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Logic and Computation Group
Research School of Computer Science
The Australian National University

rajeev.gore@anu.edu.au

Abstract. Over the last forty years, computer scientists have invented
or borrowed numerous logics for reasoning about digital systems. Here,
I would like to concentrate on three of them: Linear Time Temporal
Logic (LTL), branching time Computation Tree temporal Logic (CTL),
and Propositional Dynamic Logic (PDL), with and without converse.
More specifically, I would like to present results and techniques on how
to solve the satisfiability problem in these logics, with global assump-
tions, using the tableau method. The issues that arise are the typical
tensions between computational complexity, practicality and scalability.
This is joint work with Linh Anh Nguyen, Pietro Abate, Linda Postniece,
Florian Widmann and Jimmy Thomson.

1 Introduction and Credits

Over the last forty years, computer scientists have invented or borrowed nu-
merous logics for reasoning about digital systems [1]. Here, I would like to con-
centrate on three of them: Linear Time Temporal Logic (LTL), branching time
Computation Tree temporal Logic (CTL), and Propositional Dynamic Logic
(PDL). More specifically, I would like to present results and techniques on how
to solve the satisfiability problem in these logics, with global assumptions, using
the tableau method. The issues that arise are the typical tensions between com-
putational time-complexity, space-complexity, practicality and scalability. This
overview is based on joint work with Linh Anh Nguyen [2, 3], Linda Postniece [4]
and Florian Widmann [5–7]. Some of the implementations have been refined by
Jimmy Thomson. The current best account with full algorithmic details and
proofs is Widmann’s doctoral dissertation [8].

I have deliberately concentrated on tableaux methods, but the satisfiability
problem for some of these fixpoint logics can also be solved using resolution
methods and automata methods. These are beyond my expertise.

I assume that the reader is familiar with the syntax and semantics of propo-
sitional modal, description and fixpoint logics, the notion of global logical conse-
quence in these logics, the associated notions of being satisfiable with respect to
a set of global assumptions (TBox) and with basic tableau methods for classical
propositional logic. I assume that all formulae are in negation normal form since
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this reduces the number of rules. It is well-known that, in all the logics I consider,
a formula can be put into negation normal form with only a polynomial increase
in size, while preserving validity. I also assume that we are given a finite set T
of “global assumptions” (TBox) and asked to solve the problem of whether φ is
satisfiable with respect to the global assumptions T in the logic under consid-
eration. Thus a formula φ is a global logical consequence of T iff the formula
nnf (¬φ) is unsatisfiable with respect to T , where nnf (.) is the function that
returns the negation normal form of its argument.

The tableau method is a very general method for automated reasoning and
has been widely applied for modal logics [9] and description logics [10]. Tableau
methods usually come in two flavours as we explain shortly. Both methods build
a rooted tree with some leaves duplicating ancestors, thereby giving cycles. Be-
cause the same node may be explored on multiple branches, tableau algorithms
are typically suboptimal w.r.t. the known theoretical bounds for many logics. For
example, the traditional tableau method for ALC can require double-exponential
time even though the decision problem is known to be exptime-complete.

For fixpoint logics like LTL, CTL and PDL, optimal tableau methods are
possible if we proceed in stages with the first stage building a cyclic graph,
and subsequent passes pruning nodes from the graph until no further pruning is
possible or until the root node is pruned [11]. Optimality can also be obtained
if we construct the set of all subsets of the Fischer-Ladner closure of the given
initial formula [12]. But these methods can easily require exponential time even
when it is not necessary. Indeed, the method of Fischer and Ladner will always
require exponential time since it must first construct the set of all subsets of a
set whose size is usually linear in the size of the given formula.

Thus a long-standing open problem in tableau methods for modal, descrip-
tion, and fixpoint logics has been to find a complexity-optimal and “on the fly”
method for checking satisfiability which only requires exponential time when it
is really necessary. We describe such tableau methods for each of the logics K, Kt
(i.e. K with converse) and PDL. The resulting methods necessarily build graphs
rather than trees. The various components can be combined non-trivially to give
an on-the-fly and complexity-optimal tableau method for CPDL (i.e. PDL with
converse) but we omit details. We also describe sub-optimal tableaux methods
for these logics which build one single tree tableau and determine satisfiability
in one pass by exploring this tree one branch at a time, reclaiming the space
of previous branches. We describe such a method for the logic CTL, and give
pointers to how to adapt such one-pass methods to LTL and PDL.

2 Traditional Modal and Description Logic Tree Tableaux

A tableau is a tree of nodes where the children of a node are created by applying
a tableau rule to the parent and where each node contains a finite set of formulae.
We refer to these formulae as the “contents” of a node, noting that the term
“label” is also used to mean the same thing. Thus a label is not a name for a



(id)
Γ ; ¬p ; p

(∧)
Γ ; ϕ ∧ ψ
Γ ; ϕ ; ψ

(∨)
Γ ; ϕ ∨ ψ
Γ ; ϕ | Γ ; ψ

(∃) ∆ ; []Γ ; 〈〉ϕ1 ; · · · ; 〈〉ϕn
Γ ; ϕ1 ; T || · · · || Γ ; ϕn ; T

∆ contain only atoms and negated atoms

Fig. 1. AND/OR Tableaux Rules for Modal Logic with Global Assumptions T

Kripke world as in some formulations of “labelled tableaux”. The ancestors of a
node are simply the nodes on the unique path from the root to that node.

A leaf node is “closed” when it can be deemed to be unsatisfiable, usually
because it contains an obvious contradiction like p and ¬p. A leaf is “open” when
it can be deemed to be satisfiable, usually when no rule is applicable to it, but
also when further rule applications are guaranteed to give an infinite (satisfiable)
branch. A branch is closed/open if its leaf is closed/open. The aim of course is
to use these classifications to determine whether the root node is satisfiable or
unsatisfiable. But the tableau used in modal logics and those used in description
logics are dual in a sense which is explained next.

Traditional modal tableaux a là Beth [13] are or-trees in that branches are
caused by disjunctions only. Each “diamond” formula in a node causes the cre-
ation of a “successor world”, fulfilling that formula. But such successors of a
given node are created and explored one at a time, using backtracking, until one
of them is closed, meaning that there is no explicit trace of previously explored
“open” successors in any single tableau.

Traditional description logic tableaux are usually and-trees in that branches
are caused by existential/diamond formulae only. Each disjunctive formula causes
the creation of a child, one at a time, using backtracking, until one child is open,
meaning that there is no explicit trace of previously explored “closed” or-children
in any single tableau.

Thus, in both types of tableaux, the overall search space is really an and-
or tree: traditional modal (Beth) tableaux display only the or-related branches
and explore the and-related branches using backtracking while description logic
tableaux do the reverse.

In all such methods, termination is obtained by “blocking” a node from ex-
pansion if the node that would be created already exists. For a detailed discussion
of the various blocking methods, and the various notions of “caching” see [2].

3 And-Or graph and tree tableaux for K

We unify these two views by taking a global view which considers tableaux
as And-Or trees or And-Or graphs rather than as or-trees or and-trees. In
particular, since the non-determinism in both traditional tableaux methods is
determinised in And-Or tableaux, we need to build one and only one And-Or
tableau!



Thus the And-Or tableau rules for modal logic K can be written as shown
in Figure 1 where Γ and ∆ are finite sets of formulae in negation normal form
and Γ ; ϕ stands for the set Γ ∪ {ϕ}.

The (∨)-rule creates or-branching, indicated by “|” while the ∃-rule creates
and-branching, indicated by “||”. These are dual in the following senses:

(∨): if the set Γ ;ϕ∨ψ is satisfiable w.r.t. T then the set Γ ;ϕ is satisfiable w.r.t.
T or the set Γ ;ψ is satisfiable w.r.t. T

(∨): if both sets Γ ;ϕ and Γ ;ψ are unsatisfiable w.r.t. T then so is Γ ;ϕ ∨ ψ
(∃): if the set ∆; []Γ ; 〈〉ϕ1; · · · ; 〈〉ϕn is satisfiable w.r.t. T then the set Γ ;ϕ1; T

is satisfiable w.r.t. T and the set Γ ;ϕ2; T is satisfiable w.r.t. T and . . . and
the set Γ ;ϕn; T is satisfiable w.r.t. T .

(∃): if there is some integer 1 ≤ i ≤ n, such that the set Γ ;ϕi; T is unsatisfiable
w.r.t. T then the set ∆; []Γ ; 〈〉ϕ1; · · · ; 〈〉ϕn is unsatisfiable w.r.t. T .

We now give a non-algorithmic description of the procedure to create an and-
or tableau. We have chosen this format over the more algorithmic description in
[14, 2] to highlight its simplicity.

1. start with a root node and repeatedly try to apply exactly one of the rules in
the order (id), (∧), (∨), (∃) to each node but if a rule application to node x
will create a copy y′ of an existing node y then make y the child of x instead

2. if we apply the (∨)-rule to x then x is an or-node and if we apply the rule
(∧) or (∃) to x then it is an and-node

3. whenever we apply the (id) rule to x then set the status of x to unsat, and
if we cannot apply any rule to x then set its status to sat, and propagate
this status through the current graph as follows:

or-node: unsat if all its children have status unsat and sat if some child
has status sat

and-node: sat if all its children have status sat and unsat if some child has
status unsat

4. when every node has been expanded in this way then set the status of all
nodes with undefined status to sat and propagate as above.

A little more formally but still non-algorithmically. Given a TBox T and a
formula φ, both in negation normal form, our method searches for a model which
satisfies φ w.r.t. T by building an and-or graph G with root node τ containing
T ∪{φ}. A node in the constructed and-or graph is a record with three attributes:

content: the set of formulae carried by the node
status: {unexpanded, expanded, sat, unsat}
kind: {and-node, or-node, leaf-node}

The root node has initial status unexpanded and our method constructs the
and-or graph using a traditional strategy explained shortly. But we interleave
this generation strategy with a propagation phase which propagates the status
of a node throughout the graph. We explain each in turn.
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Fig. 2. Graph constructed by our algorithm for K using global caching

Our strategy for building the and-or graph applies the rules for decomposing
∧ and ∨ repeatedly until they are no longer applicable to give a “saturated” node
x, and then applies the ∃-rule which creates a child node for x containing T ∪
{ϕ} ∪ {ψ | []ψ ∈ x} for each 〈〉ϕ ∈ x. The addition of the TBox T to such a
child is a naive way to handle global assumption (TBoxes) but suffices for our
needs. We now saturate any such child to obtain a saturated node y, then apply
the ∃-rule to y, and so on, until we find a contradiction, or find a repeated node,
or find a saturated node which contains no 〈〉 -formulae. For uniformity with our
method for the extensions to converse and PDL, we explore/expand children in
a left to right depth-first manner, although any search strategy can be used for
K (or ALC) [2]. All nodes are initially given a status of unexpanded.

An application of (∨) to a node v causes v to be an or-node, while an applica-
tion of (∧) or (∃) to a node v causes v to be an and-node. Notice that our method
uses the (∨) and (∃) rules which use both or-branching and and-branching as
summarised in Section 2. The crucial difference from traditional tableau meth-
ods is that we create an and-or graph rather than an and-tree or an and-tree,
and we create the required child in the graph G only if it does not yet exist in the
graph: this step therefore uses global caching [2]. Notice that the required child
need not be an ancestor but can exist on any previous branch of the tableau. For
example, as shown in Figure 2, suppose the current node is x and that the rule
applied to x generates a node y′ which duplicates y. The node y′ is not put into
G, but y becomes the child of x instead. Thus, G is really a rooted and-or tree
with cross-branch edges to nodes on previously created branches like that from
x to y or from v to u, or edges to ancestors like that from w to z. The problem
of course is to show that this remains sound.

The propagation phase begins whenever we determine the status of a node
as either unsat or sat as explained next.

A generated node that contains both p and ¬p for some atomic formula p
becomes a leaf-node with status unsat (i.e. unsatisfiable w.r.t. T ). A generated



node to which no tableau rule is applicable becomes a leaf-node with status
sat (i.e. satisfiable w.r.t. T ). Both conclusions are irrevocable because each
relies only on classical propositional principles and not on modal principles.
We therefore propagate this information to the parent node v using the kind
(or-node/and-node) of v and the status of the children of v, treating unsat as
irrevocably f and sat as irrevocably t. That is, an or-node gets status sat as
soon as one of its children gets status sat, and gets status unsat when all of
its children get status unsat. Dually for and-nodes. In particular, it does not
matter whether the parent-child edge is a cross-branch edge or whether it is a
traditional top-down edge. If these steps cannot determine the status as sat or
unsat, then the rule application sets the status to expanded and we return to
the generation phase.

The main loop ends when the status of the initial node τ becomes sat or
unsat, or when no node has status unexpanded. In the last case, all nodes
with status 6= unsat are given status sat (effectively giving the status “open”
to tableau branches which loop to an ancestor) and this status is propagated
through the graph to obtain the status of the root node as either unsat or sat.

Theorem 1 (Soundness and Completeness). The root node of the And-Or
graph for T ∪ {φ} has status sat iff φ is K-satisfiable with respect to T .

Theorem 2 (Complexity of And-Or graph tableaux). If the sum of the
sizes of the formulae in T ∪ {φ} is n then the algorithm requires O(2n) space
and O(2n) time.

This algorithms thus uses both caching and propagation techniques and runs
in exptime [2].

3.1 And-Or Tree Tableaux

The method described above creates an And-Or graph as shown in Figure 2
which means that we have to keep previous branches in memory. An alternative
is to only allow “loops” to ancestors. Using this strategy gives an And-Or tree
which can be explored one branch at a time, and there is no need to keep previous
branches in memory. We use the term And-Or tree tableaux for the resulting
tableau method.

The soundness and completeness is not affected by this change, but the ability
to reclaim previous branches saves memory but leads to sub-optimality.

Theorem 3 (Complexity of And-Or tree tableaux). If the sum of the sizes
of the formula in T ∪ {φ} is n then the tree-tableaux algorithm requires O(2n)
space and O(22

n

) time.

There are n subformulae of T ∪{φ} and hence 2n subsets which might appear
on a branch before a node repeats, hence a branch can require O(2n) space. We
explore the And-Or tree one branch at a time, so we require at most this much
space. An and-or tree of depth O(2n) may have O(22

n

) or-branches. In the worse
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Fig. 3. The use of special node z to handle in/compatibility between states x and y.
Scenario (a) occurs when x and y are incompatible. Scenario (b) occurs when x and y
are compatible. Scenario (c) occurs when x and y are compatible, but y is/becomes
toosmall.

case, we have to close each branch, hence we may require O(22
n

) time. Thus And-
Or tree tableaux are sub-optimal: the satisfiability problem for K is known to be
exptime-complete, but our algorithm has worst-case complexity of 2exptime.

The soundness shows that an ancestor loop always represents a “good loop”
in which every node is satisfiable. It is this property that fails for fixpoint logics.

4 And-Or Graph Tableaux for adding Converse

Recall that the standard strategy for rule applications in tableau algorithms is
to apply the rules for decomposing ∧ and ∨ repeatedly until they are no longer
applicable, giving a “saturated” node which contains only atoms, negated atoms,
[] -formulae and 〈〉 -formulae. Let us call such a “saturated” node a state and
call the other nodes prestates. Thus the only rule applicable to a state x is the
∃-rule which creates a node containing T ∪{ϕ}∪{ψ | []ψ ∈ x} for each 〈〉ϕ ∈ x.
The standard strategy will now saturate any such child to obtain a state y, then
apply the ∃-rule to y, and so on, until we find a contradiction, or find a repeated
node, or find a state which contains no ∃-formulae. Let us call x the parent state
of y since all intervening nodes are not states.

When converse modalities � /� (inverse roles) present, we require that {ξ |
� ξ ∈ y} ⊆ x, since y is then compatible with being an R-successor of x in the
putative model under construction. If some � ξ ∈ y has ξ /∈ x then x is “too
small”, and must be enlarged into an alternative node x+ by adding all such ξ. If
any such ξ is a complex formula then the alternative node x+ is not “saturated”,
and hence not a state. So we must saturate it using the ∧/∨-rules until we reach
a state. That is, a state x may conceptually be “replaced” by an alternative
prestate x+ which is an enlargement of x, and which may have to be saturated
further in order to reach a state.



Our algorithm handles these “alternatives” by introducing a new type of
node called a special node, introducing a new type of status called toosmall,
allowing states to contain a field alt for storing these alternatives, and ensuring
that a state always has a special node as its parent. When we need to replace a
state x by its alternatives, the special node above x extracts these alternatives
from the altx field and creates the required alternative nodes as explained next.

Referring to Fig. 3, suppose state x has an R-successor prestate ps0, and
further saturation of ps0 leads to prestate psk, and an application of an ∧/∨-
rule to pk will give a state y. Instead of directly creating y, we create a special
node z which carries the same set of formulae as would y, and make z a child
of psk. We now check whether z is compatible with its parent state x by checking
whether {ξ | � ξ ∈ z} ⊆ x. If z is not compatible then we mark z as toosmall,
and add {ξ | � ξ ∈ z}\x to the set of alternative sets contained in altx, without
creating y, as shown in Fig. 3(a). If z is compatible with x, we create a state y
if it does not already exist, and make the new/old y a child of z, as in Fig. 3(b).

Suppose that y is compatible with x and that either y is already toosmall

or becomes so later because of some descendant state w of y. In either case,
the attribute alty then contains a number of sets y1, y2, . . . , yn (say), and the
toosmall status of y is propagated to the special node z. In response, z will
create the alternatives y+1 , y

+
2 , . . . , y

+
n for y with y+i := y ∪ yi. If y+i is a state

then our algorithm will create a special node zi below z, and if zi is compatible
with x then y+i will be created or retrieved and will become the child of zi
as in (b) else y+i will not be created and zi will be marked as toosmall as
in (a). If y+i is not a state then it will be created as a direct prestate child of z.
Figure 3(c) captures this by using y+i /zi to stand for either y+i or zi. Each of
these new non-special nodes will eventually be expanded by our algorithm but
now the “lapsed” special node z will be treated as a ∨-node.

Global State Caching. The complexities introduced by alternative nodes makes
it difficult to use global caching so instead we use “global state caching”: that
is, the saturation phase is allowed to re-create prestates that occur on previous
branches, but states cannot be duplicated so we must use cross-branch edges to
their previous incarnations. The resulting algorithm runs in exptime [6].

5 Traditional Tableaux Methods for Fixpoint Logics

As we have seen, modal and description logic tableaux require some form of
“loop check” to guarantee termination, but fix-point logics require a further test
to distinguish a “good loop” that represents a path in a model from a “bad loop”
that represents an infinite branch with no hope of ever giving a model.

Most tableau-based methods for fix-point logics solve this problem using a
multi-pass graph procedure [11, 15–17]. The first pass applies the tableau rules
to construct a finite rooted cyclic graph. The subsequent passes prune node
that are unsatisfiable because they contain contradictions like {p,¬p}, and also
remove nodes which give rise to “bad loops”. The main practical disadvantage



of such multi-pass methods is that the cyclic graph built in the first pass has a
size which is always exponential in the size of the initial formula. So the very
act of building this graph immediately causes exptime behaviour even in the
average case.

6 One-pass And-Or Tree Tableaux for Fixpoint Logics

One-pass And-Or tableaux avoid this bottle-neck by building a rooted cyclic
tree (where all cyclic edges loop back to ancestors) one branch at a time, us-
ing backtracking. The experience from one-pass tableaux for very expressive
description logics [18] of similar worst-case complexity shows that their average
case behaviour is often much better since the given formulae may not contain
the full complexity inherent in the decision problem, particularly if the formula
arises from real-world applications. Of course, there is no free lunch, since in the
worst case, these one-pass methods may have significantly worse behaviour than
the known optimal behaviour: 2exptime than exptime in the case of CTL for
example. Moreover, the method for separating “good loops” from “bad loops”
becomes significantly more complicated since it cannot utilise the global view
offered by a graph built during a previous pass. Ideally, we want to evaluate
each branch on its own during construction, or during backtracking, using only
information which is “local” to this branch since this allows us to explore these
branches in parallel using multiple processors.

Implemented one-pass [19, 20] and multi-pass [21] tableau provers already
exist for LTL. A comparison between them [22] shows that the median running
time for Janssen’s highly optimised multi-pass prover for LTL is greater than the
median running time for Schwendimann’s not-so-optimised one-pass prover for
LTL [20] for problems which are deliberately constructed to be easy for tableau
provers, indicating that the multi-pass prover spends most of its time in the first
pass building the cyclic graph. There is also a one-pass “tableau” method for
propositional dynamic logic (PDL) [23] which constructs a rooted cyclic tree and
uses a finite collection of automata, pre-computed from the initial formula, to
distinguish “good loops” from “bad loops”.

7 One-pass And-Or Tree Tableaux for CTL

For simplicity, we ignore global assumptions (TBoxes) and concentrate on only
the satisfiability problem since global assumptions can be added by a simple
modification of the rules that create modal successors.

A tableau algorithm is a systematic search for model for a formula φ. The
algorithm stores additional information with each node of the tableau using
histories and variables [20]. A history is a mechanism for collecting extra infor-
mation during proof search and passing it from parents to children. A variable
is a mechanism to propagate information from children to parents.

In the following, we restrict ourselves to the tableau algorithm for CTL.



Definition 1. A tableau node x is of the form (Γ :: HCr :: mrk,uev) where:

Γ is a set of formulae;
HCr is a list of the formula sets of some designated ancestors of x;
mrk is a Boolean valued variable indicating whether the node is marked; and
uev is a partial function from formulae to IN>0.

The list HCr is the only history since its value in a node is determined by the
parent node, whereas mrk and uev are variables since their values in a node are
determined by the children. In the following we call tableau nodes just nodes
when the meaning is clear.

Informally, the value of mrk at node x is true if x is “closed”. Since repeated
nodes cause “cycles” or “loops”, a node that is not “closed” is not necessarily
“open” as in traditional tableaux. That is, although we have enough information
to detect that further expansion of the node will cause an infinite branch, we may
not yet have enough information to determine the status of the node. Informally,
if a node x lies on such a “loop” in the tableau, and an “eventuality” EU - or AU -
formula ϕ appears on this loop but remains unfulfilled, then uev of x is defined
for ϕ by setting uev(ϕ) = n, where n is the height of the highest ancestor of x
which is part of the loop.

We postpone the definition of a rule for a moment and proceed with the
definition of a tableau.

Definition 2. A tableau for a formula set Γ and a list of formula sets HCr is
a tree of tableau nodes with root (Γ :: HCr :: mrk,uev) where the children of a
node x are obtained by a single application of a rule to x ( i.e. only one rule can
be applied to a node). A tableau is expanded if no rules can be applied to any of
its leaves.

Note that mrk and uev in the definition are not given but are part of the result
as they are determined by the children of the root.

Definition 3. The partial function uev⊥ : Fml ⇀ IN>0 is the constant function
that is undefined for all formulae ( i.e. uev⊥(ψ) = ⊥ for all ψ).

Note 1. In the following, we use Λ to denote a set containing only propositional
variables or their negations (i.e. ϕ ∈ Λ ⇒ ϕ = p or ϕ = ¬p for some atom p).
To focus on the “important” parts of the rule, we use “· · · ” for the “unimportant”
parts which are passed from node to node unchanged (e.g. (Γ :: · · · :: · · · )). We
define ∼ϕ := nnf (¬ϕ).

7.1 The Rules

Terminal Rule.

(id)
(Γ :: · · · :: mrk,uev) {p,¬p} ⊆ Γ for some atomic formula p

with mrk := true and uev := uev⊥. The intuition is that the node is “closed”
so we pass this information up to the parent by putting mrk to true, and
putting uev as undefined for all formulae.



Linear (α) Rules.

(∧)
(ϕ ∧ ψ ; Γ :: · · · :: · · · )
(ϕ ; ψ ; Γ :: · · · :: · · · ) (D)

(AX∆ ; Λ :: · · · :: · · · )
(EX(p0 ∨ ¬p0) ; AX∆ ; Λ :: · · · :: · · · )

(EB)
(E(ϕB ψ) ; Γ :: · · · :: · · · )

(∼ψ ; ϕ ∨ EXE(ϕB ψ) ; Γ :: · · · :: · · · )

(AB)
(A(ϕB ψ) ; Γ :: · · · :: · · · )

(∼ψ ; ϕ ∨AXA(ϕB ψ) ; Γ :: · · · :: · · · )

The ∧-rule is standard and the D-rule captures the fact that the binary relation
of a model is total by ensuring that every potential dead-end contains at least
one EX-formula. The EB- and AB-rules capture the fix-point nature of the
corresponding formulae according to the valid formulae E(ϕB ψ) ↔ ¬ψ ∧ (ϕ ∨
EXE(ϕB ψ)) and A(ϕB ψ)↔ ¬ψ ∧ (ϕ ∨AXA(ϕB ψ)).

These rules do not modify the histories or variables at all.

Universal Branching (β) Rules.

(∨)
(ϕ ∨ ψ ; Γ :: · · · :: mrk,uev)

(ϕ ; Γ :: · · · :: mrk1,uev1) | (ψ ; Γ :: · · · :: mrk2,uev2)

(EU)
(E(ϕU ψ) ; Γ :: · · · :: mrk,uev)

(ψ ; Γ :: · · · :: mrk1,uev1) | (ϕ ; EXE(ϕU ψ) ; Γ :: · · · :: mrk2,uev2)

(AU)
(A(ϕU ψ)) ; Γ :: · · · :: mrk,uev)

(ψ ; Γ :: · · · :: mrk1,uev1) | (ϕ ; AXA(ϕU ψ) ; Γ :: · · · :: mrk2,uev2)

with:

mrk := mrk1 & mrk2

exclφ(f)(χ) :=

{
⊥ if χ = φ
f(χ) otherwise

uev′
1 :=

uev1 for the ∨-rule
exclE(ϕU ψ)(uev1) for the EU -rule
exclA(ϕU ψ)(uev1) for the AU -rule

min⊥(f, g)(χ) :=

{
⊥ if f(χ) = ⊥ or g(χ) = ⊥
min(f(χ), g(χ)) otherwise

uev :=


uev⊥ if mrk1 & mrk2

uev′
1 if mrk2 & not mrk1

uev2 if mrk1 & not mrk2

min⊥(uev′
1,uev2) otherwise

The ∨-rule is standard except for the computation of uev. The EU - and AU -rules
capture the fix-point nature of the EU - and AU -formulae, respectively, according



to the valid formula E(ϕU ψ) ↔ ψ ∨ (ϕ ∧ EXE(ϕU ψ)) and A(ϕU ψ) ↔ ψ ∨
(ϕ∧AXA(ϕU ψ)). The intuitions of the definitions of the histories and variables
are:

mrk: the value of the variable mrk is true if the node is “closed”, so the definition
of mrk just captures the “universal” nature of these rules whereby the parent
node is closed if both children are closed.

excl: the definition of exclφ(f)(ψ) just ensures that exclφ(f)(φ) is undefined.
uev′

1: the definition of uev′
1 ensures that its value is undefined for the principal

formulae of the EU - and AU -rules.
min⊥: the definition of min⊥ ensures that we take the minimum of f(χ) and g(χ)

only when both functions are defined for χ.
uev: if both children are “closed” then the parent is also closed via mrk so we

ensure that uev is undefined in this case. If only the right child is closed,
we take uev′

1, which is just uev1 modified to ensure that it is undefined for
the principal EU - or AU -formula. Similarly if only the left child is closed.
Finally, if both children are unmarked, we define uev for all formulae that
are defined in the uev of both children but map them to the minimum of
their values in the children, and undefine the value for the principal formula.

Existential Branching Rule.

(EX)

EXϕ1 ; . . . ;EXϕn ; EXϕn+1 ; . . . ;EXϕn+m ; AX∆ ; Λ
:: HCr :: mrk,uev

ϕ1 ; ∆
:: HCr1 :: mrk1,uev1

| · · · | ϕn ; ∆
:: HCrn :: mrkn,uevn

where:

(1) {p,¬p} 6⊆ Λ
(2) n+m ≥ 1
(3) ∀i ∈ {1, . . . , n}. ∀j ∈ {1, . . . , len(HCr)}. {ϕi} ∪∆ 6= HCr[j]
(4) ∀k ∈ {n+ 1, . . . , n+m}. ∃j ∈ {1, . . . , len(HCr)}. {ϕk} ∪∆ = HCr[j]

with:

HCri := HCr @ [{ϕi} ∪∆] for i = 1, . . . , n

mrk :=
∨n
i=1 mrki or
∃i ∈ {1, . . . , n}. ∃ψ ∈ {ϕi} ∪∆.⊥ 6= uevi(ψ) > len(HCr)

uevk(·) := j ∈ {1, . . . , len(HCr)} such that {ϕk} ∪∆ = HCr[j]
for k = n+ 1, . . . , n+m

uev(ψ) :=


uevj(ψ) if ψ ∈ FmlEU & ψ = ϕj (j ∈ {1, . . . , n+m})
l if ψ ∈ FmlAU ∩∆ &

l = max{uevj(ψ) 6= ⊥ | j ∈ {1, . . . , n+m}}
⊥ otherwise

(where max(∅) := ⊥)

Some intuitions are in order:



(1) The EX-rule is applicable if the parent node contains no α- or β-formulae
and Λ, which contains propositional variables and their negations only, con-
tains no contradictions.

(2) Both n and m can be zero, but not together.

(3) If n > 0, then each EXϕi for 1 ≤ i ≤ n is not “blocked” by an ancestor, and
has a child containing ϕi;∆, thereby generating the required EX-successor;

(4) If m > 0, then each EXϕk for n+ 1 ≤ k ≤ m is “blocked” from creating its
required child ϕk;∆ because some ancestor does the job;

HCri: is just the HCr of the parent but with an extra entry to extend the
“history” of nodes on the path from the root down to the ith child.

mrk: captures the “existential” nature of this rule whereby the parent is marked
if some child is closed or if some child contains a formula whose uev is defined
and “loops” lower than the parent. Moreover, if n is zero, then mrk is set
to false to indicate that this branch is not “closed”.

uevk: for n+ 1 ≤ k ≤ n+m the kth child is blocked by a proxy child higher in
the branch. For every such k we set uevk to be the constant function which
maps every formula to the level of this proxy child. Note that this is just a
temporary function used to define uev as explained next.

uev(ψ): for an EU -formula ψ = E(ψ1 U ψ2) such that there is a principal for-
mula EXϕi with ϕi = ψ, we take uev of ψ from the child if EXψ is “un-
blocked”, or set it to be the level of the proxy child higher in the branch if
it is “blocked”. For an AU -formula ψ = A(ψ1 U ψ2) ∈ ∆, we put uev to be
the maximum of the defined values from the real children and the levels of
the proxy children. For all other formulae, we put uev to be undefined. The
intuition is that a defined uev(ψ) tells us that there is a “loop” which starts
at the parent and eventually “loops” up to some blocking node higher up on
the current branch. The actual value of uev(ψ) tells us the level of the proxy
because we cannot distinguish whether this “loop” is “good” or “bad” until
we backtrack up to that level.

Note that the EX-rule and the id-rule are mutually exclusive since their
side-conditions cannot be simultaneously true.

Proposition 1 (Termination). Let φ ∈ Fml be a formula in negation normal
form. Any tableau T for a node ({φ} :: · · · :: · · · ) is a finite tree, hence the
procedure that builds a tableau always terminates [24].

Let φ ∈ Fml be a formula in negation normal form and T an expanded
tableau with root r = ({φ} :: [] :: mrk,uev): that is, the initial formula set is {φ}
and the initial HCr is the empty list.

Theorem 4 (Soundness and Completeness). The root r is marked iff φ is
not satisfiable [24].

Theorem 5 (Complexity). The tableau algorithm runs in double exponential
deterministic time and needs exponential space [24]..



(1) ∧-node
E(p1 U p2) ∧A(⊥B p2)

[] :: true,uev⊥

α //
(2) AB-node
E(p1 U p2) ; A(⊥B p2)

[] :: true, uev⊥

α

��
(3a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

[] :: true,uev⊥

α

��

(3) ∨-node
E(p1 U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

[] :: true, uev⊥

β1oo

β2

��
(3a’) id-node
E(p1 U p2) ; ¬p2 ; ¬p0 ; p0

[] :: true,uev⊥

(3b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true, uev⊥

β1

uukkkkkkkkkkkkkkk
β2

��
(4a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)

[] :: true,uev⊥

(4b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true, · · ·

��
(5) AB-node
E(p1 U p2) ; A(⊥B p2)
HCR :: false, UEV

Fig. 4. An example: a tableau for E(p1 U p2) ∧A(⊥B p2)



(5) AB-node
E(p1 U p2) ; A(⊥B p2)
HCR :: false, UEV

α //
(6) ∨-node
E(p1 U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

HCR :: false, UEV

β1

uukkkkkkkkkkkkkkk
β2

��
(6a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

HCR :: true, uev⊥

(6b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

β1

uukkkkkkkkkkkkkkk
β2

��
(7a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)
HCR :: true, uev⊥

(7b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

��
blocked by node (5)

Fig. 5. An example: a tableau for E(p1 U p2) ∧A(⊥B p2) (continued)

7.2 A Fully Worked Example

As an example, consider the formula E(p1 U p2) ∧ ¬E(>U p2) which is obvi-
ously not satisfiable. Converting the formula into negation normal form gives
us E(p1 U p2)∧A(⊥B p2). Hence, any expanded tableau with root E(p1 U p2)∧
A(⊥B p2) should be marked.

Figure 4 and Fig. 5 show such a tableau where the root node is node (1)
in Fig. 4 and where Fig. 5 shows the sub-tableau rooted at node (5). Each
node is classified as a ρ-node if rule ρ is applied to that node in the tableau.
The unlabelled edges go from states to pre-states. Dotted frames indicate that
the sub-tableaux at these nodes are not shown because they are very simi-
lar to sub-tableaux of other nodes: that is node (6a) behaves the same way
as node (3a). Dots “· · · ” indicate that the corresponding values are not im-
portant because they are not needed to calculate the value of any other his-
tory or variable. The partial function UEV maps the formula E(p1 U p2) to 1
and is undefined otherwise as explained below. The history HCR is defined as
HCR := [{E(p1 U p2), A(⊥B p2)}].

The marking of the nodes (1) to (4a) in Fig. 4 with true is straightfor-
ward. Note that ⊥ is just an abbreviation for ¬p0 ∧ p0 to save some space and
make things easier for the reader; the tableau procedure as described in this
paper does not know about the symbol ⊥. It is, however, not a problem to
adapt the rules so that the tableau procedure can handle > and ⊥ directly. For
node (5), our procedure constructs the tableau shown in Fig. 5. The leaf (7b)
is an EX-node, but it is “blocked” from creating the desired successor contain-
ing {E(p1 U p2), A(⊥B p2)} because there is a j ∈ IN such that HCr7b[j] =



HCR[j] = {E(p1 U p2), A(⊥B p2)}: namely j = 1. Thus the EX-rule com-
putes UEV (E(p1 U p2)) = 1 as stated above and also puts mrk7b := false. As
the nodes (7a) and (6a) are marked, the function UEV is passed on to the
nodes (6b), (6), and (5) according to the corresponding β- and α-rules.

The crux of our procedure happens at node (4b) which is an EX-node with
HCr4b = [] and hence len(HCr4b) = 0. The EX-rule therefore finds a child
node (5) and a formula E(p1 U p2) in it such that 1 = UEV (E(p1 U p2)) =
uev5(E(p1 U p2)) > len(HCr4b) = 0. That is, node (4b) “sees” a child (5) that
“loops lower”, meaning that node (5) is the root of an “isolated” subtree which
does not fulfil its eventuality E(p1 U p2). Thus the EX-rule sets mrk4b = true,
marking (4b) as “closed”. The propagation of true to the root is then just via
simple β- and α-rule applications.

7.3 One-pass And-Or Tree Tableaux for other fixpoint logics

One-pass And-Or tree tableaux were first given by Schwendimann [20] for LTL.
There is a slight bug in the original formulation but a correct version can
be obtained from our method for CTL by using the appropriate α/β-rules
for LTL instead of CTL in our description and by changing the (EX)-rule to
be linear since the premise of this rule becomes ©ϕ;©∆;Λ and the conclu-
sion just becomes ϕ;∆. A correct implementation can be found here: http:

//users.cecs.anu.edu.au/~rpg/PLTLProvers/. A recent experimental com-
parison of it also exists [25].

One-pass And-Or tree tableaux for PDL also exist [6] and a correct implemen-
tation can be found here: http://users.cecs.anu.edu.au/~rpg/PDLProvers/

The method has been extended to the logic of common knowledge (LCK) [26].

8 On-the-fly And-Or Graph Tableaux for PDL

The one-pass tableau given in the previous section are complexity-suboptimal:
2exptime rather than exptime. Next we show how to regain complexity opti-
mality. Again, we ignore global assumptions (TBoxes) for simplicity.

Our algorithm starts at a root containing a given formula φ and builds an
and-or tree in a depth-first and left to right manner to try to build a model for φ.
The rules are based on the semantics of PDL and either add formulae to the
current world using Smullyan’s α/β rules from Table 1, or create a new world
in the underlying model and add the appropriate formulae to it. For a node x,
the attribute Γx carries this set of formulae.

The strategy for rule applications is the usual one where we “saturate” a node
using the α/β-rules until they are no longer applicable, giving a “state” node s,
and then, for each 〈a〉ξ in s, we create an a-successor node containing {ξ} ∪∆,
where ∆ = {ψ | [a]ψ ∈ s}. These successors are saturated to produce new states
using the α/β-rules, and we create the successors of these new states, and so on.

Our strategy can produce infinite branches as the same node can be created
repeatedly on the same branch. We therefore “block” a node from being created
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Fig. 6. Graph constructed by our algorithm using forward (f) and backward edges (b)

if this node exists already on any previous branch, thereby using global caching
again, but now nodes are required to contain “focused sets of formulae” [6].
For example, in Fig. 6, if the node y′ already exists in the tree, say as node y,
then we create a “backward” edge from x to y (as shown) and do not create y′.
If y′ does not duplicate an existing node then we create y′ and add a “forward”
edge from x to y′. The distinction between “forward” and “backward” edges
is important for the proofs. Thus our tableau is a tree of forward edges, with
backward edges that either point upwards from a node to a “forward-ancestor”,
or point leftwards from one branch to another. Cycles can arise only via backward
edges to a forward-ancestor.

Our tableau must “fulfil” every formula of the form 〈δ〉ϕ in a node but only
eventualities, defined as those where δ contains ∗-connectives, cause problems.
If 〈δ〉ϕ is not an eventuality, the α/β-rules reduce the size of the principal for-
mula, ensuring fulfilment. If 〈δ〉ϕ is an eventuality, the main problem is the
β-rule for formulae of the form 〈γ∗〉ϕ. Its left child reduces 〈γ∗〉ϕ to a strict sub-
formula ϕ, but the right child “reduces” it to 〈γ〉〈γ∗〉ϕ. If the left child is always
inconsistent, this rule can “procrastinate” an eventuality 〈γ∗〉ϕ indefinitely and
never find a world which makes ϕ true. This non-local property must be checked
globally by tracking eventualities.

Table 1. Smullyan’s α- and β-notation to classify formulae

α ϕ ∧ ψ [γ ∪ δ]ϕ [γ∗]ϕ 〈ψ?〉ϕ 〈γ; δ〉ϕ [γ; δ]ϕ

α1 ϕ [γ]ϕ ϕ ϕ 〈γ〉〈δ〉ϕ [γ][δ]ϕ

α2 ψ [δ]ϕ [γ][γ∗]ϕ ψ

β ϕ ∨ ψ 〈γ ∪ δ〉ϕ 〈γ∗〉ϕ [ψ?]ϕ

β1 ϕ 〈γ〉ϕ ϕ ϕ

β2 ψ 〈δ〉ϕ 〈γ〉〈γ∗〉ϕ ∼ψ



Consider Fig. 6, and suppose the current node x contains an eventuality ex.
We distinguish three cases. The first is that some path from x fulfils ex in the
existing tree. Else, the second case is that some path from x always procrastinates
the fulfilment of ex and hits a forward-ancestor of x on the current branch: e.g.
the path x, y, v, u, w, z. The forward-ancestor z contains some “reduction” ez
of ex. The path from the root to the current node x contains the only currently
existing nodes which may need further expansion, and may allow z to fulfil ez
at a later stage, and hence fulfil ex. We call the pair (z, ez) a “potential rescuer”
of ex in Γx. The only remaining case is that ex ∈ Γx is unfulfilled, has no potential
rescuers, and hence can never become fulfilled later, so x can be “closed”. The
machinery to distinguish these three cases and compute, if needed, all currently
existing potential rescuers of every eventuality in Γx is described next.

A tableau node x also contains a status stsx. The value of stsx is the constant
closed if the node x is closed. Otherwise, the node is “open” and stsx contains a
function prs which maps each eventuality ex ∈ Γx to ⊥ or to a set of pairs (v, e)
where v is a forward-ancestor of x and e is an eventuality. The status of a node is
determined from those of its children once they have all been processed. A closed
child’s status is propagated as usual, but the propagation of the function prs from
open children is more complicated. The intuition is that we must preserve the
following invariant for each eventuality ex ∈ Γx:

if ex is fulfilled in the tree to the left of the path from the root to the
node x then prsx(ex) := ⊥, else prsx(ex) is exactly the set of all potential
rescuers of ex in the current tableau.

An eventuality ex ∈ Γx whose prsx(ex) becomes the empty set can never become
fulfilled later, so stsx := closed, thus covering the three cases as desired.

Whenever a node n gets a status closed, we interrupt the depth-first and left-
to-right traversal and invoke a separate procedure which explicitly propagates
this status transitively throughout the and-or graph rooted at n. For example,
if z gets closed then so will its backward-parent w, which may also close u and
so on. This propagation (update) may break the invariant for some eventuality e
in this subgraph by interrupting the path from e to a node that fulfils e or to a
potential rescuer of e. We must therefore ensure that the propagation (update)
procedure re-establishes the invariant in these cases by changing the appropriate
prs entries. At the end of the propagation (update) procedure, we resume the
usual depth-first and left-to-right traversal of the tree by returning the status
of n to its forward-parent. This “on-the-fly” nature guarantees that unfulfilled
eventualities are detected as early as possible.

Our algorithm terminates, runs in exptime, and formula φ is satisfiable iff
the root is open [6].

9 On-the-fly And-Or Graph Tableaux for CPDL

The methods described in the previous sections can be combined to give a
complexity-optimal on-the-fly And-Or graph tableau method for CPDL but the



extension is non-trivial and cannot really be described without giving an ac-
tual algorithm [7]. An implementation by Florian Widmann can be found here:
http://users.cecs.anu.edu.au/~rpg/CPDLTabProver/

10 Further Work

All methods described here have been implemented (http://users.cecs.anu.
edu.au/~rpg/software.html) but further work is required to add optimisations
to make these methods practical on large examples and to extend them to more
expressive logics like SHOIQ: but see [27, 28]. There is also the possibility to
marry these methods with advances from SAT and SMT [29].

Our original aim in this endeavour was to obtain tableaux algorithms for the
modal mu-calculus but we have been unable to extend our one-pass or on-the-fly
methods to this logic. Similarly, we have been unable to extend our methods to
handle full computation tree logic CTL*. Finally, we have been unable to find a
complexity-optimal and-or graph tableaux method for CTL using our approach.

Tableaux-like methods for both CTL* and the modal mu-calculus have been
given and implemented, and are an exciting avenue for future work [30–33].
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3. Goré, R., Nguyen, L.: EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In Olivetti, N., ed.:
Proc. TABLEAUX’2007. Volume 4548 of LNCS., Springer (2007) 133–148
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5. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles.
In: Proc. TABLEAUX-09. Volume 5607 of LNCS., Springer (2009) 205–219
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7. Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic
logic with converse. In: IJCAR. (2010) 225–239

8. Widmann, F.: Tableaux-based Decision Procedures for Fixpoint Logics. PhD
thesis, The Australian National University, Australia (2010)
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