 % assim Cl = (X/Clmeas-X/Clmantle)/(X/Clbrine-X/Clmantle)×100, where X = Br or F; Br/ClMantle = (2.8 ± 0.6)×10-3 (Kendrick et al., 2013a); Br/Clbrine = (4.6 ± 0.4)×10-3(Fig 6c); F/ClMantle = 2.4 ± 0.5; 
and F/Clbrine = 0.01 ± 0.00999.    H2Oassim = Classim/brine salinity/0.55, where brine salinity = 55 ± 15 wt. % salts and salts have seawater composition with 55 wt. % Cl.   
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Table  1. Continued 
Volcano/Location Malumalu  Muli  Taumatau  Baffin Bay             
Sample number 76-08-a 76-08-b 76-11 77-09 78-01-a 78-01-b 79-04 104-04 

glass 
104-04 

palagonite 
128-21 100-24 100-21 

Depth (bars) 280-200 280-200 280-200 360-290 230-220 230-220 350-280 250 250 260 Submarine Submarine 

Selected volatiles1     
 

 
 

 
   

CO2 ppm 37 As for a 59 108 nd nd nd 77 nd 4 nd nd 
H2O wt % 1.2 As for a 1.2 1.9 nd nd nd 1.7 nd 1.2 nd nd 
F ppm 1240 As for a 1230 1600 nd nd nd 1030 nd 1270 nd nd 
Cl ppm 1370 1420 1620 1070 960 490 1060 1090 35 1050 79 67 
Br ppb 4890 5200 6220 3550 3470 1920 2010 3810 200 3000 240 130 
I ppb 69 62 67 70 83 133 29 19 85 93 6 3 

Selected major and trace elements 
  

    
 

   
MgO wt % 5.6 As for a 4.9 5.0 4.7 As for a 4.2 6.2 nd 6.0 8.4 8.6 
K wt % 1.34 1.39 1.40 1.49 1.73 0.92 1.61 0.62 0.09 1.60 0.10 0.14 
Ce ppm 116 As for a 120 144 186 As for a 324 91 nd 135 13 12 

Assimilation-correction model (2σ uncertainties)2 
 

  
 

 
 

   
F/Cl 0.89 ± 0.10  0.76 ± 0.08 1.7 ± 0.2    0.99 ± 0.11  1.5 ± 0.2   
Br/Cl×10-3  3.7 ± 0.1   3.6 ± 0.1 3.9 ± 0.3 1.90 ± 0.05     2.99 ± 0.05 1.92 ± 0.04 
Classim ppm 870 ± 120 690 ± 440 1110 ± 120 320 ± 180 440 ± 300 300 ± 160  640 ± 110  380 ± 160 8 ± 30  
Clmantle ppm 500 ± 120 730 ± 440 510 ± 120 750 ± 180 510 ± 300 190 ± 160  450 ± 110  670 ± 160 70 ± 30  
H2Oassim wt. % 0.13 ± 0.06 0.10 ± 0.08 0.17 ± 0.07 0.05 ± 0.03 0.07 ± 0.05 0.04 ± 0.03  0.10 ± 0.04  0.06 ± 0.03 <0.01  
H2Omantle wt. % 1.07 ± 0.06 1.10 ± 0.08 1.03 ± 0.07 1.85 ± 0.03    1.60 ± 0.04  1.14 ± 0.03   
Brine wt. % 0.29 ± 0.09 0.23 ± 0.16 0.37 ± 0.11 0.11 ± 0.07 0.15 ± 0.11 0.10 ± 0.06  0.21 ± 0.07  0.13 ± 0.06 0.00 ± 0.00  
% assim. Cl 63 ± 9 48 ± 31 69 ± 7 30 ± 17 46 ± 32 61 ± 32  59 ± 10  36 ± 15   
% assim H2O 11 ± 5 9 ± 7 14 ± 6 3 ± 2    6 ± 3  5 ± 3   
Cl/Kmeasured 0.10 0.10 0.12 0.07 0.06 0.05  0.17  0.07 0.08  
Cl/Kcorrected 0.04 ± 0.01 0.05 ± 0.03 0.04 ± 0.01 0.05 ± 0.01 0.03 ± 0.02  0.02 ± 0.02  0.07 ± 0.02  0.04 ± 0.01 0.07 ± 0.03  
H2O/Cemeasured 103  103 100 132    186  89    
H2O/Cecorrected 92 ± 5 95 ± 7 86 ± 6 129 ± 2    176 ± 5  83 ± 3   

Selected isotopes1    
    

 
   

87Sr/86Sr 0.70637 As for a 0.70720 0.70726 0.70890 As for a 0.70490 0.70483  0.71250 0.70322 0.70381 
3He/4He (R/Ra)    10.6 8.1 As for a  15.3   23.8 9.0 
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Table 2. A possible Cl budget favouring net Cl subduction 

 Thickness 
km 

Rock 
109 kg a-1 

Cl 
2ppm 

Cl 
109 kg a-1 

Input1     
Sediments 0.5 4 600 2 
Altered Ocean Crust (AOC) 6 52 150 8 
Serpentinite (20 %) 3 4 1200 5 

40 % lost during arc magmatism*, supply to arcs (R)3 = 6 
Net input to deeper mantle = 9 

Output     
Mid-ocean ridge (MORB) ~6 48 100 5 
Oceanic Island (OIB) - 4 300 1 
Volcanic Arc (M + R)3 - 6 1200 7 

Output from mantle through arc (M) = 1 
Net output from mantle = 7 

Notes: 1) AOC (kg) = MORB + OIB (kg); (cf. Schilling et al., 1978; Ito et al., 1983); serpentinites and sediments (kg) are scaled to AOC based on  relative 
thicknesses; 2) Cl concentrations assume AOC>MORB; Ito et al. 1983; Sharp and Barnes, 2004; Bonifacie et al., 2008; Sano et al., 2008; Barnes and Cisneros, 
2012; Kendrick et al., 2013b; 3) Recycled (R) output through volcanic arc is related to input and Cl loss efficiency.
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Fig 1.  Kendrick et al. (2014) 

 

 

 

 

Fig 1. 87Sr/86Sr versus 206Pb/204Pb data for the Samoan and Baffin glasses used in this study and 
glasses used in previous halogen studies (Kendrick et al., 2012ab; 2013a, 2014a).   The mantle 
components are: EM1= enriched mantle 1; EM2 = enriched mantle 2; Himu = high U/Pb; Fozo = 
focus zone; and DMM = depleted MORB mantle (e.g. Hofmann, 2003).  Helium data are shown in 
Fig S1. 
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Fig 2.  Kendrick et al. (2014) 

 

 

 

Fig 2. Sketch locality map of the Samoan Islands showing the volcanoes from which 
submarine glasses were selected for this study in bold.  Emergent Islands are shaded grey 
and have uppercase labels, whereas seamounts have lower case labels. Vailulu’u is the 
youngest volcano in the Samoan chain, ages increase westward to a maximum of 4.8 Ma for 
sample 128-21 dredged from Taumatau (Koppers et al., 2008).   
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Fig 3 (Kendrick et al., 2014) 

 

 

 

Fig 3. K and halogen concentration plots: a) K versus Cl; b) Br versus Cl; c) I versus Cl; and 
d) F versus Cl.  Note that slopes of K/Cl, Br/Cl and I/Cl given for reference encompass 
values typical of the mantle (shaded areas; see Kendrick et al., 2012b; 2013a).  The mantle 
range of F/Cl is not well known but it extends up to at least 7 (e.g. Le Roux et al., 2006). 
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Fig 4.  Kendrick et al. (2014) 

 

 

 

Fig 4. The volatile content of Samoan glasses: a) H2O wt % versus CO2 ppm; and b) dredge depth 
versus equilibration depth in metres (1 bar = 10 metres) calculated using the VolatileCalc solubility 
model (Newman and Lowenstern, 2002).  The isobars (200 and 400 bars), isopleths of vapours 
comprising 20, 50 and 90 mol % H2O and examples of open and closed system degassing paths were 
calculated for a basalt melt with 48wt % SiO2 at 1200 °C.  The sample equilibration depths are based 
on the measured H2O, CO2, SiO2 and a temperature of 1200 °C.   Most of the data are from Workman 
et al. (2006) with the new data for samples 77-09, 104-04 and 128-21 identified by circles.    
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Fig 5. K, Cl and H2O versus MgO concentration plots: a) K versus MgO; b) Cl versus MgO, 
and c) H2O versus MgO.  Liquid lines of descent showing the progress of fractional 
crystallisation in 10% increments are shown for variably enriched melts (dotted and dashed 
lines).  The initial K concentrations were chosen so that the LLD bracket the data; the initial 
Cl and H2O concentrations then depend on the K/Cl and K/H2O ratios of the melts given in b 
and c.  
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Fig 6.  Kendrick et al. (2014) 

 

Fig 6. Mixing systematics of F, Cl, Br, I, H2O and K in Samoan glasses: a) F/Cl versus 
H2O/Cl; b) K/Cl versus H2O/Cl;  c) Br/Cl versus H2O/Cl; d) K/Cl versus Br/Cl; e) I/Cl versus 
H2O/Cl; and f) I/Cl versus Br/Cl.  The composition of seawater, brines with 5, 10, 20, 30 and 
50 wt. % salt and a field suggested to be representative of the Samoan mantle are shown for 
reference. The composition of the brine end-member obtained with model 2 regressions in 
Isoplot (Ludwig, 2009) shows 2σ uncertainties.  Note that parts d and e show data for 
selective regressions that exclude the circled data points, and data for non-selective 
regressions in parentheses.  Note that the mixing lines show 10% increments of total Cl 
between the mantle and brine end-members. 
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Fig 7.  Kendrick et al. (2014) 

 

 

Fig 7. Assimilation-corrected H2O/Ce (a) and Cl/K (b), and the measured F/Nd (c)of Samoan 
melts as a function of 87Sr/86Sr.  Uncertainty introduced by the assimilation correction 
controlled by the model fit in Fig 6 is shown in parts a and b (see Table 1).  Data for Society 
and Pitcairn glasses (Kendrick et al., 2014a), and MORB fields are shown for reference.       
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Fig 8.  Kendrick et al. (2014) 

 

 

 

Fig 8. The Br/Cl versus I/Cl systematics of the five Samoan glasses least affected by brine 
assimilation and a high 3He/4He Baffin Bay glass, showing mantle has limited variation in 
Br/Cl and I/Cl that is not related to 87Sr/86Sr or 3He/4He.  Data for glasses from Society and 
Pitcairn (Kendrick et al., 2014a), various MORB glasses (Kendrick et al., 2013a), seawater 
and the brine used in our mixing model (Fig 6), are shown for reference.   

  


