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Circular dichroism of four-wave mixing in nonlinear metamaterials
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Metamaterial engineering offers a route to combine unusual and interesting optical phenomena in ways that
are rare or nonexistent in nature. As an exploration of this wide parameter space, we experimentally demonstrate
strong cross-phase modulation and four-wave mixing in a chiral metamaterial, highlighting the interplay of
nonlinearity and circular dichroism. Furthermore, we show that the magnitude of the nonlinear parametric
interaction follows certain selection rules regarding the circular polarizations of the various interacting waves.
Using a coupled-mode analysis and finite element simulations, we relate these selection rules to the metamaterial’s
internal symmetries as well as its circular dichroism in the linear regime.
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I. INTRODUCTION

The metamaterial concept represents a powerful tool for
designing electromagnetic components with multiplex func-
tionalities based on frequency, direction, and polarization.
Recently, chiral metamaterials have become a particularly
active area of research, with demonstrations of giant optical
activity and circular dichroism.1–6 In most of those studies,
the chiral metamaterials are planar in nature, implementing
chirality through a rotation in the orientation of metallic
elements in progressive planes. In such an arrangement,
the resonances of the individual elements interact to give
preference to one particular circular or elliptic plane-wave
polarization. This results in strongly polarization-dependent
optical properties, supporting massive rotatory power and/or
circular dichroism in geometrically tunable structures.

When combined with nonlinear components, the degrees of
freedom in metamaterial engineering grow further, including a
number of important nonlinear effects such as self- and cross-
phase modulation, frequency conversion, and even parametric
amplification.7–10 In many cases, the intrinsic resonance of the
metamaterial is coupled directly to a nonlinear component or
material, imbuing the metamaterial with nonlinear properties
that can be many times enhanced compared to its constituents
alone. Varactor-loaded metamaterials, for example, have pro-
vided convenient proof-of-concept microwave demonstrations
of various enhanced or novel nonlinear processes in metama-
terials, such as wave mixing,11,12 resonance tuning,8,13,14 and
negative-index second-harmonic generation.15

Since a lack of inversion symmetry is a primary feature
of both chiral and second-order nonlinear materials, these
phenomena have been studied together in a number of
materials with both microscopic and macroscopic chiral
ordering.16–18 In particular, nonlinear chiral metamaterials
have been implemented as a first step toward power-dependent
polarization rotators.19–21 However, such demonstrations only
begin to probe the parameter space for simultaneous chirality
and nonlinearity.

In this paper, we study the interplay of third-order nonlin-
earity and chirality in nonlinear metamaterials, focusing on the
role of circular dichroism in both cross-phase modulation and

parametric four-wave mixing. We characterize the nonlinear
response for waves of different circular polarization, relating
the relative magnitudes to the metamaterial’s linear circular
dichroism and symmetries. For the example of a varactor-
loaded metamaterial, we demonstrate experimentally a type of
nonlinear chiral metamaterial which exhibits strong four-wave
mixing, in agreement with the derived selection rules.

The paper is organized as follows. In Sec. II we discuss
the nonlinear third-order response of metamaterials and intro-
duce the nonlinear four-wave interaction and corresponding
coefficients. We also introduce the metamaterial’s circular
dichroism in its third-order nonlinear response. Section III
discusses our design of a nonlinear metamaterial with varactor
diodes. In Sec. IV we present our experimental and numerical
results on two types of third-order nonlinear effects, namely,
the cross-phase modulation and four-wave mixing. Finally,
Sec. V concludes the paper.

II. NONLINEAR WAVE MIXING IN METAMATERIALS

In stark contrast to natural materials, the nonlinear in-
teraction between electric and magnetic fields of varying
polarizations can be specifically tailored in a metamaterial.
While this greatly enhances the degrees of freedom available
in typical parametric and modulation processes, it also implies
greater complexity. Several methods and formalisms have been
proposed to frame these interactions in the typical language
of nonlinear optics by using effective nonlinearities, such
as transfer-matrix based retrieval methods.22–24 Alternatively,
a coupled-mode theory was developed in order to explore
the mixing of both magnetic and electric fields, exploiting
Bloch modes in the context of periodic metamaterials.25

This approach has the advantage of yielding quasianalytic
expressions for the effective nonlinear coupling coefficients,
providing intuition regarding symmetries and unit-cell design.
Thus, for a uniaxial chiral metamaterial in which waves prop-
agating along the optical axis can be decomposed into right
circularly polarized (RCP, + ) and left circularly polarized
(LCP, −) waves, coupled-mode theory can reveal selection
rules regarding the parametric interaction of multiple waves
with distinct polarizations.
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As an example, we consider the four-wave mixing between
pump (ωp) and signal (ωs) waves to parametrically generate
a wave at frequency ωnl = 2ωp − ωs . Following conventional
coupled-mode theory,26,27 we can assume coupling equations
of the form

∂Ai
nl

∂z
= i�ijjk

(
Aj

p

)2(
Ak

s

)∗
ei�kz, (1)

where indices i,j,k ∈ [+,−] denote the waves’ circular
polarizations, each wave’s intensity is given by 2|A|2, and
�k = 2k

j
p − kk

s − ki
nl . The key parameter in this equation is the

coupling coefficient, �ijjk , which we expect to take the form
of an overlap integral. The ordering of the subscripts of the
coupling coefficient follows the standard convention, in which
the first subscript refers to the generated wave (with frequency
ωnl in our case) and the next three subscripts denote the
fundamental driving waves. The efficiency of the wave-mixing
process, which we define as η = Inl/I

2
pIs , is thus proportional

to the square modulus of the coupling coefficient.
Meanwhile, we can fully describe the local properties

of the metamaterial through a periodic relative permittivity,
ε(�r), and second-order electric nonlinearity, χ

(2)
loc (�r), such that

ε(�r) = ε(�r + �R) for any lattice vector �R, and likewise for
the nonlinearity. Thus, in the linear regime, the electric and
magnetic fields can be decomposed into Bloch modes,28 such
that Bloch mode μ is given by

�Eμ(�r) = Aμ�eμ(�r) exp(i�kμ · �r),
(2)�Hμ(�r) = Aμ

�hμ(�r) exp(i�kμ · �r),

where Aμ is the mode amplitude, kμ is the Bloch wave vector,
and �eμ(�r) and �hμ(�r) are periodic electric and magnetic Bloch
functions, respectively.

By applying a volume integral to the usual expression of
Lorentz reciprocity in the presence of a perturbation, in this
case the local second-order nonlinearity, we can describe the
above example of four-wave mixing in a periodic, uniaxial
metamaterial according to25
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where the integral is taken over a single unit cell with volume
V0. In the limit of a sufficiently small unit cell, (|�ka| � 1),
a comparison of this expression with Eq. (1) implies that the
coupling coefficient in our metamaterial is given by

�ijjk = ωnl
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Thus, using Eq. (4), we can use the metamaterial symmetry
and properties to derive a set of selection rules. For example,
for a cubic unit cell, the uniaxial nature implies invariance
for a 90◦ rotation about the z axis, denoted Rπ/2, in the local
material properties. Using this symmetry and the fact that the

macroscopic eigenmodes are circularly polarized, we can infer

�e±
n (�r) = ±Rπ/2[�e±

n (R−π/2[�r])]. (5)

From these symmetries, we see that certain combinations
of circularly polarized waves are forbidden from interacting,
since the four-wave mixing coefficient vanishes identically. In
particular, the degeneracy of the pump wave implies that the
only nonzero coupling coefficients are those involving signal
and mix waves with the same circular polarization, or

ηijjk = 0, for i �= k. (6)

Additionally, it is often the case that only one polarization
can strongly excite an intrinsic resonance in the metamaterial,
which can lead to giant circular dichroism.5 This implies
enhancement of parametric coupling for the polarization which
strongly excites the resonance, with greater enhancement
expected for coefficients involving more terms with this
polarization.

However, many of the previous assumptions are not always
true for chiral metamaterials, and, furthermore, fabrication
errors and finite-sized lattices will break their strict application.
Nevertheless, one can infer certain qualitative features from
the previous discussion. For example, if we consider a
metamaterial supporting a resonance predominantly excited
by RCP waves, and assume that all incident waves share the
same polarization, it follows that

η++++ � η−+++, (7)

η−−−− � η+−−−, (8)

η++++ � η−−−−. (9)

The validity of the first two inequalities depends on the level to
which the symmetry and periodicity assumptions are violated,
while the third inequality depends on the metamaterial’s circu-
lar dichroism. We note that although this coupled-mode theory
was developed for bulk metamaterials, nonlinear interactions
in thin samples are qualitatively similar, with the exception
that the effect of phase mismatch is negligible. As with the
linear properties of metamaterials, it cannot be assumed that
the nonlinear coefficients of a bulk metamaterial have the same
value as those of a single layer.

III. STRUCTURE DESIGN AND CHARACTERIZATION

To verify the previous discussion and, particularly, Eqs. (7)–
(9), we employ the varactor-loaded chiral metamaterial shown
in Fig. 1. The structure resembles the canonical spiral,29,30

flattened such that it can be fabricated by a combination of
standard photolithographic methods and vias. The fundamen-
tal resonance of these meta-atoms has strongly coupled parallel
magnetic and electric dipole moments, leading to a strong
chiral response. Moreover, nearest neighbors in the transverse
plane are 90◦-rotated replicas of the central element for the
sake of isotropy, such that we can expect the transmission
eigenmodes of the metamaterial to be circularly polarized.
Nonlinearity is introduced by inserting a variable capacitance
diode, or varactor, into each element.8,14 The unit cell was
designed through a combination of finite-element simulations
(COMSOL multiphysics) and standard scattering-based retrieval
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FIG. 1. (Color online) (a) Metamaterial unit cells, each consisting
of two nonlinear particles. (b) Details of one side of the nonlinear
particle. (c) and (d) Photographs of the two sides of the fabricated
sample.

techniques,31 modeling the linear properties of the varactor
diodes as lumped capacitive and resistive elements.

We compute the normal-incidence scattering parameters
for a single unit cell with periodic boundary conditions,
calculating the effective material properties by assuming a
lattice spacing of a = 12 mm in the direction of propagation.
This spacing is chosen to satisfy the usual metamaterial
requirement of subwavelength unit cells (a ≈ λ/7), while
also minimizing the potential interaction between successive
planes. The length and angle of the capacitive arms are
optimized to provide maximum circular dichroism, which can
be seen in the different complex indices of refraction for the

two modes in Fig. 3(a). To illustrate how the two circularly
polarized waves excite the system, in Fig. 2 we plot the modes
of the structure excited by RCP and LCP waves at resonance.
Similar circulating currents can be seen in each case, but with a
difference in magnitude due to optimal coupling when excited
by RCP waves.

The planar copper patterns were fabricated by photolithog-
raphy on a 1.6-mm-thick FR4 substrate, while the vias and
varactor diodes were subsequently soldered into place. We
characterize the sample, shown in Fig. 1(c), in a circular
waveguide with a 59.7-mm diameter. Using linear-to-circular
polarization converters, we launch and collect signals for all
permutations of right and left circular polarizations with a
Rohde and Schwarz ZVB20 vector network analyzer (VNA).
To lessen the effect of imperfect impedance matching at the cir-
cular waveguide ports, we measure transmission coefficients
for six distinct positions of the sample within the waveguide,
effectively sampling and averaging out the standing-wave
pattern of the empty waveguide. The transmission coefficients
for RCP and LCP modes are plotted in Fig. 3(b), while the
polarization conversion is found to be suppressed by at least
10 dB, indicating that the sample’s eigenmodes are nearly cir-
cularly polarized. Moreover, it is clear that the system supports
significant circular dichroism, reaching a maximum of ∼7 dB
at the metamaterial resonance. For comparison, we also show
the transmission coefficients from full-wave simulations of a
semi-infinite slab of the metamaterial, showing agreement in
the pertinent features.

IV. NONLINEAR EFFECTS

Our experimental arrangement for nonlinear measurements
is shown in Fig. 4. An HP 8673B signal generator provides a
pump signal, which is amplified by an HP 83020A microwave
amplifier, with a maximum output of ∼32 dBm. The VNA
is used as the source of a low-amplitude probe signal and is
combined with the pump using a 3-dB combiner before enter-
ing the coaxial-waveguide converter. In this configuration, we
are able to investigate the parametric mixing of waves within
the operational band of the waveguide and polarization ele-
ments, making cross-phase modulation and nearly degenerate
four-wave mixing natural choices. We study the regime where
the pump and signal have the same polarization.

FIG. 2. (Color online) Modes of the structure excited by (a) right-handed and (b) left-handed circularly polarized waves. Arrows represent
the direction of the surface currents while the magnitude is given in false color.
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FIG. 3. (Color online) (a) Simulated refractive indices of the
varactor loaded spirals, optimized to exhibit strong circular dichroism
around 3.54 GHz. (b) Comparison of simulated and experimental
transmission coefficients for both circular polarizations.

A. Cross-phase modulation

We first report cross-phase modulation of a weak signal
wave by a strong pump wave, which is the most readily
observable form of nonlinearity in this system. As has been
demonstrated previously in varactor loaded metamaterials,14,20

sufficient incident pump powers can induce a change in the
varactor’s capacitance, leading to resonance tuning, in turn
changing the transmission properties seen by a weak probe
wave. Since the sample’s resonance is directly responsible for
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FIG. 5. (Color online) Experimental results for the cross-phase
modulation effect. (a) Difference in transmission spectra for RCP and
LCP waves as a function of the power of an additional pump wave,
Pp , with ωp = 2π × 3.536 GHz. (b) Maximum circular dichroism
magnitude and frequency as a function of Pp .

its large circular dichroism, we also expect the frequency of
maximum circular dichroism to be tuned by the pump. We
connect the output of the waveguide to the second port of the
VNA in order to measure the transmission response of the sig-
nal wave. The measured spectrum is shown in Fig. 5 for varying
pump powers (Pp) using ωp = 2π × 3.536 GHz. As expected,
the circular dichroism resonance tunes monotonically with
Pp, with a maximum tuning on the order of the resonance
bandwidth. Therefore, we conclude that the main effect of the
cross-phase modulation in our structure is in the frequency
shift of the resonant chiral properties of the metamaterial. As a
result, the dichroism and polarization rotation experienced by
a wave of fixed frequency in the vicinity of the resonance can
be modified using cross-phase modulation. This demonstrates
that the concept of nonlinear optical activity, which was
previously shown to be quite strong in metamaterials,19 is
also applicable to multifrequency interaction processes.

B. Four-wave mixing

We next apply a pump (frequency ωp) and signal (frequency
ωs) in order to generate a wave at the mix frequency ωnl =
2ωp − ωs . By measuring in a circular basis, we seek to verify
that Eqs. (7)–(9) are able to qualitatively predict the strength
of the generated signal. We discretely sweep the fundamental
frequencies across a range centered at the resonance frequency,
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FIG. 4. (Color online) Schematics of the experimental setups used for studying (a) cross-phase modulation and (b) four-wave mixing in
the varactor loaded metamaterials.
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FIG. 6. (Color online) Coefficients of the four-wave mixing inter-
actions η (m4/W2) calculated from experiment (left) and simulation
(right) for different combinations of circularly polarized waves.

measuring the power at ωnl with a Rohde and Schwarz FSV30
spectrum analyzer. The pump and signal waves are both at a
level of 15 dB m before entering the combiner. This power
level is chosen to ensure that cross-phase modulation effects
are weak. The measurement is repeated for all combinations
of circularly polarized adapters and is plotted in Fig. 6 in
terms of the efficiency, η = PnlA

2/(P 2
pPs), where A is the

cross-sectional area of the waveguide. For comparison, we
also plot η calculated from simulations on a semi-infinite
metamaterial slab, using the small-voltage expansion of the
varactor’s capacitance to model the mixing process within
the nondepleted pump limit.32

The qualitative features and frequency dependence of the
parametric four-wave mixing process show good agreement
between theory and experiment. We can see from the experi-
ments that the conversion of the RCP waves into RCP waves

(the first row in Fig. 6) in our structure is an order of magnitude
stronger than conversion of the LCP into LCP waves (the
fourth row), which is of the same order as cross-polarization
conversion of the RCP into LCP waves (the second row).
The conversion coefficient for the LCP into RCP waves is
another order of magnitude weaker. In general, such behavior
is understandable from the linear properties of the structure.
Indeed, the RCP waves excite resonances in the structure,
and larger electric currents in the elements produce stronger
nonlinear response in the form of four-wave mixing. The LCP
waves are only weakly coupled to the structure’s resonance,
and therefore the nonlinear conversion coefficients are much
weaker.

The discrepancies between the theory and experiment in
the efficiency of the mixed polarization processes, η−+++ and
η+−−−, can be traced to linear polarization conversion in the
metamaterial itself, demonstrated earlier to be on the order
of −10 dB. However, the inequalities Eqs. (7)–(9) derived
from the coupled-mode theory are still satisfied, since the
mixing products involving pump and generated waves of
different polarizations are greatly suppressed compared to
those involving the same polarization. In addition, excitation
of the structure by RCP waves clearly results in much
greater efficiency, consistent with the transmission results in
Fig. 3(b) showing much stronger interaction for this polar-
ization. Further differences between theory and experiment
can be attributed to dispersion in the waveguide used in the
experiments, which is absent in the theory and reduces the
circular dichroism exhibited by the sample.

V. CONCLUSIONS

We have studied the parametric interaction of pump and
signal waves in a type of varactor-loaded nonlinear chiral
metamaterial, including four-wave mixing and cross-phase
modulation effects. We have elucidated several circular po-
larization selection rules based on a previously reported
effective medium theory, subsequently verifying them through
experiment and finite element simulations. Ultimately, we
believe our results serve to both explore the vast parameter
space available to nonlinear metamaterials as well as validate
the previously developed nonlinear effective medium theory.
We note that the presented structure can be extended to
multiple layers in order to produce even greater chirality and
nonlinear conversion or scaled to higher and more interesting
frequencies by replacing the varactor diode with appropriate
nonlinear crystals or substrates.9
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