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We introduce a novel concept of the pseudo-parity-time (pseudo-PT ) symmetry in periodically

modulated optical systems with balanced gain and loss. We demonstrate that whether or not the original

system is PT symmetric, we can manipulate the property of the PT symmetry by applying a periodic

modulation in such a way that the effective system derived by the high-frequency Floquet method is PT
symmetric. If the original system is non-PT symmetric, the PT symmetry in the effective system will

lead to quasistationary propagation that can be associated with the pseudo-PT symmetry. Our results

provide a promising approach for manipulating the PT symmetry of realistic systems.

DOI: 10.1103/PhysRevLett.110.243902 PACS numbers: 42.25.Bs, 03.65.Xp, 11.30.Er, 42.82.Et

Parity-time (PT ) symmetry, the invariance under parity-
time reflection, is an important concept in physics recently
developed in application to optical systems. The parity

reflection operator (P̂: x̂ ! �x̂, p̂ ! �p̂) and the time

reversal operator (T̂: x̂ ! x̂, p̂ ! �p̂, i ! �i,
t ! �t) are defined by their action on the position operator
x̂, the momentum operator p̂, and the time t. In quantum
mechanics, the requirement of Hermitian Hamiltonians
guarantees the existence of real eigenvalues and probability
conservation. However, as their Hamiltonian and PT op-
erators share common eigenfunctions, a wide class of non-
Hermitian PT -symmetric Hamiltonians can still possess
entirely real eigenvalue spectra [1–4]. Although the exten-
sion of quantum mechanics based upon non-Hermitian
PT -symmetric operators is still a subject to debate, optical
systems with complex refractive indices [5–12] are widely
used to test the PT symmetry in non-Hermitian systems,
because of the equivalence between the Schrödinger equa-
tion and the optical wave equation [13]. In the last few
years, the PT symmetry has been observed in several
optical systems, such as optical couplers [14,15], micro-
wave billiard [16], and large-scale temporal lattices [17].

Similar to the electron transport in periodic crystalline
potentials and the quantum tunneling in periodically driven
systems [18], the light propagation in waveguides can be
effectively controlled by periodic modulations [19–23]. In
an optical system, periodic modulation is associated with a
periodic refractive index. Mathematically, an optical sys-
tem with periodic complex refractive index is equivalent to
a time-periodic non-Hermitian quantum system. Given the
resonant frequency !0 for the system without modulation,
the modulation frequency!, and the modulation amplitude

A, if !0 � max½!;
ffiffiffiffiffiffiffiffiffiffiffijAj!p �, the modulated system can be

mapped into an effectively unmodulated one with rescaled
parameters [18,24]. Like the case of no modulation, the
PT symmetry may appear in the effective system if the
periodically modulated system may be described by a
PT -symmetric Hamiltonian [25]. Naturally, an important
question arises: Can the PT symmetry appear in an effec-
tive system even if the periodically modulated system is
non-PT symmetric? In other words, can we employ peri-
odic modulations to manipulate the PT symmetry?
In this Letter, we study the light propagation in a peri-

odically modulated optical coupler with balanced gain and
loss and apply a biharmonic modulation along the propa-
gation direction. The Hamiltonian for the modulated
system is non-PT symmetric if the relative phase between
the two applied harmonics is not 0 or �. With application
of the high-frequency Floquet approach, the modulated
system is effectively described by an effective averaged
system, whose PT symmetry can be manipulated by
tuning the modulation amplitude or frequency. More
importantly, the PT symmetry can appear in the effective
system corresponding to a non-PT -symmetric and
non-Hermitian Hamiltonian. Different from the PT sym-
metry from a PT -symmetric Hamiltonian, which leads to
stationary light propagation of bounded intensity oscilla-
tion, the PT symmetry from a non-PT -symmetric
Hamiltonian will lead to quasistationary light propagation
of unbounded intensity oscillation. Therefore, we term the
induced symmetry associated with modulated systems as
the ‘‘pseudo-PT symmetry.’’
In optics, the electric field Eðx; zÞ of light obeys the

wave equation
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where k ¼ k0n0, k0 ¼ 2�=�, and Vðx; zÞ ¼ k0½n0 � nðxÞ�
with the substrate index n0, the free-space wavelength �,
and the complex refractive index distribution nðxÞ ¼ n0 þ
nRðx; zÞ þ inIðxÞ, where nR and nI are real and imaginary
parts of nðxÞ. Therefore, the effective potential reads
as Vðx;zÞ ¼ VRðx;zÞþ iVIðxÞ ¼�k0½nRðx;zÞþ inIðxÞ�.
With the experimental techniques developed in recent
years [6,10,12,14,15], one can make VIð�xÞ ¼ �VIðxÞ
and VRðx; zÞ ¼ V0ðxÞ þ V1ðx; zÞ with the unmodulated
part V0ðxÞ being a symmetric double-well function and
the modulation V1ðx; zÞ ¼ V 0ðxÞFðzÞ described by an anti-
symmetric function V 0ð�xÞ ¼ �V 0ðxÞ and a biharmonic
function FðzÞ; see Fig. 1.

With the use of the coupled-mode theory, the electric
field for a two-channel coupler can be expressed as a
two-mode ansatz with the localized waves fc 1ðxÞ; c 2ðxÞg
and the complex amplitudes fc1ðzÞ; c2ðzÞg (Supplemental
Material [26]). Thus, we have
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@
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A c1
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 !
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with the interchannel coupling strength v, the gain or loss
strength �, and the biharmonic modulation

SðzÞ ¼ �A½sinð!zÞ þ f sinð2!zþ�Þ�: (3)

Here, � 2 ½0; 2�Þ denotes the relative phase between the
two harmonics, ! is the modulation frequency, A is the
modulation amplitude, and f is a dimensionless coeffi-
cient. Since the system is invariant under the transforma-
tion c2 ! �c2 and v ! �v, below we will only consider
the case of v > 0. With definition of the parity operator as

P̂, which interchanges the two channels labeled by 1 and 2,

and the time operator as T̂: i ! �i, z ! �z, which

reverses the propagation direction, the Hamiltonian Ĥ for

the system (2) is PT symmetric if P̂ T̂ Ĥ ¼ Ĥ P̂ T̂ . If

� ¼ 0 or �, Sð�zÞ ¼ �SðzÞ, Ĥ is PT symmetric.

Otherwise, if � � 0 and �, Sðz0 � zÞ � �Sðz0 þ zÞ for
arbitrary constant z0, Ĥ becomes non-PT symmetric.

Under the condition of v � max½!;
ffiffiffiffiffiffiffiffiffiffiffijAj!p �, one can

implement the high-frequency Floquet analysis.
Introducing the transformation

c1 ¼ c01 exp
�
�i

�
A

2!
cosð!zÞ þ Af

4!
cosð2!zþ�Þ

��
; (4)

c2 ¼ c02 exp
�
þi

�
A

2!
cosð!zÞ þ Af

4!
cosð2!zþ�Þ

��
; (5)

and averaging the high-frequency terms, one can obtain an
effectively unmodulated system
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with the rescaled coupling strength

J ¼ v
X1

m¼�1
ðiÞ�mJ�2m

�
A

!

�
Jm

�
Af

2!

�
expðim�Þ: (7)

The modulus of J depends on the values of A=! and �. If
A=! is relatively small, the modulus jJj is almost inde-
pendent on the relative phase �. When A=! increases, the
modulus jJj becomes sensitively dependent on �. In par-
ticular, the modulus jJj equals zero at some specific values
of A=! (such as A=! ’ 2:4 and 5.52) and � ¼ �=2 or
3�=2. In Fig. 2(a), choosing f ¼ 1=4, we show the contour
plot of jJj as a function of A=! and �.
By diagonalizing the Hamiltonian for the effective

system (6), we give the two eigenvalues as

" ¼ �jJj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½�=ð2JÞ�2

q
: (8)

Obviously, dependent on the values of �=ð2jJjÞ, the two
eigenvalues can be real or complex. The two eigenvalues
are real if � < 2jJj, and they become complex if � > 2jJj.
Therefore, �critical ¼ 2jJj is the critical point for the phase
transition between real and complex spectra in the effective
system, which corresponds to the original system (2)
under high-frequency modulations. The spontaneous
PT -symmetry-breaking transition takes place in the ef-
fective model (6) when the imaginary part of " changes
from zero to nonzero. Surprisingly, unlike our conventional
understanding, we find that the quasienergies can be real
even if the modulated system (2) is non-PT symmetric
(i.e., � � 0 and �).
The parametric dependence of jImð"Þj is shown in

Figs. 2(b)–2(e). In Figs. 2(b) and 2(c), we show jImð"Þj
as a function of � and� for f ¼ 1=4. For small A=!, such
as A=! ¼ 1 in Fig. 2(b), jImð"Þj is almost independent on
� and the transition from a completely real quasienergy
spectrum (jImð"Þj ¼ 0) to a complex spectrum (jImð"Þj �
0) takes places when � increases. Near a minimum of jJj,
such as A=! ¼ 2:4, jImð"Þj strongly depends on �; see
Fig. 2(c). In Figs. 2(d) and 2(e), we show jImð"Þj as a

FIG. 1 (color online). Schematic diagram of a modulated two-
channel optical coupler with balanced gain and loss. The peri-
odic change of color along the z axis denotes the periodic
modulation FðzÞ.
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function of � and A=! for (d) � ¼ 0 and (e) � ¼ �=2.
Near the minima of jJj, such as A=! ’ 2:4; 5:52; . . . ,
jImð"Þj shows significant difference between the two cases
of � ¼ 0 and � ¼ �=2. In particular, at the minimum
points, jJj vanished to zero for � ¼ �=2, and the corre-
sponding critical value �critical ¼ 2jJj is reduced to zero.
Similar to a non-Hermitian system with no modulations,
the spontaneous PT -symmetry-breaking transition
(jImð"Þj ¼ 0 ) jImð"Þj � 0) can be observed by tuning
the gain or loss strength �. More interestingly, for our
modulated system (2) of fixed �, it is possible to observe
the spontaneous PT -symmetry-breaking transition by
tuning � and A=!; see Figs. 2(c)–2(e).

On the basis of the high-frequency Floquet analysis, it
seems that whether or not the modulated system (2) obeys a
PT -symmetric Hamiltonian, a completely real quasi-
energy spectrum always appear if � < 2jJj. This is obvi-
ously inconsistent with the previous theory [1–4], which
tells us that only PT -symmetric Hamiltonian systems can
support completely real spectra. So, what really happens in
the modulated non-Hermitian and non-PT -symmetric
Hamiltonian system?.

In general, according to the Floquet theorem, one can
use a numerical method to calculate the Floquet states and

their quasienergies for arbitrary modulation frequency
and amplitude. Similar to the Bloch states, the Floquet
states of the modulated system (2) satisfy fc1ðzÞ; c2ðzÞg ¼
e�i"zf~c1ðzÞ; ~c2ðzÞg. Here, the propagation constant " is
called the quasienergy, and the complex amplitudes ~c1ðzÞ
and ~c2ðzÞ are periodic with the modulation period
T ¼ 2�=!.
To show the validity of the high-frequency Floquet

analysis, we compare the numerical quasienergies obtained
from the original model (2) and the analytical formula (8)
obtained from the effective model (6). In the high-

frequency regime, v � max½!;
ffiffiffiffiffiffiffiffiffiffiffijAj!p �, the analytical

and numerical values for the quasienergies " are in good
agreement and only show a tiny difference dependent upon
�. As two examples, we show Imð"Þ (the imaginary part
of quasienergy) versus � for � ¼ 0 and � ¼ �=2 in
Figs. 3(a) and 3(b), respectively. It clearly shows that the
analytical results (red lines) agree well with the numerical
results (black lines). Below the critical point (� <
�critical ¼ 2jJj), for PT -symmetric Hamiltonian systems
(� ¼ 0 or �), the numerical results confirm the entirely
real quasienergy spectrum; see Fig. 3(c). However, for
non-PT -symmetric Hamiltonian systems (� � 0 and
�), the numerical quasienergies " still have small nonzero
imaginary parts even if �< �critical ¼ 2jJj; see Fig. 3(d).
This means that, if the original system (2) obeys a
non-PT -symmetric Hamiltonian, the entirely real quasi-
energy spectrum for the effective model (6) does not
correspond to a perfectly entirely real quasienergy spec-
trum for the original system (2). Therefore, such a PT
symmetry in the effective model (6) corresponds to a kind
of ‘‘pseudo-PT symmetry’’ in the original model (2). The
appearance of pseudo-PT symmetry indicates that the
deviation of the high-frequency Floquet analysis depends
on both the modulation frequency ! and the Hamiltonian
symmetry. Nevertheless, this deviation tends to be zero
when ! ! 1 (Supplemental Material [26]).
Through numerical integration, we analyze the light

propagations in the continuous system (1) and the
coupled-mode system (2). The light propagation sensi-
tively depends upon the quasienergies. Stationary light
propagations of bounded intensity oscillations appear if
all quasienergies are real. Nonstationary light propagations
of unbounded intensity oscillations appear if at least one of
the quasienergies is complex, in which quasistationary
light propagations of slowly varying time-averaged inten-
sities appear if the two quasienergies for the effective
system (6) are real. In Fig. 4, for v ¼ 1, A ¼ 10, f ¼
1=4, ! ¼ 10, and � ¼ 0:1 (which is below the critical
value �critical), we show the intensity evolution of the
coupled-mode system from c1ð0Þ ¼ 1 and c2ð0Þ ¼ 0;
in which, the two intensities IjðzÞ ¼ jcjðzÞj2, the total

intensity ItðzÞ ¼ I1ðzÞ þ I2ðzÞ and the time-averaged
total intensity Iavt ðzÞ ¼ ð1=TsÞ

R
zþTs
z Itð~zÞd~z with Ts ¼

2�=jReð"2Þ � Reð"1Þj and Reð"jÞ being the real part of

FIG. 2 (color online). Parametric dependence of the effective
coupling jJj and the imaginary parts of quasienergies jImð"Þj.
Top [(a)]: jJj versus A=! and � for f ¼ 1=4. Middle row [(b)
and (c)]: jImð"Þj versus �=� and � for (b) A=! ¼ 1 and
(c) A=! ¼ 2:4. Bottom row [(d) and (e)]: jImð"Þj versus A=!
and � for (d) � ¼ 0 and (e) � ¼ �=2. The other parameters for
jImð"Þj are chosen as v ¼ 1, ! ¼ 10, and f ¼ 1=4. The white
curves are the boundary (�critical ¼ 2jJj) between jImð"Þj ¼ 0
and jImð"Þj � 0.
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"j. In short-distance propagations, I1;2ðzÞ and ItðzÞ oscillate
periodically and it is hard to see the difference between the
cases of � ¼ 0 and �=2; see Figs. 4(c) and 4(d). However,
significant difference appears in long-distance propaga-
tions. For a PT -symmetric Hamiltonian system of
� ¼ 0, Iavt ðzÞ remains unchanged; see Fig. 4(a). For a
non-PT -symmetric Hamiltonian system of � ¼ �=2,
Iavt ðzÞ slowly increases; see Fig. 4(b). The quasistationary
light propagation of slowly varying Iavt ðzÞ is a direct sig-
nature of the pseudo-PT symmetry. Moreover, our nu-
merical simulations of the continuous wave equation (1)
perfectly confirm the pseudo-PT symmetry predicted by
the corresponding coupled-mode system (Supplemental
Material [26]).

Now, we discuss the experimental possibility of observ-
ing our theoretical predictions. Recently, several
PT -symmetric optical systems were experimentally real-
ized [6,10,12,14,15]. Complex refractive index of gain or
loss effects can be obtained from quantum-well lasers or
photorefractive structures through two-wave mixing [27].
Periodic modulations can be introduced by out-of-phase
harmonic modulations of the real refractive index
[13,21,23] or periodic curvatures along the propagation
direction [13,19,23,28]. For a short optical coupler under
periodic modulations, spontaneous PT -symmetry-
breaking transitions can be observed, whether the system
Hamiltonian isPT symmetric or not. In such a system, the
light propagation will be periodic and stable if � < 2jJj,
and an instability will be observed if � > 2jJj. The critical
point �critical ¼ 2jJj can be adjusted by controlling the
modulation parameters A=!, f, and � in addition to
controlling �. However, for a long optical coupler under
periodic modulations, the light propagation below the
critical point (� < 2jJj) depends on the Hamiltonian

symmetry. If the Hamiltonian is PT symmetric, the light
propagation is periodic and stable, in which the time-
averaged total intensity remains unchanged. Otherwise, if
the Hamiltonian is non-PT symmetric, the light propaga-
tion is quasistationary, in which case the time-averaged
total intensity slowly grows.
In summary, we have studied the non-Hermitian

Hamiltonian systems under periodic modulations and
introduce the concept of pseudo-PT symmetry. If the
modulated system obeys a PT -symmetric Hamiltonian,
there exists a truly spontaneous PT -symmetry-breaking
phase transition from a real quasienergy spectrum to a
complex one. If the modulated system obeys a
non-PT -symmetric Hamiltonian, although a spontaneous
PT -symmetry-breaking phase transition in the effective
system derived from the high-frequency Floquet analysis
exists, there is no truly spontaneous PT -symmetry-
breaking phase transition in the original system.
Corresponding to the real spectrum for the effective
system, the original system has a quasireal spectrum of
small imaginary parts, which leads to a quasistationary
light propagation of slowly varying time-averaged total
intensity. This is the pseudo-PT symmetry in the non-
Hermitian system described by a non-PT -symmetric
Hamiltonian.
In addition to the discovery of the pseudo-PT symme-

try, we believe that our work brings three key advances to
related fields. First, although high-frequency Floquet
analysis can capture most key features, some important
information (such as the so-called pseudo-PT symmetry)
may be lost. Second, periodic modulations provide a
new route to the observation of the spontaneous PT -
symmetry-breaking transition. Third, as the interchannel
coupling can be effectively switched off by controlling the
modulation, and the corresponding intensity grows
exponentially even for arbitrarily weak gain or loss, this

FIG. 4 (color online). Intensity evolution from the initial state
of c1ð0Þ ¼ 1 and c2ð0Þ ¼ 0. Upper row: long-distance time-
averaged intensity evolution for (a) � ¼ 0 and (b) � ¼ �=2.
Lower row: short-distance intensity evolution for (c) � ¼ 0
and (d) � ¼ �=2. The other parameters are chosen as v ¼ 1,
A ¼ 10, f ¼ 1=4, ! ¼ 10, and � ¼ 0:1.

FIG. 3 (color online). Comparison between numerical and
analytical results of Imð"Þ, the imaginary part of the quasienergy.
Upper row [(a) and (b)]: Imð"Þ versus � for (a) � ¼ 0 and
(b) � ¼ �=2. Solid lines are for numerical results obtained from
the original model (2), and red dashed lines are analytical results
given by the formula (8) for the effective model (6). Lower row
[(c) and (d)]: the enlarged regions of (a) and (b) near the
bifurcation point given by the analytical formula (8). The other
parameters are v ¼ 1, A ¼ 10, f ¼ 1=4, and ! ¼ 10.
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exponential growth offers an efficient way to beam ampli-
fication in optical waveguides.
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