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G R A P H I C A L A B S T R A C T

A B S T R A C T

A combined procedure for separating Fe and Hf from a single rock digestion is presented. In a two-stage

chromatographic extraction process, a purified Fe fraction is first quantitatively separated from the rock matrix

using AG-MP-1M resin in HCl. Hafnium is subsequently isolated using a modified version of a commonly applied

method using Eichrom LN-Spec resin. Our combined method includes:

� Purification of Fe from the rock matrix using HCl, ready for mass spectrometric analysis.

� Direct loading of the matrix onto the resin that is used for Hf purification.

� Collection of a Fe-free Hf fraction.
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Method details

We combined two individual separation techniques to purify Fe and Hf from rock matrices for
subsequent isotope analyses using mass spectrometry from a single dissolution batch. Iron is
particularly problematic due to its incomplete separation from Hf, which can cause isobaric
interferences (matrix effects) during Hf isotope mass-spectrometric measurements [1–4]. We present
a combined and refined version of a ‘‘clean-up’’ step initially designed to remove Fe that is required for
Hf purification. Using this method facilitates the collection and subsequent analyses of both elements
from a single rock matrix.

The procedure follows the steps:
1. R
ock powder is dissolved in a concentrated acid mixture of 24M HF–15.7M HNO3 in a ratio of 1:2.

2. S
ample treatment with concentrated HNO3 after evaporation breaks down fluoride (as e.g., CaF)

bonds that form during the chemical dissolution.

3. F
inal uptake in strong (9M) HCl ensures the full dissolution of sample material and the formation of

(iron) chloro-compounds.

4. S
amples are first passed through Bio-Rad AG-MP-1M cation resin in steps of 9-5-1M HCl, separating

Fe (1M) from the rock matrix (9+5M)

5. S
ubsequently Hf (and possibly Lu for old samples that require age correction) is separated from the

9M HCl matrix fraction (after diluting it) using Eichrom Ln-Spec.

Method recipe

Rock dissolution procedure

All acids used during the purification procedure (hydrofluoric, hydrochloric, nitric acid) have been
purified by sub-boiling distillation in Teflon (Hf) or quarz (HCl, HNO3) distils. Rock powder is dissolved
in 5mL Teflon vials in a 1:2 acid mixture of 2–3mL 15.7M HNO3 +24M HF. Dissolution is usually
performed at ca. 150 8C on a hotplate for 24h. Samples that contain zircon (as e.g., granites) or
chromite (e.g., dunites) require dissolution in steel-jacketed Teflon containers (bombs), in an oven at
ca. 2008C for 48h to ensure the breakdown of all mineral phases. After evaporation of the dissolving
acid, we added several drops of concentrate nitric acid and one drop of 0.5M HCl+0.5M HF mixed acid
to each sample to break down CaF bonds and achieve total dissolution and repeated treatment may be
necessary. After a final uptake in 9M HCl and overnight storage of the vials on the hotplate, we could
not observe any macroscopic solid residues in the beakers. Samples equilibrated in 9M HCl should be
centrifuged to fully ensure that no microscopic residues are loaded onto the column, and can
subsequently be pipetted onto the chemical separation resin.

Iron purification

For stable isotope analyses and without a double-spike, it is essential that column yields are 100%,
because of possible mass-dependent isotope fractionation during the progressive elution of Fe from
the chromatographic resin [5–7]. A second prerequisite is the total separation of Fe from Hf, because Fe
may cause polymeric interferences and induce matrix effects during Hf isotope measurements.
Ideally, it is further desirable to know when other lithophile elements that are frequently used for
isotope analyses are eluted from the columns, namely, the parent nuclide Lu, which is required for age
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Fig. 1. Column extraction scheme for various metals (experiment 1), including Fe, as obtained by ICP-OES, demonstrating the

effectiveness of the single Fe column separation technique (AG-MP-1M resin).
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correction purposes when analyzing Hf. We performed a simple test by doping the Fe column with
various elements (at ca. 10ppm concentration for each element) and followed the standard elution
procedure. In a first experiment, we tested the elution of Fe to ensure no Fe was lost during the
separation procedure (Fig. 1), which could result in mass dependent isotope fractionation. In a
subsequent test, in agreement with partition coefficients for high field-strength elements (HFSE), rare
earth elements (REE) and alkaline earth elements on cation resin, these elements were eluted in strong
HCl in the first 9M elution step.

For rock powders, dissolved samples are taken up in 9M HCl and centrifuged to remove possible
residues. The solution is then transferred using a pipette onto pre-conditioned columns filled with
1mL AG-MP-1M resin. Columns were prepared from modified polyethylene one-time syringes with a
length of ca. 10cm and an internal column diameter of 0.5cm, equipped with a frit at the bottom and
topped with a 5-mL one-time pipette tip that acts as an acid reservoir. This material proved to be acid
resistant, easy to clean with no detectable blanks, and cheap. Hafnium, Lu and other matrix elements
were eluted as anionic chloric-complexes with the 9M HCl acid. We collected this fraction in 30mL
PFA beakers for further purification of Hf and Lu, if required. After rinsing the column with 5M HCl and
eluting further semi and transitional metals (see Fig. 1), the Fe fraction is then eluted with 1M HCl,
subsequently evaporated to dryness, and is ready for isotope analyses. The 9M HCl fraction, upon
dilution, can be directly transferred to the Hf columns.

Hafnium purification

The separation of Lu and Hf from the rock matrix is modified from the method described in [8]. The
9M HCl matrix fraction collected from the Fe-separation columns contains Lu and Hf. The solution can
be diluted to 6M HCl (if only Hf is required) or 3M HCl, if Lu and Hf is required, and then directly
loaded onto column B (1mL LN-spec resin). The amount of acid should not compromise the elution
scheme, as HFSE (in 6M HCl) or heavy REE (in 3M HCL) should be filtered by the resin from the
solution. Evaporation to dryness and subsequent uptake in the respective acids is also possible if
smaller acids loads are desirable, as e.g., for the collection of Sm, Nd, Rb and Sr, which are directly
eluted with the initial column load. Titanium elution follows the recipe of Münker et al. [8] using a
0.09M Hcit+0.4M HNO3 +1% H2O2 acid mixture. Finally we elute Hf (+Zr) with 0.5M HF, gently
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Fig. 2. Relationship between 176Hf/177Hf and Zr/Hf ratios for JMC-45 with Zr.
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evaporate them to dryness, and transferred them to tubes in a 1mL 0.54M HNO3 +0.24M HF mixed
acid.

A modification to the original chemistry by Münker et al. [8] is the combined elution of Zr and Hf. To
test if Zr has an effect on Hf measurement, we added a Zr solution to the Hf cut and find that only with
extreme Zr/Hf, exceeding those of natural rocks, Zr can alter the Hf isotope composition outside
analytical uncertainty. These findings are in agreement with previous studies on a different
instrument that performed similar tests and concluded that it is not necessary to separate Hf from Zr
for analysis by MC-ICP-MS. Goolaerts et al. [9] carried out a set of experiments on a double-focusing
Nu015 MC-ICP-MS and indicated that Zr/Hf up to 800 have no effect on Hf isotopic composition and
only a moderate effect on the precision, in contrast to thermal ionization mass spectrometry (TIMS). Qi
Chang-shi et al. [10] also used a similar experiment on a single-focusing Micromass Isoprobe MC-ICP-
MS to demonstrate that Zr/Hf�120 show no effect on the Hf measurements. In our test, we used five
JMC-475 solutions (50ppb), each doped with different concentrations of a Zr ICP standard solution
(50–100–500–1,000–10,000ppb). Results are illustrated in Fig. 2, showing that all analyses plot within
uncertainty in the range of the average JMC-475 solution of the analytical session. Although the
solution with Zr/Hf=200 shows a drift towards lower Hf isotope compositions, it is not resolvable
outside our external reproducibility of �0.000014 on the 176Hf/177Hf (Table 1).

Data assurance

Isotope analyses using MC-ICP-MS follow standard procedures described in [7] for Fe, and Nebel et al.
[11] for Hf. Both of those studies list a number of standard reference materials (SRM) that ensure that our
measurement protocols are rigorous and reproducible. For this particular study, we tested our method
with analyses for SRM BHVO-2 and BCR-2. We used approximately 50mg aliquots of BHVO-2 and BCR-2
and applied the procedure described above. Hafnium isotope results for BHVO-2 and BCR-2 are
176Hf/177Hf=0.283109�02 and 0.282869�03, respectively which are in good agreement with previously
reported value (cf. Table 2). Corresponding Fe isotope analyzed yield values of d57Fe=0.20�0.02 (1 s.d.) and
0.16�0.01 (1 s.d.) relative to the IRMM-014 standard solution for BHVO-2 and BCR-2, respectively. Again
both values are identical to recommended values (Table 2). The total procedural blanks measured for Hf were
25pg, blanks for Fe were negligible as to the large amount of Fe in the sample.



Table 2
Comparison of 176Hf/177Hf, 56Fe and d57Fe isotopic analyses results of SRMS with previously recommended value.

SRM 176Hf/177Hf

This study (�2s) Recommended value

BHVO-2 0.283109 (02) 0.283116 [12] 0.283102 [13]

0.283105 [14] 0.283106 [15]

BCR-2 0.282869 (03) 0.282869 [3] 0.282862 [16]

0.2828670 [14]

SRM d56Fe �1 s.d. d57Fe �1 s.d

BHVO-2 0.139 0.01 0.202 0.016

BCR-2 0.111 0.004 0.159 0.006

[12] – Bizzarro et al. (2003); [13] – Witting et al. (2006); [14] – Weis et al. (2007); [15] – XH Li et al. (2007); – [3] Ulfbeck et al.

(2003); [16] – Vervoort et al. (2004); Literature values for d57Fe are BHVO-2=0.18�0.03 and BCR-2= 0.13�0.02 [7].

Table 1
Two-column procedure for separation of Fe–Hf.

Step Column volumes Acid

Column A (AG-MP-1M 1mL)

Pre-cleaning procedure

Preconditioning 5mL 9M HCl

Loading sample (collected for Hf) 1–5mL 9M HCl

Eluting matrix (collected for Hf) 5mL 9M HCl

Eluting matrix 5mL 5M HCl

Collecting Fe 5mL 1M HCl

Column B (LN Spec 1mL)

Pre-cleaning procedure

Preconditioning 10mL 3M HCl

Loading sample 1–10mL 3M HCl

Eluting matrix (Sr)+MREE 10mL 3M HCl

Collecting Lu 10mL 6M HCl

Rinse (extra wash for high Lu/Hf) 10mL or more 6M HCl

Rinse 2mL+2mL H2O

Eluting Ti (when TiO2–H2O2 complex disappears) �40mL 0.09M Hcit/0.4M HNO3/1%H2O2

Rinse 2mL+2mL H2O

Collecting Hf (Zr) 10mL 0.5M HF
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Overall, we find that the presented technique is applicable to mafic rock matrices, and can likely be
applied to a large variety of rocks and minerals of different composition and matrices. Limitations are
high Fe/Hf of samples, so that application to, for example, magnetite, may need adjustment.

Tips and tricks
1. I
n the process of sample dissolution, samples should be dissolved in strong HCl after the treatment
with concentrated HNO3 for the breakdown of CaF. Even if residues remain after the
aforementioned step, they should dissolve in this acid and the solution should be a transparent
yellow colour. 9M HCl is used as it is the acid used for first step of the separation technique.
2. C
olumn dimensions used here require ca. 1mL of AG-MP-1M resin and 1mL of Ln-resin. The
capacity of the AG-MP-1M resin is close to its maximum for 100mg of sample material and ca. 5–
7wt.% Fe. For very Fe rich samples or more sample material (sometimes required for Hf isotope
analyses), we recommend repeating the Fe column step. If Fe concentrations are unknown, a simple
test for overloading the columns is the colour of the first eluant in 9M HCl, which should never be
yellow (indicating that Fe was eluted from the column).
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3. In
 order to achieve efficient separation of Ti and Hf, solutions containing H2O2 need to be prepared
daily. Ti-complexes form a yellow colour and elution should be continued until the eluant appears
colourless.
4. N
oteworthy is that using 0.5M HF to elute Hf will result in a combined HFSE batch, including W.
Whereas this does not affect Hf isotope measurements, it may prove problematic for groups using a
Hf-180 enriched isotope tracer, because of isobaric interferences of W-180 on Hf-180.

Additional information

Background

Since the introduction of solution-based multi-collector mass spectrometers with an inductively
coupled plasma source (MC-ICP-MS), Hf isotopes have become a very popular tool in geochemical
studies for tracing crustal evolution, mantle geochemistry or in geochronology. The isotope Hf-176 is
the decay product of Lu-176 by beta-decay with a half-life of approximately 3.5�0.2 billion years,
which makes it applicable for studies ranging from solar system formation to the present day. 176Hf/177Hf
in terrestrial rocks vary by ca. �0.2%, but they are often much more subtle within single rock suites,
necessitating extremely precise analyses. Previous studies have demonstrated that high-precision Hf
isotope analyses, commonly reproducible to �0.005%, require purification of Hf from the rock or mineral
matrix to reduce matrix effects in the plasma to insignificant levels. It was further demonstrated that
especially the major elements Fe and Ti can seriously affect the isotope analyses of the trace element Hf.
The pioneering study by Münker et al. [8] presented a very efficient and rigorous method to eliminate Ti
interferences, noting that separation of high-field strength elements with similar radius or charge from
each other can prove difficult. The separation from Fe, however, has been an obstacle ever since. This was
originally overcome by converting all Fe in solution to Fe2+ by the addition of a reducing agent, in this case
ascorbic acid. Iron in its reduced Fe2+ species has partition coefficients on Ln-Spec resin in the loading acid
(3–6M HCl) of close to zero, similar to other 2+ cations such as Mg2+ or Ca2+. However, for many
geochemical studies, additional information from a single rock or mineral dissolution is desirable, as for
example Sr or Nd isotope analyses, which requires additional purification of these elements from the
matrix. This is where this method runs short: strong oxidation of ascorbic acid is required during
evaporation to avoid organic residues that complicate mass spectrometry. This method is time-
consuming, may introduce additional blanks and the oxidation procedure can result in strong reactions
that may lead to loss or cross-contamination of samples by ejecting material. In more recent years, stable
Fe isotope analyses have further been proven useful for high-temperature rocks, also in combination with
Hf isotope analyses [17]. Here we present a simple but efficient method to address both problems:
purification of Hf from Fe and collection of a purified Fe species readily available for isotope analyses. To
achieve this, we combine two established methods into a single procedure to be more time and cost
efficient. We finally test our results with two international standard reference materials.
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